WO2013073691A1 - メタクリル酸製造用触媒及びそれを用いたメタクリル酸の製造方法 - Google Patents
メタクリル酸製造用触媒及びそれを用いたメタクリル酸の製造方法 Download PDFInfo
- Publication number
- WO2013073691A1 WO2013073691A1 PCT/JP2012/079862 JP2012079862W WO2013073691A1 WO 2013073691 A1 WO2013073691 A1 WO 2013073691A1 JP 2012079862 W JP2012079862 W JP 2012079862W WO 2013073691 A1 WO2013073691 A1 WO 2013073691A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- methacrylic acid
- less
- methacrolein
- atoms
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/195—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
- B01J27/198—Vanadium
- B01J27/199—Vanadium with chromium, molybdenum, tungsten or polonium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/887—Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/8877—Vanadium, tantalum, niobium or polonium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/23—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
- C07C51/235—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/25—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
- C07C51/252—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C57/00—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
- C07C57/02—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
- C07C57/03—Monocarboxylic acids
- C07C57/04—Acrylic acid; Methacrylic acid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
Definitions
- the present invention produces methacrylic acid by vapor-phase catalytic oxidation of at least one selected from the group consisting of methacrolein, isobutyraldehyde and isobutyric acid using a molecular oxygen-containing gas in the presence of an oxidation catalyst composition.
- the present invention relates to a heteropolyacid catalyst used in the process and a method for producing methacrylic acid using the same.
- Patent Document 4 describes an invention in which a catalyst for producing methacrylic acid is stored in a container having a moisture permeability of 1.0 g / m 2 ⁇ 24 h or less at 25 ° C.
- Patent Document 5 describes an invention in which air is introduced so that the relative humidity of the catalyst layer is 40% or less to prevent moisture absorption of the catalyst.
- these known techniques can be said to be useful as a method for preventing moisture absorption of a catalyst for methacrylic acid production, there is a problem that any process until the catalyst is produced and used becomes complicated.
- the heteropolyacid catalyst used in producing methacrylic acid from at least one selected from the group consisting of methacrolein, isobutyraldehyde and isobutyric acid is inferior in life compared to an oxidation catalyst producing acrylic acid from acrolein. I have to say that.
- Patent Document 6 a homogeneous solution containing the fourth component X such as molybdenum, vanadium, phosphorus and antimony is mixed with aqueous ammonia and a homogeneous solution containing other catalyst component elements such as cesium, and this mixed solution is mixed.
- a method for producing a catalyst for producing methacrylic acid by drying is disclosed. Thereby, the solubility of the fourth component X (especially antimony) is improved, and the catalyst performance is excellent in reproducibility and stability, and a long-life catalyst is obtained.
- Patent Document 7 discloses that a solution in which all catalyst raw materials are dissolved or suspended in water has an ammonium radical content in the range of 17 to 100 mol with respect to 12 atoms of molybdenum and a pH of 6.5 to A method for producing an oxidation catalyst in the range of 13 is disclosed. The pH is adjusted by adding nitric acid or aqueous ammonia.
- a catalyst produced by using such a conventional catalyst raw material mixing method or pH adjusting method is not necessarily sufficient as an industrial catalyst particularly in terms of life, and further improvement in catalyst performance is desired.
- the present invention is more suitable for storage, which is particularly important for performance, life, and industrial use than the heteropolyacid catalyst used in the production of methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen.
- An object of the present invention is to provide a heteropolyacid catalyst that is superior in terms of moisture absorption and a method for producing methacrylic acid using the same.
- the present inventors gasified at least one selected from the group consisting of methacrolein, isobutyraldehyde and isobutyric acid using a molecular oxygen-containing gas in the presence of an oxidation catalyst composition.
- a catalyst for producing methacrylic acid used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen a is represented by the following general formula Mo a P b V c Cu d Y e Z f O g (Wherein Mo, P, V, Cu and O represent molybdenum, phosphorus, vanadium, copper and oxygen, respectively.
- Y represents at least one element selected from potassium, rubidium, cesium and thallium, and Z represents iron, cobalt.
- the heteropolyacid and heteropolyacid salt having molybdenum, phosphorus, vanadium, and copper as essential components the atomic ratio of alkali metal atoms to 10 atoms of molybdenum is A, and the heteropolyacid and heteropolyacid
- the present invention (1) A catalyst for producing methacrylic acid used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen, which has the following general formula: Mo a P b V c Cu d Y e Z f O g (Wherein Mo, P, V, Cu and O represent molybdenum, phosphorus, vanadium, copper and oxygen, respectively.
- Y represents at least one element selected from potassium, rubidium, cesium and thallium, and Z represents iron, cobalt.
- the heteropolyacid and heteropolyacid salt containing molybdenum, phosphorus, vanadium and copper as essential components the atomic ratio of alkali metal atoms to molybdenum atoms in the heteropolyacid and heteropolyacid salt is A, and the heteropolyacid and heteropolyacid salt
- the atomic ratio of the copper atom to the molybdenum atom in the inside is B and the valence is C
- ⁇ A + (B ⁇ C) 0.5 ⁇ ⁇ ⁇ 1.4
- At least one selected from the group consisting of methacrolein, isobutyraldehyde and isobutyric acid is related to a heteropolyacid catalyst used in producing methacrylic acid by vapor phase catalytic oxidation, performance, life, Furthermore, it is possible to provide a more excellent heteropolyacid catalyst in terms of moisture absorption during storage, which is particularly important for industrial use.
- a catalyst for production of methacrylic acid used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein of the present invention with molecular oxygen, and having the following general formula: Mo a P b V c Cu d Y e Z f O g (Wherein Mo, P, V, Cu and O represent molybdenum, phosphorus, vanadium, copper and oxygen, respectively.
- Y represents at least one element selected from potassium, rubidium, cesium and thallium, and Z represents iron, cobalt.
- the proton of the heteropolyacid is an important chemical structure for the molecular attracting effect of methacrolein and the oxidation of methacrylic acid by the supply of oxygen of the heteropolyacid.
- the molecular attracting effect of methacrolein is weak because protons are decreased, and the reactivity of methacrolein is lowered.
- the heteropolyacid salt has an effect of suppressing the sequential oxidation reaction. That is, after oxidation of methacrolein to methacrylic acid, the oxidation reaction continues to burn and suppresses the sequential oxidation reaction by which carbon monoxide, carbon dioxide, acetic acid and the like are by-produced. Due to this effect, the selectivity of methacrylic acid can be improved.
- Mo as more preferred catalysts as the catalyst a P b V c Cu d Y e Z f O g
- Mo, P, V, Cu and O represent molybdenum, phosphorus, vanadium, copper and oxygen, respectively.
- Y represents at least one element selected from potassium, rubidium, cesium and thallium, and Z represents iron, cobalt.
- a catalyst for producing methacrylic acid represented by the formula is preferably used.
- ⁇ is the atomic ratio of alkali metal atoms to 10 atoms of molybdenum in the heteropolyacid and heteropolyacid salt
- A is the atomic ratio of copper atoms to 10 atoms of molybdenum in the heteropolyacid and heteropolyacid salt
- B is the valence.
- the catalyst production method of the present invention comprises an aqueous solution containing a compound containing an active component of the catalyst (molybdenum, phosphorus, vanadium, copper; hereinafter referred to as essential components) or an aqueous dispersion of the compound (hereinafter referred to as slurry together).
- a compound containing an active component of the catalyst mobdenum, phosphorus, vanadium, copper; hereinafter referred to as essential components
- slurry together aqueous dispersion of the compound
- the dried powder obtained by drying the powder is calcined (hereinafter, this process is referred to as pre-calcination) and then molded.
- a baking process main baking
- the compound containing the active ingredients when preparing the slurry does not necessarily contain all the active ingredients, and some of the ingredients are added after the drying or after the preliminary calcination. May be.
- the type of other active components to be used and the use ratio thereof are determined as appropriate according to the use conditions of the catalyst or the like so as to obtain a catalyst exhibiting optimum performance.
- a compound containing each element contained in the catalyst for example, an oxo acid, oxo acid salt, oxide, nitrate, carbonate, hydroxide, halide, or the like of each element is desired. It is used at a ratio that satisfies the atomic ratio of For example, phosphoric acid, phosphate, etc. are used as the compound containing phosphorus, and molybdic acid, molybdate, molybdenum oxide, molybdenum chloride, etc.
- the compound containing molybdenum is used as the compound containing molybdenum, and as the compound containing vanadium, Vanadic acid, vanadate, vanadium oxide, vanadium chloride and the like are used, and copper nitrate, copper acetate, copper sulfate, copper chloride, copper oxide and the like are used as the compound containing copper.
- oxides, acetates, nitrates, carbonates, hydroxides, halides, etc. are used as the compounds containing the Y element, and oxoacids, oxoacid salts, nitrates, carbonates are used as the compounds containing the Z element.
- Hydroxides, halides and the like are used.
- the compound containing each element contained in these catalysts may be used alone or in combination of two or more.
- the slurry can be obtained by uniformly mixing each active ingredient-containing compound and water.
- the order of addition of the active ingredient-containing compound when preparing the slurry is to sufficiently dissolve the compound containing molybdenum, vanadium, phosphorus and other metal elements as necessary, and then add the cesium-containing compound, ammonium-containing compound, and copper-containing compound. It is preferable to add.
- an antimony-containing compound it is preferable to add the last of the essential active ingredient-containing compounds, but more preferably, after obtaining a slurry containing an active ingredient other than the antimony-containing compound, The powder is dried and the powder and the antimony-containing compound are mixed and then fired, or the powder is fired and then the antimony-containing compound is mixed.
- the temperature at which the slurry is prepared is preferably heated to a temperature at which the compound containing molybdenum, phosphorus, vanadium and, if necessary, other metal elements can be sufficiently dissolved.
- the temperature at which the cesium-containing compound and the ammonium-containing compound are added is usually in the range of about 0 to 35 ° C., preferably about 10 to 30 ° C., because the resulting catalyst tends to be highly active. It is preferable to cool to ⁇ 30 ° C.
- the amount of water used in the slurry is not particularly limited as long as the total amount of the compound to be used can be completely dissolved or mixed uniformly, but is appropriately determined in consideration of the drying method and drying conditions.
- the amount of water may be large, but if it is too large, the energy cost of the drying process becomes high, and there may be cases where the water cannot be completely dried.
- the drying method is not particularly limited as long as the slurry can be completely dried, and examples thereof include drum drying, freeze drying, spray drying, and evaporation to dryness.
- spray drying which can be dried from a slurry state into powder or granules in a short time is particularly preferable.
- the drying temperature of spray drying varies depending on the slurry concentration, the liquid feeding speed, etc., but the temperature at the outlet of the dryer is generally 70 to 150 ° C. Further, it is preferable to dry so that the average particle size of the dried slurry obtained at this time is 10 to 700 ⁇ m.
- Pre-baking of the obtained dry powder may significantly improve the moldability, the shape of the molded catalyst, and the mechanical strength.
- the preliminary firing atmosphere may be an air stream or an inert gas stream such as nitrogen, but industrially, an air stream is preferred.
- the pre-baking temperature is usually 200 to 400 ° C., preferably 250 to 380 ° C., more preferably 270 to 330 ° C. Even if pre-calcined at a temperature lower than 200 ° C., the influence on the moldability tends to be reduced, and if it exceeds 400 ° C., the catalyst tends to be decomposed and sintered, which may adversely affect the performance.
- the pre-baking time is preferably 3 to 12 hours, more preferably 5 to 10 hours. Although it may be fired for 12 hours or longer, it is difficult to obtain an effect commensurate with it.
- the obtained pre-fired granule is molded as described below as necessary.
- molding aids such as silica gel, diatomaceous earth, and alumina powder.
- the amount of the molding aid used is usually 1 to 30 parts by mass with respect to 100 parts by mass of the pre-calcined granule.
- inorganic fibers such as ceramic fibers and whiskers, which are inert to the catalyst component as necessary, as a strength improving material is useful for improving the mechanical strength of the catalyst.
- fibers that react with catalyst components such as potassium titanate whiskers and basic magnesium carbonate whiskers are not preferred.
- the amount of these fibers used is usually 1 to 30 parts by mass with respect to 100 parts by mass of the pre-fired granules.
- the pre-fired granule obtained as described above or a mixture obtained by mixing this with a molding aid and a strength improver is reduced to a columnar product, a tablet, a ring shape, a spherical shape, etc. Mold and use.
- the rolling step is preferably the rolling granulation method described below.
- the support in the container is vigorously agitated by repeated rotation and revolution movements by rotating the disk at high speed.
- the carrier is coated with the pre-fired granule or mixture by adding the binder and the pre-fired granule or mixture.
- the method of adding the binder is as follows: 1) Preliminarily mixed with the pre-baked granule or mixture, 2) Add the pre-baked granule or mixture simultaneously with addition to the fixed container, 3) Add the pre-baked granule or mixture into the fixed container 4) Add before adding the pre-baked granule or mixture into the fixed vessel, 5) Divide the pre-baked granule or mixture and the binder, respectively, and add the total amount of 2) to 4) as appropriate
- Such a method can be arbitrarily adopted.
- the pre-fired granules or the mixture is not adhered to the fixed container wall, and the pre-fired granules or the mixture is not aggregated, and the addition rate is adjusted using an auto feeder or the like so that a predetermined amount is supported on the carrier. It is preferable to do so.
- the binder is preferably at least one selected from the group consisting of water and an organic compound having a boiling point of 150 ° C. or lower at 1 atm.
- An organic compound having a boiling point of 150 ° C. or lower is preferable in consideration of drying after coating.
- Specific examples of binders other than water include alcohols such as methanol, ethanol, propanols and butanols, preferably alcohols having 1 to 4 carbon atoms, ethers such as ethyl ether, butyl ether or dioxane, and esters such as ethyl acetate or butyl acetate.
- Ketones such as acetone or methyl ethyl ketone, and aqueous solutions thereof, with ethanol being particularly preferred.
- the amount of these binders used is usually 10 to 60 parts by mass, preferably 15 to 40 parts by mass with respect to 100 parts by mass of the dry powder.
- the coated catalyst obtained as described above can be directly used as a catalyst for a gas phase catalytic oxidation reaction.
- calcination is preferable because the catalytic activity may be improved.
- the firing method and firing conditions are not particularly limited, and known treatment methods and conditions can be applied. Optimum conditions for calcination vary depending on the catalyst raw material, catalyst composition, preparation method, etc., but are usually 100 to 450 ° C., preferably 270 to 420 ° C., and calcination time is 1 to 20 hours.
- the firing is usually performed in an air atmosphere. However, the firing may be performed in an inert gas atmosphere such as nitrogen, carbon dioxide, helium, or argon, and may be further performed as necessary after firing in an inert gas atmosphere.
- Baking may be performed in an air atmosphere.
- the catalyst obtained as described above (hereinafter referred to as the catalyst of the present invention) is used for production of methacrylic acid by gas phase catalytic oxidation of methacrolein, isobutyraldehyde or isobutyric acid.
- the catalyst for producing methacrylic acid of the present invention as described above is a catalyst capable of producing methacrylic acid with a high yield and a long life by subjecting methacrolein to gas phase catalytic oxidation with molecular oxygen.
- ⁇ is the selectivity for methacrylic acid
- the atomic ratio of the Y component affects the hygroscopicity of the catalyst, and when ⁇ is within the above range, the reaction for producing methacrylic acid. It is speculated that an effective chemical structure can be obtained.
- the selectivity of methacrylic acid is improved.
- the atomic ratio of the Y component is smaller than 0.2, most of the counter cation of the heteropolyacid becomes protons and hygroscopicity is increased.
- the gas phase catalytic reaction using methacrolein which is the most preferable raw material for using the catalyst obtained in the present invention.
- Molecular oxygen or a molecular oxygen-containing gas is used for the gas phase catalytic oxidation reaction.
- the molar ratio of molecular oxygen to methacrolein is preferably in the range of 0.5 to 20, and particularly preferably in the range of 1 to 10.
- water is preferably added to the raw material gas in a molar ratio of 1 to 20 relative to methacrolein.
- the raw material gas may contain oxygen, if necessary, a gas inert to the reaction such as nitrogen, carbon dioxide, saturated hydrocarbon, etc.
- a gas obtained by oxidizing isobutylene, tertiary butanol, and methyl tertiary butyl ether may be supplied as it is.
- the reaction temperature is generally 200 ⁇ 400 ° C. in a gas phase catalytic oxidation reaction, preferably 250 ⁇ 360 ° C., the supply amount of the raw material gas in the space velocity (SV), usually 100 ⁇ 6000 hr -1, preferably 300 ⁇ 3000 hr -1 It is.
- the catalytic oxidation reaction can be performed under pressure or under reduced pressure, but generally a pressure around atmospheric pressure is suitable.
- conversion rate of methacrolein (number of moles of methacrolein supplied ⁇ number of moles of unreacted methacrolein) / number of moles of methacrolein supplied ⁇ 100
- Methacrylic acid yield (number of moles of methacrylic acid produced ⁇ number of moles of methacrylic acid supplied) / number of moles of methacrolein supplied ⁇ 100
- Methacrylic acid selectivity (number of moles of methacrylic acid produced ⁇ number of moles of methacrylic acid supplied) / (number of moles of methacrolein supplied ⁇ number of moles of unreacted methacrolein) ⁇ 100
- Example 1 1) Preparation of catalyst 800 g of molybdenum trioxide, 40.43 g of vanadium pentoxide, and 73.67 g of 85 mass% orthophosphoric acid were added to 5680 ml of pure water, and the mixture was heated and stirred at 92 ° C. for 3 hours to obtain a reddish brown transparent solution. . Subsequently, this solution was cooled to 15 to 20 ° C., and 307.9 g of a 9.1 wt% cesium hydroxide aqueous solution and 689.0 g of a 14.3 wt% ammonium acetate aqueous solution were gradually added while stirring. The mixture was aged at 15 to 20 ° C.
- the catalyst after the moisture absorption measurement was dried in a dryer at 120 ° C. for 24 hours, and 10.3 ml of the resulting coated catalyst was filled in a stainless steel reaction tube having an inner diameter of 18.4 mm, and the raw material gas composition (molar ratio) methacrolein.
- Oxygen: water vapor: nitrogen 1: 2: 4: 18.6, space velocity (SV) 1200 hr ⁇ 1 , reaction bath temperature 310 ° C., methacrolein oxidation reaction was carried out.
- the reaction was first continued for 3 hours at a reaction bath temperature of 310 ° C., then the reaction bath temperature was raised to 350 ° C. and the reaction was continued for 15 hours (hereinafter this treatment is referred to as a high temperature reaction treatment). Next, the reaction bath temperature was lowered to 310 ° C., and the reaction results were measured.
- Table 1 The results are shown in Table 1.
- Example 2 A coated catalyst was prepared in the same manner as in Example 1, except that the precalcination temperature was 290 ° C. in Example 1.
- the composition of the obtained catalyst is Mo 10 V 0.8 P 1.15 Cu 0.4 Cs 0.3 (NH 4 ) 2.3 Sb 1.0 .
- the methacrolein oxidation reaction and moisture absorption measurement were performed in the same manner as in Example 1. The results are shown in Tables 1 and 2.
- Example 4 A coated catalyst was prepared in the same manner as in Example 1 except that 320 g of pre-fired granules, 40.9 g of antimony trioxide, and 45 g of a strength improver (ceramic fiber) were uniformly mixed in Example 1.
- Example 5 To 5680 ml of pure water were added 800 g of molybdenum trioxide, 30.33 g of vanadium pentoxide, and 73.67 g of 85 mass% orthophosphoric acid, and the mixture was heated and stirred at 92 ° C. for 3 hours to obtain a reddish brown transparent solution. Subsequently, the solution was cooled to 15 to 20 ° C., and 661.3 g of a 9.1 wt% aqueous cesium hydroxide solution and 689.0 g of a 14.3 wt% aqueous ammonium acetate solution were gradually added while stirring. The mixture was aged at 15 to 20 ° C. for 1 hour to obtain a yellow slurry.
- Example 6 A coated catalyst was prepared in the same manner as in Example 5 except that pure water was used as a binder in Example 5.
- Example 7 A coated catalyst was prepared in the same manner as in Example 5 except that a 90% by mass aqueous ethanol solution was used as a binder in Example 5.
- Example 8 To 5680 ml of pure water were added 800 g of molybdenum trioxide, 30.33 g of vanadium pentoxide, and 76.87 g of 85 mass% orthophosphoric acid, and the mixture was heated and stirred at 92 ° C. for 3 hours to obtain a reddish brown transparent solution. Subsequently, the solution was cooled to 15 to 20 ° C., and 321.2 g of a 9.1 wt% cesium hydroxide aqueous solution and 196.86 g of a 50 wt% ammonium acetate aqueous solution were gradually added while stirring. Aging at ⁇ 20 ° C. for 1 hour gave a yellow slurry.
- Comparative Example 1 To 7100 ml of pure water, 1000 g of molybdenum trioxide, 75.81 g of vanadium pentoxide, 88.08 g of 85 mass% orthophosphoric acid, and 11.05 g of copper oxide were added, and the mixture was heated and stirred at 92 ° C. for 3 hours to obtain a slurry. Subsequently, this slurry was spray-dried to obtain granules. The composition of the obtained granules was Mo 10 V 1.2 P 1.1 Cu 0.2 .
- a strength improving material (ceramic fiber) was uniformly mixed, and 300 g of a spherical porous alumina carrier (particle size: 3.5 mm) was coated and molded using a 90 mass% aqueous ethanol solution as a binder. Subsequently, the obtained molded product was subjected to main calcination at 310 ° C. for 5 hours under an air flow to obtain a target coated catalyst.
- Comparative Example 2 To 10000 ml of pure water was added 1000 g of molybdenum trioxide, 37.91 g of vanadium pentoxide, 96.09 g of 85 wt% phosphoric acid aqueous solution, 65.73 g of 60 wt% aqueous arsenic acid solution, and 22.1 g of cupric oxide, and then at 92 ° C. for 3 hours. A slurry was obtained by stirring. Subsequently, this slurry was spray-dried to obtain granules. The composition of the obtained granules was Mo 10 V 0.6 P 1.2 As 0.4 Cu 0.4.
- a strength improving material (ceramic fiber) was uniformly mixed, and 300 g of a spherical porous alumina carrier (particle size: 3.5 mm) was coated and molded using a 90 mass% aqueous ethanol solution as a binder. Subsequently, the obtained molded product was subjected to main calcination at 310 ° C. for 5 hours under an air flow to obtain a target coated catalyst.
- Comparative Example 5 To 5680 ml of pure water were added 800 g of molybdenum trioxide, 30.33 g of vanadium pentoxide, and 76.87 g of 85 mass% orthophosphoric acid, and the mixture was heated and stirred at 92 ° C. for 3 hours to obtain a reddish brown transparent solution. Subsequently, the solution was cooled to 15 to 20 ° C., and 94.5 g of a 9.1 mass% cesium hydroxide aqueous solution and 196.86 g of a 50 mass% ammonium acetate aqueous solution were gradually added while stirring. Aging at ⁇ 20 ° C. for 1 hour gave a yellow slurry.
- the space velocity (SV) was 1800 hr ⁇ 1 .
- the partial oxidation reaction of methacrolein was continued while adjusting the reaction bath temperature so that the methacrolein conversion was 75% ⁇ 2%.
- the results of the methacrolein oxidation reaction 800 hours after the start of the reaction were as follows: reaction bath temperature 344 ° C. hot spot temperature 355 ° C., methacrolein conversion 75.5%, methacrylic acid yield 62.3%, methacrylic acid selectivity 82.7 %Met.
- the space velocity (SV) was 1800 hr ⁇ 1 .
- the partial oxidation reaction of methacrolein was continued while adjusting the reaction bath temperature so that the methacrolein conversion was 75% ⁇ 2%.
- the reaction bath temperature was 325 ° C.
- the hot spot temperature was 336 ° C.
- the methacrolein conversion was 75.7%
- the methacrylic acid yield was 63.4%
- the methacrylic acid selectivity was 83.8. %Met.
- the space velocity (SV) was 1800 hr ⁇ 1 .
- the partial oxidation reaction of methacrolein was continued while adjusting the reaction bath temperature so that the methacrolein conversion was 75% ⁇ 2%.
- the reaction bath temperature was 346 ° C.
- the hot spot temperature was 359 ° C.
- the methacrolein conversion was 75.1%
- the methacrylic acid yield was 58.7%
- the methacrylic acid selectivity was 78.2. %Met.
- the catalyst used in producing methacrylic acid can be more excellent in terms of performance, life, and moisture absorption during storage, which is particularly important for industrial use. became.
- the catalyst of the present invention is obtained by subjecting at least one selected from the group consisting of methacrolein, isobutyraldehyde, and isobutyric acid to methacrylic acid by gas phase catalytic oxidation using a molecular oxygen-containing gas in the presence of an oxidation catalyst composition. It is useful in manufacturing.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
MoaPbVcCudYeZfOg
(式中Mo、P、V、CuおよびOはモリブデン、リン、バナジウム、銅および酸素をそれぞれ表す。Yはカリウム、ルビジウム、セシウム及びタリウムから選ばれる少なくとも一種の元素を表し、Zは鉄、コバルト、亜鉛、クロム、マグネシウム、タンタル、マンガン、ガリウム、バリウム、セリウム、ランタン、砒素、アンチモン、ビスマス、ゲルマニウム、アンモニウム、ジルコニウム、錫、鉛、チタン、テルル、銀、セレン、ケイ素、タングステン及びホウ素から選ばれる少なくとも一種の元素を表す。a、b、c、d、e、f及びgは各元素の原子比率を表し、a=10とした時、bは0.1以上で4以下、cが0.01以上で4以下、dが0.01以上で1以下、eが0.2以上で2以下、fが0以上で3以下であり、gは各々の元素の酸化状態によって定まる数値である。)
で表される組成を有し、かつモリブデン、リン、バナジウム、銅を必須の成分として含むヘテロポリ酸およびヘテロポリ酸塩中においてモリブデン10原子に対するアルカリ金属原子の原子比率をA、前記ヘテロポリ酸およびヘテロポリ酸塩中のモリブデン10原子に対する銅原子の原子比率をB、価数をCとしたとき、
α = A +( B × C )
0.5 ≦ α ≦ 1.4
の条件を満足することで、上記課題を解決できることを見出した。なお、銅原子の価数は使用する原料の価数がそのまま触媒中で維持されている。本発明は、この知見に基づいて完成したものである。
(1)メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するために用いるメタクリル酸製造用触媒であって、下記一般式
MoaPbVcCudYeZfOg
(式中Mo、P、V、CuおよびOはモリブデン、リン、バナジウム、銅および酸素をそれぞれ表す。Yはカリウム、ルビジウム、セシウム及びタリウムから選ばれる少なくとも一種の元素を表し、Zは鉄、コバルト、亜鉛、クロム、マグネシウム、タンタル、マンガン、ガリウム、バリウム、セリウム、ランタン、砒素、アンチモン、ビスマス、ゲルマニウム、アンモニウム、ジルコニウム、錫、鉛、チタン、テルル、銀、セレン、ケイ素、タングステン及びホウ素から選ばれる少なくとも一種の元素を表す。a、b、c、d、e、f及びgは各元素の原子比率を表し、a=10とした時、bは0.1以上で4以下、cが0.01以上で4以下、dが0.01以上で1以下、eが0.2以上で2以下、fが0以上で3以下であり、gは各々の元素の酸化状態によって定まる数値である。)
で表される組成を有し、かつモリブデン、リン、バナジウム、銅を必須の成分として含むヘテロポリ酸およびヘテロポリ酸塩中においてモリブデン原子に対するアルカリ金属原子の原子比率をA、前記ヘテロポリ酸およびヘテロポリ酸塩中のモリブデン原子に対する銅原子の原子比率をB、価数をCとしたとき、
α = A +( B × C )
0.5 ≦ α ≦ 1.4
の条件を満足するように、カウンターカチオンであるプロトンをアルカリ金属イオンで置換したメタクリル酸製造用触媒
(2)0.7 ≦ α ≦ 1.1
の条件を満足する(1)のメタクリル酸製造用触媒
(3)Yがセシウムである(1)または(2)のいずれかに記載のメタクリル酸製造用触媒
(4)a=10とした時、dが0.1以上で0.3以下、eが0.3以上で1.1以下の条件を満足する(1)~(3)のいずれかに記載のメタクリル酸製造用触媒
(5)a=10とした時、dが0.15以上で0.25以下、eが0.4以上で1.0以下の条件を満足する(1)~(4)のいずれかに記載のメタクリル酸製造用触媒
(6)該触媒が成形触媒であることを特徴とする(1)~(5)のいずれかに記載のメタクリル酸製造用触媒
(7)(1)~(6)のいずれかに記載の触媒を使用することを特徴とするメタクロレイン、イソブチルアルデヒド及びイソ酪酸を気相接触酸化することによるメタクリル酸の製造方法に関する。
MoaPbVcCudYeZfOg
(式中Mo、P、V、CuおよびOはモリブデン、リン、バナジウム、銅および酸素をそれぞれ表す。Yはカリウム、ルビジウム、セシウム及びタリウムから選ばれる少なくとも一種の元素を表し、Zは鉄、コバルト、亜鉛、クロム、マグネシウム、タンタル、マンガン、ガリウム、バリウム、セリウム、ランタン、砒素、アンチモン、ビスマス、ゲルマニウム、アンモニウム、ジルコニウム、錫、鉛、チタン、テルル、銀、セレン、ケイ素、タングステン及びホウ素から選ばれる少なくとも一種の元素を表す。a、b、c、d、e、f及びgは各元素の原子比率を表し、a=10とした時、bは0.1以上で4以下、cが0.01以上で4以下、dが0.01以上で1以下、eが0.2以上で2以下、fが0以上で3以下であり、gは各々の元素の酸化状態によって定まる数値である。)
で表される組成を有し、かつモリブデン、リン、バナジウム、銅を必須の成分として含むヘテロポリ酸およびヘテロポリ酸塩中においてモリブデン10原子に対するアルカリ金属原子の原子比率をA、前記ヘテロポリ酸およびヘテロポリ酸塩中のモリブデン10原子に対する銅原子の原子比率をB、価数をCとしたとき、
α = A +( B × C )
0.5 ≦ α ≦ 1.4
の条件を満足するように、カウンターカチオンであるプロトンをアルカリ金属イオンで置換したことを特徴とする。なお、銅原子の価数は使用する原料の価数がそのまま触媒中で維持されている。
MoaPbVcCudYeZfOg
(式中Mo、P、V、CuおよびOはモリブデン、リン、バナジウム、銅および酸素をそれぞれ表す。Yはカリウム、ルビジウム、セシウム及びタリウムから選ばれる少なくとも一種の元素を表し、Zは鉄、コバルト、亜鉛、クロム、マグネシウム、タンタル、マンガン、ガリウム、バリウム、セリウム、ランタン、砒素、アンチモン、ビスマス、ゲルマニウム、アンモニウム、ジルコニウム、錫、鉛、チタン、テルル、銀、セレン、ケイ素、タングステン及びホウ素から選ばれる少なくとも一種の元素を表す。a、b、c、d、e、f及びgは各元素の原子比率を表し、a=10とした時、bは0.1以上で4以下、cが0.01以上で4以下、dが0.01以上で1以下、eが0.2以上で2以下、fが0以上で3以下であり、gは各々の元素の酸化状態によって定まる数値である。)
で表されるメタクリル酸製造用触媒が好適に用いられる。
α = A +( B × C )
により算出される。なお、銅原子の価数は使用する原料の価数がそのまま触媒中で維持されている。前記触媒においてa=10とした時、0.5 ≦ α ≦ 1.4であり、好ましくは0.7 ≦ α ≦ 1.1である。αが0.5より小さいと得られる触媒の活性が低下してしまう場合があり、一方、1.7より大きいと得られる触媒の寿命が短くなる傾向がある。
なお下記において転化率および収率は次の通りに定義される。
メタクロレイン転化率=(供給したメタクロレインモル数-未反応メタクロレインモル数)/供給したメタクロレインモル数×100
メタクリル酸収率=(生成したメタクリル酸モル数-供給したメタクリル酸モル数)/供給したメタクロレインモル数×100
メタクリル酸選択率=(生成したメタクリル酸モル数―供給したメタクリル酸モル数)/(供給したメタクロレインモル数-未反応メタクロレインモル数)×100
1)触媒の調製
純水5680mlに三酸化モリブデン800gと五酸化バナジウム40.43g、及び85質量%正燐酸73.67gを添加し、92℃で3時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液を15~20℃に冷却して、撹拌しながら9.1質量%の水酸化セシウム水溶液307.9gと、14.3質量%の酢酸アンモニウム水溶液689.0gを徐々に添加し、15~20℃で1時間熟成させて黄色のスラリーを得た。続いて、さらにそのスラリーに6.3質量%の酢酸第二銅水溶液709.9gを徐々に添加し、さらに15~20℃で30分熟成した。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo10V0.8P1.15Cu0.4Cs0.3(NH4)2.3である。この顆粒320gを空気流通下310℃で5時間かけて焼成し予備焼成顆粒を得た。予備焼成により約4質量%の質量減があった。これに三酸化アンチモン22.7gと強度向上材(セラミック繊維)45gとを均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)300gに20質量%エタノール水溶液をバインダーとして、転動造粒法により被覆成形した。次いで得られた成形物を空気流通下において380℃で5時間かけて本焼成を行い目的とする被覆触媒を得た。得られた触媒の組成はMo10V0.8P1.15Cu0.4Cs0.3(NH4)2.3Sb1.0である。また、このときα=1.1である。
得られた被覆触媒10.3mlを内径18.4mmのステンレス反応管に充填し、原料ガス組成(モル比)メタクロレイン:酸素:水蒸気:窒素=1:2:4:18.6、空間速度(SV)1200hr-1、反応浴温度310℃で、メタクロレインの酸化反応を実施した。反応は、最初反応浴温度310℃で3時間反応を続け、次いで反応浴温度を350℃に上げ15時間反応を続けた(今後この処理を高温反応処理という)。次いで反応浴温度を310℃に下げて反応成績の測定を行った。結果を表1に示す。
得られた被覆触媒100gをシャーレに仕込み、25℃にて飽和蒸気圧としたデシケーター内にて24時間静置した。その後、被覆触媒の重量を測定したところ102.39gであった。すなわち吸湿した水の割合は触媒活性成分に対して5.20%、単位時間当たりに乾燥重量100gの触媒活性成分が吸湿した水は0.22g/hとなり、以降この値を吸湿量と表現し、表2に表記する。
実施例1において予備焼成温度を290℃とした以外は実施例1と同様の方法で被覆触媒を調製した。得られた触媒の組成はMo10V0.8P1.15Cu0.4Cs0.3(NH4)2.3Sb1.0である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
実施例1において予備焼成顆粒320g、三酸化アンチモン11.35g、強度向上剤(セラミック繊維)45gを均一に混合した以外は実施例1と同様の方法で被覆触媒を調製した。得られた触媒の組成はMo10V0.8P1.15Cu0.4Cs0.3(NH4)2.3Sb0.5である。また、このときα=1.1である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
実施例1において予備焼成顆粒320g、三酸化アンチモン40.9g、強度向上剤(セラミック繊維)45gを均一に混合した以外は実施例1と同様の方法で被覆触媒を調製した。得られた触媒の組成はMo10V0.8P1.15Cu0.4Cs0.3(NH4)2.3Sb1.8である。また、このときα=1.1である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
純水5680mlに三酸化モリブデン800gと五酸化バナジウム30.33g、及び85質量%正燐酸73.67gを添加し、92℃で3時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液を15~20℃に冷却して、撹拌しながら9.1質量%の水酸化セシウム水溶液661.3gと、14.3質量%の酢酸アンモニウム水溶液689.0gを徐々に添加し、15~20℃で1時間熟成させて黄色のスラリーを得た。続いて、さらにそのスラリーに9.5質量%の酢酸第二銅水溶液232.9gを徐々に添加し、さらに15~20℃で30分熟成した。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo10V0.6P1.15Cu0.2Cs0.7(NH4)2.3である。この顆粒320gを空気流通下310℃で5時間かけて焼成し予備焼成顆粒を得た。予備焼成により約4質量%の質量減があった。これに強度向上材(セラミック繊維)45gとを均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)300gに20質量%エタノール水溶液をバインダーとして、転動造粒法により被覆成形した。次いで得られた成形物を空気流通下において380℃で5時間かけて本焼成を行い目的とする被覆触媒を得た。得られた触媒の組成はMo10V0.6P1.15Cu0.2Cs0.7(NH4)2.3である。また、このときα=1.1である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
実施例5において純水をバインダーとして使用した以外は実施例5と同様の方法で被覆触媒を調製した。得られた触媒の組成はMo10V0.6P1.15Cu0.2Cs0.7(NH4)2.3である。また、このときα=1.1である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
実施例5において90質量%エタノール水溶液をバインダーとして使用した以外は実施例5と同様の方法で被覆触媒を調製した。得られた触媒の組成はMo10V0.6P1.15Cu0.2Cs0.7(NH4)2.3である。また、このときα=1.1である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
純水5680mlに三酸化モリブデン800gと五酸化バナジウム30.33g、及び85質量%正燐酸76.87gを添加し、92℃で3時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液を15~20℃に冷却して、撹拌しながら9.1質量%の水酸化セシウム水溶液321.2gと、50質量%の酢酸アンモニウム水溶液196.86gを徐々に添加し、15~20℃で1時間熟成させて黄色のスラリーを得た。続いて、さらにそのスラリーに酢酸第二銅22.18gを徐々に添加し、さらに15~20℃で30分熟成した。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo10V0.6P1.2Cu0.2Cs0.3(NH4)2.3である。また、このときα=0.7である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応を行なった。結果を表1に示す。
純水7100mlに三酸化モリブデン1000gと五酸化バナジウム75.81g、85質量%正燐酸88.08g、および酸化銅11.05gを添加し、92℃で3時間加熱攪拌してスラリーを得た。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo10V1.2P1.1Cu0.2である。この顆粒320gに強度向上材(セラミック繊維)45gとを均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)300gに90質量%エタノール水溶液をバインダーとして被覆成形した。次いで得られた成形物を空気流通下において310℃で5時間の本焼成を行い目的とする被覆触媒を得た。得られた触媒の組成はMo10V1.2P1.1Cu0.2である。また、このときα=0.4である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
純水10000mlに三酸化モリブデン1000gと五酸化バナジウム37.91g、85重量%燐酸水溶液96.09g、60重量%砒酸水溶液65.73g、酸化第二銅22.1gを添加し、92℃で3時間攪拌してスラリーを得た。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo10V0.6P1.2As0.4Cu0.4である。この顆粒320gに強度向上材(セラミック繊維)45gとを均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)300gに90質量%エタノール水溶液をバインダーとして被覆成形した。次いで得られた成形物を空気流通下において310℃で5時間の本焼成を行い目的とする被覆触媒を得た。得られた触媒の組成はMo10V0.6P1.2As0.4Cu0.4である。また、このときα=0.8である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
純水5680mlに三酸化モリブデン800gと五酸化バナジウム35.38g、及び85質量%正燐酸73.67gを添加し、92℃で3時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液を15~20℃に冷却して、撹拌しながら9.1質量%の水酸化セシウム水溶液94.49gと、14.3質量%の酢酸アンモニウム水溶液988.6gを徐々に添加し、15~20℃で1時間熟成させて黄色のスラリーを得た。続いて、さらにそのスラリーに6.3質量%の酢酸第二銅水溶液465.9gを徐々に添加し、さらに15~20℃で30分熟成した。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo10V0.7P1.15Cu0.4Cs0.1(NH4)2.3である。この顆粒320gを空気流通下310℃で5時間かけて焼成し予備焼成顆粒を得た。予備焼成により約4質量%の質量減があった。これに強度向上材(セラミック繊維)45gとを均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)300gに20質量%エタノール水溶液をバインダーとして、転動造粒法により被覆成形した。次いで得られた成形物を空気流通下において380℃で5時間かけて本焼成を行い目的とする被覆触媒を得た。得られた触媒の組成はMo10V0.7P1.15Cu0.4Cs0.1(NH4)3.3である。また、このときα=0.9である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
純水5680mlに三酸化モリブデン800gと五酸化バナジウム35.38g、及び85質量%正燐酸73.67gを添加し、92℃で3時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液を15~20℃に冷却して、撹拌しながら9.1質量%の水酸化セシウム水溶液850.32gと、14.3質量%の酢酸アンモニウム水溶液689.0gを徐々に添加し、15~20℃で1時間熟成させて黄色のスラリーを得た。続いて、さらにそのスラリーに9.5質量%の酢酸第二銅水溶液233.6gを徐々に添加し、さらに15~20℃で30分熟成した。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo10V0.7P1.15Cu0.2Cs1.1(NH4)2.3である。この顆粒320gを空気流通下310℃で5時間かけて焼成し予備焼成顆粒を得た。予備焼成により約4質量%の質量減があった。これに強度向上材(セラミック繊維)45gとを均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)300gに20質量%エタノール水溶液をバインダーとして、転動造粒法により被覆成形した。次いで得られた成形物を空気流通下において380℃で5時間かけて本焼成を行い目的とする被覆触媒を得た。得られた触媒の組成はMo10V0.7P1.15Cu0.2Cs1.1(NH4)2.3である。また、このときα=1.5である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応と吸湿量測定を行なった。結果を表1および表2に示す。
純水5680mlに三酸化モリブデン800gと五酸化バナジウム30.33g、及び85質量%正燐酸76.87gを添加し、92℃で3時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液を15~20℃に冷却して、撹拌しながら9.1質量%の水酸化セシウム水溶液94.5gと、50質量%の酢酸アンモニウム水溶液196.86gを徐々に添加し、15~20℃で1時間熟成させて黄色のスラリーを得た。続いて、さらにそのスラリーに酢酸第二銅11.09gを徐々に添加し、さらに15~20℃で30分熟成した。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo10V0.6P1.2Cu0.1Cs0.1(NH4)2.3である。また、このときα=0.3である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応を行なった。結果を表1および表2に示す。
純水5680mlに三酸化モリブデン800gと五酸化バナジウム40.43g、及び85質量%正燐酸73.67gを添加し、92℃で3時間加熱攪拌して赤褐色の透明溶液を得た。続いて、この溶液を15~20℃に冷却して、撹拌しながら9.1質量%の水酸化セシウム水溶液944.8gと、50質量%の酢酸アンモニウム水溶液205.42gを徐々に添加し、15~20℃で1時間熟成させて黄色のスラリーを得た。続いて、さらにそのスラリーに酢酸第二銅44.37gを徐々に添加し、さらに15~20℃で30分熟成した。続いて、このスラリーを噴霧乾燥し顆粒を得た。得られた顆粒の組成はMo10V0.8P1.15Cu0.4Cs1.0(NH4)2.4である。この顆粒320gを空気流通下310℃で5時間かけて焼成し予備焼成顆粒を得た。予備焼成により約4質量%の質量減があった。これに三酸化アンチモン21.0gと強度向上材(セラミック繊維)45gとを均一に混合して、球状多孔質アルミナ担体(粒径3.5mm)300gに20質量%エタノール水溶液をバインダーとして、転動造粒法により被覆成形した。次いで得られた成形物を空気流通下において380℃で5時間かけて本焼成を行い目的とする被覆触媒を得た。得られた触媒の組成はMo10V0.8P1.15Cu0.4Cs1.0(NH4)2.4Sb1.0である。また、このときα=1.8である。この被覆触媒を使用した以外は、実施例1と同様にメタクロレイン酸化反応を行なった。結果を表1に示す。
実施例1で得られた被覆触媒6.9mlを内径18.4mmのステンレス反応管に充填し、原料ガス組成(モル比)メタクロレイン:酸素:水蒸気:窒素=1:2:4:18.6、空間速度(SV)1800hr-1となるように供給した。反応開始後、メタクロレイン転化率が75%±2%になるように反応浴温度を調節しながらメタクロレインの部分酸化反応を継続した。
反応開始後800時間後のメタクロレイン酸化反応の結果は反応浴温度344℃ホットスポット温度355℃、メタクロレイン転化率75.5%、メタクリル酸収率62.3%、メタクリル酸選択率82.7%であった。
実施例5で得られた被覆触媒6.9mlを内径18.4mmのステンレス反応管に充填し、原料ガス組成(モル比)メタクロレイン:酸素:水蒸気:窒素=1:2:4:18.6、空間速度(SV)1800hr-1となるように供給した。反応開始後、メタクロレイン転化率が75%±2%になるように反応浴温度を調節しながらメタクロレインの部分酸化反応を継続した。
反応開始後800時間後のメタクロレイン酸化反応の結果は反応浴温度325℃ホットスポット温度336℃、メタクロレイン転化率75.7%、メタクリル酸収率63.4%、メタクリル酸選択率83.8%であった。
比較例4で得られた被覆触媒6.9mlを内径18.4mmのステンレス反応管に充填し、原料ガス組成(モル比)メタクロレイン:酸素:水蒸気:窒素=1:2:4:18.6、空間速度(SV)1800hr-1となるように供給した。反応開始後、メタクロレイン転化率が75%±2%になるように反応浴温度を調節しながらメタクロレインの部分酸化反応を継続した。
反応開始後800時間後のメタクロレイン酸化反応の結果は反応浴温度346℃ホットスポット温度359℃、メタクロレイン転化率75.1%、メタクリル酸収率58.7%、メタクリル酸選択率78.2%であった。
なお、本出願は、2011年11月17日付で出願された日本特許出願(特願2011-251386)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
本発明の触媒は、メタクロレイン、イソブチルアルデヒド及びイソ酪酸よりなる群から選ばれる少なくとも1種を、酸化触媒組成物の存在下に、分子状酸素含有ガスを用いて気相接触酸化してメタクリル酸を製造する際に有用である。
Claims (7)
- メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するために用いるメタクリル酸製造用触媒であって、下記一般式
MoaPbVcCudYeZfOg
(式中Mo、P、V、CuおよびOはモリブデン、リン、バナジウム、銅および酸素をそれぞれ表す。Yはカリウム、ルビジウム、セシウム及びタリウムから選ばれる少なくとも一種の元素を表し、Zは鉄、コバルト、亜鉛、クロム、マグネシウム、タンタル、マンガン、ガリウム、バリウム、セリウム、ランタン、砒素、アンチモン、ビスマス、ゲルマニウム、アンモニウム、ジルコニウム、錫、鉛、チタン、テルル、銀、セレン、ケイ素、タングステン及びホウ素から選ばれる少なくとも一種の元素を表す。a、b、c、d、e、f及びgは各元素の原子比率を表し、a=10とした時、bは0.1以上で4以下、cが0.01以上で4以下、dが0.01以上で1以下、eが0.2以上で2以下、fが0以上で3以下であり、gは各々の元素の酸化状態によって定まる数値である。)
で表される組成を有し、かつモリブデン、リン、バナジウム、銅を必須の成分として含むヘテロポリ酸およびヘテロポリ酸塩中においてモリブデン10原子に対するアルカリ金属原子の原子比率をA、前記ヘテロポリ酸およびヘテロポリ酸塩中のモリブデン10原子に対する銅原子の原子比率をB、価数をCとしたとき、
α = A +( B × C )
0.5 ≦ α ≦ 1.4
の条件を満足するように、カウンターカチオンであるプロトンをアルカリ金属イオンで置換したメタクリル酸製造用触媒。 - 0.7 ≦ α ≦ 1.1
の条件を満足する請求項1記載のメタクリル酸製造用触媒。 - Yがセシウムである請求項1または2に記載のメタクリル酸製造用触媒。
- a=10とした時、dが0.1以上で0.3以下、eが0.3以上で1.1以下の条件を満足する請求項1~3のいずれか1項に記載のメタクリル酸製造用触媒。
- a=10とした時、dが0.15以上で0.25以下、eが0.4以上で1.0以下の条件を満足する請求項1~4のいずれか1項に記載のメタクリル酸製造用触媒。
- 該触媒が成形触媒であることを特徴とする請求項1~5のいずれか1項に記載のメタクリル酸製造用触媒。
- 請求項1~請求項6のいずれか1項に記載の触媒を使用することを特徴とするメタクロレイン、イソブチルアルデヒド及びイソ酪酸を気相接触酸化することによるメタクリル酸の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12849609.8A EP2781260A4 (en) | 2011-11-17 | 2012-11-16 | CATALYST FOR PRODUCTION OF METHACRYLIC ACID AND PROCESS FOR PRODUCTION OF METHACRYLIC ACID USING THE SAME |
KR1020147013201A KR20140099453A (ko) | 2011-11-17 | 2012-11-16 | 메타크릴산 제조용 촉매 및 그것을 이용한 메타크릴산의 제조 방법 |
US14/358,305 US20140316160A1 (en) | 2011-11-17 | 2012-11-16 | Catalyst For Methacrylic Acid Production And Process For Producing Methacrylic Acid |
KR1020187038040A KR102005358B1 (ko) | 2011-11-17 | 2012-11-16 | 메타크릴산 제조용 촉매 및 그것을 이용한 메타크릴산의 제조 방법 |
CN201280056864.4A CN103945938B (zh) | 2011-11-17 | 2012-11-16 | 甲基丙烯酸制造用催化剂及使用该催化剂的甲基丙烯酸的制造方法 |
JP2013518904A JP5973999B2 (ja) | 2011-11-17 | 2012-11-16 | メタクリル酸製造用触媒及びそれを用いたメタクリル酸の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011251386 | 2011-11-17 | ||
JP2011-251386 | 2011-11-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013073691A1 true WO2013073691A1 (ja) | 2013-05-23 |
Family
ID=48429743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/079862 WO2013073691A1 (ja) | 2011-11-17 | 2012-11-16 | メタクリル酸製造用触媒及びそれを用いたメタクリル酸の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20140316160A1 (ja) |
EP (1) | EP2781260A4 (ja) |
JP (1) | JP5973999B2 (ja) |
KR (2) | KR20140099453A (ja) |
CN (1) | CN103945938B (ja) |
WO (1) | WO2013073691A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018111720A (ja) * | 2013-10-10 | 2018-07-19 | 日本化薬株式会社 | 不飽和カルボン酸の製造方法、及び担持触媒 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104801342B (zh) * | 2015-03-17 | 2017-10-24 | 烟台大学 | 一种杂多酸盐催化剂及其制备方法 |
WO2017094468A1 (ja) * | 2015-12-01 | 2017-06-08 | 三菱レイヨン株式会社 | (メタ)アクリル酸製造用触媒の製造方法および(メタ)アクリル酸の製造方法 |
CN105749944A (zh) * | 2016-03-23 | 2016-07-13 | 重庆紫光海力催化剂有限公司 | 一种由2-甲基丙烯醛气相催化氧化法制备α-甲基丙烯酸的催化剂 |
JP6452169B2 (ja) * | 2016-09-14 | 2019-01-16 | 日本化薬株式会社 | アクリル酸製造用触媒ならびにアクリル酸の製造方法 |
CN107297216B (zh) * | 2017-06-01 | 2020-04-24 | 中国科学院过程工程研究所 | 一种水热法制备的磷钼钒酸类纳米催化剂 |
CN111050906A (zh) * | 2017-10-20 | 2020-04-21 | 三菱化学株式会社 | α,β-不饱和羧酸制造用催化剂的制造方法、α,β-不饱和羧酸的制造方法和α,β-不饱和羧酸酯的制造方法 |
CN109985649B (zh) | 2018-01-02 | 2021-05-04 | 上海华谊新材料有限公司 | (甲基)丙烯醛氧化催化剂及其制备方法 |
SG11202101722RA (en) * | 2018-09-18 | 2021-03-30 | Mitsubishi Chem Corp | Catalyst for producing methacrylic acid, method for producing same, and method for producing methacrylic acid and methacrylic acid ester |
CN109731592B (zh) * | 2019-01-16 | 2020-12-01 | 中国科学院过程工程研究所 | 甲基丙烯醛选择性氧化制甲基丙烯酸的催化剂及其制备方法和用途 |
KR20220050518A (ko) * | 2020-10-16 | 2022-04-25 | 주식회사 엘지화학 | 몰리브덴-비스무트계 복합 금속 산화물의 제조방법 |
CN114471530B (zh) * | 2020-10-27 | 2023-09-29 | 中国石油化工股份有限公司 | 一种甲基丙烯酸制造用复合催化剂及其制备方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5966349A (ja) | 1982-10-05 | 1984-04-14 | Ube Ind Ltd | メタクリル酸製造用触媒の製法 |
JPS60239439A (ja) | 1984-05-14 | 1985-11-28 | Nippon Shokubai Kagaku Kogyo Co Ltd | メタクリル酸の製造方法 |
JPH0531368A (ja) | 1990-11-14 | 1993-02-09 | Mitsui Toatsu Chem Inc | メタクリル酸製造用触媒及びメタクリル酸の製造方法 |
JPH09290162A (ja) | 1996-04-26 | 1997-11-11 | Mitsubishi Chem Corp | 酸化触媒の製造方法及びメタクリル酸の製造方法 |
JPH10258233A (ja) | 1997-03-19 | 1998-09-29 | Mitsubishi Rayon Co Ltd | 不飽和アルデヒドおよび不飽和カルボン酸合成用触媒の製造法 |
JP2003010695A (ja) | 2001-06-28 | 2003-01-14 | Sumitomo Chem Co Ltd | メタクリル酸製造用触媒の保存方法 |
JP3884967B2 (ja) | 2002-02-07 | 2007-02-21 | 住友化学株式会社 | メタクリル酸の製造方法 |
WO2011065529A1 (ja) * | 2009-11-30 | 2011-06-03 | 日本化薬株式会社 | メタクリル酸製造触媒の製造方法およびメタクリル酸の製造方法 |
JP2011173114A (ja) * | 2010-01-28 | 2011-09-08 | Mitsubishi Rayon Co Ltd | メタクリル酸製造用触媒およびその製造方法、ならびにメタクリル酸の製造方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1022608C (zh) * | 1990-01-10 | 1993-11-03 | 中国石油化工总公司 | 制取甲基丙烯酸的催化剂 |
JPH10244160A (ja) * | 1997-03-04 | 1998-09-14 | Mitsubishi Rayon Co Ltd | メタクリル酸製造用触媒の調製法 |
JP3702710B2 (ja) * | 1999-06-15 | 2005-10-05 | 住友化学株式会社 | メタクリル酸製造用触媒およびメタクリル酸の製造方法 |
JP4426069B2 (ja) * | 2000-06-12 | 2010-03-03 | 株式会社日本触媒 | アクリル酸の製造方法 |
JP4236415B2 (ja) * | 2002-03-04 | 2009-03-11 | 三菱レイヨン株式会社 | メタクリル酸合成用触媒およびメタクリル酸の製造方法 |
TWI341219B (en) * | 2003-02-20 | 2011-05-01 | Nippon Kayaku Kk | Catalyst for producing methacrylic acid and preparation method thereof |
JP4745653B2 (ja) * | 2003-12-05 | 2011-08-10 | 三菱レイヨン株式会社 | メタクリル酸の製造方法 |
KR20070015388A (ko) * | 2004-02-24 | 2007-02-02 | 미츠비시 레이온 가부시키가이샤 | 몰리브덴의 회수방법 및 촉매의 제조방법 |
JP4756890B2 (ja) * | 2005-03-29 | 2011-08-24 | 日本化薬株式会社 | メタクリル酸製造用触媒及びその製造方法 |
US7649112B2 (en) * | 2005-07-25 | 2010-01-19 | Saudi Basic Industries Corporation | Integrated plant for producing 2-ethyl-hexanol and methacrylic acid and a method based thereon |
-
2012
- 2012-11-16 CN CN201280056864.4A patent/CN103945938B/zh active Active
- 2012-11-16 WO PCT/JP2012/079862 patent/WO2013073691A1/ja active Application Filing
- 2012-11-16 EP EP12849609.8A patent/EP2781260A4/en not_active Withdrawn
- 2012-11-16 KR KR1020147013201A patent/KR20140099453A/ko active Application Filing
- 2012-11-16 KR KR1020187038040A patent/KR102005358B1/ko active IP Right Grant
- 2012-11-16 US US14/358,305 patent/US20140316160A1/en active Granted
- 2012-11-16 JP JP2013518904A patent/JP5973999B2/ja active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5966349A (ja) | 1982-10-05 | 1984-04-14 | Ube Ind Ltd | メタクリル酸製造用触媒の製法 |
JPS60239439A (ja) | 1984-05-14 | 1985-11-28 | Nippon Shokubai Kagaku Kogyo Co Ltd | メタクリル酸の製造方法 |
JPH0531368A (ja) | 1990-11-14 | 1993-02-09 | Mitsui Toatsu Chem Inc | メタクリル酸製造用触媒及びメタクリル酸の製造方法 |
JPH09290162A (ja) | 1996-04-26 | 1997-11-11 | Mitsubishi Chem Corp | 酸化触媒の製造方法及びメタクリル酸の製造方法 |
JPH10258233A (ja) | 1997-03-19 | 1998-09-29 | Mitsubishi Rayon Co Ltd | 不飽和アルデヒドおよび不飽和カルボン酸合成用触媒の製造法 |
JP2003010695A (ja) | 2001-06-28 | 2003-01-14 | Sumitomo Chem Co Ltd | メタクリル酸製造用触媒の保存方法 |
JP3884967B2 (ja) | 2002-02-07 | 2007-02-21 | 住友化学株式会社 | メタクリル酸の製造方法 |
WO2011065529A1 (ja) * | 2009-11-30 | 2011-06-03 | 日本化薬株式会社 | メタクリル酸製造触媒の製造方法およびメタクリル酸の製造方法 |
JP2011173114A (ja) * | 2010-01-28 | 2011-09-08 | Mitsubishi Rayon Co Ltd | メタクリル酸製造用触媒およびその製造方法、ならびにメタクリル酸の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2781260A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018111720A (ja) * | 2013-10-10 | 2018-07-19 | 日本化薬株式会社 | 不飽和カルボン酸の製造方法、及び担持触媒 |
Also Published As
Publication number | Publication date |
---|---|
JP5973999B2 (ja) | 2016-08-23 |
EP2781260A4 (en) | 2015-07-08 |
EP2781260A1 (en) | 2014-09-24 |
JPWO2013073691A1 (ja) | 2015-04-02 |
US20140316160A1 (en) | 2014-10-23 |
KR102005358B1 (ko) | 2019-07-30 |
CN103945938A (zh) | 2014-07-23 |
CN103945938B (zh) | 2016-08-24 |
KR20140099453A (ko) | 2014-08-12 |
KR20190003830A (ko) | 2019-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5973999B2 (ja) | メタクリル酸製造用触媒及びそれを用いたメタクリル酸の製造方法 | |
JP6363464B2 (ja) | 不飽和カルボン酸の製造方法、及び担持触媒 | |
JP4756890B2 (ja) | メタクリル酸製造用触媒及びその製造方法 | |
US10300463B2 (en) | Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid | |
JP6077533B2 (ja) | メタクリル酸製造用触媒、その製造方法及び該触媒を用いるメタクリル酸の製造方法 | |
JP2006314923A (ja) | メタクリル酸製造用触媒の製造方法 | |
JP6387341B2 (ja) | メタクリル酸製造用触媒及びその製造方法並びにメタクリル酸の製造方法 | |
JP4478107B2 (ja) | メタクリル酸製造用触媒及びその製法 | |
JP2018043197A (ja) | アクリル酸製造用触媒 | |
WO2014181839A1 (ja) | 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、その製造方法及び不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 | |
JP2011092882A (ja) | メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法 | |
JP2020015043A (ja) | メタクリル酸製造用触媒の製造方法 | |
KR101431578B1 (ko) | 메타크릴산 제조 촉매의 제조 방법 및 메타크릴산의 제조 방법 | |
JP2011152543A (ja) | メタクリル酸製造用触媒の製造方法 | |
JP2010207696A (ja) | メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法 | |
JP6628386B1 (ja) | 不飽和カルボン酸製造用触媒 | |
JP5269046B2 (ja) | メタクリル酸製造用触媒の製造方法 | |
JP2013091016A (ja) | メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法 | |
JP2013086008A (ja) | メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法 | |
JP2013180251A (ja) | メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013518904 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12849609 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14358305 Country of ref document: US Ref document number: 2012849609 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20147013201 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |