WO2013073691A1 - メタクリル酸製造用触媒及びそれを用いたメタクリル酸の製造方法 - Google Patents

メタクリル酸製造用触媒及びそれを用いたメタクリル酸の製造方法 Download PDF

Info

Publication number
WO2013073691A1
WO2013073691A1 PCT/JP2012/079862 JP2012079862W WO2013073691A1 WO 2013073691 A1 WO2013073691 A1 WO 2013073691A1 JP 2012079862 W JP2012079862 W JP 2012079862W WO 2013073691 A1 WO2013073691 A1 WO 2013073691A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
methacrylic acid
less
methacrolein
atoms
Prior art date
Application number
PCT/JP2012/079862
Other languages
English (en)
French (fr)
Inventor
飯島 孝幸
竜彦 倉上
英二 西村
知幸 江尻
秀臣 酒井
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48429743&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013073691(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to EP12849609.8A priority Critical patent/EP2781260A4/en
Priority to KR1020147013201A priority patent/KR20140099453A/ko
Priority to US14/358,305 priority patent/US20140316160A1/en
Priority to KR1020187038040A priority patent/KR102005358B1/ko
Priority to CN201280056864.4A priority patent/CN103945938B/zh
Priority to JP2013518904A priority patent/JP5973999B2/ja
Publication of WO2013073691A1 publication Critical patent/WO2013073691A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8877Vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • the present invention produces methacrylic acid by vapor-phase catalytic oxidation of at least one selected from the group consisting of methacrolein, isobutyraldehyde and isobutyric acid using a molecular oxygen-containing gas in the presence of an oxidation catalyst composition.
  • the present invention relates to a heteropolyacid catalyst used in the process and a method for producing methacrylic acid using the same.
  • Patent Document 4 describes an invention in which a catalyst for producing methacrylic acid is stored in a container having a moisture permeability of 1.0 g / m 2 ⁇ 24 h or less at 25 ° C.
  • Patent Document 5 describes an invention in which air is introduced so that the relative humidity of the catalyst layer is 40% or less to prevent moisture absorption of the catalyst.
  • these known techniques can be said to be useful as a method for preventing moisture absorption of a catalyst for methacrylic acid production, there is a problem that any process until the catalyst is produced and used becomes complicated.
  • the heteropolyacid catalyst used in producing methacrylic acid from at least one selected from the group consisting of methacrolein, isobutyraldehyde and isobutyric acid is inferior in life compared to an oxidation catalyst producing acrylic acid from acrolein. I have to say that.
  • Patent Document 6 a homogeneous solution containing the fourth component X such as molybdenum, vanadium, phosphorus and antimony is mixed with aqueous ammonia and a homogeneous solution containing other catalyst component elements such as cesium, and this mixed solution is mixed.
  • a method for producing a catalyst for producing methacrylic acid by drying is disclosed. Thereby, the solubility of the fourth component X (especially antimony) is improved, and the catalyst performance is excellent in reproducibility and stability, and a long-life catalyst is obtained.
  • Patent Document 7 discloses that a solution in which all catalyst raw materials are dissolved or suspended in water has an ammonium radical content in the range of 17 to 100 mol with respect to 12 atoms of molybdenum and a pH of 6.5 to A method for producing an oxidation catalyst in the range of 13 is disclosed. The pH is adjusted by adding nitric acid or aqueous ammonia.
  • a catalyst produced by using such a conventional catalyst raw material mixing method or pH adjusting method is not necessarily sufficient as an industrial catalyst particularly in terms of life, and further improvement in catalyst performance is desired.
  • the present invention is more suitable for storage, which is particularly important for performance, life, and industrial use than the heteropolyacid catalyst used in the production of methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen.
  • An object of the present invention is to provide a heteropolyacid catalyst that is superior in terms of moisture absorption and a method for producing methacrylic acid using the same.
  • the present inventors gasified at least one selected from the group consisting of methacrolein, isobutyraldehyde and isobutyric acid using a molecular oxygen-containing gas in the presence of an oxidation catalyst composition.
  • a catalyst for producing methacrylic acid used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen a is represented by the following general formula Mo a P b V c Cu d Y e Z f O g (Wherein Mo, P, V, Cu and O represent molybdenum, phosphorus, vanadium, copper and oxygen, respectively.
  • Y represents at least one element selected from potassium, rubidium, cesium and thallium, and Z represents iron, cobalt.
  • the heteropolyacid and heteropolyacid salt having molybdenum, phosphorus, vanadium, and copper as essential components the atomic ratio of alkali metal atoms to 10 atoms of molybdenum is A, and the heteropolyacid and heteropolyacid
  • the present invention (1) A catalyst for producing methacrylic acid used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen, which has the following general formula: Mo a P b V c Cu d Y e Z f O g (Wherein Mo, P, V, Cu and O represent molybdenum, phosphorus, vanadium, copper and oxygen, respectively.
  • Y represents at least one element selected from potassium, rubidium, cesium and thallium, and Z represents iron, cobalt.
  • the heteropolyacid and heteropolyacid salt containing molybdenum, phosphorus, vanadium and copper as essential components the atomic ratio of alkali metal atoms to molybdenum atoms in the heteropolyacid and heteropolyacid salt is A, and the heteropolyacid and heteropolyacid salt
  • the atomic ratio of the copper atom to the molybdenum atom in the inside is B and the valence is C
  • A + (B ⁇ C) 0.5 ⁇ ⁇ ⁇ 1.4
  • At least one selected from the group consisting of methacrolein, isobutyraldehyde and isobutyric acid is related to a heteropolyacid catalyst used in producing methacrylic acid by vapor phase catalytic oxidation, performance, life, Furthermore, it is possible to provide a more excellent heteropolyacid catalyst in terms of moisture absorption during storage, which is particularly important for industrial use.
  • a catalyst for production of methacrylic acid used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein of the present invention with molecular oxygen, and having the following general formula: Mo a P b V c Cu d Y e Z f O g (Wherein Mo, P, V, Cu and O represent molybdenum, phosphorus, vanadium, copper and oxygen, respectively.
  • Y represents at least one element selected from potassium, rubidium, cesium and thallium, and Z represents iron, cobalt.
  • the proton of the heteropolyacid is an important chemical structure for the molecular attracting effect of methacrolein and the oxidation of methacrylic acid by the supply of oxygen of the heteropolyacid.
  • the molecular attracting effect of methacrolein is weak because protons are decreased, and the reactivity of methacrolein is lowered.
  • the heteropolyacid salt has an effect of suppressing the sequential oxidation reaction. That is, after oxidation of methacrolein to methacrylic acid, the oxidation reaction continues to burn and suppresses the sequential oxidation reaction by which carbon monoxide, carbon dioxide, acetic acid and the like are by-produced. Due to this effect, the selectivity of methacrylic acid can be improved.
  • Mo as more preferred catalysts as the catalyst a P b V c Cu d Y e Z f O g
  • Mo, P, V, Cu and O represent molybdenum, phosphorus, vanadium, copper and oxygen, respectively.
  • Y represents at least one element selected from potassium, rubidium, cesium and thallium, and Z represents iron, cobalt.
  • a catalyst for producing methacrylic acid represented by the formula is preferably used.
  • is the atomic ratio of alkali metal atoms to 10 atoms of molybdenum in the heteropolyacid and heteropolyacid salt
  • A is the atomic ratio of copper atoms to 10 atoms of molybdenum in the heteropolyacid and heteropolyacid salt
  • B is the valence.
  • the catalyst production method of the present invention comprises an aqueous solution containing a compound containing an active component of the catalyst (molybdenum, phosphorus, vanadium, copper; hereinafter referred to as essential components) or an aqueous dispersion of the compound (hereinafter referred to as slurry together).
  • a compound containing an active component of the catalyst mobdenum, phosphorus, vanadium, copper; hereinafter referred to as essential components
  • slurry together aqueous dispersion of the compound
  • the dried powder obtained by drying the powder is calcined (hereinafter, this process is referred to as pre-calcination) and then molded.
  • a baking process main baking
  • the compound containing the active ingredients when preparing the slurry does not necessarily contain all the active ingredients, and some of the ingredients are added after the drying or after the preliminary calcination. May be.
  • the type of other active components to be used and the use ratio thereof are determined as appropriate according to the use conditions of the catalyst or the like so as to obtain a catalyst exhibiting optimum performance.
  • a compound containing each element contained in the catalyst for example, an oxo acid, oxo acid salt, oxide, nitrate, carbonate, hydroxide, halide, or the like of each element is desired. It is used at a ratio that satisfies the atomic ratio of For example, phosphoric acid, phosphate, etc. are used as the compound containing phosphorus, and molybdic acid, molybdate, molybdenum oxide, molybdenum chloride, etc.
  • the compound containing molybdenum is used as the compound containing molybdenum, and as the compound containing vanadium, Vanadic acid, vanadate, vanadium oxide, vanadium chloride and the like are used, and copper nitrate, copper acetate, copper sulfate, copper chloride, copper oxide and the like are used as the compound containing copper.
  • oxides, acetates, nitrates, carbonates, hydroxides, halides, etc. are used as the compounds containing the Y element, and oxoacids, oxoacid salts, nitrates, carbonates are used as the compounds containing the Z element.
  • Hydroxides, halides and the like are used.
  • the compound containing each element contained in these catalysts may be used alone or in combination of two or more.
  • the slurry can be obtained by uniformly mixing each active ingredient-containing compound and water.
  • the order of addition of the active ingredient-containing compound when preparing the slurry is to sufficiently dissolve the compound containing molybdenum, vanadium, phosphorus and other metal elements as necessary, and then add the cesium-containing compound, ammonium-containing compound, and copper-containing compound. It is preferable to add.
  • an antimony-containing compound it is preferable to add the last of the essential active ingredient-containing compounds, but more preferably, after obtaining a slurry containing an active ingredient other than the antimony-containing compound, The powder is dried and the powder and the antimony-containing compound are mixed and then fired, or the powder is fired and then the antimony-containing compound is mixed.
  • the temperature at which the slurry is prepared is preferably heated to a temperature at which the compound containing molybdenum, phosphorus, vanadium and, if necessary, other metal elements can be sufficiently dissolved.
  • the temperature at which the cesium-containing compound and the ammonium-containing compound are added is usually in the range of about 0 to 35 ° C., preferably about 10 to 30 ° C., because the resulting catalyst tends to be highly active. It is preferable to cool to ⁇ 30 ° C.
  • the amount of water used in the slurry is not particularly limited as long as the total amount of the compound to be used can be completely dissolved or mixed uniformly, but is appropriately determined in consideration of the drying method and drying conditions.
  • the amount of water may be large, but if it is too large, the energy cost of the drying process becomes high, and there may be cases where the water cannot be completely dried.
  • the drying method is not particularly limited as long as the slurry can be completely dried, and examples thereof include drum drying, freeze drying, spray drying, and evaporation to dryness.
  • spray drying which can be dried from a slurry state into powder or granules in a short time is particularly preferable.
  • the drying temperature of spray drying varies depending on the slurry concentration, the liquid feeding speed, etc., but the temperature at the outlet of the dryer is generally 70 to 150 ° C. Further, it is preferable to dry so that the average particle size of the dried slurry obtained at this time is 10 to 700 ⁇ m.
  • Pre-baking of the obtained dry powder may significantly improve the moldability, the shape of the molded catalyst, and the mechanical strength.
  • the preliminary firing atmosphere may be an air stream or an inert gas stream such as nitrogen, but industrially, an air stream is preferred.
  • the pre-baking temperature is usually 200 to 400 ° C., preferably 250 to 380 ° C., more preferably 270 to 330 ° C. Even if pre-calcined at a temperature lower than 200 ° C., the influence on the moldability tends to be reduced, and if it exceeds 400 ° C., the catalyst tends to be decomposed and sintered, which may adversely affect the performance.
  • the pre-baking time is preferably 3 to 12 hours, more preferably 5 to 10 hours. Although it may be fired for 12 hours or longer, it is difficult to obtain an effect commensurate with it.
  • the obtained pre-fired granule is molded as described below as necessary.
  • molding aids such as silica gel, diatomaceous earth, and alumina powder.
  • the amount of the molding aid used is usually 1 to 30 parts by mass with respect to 100 parts by mass of the pre-calcined granule.
  • inorganic fibers such as ceramic fibers and whiskers, which are inert to the catalyst component as necessary, as a strength improving material is useful for improving the mechanical strength of the catalyst.
  • fibers that react with catalyst components such as potassium titanate whiskers and basic magnesium carbonate whiskers are not preferred.
  • the amount of these fibers used is usually 1 to 30 parts by mass with respect to 100 parts by mass of the pre-fired granules.
  • the pre-fired granule obtained as described above or a mixture obtained by mixing this with a molding aid and a strength improver is reduced to a columnar product, a tablet, a ring shape, a spherical shape, etc. Mold and use.
  • the rolling step is preferably the rolling granulation method described below.
  • the support in the container is vigorously agitated by repeated rotation and revolution movements by rotating the disk at high speed.
  • the carrier is coated with the pre-fired granule or mixture by adding the binder and the pre-fired granule or mixture.
  • the method of adding the binder is as follows: 1) Preliminarily mixed with the pre-baked granule or mixture, 2) Add the pre-baked granule or mixture simultaneously with addition to the fixed container, 3) Add the pre-baked granule or mixture into the fixed container 4) Add before adding the pre-baked granule or mixture into the fixed vessel, 5) Divide the pre-baked granule or mixture and the binder, respectively, and add the total amount of 2) to 4) as appropriate
  • Such a method can be arbitrarily adopted.
  • the pre-fired granules or the mixture is not adhered to the fixed container wall, and the pre-fired granules or the mixture is not aggregated, and the addition rate is adjusted using an auto feeder or the like so that a predetermined amount is supported on the carrier. It is preferable to do so.
  • the binder is preferably at least one selected from the group consisting of water and an organic compound having a boiling point of 150 ° C. or lower at 1 atm.
  • An organic compound having a boiling point of 150 ° C. or lower is preferable in consideration of drying after coating.
  • Specific examples of binders other than water include alcohols such as methanol, ethanol, propanols and butanols, preferably alcohols having 1 to 4 carbon atoms, ethers such as ethyl ether, butyl ether or dioxane, and esters such as ethyl acetate or butyl acetate.
  • Ketones such as acetone or methyl ethyl ketone, and aqueous solutions thereof, with ethanol being particularly preferred.
  • the amount of these binders used is usually 10 to 60 parts by mass, preferably 15 to 40 parts by mass with respect to 100 parts by mass of the dry powder.
  • the coated catalyst obtained as described above can be directly used as a catalyst for a gas phase catalytic oxidation reaction.
  • calcination is preferable because the catalytic activity may be improved.
  • the firing method and firing conditions are not particularly limited, and known treatment methods and conditions can be applied. Optimum conditions for calcination vary depending on the catalyst raw material, catalyst composition, preparation method, etc., but are usually 100 to 450 ° C., preferably 270 to 420 ° C., and calcination time is 1 to 20 hours.
  • the firing is usually performed in an air atmosphere. However, the firing may be performed in an inert gas atmosphere such as nitrogen, carbon dioxide, helium, or argon, and may be further performed as necessary after firing in an inert gas atmosphere.
  • Baking may be performed in an air atmosphere.
  • the catalyst obtained as described above (hereinafter referred to as the catalyst of the present invention) is used for production of methacrylic acid by gas phase catalytic oxidation of methacrolein, isobutyraldehyde or isobutyric acid.
  • the catalyst for producing methacrylic acid of the present invention as described above is a catalyst capable of producing methacrylic acid with a high yield and a long life by subjecting methacrolein to gas phase catalytic oxidation with molecular oxygen.
  • is the selectivity for methacrylic acid
  • the atomic ratio of the Y component affects the hygroscopicity of the catalyst, and when ⁇ is within the above range, the reaction for producing methacrylic acid. It is speculated that an effective chemical structure can be obtained.
  • the selectivity of methacrylic acid is improved.
  • the atomic ratio of the Y component is smaller than 0.2, most of the counter cation of the heteropolyacid becomes protons and hygroscopicity is increased.
  • the gas phase catalytic reaction using methacrolein which is the most preferable raw material for using the catalyst obtained in the present invention.
  • Molecular oxygen or a molecular oxygen-containing gas is used for the gas phase catalytic oxidation reaction.
  • the molar ratio of molecular oxygen to methacrolein is preferably in the range of 0.5 to 20, and particularly preferably in the range of 1 to 10.
  • water is preferably added to the raw material gas in a molar ratio of 1 to 20 relative to methacrolein.
  • the raw material gas may contain oxygen, if necessary, a gas inert to the reaction such as nitrogen, carbon dioxide, saturated hydrocarbon, etc.
  • a gas obtained by oxidizing isobutylene, tertiary butanol, and methyl tertiary butyl ether may be supplied as it is.
  • the reaction temperature is generally 200 ⁇ 400 ° C. in a gas phase catalytic oxidation reaction, preferably 250 ⁇ 360 ° C., the supply amount of the raw material gas in the space velocity (SV), usually 100 ⁇ 6000 hr -1, preferably 300 ⁇ 3000 hr -1 It is.
  • the catalytic oxidation reaction can be performed under pressure or under reduced pressure, but generally a pressure around atmospheric pressure is suitable.
  • conversion rate of methacrolein (number of moles of methacrolein supplied ⁇ number of moles of unreacted methacrolein) / number of moles of methacrolein supplied ⁇ 100
  • Methacrylic acid yield (number of moles of methacrylic acid produced ⁇ number of moles of methacrylic acid supplied) / number of moles of methacrolein supplied ⁇ 100
  • Methacrylic acid selectivity (number of moles of methacrylic acid produced ⁇ number of moles of methacrylic acid supplied) / (number of moles of methacrolein supplied ⁇ number of moles of unreacted methacrolein) ⁇ 100
  • Example 1 1) Preparation of catalyst 800 g of molybdenum trioxide, 40.43 g of vanadium pentoxide, and 73.67 g of 85 mass% orthophosphoric acid were added to 5680 ml of pure water, and the mixture was heated and stirred at 92 ° C. for 3 hours to obtain a reddish brown transparent solution. . Subsequently, this solution was cooled to 15 to 20 ° C., and 307.9 g of a 9.1 wt% cesium hydroxide aqueous solution and 689.0 g of a 14.3 wt% ammonium acetate aqueous solution were gradually added while stirring. The mixture was aged at 15 to 20 ° C.
  • the catalyst after the moisture absorption measurement was dried in a dryer at 120 ° C. for 24 hours, and 10.3 ml of the resulting coated catalyst was filled in a stainless steel reaction tube having an inner diameter of 18.4 mm, and the raw material gas composition (molar ratio) methacrolein.
  • Oxygen: water vapor: nitrogen 1: 2: 4: 18.6, space velocity (SV) 1200 hr ⁇ 1 , reaction bath temperature 310 ° C., methacrolein oxidation reaction was carried out.
  • the reaction was first continued for 3 hours at a reaction bath temperature of 310 ° C., then the reaction bath temperature was raised to 350 ° C. and the reaction was continued for 15 hours (hereinafter this treatment is referred to as a high temperature reaction treatment). Next, the reaction bath temperature was lowered to 310 ° C., and the reaction results were measured.
  • Table 1 The results are shown in Table 1.
  • Example 2 A coated catalyst was prepared in the same manner as in Example 1, except that the precalcination temperature was 290 ° C. in Example 1.
  • the composition of the obtained catalyst is Mo 10 V 0.8 P 1.15 Cu 0.4 Cs 0.3 (NH 4 ) 2.3 Sb 1.0 .
  • the methacrolein oxidation reaction and moisture absorption measurement were performed in the same manner as in Example 1. The results are shown in Tables 1 and 2.
  • Example 4 A coated catalyst was prepared in the same manner as in Example 1 except that 320 g of pre-fired granules, 40.9 g of antimony trioxide, and 45 g of a strength improver (ceramic fiber) were uniformly mixed in Example 1.
  • Example 5 To 5680 ml of pure water were added 800 g of molybdenum trioxide, 30.33 g of vanadium pentoxide, and 73.67 g of 85 mass% orthophosphoric acid, and the mixture was heated and stirred at 92 ° C. for 3 hours to obtain a reddish brown transparent solution. Subsequently, the solution was cooled to 15 to 20 ° C., and 661.3 g of a 9.1 wt% aqueous cesium hydroxide solution and 689.0 g of a 14.3 wt% aqueous ammonium acetate solution were gradually added while stirring. The mixture was aged at 15 to 20 ° C. for 1 hour to obtain a yellow slurry.
  • Example 6 A coated catalyst was prepared in the same manner as in Example 5 except that pure water was used as a binder in Example 5.
  • Example 7 A coated catalyst was prepared in the same manner as in Example 5 except that a 90% by mass aqueous ethanol solution was used as a binder in Example 5.
  • Example 8 To 5680 ml of pure water were added 800 g of molybdenum trioxide, 30.33 g of vanadium pentoxide, and 76.87 g of 85 mass% orthophosphoric acid, and the mixture was heated and stirred at 92 ° C. for 3 hours to obtain a reddish brown transparent solution. Subsequently, the solution was cooled to 15 to 20 ° C., and 321.2 g of a 9.1 wt% cesium hydroxide aqueous solution and 196.86 g of a 50 wt% ammonium acetate aqueous solution were gradually added while stirring. Aging at ⁇ 20 ° C. for 1 hour gave a yellow slurry.
  • Comparative Example 1 To 7100 ml of pure water, 1000 g of molybdenum trioxide, 75.81 g of vanadium pentoxide, 88.08 g of 85 mass% orthophosphoric acid, and 11.05 g of copper oxide were added, and the mixture was heated and stirred at 92 ° C. for 3 hours to obtain a slurry. Subsequently, this slurry was spray-dried to obtain granules. The composition of the obtained granules was Mo 10 V 1.2 P 1.1 Cu 0.2 .
  • a strength improving material (ceramic fiber) was uniformly mixed, and 300 g of a spherical porous alumina carrier (particle size: 3.5 mm) was coated and molded using a 90 mass% aqueous ethanol solution as a binder. Subsequently, the obtained molded product was subjected to main calcination at 310 ° C. for 5 hours under an air flow to obtain a target coated catalyst.
  • Comparative Example 2 To 10000 ml of pure water was added 1000 g of molybdenum trioxide, 37.91 g of vanadium pentoxide, 96.09 g of 85 wt% phosphoric acid aqueous solution, 65.73 g of 60 wt% aqueous arsenic acid solution, and 22.1 g of cupric oxide, and then at 92 ° C. for 3 hours. A slurry was obtained by stirring. Subsequently, this slurry was spray-dried to obtain granules. The composition of the obtained granules was Mo 10 V 0.6 P 1.2 As 0.4 Cu 0.4.
  • a strength improving material (ceramic fiber) was uniformly mixed, and 300 g of a spherical porous alumina carrier (particle size: 3.5 mm) was coated and molded using a 90 mass% aqueous ethanol solution as a binder. Subsequently, the obtained molded product was subjected to main calcination at 310 ° C. for 5 hours under an air flow to obtain a target coated catalyst.
  • Comparative Example 5 To 5680 ml of pure water were added 800 g of molybdenum trioxide, 30.33 g of vanadium pentoxide, and 76.87 g of 85 mass% orthophosphoric acid, and the mixture was heated and stirred at 92 ° C. for 3 hours to obtain a reddish brown transparent solution. Subsequently, the solution was cooled to 15 to 20 ° C., and 94.5 g of a 9.1 mass% cesium hydroxide aqueous solution and 196.86 g of a 50 mass% ammonium acetate aqueous solution were gradually added while stirring. Aging at ⁇ 20 ° C. for 1 hour gave a yellow slurry.
  • the space velocity (SV) was 1800 hr ⁇ 1 .
  • the partial oxidation reaction of methacrolein was continued while adjusting the reaction bath temperature so that the methacrolein conversion was 75% ⁇ 2%.
  • the results of the methacrolein oxidation reaction 800 hours after the start of the reaction were as follows: reaction bath temperature 344 ° C. hot spot temperature 355 ° C., methacrolein conversion 75.5%, methacrylic acid yield 62.3%, methacrylic acid selectivity 82.7 %Met.
  • the space velocity (SV) was 1800 hr ⁇ 1 .
  • the partial oxidation reaction of methacrolein was continued while adjusting the reaction bath temperature so that the methacrolein conversion was 75% ⁇ 2%.
  • the reaction bath temperature was 325 ° C.
  • the hot spot temperature was 336 ° C.
  • the methacrolein conversion was 75.7%
  • the methacrylic acid yield was 63.4%
  • the methacrylic acid selectivity was 83.8. %Met.
  • the space velocity (SV) was 1800 hr ⁇ 1 .
  • the partial oxidation reaction of methacrolein was continued while adjusting the reaction bath temperature so that the methacrolein conversion was 75% ⁇ 2%.
  • the reaction bath temperature was 346 ° C.
  • the hot spot temperature was 359 ° C.
  • the methacrolein conversion was 75.1%
  • the methacrylic acid yield was 58.7%
  • the methacrylic acid selectivity was 78.2. %Met.
  • the catalyst used in producing methacrylic acid can be more excellent in terms of performance, life, and moisture absorption during storage, which is particularly important for industrial use. became.
  • the catalyst of the present invention is obtained by subjecting at least one selected from the group consisting of methacrolein, isobutyraldehyde, and isobutyric acid to methacrylic acid by gas phase catalytic oxidation using a molecular oxygen-containing gas in the presence of an oxidation catalyst composition. It is useful in manufacturing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 性能、寿命、保存時の吸湿の点において、より優れた、メタクリル酸製造用のヘテロポリ酸系触媒を提供する。MoCu(式中Yはセシウム等、Zは鉄等を表す。a~gはそれぞれ、Mo10原子に対する各元素の原子比率を表す。)において、Mo10原子に対するアルカリ金属原子の原子比率をA、Mo10原子に対する銅原子の原子比率をB、価数をCとしたとき、α=A+(B×C),0.5≦α≦1.4の条件を満足するように、プロトンを置換したメタクリル酸製造用触媒。

Description

メタクリル酸製造用触媒及びそれを用いたメタクリル酸の製造方法
 本発明は、メタクロレイン、イソブチルアルデヒド及びイソ酪酸よりなる群から選ばれる少なくとも1種を、酸化触媒組成物の存在下に、分子状酸素含有ガスを用いて気相接触酸化してメタクリル酸を製造する際に用いられるヘテロポリ酸系触媒およびそれを用いたメタクリル酸の製造方法に関する。
 従来、メタクロレイン等の気相接触酸化によるメタクリル酸の製造に用いる触媒としては、ヘテロポリ酸やその塩からなるものが有効であることが知られており、これまでに、その組成、構造、物性等や、製造方法に関し、多くの報告がなされている(例えば、触媒の細孔については、特許文献1、触媒製造における成形法については、特許文献2、触媒製造における焼成法については、特許文献3に記載されている)。
 メタクロレイン、イソブチルアルデヒド及びイソ酪酸よりなる群から選ばれる少なくとも1種を、酸化触媒組成物の存在下に、分子状酸素含有ガスを用いて気相接触酸化してメタクリル酸を製造する際に用いられるヘテロポリ酸系触媒は吸湿性が高く、一旦吸湿すると、その程度にもよるが、再び活性を高めるのは困難であることが知られており、触媒を製造して使用するまでの保存時に吸湿することで触媒性能が低下し、メタクリル酸製造の際、満足できる転化率、メタクリル酸選択率が得られないという問題点がある。
 特許文献4にはメタクリル酸製造用触媒を25℃における透湿度1.0g/m・24h以下の容器内で保存するという発明が記載されている。特許文献5には、触媒層内を相対湿度40%以下にするように空気を導入し、触媒の吸湿を防止する発明が記載されている。しかしながら、これら公知技術はメタクリル酸製造用触媒の吸湿を防止する方法として有用であると言えるが、触媒を製造して使用するまでのいずれかの工程が煩雑になるという問題がある。
 一方、メタクロレイン、イソブチルアルデヒド及びイソ酪酸よりなる群から選ばれる少なくとも1種からメタクリル酸を製造する際に用いられるヘテロポリ酸系触媒はアクロレインからアクリル酸を製造する酸化触媒に比べて、寿命において劣っているといわざるを得ない。
 特許文献6には、モリブデン、バナジウム、リンおよびアンチモン等の第4成分Xを含む均一溶液と、アンモニア水と、セシウム等のその他の触媒成分元素を含む均一溶液とを混合し、この混合溶液を乾燥することによってメタクリル酸製造用触媒を製造する方法が開示されている。これにより、第4成分X(特に、アンチモン)の溶解性が向上し、触媒性能の再現性、安定性に優れ、長寿命の触媒が得られるとしている。また、特許文献7には、全ての触媒原料を水に溶解あるいは懸濁させた溶液について、アンモニウム根の含有をモリブデン12原子に対し17~100モルの範囲、かつ、そのpHを6.5~13の範囲とする酸化触媒の製造方法が開示されている。pHの調整は、硝酸またはアンモニア水等の添加により行われている。
 しかしながら、このような従来の触媒原料の混合方法やpH調整方法を用いて製造された触媒は、特に寿命の面で工業触媒としては必ずしも十分でなく、さらなる触媒性能の向上が望まれている。
日本国特開昭60-239439号公報 日本国特開平10-258233号公報 日本国特開昭59-66349号公報 日本国特開2003-10695号公報 日本国特許第3884967号公報 日本国特開平5-31368号公報 日本国特開平9-290162号公報
 本発明は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられるヘテロポリ酸系触媒よりも、性能、寿命、またさらに工業的使用に特に重要となる保存時の吸湿の点において、より優れたヘテロポリ酸系触媒及びそれを用いたメタクリル酸を製造する方法を提供することにある。
 本発明者らは、上記課題を解決するため、メタクロレイン、イソブチルアルデヒド及びイソ酪酸よりなる群から選ばれる少なくとも1種を、酸化触媒組成物の存在下に、分子状酸素含有ガスを用いて気相接触酸化してメタクリル酸を製造する際に用いられるヘテロポリ酸系触媒について鋭意検討した結果、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するために用いるメタクリル酸製造用触媒であって、下記一般式
MoCu
(式中Mo、P、V、CuおよびOはモリブデン、リン、バナジウム、銅および酸素をそれぞれ表す。Yはカリウム、ルビジウム、セシウム及びタリウムから選ばれる少なくとも一種の元素を表し、Zは鉄、コバルト、亜鉛、クロム、マグネシウム、タンタル、マンガン、ガリウム、バリウム、セリウム、ランタン、砒素、アンチモン、ビスマス、ゲルマニウム、アンモニウム、ジルコニウム、錫、鉛、チタン、テルル、銀、セレン、ケイ素、タングステン及びホウ素から選ばれる少なくとも一種の元素を表す。a、b、c、d、e、f及びgは各元素の原子比率を表し、a=10とした時、bは0.1以上で4以下、cが0.01以上で4以下、dが0.01以上で1以下、eが0.2以上で2以下、fが0以上で3以下であり、gは各々の元素の酸化状態によって定まる数値である。)
で表される組成を有し、かつモリブデン、リン、バナジウム、銅を必須の成分として含むヘテロポリ酸およびヘテロポリ酸塩中においてモリブデン10原子に対するアルカリ金属原子の原子比率をA、前記ヘテロポリ酸およびヘテロポリ酸塩中のモリブデン10原子に対する銅原子の原子比率をB、価数をCとしたとき、
α = A +( B × C )
0.5 ≦ α ≦ 1.4
の条件を満足することで、上記課題を解決できることを見出した。なお、銅原子の価数は使用する原料の価数がそのまま触媒中で維持されている。本発明は、この知見に基づいて完成したものである。
 すなわち本発明は、
(1)メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するために用いるメタクリル酸製造用触媒であって、下記一般式
MoCu
(式中Mo、P、V、CuおよびOはモリブデン、リン、バナジウム、銅および酸素をそれぞれ表す。Yはカリウム、ルビジウム、セシウム及びタリウムから選ばれる少なくとも一種の元素を表し、Zは鉄、コバルト、亜鉛、クロム、マグネシウム、タンタル、マンガン、ガリウム、バリウム、セリウム、ランタン、砒素、アンチモン、ビスマス、ゲルマニウム、アンモニウム、ジルコニウム、錫、鉛、チタン、テルル、銀、セレン、ケイ素、タングステン及びホウ素から選ばれる少なくとも一種の元素を表す。a、b、c、d、e、f及びgは各元素の原子比率を表し、a=10とした時、bは0.1以上で4以下、cが0.01以上で4以下、dが0.01以上で1以下、eが0.2以上で2以下、fが0以上で3以下であり、gは各々の元素の酸化状態によって定まる数値である。)
で表される組成を有し、かつモリブデン、リン、バナジウム、銅を必須の成分として含むヘテロポリ酸およびヘテロポリ酸塩中においてモリブデン原子に対するアルカリ金属原子の原子比率をA、前記ヘテロポリ酸およびヘテロポリ酸塩中のモリブデン原子に対する銅原子の原子比率をB、価数をCとしたとき、
α = A +( B × C )
0.5 ≦ α ≦ 1.4
の条件を満足するように、カウンターカチオンであるプロトンをアルカリ金属イオンで置換したメタクリル酸製造用触媒
(2)0.7 ≦ α ≦ 1.1
の条件を満足する(1)のメタクリル酸製造用触媒
(3)Yがセシウムである(1)または(2)のいずれかに記載のメタクリル酸製造用触媒
(4)a=10とした時、dが0.1以上で0.3以下、eが0.3以上で1.1以下の条件を満足する(1)~(3)のいずれかに記載のメタクリル酸製造用触媒
(5)a=10とした時、dが0.15以上で0.25以下、eが0.4以上で1.0以下の条件を満足する(1)~(4)のいずれかに記載のメタクリル酸製造用触媒
(6)該触媒が成形触媒であることを特徴とする(1)~(5)のいずれかに記載のメタクリル酸製造用触媒
(7)(1)~(6)のいずれかに記載の触媒を使用することを特徴とするメタクロレイン、イソブチルアルデヒド及びイソ酪酸を気相接触酸化することによるメタクリル酸の製造方法に関する。
 本発明によれば、メタクロレイン、イソブチルアルデヒド及びイソ酪酸よりなる群から選ばれる少なくとも1種を、気相接触酸化してメタクリル酸を製造する際に用いられるヘテロポリ酸系触媒に関し、性能、寿命、またさらに工業的使用に特に重要となる保存時の吸湿の点において、より優れたヘテロポリ酸系触媒の提供が可能となる。
 以下、本発明を詳細に説明するが、本発明の適用範囲は以下の方法に限定されるものではない。本発明のメタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するために用いるメタクリル酸製造用触媒であって、下記一般式
MoCu
(式中Mo、P、V、CuおよびOはモリブデン、リン、バナジウム、銅および酸素をそれぞれ表す。Yはカリウム、ルビジウム、セシウム及びタリウムから選ばれる少なくとも一種の元素を表し、Zは鉄、コバルト、亜鉛、クロム、マグネシウム、タンタル、マンガン、ガリウム、バリウム、セリウム、ランタン、砒素、アンチモン、ビスマス、ゲルマニウム、アンモニウム、ジルコニウム、錫、鉛、チタン、テルル、銀、セレン、ケイ素、タングステン及びホウ素から選ばれる少なくとも一種の元素を表す。a、b、c、d、e、f及びgは各元素の原子比率を表し、a=10とした時、bは0.1以上で4以下、cが0.01以上で4以下、dが0.01以上で1以下、eが0.2以上で2以下、fが0以上で3以下であり、gは各々の元素の酸化状態によって定まる数値である。)
で表される組成を有し、かつモリブデン、リン、バナジウム、銅を必須の成分として含むヘテロポリ酸およびヘテロポリ酸塩中においてモリブデン10原子に対するアルカリ金属原子の原子比率をA、前記ヘテロポリ酸およびヘテロポリ酸塩中のモリブデン10原子に対する銅原子の原子比率をB、価数をCとしたとき、
α = A +( B × C )
0.5 ≦ α ≦ 1.4
の条件を満足するように、カウンターカチオンであるプロトンをアルカリ金属イオンで置換したことを特徴とする。なお、銅原子の価数は使用する原料の価数がそのまま触媒中で維持されている。
 ここで、ヘテロポリ酸のプロトンは、メタクロレインの分子引き寄せ効果と、ヘテロポリ酸の酸素の供給をうけてのメタクリル酸の酸化に重要な化学構造である。一方、ヘテロポリ酸塩は、プロトンが減少しているためメタクロレインの分子引き寄せ効果は弱く、メタクロレインの反応性は低下する。ところが、ヘテロポリ酸塩は、逐次酸化反応を抑制する効果がある。すなわち、メタクロレインがメタクリル酸に酸化された後さらに酸化反応が継続して燃焼してしまい、一酸化炭素、二酸化炭素、酢酸等が副生する逐次酸化反応を抑制する。その効果により、メタクリル酸の選択性を向上させることができる。
 前記触媒として更に好ましい触媒としては下記一般式
MoCu
(式中Mo、P、V、CuおよびOはモリブデン、リン、バナジウム、銅および酸素をそれぞれ表す。Yはカリウム、ルビジウム、セシウム及びタリウムから選ばれる少なくとも一種の元素を表し、Zは鉄、コバルト、亜鉛、クロム、マグネシウム、タンタル、マンガン、ガリウム、バリウム、セリウム、ランタン、砒素、アンチモン、ビスマス、ゲルマニウム、アンモニウム、ジルコニウム、錫、鉛、チタン、テルル、銀、セレン、ケイ素、タングステン及びホウ素から選ばれる少なくとも一種の元素を表す。a、b、c、d、e、f及びgは各元素の原子比率を表し、a=10とした時、bは0.1以上で4以下、cが0.01以上で4以下、dが0.01以上で1以下、eが0.2以上で2以下、fが0以上で3以下であり、gは各々の元素の酸化状態によって定まる数値である。)
で表されるメタクリル酸製造用触媒が好適に用いられる。
 αは前記ヘテロポリ酸およびヘテロポリ酸塩中においてのモリブデン10原子に対するアルカリ金属原子の原子比率をA、前記ヘテロポリ酸およびヘテロポリ酸塩中のモリブデン10原子に対する銅原子の原子比率をB、価数をCとしたとき、
α = A +( B × C )
により算出される。なお、銅原子の価数は使用する原料の価数がそのまま触媒中で維持されている。前記触媒においてa=10とした時、0.5 ≦ α ≦ 1.4であり、好ましくは0.7 ≦ α ≦ 1.1である。αが0.5より小さいと得られる触媒の活性が低下してしまう場合があり、一方、1.7より大きいと得られる触媒の寿命が短くなる傾向がある。
 前記触媒においてa=10とした時、0.2 ≦ e ≦ 2.0であり、好ましくは0.5 ≦ e ≦ 1.0であり、より好ましくは0.6 ≦ e ≦ 0.9である。eが0.2より小さいと得られる触媒の吸湿性が高く、触媒製造から使用までの間に触媒性能が低下し、メタクリル酸製造の際、満足できる触媒性能が得られないことがあり、一方、2.0より大きいと得られる触媒の寿命が短くなる場合がある。
 本発明の触媒製造方法は、触媒の活性成分(モリブデン、リン、バナジウム、銅;以下必須成分という)を含有する化合物を含む水溶液または該化合物の水分散体(以下、両者をあわせてスラリーという)を調製し、これを乾燥して得られた乾燥粉末を場合により焼成(以降、この工程を予備焼成と称する)し、次いで成形する工程を含んでいる。なお、成形工程の後に更に焼成工程(本焼成)を設けることもできる。また、本発明において、前記スラリーを調製する際の活性成分を含有する化合物は、必ずしも全ての活性成分を含んでいる必要はなく、一部の成分を前記乾燥の後または前記予備焼成の後に添加してもよい。
前記触媒において、必要により用いるその他の活性成分の種類およびその使用割合は、その触媒の使用条件等に合わせて、または最適な性能を示す触媒が得られるように適宜決定されるが、Y成分としてはセシウムを用いるのが好ましい。
 前記触媒の原料としては、通常、前記触媒に含まれる各元素を含む化合物、例えば、各元素のオキソ酸、オキソ酸塩、酸化物、硝酸塩、炭酸塩、水酸化物、ハロゲン化物等が、所望の原子比を満たすような割合で用いられる。例えば、リンを含む化合物としては、リン酸、リン酸塩等が用いられ、モリブデンを含む化合物としては、モリブデン酸、モリブデン酸塩、酸化モリブデン、塩化モリブデン等が用いられ、バナジウムを含む化合物としては、バナジン酸、バナジン酸塩、酸化バナジウム、塩化バナジウム等が用いられ、銅を含む化合物としては、硝酸銅、酢酸銅、硫酸銅、塩化銅、酸化銅等が用いられる。また、Y元素を含む化合物としては酸化物、酢酸塩、硝酸塩、炭酸塩、水酸化物、ハロゲン化物等が用いられ、Z元素を含む化合物としては、オキソ酸、オキソ酸塩、硝酸塩、炭酸塩、水酸化物、ハロゲン化物等が用いられる。これら触媒に含まれる各元素を含む化合物は、単独で使用してもよいし、2種以上を混合して使用してもよい。
 スラリーは、各活性成分含有化合物と水とを均一に混合して得ることができる。スラリーを調製する際の活性成分含有化合物の添加順序は、モリブデン、バナジウム、リン及び必要により他の金属元素を含有する化合物を充分に溶解し、その後セシウム含有化合物、アンモニウム含有化合物、銅含有化合物を添加するのが好ましい。スラリー調製時にアンチモン含有化合物を添加する場合は、必須の活性成分含有化合物のうち、最後に添加するのが好ましいが、より好ましくは、アンチモン含有化合物以外の活性成分を含有するスラリーを得た後、乾燥し、この粉末とアンチモン含有化合物を混合した後焼成するか、この粉末を焼成したのちアンチモン含有化合物を混合する。スラリーを調製する際の温度は、モリブデン、リン、バナジウム、及び必要により他の金属元素を含有する化合物を充分溶解できる温度まで加熱することが好ましい。また、セシウム含有化合物、アンモニウム含有化合物を添加する際の温度は、通常0~35℃、好ましくは10~30℃程度の範囲であるほうが、得られる触媒が高活性になる傾向があるため、10~30℃まで冷却することが好ましい。スラリーにおける水の使用量は、用いる化合物の全量を完全に溶解できるか、または均一に混合できる量であれば特に制限はないが、乾燥方法や乾燥条件等を勘案して適宜決定される。通常スラリー調製用化合物の合計質量100質量部に対して、200~2000質量部程度である。水の量は多くてもよいが、多過ぎると乾燥工程のエネルギーコストが高くなり、また完全に乾燥できない場合も生ずる。
 次いで前記で得られたスラリーを乾燥し、乾燥粉体とする。乾燥方法は、スラリーが完全に乾燥できる方法であれば特に制限はないが、例えばドラム乾燥、凍結乾燥、噴霧乾燥、蒸発乾固等が挙げられる。これらのうち本発明においては、スラリー状態から短時間に粉末又は顆粒に乾燥することができる噴霧乾燥が特に好ましい。噴霧乾燥の乾燥温度はスラリーの濃度、送液速度等によって異なるが概ね乾燥機の出口における温度が70~150℃である。また、この際得られるスラリー乾燥体の平均粒径が10~700μmとなるよう乾燥するのが好ましい。
 得られた乾燥粉体を予備焼成することで成形性、成形触媒の形状および機械的強度が著しく向上する場合があるため、必要に応じて予備焼成を実施する。予備焼成雰囲気は空気気流中でも窒素などの不活性ガス気流中でもよいが、工業的には空気気流中が好ましい。予備焼成の温度は通常200~400℃であるが、好ましくは250~380℃で、より好ましくは270~330℃である。200℃より低い温度で予備焼成しても成形性への影響が少なくなる傾向があり、400℃を超えると触媒が分解・焼結しやすいため、性能に悪影響を及ぼすことがある。予備焼成時間は3~12時間が好ましく、より好ましくは5~10時間である。12時間以上焼成しても差し支えないが、それに見合った効果は得られにくい。
 次いで、得られた予備焼成顆粒を必要に応じ下記のようにして成形するが、シリカゲル、珪藻土、アルミナ粉末等の成形助剤を混合してから成形すると作業性がよくなり好ましい。成形助剤の使用量は、予備焼成顆粒100質量部に対して通常1~30質量部である。また、更に必要により触媒成分に対して不活性な、セラミックス繊維、ウイスカー等の無機繊維を強度向上材として用いる事は、触媒の機械的強度の向上に有用である。しかし、チタン酸カリウムウイスカーや塩基性炭酸マグネシウムウイスカーの様な触媒成分と反応する繊維は好ましくない。これら繊維の使用量は、予備焼成顆粒100質量部に対して通常1~30質量部である。
 前記のようにして得られた予備焼成顆粒または、これと成形助剤、強度向上材を混合した混合物は、反応ガスの圧力損失を少なくするために、柱状物、錠剤、リング状、球状等に成形し使用する。このうち選択性の向上や反応熱の除去が期待できることから不活性担体を予備焼成顆粒または混合物で被覆し、被覆触媒とするのが特に好ましい。被覆工程は以下に述べる転動造粒法が好ましい。この方法は、例えば固定容器内の底部に、平らなあるいは凹凸のある円盤を有する装置中で、円盤を高速で回転することにより、容器内の担体を自転運動と公転運動の繰り返しにより激しく撹拌させ、ここにバインダーと予備焼成顆粒または混合物を添加することにより予備焼成顆粒または混合物を担体に被覆する方法である。バインダーの添加方法は、1)予備焼成顆粒または混合物に予め混合しておく、2)予備焼成顆粒または混合物を固定容器内に添加するのと同時に添加、3)予備焼成顆粒または混合物を固定容器内に添加した後に添加、4)予備焼成顆粒または混合物を固定容器内に添加する前に添加、5)予備焼成顆粒または混合物とバインダーをそれぞれ分割し、2)~4)を適宜組み合わせて全量添加する等の方法が任意に採用しうる。このうち5)においては、例えば予備焼成顆粒または混合物の固定容器壁への付着、予備焼成顆粒または混合物同士の凝集がなく担体上に所定量が担持されるようオートフィーダー等を用いて添加速度を調節して行うのが好ましい。
 バインダーは水及びその1気圧下での沸点が150℃以下の有機化合物からなる群から選ばれる少なくとも1種であることが好ましく、被覆後の乾燥等を考慮すると沸点150℃以下の有機化合物が好ましい。水以外のバインダーの具体例としてはメタノール、エタノール、プロパノール類、ブタノール類等のアルコール、好ましくは炭素数1~4のアルコール、エチルエーテル、ブチルエーテルまたはジオキサン等のエーテル、酢酸エチル又は酢酸ブチル等のエステル、アセトン又はメチルエチルケトン等のケトン等並びにそれらの水溶液等が挙げられ、特にエタノールが好ましい。バインダーとしてエタノールを使用する場合、エタノール/水=10/0~0/10(質量比)が好ましく、10/0~1/9(質量比)がより好ましい。これらバインダーの使用量は、乾燥粉体100質量部に対して通常10~60質量部、好ましくは15~40質量部である。
 本発明において用いうる担体の具体例としては、炭化珪素、アルミナ、シリカアルミナ、ムライト、アランダム等の直径1~15mm、好ましくは2.5~10mmの球形担体等が挙げられる。これら担体は通常は10~70%の空孔率を有するものが用いられる。担体と被覆される予備焼成顆粒または混合物の割合は通常予備焼成顆粒または混合物/(予備焼成顆粒または混合物+担体)=10~75質量%、好ましくは15~60質量%となる量使用する。このようにして予備焼成顆粒または混合物を担体に被覆するが、この際得られる被覆品は通常直径が3~15mm程度である。
 前記のようにして得られた被覆触媒はそのまま触媒として気相接触酸化反応に供することができるが、焼成すると触媒活性が向上する場合があり好ましい。焼成方法や焼成条件は特に限定されず、公知の処理方法および条件を適用することができる。焼成の最適条件は、用いる触媒原料、触媒組成、調製法等によって異なるが、通常、100~450℃、好ましくは270~420℃、焼成時間は1~20時間である。なお、焼成は、通常空気雰囲気下に行われるが、窒素、炭酸ガス、ヘリウム、アルゴン等の不活性ガス雰囲気下で行ってもよいし、不活性ガス雰囲気下での焼成後に必要に応じて更に空気雰囲気下で焼成を行ってもよい。上記のようにして得られた触媒(以下本発明の触媒という)は、メタクロレイン、イソブチルアルデヒドまたはイソ酪酸を気相接触酸化することによるメタクリル酸の製造に用いられる。
 以上のような本発明のメタクリル酸製造用触媒は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を高収率かつ長寿命で製造できる触媒となる。この理由としては、上述のようにαはメタクリル酸の選択性、Y成分の原子比率は触媒の吸湿性に影響を及ぼしており、αが上記の範囲内にある場合、メタクリル酸を製造する反応に有効な化学構造が得られるためと推測している。αの値が小さいほどメタクリル酸の選択性は向上するが、Y成分の原子比率が0.2より小さくなるとヘテロポリ酸のカウンターカチオンの大部分がプロトンとなり、吸湿性が高くなってしまう。
 以下、本発明で得られる触媒を使用するのに最も好ましい原料である、メタクロレインを使用した気相接触反応につき説明する。気相接触酸化反応には分子状酸素又は分子状酸素含有ガスが使用される。メタクロレインに対する分子状酸素の使用割合は、モル比で0.5~20の範囲が好ましく、特に1~10の範囲が好ましい。反応を円滑に進行させることを目的として、原料ガス中に水をメタクロレインに対しモル比で1~20の範囲で添加することが好ましい。原料ガスは酸素、必要により水(通常水蒸気として含む)の他に窒素、炭酸ガス、飽和炭化水素等の反応に不活性なガス等を含んでいてもよい。また、メタクロレインはイソブチレン、第三級ブタノール、及びメチルターシャリーブチルエーテルを酸化して得られたガスをそのまま供給してもよい。気相接触酸化反応における反応温度は通常200~400℃、好ましくは250~360℃、原料ガスの供給量は空間速度(SV)にして、通常100~6000hr-1、好ましくは300~3000hr-1である。また、接触酸化反応は加圧下または減圧下でも可能であるが、一般的には大気圧付近の圧力が適している。
 以下に本発明を実施例により更に具体的に説明するが本発明はその趣旨を逸脱しない限り実施例に限定されるものではない。
 なお下記において転化率および収率は次の通りに定義される。
メタクロレイン転化率=(供給したメタクロレインモル数-未反応メタクロレインモル数)/供給したメタクロレインモル数×100
メタクリル酸収率=(生成したメタクリル酸モル数-供給したメタクリル酸モル数)/供給したメタクロレインモル数×100
メタクリル酸選択率=(生成したメタクリル酸モル数―供給したメタクリル酸モル数)/(供給したメタクロレインモル数-未反応メタクロレインモル数)×100
実施例1
1)触媒の調製
 純水5680mlに三酸化モリブデン800gと五酸化バナジウム40.43g、及び85質量%正燐酸73.67gを添加し、92℃で3時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液を15~20℃に冷却して、撹拌しながら9.1質量%の水酸化セシウム水溶液307.9gと、14.3質量%の酢酸アンモニウム水溶液689.0gを徐々に添加し、15~20℃で1時間熟成させて黄色のスラリーを得た。続いて、さらにそのスラリーに6.3質量%の酢酸第二銅水溶液709.9gを徐々に添加し、さらに15~20℃で30分熟成した。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo100.81.15Cu0.4Cs0.3(NH2.3である。この顆粒320gを空気流通下310℃で5時間かけて焼成し予備焼成顆粒を得た。予備焼成により約4質量%の質量減があった。これに三酸化アンチモン22.7gと強度向上材(セラミック繊維)45gとを均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)300gに20質量%エタノール水溶液をバインダーとして、転動造粒法により被覆成形した。次いで得られた成形物を空気流通下において380℃で5時間かけて本焼成を行い目的とする被覆触媒を得た。得られた触媒の組成はMo100.81.15Cu0.4Cs0.3(NH2.3Sb1.0である。また、このときα=1.1である。
2)メタクロレインの部分酸化反応
 得られた被覆触媒10.3mlを内径18.4mmのステンレス反応管に充填し、原料ガス組成(モル比)メタクロレイン:酸素:水蒸気:窒素=1:2:4:18.6、空間速度(SV)1200hr-1、反応浴温度310℃で、メタクロレインの酸化反応を実施した。反応は、最初反応浴温度310℃で3時間反応を続け、次いで反応浴温度を350℃に上げ15時間反応を続けた(今後この処理を高温反応処理という)。次いで反応浴温度を310℃に下げて反応成績の測定を行った。結果を表1に示す。
吸湿量測定
 得られた被覆触媒100gをシャーレに仕込み、25℃にて飽和蒸気圧としたデシケーター内にて24時間静置した。その後、被覆触媒の重量を測定したところ102.39gであった。すなわち吸湿した水の割合は触媒活性成分に対して5.20%、単位時間当たりに乾燥重量100gの触媒活性成分が吸湿した水は0.22g/hとなり、以降この値を吸湿量と表現し、表2に表記する。
 前記吸湿量測定後の触媒を120℃の乾燥機内にて24時間乾燥し、得られた被覆触媒10.3mlを内径18.4mmのステンレス反応管に充填し、原料ガス組成(モル比)メタクロレイン:酸素:水蒸気:窒素=1:2:4:18.6、空間速度(SV)1200hr-1、反応浴温度310℃で、メタクロレインの酸化反応を実施した。反応は、最初反応浴温度310℃で3時間反応を続け、次いで反応浴温度を350℃に上げ15時間反応を続けた(今後この処理を高温反応処理という)。次いで反応浴温度を310℃に下げて反応成績の測定を行った。結果を表1に示す。
実施例2
 実施例1において予備焼成温度を290℃とした以外は実施例1と同様の方法で被覆触媒を調製した。得られた触媒の組成はMo100.81.15Cu0.4Cs0.3(NH2.3Sb1.0である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
実施例3
 実施例1において予備焼成顆粒320g、三酸化アンチモン11.35g、強度向上剤(セラミック繊維)45gを均一に混合した以外は実施例1と同様の方法で被覆触媒を調製した。得られた触媒の組成はMo100.81.15Cu0.4Cs0.3(NH2.3Sb0.5である。また、このときα=1.1である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
実施例4
 実施例1において予備焼成顆粒320g、三酸化アンチモン40.9g、強度向上剤(セラミック繊維)45gを均一に混合した以外は実施例1と同様の方法で被覆触媒を調製した。得られた触媒の組成はMo100.81.15Cu0.4Cs0.3(NH2.3Sb1.8である。また、このときα=1.1である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
実施例5
 純水5680mlに三酸化モリブデン800gと五酸化バナジウム30.33g、及び85質量%正燐酸73.67gを添加し、92℃で3時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液を15~20℃に冷却して、撹拌しながら9.1質量%の水酸化セシウム水溶液661.3gと、14.3質量%の酢酸アンモニウム水溶液689.0gを徐々に添加し、15~20℃で1時間熟成させて黄色のスラリーを得た。続いて、さらにそのスラリーに9.5質量%の酢酸第二銅水溶液232.9gを徐々に添加し、さらに15~20℃で30分熟成した。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo100.61.15Cu0.2Cs0.7(NH2.3である。この顆粒320gを空気流通下310℃で5時間かけて焼成し予備焼成顆粒を得た。予備焼成により約4質量%の質量減があった。これに強度向上材(セラミック繊維)45gとを均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)300gに20質量%エタノール水溶液をバインダーとして、転動造粒法により被覆成形した。次いで得られた成形物を空気流通下において380℃で5時間かけて本焼成を行い目的とする被覆触媒を得た。得られた触媒の組成はMo100.61.15Cu0.2Cs0.7(NH2.3である。また、このときα=1.1である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
実施例6
 実施例5において純水をバインダーとして使用した以外は実施例5と同様の方法で被覆触媒を調製した。得られた触媒の組成はMo100.61.15Cu0.2Cs0.7(NH2.3である。また、このときα=1.1である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
実施例7
 実施例5において90質量%エタノール水溶液をバインダーとして使用した以外は実施例5と同様の方法で被覆触媒を調製した。得られた触媒の組成はMo100.61.15Cu0.2Cs0.7(NH2.3である。また、このときα=1.1である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
実施例8
 純水5680mlに三酸化モリブデン800gと五酸化バナジウム30.33g、及び85質量%正燐酸76.87gを添加し、92℃で3時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液を15~20℃に冷却して、撹拌しながら9.1質量%の水酸化セシウム水溶液321.2gと、50質量%の酢酸アンモニウム水溶液196.86gを徐々に添加し、15~20℃で1時間熟成させて黄色のスラリーを得た。続いて、さらにそのスラリーに酢酸第二銅22.18gを徐々に添加し、さらに15~20℃で30分熟成した。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo100.61.2Cu0.2Cs0.3(NH2.3である。また、このときα=0.7である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応を行なった。結果を表1に示す。
比較例1
 純水7100mlに三酸化モリブデン1000gと五酸化バナジウム75.81g、85質量%正燐酸88.08g、および酸化銅11.05gを添加し、92℃で3時間加熱攪拌してスラリーを得た。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo101.21.1Cu0.2である。この顆粒320gに強度向上材(セラミック繊維)45gとを均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)300gに90質量%エタノール水溶液をバインダーとして被覆成形した。次いで得られた成形物を空気流通下において310℃で5時間の本焼成を行い目的とする被覆触媒を得た。得られた触媒の組成はMo101.21.1Cu0.2である。また、このときα=0.4である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
比較例2
 純水10000mlに三酸化モリブデン1000gと五酸化バナジウム37.91g、85重量%燐酸水溶液96.09g、60重量%砒酸水溶液65.73g、酸化第二銅22.1gを添加し、92℃で3時間攪拌してスラリーを得た。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo100.61.2As0.4Cu0.4である。この顆粒320gに強度向上材(セラミック繊維)45gとを均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)300gに90質量%エタノール水溶液をバインダーとして被覆成形した。次いで得られた成形物を空気流通下において310℃で5時間の本焼成を行い目的とする被覆触媒を得た。得られた触媒の組成はMo100.61.2As0.4Cu0.4である。また、このときα=0.8である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
比較例3
 純水5680mlに三酸化モリブデン800gと五酸化バナジウム35.38g、及び85質量%正燐酸73.67gを添加し、92℃で3時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液を15~20℃に冷却して、撹拌しながら9.1質量%の水酸化セシウム水溶液94.49gと、14.3質量%の酢酸アンモニウム水溶液988.6gを徐々に添加し、15~20℃で1時間熟成させて黄色のスラリーを得た。続いて、さらにそのスラリーに6.3質量%の酢酸第二銅水溶液465.9gを徐々に添加し、さらに15~20℃で30分熟成した。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo100.71.15Cu0.4Cs0.1(NH2.3である。この顆粒320gを空気流通下310℃で5時間かけて焼成し予備焼成顆粒を得た。予備焼成により約4質量%の質量減があった。これに強度向上材(セラミック繊維)45gとを均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)300gに20質量%エタノール水溶液をバインダーとして、転動造粒法により被覆成形した。次いで得られた成形物を空気流通下において380℃で5時間かけて本焼成を行い目的とする被覆触媒を得た。得られた触媒の組成はMo100.71.15Cu0.4Cs0.1(NH3.3である。また、このときα=0.9である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
比較例4
 純水5680mlに三酸化モリブデン800gと五酸化バナジウム35.38g、及び85質量%正燐酸73.67gを添加し、92℃で3時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液を15~20℃に冷却して、撹拌しながら9.1質量%の水酸化セシウム水溶液850.32gと、14.3質量%の酢酸アンモニウム水溶液689.0gを徐々に添加し、15~20℃で1時間熟成させて黄色のスラリーを得た。続いて、さらにそのスラリーに9.5質量%の酢酸第二銅水溶液233.6gを徐々に添加し、さらに15~20℃で30分熟成した。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo100.71.15Cu0.2Cs1.1(NH2.3である。この顆粒320gを空気流通下310℃で5時間かけて焼成し予備焼成顆粒を得た。予備焼成により約4質量%の質量減があった。これに強度向上材(セラミック繊維)45gとを均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)300gに20質量%エタノール水溶液をバインダーとして、転動造粒法により被覆成形した。次いで得られた成形物を空気流通下において380℃で5時間かけて本焼成を行い目的とする被覆触媒を得た。得られた触媒の組成はMo100.71.15Cu0.2Cs1.1(NH2.3である。また、このときα=1.5である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
比較例5
 純水5680mlに三酸化モリブデン800gと五酸化バナジウム30.33g、及び85質量%正燐酸76.87gを添加し、92℃で3時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液を15~20℃に冷却して、撹拌しながら9.1質量%の水酸化セシウム水溶液94.5gと、50質量%の酢酸アンモニウム水溶液196.86gを徐々に添加し、15~20℃で1時間熟成させて黄色のスラリーを得た。続いて、さらにそのスラリーに酢酸第二銅11.09gを徐々に添加し、さらに15~20℃で30分熟成した。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo100.61.2Cu0.1Cs0.1(NH2.3である。また、このときα=0.3である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応を行なった。結果を表1および表2に示す。
比較例6
 純水5680mlに三酸化モリブデン800gと五酸化バナジウム40.43g、及び85質量%正燐酸73.67gを添加し、92℃で3時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液を15~20℃に冷却して、撹拌しながら9.1質量%の水酸化セシウム水溶液944.8gと、50質量%の酢酸アンモニウム水溶液205.42gを徐々に添加し、15~20℃で1時間熟成させて黄色のスラリーを得た。続いて、さらにそのスラリーに酢酸第二銅44.37gを徐々に添加し、さらに15~20℃で30分熟成した。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo100.81.15Cu0.4Cs1.0(NH2.4である。この顆粒320gを空気流通下310℃で5時間かけて焼成し予備焼成顆粒を得た。予備焼成により約4質量%の質量減があった。これに三酸化アンチモン21.0gと強度向上材(セラミック繊維)45gとを均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)300gに20質量%エタノール水溶液をバインダーとして、転動造粒法により被覆成形した。次いで得られた成形物を空気流通下において380℃で5時間かけて本焼成を行い目的とする被覆触媒を得た。得られた触媒の組成はMo100.81.15Cu0.4Cs1.0(NH2.4Sb1.0である。また、このときα=1.8である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応を行なった。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
試験例1
 実施例1で得られた被覆触媒6.9mlを内径18.4mmのステンレス反応管に充填し、原料ガス組成(モル比)メタクロレイン:酸素:水蒸気:窒素=1:2:4:18.6、空間速度(SV)1800hr-1となるように供給した。反応開始後、メタクロレイン転化率が75%±2%になるように反応浴温度を調節しながらメタクロレインの部分酸化反応を継続した。
反応開始後800時間後のメタクロレイン酸化反応の結果は反応浴温度344℃ホットスポット温度355℃、メタクロレイン転化率75.5%、メタクリル酸収率62.3%、メタクリル酸選択率82.7%であった。
試験例2
 実施例5で得られた被覆触媒6.9mlを内径18.4mmのステンレス反応管に充填し、原料ガス組成(モル比)メタクロレイン:酸素:水蒸気:窒素=1:2:4:18.6、空間速度(SV)1800hr-1となるように供給した。反応開始後、メタクロレイン転化率が75%±2%になるように反応浴温度を調節しながらメタクロレインの部分酸化反応を継続した。
 反応開始後800時間後のメタクロレイン酸化反応の結果は反応浴温度325℃ホットスポット温度336℃、メタクロレイン転化率75.7%、メタクリル酸収率63.4%、メタクリル酸選択率83.8%であった。
試験例3
 比較例4で得られた被覆触媒6.9mlを内径18.4mmのステンレス反応管に充填し、原料ガス組成(モル比)メタクロレイン:酸素:水蒸気:窒素=1:2:4:18.6、空間速度(SV)1800hr-1となるように供給した。反応開始後、メタクロレイン転化率が75%±2%になるように反応浴温度を調節しながらメタクロレインの部分酸化反応を継続した。
 反応開始後800時間後のメタクロレイン酸化反応の結果は反応浴温度346℃ホットスポット温度359℃、メタクロレイン転化率75.1%、メタクリル酸収率58.7%、メタクリル酸選択率78.2%であった。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2011年11月17日付で出願された日本特許出願(特願2011-251386)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
 本発明によれば、メタクリル酸を製造する際に用いられる触媒において、性能、寿命、またさらに工業的使用に特に重要となる保存時の吸湿の点において、より優れたものとすることが可能となった。
 本発明の触媒は、メタクロレイン、イソブチルアルデヒド及びイソ酪酸よりなる群から選ばれる少なくとも1種を、酸化触媒組成物の存在下に、分子状酸素含有ガスを用いて気相接触酸化してメタクリル酸を製造する際に有用である。

Claims (7)

  1.  メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するために用いるメタクリル酸製造用触媒であって、下記一般式
    MoCu
    (式中Mo、P、V、CuおよびOはモリブデン、リン、バナジウム、銅および酸素をそれぞれ表す。Yはカリウム、ルビジウム、セシウム及びタリウムから選ばれる少なくとも一種の元素を表し、Zは鉄、コバルト、亜鉛、クロム、マグネシウム、タンタル、マンガン、ガリウム、バリウム、セリウム、ランタン、砒素、アンチモン、ビスマス、ゲルマニウム、アンモニウム、ジルコニウム、錫、鉛、チタン、テルル、銀、セレン、ケイ素、タングステン及びホウ素から選ばれる少なくとも一種の元素を表す。a、b、c、d、e、f及びgは各元素の原子比率を表し、a=10とした時、bは0.1以上で4以下、cが0.01以上で4以下、dが0.01以上で1以下、eが0.2以上で2以下、fが0以上で3以下であり、gは各々の元素の酸化状態によって定まる数値である。)
    で表される組成を有し、かつモリブデン、リン、バナジウム、銅を必須の成分として含むヘテロポリ酸およびヘテロポリ酸塩中においてモリブデン10原子に対するアルカリ金属原子の原子比率をA、前記ヘテロポリ酸およびヘテロポリ酸塩中のモリブデン10原子に対する銅原子の原子比率をB、価数をCとしたとき、
    α = A +( B × C )
    0.5 ≦ α ≦ 1.4
    の条件を満足するように、カウンターカチオンであるプロトンをアルカリ金属イオンで置換したメタクリル酸製造用触媒。
  2.  0.7 ≦ α ≦ 1.1
    の条件を満足する請求項1記載のメタクリル酸製造用触媒。
  3.  Yがセシウムである請求項1または2に記載のメタクリル酸製造用触媒。
  4.  a=10とした時、dが0.1以上で0.3以下、eが0.3以上で1.1以下の条件を満足する請求項1~3のいずれか1項に記載のメタクリル酸製造用触媒。
  5.  a=10とした時、dが0.15以上で0.25以下、eが0.4以上で1.0以下の条件を満足する請求項1~4のいずれか1項に記載のメタクリル酸製造用触媒。
  6.  該触媒が成形触媒であることを特徴とする請求項1~5のいずれか1項に記載のメタクリル酸製造用触媒。
  7.  請求項1~請求項6のいずれか1項に記載の触媒を使用することを特徴とするメタクロレイン、イソブチルアルデヒド及びイソ酪酸を気相接触酸化することによるメタクリル酸の製造方法。
PCT/JP2012/079862 2011-11-17 2012-11-16 メタクリル酸製造用触媒及びそれを用いたメタクリル酸の製造方法 WO2013073691A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12849609.8A EP2781260A4 (en) 2011-11-17 2012-11-16 CATALYST FOR PRODUCTION OF METHACRYLIC ACID AND PROCESS FOR PRODUCTION OF METHACRYLIC ACID USING THE SAME
KR1020147013201A KR20140099453A (ko) 2011-11-17 2012-11-16 메타크릴산 제조용 촉매 및 그것을 이용한 메타크릴산의 제조 방법
US14/358,305 US20140316160A1 (en) 2011-11-17 2012-11-16 Catalyst For Methacrylic Acid Production And Process For Producing Methacrylic Acid
KR1020187038040A KR102005358B1 (ko) 2011-11-17 2012-11-16 메타크릴산 제조용 촉매 및 그것을 이용한 메타크릴산의 제조 방법
CN201280056864.4A CN103945938B (zh) 2011-11-17 2012-11-16 甲基丙烯酸制造用催化剂及使用该催化剂的甲基丙烯酸的制造方法
JP2013518904A JP5973999B2 (ja) 2011-11-17 2012-11-16 メタクリル酸製造用触媒及びそれを用いたメタクリル酸の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011251386 2011-11-17
JP2011-251386 2011-11-17

Publications (1)

Publication Number Publication Date
WO2013073691A1 true WO2013073691A1 (ja) 2013-05-23

Family

ID=48429743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079862 WO2013073691A1 (ja) 2011-11-17 2012-11-16 メタクリル酸製造用触媒及びそれを用いたメタクリル酸の製造方法

Country Status (6)

Country Link
US (1) US20140316160A1 (ja)
EP (1) EP2781260A4 (ja)
JP (1) JP5973999B2 (ja)
KR (2) KR20140099453A (ja)
CN (1) CN103945938B (ja)
WO (1) WO2013073691A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018111720A (ja) * 2013-10-10 2018-07-19 日本化薬株式会社 不飽和カルボン酸の製造方法、及び担持触媒

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104801342B (zh) * 2015-03-17 2017-10-24 烟台大学 一种杂多酸盐催化剂及其制备方法
WO2017094468A1 (ja) * 2015-12-01 2017-06-08 三菱レイヨン株式会社 (メタ)アクリル酸製造用触媒の製造方法および(メタ)アクリル酸の製造方法
CN105749944A (zh) * 2016-03-23 2016-07-13 重庆紫光海力催化剂有限公司 一种由2-甲基丙烯醛气相催化氧化法制备α-甲基丙烯酸的催化剂
JP6452169B2 (ja) * 2016-09-14 2019-01-16 日本化薬株式会社 アクリル酸製造用触媒ならびにアクリル酸の製造方法
CN107297216B (zh) * 2017-06-01 2020-04-24 中国科学院过程工程研究所 一种水热法制备的磷钼钒酸类纳米催化剂
CN111050906A (zh) * 2017-10-20 2020-04-21 三菱化学株式会社 α,β-不饱和羧酸制造用催化剂的制造方法、α,β-不饱和羧酸的制造方法和α,β-不饱和羧酸酯的制造方法
CN109985649B (zh) 2018-01-02 2021-05-04 上海华谊新材料有限公司 (甲基)丙烯醛氧化催化剂及其制备方法
SG11202101722RA (en) * 2018-09-18 2021-03-30 Mitsubishi Chem Corp Catalyst for producing methacrylic acid, method for producing same, and method for producing methacrylic acid and methacrylic acid ester
CN109731592B (zh) * 2019-01-16 2020-12-01 中国科学院过程工程研究所 甲基丙烯醛选择性氧化制甲基丙烯酸的催化剂及其制备方法和用途
KR20220050518A (ko) * 2020-10-16 2022-04-25 주식회사 엘지화학 몰리브덴-비스무트계 복합 금속 산화물의 제조방법
CN114471530B (zh) * 2020-10-27 2023-09-29 中国石油化工股份有限公司 一种甲基丙烯酸制造用复合催化剂及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966349A (ja) 1982-10-05 1984-04-14 Ube Ind Ltd メタクリル酸製造用触媒の製法
JPS60239439A (ja) 1984-05-14 1985-11-28 Nippon Shokubai Kagaku Kogyo Co Ltd メタクリル酸の製造方法
JPH0531368A (ja) 1990-11-14 1993-02-09 Mitsui Toatsu Chem Inc メタクリル酸製造用触媒及びメタクリル酸の製造方法
JPH09290162A (ja) 1996-04-26 1997-11-11 Mitsubishi Chem Corp 酸化触媒の製造方法及びメタクリル酸の製造方法
JPH10258233A (ja) 1997-03-19 1998-09-29 Mitsubishi Rayon Co Ltd 不飽和アルデヒドおよび不飽和カルボン酸合成用触媒の製造法
JP2003010695A (ja) 2001-06-28 2003-01-14 Sumitomo Chem Co Ltd メタクリル酸製造用触媒の保存方法
JP3884967B2 (ja) 2002-02-07 2007-02-21 住友化学株式会社 メタクリル酸の製造方法
WO2011065529A1 (ja) * 2009-11-30 2011-06-03 日本化薬株式会社 メタクリル酸製造触媒の製造方法およびメタクリル酸の製造方法
JP2011173114A (ja) * 2010-01-28 2011-09-08 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒およびその製造方法、ならびにメタクリル酸の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1022608C (zh) * 1990-01-10 1993-11-03 中国石油化工总公司 制取甲基丙烯酸的催化剂
JPH10244160A (ja) * 1997-03-04 1998-09-14 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒の調製法
JP3702710B2 (ja) * 1999-06-15 2005-10-05 住友化学株式会社 メタクリル酸製造用触媒およびメタクリル酸の製造方法
JP4426069B2 (ja) * 2000-06-12 2010-03-03 株式会社日本触媒 アクリル酸の製造方法
JP4236415B2 (ja) * 2002-03-04 2009-03-11 三菱レイヨン株式会社 メタクリル酸合成用触媒およびメタクリル酸の製造方法
TWI341219B (en) * 2003-02-20 2011-05-01 Nippon Kayaku Kk Catalyst for producing methacrylic acid and preparation method thereof
JP4745653B2 (ja) * 2003-12-05 2011-08-10 三菱レイヨン株式会社 メタクリル酸の製造方法
KR20070015388A (ko) * 2004-02-24 2007-02-02 미츠비시 레이온 가부시키가이샤 몰리브덴의 회수방법 및 촉매의 제조방법
JP4756890B2 (ja) * 2005-03-29 2011-08-24 日本化薬株式会社 メタクリル酸製造用触媒及びその製造方法
US7649112B2 (en) * 2005-07-25 2010-01-19 Saudi Basic Industries Corporation Integrated plant for producing 2-ethyl-hexanol and methacrylic acid and a method based thereon

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966349A (ja) 1982-10-05 1984-04-14 Ube Ind Ltd メタクリル酸製造用触媒の製法
JPS60239439A (ja) 1984-05-14 1985-11-28 Nippon Shokubai Kagaku Kogyo Co Ltd メタクリル酸の製造方法
JPH0531368A (ja) 1990-11-14 1993-02-09 Mitsui Toatsu Chem Inc メタクリル酸製造用触媒及びメタクリル酸の製造方法
JPH09290162A (ja) 1996-04-26 1997-11-11 Mitsubishi Chem Corp 酸化触媒の製造方法及びメタクリル酸の製造方法
JPH10258233A (ja) 1997-03-19 1998-09-29 Mitsubishi Rayon Co Ltd 不飽和アルデヒドおよび不飽和カルボン酸合成用触媒の製造法
JP2003010695A (ja) 2001-06-28 2003-01-14 Sumitomo Chem Co Ltd メタクリル酸製造用触媒の保存方法
JP3884967B2 (ja) 2002-02-07 2007-02-21 住友化学株式会社 メタクリル酸の製造方法
WO2011065529A1 (ja) * 2009-11-30 2011-06-03 日本化薬株式会社 メタクリル酸製造触媒の製造方法およびメタクリル酸の製造方法
JP2011173114A (ja) * 2010-01-28 2011-09-08 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒およびその製造方法、ならびにメタクリル酸の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2781260A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018111720A (ja) * 2013-10-10 2018-07-19 日本化薬株式会社 不飽和カルボン酸の製造方法、及び担持触媒

Also Published As

Publication number Publication date
JP5973999B2 (ja) 2016-08-23
EP2781260A4 (en) 2015-07-08
EP2781260A1 (en) 2014-09-24
JPWO2013073691A1 (ja) 2015-04-02
US20140316160A1 (en) 2014-10-23
KR102005358B1 (ko) 2019-07-30
CN103945938A (zh) 2014-07-23
CN103945938B (zh) 2016-08-24
KR20140099453A (ko) 2014-08-12
KR20190003830A (ko) 2019-01-09

Similar Documents

Publication Publication Date Title
JP5973999B2 (ja) メタクリル酸製造用触媒及びそれを用いたメタクリル酸の製造方法
JP6363464B2 (ja) 不飽和カルボン酸の製造方法、及び担持触媒
JP4756890B2 (ja) メタクリル酸製造用触媒及びその製造方法
US10300463B2 (en) Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid
JP6077533B2 (ja) メタクリル酸製造用触媒、その製造方法及び該触媒を用いるメタクリル酸の製造方法
JP2006314923A (ja) メタクリル酸製造用触媒の製造方法
JP6387341B2 (ja) メタクリル酸製造用触媒及びその製造方法並びにメタクリル酸の製造方法
JP4478107B2 (ja) メタクリル酸製造用触媒及びその製法
JP2018043197A (ja) アクリル酸製造用触媒
WO2014181839A1 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、その製造方法及び不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP2011092882A (ja) メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法
JP2020015043A (ja) メタクリル酸製造用触媒の製造方法
KR101431578B1 (ko) 메타크릴산 제조 촉매의 제조 방법 및 메타크릴산의 제조 방법
JP2011152543A (ja) メタクリル酸製造用触媒の製造方法
JP2010207696A (ja) メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法
JP6628386B1 (ja) 不飽和カルボン酸製造用触媒
JP5269046B2 (ja) メタクリル酸製造用触媒の製造方法
JP2013091016A (ja) メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法
JP2013086008A (ja) メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法
JP2013180251A (ja) メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013518904

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849609

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14358305

Country of ref document: US

Ref document number: 2012849609

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147013201

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE