WO2019039285A1 - 転炉吹錬用上吹きランスおよび溶銑の精錬方法 - Google Patents

転炉吹錬用上吹きランスおよび溶銑の精錬方法 Download PDF

Info

Publication number
WO2019039285A1
WO2019039285A1 PCT/JP2018/029747 JP2018029747W WO2019039285A1 WO 2019039285 A1 WO2019039285 A1 WO 2019039285A1 JP 2018029747 W JP2018029747 W JP 2018029747W WO 2019039285 A1 WO2019039285 A1 WO 2019039285A1
Authority
WO
WIPO (PCT)
Prior art keywords
lance
blowing
nozzle
powder
central axis
Prior art date
Application number
PCT/JP2018/029747
Other languages
English (en)
French (fr)
Inventor
鉄平 田村
慎平 小野
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020197035403A priority Critical patent/KR20200003114A/ko
Priority to JP2019538062A priority patent/JP6721129B2/ja
Priority to CN201880031872.0A priority patent/CN110621792A/zh
Publication of WO2019039285A1 publication Critical patent/WO2019039285A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4606Lances or injectors
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention uses a top blowing lance for blowing a smelting furnace and a top blowing lance for blowing a smelting furnace, which is used when the smelting gas and powder are blown to the surface of the metal bath and blown in a steelmaking converter. It relates to the refining method of molten iron.
  • a method of spraying a powder such as quicklime on the surface of molten iron with an oxygen jet is used.
  • the powder by blowing the powder into the collision surface between the oxygen jet and the hot metal, so-called fire point, the hardening is promoted and the reaction efficiency is improved. Therefore, in this method, it is necessary to blow in powder at a high speed as much as possible to make it reach the fire point steadily.
  • Patent Document 1 discloses a method of suppressing abrasion by performing hard chromium plating by electroplating on the inner surface of the nozzle hole.
  • the method disclosed herein improves the wear resistance of the nozzle, the collision of the powder with the inner surface of the nozzle hole itself is not suppressed. Further, applying hard chromium plating into the nozzle holes is not a simple method.
  • the powder reliably collides with the inner wall of the nozzle if it does not ride on the gas flow, and therefore it is considered to be easily worn. Therefore, it is considered necessary to use a nozzle wear suppression technology using powder regardless of the material of the nozzle and assuming a porous lance structure.
  • Patent Document 2 adjusts the ratio of the sum of the cross-sectional area of the nozzle throat portion to the cross-sectional area of the lance inner channel when blowing powder from the upper lance.
  • the method is aimed at suppressing spitting, and the relationship with nozzle wear suppression is not described.
  • the inner wall of the nozzle has an angle with the axial direction of the lance inner tube, even if the distribution when powder passes through the nozzle portion can be changed, as described above, the powder is still the nozzle The possibility of collision with the inner wall is high, and it is considered difficult to suppress the wear of the nozzle hole.
  • the present invention has a porous nozzle whose inner wall has an angle with the axial direction of the lance inner pipe, and can suppress wear of these nozzle holes, and an upper blowing lance for blast furnace blowing and the same
  • An object of the present invention is to provide a method of refining molten iron using a top blowing lance for converter blowing.
  • the piping of the oxygen-containing gas and the piping of the powder secondary material are connected at the upper end of the upper blowing lance. Gas and powder additives are mixed.
  • the mixture of the oxygen-containing gas and the powder secondary material passes through the inside of one lance inner pipe, and one or more jet holes of the nozzle portion connected to the tip of the lance inner pipe (nozzle (nozzle) It is spouted from the hole).
  • the inventors of the present invention have made a porous nozzle in which the inner wall of the nozzle is angled with respect to the axial direction of the lance inner pipe, ie, the oxygen containing gas possessed by the lance inner pipe and the nozzle hole
  • the inner wall surface of the lance inner pipe flow channel the inner wall surface of the virtual lance inner pipe flow passage divided by the boundary portion between the flow passage of the lance inner pipe and the nozzle hole is expressed as “interface”.
  • FIG. 1 shows, for one nozzle, a cross section which includes the lance central axis and which bisects the above-mentioned boundary surface.
  • a straight line perpendicular to the central axis of the lance is defined as a straight line A passing through the most downstream point of the lance on the boundary surface.
  • a line segment crossing the nozzle hole on the straight line A is defined as a crossing line segment B.
  • a line segment projected on the cross section when the cross section B is projected to a cross section perpendicular to the lance central axis within the flow passage of the lance inner pipe is defined as a line segment C.
  • the present inventors have found that the nozzle wear can be suppressed by the ratio L / L 0 of the length L 0 of the transverse line segment B to the length L of the line segment C satisfying the following equation (1).
  • the following (1) Formula shall be satisfy
  • the present invention is as follows. [1] A top blowing lance for blowing a molten metal into a top and bottom blowing converter, and blowing powder secondary material from the top blowing lance together with an oxygen-containing gas onto the metal by blowing it, An inner lance tube having a flow path of the oxygen-containing gas and the powder sub raw material; A nozzle portion having two or more nozzle holes extending in communication with the flow path of the inner tube of the lance; The nozzle central axis of the nozzle hole is inclined with respect to the lance central axis of the flow passage, and the nozzle holes respectively satisfy the following equation (1): Lance.
  • L 0 the most downstream side point of the lance on the boundary surface in a cross section including the central axis of the lance and bisecting the boundary surface between the flow passage of the lance inner pipe and the nozzle hole
  • L the transverse line to the cross section perpendicular to the lance central axis within the flow passage of the lance inner pipe
  • a length of a line segment projected onto the cross section when a portion is projected [2] A method of refining molten metal, wherein blowing is performed using a top blowing lance for a converter blowing as described in the above [1].
  • a method of refining a molten metal comprising: charging a molten metal into an upper and lower blowing converter; and blowing a powdery secondary material together with an oxygen-containing gas from the upper blowing lance for converter blowing onto the molten metal.
  • the present invention it is possible to suppress the abrasion of the nozzle due to the upper blowing of the oxygen-containing gas and the powdery secondary raw material, and it is possible to prolong the wear resistance life of the refining lance.
  • FIG. 1 is a diagram for explaining the length L 0 of the crossing line segment B and the length L of the line segment C.
  • FIG. 2 is a schematic cross-sectional view of the tip portion of the porous lance.
  • Figure 3 is a view showing a change in wear coefficient due to difference in L / L 0.
  • the top blowing lance for converter blowing according to the present invention is used when blowing and squeezing a powder secondary material together with an oxygen-containing gas to a hot metal charged in the converter.
  • FIG. 2 is a schematic cross-sectional view of the tip portion of the porous lance.
  • Example 202 is a schematic cross-sectional view of the tip portion of the upper blowing lance 1 according to the present invention, and corresponds to example 102 in FIG. That is, the cross section shown in the example 202 is a cross section including the lance central axis 2 d and bisecting the boundary surface 4.
  • Example 201 of FIG. 2 is a schematic cross-sectional view of the tip portion of the upper blowing lance 5 which is the first comparative example, and corresponds to Example 101 of FIG. That is, the cross section shown in the example 201 of FIG.
  • an example 203 of FIG. 2 is a schematic cross-sectional view of a tip portion of the upper blowing lance 9 which is a second comparative example, and corresponds to the example 103 of FIG. That is, the cross section shown in the example 203 of FIG. 2 is a cross section including the lance central axis 10 d and bisecting the boundary surface 12.
  • one hole is abbreviate
  • FIG. 2 respectively show AA cross-sectional views within the flow path of the inner tube of the lance in the examples 201 to 203 in FIG.
  • FIG. 2 in order to simplify the description, the inclination of the nozzle center axis 3c of the example 202 of FIG. 2, the nozzle center axis 7c of the example 201 of FIG. 2 and the nozzle center axis 11c of the example 203 of FIG.
  • the angles ⁇ are assumed to be the same.
  • a flow path of cooling water for cooling the upper blowing lance is provided between the inner wall surface and the outer wall surface of the upper blowing lance (the lance inner pipe and the nozzle portion). It is done.
  • the upper blowing lance 1 includes the lance inner pipe 2 and the nozzle portion 3.
  • the lance inner pipe 2 is mainly made of steel, and contains an oxygen-containing gas (hereinafter may be simply referred to as “gas”) and a powder secondary raw material (hereinafter simply referred to as "gas”) which are blown to the molten metal contained in the converter type smelting vessel. It may have a channel 2a of a mixture of (sometimes referred to as "powder").
  • the flow passage 2a has a tubular shape having a substantially uniform inner diameter up to the nozzle portion 3 and has a shape such that the cross-sectional area of the flow passage 2a does not change rapidly in the traveling direction of gas and powder. It has become.
  • the boundary surface 4 is the flow of the virtual lance inner pipe 2 divided by the boundary portion 2c between the flow passage 2a and the nozzle hole 3a on the inner wall surface 2b of the flow passage 2a. It is an inner wall surface of the road 2a.
  • the boundary surface 4 when the boundary surface 4 is projected on the cross section 13 perpendicular to the lance central axis 2d within the range of the flow passage 2a of the lance inner pipe 2, it is surrounded by the boundary 2c '.
  • a projection plane 14 is formed.
  • the boundary 2 c ′ is a line obtained by projecting the boundary 2 c onto the cross section 13.
  • the nozzle portion 3 is mainly made of copper and has a nozzle hole 3a.
  • the shape of the nozzle hole 3a may be cylindrical (straight nozzle), or may be so-called Laval type (Laval nozzle).
  • the nozzle hole 3a is extended at the end of the flow passage 2a of the lance inner pipe 2 in communication with the flow passage 2a via the boundary 2c, as shown in an example 202 of FIG.
  • the position where the flow path 2a and the nozzle hole 3a are joined is such that the relationship between the length L of the line segment C and the length L 0 of the cross line segment B shown in FIG. 1 satisfies the equation (1) described above It is. This is a finding obtained based on the following ideas.
  • the powder passing through the flow passage in the lance inner pipe together with the gas and the powder ejected from the nozzle hole can be roughly divided into “powder that collides with the inner wall surface of the flow passage before entering the nozzle hole” It is divided into “powder that directly intrudes into the nozzle hole without colliding with the inner wall surface”.
  • the inventors of the present invention can reduce the ratio of "the powder directly invading the nozzle hole without colliding with the inner wall surface of the flow path" by changing the shape of the nozzle portion. It was thought that the wear on the inner wall was suppressed.
  • the length L of the line segment C on the projection plane is made 0 or excessively small, the length L of the line segment C is far greater than the length L 0 of the cross section line B in the nozzle hole 3a. Become smaller. As a result, the flow of gas and powder is unevenly generated, and "the powder directly invading the nozzle hole without colliding with the inner wall surface of the flow passage" collides with the inner wall surface of the nozzle hole, which in turn causes wear. The possibility is also considered.
  • the boundary surface 8 between the nozzle hole 7a and the flow path 6a is located on the side surface of the flow path 6a.
  • the proportion of “powder directly invading into the nozzle hole without colliding with the inner wall surface of the flow path” is reduced, drift as shown in Example 201 of FIG. 2 occurs, and Example 203 of FIG.
  • the upper inner wall surface 7b of the nozzle hole is worn away as in the example 201 of FIG. That is, the occurrence of the uneven flow accelerates the velocity of the gas and the powder in the nozzle hole 7a, and in particular, the inner wall surface 7b is easily worn away in the vicinity of the outlet of the nozzle hole 7a.
  • the boundary surface 12 divided by the boundary portion 10c between the flow passage 10a and the nozzle hole 11a is located on the inner wall surface 10b most downstream of the flow passage 10a. Do. Therefore, when the boundary surface 12 is projected on the cross section 16 perpendicular to the lance central axis 10d, the projection surface 17 surrounded by the boundary line 10c 'is elliptical.
