WO2013077336A1 - 真空洗浄装置および真空洗浄方法 - Google Patents

真空洗浄装置および真空洗浄方法 Download PDF

Info

Publication number
WO2013077336A1
WO2013077336A1 PCT/JP2012/080105 JP2012080105W WO2013077336A1 WO 2013077336 A1 WO2013077336 A1 WO 2013077336A1 JP 2012080105 W JP2012080105 W JP 2012080105W WO 2013077336 A1 WO2013077336 A1 WO 2013077336A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
cleaning
workpiece
vacuum
steam
Prior art date
Application number
PCT/JP2012/080105
Other languages
English (en)
French (fr)
Inventor
昇 平本
正敏 三塚
小西 博之
Original Assignee
株式会社Ihi
株式会社Ihi機械システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47935768&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013077336(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社Ihi, 株式会社Ihi機械システム filed Critical 株式会社Ihi
Priority to EP12850922.1A priority Critical patent/EP2783762B1/en
Priority to JP2013545937A priority patent/JP5695762B2/ja
Publication of WO2013077336A1 publication Critical patent/WO2013077336A1/ja
Priority to US14/274,883 priority patent/US9555450B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • B08B5/04Cleaning by suction, with or without auxiliary action
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2230/00Other cleaning aspects applicable to all B08B range
    • B08B2230/01Cleaning with steam

Definitions

  • the present invention relates to a vacuum cleaning apparatus and a vacuum cleaning method for cleaning a workpiece by supplying a vapor of a petroleum solvent to a cleaning chamber under reduced pressure.
  • a vacuum cleaning apparatus disclosed in Patent Document 1 is known. According to this vacuum cleaning apparatus, first, a depressurization step is performed in which the steam cleaning / drying chamber into which the work is carried is decompressed by the vacuum pump. Thereafter, a steam cleaning process is performed in which the vapor of the petroleum solvent is supplied to the steam cleaning / drying chamber to clean the workpiece. Next, an immersion cleaning step is performed in which the workpiece is immersed in a petroleum solvent stored in the immersion chamber, and in particular, a gap or the like of the workpiece that is not sufficiently cleaned in the steam cleaning step.
  • the workpiece is transferred again to the steam cleaning / drying chamber. Thereafter, the steam cleaning / drying chamber is further depressurized to perform a drying process for evaporating the solvent adhering to the work surface.
  • the steam cleaning / drying chamber is returned to atmospheric pressure. Thereafter, the workpiece is unloaded and a series of steps is completed.
  • the steam cleaning / drying chamber is evacuated by a vacuum pump in the drying process to reduce the pressure.
  • a vacuum pump in the drying process to reduce the pressure.
  • the pressure is further reduced in order to improve the drying property, the gas expands further and it takes time to exhaust. Therefore, the drying process by this conventional drying method requires a long time. That is, shortening of the time is desired in the drying process which improves stable cleaning quality and productivity.
  • An object of the present invention is to provide a vacuum cleaning apparatus and a vacuum cleaning method capable of reducing the time required for drying a workpiece and improving the overall processing capacity.
  • the present invention provides the following means in order to solve the above problems.
  • the first aspect of the present invention is a vacuum cleaning apparatus.
  • This vacuum cleaning apparatus is connected to the cleaning chamber, which is capable of cleaning the workpiece under reduced pressure by the steam generated by the steam generated from the petroleum-based solvent, and connected to the cleaning chamber.
  • the temperature holding means holds the temperature of the condensing chamber below the condensation point of the petroleum solvent.
  • the petroleum-based solvent that has been led from the cleaning chamber to the condensation chamber and condensed is recovered from the condensation chamber to the vapor generating means. Means are further provided.
  • the petroleum solvent is stored and the workpiece is immersed in the petroleum solvent while being connected to the cleaning chamber. It further comprises a possible immersion chamber.
  • the fifth aspect of the present invention is a vacuum cleaning method.
  • This vacuum cleaning method includes a step of depressurizing a cleaning chamber into which a work is carried in and a condensing chamber connected to the cleaning chamber, generating a vapor of a petroleum solvent, and supplying the vapor to the cleaning chamber under a reduced pressure. Cleaning the workpiece, maintaining the condensation chamber under reduced pressure at a temperature lower than that of the cleaning chamber, and communicating the cleaning chamber and the condensation chamber after cleaning the workpiece in the cleaning chamber. And a step of causing.
  • FIG. 1 is a conceptual diagram for explaining the vacuum cleaning apparatus 1 of the first embodiment.
  • the vacuum cleaning device 1 includes a vacuum container 3 in which a cleaning chamber 2 is provided.
  • An opening 3 a is formed in the vacuum vessel 3, and the opening 3 a can be opened and closed by the opening / closing door 4. Therefore, when cleaning the workpiece W, the opening / closing door 4 is opened, and the workpiece W is loaded into the cleaning chamber 2 from the opening 3a and placed on the placement portion 5. Thereafter, the open / close door 4 is closed to clean the workpiece W. Thereafter, the opening / closing door 4 is opened again, and the workpiece W is carried out from the opening 3a.
  • a steam supply unit 6 is provided in the cleaning chamber 2.
  • the steam supply unit 6 is connected to a steam generation chamber 8 via a steam supply pipe 7.
  • the steam generation chamber 8 includes a heater 8a, and heats a petroleum solvent to generate solvent vapor (hereinafter simply referred to as steam).
  • the steam generated by the steam generation chamber 8 is supplied to the cleaning chamber 2 via the steam supply pipe 7 and the steam supply unit 6.
  • the kind of this petroleum solvent is not specifically limited.
  • it is desirable to use a third petroleum solvent from the viewpoint of safety and examples thereof include normal paraffinic, isoparaffinic, naphthenic, and aromatic hydrocarbon solvents.
  • Teclean N20 is a registered trademark of Nippon Oil Corporation (currently JX Holdings, Inc.)
  • Cleansol G is the product name of the company
  • Dafney is a trademark of Idemitsu Kosan Co., Ltd. It is a registered trademark.
  • a vacuum pump 10 is connected to the cleaning chamber 2 through a pipe 9.
  • the vacuum pump 10 depressurizes the inside of the vacuum container 3 by evacuation (initial vacuum) in a depressurization step before starting the cleaning of the workpiece W.
  • the cleaning chamber 2 is connected with a pipe 11 for opening the cleaning chamber 2 to the atmosphere. In the unloading process after the cleaning process and the drying process of the workpiece W are completed, the piping 11 opens the cleaning chamber 2 to the atmosphere and returns it to the atmospheric pressure.
  • the condensing chamber 21 is connected to the cleaning chamber 2 via an opening / closing valve 20 which is an opening / closing means.
  • opening / closing valve 20 When the opening / closing valve 20 is opened, the cleaning chamber 2 and the condensing chamber 21 communicate with each other, and when the opening / closing valve 20 is closed, the communication between the cleaning chamber 2 and the condensing chamber 21 is blocked.
  • this condensing chamber 21 is also connected to the vacuum pump 10 via a branch pipe 25 branched from the pipe 9, and can maintain a reduced pressure state.
  • the condensation chamber 21 is provided with a temperature holding device 22 (temperature holding means) including a heat exchanger or the like, and a constant temperature (5) in which the temperature in the condensation chamber 21 is lower than the temperature in the cleaning chamber 2. At 50 ° C. to 50 ° C., more preferably 15 ° C. to about 25 ° C.).
  • a reservoir tank 24 is connected to the bottom of the condensing chamber 21 via a return pipe 23.
  • the petroleum-based solvent condensed in the condensing chamber 21 can be guided from the return pipe 23 to the reservoir tank 24 and temporarily stored in the reservoir tank 24.
  • the reservoir tank 24 is connected to the steam generation chamber 8, and when a certain amount or more of the petroleum solvent is stored, the petroleum solvent is guided from the reservoir tank 24 to the steam generation chamber 8. That is, the return pipe 23 and the reservoir tank 24 function as a recovery unit that recovers the petroleum solvent.
  • the petroleum-based solvent recovered by such recovery means is returned to the steam generation chamber 8, vaporized again, and supplied to the cleaning chamber 2.
  • the steam supply pipe 7, or to communicate with the cleaning chamber 2 and the steam generating chamber 8, the switching valve V 1 or to shut off the communication is provided.
  • the pipe 9, or to communicate with the cleaning chamber 2 and the vacuum pump 10, the switching valve V 2 or to block the communication is provided.
  • the pipe 11, the cleaning chamber 2 or open to the atmosphere, the cleaning chamber 2 is switching valve V 3 or to shut off from the atmosphere is provided.
  • the branch pipe 25, or communicates the condensation chamber 21 and the vacuum pump 10, or the switching valve V 4 or to block the communication is provided.
  • the vacuum cleaning method for the workpiece W in the vacuum cleaning apparatus 1 will be described with reference to FIGS. 1 and 2.
  • the teclean N20 which is a 3rd petroleum solvent is used as a petroleum solvent is demonstrated.
  • the petroleum-based solvent that can be used in the vacuum cleaning apparatus 1 is not limited to this.
  • Various petroleum solvents can be used by changing the control temperature and the like in various apparatuses according to characteristics such as the boiling point and condensation point of the petroleum solvent used.
  • FIG. 2 is a flowchart for explaining the processing steps of the vacuum cleaning apparatus 1.
  • the preparation process step S100
  • a carry-in process step S200
  • a decompression process step S300
  • a steam cleaning process step S400
  • a drying process step S500
  • a carry-out process step S600
  • steps S200 to S600 are performed on the workpieces W that are sequentially loaded.
  • Step S100 First, the vacuum cleaning apparatus 1 is operated. For this purpose, the on-off valve 20 and the switching valves V 1 to V 3 are closed and the switching valve V 4 is opened to drive the vacuum pump 10. Thereby, the condensing chamber 21 is evacuated and the inside of the condensing chamber 21 is decompressed to 10 kPa or less. Then, the temperature holding device 22 is driven, and the condensation chamber 21 in a decompressed state is cooled to a temperature lower than that of the cleaning chamber 2, more specifically, a temperature below the condensation point of the petroleum solvent to be used (5 ° C. to 50 ° C. , More preferably 15 ° C. to about 25 ° C.).
  • the heater 8a is driven to heat the petroleum solvent stored in the steam generation chamber 8 to generate steam.
  • the steam generating chamber 8 because has a saturated vapor pressure, and the switching valve V 1 is closed, the steam generated in the steam generating chamber 8, filled in the steam generating chamber 8 ing. Thereby, the preparation process of the vacuum cleaning apparatus 1 is completed, and the workpiece W can be cleaned by the vacuum cleaning apparatus 1.
  • Step S200 Transportation process: Step S200
  • the opening / closing door 4 is opened, and the workpiece W is carried into the cleaning chamber 2 through the opening 3 a and placed on the placement unit 8.
  • the on-off valve 20 remains closed, and the condensation chamber 21 is maintained in a reduced pressure state.
  • the opening / closing door 4 is closed and the cleaning chamber 2 is sealed.
  • the temperature of the workpiece W is a normal temperature (about 15 to 40 ° C.).
  • Step S300 Next, the vacuum pump 10 is driven to depressurize the cleaning chamber 2 to 10 kPa or less, which is the same as that of the condensation chamber 21, by evacuation.
  • Step S400 Next, the switching valve V 1 is opened, and the steam generated by the steam generation chamber 8 is supplied to the cleaning chamber 2. At this time, the temperature of the steam is controlled to 70 to 150 ° C. (more preferably 115 to 125 ° C.), and the high temperature steam fills the cleaning chamber 2.
  • Step S500 a drying process for drying the petroleum solvent adhering to the workpiece W at the time of cleaning is performed.
  • This drying process is performed by opening the opening / closing valve 20 to allow the cleaning chamber 2 and the condensation chamber 21 to communicate with each other.
  • the temperature of the cleaning chamber 2 is 70 to 150 ° C., which is the temperature of the steam, but the temperature of the condensing chamber 21 is 5 to 50 ° C. (more Preferably, it is maintained at 15 to 25 ° C.
  • the opening / closing valve 20 when the opening / closing valve 20 is opened, the vapor filling the cleaning chamber 2 moves to the condensation chamber 21 and condenses. As a result, the pressure in the cleaning chamber 2 is reduced, so that the petroleum solvent adhering to the workpiece W and the petroleum solvent in the cleaning chamber 2 are all vaporized and moved to the condensation chamber 21. As a result, the cleaning chamber 2 (work W) can be dried in an extremely short time compared to the conventional case. In addition, the drying time in the vacuum cleaning apparatus 1 of 1st Embodiment is demonstrated in detail later.
  • Step S600 Unloading process: Step S600
  • the opening / closing valve 20 is closed to shut off the cleaning chamber 2 and the condensation chamber 21.
  • the cleaning chamber 2 by opening the switching valve V 3 opened to the atmosphere, when the cleaning chamber 2 is pressurized restored to atmospheric pressure, carries out the workpiece W from the opening 3a to open the door 4.
  • the condensing chamber 21 is maintained at a desired pressure, the work W can be washed one after another by repeating the above steps S200 to S600.
  • FIG. 3 is a diagram showing test data of the drying process by the conventional vacuum cleaning apparatus
  • FIG. 4 is a diagram showing test data of the drying process by the vacuum cleaning apparatus 1 of the first embodiment.
  • 3 and 4 show various data when a small metal part 150 kg is dried as the workpiece W under substantially the same conditions.
  • the conventional vacuum cleaning apparatus evacuates with the special vacuum pump corresponding to a vapor
  • the vacuum cleaning apparatus 1 of the first embodiment when the opening / closing valve 20 is opened and drying is started after the completion of the cleaning process, the steam temperature and liquid in the steam generation chamber 8 are started. As with the above, the temperature shows a gradual upward trend.
  • the cleaning chamber 2 is rapidly depressurized because the vapor rapidly moves toward the condensing chamber 21, reaches 900 Pa in about 12 seconds, and reaches the maximum depressurization in about 22 seconds after the opening of the opening / closing valve 20. The level has reached 280 Pa.
  • FIG. 5 is a diagram showing other test data of the drying process by the conventional vacuum cleaning apparatus
  • FIG. 6 is a diagram showing other test data of the drying process by the vacuum cleaning apparatus 1 of the first embodiment. is there.
  • FIGS. 5 and 6 show a case where the drying process is performed in a state where 150 kg of the same small metal part as the work W and a steel can in which 70 cc of a petroleum solvent is stored are placed in the cleaning chamber 2.
  • Various data are shown.
  • petroleum-based solvents sometimes accumulate as residual liquid in gaps or recesses of parts, and this test was performed assuming that such residual liquid has accumulated.
  • the cleaning chamber 2 is gradually depressurized by evacuation, reaches 900 Pa in about 353 seconds, and reaches the maximum depressurization level in about 508 seconds from the start of evacuation. It reaches 320 Pa. That is, according to the conventional vacuum cleaning apparatus, when the residual liquid is accumulated in the workpiece W in the cleaning process, the time until the maximum pressure reduction level is reached is approximately 90 times as compared with the case where the residual liquid is not accumulated. The pressure in the cleaning chamber 2 when the maximum pressure reduction level is reached is further increased. Therefore, as a matter of course, the more liquid remaining in the workpiece W, the longer the time required for the drying process.
  • the cleaning chamber 2 reaches 900 Pa in about 20 seconds after the opening / closing valve 20 is opened.
  • the maximum pressure reduction level of 280 Pa has been reached approximately 44 seconds after the opening of the valve. That is, according to the vacuum cleaning device 1 of the first embodiment, even when the residual liquid is accumulated in the workpiece W in the cleaning process, the maximum pressure reduction level is reached as compared with the case where the residual liquid is not accumulated. The time is only 22 seconds longer, and the pressure in the cleaning chamber 2 when the maximum pressure reduction level is reached is reduced to the same pressure as when no residual liquid is accumulated.
  • the time required for the drying process is significantly shortened by using the vacuum cleaning apparatus 1 of the first embodiment. It was confirmed that this time difference becomes more prominent as the residual liquid accumulated in the workpiece W increases. Therefore, according to the vacuum cleaning apparatus 1 described above, the overall processing time is shortened by shortening the drying process, the processing amount per unit time is improved, and energy saving can be realized. Furthermore, since the processing time is shortened, it is possible to further improve the cleaning accuracy in a short time by repeatedly performing the steps S400 to S500 on one workpiece.
  • the petroleum-based solvent condensed by moving to the condensing chamber 21 is guided to the reservoir tank 24 through the return pipe 23, temporarily stored in the reservoir tank 24, and then introduced to the steam generating chamber 8 again. It is reused.
  • the petroleum-based solvent circulates inside the cleaning chamber 2 and the condensation chamber 21 that are sealed from the outside. Therefore, compared with the case where it evacuates outdoors with the vacuum pump like the past, the reproduction rate (reuse efficiency) of a petroleum-type solvent is very high. Therefore, the consumption of petroleum solvent is reduced, and the running cost can be reduced.
  • the cleaning chamber is evacuated by a vacuum pump in both the decompression process and the drying process.
  • a vacuum pump since a large amount of vapor is sucked from the cleaning chamber in the drying process, a special-purpose vacuum pump must be employed. Therefore, the provision of such special parts is a major factor in increasing the cost of the entire apparatus.
  • the vacuum pump is used only in the decompression process in which the cleaning chamber 2 has no steam. Therefore, it is possible to employ a general vacuum pump that is not special specification, and the cost of the entire apparatus can be reduced.
  • the vacuum cleaning apparatus 51 of the second embodiment is provided with a configuration for immersing and cleaning the workpiece W in the configuration of the vacuum cleaning apparatus 1 of the first embodiment. Is different. Therefore, the same components as those in the first embodiment are given the same reference numerals as those described above, and detailed descriptions thereof are omitted. Hereinafter, a configuration different from that of the first embodiment will be described.
  • FIG. 7 is a conceptual diagram for explaining the vacuum cleaning apparatus 51 of the second embodiment.
  • the vacuum cleaning apparatus 51 includes a vacuum container 52 in which the cleaning chamber 2 is provided.
  • An opening 52 a is formed in the vacuum container 52, and the opening 52 a can be opened and closed by the opening / closing door 4.
  • an immersion chamber 53 is provided below the cleaning chamber 2.
  • the immersion chamber 53 stores an amount of a petroleum solvent in which the work W can be completely immersed, and a heater 53a for heating the petroleum solvent is provided.
  • An intermediate door 54 is provided between the cleaning chamber 2 and the immersion chamber 53, and the intermediate door 54 allows the cleaning chamber 2 and the immersion chamber 53 to communicate with each other, or the communication thereof is blocked.
  • the petroleum-based solvent stored in the immersion chamber 53 is the same as the steam generated in the steam generation chamber 8. Moreover, in the vacuum cleaning apparatus 51 of this 2nd Embodiment, the raising / lowering apparatus not shown is provided in the mounting part 5, and the mounting part 5 can move to a perpendicular direction. Therefore, by driving the lifting / lowering device in a state where the intermediate door 54 is opened and the cleaning chamber 2 and the immersion chamber 53 are in communication with each other, the workpiece W is moved from the cleaning chamber 2 to the immersion chamber 53 as indicated by a broken line in the figure. Alternatively, the workpiece W can be moved from the immersion chamber 53 to the cleaning chamber 2.
  • FIG. 8 is a flowchart for explaining the processing steps of the vacuum cleaning apparatus 51.
  • a preparation process step S101
  • a carrying-in process step S200
  • a pressure reducing process step S300
  • a steam cleaning process step S400
  • an immersion cleaning process step S450
  • a drying process step S500
  • a carrying-out process Step S600
  • steps S200 to S600 are performed on the workpieces W that are sequentially loaded.
  • step S200 the carry-in process (step S200), the decompression process (step S300), the steam cleaning process (step S400), the drying process (step S500), and the carry-out process (step S600) are the first implementation described above.
  • the form is the same. Therefore, here, a preparation process (step S101) and an immersion cleaning process (step S450) different from the first embodiment will be described.
  • Step S101 First, when the vacuum cleaning device 51 is operated, the switching valves V 1 to V 4 are closed and the open / close door 4 is closed to shut off the inside of the vacuum vessel 52 from the outside. Then, the intermediate door 54 is opened and the opening / closing valve 20 is opened, so that the immersion chamber 53 and the condensation chamber 21 are communicated with the cleaning chamber 2. Then, by driving the vacuum pump 10 by opening the switching valve V 2, cleaning chamber 2, is reduced to 10kPa or less by evacuating the immersion chamber 53 and condensation chamber 21.
  • the cleaning chamber 2 When the cleaning chamber 2, the immersion chamber 53 and the condensation chamber 21 are depressurized to a desired pressure in this way, the intermediate door 54 is closed and the opening / closing valve 20 is closed, so that the immersion chamber 53 and the condensation chamber 21 are cleaned. Shut off from.
  • the temperature holding device 22 is driven to hold the condensing chamber 21 in a decompressed state at a temperature lower than that of the cleaning chamber 2, more specifically, a temperature below the condensation point of the petroleum-based solvent to be used.
  • the heater 53a is driven to heat the petroleum solvent stored in the immersion chamber 53
  • the heater 8a is driven to heat the petroleum solvent stored in the steam generation chamber 8, thereby Is generated.
  • the intermediate door 54 is closed, the steam generated in the immersion chamber 53 is filled in the immersion chamber 53.
  • the switching valve V 1 is closed, the steam generated in the steam generation chamber 8 is filled in the steam generation chamber 8.
  • step S450 the immersion cleaning process (step S450) is performed.
  • the intermediate door 54 since the immersion chamber 53 is filled with steam, the intermediate door 54 is opened with the start of the steam cleaning step (step S400), and the cleaning chamber 2 communicates with the immersion chamber 53. Therefore, in the steam cleaning process (step S400), steam is supplied to the cleaning chamber 2 from both the steam generation chamber 8 and the immersion chamber 53.
  • Step S450 When the steam cleaning process is finished, the mounting portion 5 is lowered, and the workpiece W is immersed in the petroleum solvent stored in the immersion chamber 53. At this time, the workpiece W is moved up and down in the vertical direction a plurality of times by a lifting device (not shown), and the oils and the like attached to the details of the workpiece W that could not be cleaned in the steam cleaning process are cleaned.
  • the mounting portion 5 is raised to transport the workpiece W to the cleaning chamber 2, the intermediate door 54 is closed, and the cleaning chamber 2 and the immersion chamber 53 are shut off.
  • the workpiece W can be more carefully cleaned while realizing the same operational effects as the vacuum cleaning apparatus 1 of the first embodiment.
  • the steam generation chamber 8 (heater 8a) functions as a steam generation means for generating petroleum solvent vapor.
  • the steam generation chamber 8 Both the heater 8a) and the immersion chamber 53 (heater 53a) function as vapor generating means.
  • the cleaning chamber 2 and the immersion chamber 53 are provided apart from each other so that heat transfer is difficult. May be.
  • a low temperature petroleum-based solvent is stored in the immersion chamber 53, and the workpiece W is first immersed and cleaned with a low-temperature petroleum-based solvent, and the workpiece W cooled by this immersion cleaning is stored in the cleaning chamber 2. It may be transported and steam cleaned.
  • the order of the steps applied to the workpiece W, the arrangement of the chambers in the vacuum cleaning apparatus, and the like are not limited to the above embodiment, and can be appropriately designed.
  • the present invention can be used for a vacuum cleaning apparatus and a vacuum cleaning method for cleaning a workpiece by supplying a vapor of a petroleum solvent to a cleaning chamber under reduced pressure.

Abstract

 本発明は、石油系溶剤の蒸気を生成する蒸気生成手段(8、8a、53、53a)と;前記蒸気生成手段から供給される蒸気によって減圧下でワークを洗浄可能な洗浄室(2)と;前記洗浄室に接続され、減圧状態に保持される凝縮室(21)と;前記凝縮室を前記洗浄室よりも低い温度に保持する温度保持手段(22)と;前記凝縮室と前記洗浄室とを連通させ、または、その連通を遮断する開閉手段(20)と;を備える真空洗浄装置(1、51)である。

Description

真空洗浄装置および真空洗浄方法
 本発明は、減圧下にある洗浄室に石油系溶剤の蒸気を供給してワークを洗浄する真空洗浄装置および真空洗浄方法に関する。本願は、2011年11月25日に出願された日本国特許出願第2011-257625号に対し優先権を主張し、その内容をここに援用する。
 従来、例えば、特許文献1に示される真空洗浄装置が知られている。この真空洗浄装置によれば、まず、ワークが搬入された蒸気洗浄・乾燥室を真空ポンプによって減圧する減圧工程がなされる。その後、石油系溶剤の蒸気を蒸気洗浄・乾燥室に供給して、ワークを洗浄する蒸気洗浄工程がなされる。次に、浸漬室に貯留された石油系溶剤にワークを浸漬させ、特に蒸気洗浄工程で洗浄が不十分となるワークの隙間等を洗浄する浸漬洗浄工程がなされる。
 このようにしてワークの洗浄が完了すると、再び蒸気洗浄・乾燥室にワークを搬送する。その後、蒸気洗浄・乾燥室をさらに減圧して、ワーク表面に付着した溶剤を蒸発させる乾燥工程がなされる。そして、乾燥工程が終了したら、蒸気洗浄・乾燥室を大気圧に復帰させる。その後、ワークを搬出して、一連の工程が終了する。
日本国特開2003-236479号公報
 上記特許文献1の真空洗浄装置によれば、乾燥工程において、蒸気洗浄・乾燥室を真空ポンプで真空引きして減圧している。このとき、蒸発によって100倍以上の体積に気化した気体を、従来のメカニカルな回転駆動式真空ポンプで排気乾燥するのは容易ではない。また、乾燥性を高めるために更に減圧すれば、さらに気体が膨張して排気時間がかかる。そのため、この従来の乾燥方法による乾燥工程には長時間を要する。すなわち、安定した洗浄品質かつ生産性を高める乾燥工程において、その時間の短縮化が望まれている。
 本発明は、ワークの乾燥に要する時間を短縮して全体の処理能力を向上することができる真空洗浄装置および真空洗浄方法を提供することを目的とする。
 本発明は、上記課題を解決するために以下の手段を提供している。本発明の第1の態様は、真空洗浄装置である。この真空洗浄装置は、石油系溶剤の蒸気を生成する蒸気生成手段と、前記蒸気生成手段から供給される蒸気によって減圧下でワークを洗浄可能な洗浄室と、前記洗浄室に接続され、減圧状態に保持される凝縮室と、前記凝縮室を前記洗浄室よりも低い温度に保持する温度保持手段と、前記凝縮室と前記洗浄室とを連通させ、または、その連通を遮断する開閉手段と、を備える。
 本発明の第2の態様は、前記第1の態様に係る真空洗浄装置において、前記温度保持手段は、前記凝縮室の温度を前記石油系溶剤の凝縮点以下に保持する。
 本発明の第3の態様は、前記第2の態様に係る真空洗浄装置において、前記洗浄室から前記凝縮室に導かれて凝縮した石油系溶剤を、前記凝縮室から前記蒸気生成手段に導く回収手段をさらに備える。
 本発明の第4の態様は、前記第1から3のいずれかの態様に係る真空洗浄装置において、前記洗浄室に接続され、前記石油系溶剤が貯留されるとともに当該石油系溶剤にワークを浸漬可能な浸漬室をさらに備える。
 本発明の第5の態様は、真空洗浄方法である。この真空洗浄方法は、ワークが搬入された洗浄室および当該洗浄室に接続された凝縮室を減圧する工程と、石油系溶剤の蒸気を生成し、当該蒸気を減圧下にある前記洗浄室に供給して前記ワークを洗浄する工程と、減圧下にある前記凝縮室を前記洗浄室よりも低い温度に保持する工程と、前記洗浄室におけるワークの洗浄後、当該洗浄室と前記凝縮室とを連通させる工程と、を含む。
 本発明によれば、ワークの乾燥に要する時間を短縮して全体の処理能力を向上することができる。
第1実施形態の真空洗浄装置を説明するための概念図である。 第1実施形態の真空洗浄装置の処理工程を説明するフローチャートである。 従来の真空洗浄装置による乾燥工程の試験データを示す図である。 第1実施形態の真空洗浄装置による乾燥工程の試験データを示す図である。 従来の真空洗浄装置による乾燥工程の他の試験データを示す図である。 第1実施形態の真空洗浄装置による乾燥工程の他の試験データを示す図である。 第2実施形態の真空洗浄装置を説明するための概念図である。 第2実施形態の真空洗浄装置の処理工程を説明するフローチャートである。
 以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。本実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能および構成を有する要素については、同一の符号を付することにより、重複する説明を省略する。また、本発明に直接関係のない要素については、その図示を省略する。
 図1は、第1実施形態の真空洗浄装置1を説明するための概念図である。この図1に示すように、真空洗浄装置1は、内部に洗浄室2が設けられた真空容器3を備えている。この真空容器3には、開口3aが形成されており、開閉扉4によって開口3aが開閉可能となっている。したがって、ワークWを洗浄する際には、開閉扉4を開放して、開口3aから洗浄室2内にワークWを搬入して載置部5に載置する。その後、開閉扉4を閉じて、ワークWを洗浄する。その後、再び開閉扉4を開放して、開口3aからワークWを搬出する。
 そして、上記の洗浄室2には、蒸気供給部6が設けられている。この蒸気供給部6は、蒸気供給管7を介して、蒸気発生室8に接続されている。蒸気発生室8は、ヒータ8aを備えており、石油系溶剤を加熱して溶剤蒸気(以下、単に蒸気という)を生成する。このように、蒸気発生室8によって生成された蒸気は、蒸気供給管7および蒸気供給部6を介して、洗浄室2に供給される。なお、この石油系溶剤の種類は、特に限定されない。ただし、安全性の観点から第3石油類溶剤を使用することが望ましく、例えば、ノルマルパラフィン系、イソパラフィン系、ナフテン系、芳香族系の炭化水素系溶剤が挙げられる。具体的には、第3石油類溶剤として、一般的にクリーニングソルベントと呼ばれるテクリーンN20、クリーンソルG、ダフニーソルベント等を使用することが望ましい。なお、「テクリーン」は、新日本石油株式会社(現:JXホールディングス株式会社)の登録商標であり、「クリーンソルG」は、同社の商品名であり、「ダフニー」は、出光興産株式会社の登録商標である。
 また、洗浄室2には、配管9を介して、真空ポンプ10が接続されている。この真空ポンプ10は、ワークWの洗浄を開始する前の減圧工程において、真空容器3内を真空引き(初期真空)によって減圧する。さらに、洗浄室2には、この洗浄室2を大気開放するための配管11が接続されている。この配管11は、ワークWの洗浄工程および乾燥工程が終了した後の搬出工程において、洗浄室2を大気開放して大気圧に復帰させる。
 そして、洗浄室2には、開閉手段である開閉バルブ20を介して、凝縮室21が接続されている。開閉バルブ20を開弁すると、洗浄室2と凝縮室21とが連通し、開閉バルブ20を閉弁すると、洗浄室2と凝縮室21との連通が遮断される。この凝縮室21も、洗浄室2と同様に、配管9から分岐する分岐管25を介して真空ポンプ10に接続されており、減圧状態を保持することが可能である。また、この凝縮室21には、熱交換器等からなる温度保持装置22(温度保持手段)が設けられており、凝縮室21内の温度が洗浄室2内の温度よりも低い一定温度(5℃~50℃、より好ましくは15℃~約25℃)に保持することが可能である。
 さらに、凝縮室21の底部には、リターン配管23を介して、リザーバタンク24が接続されている。凝縮室21で凝縮した石油系溶剤をリターン配管23からリザーバタンク24に導くとともに、このリザーバタンク24に一時的に貯留することが可能である。このリザーバタンク24は、蒸気発生室8に接続されており、一定量以上の石油系溶剤が貯留されると、リザーバタンク24から蒸気発生室8に石油系溶剤が導かれる。つまり、リターン配管23およびリザーバタンク24は、石油系溶剤を回収する回収手段として機能する。こうした回収手段によって回収された石油系溶剤は、蒸気発生室8に還流して再度気化されて洗浄室2に供給される。
 なお、図1に示すように、蒸気供給管7には、洗浄室2と蒸気発生室8とを連通させたり、その連通を遮断したりする切換バルブVが設けられている。配管9には、洗浄室2と真空ポンプ10とを連通させたり、その連通を遮断したりする切換バルブVが設けられている。配管11には、洗浄室2を大気に開放したり、洗浄室2を大気から遮断したりする切換バルブVが設けられている。分岐管25には、凝縮室21と真空ポンプ10とを連通したり、あるいは、その連通を遮断したりする切換バルブVが設けられている。
 次に、上記の真空洗浄装置1におけるワークWの真空洗浄方法について、図1および図2を用いて説明する。なお、以下では、真空洗浄装置1における真空洗浄方法を具体的に説明するため、石油系溶剤として第3石油類溶剤であるテクリーンN20を用いた場合を説明する。ただし、上記したとおり、真空洗浄装置1に使用可能な石油系溶剤は、これに限定されるものではない。使用する石油系溶剤の沸点や凝縮点等の特性に応じて、各種装置における制御温度等を変更すれば、種々の石油系溶剤を利用することが可能である。
 図2は、真空洗浄装置1の処理工程を説明するフローチャートである。真空洗浄装置1を利用するにあたっては、まず、準備工程(ステップS100)を1回行う。その後、1つのワークWに対して、搬入工程(ステップS200)、減圧工程(ステップS300)、蒸気洗浄工程(ステップS400)、乾燥工程(ステップS500)、搬出工程(ステップS600)を行う。そして、以後、順次搬入されるワークWに対して、ステップS200~ステップS600の工程が行われる。以下に、図1を参照しながら、上記の各工程について説明する。
(準備工程:ステップS100)
 まず、真空洗浄装置1を稼働させる。そのために、開閉バルブ20および切換バルブV~Vを閉弁するとともに、切換バルブVを開弁して真空ポンプ10を駆動する。これにより、凝縮室21を真空引きして、この凝縮室21の内部を10kPa以下に減圧する。そして、温度保持装置22を駆動して、減圧状態にある凝縮室21を、洗浄室2よりも低い温度、より詳細には、使用する石油系溶剤の凝縮点以下の温度(5℃~50℃、より好ましくは15℃~約25℃)に保持する。
 また、ヒータ8aを駆動して蒸気発生室8に貯留されている石油系溶剤を加温し、蒸気を生成させる。なお、このとき、蒸気発生室8は飽和蒸気圧となっており、かつ切換バルブVが閉じられているため、蒸気発生室8で生成された蒸気は、この蒸気発生室8内に充満している。これにより、真空洗浄装置1の準備工程が終了し、真空洗浄装置1によるワークWの洗浄が可能となる。
(搬入工程:ステップS200)
 真空洗浄装置1によってワークWの洗浄を行う際には、まず、開閉扉4を開放し、開口3aから洗浄室2にワークWを搬入して載置部8に載置する。このとき、開閉バルブ20は閉弁したままであり、凝縮室21が減圧状態に維持されている。そして、ワークWの搬入が完了したら、開閉扉4を閉じて洗浄室2を密閉状態にする。このとき、ワークWの温度は、常温(15~40℃程度)となっている。
(減圧工程:ステップS300)
 次に、真空ポンプ10を駆動して、真空引きにより洗浄室2を凝縮室21と同じ10kPa以下に減圧する。
(蒸気洗浄工程:ステップS400)
 次に、切換バルブVを開弁して、蒸気発生室8によって生成された蒸気を洗浄室2に供給する。このとき、蒸気の温度は、70~150℃(より好ましくは115~125℃)に制御されており、高温の蒸気が洗浄室2に充満する。
 このように、洗浄室2に供給された蒸気がワークWの表面に付着すると、ワークWの温度が蒸気の温度に比べて低いことから、蒸気がワークWの表面で凝縮する。その結果、ワークWの表面に付着していた油脂類が、凝縮された石油系溶剤によって溶解、流下され、ワークWが洗浄される。この蒸気洗浄工程は、ワークWの温度が、蒸気の温度(石油系溶剤の沸点)である70~150℃(115~125℃)に到達するまで行われるとともに、ワークWの温度が蒸気の温度に到達したときに切換バルブVを閉弁する。こうして、蒸気洗浄工程が、終了する。
(乾燥工程:ステップS500)
 上記ステップS400の蒸気洗浄工程が終了すると、次に、洗浄の際にワークWに付着した石油系溶剤を乾燥させる乾燥工程が行われる。この乾燥工程は、開閉バルブ20を開弁して、洗浄室2と凝縮室21とを連通させることによって行われる。具体的には、乾燥工程の開始時には、洗浄室2の温度が蒸気の温度である70~150℃となっているが、凝縮室21の温度は、温度保持装置22によって5~50℃(より好ましくは15~25℃)に維持されている。
 したがって、開閉バルブ20を開弁すると、洗浄室2内に充満している蒸気は、凝縮室21に移動して凝縮する。これにより、洗浄室2が減圧されることから、ワークWに付着している石油系溶剤および洗浄室2内の石油系溶剤が、全て気化して、凝縮室21に移動する。その結果、従来に比べて極めて短時間で、洗浄室2(ワークW)を乾燥させることが可能となる。なお、第1実施形態の真空洗浄装置1における乾燥時間については、後で詳細に説明する。
(搬出工程:ステップS600)
 上記のように、洗浄室2およびワークWの乾燥が完了したら、開閉バルブ20を閉弁して、洗浄室2と凝縮室21とを遮断する。そして、切換バルブVを開弁して洗浄室2を大気開放し、洗浄室2が大気圧まで復圧したときに、開閉扉4を開放して開口3aからワークWを搬出する。こうして、ワークWに対する全工程が、終了する。このとき、凝縮室21は、所望の圧力に維持されていることから、以後は、上記ステップS200~ステップS600を繰り返すことで、次々とワークWを洗浄することができる。
 図3は、従来の真空洗浄装置による乾燥工程の試験データを示す図であり、図4は、第1実施形態の真空洗浄装置1による乾燥工程の試験データを示す図である。なお、図3および図4は、ほぼ同一の条件下において、ワークWとして小型の金属製部品150kgを乾燥させた際の各種データを示している。また、従来の真空洗浄装置は、乾燥工程において洗浄室2を減圧する際に、蒸気対応の特殊真空ポンプで真空引きする。この点のみが、第1実施形態の真空洗浄装置1と異なり、その他の構成は全て同じである。
 図3に示すように、従来の真空洗浄装置において、洗浄工程の終了後に真空ポンプを駆動して真空引きを開始すると、蒸気発生室8の蒸気温度および液温は、いずれも緩やかな上昇傾向を示している。このとき、洗浄室2は、真空引きによって徐々に減圧され、およそ150秒で900Paに到達し、真空引き開始からおよそ418秒で、最高減圧レベルである280Paに到達している。
 これに対して、図4に示すように、第1実施形態の真空洗浄装置1において、洗浄工程の終了後に開閉バルブ20を開弁して乾燥を開始すると、蒸気発生室8の蒸気温度および液温が、上記と同様に、いずれも緩やかな上昇傾向を示している。一方、洗浄室2は、蒸気が凝縮室21に向けて急激に移動することから、急速に減圧され、およそ12秒で900Paに到達し、開閉バルブ20の開弁からおよそ22秒で、最高減圧レベルである280Paに到達している。
 また、図5は、従来の真空洗浄装置による乾燥工程の他の試験データを示す図であり、図6は、第1実施形態の真空洗浄装置1による乾燥工程の他の試験データを示す図である。この図5および図6は、ワークWとして上記と同じ小型の金属製部品150kgと、石油系溶剤70ccが溜められたスチール缶とを洗浄室2に載置した状態で乾燥工程を行った際の各種データを示している。なお、洗浄工程においては、石油系溶剤が部品の隙間や凹部等に残液として溜まることがあり、この試験は、こうした残液が溜まってしまった場合を想定して行われた。
 図5に示すように、従来の真空洗浄装置によれば、洗浄室2が、真空引きによって徐々に減圧され、およそ353秒で900Paに到達し、真空引き開始からおよそ508秒で、最高減圧レベルである320Paに到達している。つまり、従来の真空洗浄装置によれば、洗浄工程においてワークWに残液が溜まってしまった場合は、残液が溜まっていない場合に比べて、最高減圧レベルに到達するまでの時間がおよそ90秒長くなり、最高減圧レベル到達時における洗浄室2の圧力も更に高くなっている。したがって、当然のことながら、ワークWに溜まった残液が多くなるほど、乾燥工程に要する時間が長時間になる。
 これに対して、図6に示すように、第1実施形態の真空洗浄装置1によれば、洗浄室2が、開閉バルブ20の開弁後、およそ20秒で900Paに到達し、開閉バルブ20の開弁からおよそ44秒で、最高減圧レベルである280Paに到達している。つまり、第1実施形態の真空洗浄装置1によれば、洗浄工程においてワークWに残液が溜まってしまった場合でも、残液が溜まっていない場合に比べて、最高減圧レベルに到達するまでの時間は僅か22秒しか長くならず、最高減圧レベル到達時における洗浄室2の圧力も、残液が溜まっていない場合と同じ圧力まで減圧されている。
 このように、第1実施形態の真空洗浄装置1と従来の真空洗浄装置とを比較すると、第1実施形態の真空洗浄装置1を用いることにより、乾燥工程に要する時間が顕著に短縮化され、この時間差は、ワークWに溜まる残液が多くなるほど一層顕著になることが確認された。したがって、上記の真空洗浄装置1によれば、乾燥工程の短縮により、全体的な処理時間が短縮され、単位時間当たりの処理量が向上するとともに、省エネルギー化を実現することができる。さらに、処理時間が短縮されることから、1つのワークに対して、上記ステップS400~ステップS500の工程を繰り返し行うことにより、短時間で洗浄精度をより向上させることも可能である。
 また、凝縮室21に移動して凝縮された石油系溶剤は、リターン配管23を介してリザーバタンク24に導かれ、このリザーバタンク24において一時的に貯留された後に、再び蒸気発生室8に導かれて再利用される。このとき、石油系溶剤は、洗浄室2および凝縮室21という外部から密閉された室内を循環している。そのため、従来のような真空ポンプによって屋外に排気される場合に比べて、石油系溶剤の再生率(再利用効率)が非常に高い。したがって、石油系溶剤の消費が低減され、ランニングコストを低減することができる。
 さらには、従来の真空洗浄装置においては、減圧工程と乾燥工程との双方で、洗浄室を真空ポンプによって真空引きする。この場合、乾燥工程では、洗浄室から多量の蒸気が吸引されるため、特殊仕様の真空ポンプを採用しなければならない。そのため、こうした特殊な部品を設けることが、装置全体のコストアップの大きな要因となっている。これに対して、第1実施形態の真空洗浄装置1によれば、洗浄室2に蒸気がない減圧工程でのみ、真空ポンプを用いる。そのため、特殊仕様ではない一般的な真空ポンプを採用することが可能となり、装置全体のコストを低減することができる。
 次に、図7および図8を用いて、第2実施形態の真空洗浄装置について説明する。なお、第2実施形態の真空洗浄装置51は、第1実施形態の真空洗浄装置1の構成にワークWを浸漬洗浄するための構成を備えた点が、上記第1実施形態の真空洗浄装置1と異なっている。したがって、上記第1実施形態と同一の構成には、上記と同一の符号を付するとともに、その詳細な説明を省略する。以下では、上記第1実施形態と異なる構成について説明する。
 図7は、第2実施形態の真空洗浄装置51を説明するための概念図である。この図に示すように、真空洗浄装置51は、内部に洗浄室2が設けられた真空容器52を備えている。この真空容器52には、開口52aが形成されており、開閉扉4によって開口52aが開閉可能となっている。
 また、真空容器52内には、洗浄室2の下方に配置された浸漬室53が設けられている。この浸漬室53には、ワークWが完全に浸漬可能な量の石油系溶剤が貯留されており、この石油系溶剤を加熱するためのヒータ53aが設けられている。また、洗浄室2と浸漬室53との間には中間扉54が設けられており、この中間扉54によって、洗浄室2と浸漬室53とが連通され、あるいはその連通が遮断される。
 なお、浸漬室53に貯留されている石油系溶剤は、蒸気発生室8で生成される蒸気と同じものである。また、この第2実施形態の真空洗浄装置51においては、載置部5に不図示の昇降装置が設けられており、載置部5が鉛直方向に移動することが可能である。したがって、中間扉54を開放して洗浄室2と浸漬室53とを連通させた状態で昇降装置を駆動することにより、図中破線で示すように、ワークWを洗浄室2から浸漬室53に移動させたり、あるいは、ワークWを浸漬室53から洗浄室2に移動させることができる。
 次に、上記の真空洗浄装置51におけるワークWの真空洗浄方法について図7および図8を用いて説明する。図8は、真空洗浄装置51の処理工程を説明するフローチャートである。真空洗浄装置51を利用するにあたっては、まず、準備工程(ステップS101)を1回行う。その後、1つのワークWに対して、搬入工程(ステップS200)、減圧工程(ステップS300)、蒸気洗浄工程(ステップS400)、浸漬洗浄工程(ステップS450)、乾燥工程(ステップS500)、搬出工程(ステップS600)を行う。そして、以後、順次搬入されるワークWに対して、ステップS200~ステップS600の工程が行われる。
 なお、上記の各工程のうち、搬入工程(ステップS200)、減圧工程(ステップS300)、蒸気洗浄工程(ステップS400)、乾燥工程(ステップS500)、搬出工程(ステップS600)は、上記第1実施形態と同じである。したがって、ここでは、上記第1実施形態と異なる準備工程(ステップS101)および浸漬洗浄工程(ステップS450)について説明する。
(準備工程:ステップS101)
 まず、真空洗浄装置51を稼働するにあたり、切換バルブV~Vを閉弁するとともに、開閉扉4を閉じて真空容器52内を外部から遮断する。そして、中間扉54を開放するとともに開閉バルブ20を開弁し、浸漬室53および凝縮室21を洗浄室2に連通させる。次に、切換バルブVを開弁して真空ポンプ10を駆動し、洗浄室2、浸漬室53および凝縮室21を真空引きにより10kPa以下に減圧する。このようにして、洗浄室2、浸漬室53および凝縮室21を所望の圧力まで減圧したら、中間扉54を閉じるとともに開閉バルブ20を閉弁して、浸漬室53および凝縮室21を洗浄室2から遮断する。
 そして、温度保持装置22を駆動して、減圧状態にある凝縮室21を、洗浄室2よりも低い温度、より詳細には、使用する石油系溶剤の凝縮点以下の温度に保持する。また、ヒータ53aを駆動して浸漬室53に貯留されている石油系溶剤を加温するとともに、ヒータ8aを駆動して蒸気発生室8に貯留されている石油系溶剤を加温して、蒸気を生成させる。このとき、中間扉54が閉じられていることから、浸漬室53で生成された蒸気は、この浸漬室53内に充満している。また、切換バルブVが閉じられていることから、蒸気発生室8で生成された蒸気は、この蒸気発生室8内に充満している。
 次に、ワークWを洗浄室2に搬入すべく、切換バルブVを開弁して、洗浄室2を大気開放して大気圧に復帰させる。そして、洗浄室2が大気圧に復帰したところで切換バルブVを閉弁する。こうして、真空洗浄装置51の準備工程が終了し、真空洗浄装置51によるワークWの洗浄が可能となる。
 そして、上記と同様に、搬入工程(ステップS200)、減圧工程(ステップS300)、蒸気洗浄工程(ステップS400)が終了したら、浸漬洗浄工程(ステップS450)が行われる。なお、この第2実施形態の真空洗浄装置51においては、浸漬室53に蒸気が充満していることから、蒸気洗浄工程(ステップS400)の開始に伴って中間扉54が開放されて、洗浄室2と浸漬室53とが連通される。したがって、蒸気洗浄工程(ステップS400)では、蒸気発生室8および浸漬室53の双方から、洗浄室2に蒸気が供給される。
(浸漬洗浄工程:ステップS450)
 蒸気洗浄工程が終了すると、載置部5が降下して、浸漬室53に貯留された石油系溶剤にワークWが浸漬される。このとき、不図示の昇降装置によってワークWが鉛直方向の昇降を複数回繰り返し、蒸気洗浄工程で洗浄しきれなかったワークWの細部に付着した油脂類等が洗浄される。このようにしてワークWの洗浄が完了したら、載置部5を上昇させてワークWを洗浄室2に搬送し、中間扉54を閉じて洗浄室2と浸漬室53とを遮断する。
そして、上記と同様に、乾燥工程(ステップS500)および搬出工程(ステップS600)を行うことで、全工程が終了となる。このように、第2実施形態の真空洗浄装置51によれば、上記第1実施形態の真空洗浄装置1と同様の作用効果を実現しつつ、ワークWをより入念に洗浄することができる。なお、第1実施形態においては、蒸気発生室8(ヒータ8a)が、石油系溶剤の蒸気を生成する蒸気生成手段として機能していたが、この第2実施形態においては、蒸気発生室8(ヒータ8a)および浸漬室53(ヒータ53a)の双方が、蒸気生成手段として機能する。
 以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されない。当業者であれば、本明細書および特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属する。
 したがって、例えば、焼き戻し処理が施された直後の高温のワークWを洗浄するような場合には、洗浄室2と浸漬室53とを離隔して設けておき、互いに熱伝達しにくいように構成してもよい。この場合には、浸漬室53に低温の石油系溶剤を貯留しておき、まず、ワークWを低温の石油系溶剤で浸漬洗浄し、この浸漬洗浄によって冷却されたワークWを、洗浄室2に搬送して蒸気洗浄すればよい。このように、ワークWに施す各工程の順序や、真空洗浄装置における各室の配置等は上記実施形態に限定されるものではなく、適宜設計することが可能である。
 本発明は、減圧下にある洗浄室に石油系溶剤の蒸気を供給してワークを洗浄する真空洗浄装置および真空洗浄方法に利用することができる。
1、51 …真空洗浄装置
2 …洗浄室
8 …蒸気発生室
8a …ヒータ
10 …真空ポンプ
20 …開閉バルブ
21 …凝縮室
22 …温度保持装置
23 …リターン配管
24 …リザーバタンク
53 …浸漬室
53a …ヒータ
W …ワーク

Claims (5)

  1.  石油系溶剤の蒸気を生成する蒸気生成手段と、
     前記蒸気生成手段から供給される蒸気によって減圧下でワークを洗浄可能な洗浄室と、
     前記洗浄室に接続され、減圧状態に保持される凝縮室と、
     前記凝縮室を前記洗浄室よりも低い温度に保持する温度保持手段と、
     前記凝縮室と前記洗浄室とを連通させ、または、その連通を遮断する開閉手段と、を備えることを特徴とする真空洗浄装置。
  2.  前記温度保持手段は、
     前記凝縮室の温度を前記石油系溶剤の凝縮点以下に保持することを特徴とする請求項1記載の真空洗浄装置。
  3.  前記洗浄室から前記凝縮室に導かれて凝縮した石油系溶剤を、前記凝縮室から前記蒸気生成手段に導く回収手段をさらに備えることを特徴とする請求項2記載の真空洗浄装置。
  4.  前記洗浄室に接続され、前記石油系溶剤が貯留されるとともに当該石油系溶剤にワークを浸漬可能な浸漬室をさらに備えることを特徴とする請求項1~3のいずれかに記載の真空洗浄装置。
  5.  ワークが搬入された洗浄室および当該洗浄室に接続された凝縮室を減圧する工程と、
     石油系溶剤の蒸気を生成し、当該蒸気を減圧下にある前記洗浄室に供給して前記ワークを洗浄する工程と、
     減圧下にある前記凝縮室を前記洗浄室よりも低い温度に保持する工程と、
     前記洗浄室におけるワークの洗浄後、前記洗浄室と前記凝縮室とを連通させる工程と、を含む真空洗浄方法。
PCT/JP2012/080105 2011-11-25 2012-11-20 真空洗浄装置および真空洗浄方法 WO2013077336A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12850922.1A EP2783762B1 (en) 2011-11-25 2012-11-20 Vacuum cleaning equipment and vacuum cleaning method
JP2013545937A JP5695762B2 (ja) 2011-11-25 2012-11-20 真空洗浄装置および真空洗浄方法
US14/274,883 US9555450B2 (en) 2011-11-25 2014-05-12 Vacuum cleaning apparatus and vacuum cleaning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011257625 2011-11-25
JP2011-257625 2011-11-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/274,883 Continuation US9555450B2 (en) 2011-11-25 2014-05-12 Vacuum cleaning apparatus and vacuum cleaning method

Publications (1)

Publication Number Publication Date
WO2013077336A1 true WO2013077336A1 (ja) 2013-05-30

Family

ID=47935768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080105 WO2013077336A1 (ja) 2011-11-25 2012-11-20 真空洗浄装置および真空洗浄方法

Country Status (6)

Country Link
US (1) US9555450B2 (ja)
EP (1) EP2783762B1 (ja)
JP (8) JP5695762B2 (ja)
CN (2) CN103128074B (ja)
TW (1) TWI565535B (ja)
WO (1) WO2013077336A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206100A (ja) * 2014-04-23 2015-11-19 高砂工業株式会社 真空洗浄機
WO2016002381A1 (ja) * 2014-06-30 2016-01-07 株式会社Ihi 洗浄装置
JP2016013536A (ja) * 2015-03-20 2016-01-28 株式会社Ihi 凝縮器及び洗浄装置
JP2017000996A (ja) * 2015-06-15 2017-01-05 株式会社Ihi 凝縮器及び洗浄装置
EP3141856A4 (en) * 2014-06-30 2018-01-17 IHI Corporation Condenser and washing device
WO2018055934A1 (ja) * 2016-09-21 2018-03-29 株式会社Ihi 洗浄装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103128074B (zh) 2011-11-25 2016-06-22 株式会社Ihi 真空清洗装置以及真空清洗方法
JP2017196560A (ja) * 2016-04-27 2017-11-02 株式会社不二越 真空脱脂洗浄装置および真空脱脂洗浄方法
JP2018004221A (ja) * 2016-07-07 2018-01-11 株式会社Ihi 凝縮器及び洗浄装置
JP2018061934A (ja) * 2016-10-12 2018-04-19 株式会社クリンビー 1槽式真空洗浄乾燥機
WO2018105262A1 (ja) * 2016-12-07 2018-06-14 株式会社Ihi 洗浄方法及び洗浄装置
JP6509315B1 (ja) * 2017-12-20 2019-05-08 アクトファイブ株式会社 蒸気洗浄後のワーク乾燥判定方法及び蒸気洗浄真空乾燥装置
JP7037206B2 (ja) * 2020-01-27 2022-03-16 アクトファイブ株式会社 蒸気洗浄減圧乾燥装置
EP3881918A1 (en) * 2020-03-19 2021-09-22 Cemastir Lavametalli S.r.l. Machine for washing objects and operating method thereof
US11287185B1 (en) 2020-09-09 2022-03-29 Stay Fresh Technology, LLC Freeze drying with constant-pressure and constant-temperature phases
CN113182258B (zh) * 2021-04-29 2022-12-02 中国电子科技集团公司第九研究所 一种铁氧体球形谐振子清洗方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1057909A (ja) * 1996-08-22 1998-03-03 Aqua Kagaku Kk 真空洗浄装置
JP2000160378A (ja) * 1998-11-26 2000-06-13 Japan Field Kk 洗浄装置
JP2003236479A (ja) 2001-12-14 2003-08-26 Jh Corp 真空脱脂洗浄方法と装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184335A (ja) * 1987-01-26 1988-07-29 Nec Corp 洗浄装置
JP2721704B2 (ja) 1989-06-26 1998-03-04 株式会社千代田製作所 有機溶剤を使用する洗浄装置
US5538025A (en) * 1991-11-05 1996-07-23 Serec Partners Solvent cleaning system
US6004403A (en) * 1991-11-05 1999-12-21 Gebhard Gray Associates Solvent cleaning system
JP3393389B2 (ja) * 1992-10-30 2003-04-07 株式会社日本ヘイズ 真空脱脂洗浄方法と真空洗浄機
JP3032938B2 (ja) 1994-09-07 2000-04-17 株式会社三社電機製作所 減圧洗浄・乾燥装置
JPH0975873A (ja) * 1995-09-19 1997-03-25 Japan Field Kk 被洗浄物の洗浄及び乾燥方法
JP4528374B2 (ja) 1998-08-12 2010-08-18 新オオツカ株式会社 蒸気洗浄装置
US6418942B1 (en) * 2000-03-10 2002-07-16 Donald Gray Solvent and aqueous decompression processing system
JP4612163B2 (ja) * 2000-08-14 2011-01-12 富士重工業株式会社 洗浄方法および洗浄装置
DE10118601C1 (de) * 2001-04-12 2002-08-14 Pero Ag P Erbel Maschinen U Ap Verfahren zum Betrieb einer Reinigungsanlage
JP2002370073A (ja) 2001-06-15 2002-12-24 Mitsubishi Heavy Ind Ltd 洗浄装置
US6783601B2 (en) 2002-06-06 2004-08-31 Donald Gray Method for removing particles and non-volatile residue from an object
JP2004098022A (ja) * 2002-09-12 2004-04-02 Olympus Corp 揮発ガス回収方法及び装置
JP4225985B2 (ja) * 2005-06-01 2009-02-18 ジャパン・フィールド株式会社 被洗浄物の洗浄方法及びその装置
US7444761B2 (en) * 2006-03-06 2008-11-04 Gray Donald J Intrinsically safe flammable solvent processing method and system
EP1878479A1 (en) * 2006-07-14 2008-01-16 Shawline International LLC Method and system for treating transformer components
CN201135976Y (zh) * 2007-12-29 2008-10-22 江苏丰东热技术股份有限公司 溶剂型真空清洗机
CN103128074B (zh) * 2011-11-25 2016-06-22 株式会社Ihi 真空清洗装置以及真空清洗方法
JP6194667B2 (ja) * 2013-07-22 2017-09-13 株式会社リコー 情報処理システム、情報処理方法、プログラム、及び記録媒体
JP6292961B2 (ja) * 2014-04-23 2018-03-14 高砂工業株式会社 真空洗浄機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1057909A (ja) * 1996-08-22 1998-03-03 Aqua Kagaku Kk 真空洗浄装置
JP2000160378A (ja) * 1998-11-26 2000-06-13 Japan Field Kk 洗浄装置
JP2003236479A (ja) 2001-12-14 2003-08-26 Jh Corp 真空脱脂洗浄方法と装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2783762A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206100A (ja) * 2014-04-23 2015-11-19 高砂工業株式会社 真空洗浄機
WO2016002381A1 (ja) * 2014-06-30 2016-01-07 株式会社Ihi 洗浄装置
JP2016010776A (ja) * 2014-06-30 2016-01-21 株式会社Ihi 洗浄装置
EP3141856A4 (en) * 2014-06-30 2018-01-17 IHI Corporation Condenser and washing device
US10118204B2 (en) 2014-06-30 2018-11-06 Ihi Corporation Cleaning apparatus
US10676858B2 (en) 2014-06-30 2020-06-09 Ihi Corporation Condenser and cleaning device
DE112015003079B4 (de) 2014-06-30 2024-01-11 Ihi Corporation Reinigungsvorrichtung
JP2016013536A (ja) * 2015-03-20 2016-01-28 株式会社Ihi 凝縮器及び洗浄装置
JP2017000996A (ja) * 2015-06-15 2017-01-05 株式会社Ihi 凝縮器及び洗浄装置
WO2018055934A1 (ja) * 2016-09-21 2018-03-29 株式会社Ihi 洗浄装置

Also Published As

Publication number Publication date
EP2783762B1 (en) 2021-04-07
JP6220018B2 (ja) 2017-10-25
JP2015096264A (ja) 2015-05-21
JP5695762B2 (ja) 2015-04-08
TWI565535B (zh) 2017-01-11
JP2016193436A (ja) 2016-11-17
JP2016185544A (ja) 2016-10-27
JP6921163B2 (ja) 2021-08-18
US20140246056A1 (en) 2014-09-04
JP2020073258A (ja) 2020-05-14
CN103128074A (zh) 2013-06-05
CN103128074B (zh) 2016-06-22
EP2783762A4 (en) 2015-08-12
JP2021183331A (ja) 2021-12-02
TW201328794A (zh) 2013-07-16
CN202823972U (zh) 2013-03-27
JP2018012106A (ja) 2018-01-25
EP2783762A1 (en) 2014-10-01
JPWO2013077336A1 (ja) 2015-04-27
US9555450B2 (en) 2017-01-31
JP6783209B2 (ja) 2020-11-11
JP2014166637A (ja) 2014-09-11
JP5707527B2 (ja) 2015-04-30
JP6043888B2 (ja) 2016-12-14
JP5976858B2 (ja) 2016-08-24

Similar Documents

Publication Publication Date Title
JP6043888B2 (ja) 真空洗浄装置および真空洗浄方法
KR102277108B1 (ko) 기판 처리 장치
JP2013062417A (ja) 半導体基板の超臨界乾燥方法及び装置
KR102378329B1 (ko) 기판 처리 장치 및 방법
KR20230112052A (ko) 기판 처리 방법 및 이온 액체
JP2003236479A (ja) 真空脱脂洗浄方法と装置
JP5977572B2 (ja) 真空洗浄装置
JP2009131783A (ja) ベーパー洗浄乾燥装置及びそれを用いたベーパー洗浄乾燥方法
KR102491000B1 (ko) 접착제층 제거 유닛 및 이를 이용하는 접착제층 제거 방법
KR20180131400A (ko) 감압 건조 장치
JP2003306771A (ja) グローブボックス付き成膜装置
KR20210091685A (ko) 기판 처리 방법
JP2014117627A (ja) 真空洗浄装置
KR102327272B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR102643365B1 (ko) 기판 처리 장치 및 방법
KR102603680B1 (ko) 기판 처리 장치 및 기판 처리 방법
TWI796903B (zh) 基板處理裝置以及基板處理方法
WO2024024804A1 (ja) 基板処理方法および基板処理装置
KR102152907B1 (ko) 기판 처리 장치 및 방법
JP6373331B2 (ja) 真空脱脂洗浄装置、及びその洗浄方法
CN115443522A (zh) 基板处理方法及基板处理装置
KR20210072177A (ko) 기판 처리 장치 및 방법
JP2023177801A (ja) 減圧洗浄装置
JP2015020116A (ja) 真空洗浄装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013545937

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012850922

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE