WO2019039285A1 - 転炉吹錬用上吹きランスおよび溶銑の精錬方法 - Google Patents
転炉吹錬用上吹きランスおよび溶銑の精錬方法 Download PDFInfo
- Publication number
- WO2019039285A1 WO2019039285A1 PCT/JP2018/029747 JP2018029747W WO2019039285A1 WO 2019039285 A1 WO2019039285 A1 WO 2019039285A1 JP 2018029747 W JP2018029747 W JP 2018029747W WO 2019039285 A1 WO2019039285 A1 WO 2019039285A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lance
- blowing
- nozzle
- powder
- central axis
- Prior art date
Links
- 238000007664 blowing Methods 0.000 title claims description 79
- 238000007670 refining Methods 0.000 title claims description 20
- 238000000034 method Methods 0.000 title claims description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title description 20
- 229910052742 iron Inorganic materials 0.000 title description 10
- 239000000843 powder Substances 0.000 claims description 63
- 239000007789 gas Substances 0.000 claims description 31
- 229910052751 metal Inorganic materials 0.000 claims description 26
- 239000002184 metal Substances 0.000 claims description 26
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 21
- 229910052760 oxygen Inorganic materials 0.000 claims description 21
- 239000001301 oxygen Substances 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 12
- 239000002994 raw material Substances 0.000 claims description 7
- 238000004891 communication Methods 0.000 claims description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 238000005299 abrasion Methods 0.000 description 8
- 239000000292 calcium oxide Substances 0.000 description 5
- 235000012255 calcium oxide Nutrition 0.000 description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 238000003723 Smelting Methods 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- WETINTNJFLGREW-UHFFFAOYSA-N calcium;iron;tetrahydrate Chemical compound O.O.O.O.[Ca].[Fe].[Fe] WETINTNJFLGREW-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- -1 etc. Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005206 flow analysis Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/42—Constructional features of converters
- C21C5/46—Details or accessories
- C21C5/4606—Lances or injectors
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/30—Regulating or controlling the blowing
- C21C5/35—Blowing from above and through the bath
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/42—Constructional features of converters
- C21C5/46—Details or accessories
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention uses a top blowing lance for blowing a smelting furnace and a top blowing lance for blowing a smelting furnace, which is used when the smelting gas and powder are blown to the surface of the metal bath and blown in a steelmaking converter. It relates to the refining method of molten iron.
- a method of spraying a powder such as quicklime on the surface of molten iron with an oxygen jet is used.
- the powder by blowing the powder into the collision surface between the oxygen jet and the hot metal, so-called fire point, the hardening is promoted and the reaction efficiency is improved. Therefore, in this method, it is necessary to blow in powder at a high speed as much as possible to make it reach the fire point steadily.
- Patent Document 1 discloses a method of suppressing abrasion by performing hard chromium plating by electroplating on the inner surface of the nozzle hole.
- the method disclosed herein improves the wear resistance of the nozzle, the collision of the powder with the inner surface of the nozzle hole itself is not suppressed. Further, applying hard chromium plating into the nozzle holes is not a simple method.
- the powder reliably collides with the inner wall of the nozzle if it does not ride on the gas flow, and therefore it is considered to be easily worn. Therefore, it is considered necessary to use a nozzle wear suppression technology using powder regardless of the material of the nozzle and assuming a porous lance structure.
- Patent Document 2 adjusts the ratio of the sum of the cross-sectional area of the nozzle throat portion to the cross-sectional area of the lance inner channel when blowing powder from the upper lance.
- the method is aimed at suppressing spitting, and the relationship with nozzle wear suppression is not described.
- the inner wall of the nozzle has an angle with the axial direction of the lance inner tube, even if the distribution when powder passes through the nozzle portion can be changed, as described above, the powder is still the nozzle The possibility of collision with the inner wall is high, and it is considered difficult to suppress the wear of the nozzle hole.
- the present invention has a porous nozzle whose inner wall has an angle with the axial direction of the lance inner pipe, and can suppress wear of these nozzle holes, and an upper blowing lance for blast furnace blowing and the same
- An object of the present invention is to provide a method of refining molten iron using a top blowing lance for converter blowing.
- the piping of the oxygen-containing gas and the piping of the powder secondary material are connected at the upper end of the upper blowing lance. Gas and powder additives are mixed.
- the mixture of the oxygen-containing gas and the powder secondary material passes through the inside of one lance inner pipe, and one or more jet holes of the nozzle portion connected to the tip of the lance inner pipe (nozzle (nozzle) It is spouted from the hole).
- the inventors of the present invention have made a porous nozzle in which the inner wall of the nozzle is angled with respect to the axial direction of the lance inner pipe, ie, the oxygen containing gas possessed by the lance inner pipe and the nozzle hole
- the inner wall surface of the lance inner pipe flow channel the inner wall surface of the virtual lance inner pipe flow passage divided by the boundary portion between the flow passage of the lance inner pipe and the nozzle hole is expressed as “interface”.
- FIG. 1 shows, for one nozzle, a cross section which includes the lance central axis and which bisects the above-mentioned boundary surface.
- a straight line perpendicular to the central axis of the lance is defined as a straight line A passing through the most downstream point of the lance on the boundary surface.
- a line segment crossing the nozzle hole on the straight line A is defined as a crossing line segment B.
- a line segment projected on the cross section when the cross section B is projected to a cross section perpendicular to the lance central axis within the flow passage of the lance inner pipe is defined as a line segment C.
- the present inventors have found that the nozzle wear can be suppressed by the ratio L / L 0 of the length L 0 of the transverse line segment B to the length L of the line segment C satisfying the following equation (1).
- the following (1) Formula shall be satisfy
- the present invention is as follows. [1] A top blowing lance for blowing a molten metal into a top and bottom blowing converter, and blowing powder secondary material from the top blowing lance together with an oxygen-containing gas onto the metal by blowing it, An inner lance tube having a flow path of the oxygen-containing gas and the powder sub raw material; A nozzle portion having two or more nozzle holes extending in communication with the flow path of the inner tube of the lance; The nozzle central axis of the nozzle hole is inclined with respect to the lance central axis of the flow passage, and the nozzle holes respectively satisfy the following equation (1): Lance.
- L 0 the most downstream side point of the lance on the boundary surface in a cross section including the central axis of the lance and bisecting the boundary surface between the flow passage of the lance inner pipe and the nozzle hole
- L the transverse line to the cross section perpendicular to the lance central axis within the flow passage of the lance inner pipe
- a length of a line segment projected onto the cross section when a portion is projected [2] A method of refining molten metal, wherein blowing is performed using a top blowing lance for a converter blowing as described in the above [1].
- a method of refining a molten metal comprising: charging a molten metal into an upper and lower blowing converter; and blowing a powdery secondary material together with an oxygen-containing gas from the upper blowing lance for converter blowing onto the molten metal.
- the present invention it is possible to suppress the abrasion of the nozzle due to the upper blowing of the oxygen-containing gas and the powdery secondary raw material, and it is possible to prolong the wear resistance life of the refining lance.
- FIG. 1 is a diagram for explaining the length L 0 of the crossing line segment B and the length L of the line segment C.
- FIG. 2 is a schematic cross-sectional view of the tip portion of the porous lance.
- Figure 3 is a view showing a change in wear coefficient due to difference in L / L 0.
- the top blowing lance for converter blowing according to the present invention is used when blowing and squeezing a powder secondary material together with an oxygen-containing gas to a hot metal charged in the converter.
- FIG. 2 is a schematic cross-sectional view of the tip portion of the porous lance.
- Example 202 is a schematic cross-sectional view of the tip portion of the upper blowing lance 1 according to the present invention, and corresponds to example 102 in FIG. That is, the cross section shown in the example 202 is a cross section including the lance central axis 2 d and bisecting the boundary surface 4.
- Example 201 of FIG. 2 is a schematic cross-sectional view of the tip portion of the upper blowing lance 5 which is the first comparative example, and corresponds to Example 101 of FIG. That is, the cross section shown in the example 201 of FIG.
- an example 203 of FIG. 2 is a schematic cross-sectional view of a tip portion of the upper blowing lance 9 which is a second comparative example, and corresponds to the example 103 of FIG. That is, the cross section shown in the example 203 of FIG. 2 is a cross section including the lance central axis 10 d and bisecting the boundary surface 12.
- one hole is abbreviate
- FIG. 2 respectively show AA cross-sectional views within the flow path of the inner tube of the lance in the examples 201 to 203 in FIG.
- FIG. 2 in order to simplify the description, the inclination of the nozzle center axis 3c of the example 202 of FIG. 2, the nozzle center axis 7c of the example 201 of FIG. 2 and the nozzle center axis 11c of the example 203 of FIG.
- the angles ⁇ are assumed to be the same.
- a flow path of cooling water for cooling the upper blowing lance is provided between the inner wall surface and the outer wall surface of the upper blowing lance (the lance inner pipe and the nozzle portion). It is done.
- the upper blowing lance 1 includes the lance inner pipe 2 and the nozzle portion 3.
- the lance inner pipe 2 is mainly made of steel, and contains an oxygen-containing gas (hereinafter may be simply referred to as “gas”) and a powder secondary raw material (hereinafter simply referred to as "gas”) which are blown to the molten metal contained in the converter type smelting vessel. It may have a channel 2a of a mixture of (sometimes referred to as "powder").
- the flow passage 2a has a tubular shape having a substantially uniform inner diameter up to the nozzle portion 3 and has a shape such that the cross-sectional area of the flow passage 2a does not change rapidly in the traveling direction of gas and powder. It has become.
- the boundary surface 4 is the flow of the virtual lance inner pipe 2 divided by the boundary portion 2c between the flow passage 2a and the nozzle hole 3a on the inner wall surface 2b of the flow passage 2a. It is an inner wall surface of the road 2a.
- the boundary surface 4 when the boundary surface 4 is projected on the cross section 13 perpendicular to the lance central axis 2d within the range of the flow passage 2a of the lance inner pipe 2, it is surrounded by the boundary 2c '.
- a projection plane 14 is formed.
- the boundary 2 c ′ is a line obtained by projecting the boundary 2 c onto the cross section 13.
- the nozzle portion 3 is mainly made of copper and has a nozzle hole 3a.
- the shape of the nozzle hole 3a may be cylindrical (straight nozzle), or may be so-called Laval type (Laval nozzle).
- the nozzle hole 3a is extended at the end of the flow passage 2a of the lance inner pipe 2 in communication with the flow passage 2a via the boundary 2c, as shown in an example 202 of FIG.
- the position where the flow path 2a and the nozzle hole 3a are joined is such that the relationship between the length L of the line segment C and the length L 0 of the cross line segment B shown in FIG. 1 satisfies the equation (1) described above It is. This is a finding obtained based on the following ideas.
- the powder passing through the flow passage in the lance inner pipe together with the gas and the powder ejected from the nozzle hole can be roughly divided into “powder that collides with the inner wall surface of the flow passage before entering the nozzle hole” It is divided into “powder that directly intrudes into the nozzle hole without colliding with the inner wall surface”.
- the inventors of the present invention can reduce the ratio of "the powder directly invading the nozzle hole without colliding with the inner wall surface of the flow path" by changing the shape of the nozzle portion. It was thought that the wear on the inner wall was suppressed.
- the length L of the line segment C on the projection plane is made 0 or excessively small, the length L of the line segment C is far greater than the length L 0 of the cross section line B in the nozzle hole 3a. Become smaller. As a result, the flow of gas and powder is unevenly generated, and "the powder directly invading the nozzle hole without colliding with the inner wall surface of the flow passage" collides with the inner wall surface of the nozzle hole, which in turn causes wear. The possibility is also considered.
- the boundary surface 8 between the nozzle hole 7a and the flow path 6a is located on the side surface of the flow path 6a.
- the proportion of “powder directly invading into the nozzle hole without colliding with the inner wall surface of the flow path” is reduced, drift as shown in Example 201 of FIG. 2 occurs, and Example 203 of FIG.
- the upper inner wall surface 7b of the nozzle hole is worn away as in the example 201 of FIG. That is, the occurrence of the uneven flow accelerates the velocity of the gas and the powder in the nozzle hole 7a, and in particular, the inner wall surface 7b is easily worn away in the vicinity of the outlet of the nozzle hole 7a.
- the boundary surface 12 divided by the boundary portion 10c between the flow passage 10a and the nozzle hole 11a is located on the inner wall surface 10b most downstream of the flow passage 10a. Do. Therefore, when the boundary surface 12 is projected on the cross section 16 perpendicular to the lance central axis 10d, the projection surface 17 surrounded by the boundary line 10c 'is elliptical.
- the boundary 10 c ′ is a line obtained by projecting the boundary 10 c onto the cross section 16. For this reason, "the powder directly entering the nozzle hole without colliding with the inner wall surface of the flow passage in the lance inner pipe" enters a large amount into the nozzle hole 11a. The entering powder collides with the inner wall surface 11b of the nozzle hole 11a, so the inner wall surface 11b is easily worn away.
- the area of the projection surface 14 is smaller than the area of the projection surface 17 of the upper blowing lance 9 shown in the example 203 of FIG. short. Therefore, when the nozzle hole 3a communicates with the flow path 2a as in the upper blowing lance 1 shown in the example 202 of FIG. 2, “the powder directly invading the nozzle hole without colliding with the inner wall surface of the flow path The ratio of “is reduced from the upper blowing lance 9 shown in the example 203 of FIG.
- the nozzle hole 3a shown in the example 202 of FIG. 2 communicates with the flow passage 2a of the inner lance tube 2 so that the nozzle central axis 3c is inclined with respect to the lance central axis 2d of the flow passage 2a.
- the inclination angle ⁇ is less than 10 °, the jets ejected from the lance are easily combined to easily increase the spitting, and when the inclination angle ⁇ exceeds 30 °, the distance between the fire point and the furnace wall becomes too short.
- the inclination angle ⁇ is preferably 10 ° to 30 ° because melting loss of the furnace wall refractory is promoted.
- a nozzle to the YZ plane corresponding to the twist of the nozzle hole 3a is provided, and the nozzle central axis 3c of the nozzle hole 3a is the lance center It may be inclined in the twisting direction with respect to the shaft 2d.
- the throat diameter is a diameter at which the cross-sectional area is minimized in the nozzle hole of the nozzle portion, and oxygen gas is used as the oxygen-containing gas, and quick lime powder is used as the powder submaterial.
- Limestone powder with a particle size of 5 to 200 ⁇ m is intermittently supplied for a total of 20 hours at 5.5 kg / min under an oxygen gas flow rate of 3.0 Nm 3 / min and gas and powder are allowed to pass through the nozzle holes The test was conducted.
- the preferable range for carrying out the present invention is 0.19 ⁇ L / L 0 ⁇ 0.82 as shown in the formula (1). Moreover, in order to suppress wear more reliably, preferably 0.35 ⁇ L / L 0 ⁇ 0.70.
- the method for refining molten metal according to the present invention is the above-described conversion according to the present invention when the powder secondary raw material is sprayed to a converter charged with oxygen-containing gas, which is mainly pure oxygen gas, to the molten metal to refine the molten metal. Use a top blowing lance for blasting.
- the molten iron charged into the converter may or may not be pretreated.
- the refining may be a so-called hot metal preliminary dephosphorization treatment, or the molten steel may be manufactured by the refining.
- the powder auxiliary material is not limited to dephosphorizing agents such as quick lime, limestone, calcium ferrite, etc., and materials for promoting brackishness such as bauxite and rutile ore, ores such as iron ore and Mn ore, or mixtures thereof It is also good.
- the flow rate of the oxygen-containing gas, the particle size of the powder by-product, and the addition amount may be such that the transfer and the spray of the by-product are stably performed according to the purpose of refining the molten iron.
- the top blowing lance for converter blowing according to the present invention suppresses the problem of nozzle wear associated with powder supply more than using the conventional top blowing lance under any conditions, contributes to stable operation, and lance replacement frequency. Can contribute to the improvement of productivity.
- the hot metal preliminary dephosphorization blowing was performed in the upper bottom blowing converter of 300t scale.
- the main raw materials at that time are C: 4.4 to 4.5%, Si: 0.2 to 0.5%, Mn: 0.2 to 0.4%, P: 0. 100 to C in mass concentration.
- About 260 t of hot metal containing 0.130% and about 20 t of scrap were used.
- the top blowing oxygen flow rate is 3.0 Nm 3 / min per 1 t of molten iron, quick lime powder with a particle diameter of 5 to 200 ⁇ m as powder auxiliary material is top blowing speed 900 kg / min, bottom blowing CO 2 flow rate is 0.25 Nm 3 / min And
- due to the nozzle wear a hole was formed in the flow path of the cooling water inside the lance, and the relationship between the number of blows and the L / L 0 until water leak occurred was investigated.
- the conditions for the upper blowing lance are as follows: Fix the inner diameter of the lance inner pipe 180 mm, throat diameter 45 mm, nozzle hole number 4 and nozzle inclination angle 20 °, and change L / L 0 to produce the upper blowing lance Used for blowing.
- Table 1 shows the L / L 0 and the wear index.
- the wear index is a value obtained by using the upper blowing lance of Comparative Example 1 as blowing and making the number of times of blowing until the water leakage occurs be 1 as an index.
- Comparative Examples 1 and 2 will be described.
- the wear index was smaller in Comparative Example 2 than in Comparative Example 1. This is considered to be because L / L 0 is smaller in the upper blowing lance of Comparative Example 2.
- Examples 1 to 4 will be described.
- the wear index of Examples 1 to 4 was less than half that of Comparative Example 1. This is considered to be because L / L 0 ⁇ 0.82 is satisfied, and the proportion of “powder directly intruding into the nozzle hole without colliding with the wall surface of the lance inner pipe” is reduced.
- L / L 0 was smaller in Example 2 than in Example 1, no significant difference from the wear index of Example 1 was observed.
- the wear of Example 1 and 2 was suppressed further than that of Examples 3 and 4 respectively.
- Comparative Example 3 had a larger wear index than Examples 1 to 4. It is considered that this is because the flow of the gas and the powder in the nozzle hole is biased due to the L / L 0 being smaller than 0.19. From the above, by setting 0.19 ⁇ L / L 0 ⁇ 0.82, abrasion of the inner wall surface of the nozzle hole by the powder can be suppressed, and by setting 0.35 ⁇ L / L 0 ⁇ 0.70. It was confirmed that the wear of the inner wall surface can be further suppressed.
- the present invention it is possible to suppress the abrasion of the nozzle due to the upper blowing of the oxygen-containing gas and the powdery secondary raw material, and it is possible to prolong the wear resistance life of the refining lance. Therefore, industrial value is large.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
- Furnace Charging Or Discharging (AREA)
Abstract
Description
0.19≦L/L0≦0.82 ・・・(1)
[1]溶銑を上底吹き転炉に装入し、上吹きランスから酸素含有ガスと共に粉体副原料を溶銑に吹き付けて吹錬する際に用いる転炉吹錬用上吹きランスであって、
前記酸素含有ガスおよび前記粉体副原料の流路を有するランス内管と、
該ランス内管の前記流路に連通して延設される2孔以上のノズル孔を有するノズル部とを有し、
前記ノズル孔のノズル中心軸が、前記流路のランス中心軸に対して傾斜しており、前記ノズル孔がそれぞれ、以下の(1)式を満たすことを特徴とする転炉吹錬用上吹きランス。
0.19≦L/L0≦0.82 ・・・(1)
ここで、L0:前記ランス中心軸を含み、かつ前記ランス内管の流路と前記ノズル孔との境界面を二等分する断面において、前記境界面上でランスの最も下流側の点を通り、前記ランス中心軸に垂直な直線上で前記ノズル孔を横断する線分の長さ
L:前記ランス内管の流路の範囲内で前記ランス中心軸に垂直な横断面へ前記横断する線分を投影したときに前記横断面上に投影される線分の長さ
[2]上記[1]に記載の転炉吹錬用上吹きランスを用いて吹錬を行う溶銑の精錬方法であって、
溶銑を上底吹き転炉に装入し、前記転炉吹錬用上吹きランスから酸素含有ガスと共に粉体副原料を前記溶銑に吹き付けて吹錬することを特徴とする溶銑の精錬方法。
ランス内管2は主にスチール製であり、転炉型精錬容器に収容された溶銑に吹き付ける酸素含有ガス(以下、単に「ガス」と称する場合がある。)及び粉体副原料(以下、単に「粉体」と称する場合がある。)の混合体の流路2aを有する。流路2aは、ノズル部3に至るまで、ほぼ均一の内径を有する管状となっており、ガス及び粉体の進行方向に対して、流路2aの断面積が急激に変化しないような形状となっている。
本発明者らは、ランス内管の径を20mm、ノズル孔数を4、スロート径を5.1mm、ノズル傾斜角を20°とし、ランス中心軸を含み、かつ且つ境界面を二等分する断面において、境界面上でランスの最も下流側の点を通り、ランス中心軸に垂直な直線上でノズル孔を横断する横断線分Bの長さL0を固定値とした。一方、ランス内管の流路の範囲内でランス中心軸に垂直な横断面へ横断線分Bを投影したときに横断面上に投影される線分Cの長さLを変更して、粉体によるノズル孔の内壁面の摩耗を評価した。スロート径とは、ノズル部のノズル孔において断面積が最小となるときの直径とし、酸素含有ガスとして酸素ガスを、粉体副原料として生石灰粉を用いた。酸素ガス流量が3.0Nm3/minの条件下で、粒径5~200μmの生石灰粉を5.5kg/minでのべ20時間断続的に供給し、ノズル孔にガスおよび粉体を通過させる試験を実施した。
図3に、各ノズルにおけるL/L0と摩耗試験後のノズル摩耗量との関係を示す。L/L0が小さくなるほどノズル摩耗量が減少したが、特にL/L0<0.2の領域ではL/L0が小さくなるほど、それまでと反対方位のノズル孔の内壁面の摩耗量が増加した。概ね、0.19≦L/L0≦0.82である場合は、L/L0=1.0の場合と比較してノズルの摩耗量が半分以下となった。以上の検討により、本発明を実施するのに好適な範囲は(1)式に示す通り、0.19≦L/L0≦0.82であることが判明した。また、より確実に摩耗を抑えるために、好ましくは0.35≦L/L0≦0.70である。
本発明に係る溶銑の精錬方法は、主に純酸素ガスである酸素含有ガスと共に粉体副原料を転炉に装入した溶銑に吹き付けて溶銑を精錬する際に、前述した本発明に係る転炉吹錬用上吹きランスを用いる。本発明に係る溶銑の精錬方法において、転炉に装入する溶銑は予備処理されているかどうかを問わない。また、精錬実施後の溶銑の成分も問わず、その精錬がいわゆる溶銑予備脱燐処理であってもよいし、その精錬によって溶鋼を製造してもよい。さらに、粉体副原料は生石灰、石灰石、カルシウムフェライト等の脱燐剤に限られず、ボーキサイトやルチル鉱石等の滓化促進材、鉄鉱石やMn鉱石等の鉱石類、あるいはこれらの混合物であってもよい。
本発明に係る転炉吹錬用上吹きランスは、いかなる条件においても従来の上吹きランスを用いるよりも粉体供給に伴うノズル摩耗の問題を抑制し、安定操業に寄与すると共にランス交換の頻度を低減して、生産性の向上に貢献することができる。
以上より、0.19≦L/L0≦0.82とすることで粉体によるノズル孔の内壁面の摩耗を抑制でき、さらに0.35≦L/L0≦0.70とすることで、内壁面の摩耗をより抑制できることが確認された。
Claims (2)
- 溶銑を上底吹き転炉に装入し、上吹きランスから酸素含有ガスと共に粉体副原料を溶銑に吹き付けて吹錬する際に用いる転炉吹錬用上吹きランスであって、
前記酸素含有ガスおよび前記粉体副原料の流路を有するランス内管と、
該ランス内管の前記流路に連通して延設される2孔以上のノズル孔を有するノズル部とを有し、
前記ノズル孔のノズル中心軸が、前記流路のランス中心軸に対して傾斜しており、前記ノズル孔がそれぞれ、以下の(1)式を満たすことを特徴とする転炉吹錬用上吹きランス。
0.19≦L/L0≦0.82 ・・・(1)
ここで、L0:前記ランス中心軸を含み、かつ前記ランス内管の流路と前記ノズル孔との境界面を二等分する断面において、前記境界面上でランスの最も下流側の点を通り、前記ランス中心軸に垂直な直線上で前記ノズル孔を横断する線分の長さ
L:前記ランス内管の流路の範囲内で前記ランス中心軸に垂直な横断面へ前記横断する線分を投影したときに前記横断面上に投影される線分の長さ - 請求項1に記載の転炉吹錬用上吹きランスを用いて吹錬を行う溶銑の精錬方法であって、
溶銑を上底吹き転炉に装入し、前記転炉吹錬用上吹きランスから酸素含有ガスと共に粉体副原料を前記溶銑に吹き付けて吹錬することを特徴とする溶銑の精錬方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197035403A KR20200003114A (ko) | 2017-08-21 | 2018-08-08 | 전로 취련용 상취 랜스 및 용선의 정련 방법 |
JP2019538062A JP6721129B2 (ja) | 2017-08-21 | 2018-08-08 | 転炉吹錬用上吹きランスおよび溶銑の精錬方法 |
CN201880031872.0A CN110621792A (zh) | 2017-08-21 | 2018-08-08 | 转炉吹炼用顶吹喷枪以及铁液的精炼方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017158736 | 2017-08-21 | ||
JP2017-158736 | 2017-08-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019039285A1 true WO2019039285A1 (ja) | 2019-02-28 |
Family
ID=65438715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/029747 WO2019039285A1 (ja) | 2017-08-21 | 2018-08-08 | 転炉吹錬用上吹きランスおよび溶銑の精錬方法 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6721129B2 (ja) |
KR (1) | KR20200003114A (ja) |
CN (1) | CN110621792A (ja) |
TW (1) | TWI665308B (ja) |
WO (1) | WO2019039285A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022006385A (ja) * | 2020-06-24 | 2022-01-13 | Jfeスチール株式会社 | 転炉脱りん処理用上吹きランスおよび転炉吹錬方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001316714A (ja) * | 2000-05-10 | 2001-11-16 | Nippon Steel Corp | 膨張制御ラバールノズルを有する吹錬用上吹きランス |
JP2003328027A (ja) * | 2002-05-14 | 2003-11-19 | Jfe Steel Kk | 転炉吹錬方法 |
JP2012117126A (ja) * | 2010-12-02 | 2012-06-21 | Sumitomo Metal Ind Ltd | 溶銑の精錬方法 |
WO2013094634A1 (ja) * | 2011-12-20 | 2013-06-27 | Jfeスチール株式会社 | 転炉製鋼方法 |
JP2017057468A (ja) * | 2015-09-17 | 2017-03-23 | Jfeスチール株式会社 | 転炉の上吹きランス及び転炉の操業方法 |
JP2017057469A (ja) * | 2015-09-17 | 2017-03-23 | Jfeスチール株式会社 | 転炉の上吹きランス及び転炉の操業方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2903211A1 (de) * | 1979-01-27 | 1980-07-31 | Stiftelsen Metallurg Forsk | Lanze zum einspritzen von pulverfoermigem material in eine metallschmelze |
US4426224A (en) * | 1981-12-25 | 1984-01-17 | Sumitomo Kinzoku Kogyo Kabushiki Gaisha | Lance for powder top-blow refining and process for decarburizing and refining steel by using the lance |
JPH0626758B2 (ja) * | 1990-03-01 | 1994-04-13 | 新日本製鐵株式会社 | 連続鋳造装置におけるモールドの付着物除去装置 |
WO1996021047A1 (fr) * | 1995-01-06 | 1996-07-11 | Nippon Steel Corporation | Technique d'affinage par soufflage par le haut au moyen d'un convertisseur, presentant d'excellentes caracteristiques de decarburation, et lance a soufflage par le haut pour convertisseur |
JPH10287909A (ja) * | 1997-04-15 | 1998-10-27 | Sumitomo Metal Ind Ltd | 転炉吹錬兼炉口地金溶解用上吹きランス |
JP2001280608A (ja) * | 2000-03-31 | 2001-10-10 | Sumitomo Heavy Ind Ltd | ランス及び燃焼炎調節方法 |
JP3772750B2 (ja) | 2002-01-28 | 2006-05-10 | 住友金属工業株式会社 | 精錬用ランス |
US6773484B2 (en) * | 2002-06-26 | 2004-08-10 | Praxair Technology, Inc. | Extensionless coherent jet system with aligned flame envelope ports |
JP5353463B2 (ja) * | 2009-06-17 | 2013-11-27 | 新日鐵住金株式会社 | 溶銑の脱りん方法 |
JP2012251199A (ja) | 2011-06-02 | 2012-12-20 | Sumitomo Metal Ind Ltd | 溶銑の精錬方法 |
EP2752497B1 (en) * | 2011-10-17 | 2018-08-22 | JFE Steel Corporation | Powder injection lance and method of refining molten iron using said powder injection lance |
CN202595160U (zh) * | 2012-04-13 | 2012-12-12 | 张昭贵 | 一种煤粉喷嘴 |
JP6451364B2 (ja) * | 2015-02-04 | 2019-01-16 | 新日鐵住金株式会社 | 溶融金属精錬用上吹きランス |
JP6515335B2 (ja) * | 2015-07-10 | 2019-05-22 | 日本製鉄株式会社 | 含鉄原料の転炉溶解方法 |
-
2018
- 2018-08-08 KR KR1020197035403A patent/KR20200003114A/ko not_active Application Discontinuation
- 2018-08-08 CN CN201880031872.0A patent/CN110621792A/zh active Pending
- 2018-08-08 JP JP2019538062A patent/JP6721129B2/ja active Active
- 2018-08-08 WO PCT/JP2018/029747 patent/WO2019039285A1/ja active Application Filing
- 2018-08-14 TW TW107128299A patent/TWI665308B/zh not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001316714A (ja) * | 2000-05-10 | 2001-11-16 | Nippon Steel Corp | 膨張制御ラバールノズルを有する吹錬用上吹きランス |
JP2003328027A (ja) * | 2002-05-14 | 2003-11-19 | Jfe Steel Kk | 転炉吹錬方法 |
JP2012117126A (ja) * | 2010-12-02 | 2012-06-21 | Sumitomo Metal Ind Ltd | 溶銑の精錬方法 |
WO2013094634A1 (ja) * | 2011-12-20 | 2013-06-27 | Jfeスチール株式会社 | 転炉製鋼方法 |
JP2017057468A (ja) * | 2015-09-17 | 2017-03-23 | Jfeスチール株式会社 | 転炉の上吹きランス及び転炉の操業方法 |
JP2017057469A (ja) * | 2015-09-17 | 2017-03-23 | Jfeスチール株式会社 | 転炉の上吹きランス及び転炉の操業方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022006385A (ja) * | 2020-06-24 | 2022-01-13 | Jfeスチール株式会社 | 転炉脱りん処理用上吹きランスおよび転炉吹錬方法 |
JP7380444B2 (ja) | 2020-06-24 | 2023-11-15 | Jfeスチール株式会社 | 転炉脱りん処理用上吹きランスおよび転炉吹錬方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6721129B2 (ja) | 2020-07-08 |
KR20200003114A (ko) | 2020-01-08 |
CN110621792A (zh) | 2019-12-27 |
TWI665308B (zh) | 2019-07-11 |
JPWO2019039285A1 (ja) | 2019-11-21 |
TW201920692A (zh) | 2019-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2796569B1 (en) | Converter steelmaking method | |
KR101346726B1 (ko) | 용선의 정련 방법 | |
JP4901132B2 (ja) | 転炉吹錬方法及び転炉吹錬用上吹きランス | |
TWI664295B (zh) | 脫磷處理裝置及使用其之熔融生鐵的脫磷方法 | |
WO2016158714A1 (ja) | 上底吹き転炉の操業方法 | |
JP2006348331A (ja) | 溶融金属精錬用上吹きランス及び溶融金属の吹錬方法 | |
WO2019039285A1 (ja) | 転炉吹錬用上吹きランスおよび溶銑の精錬方法 | |
WO2002040721A1 (fr) | Procede de soufflage d'oxygene de convertisseur et lance de soufflage vers le haut pour soufflage d'oxygene de convertisseur | |
JP2014037599A (ja) | 溶銑の精錬方法 | |
JP2011074411A (ja) | 精錬用上吹きランス及び転炉精錬方法 | |
JP6191437B2 (ja) | 溶銑の精錬方法 | |
JP2012082492A (ja) | 転炉精錬方法 | |
JP5884197B2 (ja) | 転炉の精錬方法 | |
JP2019090078A (ja) | 吹き込み用浸漬ランス及び溶融鉄の精錬方法 | |
JP6201676B2 (ja) | 転炉吹錬用上吹きランス | |
JP7380444B2 (ja) | 転炉脱りん処理用上吹きランスおよび転炉吹錬方法 | |
JP2012082491A (ja) | 転炉精錬方法 | |
JP7298649B2 (ja) | 転炉精錬用上吹きランスおよびそのランスを用いた溶鉄の精錬方法 | |
JP2018178204A (ja) | 上吹きランス及びそれを用いた転炉吹錬方法 | |
JP5573721B2 (ja) | 真空脱ガス装置の耐火物の溶損抑制方法 | |
JP2009052090A (ja) | 溶鉄精錬用ランスおよび溶鉄精錬方法 | |
JP6466733B2 (ja) | 溶銑の脱りん処理における固体酸素源の供給方法 | |
JP6347199B2 (ja) | 溶銑の精錬方法 | |
JP2021152192A (ja) | 溶銑予備処理方法及び溶銑予備処理ランス | |
JP6171776B2 (ja) | 溶銑の精錬方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18848325 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019538062 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197035403 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18848325 Country of ref document: EP Kind code of ref document: A1 |