  • the boundary 10 c ′ is a line obtained by projecting the boundary 10 c onto the cross section 16. For this reason, "the powder directly entering the nozzle hole without colliding with the inner wall surface of the flow passage in the lance inner pipe" enters a large amount into the nozzle hole 11a. The entering powder collides with the inner wall surface 11b of the nozzle hole 11a, so the inner wall surface 11b is easily worn away.
  • the area of the projection surface 14 is smaller than the area of the projection surface 17 of the upper blowing lance 9 shown in the example 203 of FIG. short. Therefore, when the nozzle hole 3a communicates with the flow path 2a as in the upper blowing lance 1 shown in the example 202 of FIG. 2, “the powder directly invading the nozzle hole without colliding with the inner wall surface of the flow path The ratio of “is reduced from the upper blowing lance 9 shown in the example 203 of FIG.
  • the nozzle hole 3a shown in the example 202 of FIG. 2 communicates with the flow passage 2a of the inner lance tube 2 so that the nozzle central axis 3c is inclined with respect to the lance central axis 2d of the flow passage 2a.
  • the inclination angle ⁇ is less than 10 °, the jets ejected from the lance are easily combined to easily increase the spitting, and when the inclination angle ⁇ exceeds 30 °, the distance between the fire point and the furnace wall becomes too short.
  • the inclination angle ⁇ is preferably 10 ° to 30 ° because melting loss of the furnace wall refractory is promoted.
  • a nozzle to the YZ plane corresponding to the twist of the nozzle hole 3a is provided, and the nozzle central axis 3c of the nozzle hole 3a is the lance center It may be inclined in the twisting direction with respect to the shaft 2d.
  • the throat diameter is a diameter at which the cross-sectional area is minimized in the nozzle hole of the nozzle portion, and oxygen gas is used as the oxygen-containing gas, and quick lime powder is used as the powder submaterial.
  • Limestone powder with a particle size of 5 to 200 ⁇ m is intermittently supplied for a total of 20 hours at 5.5 kg / min under an oxygen gas flow rate of 3.0 Nm 3 / min and gas and powder are allowed to pass through the nozzle holes The test was conducted.
  • the preferable range for carrying out the present invention is 0.19 ⁇ L / L 0 ⁇ 0.82 as shown in the formula (1). Moreover, in order to suppress wear more reliably, preferably 0.35 ⁇ L / L 0 ⁇ 0.70.
  • the method for refining molten metal according to the present invention is the above-described conversion according to the present invention when the powder secondary raw material is sprayed to a converter charged with oxygen-containing gas, which is mainly pure oxygen gas, to the molten metal to refine the molten metal. Use a top blowing lance for blasting.
  • the molten iron charged into the converter may or may not be pretreated.
  • the refining may be a so-called hot metal preliminary dephosphorization treatment, or the molten steel may be manufactured by the refining.
  • the powder auxiliary material is not limited to dephosphorizing agents such as quick lime, limestone, calcium ferrite, etc., and materials for promoting brackishness such as bauxite and rutile ore, ores such as iron ore and Mn ore, or mixtures thereof It is also good.
  • the flow rate of the oxygen-containing gas, the particle size of the powder by-product, and the addition amount may be such that the transfer and the spray of the by-product are stably performed according to the purpose of refining the molten iron.
  • the top blowing lance for converter blowing according to the present invention suppresses the problem of nozzle wear associated with powder supply more than using the conventional top blowing lance under any conditions, contributes to stable operation, and lance replacement frequency. Can contribute to the improvement of productivity.
  • the hot metal preliminary dephosphorization blowing was performed in the upper bottom blowing converter of 300t scale.
  • the main raw materials at that time are C: 4.4 to 4.5%, Si: 0.2 to 0.5%, Mn: 0.2 to 0.4%, P: 0. 100 to C in mass concentration.
  • About 260 t of hot metal containing 0.130% and about 20 t of scrap were used.
  • the top blowing oxygen flow rate is 3.0 Nm 3 / min per 1 t of molten iron, quick lime powder with a particle diameter of 5 to 200 ⁇ m as powder auxiliary material is top blowing speed 900 kg / min, bottom blowing CO 2 flow rate is 0.25 Nm 3 / min And
  • due to the nozzle wear a hole was formed in the flow path of the cooling water inside the lance, and the relationship between the number of blows and the L / L 0 until water leak occurred was investigated.
  • the conditions for the upper blowing lance are as follows: Fix the inner diameter of the lance inner pipe 180 mm, throat diameter 45 mm, nozzle hole number 4 and nozzle inclination angle 20 °, and change L / L 0 to produce the upper blowing lance Used for blowing.
  • Table 1 shows the L / L 0 and the wear index.
  • the wear index is a value obtained by using the upper blowing lance of Comparative Example 1 as blowing and making the number of times of blowing until the water leakage occurs be 1 as an index.
  • Comparative Examples 1 and 2 will be described.
  • the wear index was smaller in Comparative Example 2 than in Comparative Example 1. This is considered to be because L / L 0 is smaller in the upper blowing lance of Comparative Example 2.
  • Examples 1 to 4 will be described.
  • the wear index of Examples 1 to 4 was less than half that of Comparative Example 1. This is considered to be because L / L 0 ⁇ 0.82 is satisfied, and the proportion of “powder directly intruding into the nozzle hole without colliding with the wall surface of the lance inner pipe” is reduced.
  • L / L 0 was smaller in Example 2 than in Example 1, no significant difference from the wear index of Example 1 was observed.
  • the wear of Example 1 and 2 was suppressed further than that of Examples 3 and 4 respectively.
  • Comparative Example 3 had a larger wear index than Examples 1 to 4. It is considered that this is because the flow of the gas and the powder in the nozzle hole is biased due to the L / L 0 being smaller than 0.19. From the above, by setting 0.19 ⁇ L / L 0 ⁇ 0.82, abrasion of the inner wall surface of the nozzle hole by the powder can be suppressed, and by setting 0.35 ⁇ L / L 0 ⁇ 0.70. It was confirmed that the wear of the inner wall surface can be further suppressed.
  • the present invention it is possible to suppress the abrasion of the nozzle due to the upper blowing of the oxygen-containing gas and the powdery secondary raw material, and it is possible to prolong the wear resistance life of the refining lance. Therefore, industrial value is large.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

ランス中心軸を含み、かつランス内管の流路とノズル孔との境界面を二等分する断面において、前記境界面上でランスの最も下流側の点を通り、前記ランス中心軸に垂直な直線上で前記ノズル孔を横断する線分の長さをL0、前記ランス内管の流路の範囲内で前記ランス中心軸に垂直な横断面へ前記横断する線分を投影したときに前記横断面上に投影される線分の長さをLとした場合に、0.19≦L/L0≦0.82とする。

Description

転炉吹錬用上吹きランスおよび溶銑の精錬方法
 本発明は、製鋼用転炉において精錬用ガスおよび粉体を溶銑浴面に吹き付けて吹錬する際に用いる転炉吹錬用上吹きランス、およびその転炉吹錬用上吹きランスを用いた溶銑の精錬方法に関する。
 例えば、酸素上吹き転炉製鋼法における予備脱りん精錬において、溶鉄の表面に生石灰等の粉体を酸素ジェットと共に吹き付ける方法が用いられている。このとき、酸素ジェットと溶銑との衝突面、いわゆる火点に粉体を吹き込むことによって、滓化が促進され反応効率が向上する。よって、この方法では、粉体をできる限り高速度で吹き込み、着実に火点に到達させる必要がある。
 ただし、粉体吹き込み速度を増加させると、粉体によるノズルの摩耗が問題となる。ノズルの摩耗が進行してノズルを冷却する冷却水の流路に穴が開き、冷却水漏れが起こると重大な操業阻害となり、生産性の低下を招く。また、ノズルの摩耗が著しくなると精錬挙動が変化し、吹錬制御が困難になるという問題もある。予備脱りん精錬に限らず、予備脱りん精錬を施されていない溶銑や予備脱りん精錬を施された溶銑に対して脱炭精錬を施す際においても、上吹きランスから生石灰や鉱石等の粉体を吹き込む際には同様の課題がある。
 そこで、この課題を解決するために、例えば、特許文献1ではノズル孔の内面に電気めっきによる硬質クロムめっきを施すことで摩耗を抑制する方法が開示されている。しかしながら、ここで開示されている方法は、ノズルの耐摩耗性は向上するものの粉体のノズル孔内面への衝突自体は抑制されない。また、ノズル孔内へ硬質クロムめっきを施すことは簡易な方法とは言い難い。
 さらに、実操業ではスピッティング抑制の観点から、ジェットの動圧を分散させるため、ノズルに傾斜角を付与して多孔化するのが一般的である。そこで、粉体によるノズルの摩耗は、ノズルの配置やノズル傾斜角度にも大きく依存すると考えられる。例えば、単孔ノズルを用いれば酸素ガスとともにノズル内を通過する粉体の大半は、たとえ粉体がガス流れに乗らずに直進したとしても、ノズル内壁に衝突しないと推定でき、摩耗し難いと考えられる。一方、多孔ノズルの場合はランス内管の軸方向に対してノズル内壁が角度を持つため、粉体がガス流れに乗らなければ確実にノズル内壁に衝突するため、摩耗しやすいと考えられる。したがって、ノズルの材質によらず、かつ多孔ランス構造を前提とした粉体によるノズル摩耗抑制技術が必要と考えられる。
 多孔ランス構造を前提とした技術として、例えば、特許文献2には、上吹きランスから粉体を吹き込むに際し、ノズルスロート部の横断面積の総和とランス内管流路の横断面積との比を調整して、粉体がノズル部を通過する際の分布を変える方法が記載されている。しかし、その方法はスピッティングの抑制を目的としていて、ノズル摩耗抑制との関係は記載されていない。また、ランス内管の軸方向に対してノズル内壁が角度を持つため、粉体がノズル部を通過する際の分布を変えることができたとしても、やはり、前述のように、粉体がノズル内壁に衝突する可能性が高く、ノズル孔の摩耗を抑制することは困難であると考えられる。
特開2003-213318号公報 特開2012-251199号公報
 本発明は前述の問題点を鑑み、ランス内管の軸方向に対してノズル内壁が角度を持つ多孔ノズルを有し、これらのノズル孔の摩耗を抑制できる転炉吹錬用上吹きランスおよびその転炉吹錬用上吹きランスを用いた溶銑の精錬方法を提供することを目的とする。
 上吹きランスから酸素含有ガスとともに粉体副原料を上吹きする場合、通常は、上吹きランスの上端部において酸素含有ガスの配管と粉体副原料の配管とが接続されており、そこで酸素含有ガスと粉体副原料とが混合される。そして、酸素含有ガス及び粉体副原料の混合体は、1本のランス内管の内部を通って、ランス内管の先端に接続されるノズル部の1個又は2個以上の噴出孔(ノズル孔)から噴出される。
 本発明者らは、ランス内管の軸方向に対してノズル内壁が角度を持つ多孔ノズル、つまりランス内管が有する酸素含有ガス及び粉体副原料の流路の中心軸に対してノズル孔の中心軸が傾斜している多孔ノズルを有する上吹きランスを用いる場合、ノズル孔とランス内管の流路との接合位置により粉体挙動を制御し、ノズル摩耗を抑制することを検討した。以下、ランス内管流路の内壁面において、ランス内管の流路とノズル孔との境界部で区切られた仮想のランス内管の流路の内壁面を「境界面」と表現する。
 図1は、1つのノズルに対し、ランス中心軸を含み、かつ上記した境界面を二等分する断面を示している。図1において、境界面上でランスの最も下流側の点を通り、ランス中心軸に垂直な直線を直線Aと定義する。そして、その直線A上でノズル孔を横断する線分を横断線分Bと定義する。さらに、ランス内管の流路の範囲内でランス中心軸に垂直な横断面へ横断線分Bを投影したときに横断面上に投影される線分を線分Cと定義する。本発明者らは、横断線分Bの長さL0と線分Cの長さLとの比L/Lが下記(1)式を満たすことによって、ノズル摩耗を抑制できることを見出した。また、多孔ノズルを有する上吹きランスの場合は、ランス中心軸から傾斜しているすべてのノズルで下記(1)式を満たすものとする。
 0.19≦L/L≦0.82   ・・・(1)
 本発明は、以下の通りである。
 [1]溶銑を上底吹き転炉に装入し、上吹きランスから酸素含有ガスと共に粉体副原料を溶銑に吹き付けて吹錬する際に用いる転炉吹錬用上吹きランスであって、
 前記酸素含有ガスおよび前記粉体副原料の流路を有するランス内管と、
 該ランス内管の前記流路に連通して延設される2孔以上のノズル孔を有するノズル部とを有し、
 前記ノズル孔のノズル中心軸が、前記流路のランス中心軸に対して傾斜しており、前記ノズル孔がそれぞれ、以下の(1)式を満たすことを特徴とする転炉吹錬用上吹きランス。
 0.19≦L/L≦0.82   ・・・(1)
 ここで、L0:前記ランス中心軸を含み、かつ前記ランス内管の流路と前記ノズル孔との境界面を二等分する断面において、前記境界面上でランスの最も下流側の点を通り、前記ランス中心軸に垂直な直線上で前記ノズル孔を横断する線分の長さ
 L:前記ランス内管の流路の範囲内で前記ランス中心軸に垂直な横断面へ前記横断する線分を投影したときに前記横断面上に投影される線分の長さ
 [2]上記[1]に記載の転炉吹錬用上吹きランスを用いて吹錬を行う溶銑の精錬方法であって、
 溶銑を上底吹き転炉に装入し、前記転炉吹錬用上吹きランスから酸素含有ガスと共に粉体副原料を前記溶銑に吹き付けて吹錬することを特徴とする溶銑の精錬方法。
 本発明によれば、酸素含有ガスおよび粉体副原料を上吹きすることによるノズルの摩耗を抑制でき、精錬用ランスの耐摩耗寿命を長くすることが可能となる。
図1は、横断線分Bの長さLと線分Cの長さLとを説明するための図である。 図2は、多孔ランスの先端部分の断面概略図である。 図3は、L/Lの違いによる摩耗係数の変化を示した図である。
 以下、本発明の実施形態について、図面を参照しながら説明する。本発明に係る転炉吹錬用上吹きランスは、酸素含有ガスと共に粉体副原料を転炉に装入した溶銑に吹き付けて吹錬する際に用いられる。
 図2は、多孔ランスの先端部分の断面概略図である。例202は、本発明に係る上吹きランス1の先端部分の断面概略図であり、図1の例102と対応している。つまり例202に示す断面は、ランス中心軸2dを含み、かつ且つ境界面4を二等分する断面である。一方、図2の例201は、第1の比較例である上吹きランス5の先端部分の断面概略図であり、図1の例101と対応している。つまり、図2の例201に示す断面は、ランス中心軸6dを含み、かつ且つ境界面8を二等分する断面である。さらに、図2の例203は、第2の比較例である上吹きランス9の先端部分の断面概略図であり、図1の例103と対応している。つまり、図2の例203に示す断面は、ランス中心軸10dを含み、かつ且つ境界面12を二等分する断面である。なお、図2に示す例では、2孔の多孔ランスについて、説明しやすいように一方の孔を省略して図示されている。また、図2の例204~206は、それぞれ図2の例201~203のランス内管の流路の範囲内におけるA-A断面図を示している。また、図2に示す例では、説明を簡略化するため、図2の例202のノズル中心軸3c、図2の例201のノズル中心軸7cおよび図2の例203のノズル中心軸11cの傾斜角θは同じであるものとする。また、図2に示す例では図示していないが、上吹きランス(ランス内管およびノズル部)の内壁面と外壁面との間には、上吹きランスを冷却する冷却水の流路が設けられている。
 図2の例202に示すように、上吹きランス1はランス内管2およびノズル部3を備える。
 ランス内管2は主にスチール製であり、転炉型精錬容器に収容された溶銑に吹き付ける酸素含有ガス(以下、単に「ガス」と称する場合がある。)及び粉体副原料(以下、単に「粉体」と称する場合がある。)の混合体の流路2aを有する。流路2aは、ノズル部3に至るまで、ほぼ均一の内径を有する管状となっており、ガス及び粉体の進行方向に対して、流路2aの断面積が急激に変化しないような形状となっている。
 なお、図2の例202に示すように、境界面4は、流路2aの内壁面2bにおいて、流路2aとノズル孔3aとの境界部2cで区切られた仮想のランス内管2の流路2aの内壁面である。また、図2の例205に示すように、ランス内管2の流路2aの範囲内でランス中心軸2dに垂直な横断面13に境界面4を投影すると、境界線2c′で囲まれた投影面14が形成される。境界線2c′は、境界部2cを横断面13に投影した線である。
 ノズル部3は主に銅製であり、ノズル孔3aを有する。ノズル孔3aの形状は、円筒形(ストレートノズル)であってもよく、いわゆるラバール形(ラバールノズル)であってもよい。ノズル孔3aは、図2の例202に示すように、ランス内管2の流路2aの端部で、境界部2cを介して流路2aと連通して延設されている。流路2aとノズル孔3aとが接合する位置は、図1に示す線分Cの長さLと横断線分Bの長さLとの関係が前述した(1)式を満たすような位置である。これは以下のような着想に基づいて得られた知見である。
 ランス内管の流路をガスと共に通過し、ノズル孔から噴出される粉体は大別すると、「ノズル孔内に侵入する以前に流路の内壁面と衝突する粉体」と「流路の内壁面に衝突せずにノズル孔内に直接侵入する粉体」とに分けられる。本発明者らが2.5t規模の転炉による粉体上吹き実験時のランス摩耗実態と、流動解析により得られたガス及び粉体挙動とを照合した結果、「流路の内壁面に衝突せずにノズル孔内に直接侵入する粉体」の挙動と摩耗挙動とが類似していた。以上から、本発明者らはノズル部の形状を変更することにより「流路の内壁面に衝突せずにノズル孔内に直接侵入する粉体」の割合を減少させれば、粉体によるノズル内壁面における摩耗が抑制されると考えた。
 まず、ランス内管の流路をガスと粉体とが流路の中心軸方向に対して均一に流れると仮定する。その場合、ランス内管の流路とノズル部のノズル孔との境界面をランス内管の流路の横断面へ投影したとき、その投影面上の線分Cの長さLを小さくすれば、ノズル孔を通過する全粉体の内に占める「流路の内壁面に衝突せずにノズル孔内に直接侵入する粉体」の割合が減少し、ノズル孔の内壁面に衝突する粉体の量が低減するため、ノズル摩耗が抑制される可能性がある。
 一方で、投影面上の線分Cの長さLを0もしくは過剰に小さくしてしまうと、線分Cの長さLがノズル孔3aにおける横断線分Bの長さLに比べて遥かに小さくなってしまう。その結果、ガスおよび粉体の流れに偏流が生じ、「流路の内壁面に衝突せずにノズル孔内に直接侵入する粉体」がノズル孔の内壁面に衝突し、逆に摩耗を招く可能性も考えられる。
 例えば、図2の例201に示す上吹きランス5では、ノズル孔7aと流路6aとの境界面8が流路6aの側面に位置する。このため、図2の例204に示すように、ランス中心軸6dに垂直な横断面15へ境界面8を投影した場合、投影面の面積はほぼ0である。つまり、図1の例101に示すように、線分Cそのものが存在しないため、L=0となる。この場合、「流路の内壁面に衝突せずにノズル孔内に直接侵入する粉体」の割合は低減されるものの、図2の例201に示すような偏流が生じ、図2の例203とは異なるメカニズムで、図2の例201のようにノズル孔の上側の内壁面7bが摩耗すると考えられる。つまり、偏流が生じることにより、ノズル孔7a内においてガスおよび粉体の速度が加速し、特にノズル孔7aの出口付近において内壁面7bが摩耗しやすくなってしまう。
 また、図2の例203に示す上吹きランス9においては、流路10aとノズル孔11aとの境界部10cで区切られた境界面12は、流路10aの最も下流側の内壁面10bに位置する。したがって、ランス中心軸10dに垂直な横断面16に境界面12を投影した場合、境界線10c′に囲まれた投影面17は楕円形となる。なお、境界線10c′は、境界部10cを横断面16に投影した線である。このため、「ランス内管の流路の内壁面に衝突せずにノズル孔内に直接侵入する粉体」が、ノズル孔11aに多量に進入する。進入した粉体はノズル孔11aの内壁面11bに衝突するため、内壁面11bは摩耗しやすい。
 このように、本実施形態に係る上吹きランス1の場合、投影面14の面積が図2の例203に示す上吹きランス9の投影面17の面積より小さく、線分Cの長さLが短い。したがって、図2の例202に示す上吹きランス1のようにノズル孔3aが流路2aと連通している場合、「流路の内壁面に衝突せずにノズル孔内に直接侵入する粉体」の割合は、図2の例203に示す上吹きランス9より低減される。
 また、図2の例202に示すノズル孔3aは、ノズル中心軸3cが流路2aのランス中心軸2dに対して傾斜するように、ランス内管2の流路2aに連通している。傾斜角θは10°未満ではランスから噴出されるジェット同士が合体し易くなってスピッティングが増加しやすく、また傾斜角θが30°を超えると火点と炉壁間距離が短くなり過ぎて炉壁耐火物の溶損が促進されてしまうため、傾斜角θは10~30°が望ましい。また、ランス内管2のランス中心軸2dがZ軸、ノズル孔3aの出口位置がX軸上となるように定めたXYZ直交座標系において、ノズル孔3aのひねりに相当するYZ平面へのノズル軸の投影とZ軸とがなす角度、およびノズルの外側方向の傾斜に相当するXZ平面へのノズル軸の投影がZ軸となす角度を設けて、ノズル孔3aのノズル中心軸3cがランス中心軸2dに対してねじれる方向に傾斜していてもよい。
 次に本発明者らは、前述の仮説に基づいてL/Lの好適な範囲を見出すために、粉体摩耗抑制を指向したノズル形状について耐摩耗試験を行った。
 (1)共通する調査条件
 本発明者らは、ランス内管の径を20mm、ノズル孔数を4、スロート径を5.1mm、ノズル傾斜角を20°とし、ランス中心軸を含み、かつ且つ境界面を二等分する断面において、境界面上でランスの最も下流側の点を通り、ランス中心軸に垂直な直線上でノズル孔を横断する横断線分Bの長さLを固定値とした。一方、ランス内管の流路の範囲内でランス中心軸に垂直な横断面へ横断線分Bを投影したときに横断面上に投影される線分Cの長さLを変更して、粉体によるノズル孔の内壁面の摩耗を評価した。スロート径とは、ノズル部のノズル孔において断面積が最小となるときの直径とし、酸素含有ガスとして酸素ガスを、粉体副原料として生石灰粉を用いた。酸素ガス流量が3.0Nm/minの条件下で、粒径5~200μmの生石灰粉を5.5kg/minでのべ20時間断続的に供給し、ノズル孔にガスおよび粉体を通過させる試験を実施した。
 (2)L/Lと摩耗試験後のノズル摩耗量との関係
 図3に、各ノズルにおけるL/Lと摩耗試験後のノズル摩耗量との関係を示す。L/Lが小さくなるほどノズル摩耗量が減少したが、特にL/L<0.2の領域ではL/Lが小さくなるほど、それまでと反対方位のノズル孔の内壁面の摩耗量が増加した。概ね、0.19≦L/L≦0.82である場合は、L/L=1.0の場合と比較してノズルの摩耗量が半分以下となった。以上の検討により、本発明を実施するのに好適な範囲は(1)式に示す通り、0.19≦L/L≦0.82であることが判明した。また、より確実に摩耗を抑えるために、好ましくは0.35≦L/L≦0.70である。
 次に、溶銑の精錬方法について説明する。
 本発明に係る溶銑の精錬方法は、主に純酸素ガスである酸素含有ガスと共に粉体副原料を転炉に装入した溶銑に吹き付けて溶銑を精錬する際に、前述した本発明に係る転炉吹錬用上吹きランスを用いる。本発明に係る溶銑の精錬方法において、転炉に装入する溶銑は予備処理されているかどうかを問わない。また、精錬実施後の溶銑の成分も問わず、その精錬がいわゆる溶銑予備脱燐処理であってもよいし、その精錬によって溶鋼を製造してもよい。さらに、粉体副原料は生石灰、石灰石、カルシウムフェライト等の脱燐剤に限られず、ボーキサイトやルチル鉱石等の滓化促進材、鉄鉱石やMn鉱石等の鉱石類、あるいはこれらの混合物であってもよい。
 酸素含有ガスの吹付け流量および粉体副原料の粒径、添加量は、当該溶銑の精錬目的に応じて粉体副原料の搬送および吹付けが安定して行われれば良い。
 本発明に係る転炉吹錬用上吹きランスは、いかなる条件においても従来の上吹きランスを用いるよりも粉体供給に伴うノズル摩耗の問題を抑制し、安定操業に寄与すると共にランス交換の頻度を低減して、生産性の向上に貢献することができる。
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 300t規模の上底吹き転炉で溶銑予備脱りん吹錬を行った。その際の主原料には、質量濃度でC:4.4~4.5%、Si:0.2~0.5%、Mn:0.2~0.4%、P:0.100~0.130%を含有する溶銑を約260t、スクラップを約20t用いた。上吹き酸素流量を溶銑1t当たり3.0Nm/minとし、粉体副原料として粒径5~200μmの生石灰粉体を上吹き速度900kg/min、底吹きCO流量を0.25Nm/minとした。この脱りん吹錬により、質量濃度でC:3.6~3.8%、Si≦0.01%、Mn:0.1~0.2%、P:0.015~0.025%の溶銑を製造した。この試験では、ノズル摩耗により、ランス内部の冷却水の流路に穴が開き、水漏れが生ずるまでの吹錬回数とL/Lとの関係を調査した。
 上吹きランスの条件は、ランス内管の径を180mm、スロート径を45mm、ノズル孔数を4、ノズル傾斜角を20°で固定し、L/Lを変えた上吹きランスを製作し、吹錬に用いた。以下の表1に、L/Lおよび摩耗指数を示す。ここで、摩耗指数とは、比較例1の上吹きランスを吹錬に用いて前記の水漏れが生ずるまでの吹錬回数を1として指数化した値である。
Figure JPOXMLDOC01-appb-T000001
 まず、比較例1および2について述べる。比較例1に比べて比較例2の方が摩耗指数は小さかった。これは比較例2の上吹きランスの方がL/Lが小さいためと考えられる。次に実施例1~4について述べる。実施例1~4の摩耗指数は比較例1に比べて半分以下であった。これはL/L≦0.82を満足し、「ランス内管壁面に衝突せずにノズル孔内に直接侵入する粉体」の割合が減少したためと考えられる。また、実施例2は実施例1よりもL/Lが小さいが、実施例1の摩耗指数と大きな差異は見られなかった。また、実施例1および2はそれぞれ実施例3および4よりもさらに摩耗が抑えられた。
 一方、比較例3は実施例1~4よりも摩耗指数が大きかった。これはL/Lを0.19よりも小さくしたことにより、ノズル孔内のガスおよび粉体の流れに偏りが生じたためと考えられる。
 以上より、0.19≦L/L≦0.82とすることで粉体によるノズル孔の内壁面の摩耗を抑制でき、さらに0.35≦L/L≦0.70とすることで、内壁面の摩耗をより抑制できることが確認された。
 本発明によれば、酸素含有ガスおよび粉体副原料を上吹きすることによるノズルの摩耗を抑制でき、精錬用ランスの耐摩耗寿命を長くすることが可能となる。そのため、工業的価値が大きい。

Claims (2)

  1.  溶銑を上底吹き転炉に装入し、上吹きランスから酸素含有ガスと共に粉体副原料を溶銑に吹き付けて吹錬する際に用いる転炉吹錬用上吹きランスであって、
     前記酸素含有ガスおよび前記粉体副原料の流路を有するランス内管と、
     該ランス内管の前記流路に連通して延設される2孔以上のノズル孔を有するノズル部とを有し、
     前記ノズル孔のノズル中心軸が、前記流路のランス中心軸に対して傾斜しており、前記ノズル孔がそれぞれ、以下の(1)式を満たすことを特徴とする転炉吹錬用上吹きランス。
     0.19≦L/L≦0.82   ・・・(1)
     ここで、L:前記ランス中心軸を含み、かつ前記ランス内管の流路と前記ノズル孔との境界面を二等分する断面において、前記境界面上でランスの最も下流側の点を通り、前記ランス中心軸に垂直な直線上で前記ノズル孔を横断する線分の長さ
     L:前記ランス内管の流路の範囲内で前記ランス中心軸に垂直な横断面へ前記横断する線分を投影したときに前記横断面上に投影される線分の長さ
  2.  請求項1に記載の転炉吹錬用上吹きランスを用いて吹錬を行う溶銑の精錬方法であって、
     溶銑を上底吹き転炉に装入し、前記転炉吹錬用上吹きランスから酸素含有ガスと共に粉体副原料を前記溶銑に吹き付けて吹錬することを特徴とする溶銑の精錬方法。
PCT/JP2018/029747 2017-08-21 2018-08-08 転炉吹錬用上吹きランスおよび溶銑の精錬方法 WO2019039285A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197035403A KR20200003114A (ko) 2017-08-21 2018-08-08 전로 취련용 상취 랜스 및 용선의 정련 방법
JP2019538062A JP6721129B2 (ja) 2017-08-21 2018-08-08 転炉吹錬用上吹きランスおよび溶銑の精錬方法
CN201880031872.0A CN110621792A (zh) 2017-08-21 2018-08-08 转炉吹炼用顶吹喷枪以及铁液的精炼方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017158736 2017-08-21
JP2017-158736 2017-08-21

Publications (1)

Publication Number Publication Date
WO2019039285A1 true WO2019039285A1 (ja) 2019-02-28

Family

ID=65438715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029747 WO2019039285A1 (ja) 2017-08-21 2018-08-08 転炉吹錬用上吹きランスおよび溶銑の精錬方法

Country Status (5)

Country Link
JP (1) JP6721129B2 (ja)
KR (1) KR20200003114A (ja)
CN (1) CN110621792A (ja)
TW (1) TWI665308B (ja)
WO (1) WO2019039285A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022006385A (ja) * 2020-06-24 2022-01-13 Jfeスチール株式会社 転炉脱りん処理用上吹きランスおよび転炉吹錬方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316714A (ja) * 2000-05-10 2001-11-16 Nippon Steel Corp 膨張制御ラバールノズルを有する吹錬用上吹きランス
JP2003328027A (ja) * 2002-05-14 2003-11-19 Jfe Steel Kk 転炉吹錬方法
JP2012117126A (ja) * 2010-12-02 2012-06-21 Sumitomo Metal Ind Ltd 溶銑の精錬方法
WO2013094634A1 (ja) * 2011-12-20 2013-06-27 Jfeスチール株式会社 転炉製鋼方法
JP2017057468A (ja) * 2015-09-17 2017-03-23 Jfeスチール株式会社 転炉の上吹きランス及び転炉の操業方法
JP2017057469A (ja) * 2015-09-17 2017-03-23 Jfeスチール株式会社 転炉の上吹きランス及び転炉の操業方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2903211A1 (de) * 1979-01-27 1980-07-31 Stiftelsen Metallurg Forsk Lanze zum einspritzen von pulverfoermigem material in eine metallschmelze
US4426224A (en) * 1981-12-25 1984-01-17 Sumitomo Kinzoku Kogyo Kabushiki Gaisha Lance for powder top-blow refining and process for decarburizing and refining steel by using the lance
JPH0626758B2 (ja) * 1990-03-01 1994-04-13 新日本製鐵株式会社 連続鋳造装置におけるモールドの付着物除去装置
WO1996021047A1 (fr) * 1995-01-06 1996-07-11 Nippon Steel Corporation Technique d'affinage par soufflage par le haut au moyen d'un convertisseur, presentant d'excellentes caracteristiques de decarburation, et lance a soufflage par le haut pour convertisseur
JPH10287909A (ja) * 1997-04-15 1998-10-27 Sumitomo Metal Ind Ltd 転炉吹錬兼炉口地金溶解用上吹きランス
JP2001280608A (ja) * 2000-03-31 2001-10-10 Sumitomo Heavy Ind Ltd ランス及び燃焼炎調節方法
JP3772750B2 (ja) 2002-01-28 2006-05-10 住友金属工業株式会社 精錬用ランス
US6773484B2 (en) * 2002-06-26 2004-08-10 Praxair Technology, Inc. Extensionless coherent jet system with aligned flame envelope ports
JP5353463B2 (ja) * 2009-06-17 2013-11-27 新日鐵住金株式会社 溶銑の脱りん方法
JP2012251199A (ja) 2011-06-02 2012-12-20 Sumitomo Metal Ind Ltd 溶銑の精錬方法
EP2752497B1 (en) * 2011-10-17 2018-08-22 JFE Steel Corporation Powder injection lance and method of refining molten iron using said powder injection lance
CN202595160U (zh) * 2012-04-13 2012-12-12 张昭贵 一种煤粉喷嘴
JP6451364B2 (ja) * 2015-02-04 2019-01-16 新日鐵住金株式会社 溶融金属精錬用上吹きランス
JP6515335B2 (ja) * 2015-07-10 2019-05-22 日本製鉄株式会社 含鉄原料の転炉溶解方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316714A (ja) * 2000-05-10 2001-11-16 Nippon Steel Corp 膨張制御ラバールノズルを有する吹錬用上吹きランス
JP2003328027A (ja) * 2002-05-14 2003-11-19 Jfe Steel Kk 転炉吹錬方法
JP2012117126A (ja) * 2010-12-02 2012-06-21 Sumitomo Metal Ind Ltd 溶銑の精錬方法
WO2013094634A1 (ja) * 2011-12-20 2013-06-27 Jfeスチール株式会社 転炉製鋼方法
JP2017057468A (ja) * 2015-09-17 2017-03-23 Jfeスチール株式会社 転炉の上吹きランス及び転炉の操業方法
JP2017057469A (ja) * 2015-09-17 2017-03-23 Jfeスチール株式会社 転炉の上吹きランス及び転炉の操業方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022006385A (ja) * 2020-06-24 2022-01-13 Jfeスチール株式会社 転炉脱りん処理用上吹きランスおよび転炉吹錬方法
JP7380444B2 (ja) 2020-06-24 2023-11-15 Jfeスチール株式会社 転炉脱りん処理用上吹きランスおよび転炉吹錬方法

Also Published As

Publication number Publication date
JP6721129B2 (ja) 2020-07-08
KR20200003114A (ko) 2020-01-08
CN110621792A (zh) 2019-12-27
TWI665308B (zh) 2019-07-11
JPWO2019039285A1 (ja) 2019-11-21
TW201920692A (zh) 2019-06-01

Similar Documents

Publication Publication Date Title
EP2796569B1 (en) Converter steelmaking method
KR101346726B1 (ko) 용선의 정련 방법
JP4901132B2 (ja) 転炉吹錬方法及び転炉吹錬用上吹きランス
TWI664295B (zh) 脫磷處理裝置及使用其之熔融生鐵的脫磷方法
WO2016158714A1 (ja) 上底吹き転炉の操業方法
JP2006348331A (ja) 溶融金属精錬用上吹きランス及び溶融金属の吹錬方法
WO2019039285A1 (ja) 転炉吹錬用上吹きランスおよび溶銑の精錬方法
WO2002040721A1 (fr) Procede de soufflage d'oxygene de convertisseur et lance de soufflage vers le haut pour soufflage d'oxygene de convertisseur
JP2014037599A (ja) 溶銑の精錬方法
JP2011074411A (ja) 精錬用上吹きランス及び転炉精錬方法
JP6191437B2 (ja) 溶銑の精錬方法
JP2012082492A (ja) 転炉精錬方法
JP5884197B2 (ja) 転炉の精錬方法
JP2019090078A (ja) 吹き込み用浸漬ランス及び溶融鉄の精錬方法
JP6201676B2 (ja) 転炉吹錬用上吹きランス
JP7380444B2 (ja) 転炉脱りん処理用上吹きランスおよび転炉吹錬方法
JP2012082491A (ja) 転炉精錬方法
JP7298649B2 (ja) 転炉精錬用上吹きランスおよびそのランスを用いた溶鉄の精錬方法
JP2018178204A (ja) 上吹きランス及びそれを用いた転炉吹錬方法
JP5573721B2 (ja) 真空脱ガス装置の耐火物の溶損抑制方法
JP2009052090A (ja) 溶鉄精錬用ランスおよび溶鉄精錬方法
JP6466733B2 (ja) 溶銑の脱りん処理における固体酸素源の供給方法
JP6347199B2 (ja) 溶銑の精錬方法
JP2021152192A (ja) 溶銑予備処理方法及び溶銑予備処理ランス
JP6171776B2 (ja) 溶銑の精錬方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848325

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538062

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197035403

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18848325

Country of ref document: EP

Kind code of ref document: A1