WO2013073309A1 - 自動変速機の制御装置およびその制御方法 - Google Patents

自動変速機の制御装置およびその制御方法 Download PDF

Info

Publication number
WO2013073309A1
WO2013073309A1 PCT/JP2012/075820 JP2012075820W WO2013073309A1 WO 2013073309 A1 WO2013073309 A1 WO 2013073309A1 JP 2012075820 W JP2012075820 W JP 2012075820W WO 2013073309 A1 WO2013073309 A1 WO 2013073309A1
Authority
WO
WIPO (PCT)
Prior art keywords
automatic transmission
control
range
time
fastening element
Prior art date
Application number
PCT/JP2012/075820
Other languages
English (en)
French (fr)
Inventor
弘道 明保能
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to KR1020147015864A priority Critical patent/KR101601576B1/ko
Priority to JP2013544182A priority patent/JP5836390B2/ja
Priority to CN201280056583.9A priority patent/CN103946602B/zh
Priority to US14/359,026 priority patent/US9028356B2/en
Priority to EP12849825.0A priority patent/EP2781804B1/en
Publication of WO2013073309A1 publication Critical patent/WO2013073309A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • F16H61/061Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • F16H2059/446Detecting vehicle stop, i.e. the vehicle is at stand still, e.g. for engaging parking lock
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0485Smoothing ratio shift during range shift from neutral (N) to reverse (R)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0488Smoothing ratio shift during range shift from neutral (N) to drive (D)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1208Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures with diagnostic check cycles; Monitoring of failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/1276Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is a friction device, e.g. clutches or brakes

Definitions

  • the present invention relates to an automatic transmission control device and a control method thereof.
  • the target turbine rotational speed change rate is determined based on the engine rotational speed, and the turbine rotational speed matches the target turbine rotational speed change rate.
  • Such a decrease is disclosed in JP 5-322027A.
  • the control according to the operation of the shift lever is started or ended based on the vehicle speed.
  • the vehicle speed is detected based on a signal from a vehicle speed sensor that detects the rotation of the output shaft of the transmission.
  • the vehicle has a parking mechanism that mechanically fixes the output shaft during parking.
  • the parking mechanism fixes the output shaft so that the vehicle does not move.
  • the parking mechanism generally operates when the shift lever is in the travel range and the shift lever is operated to the P range from a state where the vehicle is stopped. At this time, although the power is transmitted from the engine to the output shaft, the wheels are forcibly stopped by the foot brake, so that the output shaft is twisted and this twist is not eliminated.
  • the output shaft may be fixed by the parking mechanism.
  • the twist of the output shaft is eliminated when the shift lever is operated from the P range to a range other than the P range. However, since the output shaft rotates due to the elimination of the twist and a signal is output from the vehicle speed sensor, it is erroneously determined that the vehicle is running even though the vehicle is stopped, and control performed when the vehicle is running May start.
  • the present invention has been invented to solve such a problem.
  • the shift lever is changed from the non-traveling range to the traveling range, the vehicle is traveling even though the vehicle is stopped. It is an object of the present invention to suppress the erroneous determination that the control is performed while the vehicle is running.
  • An automatic transmission control device includes a position detection unit that detects a position of a shift lever, a vehicle speed detection unit that detects a vehicle speed, and a rotation number detection unit that detects an input rotation number of the automatic transmission.
  • the physical quantity indicating the state of the automatic transmission becomes a predetermined value or more.
  • Switching from stop-time control that controls the hydraulic pressure supplied to the fastening element based on the input rotational speed of the automatic transmission to travel-time control that controls the hydraulic pressure supplied to the fastening element without using the input rotational speed of the automatic transmission The determination is made based on the vehicle speed.
  • FIG. 1 is a schematic configuration diagram showing a part of a vehicle having an automatic transmission according to the present embodiment.
  • FIG. 2 is a flowchart showing control when the shift lever of the first embodiment is changed from the non-traveling range to the traveling range.
  • FIG. 3 is a time chart when the shift lever is changed from the N range to the D range from a state where the vehicle is stopped.
  • FIG. 4 is a time chart when the vehicle is running and the shift lever is changed from the D range to the N range and further changed from the N range to the D range.
  • FIG. 5 is a flowchart showing control when the shift lever of the second embodiment is changed from the non-traveling range to the traveling range.
  • FIG. 1 is a schematic configuration diagram showing a part of a vehicle having an automatic transmission according to the present embodiment.
  • FIG. 2 is a flowchart showing control when the shift lever of the first embodiment is changed from the non-traveling range to the traveling range.
  • FIG. 3 is a time chart when the shift lever is changed from the
  • FIG. 6 is a flowchart showing the control when the shift lever of the third embodiment is changed from the non-traveling range to the traveling range.
  • FIG. 7 is a flowchart showing control when the shift lever of the fourth embodiment is changed from the non-traveling range to the traveling range.
  • FIG. 1 is a schematic configuration diagram showing a part of a vehicle having an automatic transmission according to the present embodiment.
  • the vehicle includes an engine 1, a torque converter 2, an automatic transmission 3, a valve body 7, a parking mechanism 9, and a controller 10.
  • the output of the engine 1 is adjusted by a throttle valve that increases in opening degree from fully closed to fully open in conjunction with an accelerator pedal operated by the driver, and the output rotation of the engine 1 passes through the torque converter 2 and the automatic transmission 3 Input to the input shaft 4.
  • the automatic transmission 3 is configured such that a front planetary gear set and a rear planetary gear set (not shown) are arranged on an input shaft 4 and an output shaft 5 that are coaxially arranged, and a plurality of fastening elements 6 that are operated by hydraulic pressure are fastened and released.
  • the desired transmission speed is realized by switching the power transmission path according to the combination.
  • the output shaft 5 is locked so as not to rotate by the parking mechanism 9 when the shift lever is operated to the P range.
  • An oil passage (not shown) for supplying hydraulic pressure to each fastening element 6 is formed in the valve body 7, and a solenoid 8 driven based on a command input from the controller 10 is provided in each oil passage.
  • the pressure control valve (not shown) provided is operated so that the hydraulic pressure of the command pressure set by the controller 10 is supplied to the predetermined fastening element 6. Further, when the vehicle is traveling, the solenoid 8 is controlled so as to supply hydraulic pressure only to the fastening elements 6 necessary for obtaining a desired gear ratio.
  • the controller 10 determines the command pressure of the operating hydraulic pressure to be supplied to the fastening element 6 to be fastened based on outputs from the engine rotation sensor 11, the turbine rotation sensor 12, the output shaft rotation sensor 13, the inhibitor switch 14, and the like. Then, the controller 10 outputs a command for driving the solenoid 8 so that the hydraulic pressure of the determined command pressure is supplied to the fastening element 6.
  • the controller 10 includes a CPU, a ROM, a RAM, and the like. Each function is exhibited by the CPU executing a program stored in the ROM.
  • the engine rotation sensor 11 detects the rotation of the output shaft of the engine 1 and outputs a signal indicating the detected rotation speed of the output shaft (engine rotation speed Ne) to the controller 10.
  • the turbine rotation sensor 12 detects the rotation of the input shaft 4 of the automatic transmission 3 and outputs a signal indicating the rotation speed of the input shaft 4 (turbine rotation speed Nt) to the controller 10.
  • the output shaft rotation sensor 13 detects the rotation of the output shaft 5 of the automatic transmission 3 and outputs a signal indicating the rotation speed of the output shaft 5 (output shaft rotation speed No) to the controller 10.
  • the output shaft rotation speed No detected by the output shaft rotation sensor 13 is used as the vehicle speed.
  • the inhibitor switch 14 is provided on a manual shaft (not shown) that rotates in conjunction with the operation of the shift lever, and outputs a signal indicating the selected range of the shift lever to the controller 10.
  • the controller 10 executes the piston stroke phase, the fastening progress phase, and the final fastening phase in this order to fasten the fastening element 6.
  • the piston stroke phase the low command pressure is maintained after the high command pressure is commanded, whereby the filling of the hydraulic circuit and the piston stroke of the fastening element 6 are completed.
  • the command pressure increases at a predetermined increase rate from the command pressure in the piston stroke phase.
  • the final engagement phase the command pressure increases to the maximum value at the time of clutch engagement in a short time after the engagement progress phase.
  • the fastening element 6 is in a fastening state when the fastening progress phase ends.
  • Controller 10 fastens fastening element 6 using normal control and open mode control when the shift lever is changed from the non-traveling range to the traveling range.
  • the non-running ranges are the P range and the N range.
  • the travel range is the D range (including the L range) and the R range.
  • the normal control is control for fastening the fastening element 6 based on signals from the engine rotation sensor 11, the turbine rotation sensor 12, the output shaft rotation sensor 13, and the like, and is executed when the vehicle is stopped.
  • the hydraulic pressure supplied to the fastening element 6 is controlled based on the degree of progress shown in the equation (1).
  • the degree of progress is substantially 0% because the engine rotational speed Ne and the turbine rotational speed Nt are substantially equal, and the vehicle is stopped.
  • the turbine rotational speed Nt and the output shaft rotational speed No multiplied by the gear ratio of the automatic transmission 3 are equal to 100%.
  • the fastening element 6 is fastened by open mode control during traveling.
  • Open mode control is control for fastening the fastening element 6 as time passes by a timer provided in the controller 10.
  • step S100 the controller 10 determines whether or not the shift lever has been changed from the N range to the D range based on the signal from the inhibitor switch 14.
  • the controller 10 starts measuring the elapsed time after the shift lever is changed from the N range to the D range by the timer, and proceeds to step S101. If the lever has not been changed from the N range to the D range, that is, if the lever has been changed to the D range, or if the D range has not been selected, the process proceeds to step S105.
  • step S101 the controller 10 supplies hydraulic pressure to the fastening element 6 by normal control.
  • step S102 the controller 10 determines whether or not the elapsed time, which is a physical quantity indicating the state of the automatic transmission 3, has reached a predetermined time (first predetermined time).
  • the predetermined time is a time from when the shift lever is changed from the N range to the D range after the shift lever is changed from the N range to the completion of the piston stroke of the fastening element 6 that is fastened at the start, that is, the piston stroke phase ends. It is a time set in advance by experiment or the like so as not to be longer than the time until.
  • the controller 10 proceeds to step S103, and when the elapsed time does not reach the predetermined time, the controller 10 returns to step S101 and repeats the above control.
  • the twist of the output shaft 5 is resolved before the predetermined time elapses. That is, the elapsed time is also a physical quantity indicating whether or not the twist of the output shaft 5 has been eliminated.
  • step S103 the controller 10 determines whether or not the first open mode control condition is satisfied.
  • the controller 10 determines that the first open mode control condition is satisfied when the degree of progress is equal to or greater than the first threshold value.
  • the controller 10 proceeds to step S104, and when the first open mode control condition is not satisfied, the normal control is continued.
  • the first threshold value is a value for determining that the vehicle is traveling. Immediately after the end of the piston stroke phase when the vehicle is stopped, there is almost no difference between the engine rotational speed Ne and the turbine rotational speed Nt, and the degree of progress is substantially zero.
  • the controller 10 determines that the vehicle is traveling when the degree of progress is equal to or greater than the first threshold value.
  • step S104 the controller 10 changes from normal control to open mode control.
  • step S105 the controller 10 determines whether or not the fastening element 6 is being fastened.
  • the controller 10 proceeds to step S106, and when the fastening element 6 is not fastened, that is, the fastening control of the fastening element 6 by the normal control or the open mode control is finished. If the D range is not selected and the fastening element 6 is not fastened, this control is terminated.
  • step S106 the controller 10 determines whether or not the second open mode control condition is satisfied.
  • the controller 10 determines that the second open mode control condition is satisfied when the engagement state of the engagement element 6 is not in the final engagement phase and (Ne-No ⁇ the gear ratio of the automatic transmission 3) is equal to or less than the second threshold value. judge.
  • the controller 10 proceeds to step S107, and when the second open mode control condition is not satisfied, the controller 10 continues the current control.
  • the second threshold is a value for determining that the vehicle is traveling. When the vehicle is running, since the output shaft rotational speed No is not zero, the value of (Ne-No ⁇ the gear ratio of the automatic transmission 3) is smaller than when the vehicle is stopped. .
  • the controller 10 determines that the vehicle is running when (Ne-No ⁇ gear ratio of the automatic transmission 3) is equal to or smaller than the second threshold value. In the final fastening phase, since the fastening element 6 is in the fastening state, the process does not proceed to step S107 even when normal control is performed.
  • step S107 the controller 10 changes to open mode control when normal control is being performed.
  • FIG. 3 is a time chart when the shift lever is changed from the N range to the D range from a state where the vehicle is stopped.
  • the piston stroke phase ends and the fastening progress phase starts.
  • the degree of progress is 0%, and normal control is continued.
  • the fastening element 6 is gradually fastened and the degree of progress increases.
  • FIG. 4 is a time chart when the vehicle is traveling, the shift lever is changed from the D range to the N range, and further changed from the N range to the D range.
  • FIG. 4 is a time chart after the shift lever is changed from the D range to the N range.
  • the piston stroke phase ends and the fastening progress phase starts. Since the degree of progress is equal to or greater than the first threshold value, the fastening control of the fastening element 6 is changed from normal control to open mode control.
  • This embodiment is different from the first embodiment in the control when the shift lever is changed from the non-traveling range to the traveling range. Control when the shift lever in the present embodiment is changed from the non-traveling range to the traveling range will be described with reference to the flowchart of FIG.
  • step S200 the controller 10 determines whether or not the shift lever has been changed from the N range to the D range based on the signal from the inhibitor switch 14. The controller 10 proceeds to step S201 when the shift lever is changed from the N range to the D range, and proceeds to step S205 when the shift lever is not changed from the N range to the D range.
  • step S201 the controller 10 supplies hydraulic pressure to the fastening element 6 by normal control.
  • step S202 the controller 10 calculates the piston stroke amount of the fastening element 6, which is a physical quantity indicating the state of the automatic transmission 3, and determines whether the piston stroke amount is equal to or greater than a predetermined amount.
  • the piston stroke amount is calculated based on a map of the command hydraulic pressure to the fastening element 6 and the piston stroke speed, which are determined in advance through experiments or the like.
  • the piston stroke speed increases as the indicated hydraulic pressure increases.
  • the piston stroke amount is calculated by integrating the piston stroke speed with respect to the indicated hydraulic pressure for each determination cycle in step S202.
  • the predetermined amount is an amount by which it can be determined that the piston stroke has been completed.
  • the controller 10 proceeds to step S203 when the piston stroke amount is equal to or greater than the predetermined amount, and returns to step S201 when the piston stroke amount is not the predetermined amount, and repeats the above control.
  • step S203 Since the control after step S203 is the same as that in step S103 of the first embodiment, the description thereof is omitted here.
  • the piston stroke amount may be calculated using a stroke sensor or the like.
  • This embodiment is different from the first embodiment in the control when the shift lever is changed from the non-traveling range to the traveling range. Control when the shift lever in the present embodiment is changed from the non-traveling range to the traveling range will be described with reference to the flowchart of FIG.
  • step S300 the controller 10 determines whether or not the shift lever has been changed from the N range to the D range based on the signal from the inhibitor switch 14.
  • the controller 10 starts measuring time after the shift lever is changed from the N range to the D range by the timer, and proceeds to step S301. Is not changed from the N range to the D range, the process proceeds to step S305.
  • step S301 the controller 10 supplies hydraulic pressure to the fastening element 6 by normal control.
  • step S302 the controller 10 determines that the vehicle speed is equal to or higher than the predetermined vehicle speed based on a signal from the output shaft rotation sensor 13 that is a physical quantity indicating the state of the automatic transmission 3 and a timer value (second predetermined time). Time) Determine if it has continued.
  • the predetermined vehicle speed is a vehicle speed at which it can be determined that the vehicle is traveling.
  • the predetermined time is a time during which it can be determined that the rotation of the output shaft 5 is not based on the fact that the twist of the output shaft 5 has been eliminated.
  • the controller 10 determines that the vehicle is traveling when the vehicle speed is equal to or higher than the predetermined vehicle speed for a predetermined time, and proceeds to step S303.
  • step S303 Since the control after step S303 is the same as that in step S103 of the first embodiment, the description thereof is omitted here.
  • the number of signals from the vehicle speed sensor becomes equal to or greater than a predetermined number, it may be determined that the vehicle is running instead of rotation due to the twist of the output shaft 5.
  • the normal control or the open mode control can be selected, and the open mode control is executed even though the vehicle is stopped. Can be suppressed.
  • This embodiment is different from the first embodiment in the control when the shift lever is changed from the non-traveling range to the traveling range. Control when the shift lever in the present embodiment is changed from the non-traveling range to the traveling range will be described with reference to the flowchart of FIG.
  • step S400 the controller 10 determines whether or not the shift lever has been changed from the N range to the D range based on the signal from the inhibitor switch 14. The controller 10 proceeds to step S401 when the shift lever is changed from the N range to the D range, and proceeds to step S405 when the shift lever is not changed from the N range to the D range.
  • step S401 the controller 10 supplies hydraulic pressure to the fastening element 6 by normal control.
  • step S402 the controller 10 determines whether the indicated hydraulic pressure to the fastening element 6, which is a physical quantity indicating the state of the automatic transmission 3, is equal to or higher than a predetermined hydraulic pressure.
  • the predetermined hydraulic pressure is a hydraulic pressure that can be determined to be during piston stroke control.
  • the controller 10 proceeds to step S403 when the command oil pressure is equal to or higher than the predetermined oil pressure, and returns to step S401 and repeats the above control when the command oil pressure is lower than the predetermined oil pressure.
  • step S403 Since the control after step S403 is the same control as step S103 of the first embodiment, the description thereof is omitted here.
  • the determination is performed based on the indicated hydraulic pressure, but the hydraulic pressure supplied to the fastening element 6 may be detected by a hydraulic sensor or the like, and the determination may be performed based on the detected hydraulic pressure. Alternatively, the determination may be made based on the hydraulic pressure after a predetermined time has elapsed since the shift lever was changed from the N range to the D range.
  • the normal control may be changed to the open mode control when the vehicle speed exceeds the threshold vehicle speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 自動変速機の制御装置であって、シフト位置を検出する位置検出手段と、車速を検出する車速検出手段と、自動変速機の入力回転数を検出する回転数検出手段と、シフト位置が駐車位置または中立位置から走行位置へ切り替えられた場合に、自動変速機の状態を示す物理量が所定値以上となった後に、自動変速機の入力回転数に基づいて締結要素への供給油圧を制御する停止時制御から自動変速機の入力回転数を用いずに締結要素への供給油圧を制御する走行時制御への切り替え判定を車速に基づいて行う制御手段とを備える。

Description

自動変速機の制御装置およびその制御方法
 本発明は自動変速機の制御装置およびその制御方法に関するものである。
 従来、シフトレバーがNレンジからDレンジあるいはRレンジに切り替え操作された場合に、エンジン回転速度に基づいて目標タービン回転速度変化率を決定し、タービン回転速度を目標タービン回転速度変化率に一致するように減少するものが、JP5-322027Aに開示されている。
 また、走行中にシフトレバーがDレンジからNレンジへ操作された後に、再びDレンジへ操作された場合に、シフトレバーの操作に応じてソレノイドに供給する電流のフィルタ処理を変更するものが、JP2003-97688Aに開示されている。
 上記のような発明においては、シフトレバーの操作に応じた制御を車速に基づいて開始、または終了することが考えられる。車速は変速機の出力軸の回転を検知する車速センサの信号に基づいて検出される。
 車両は、駐車時に出力軸を機械的に固定する駐車機構を備えている。駐車機構は、シフトレバーがPレンジへ操作されると出力軸を固定し、車両が動かないようにする。駐車機構は、シフトレバーが走行レンジであり、車両が停車している状態からシフトレバーがPレンジへ操作されることで、作動することが一般的である。このとき、出力軸にエンジンから動力が伝達された状態であるにもかかわらず、車輪がフットブレーキによって強制的に停止されているので、出力軸に捻れが発生しており、この捻れが解消されないまま、駐車機構によって出力軸が固定される場合がある。出力軸の捻れはシフトレバーがPレンジからPレンジ以外のレンジへ操作されると解消する。しかし、捻れの解消によって出力軸が回転し、車速センサから信号が出力されるので、車両は停車しているにもかかわらず、車両が走行中であると誤判定され、車両走行時に行われる制御が開始されるおそれがある。
 本発明はこのような問題点を解決するために発明されたもので、シフトレバーが非走行レンジから走行レンジに変更された場合に、車両が停車しているにもかかわらず、車両が走行中であると誤判定され、車両走行中に行われる制御が実行されることを抑制することを目的とする。
 本発明のある態様に係る自動変速機の制御装置は、シフトレバーの位置を検出する位置検出手段と、車速を検出する車速検出手段と、自動変速機の入力回転数を検出する回転数検出手段と、シフトレバーが駐車位置または中立位置から走行位置へ切り替えられた場合に、自動変速機の状態を示す物理量が所定値以上となった後に、自動変速機の入力回転数に基づいて締結要素への供給油圧を制御する停止時制御から自動変速機の入力回転数を用いずに締結要素への供給油圧を制御する走行時制御への切り替え判定を車速に基づいて行う制御手段とを備える。
 本発明の別の態様に係る自動変速機の制御方法は、シフトレバーが駐車位置または中立位置から走行位置へ切り替えられた場合に、自動変速機の状態を示す物理量が所定値以上となった後に、自動変速機の入力回転数に基づいて締結要素への供給油圧を制御する停止時制御から自動変速機の入力回転数を用いずに締結要素への供給油圧を制御する走行時制御への切り替え判定を車速に基づいて行う。
 これら態様によると、シフトレバーが駐車位置または中立位置から走行位置に変更された場合に、車速に基づいて適切に停止時制御から走行時制御へ変更することができる。
 本発明の実施形態、本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。
図1は本実施形態の自動変速機を有する車両の一部を示す概略構成図である。 図2は第1実施形態のシフトレバーが非走行レンジから走行レンジへ変更された場合の制御を示すフローチャートである。 図3は車両が停車している状態からシフトレバーがNレンジからDレンジへ変更された場合のタイムチャートである。 図4は車両が走行しており、シフトレバーがDレンジからNレンジに変更され、さらにNレンジからDレンジへ変更される場合のタイムチャートである。 図5は第2実施形態のシフトレバーが非走行レンジから走行レンジへ変更された場合の制御を示すフローチャートである。 図6は第3実施形態のシフトレバーが非走行レンジから走行レンジへ変更された場合の制御を示すフローチャートである。 図7は第4実施形態のシフトレバーが非走行レンジから走行レンジへ変更された場合の制御を示すフローチャートである。
 本発明の第1実施形態の構成について図1を用いて説明する。
 図1は、本実施形態の自動変速機を有する車両の一部を示す概略構成図である。
 車両は、エンジン1と、トルクコンバータ2と、自動変速機3と、バルブボディ7と、パーキング機構9と、コントローラ10と、を備える。
 エンジン1は、運転者が操作するアクセルペダルに連動して全閉から全開に向けて開度増大するスロットルバルブにより出力を加減され、エンジン1の出力回転はトルクコンバータ2を経て自動変速機3の入力軸4に入力される。
 自動変速機3は、同軸に配置された入力軸4と出力軸5上に、図示しないフロントプラネタリギヤ組、リヤプラネタリギヤ組が配置されて構成され、油圧により作動する複数の締結要素6の締結、解放の組み合わせにより動力伝達経路を切り換えて、所望の変速段を実現する。
 出力軸5は、シフトレバーがPレンジに操作された場合に、パーキング機構9によって回転不能にロックされる。
 バルブボディ7内には、各締結要素6に油圧を供給する油路(図示せず)が形成されており、コントローラ10から入力される指令に基づいて駆動されるソレノイド8が、各油路に設けられた調圧弁(図示せず)を操作して、コントローラ10が設定した指令圧の油圧が所定の締結要素6に供給されるように制御される。また、車両の走行時には、ソレノイド8は所望の変速比を得るために必要な締結要素6のみに油圧を供給するように制御される。
 コントローラ10は、エンジン回転センサ11、タービン回転センサ12、出力軸回転センサ13、インヒビタスイッチ14などの出力に基づいて、締結させる締結要素6に供給する作動油圧の指令圧を決定する。そして、コントローラ10は決定した指令圧の作動油圧が締結要素6に供給されるようにソレノイド8を駆動する指令を出力する。コントローラ10は、CPU、ROM、RAMなどによって構成され、CPUがROMに格納されたプログラムを実行することで、各機能が発揮される。
 エンジン回転センサ11は、エンジン1の出力軸の回転を検出し、検出した出力軸の回転速度(エンジン回転速度Ne)を示す信号を、コントローラ10に出力する。タービン回転センサ12は、自動変速機3の入力軸4の回転を検出し、入力軸4の回転速度(タービン回転速度Nt)を示す信号を、コントローラ10に出力する。出力軸回転センサ13は、自動変速機3の出力軸5の回転を検出し、出力軸5の回転速度(出力軸回転速度No)を示す信号を、コントローラ10に出力する。出力軸回転センサ13によって検出される出力軸回転速度Noは、車速として用いられる。インヒビタスイッチ14は、シフトレバーの操作に連動して回動するマニュアルシャフト(図示せず)に設けられており、シフトレバーの選択レンジを示す信号を、コントローラ10に出力する。
 コントローラ10は、締結要素6を締結する場合に、ピストンストロークフェーズ、締結進行フェーズ、最終締結フェーズの順に実行し、締結要素6を締結する。ピストンストロークフェーズでは、高い指令圧の指令後に低い指令圧を保持することにより油圧回路の充填及び締結要素6のピストンストロークが完了する。締結進行フェーズでは、ピストンストロークフェーズの指令圧から所定増加率で、指令圧が上昇する。最終締結フェーズでは、締結進行フェーズの後に、指令圧が短時間でクラッチ締結時の最大値まで上昇する。締結要素6は締結進行フェーズが終了すると締結状態となっている。
 コントローラ10は、シフトレバーが非走行レンジから走行レンジに変更された場合に、通常制御と、オープンモード制御とを用いて締結要素6の締結を行う。非走行レンジはPレンジおよびNレンジである。走行レンジはDレンジ(Lレンジなどを含む。)およびRレンジである。
 通常制御は、エンジン回転センサ11、タービン回転センサ12、出力軸回転センサ13などからの信号に基づいて締結要素6を締結する制御であり、車両が停車している場合に実行される。通常制御では、式(1)に示す進行度に基づいて締結要素6に供給される油圧が制御される。
 進行度(%)=(Ne-Nt)/(Ne-No×ギア比)×100・・・(1)
 進行度は、車両が停車しており、締結要素6が解放している場合にはエンジン回転速度Neとタービン回転速度Ntとが略等しいので略0%となり、車両が停車しており、締結要素6が完全に締結した場合にはタービン回転速度Ntと、出力軸回転速度Noに自動変速機3のギア比を掛けた値とが等しくなるので100%となる。
 車両が走行している状態で、例えばシフトレバーがDレンジからNレンジへ変更され、その後再びDレンジに変更されると、締結要素6の締結状態にかかわらず、進行度がほぼ一定の値となるおそれがあり、進行度に基づいて締結要素6の状態を正確に検出することが困難になる。そのため、走行中はオープンモード制御によって締結要素6の締結を行う。
 オープンモード制御は、コントローラ10に設けたタイマによる時間経過に従って締結要素6を締結する制御である。
 なお、詳しくは以下において説明するが、本実施形態においては、ピストンストロークフェーズにおいては、車両が走行しているか、停車しているかにかかわらず通常制御が実行される。
 次にシフトレバーが非走行レンジから走行レンジへ変更された場合の制御について図2のフローチャートを用いて説明する。なお、以下において非走行レンジをNレンジとし、走行レンジをDレンジとした場合を例として説明する。
 ステップS100では、コントローラ10は、インヒビタスイッチ14からの信号に基づいてシフトレバーがNレンジからDレンジに変更されたかどうか判定する。コントローラ10は、シフトレバーがNレンジからDレンジに変更された場合には、タイマによってシフトレバーがNレンジからDレンジに変更されてからの経過時間の計測を開始してステップS101へ進み、シフトレバーがNレンジからDレンジに変更されていない場合、すなわちDレンジに変更された後の状態である場合や、Dレンジが選択されていない場合は、ステップS105へ進む。
 ステップS101では、コントローラ10は、通常制御によって締結要素6に油圧を供給する。
 ステップS102では、コントローラ10は、自動変速機3の状態を示す物理量である経過時間が所定時間(第1所定時間)となったかどうか判定する。所定時間は、固体間のばらつきを考慮し、シフトレバーがNレンジからDレンジに変更されてから、発進時に締結する締結要素6のピストンストロークが完了するまでの時間、つまりピストンストロークフェーズが終了するまでの時間よりも長い時間とならないように実験などにより予め設定した時間である。コントローラ10は、経過時間が所定時間となった場合にはステップS103へ進み、経過時間が所定時間となっていない場合にはステップS101に戻り、上記制御を繰り返す。
 車両停車時に、出力軸5に捻れが発生していた場合であっても、所定時間が経過するまでの間に出力軸5の捻れは解消する。つまり、経過時間は、出力軸5の捻れが解消されたかどうかを示す物理量でもある。
 ステップS103では、コントローラ10は、第1オープンモード制御条件が成立したかどうか判定する。コントローラ10は、進行度が第1閾値以上の場合には、第1オープンモード制御条件が成立したと判定する。コントローラ10は、第1オープンモード制御条件が成立するとステップS104へ進み、第1オープンモード制御条件が成立しない場合には通常制御を継続する。第1閾値は、車両が走行していると判定する値である。車両が停車しており、ピストンストロークフェーズが終了した直後に、エンジン回転速度Neとタービン回転速度Ntとの差はほとんどなく、進行度は略ゼロである。しかし、車両が走行している場合には、ピストンストロークフェーズが終了した直後は、エンジン回転速度Neとタービン回転速度Ntとの間に差が生じ、進行度が略ゼロとはならない場合がある。そこで、コントローラ10は、進行度が第1閾値以上となる場合には、車両が走行していると判定する。
 ステップS104では、コントローラ10は、通常制御からオープンモード制御へ変更する。
 ステップS105では、コントローラ10は、締結要素6を締結中であるかどうか判定する。コントローラ10は、締結要素6を締結中である場合には、ステップS106へ進み、締結要素6を締結中ではない場合、すなわち通常制御またはオープンモード制御による締結要素6の締結制御が終了している場合やDレンジが選択されておらず締結要素6の締結が行われていない場合には本制御を終了する。
 ステップS106では、コントローラ10は、第2オープンモード制御条件が成立したかどうか判定する。コントローラ10は、締結要素6の締結状態が最終締結フェーズではなく、かつ(Ne-No×自動変速機3のギア比)が第2閾値以下の場合に、第2オープンモード制御条件が成立したと判定する。コントローラ10は、第2オープンモード制御条件が成立するとステップS107へ進み、第2オープンモード制御条件が成立しない場合には、現在の制御を継続する。第2閾値は車両が走行していると判定する値である。車両が走行している場合には、出力軸回転速度Noがゼロではないので車両が停車している場合と比較して、(Ne-No×自動変速機3のギア比)の値が小さくなる。そこで、コントローラ10は、(Ne-No×自動変速機3のギア比)が第2閾値以下となる場合には、車両が走行していると判定する。なお、最終締結フェーズである場合には、締結要素6は締結状態となっているので通常制御が行われている場合でもステップS107へは進まない。
 ステップS107では、コントローラ10は、通常制御が行われている場合にはオープンモード制御へ変更する。
 次にシフトレバーがNレンジからDレンジへ変更された場合の制御について図3、図4のタイムチャートを用いて説明する。
 まず図3を用いて説明する。図3は、車両が停車している状態からシフトレバーがNレンジからDレンジへ変更された場合のタイムチャートである。
 時間t0において、シフトレバーがNレンジからDレンジへ変更されると、ピストンストロークフェーズが開始される。ここでは通常制御によって締結要素6の締結制御が実行される。
 時間t1において、ピストンストロークフェーズが終了し、締結進行フェーズが開始される。ここでは、進行度は0%であり、通常制御が継続される。油圧指令値が高くなるにつれて締結要素6が徐々に締結し、進行度が大きくなる。
 時間t2において、締結進行フェーズが終了し、締結終了フェーズが開始される。
 時間t3において、指示油圧が締結要素6の最大値となると締結終了フェーズが終了し、締結要素6の締結制御は終了する。
 次に図4を用いて説明する。図4は、車両が走行しており、シフトレバーがDレンジからNレンジに変更され、さらにNレンジからDレンジへ変更される場合のタイムチャートである。なお、図4は、シフトレバーがDレンジからNレンジに変更された後のタイムチャートである。
 時間t0において、シフトレバーがNレンジからDレンジへ変更されると、ピストンストロークフェーズが開始される。ここでは進行度は0%ではないが、通常制御が実行される。
 時間t1において、ピストンストロークフェーズが終了し、締結進行フェーズが開始される。進行度は第1閾値以上となっているので、締結要素6の締結制御は、通常制御からオープンモード制御へ変更される。
 時間t2において、締結進行フェーズが終了し、締結終了フェーズが開始される。
 時間t3において、指示油圧が締結要素6の最大値となると締結終了フェーズが終了し、締結要素6の締結制御は終了する。
 本発明の第1実施形態の効果について説明する。
 本実施形態では、シフトレバーがNレンジからDレンジへ変更された場合に、NレンジからDレンジへ変更されてからタイマが所定時間となった後に、通常制御からオープンモード制御へ切り替えるかどうかの判定を行う。
 本実施形態を用いない場合には、出力軸に捻れが生じた状態で停車していた場合に、出力軸の捻れが解消する際に車速センサから出力された信号に基づいて実際には車両が走行していないにもかかわらず、車両が走行していると誤判定され、締結要素がオープンモード制御で締結されるおそれがある。
 本実施形態を用いた場合では、捻れが発生していた場合でも捻れが解消する所定時間経過後に判定を行うことにより、このような誤判定を防ぐことができ、車両が停車しているにもかかわらず、オープンモード制御が実行されることを抑制することができる。
 次に本発明の第2実施形態について説明する。
 本実施形態は、シフトレバーが非走行レンジから走行レンジへ変更された場合の制御が第1実施形態と異なっている。本実施形態におけるシフトレバーが非走行レンジから走行レンジへ変更された場合の制御について図5のフローチャートを用いて説明する。
 ステップS200では、コントローラ10は、インヒビタスイッチ14からの信号に基づいてシフトレバーがNレンジからDレンジに変更されたかどうか判定する。コントローラ10は、シフトレバーがNレンジからDレンジに変更された場合にはステップS201へ進み、シフトレバーがNレンジからDレンジに変更されていない場合にはステップS205へ進む。
 ステップS201では、コントローラ10は、通常制御によって締結要素6に油圧を供給する。
 ステップS202では、コントローラ10は、自動変速機3の状態を示す物理量である締結要素6のピストンストローク量を算出し、ピストンストローク量が所定量以上であるかどうか判定する。ピストンストローク量は、予め実験などによって定めた締結要素6への指示油圧とピストンストローク速度とのマップに基づいて算出される。ピストンストローク速度は指示油圧が大きくなるほど大きくなる。ピストンストローク量は、ステップS202の判定周期毎の指示油圧に対するピストンストローク速度を積算することで算出される。所定量は、ピストンストロークが完了したと判断できる量である。コントローラ10は、ピストンストローク量が所定量以上となった場合にはステップS203へ進み、ピストンストローク量が所定量となっていない場合にはステップS201に戻り、上記制御を繰り返す。
 ステップS203以降の制御は第1実施形態のステップS103と同じ制御なので、ここでの説明は省略する。
 なお、ストロークセンサなどを用いてピストンストローク量を算出してもよい。
 本発明の第2実施形態の効果について説明する。
 ピストンストローク量に基づいて通常制御からオープンモード制御へ切り替えるかどうかの判定を行うことで、共通の制御方法であるピストンストロークが完了した後に、車両が走行している場合には通常制御からオープンモード制御へ適切に変更することができる。
 次に本発明の第3実施形態について説明する。
 本実施形態は、シフトレバーが非走行レンジから走行レンジへ変更された場合の制御が第1実施形態と異なっている。本実施形態におけるシフトレバーが非走行レンジから走行レンジへ変更された場合の制御について図6のフローチャートを用いて説明する。
 ステップS300では、コントローラ10は、インヒビタスイッチ14からの信号に基づいてシフトレバーがNレンジからDレンジに変更されたかどうか判定する。コントローラ10は、シフトレバーがNレンジからDレンジに変更された場合には、タイマによってシフトレバーがNレンジからDレンジに変更されてからの時間の計測を開始してステップS301へ進み、シフトレバーがNレンジからDレンジに変更されていない場合には、ステップS305へ進む。
 ステップS301では、コントローラ10は、通常制御によって締結要素6に油圧を供給する。
 ステップS302では、コントローラ10は、自動変速機3の状態を示す物理量である出力軸回転センサ13からの信号、およびタイマの値に基づいて車速が所定車速以上となる状態が所定時間(第2所定時間)継続したかどうか判定する。所定車速は、車両が走行していると判断できる車速である。所定時間は、出力軸5の回転が出力軸5の捻れが解消されたことに基づく回転ではない判断できる時間である。コントローラ10は、車速が所定車速以上となる状態が所定時間継続した場合には車両が走行していると判定し、ステップS303へ進む。
 ステップS303以降の制御は第1実施形態のステップS103と同じ制御なので、ここでの説明は省略する。
 なお、車速センサからの信号数が所定数以上となった時に、出力軸5の捻れによる回転ではなく、車両が走行していると判定してもよい。
 本発明の第3実施形態の効果について説明する。
 出力軸5の捻れが確実に解消する時間が経過した後に、通常制御、またはオープンモード制御を選択することができ、車両が停車しているにもかかわらず、オープンモード制御が実行されることを抑制することができる。
 次に本発明の第4実施形態について説明する。
 本実施形態は、シフトレバーが非走行レンジから走行レンジへ変更された場合の制御が第1実施形態と異なっている。本実施形態におけるシフトレバーが非走行レンジから走行レンジへ変更された場合の制御について図7のフローチャートを用いて説明する。
 ステップS400では、コントローラ10は、インヒビタスイッチ14からの信号に基づいてシフトレバーがNレンジからDレンジに変更されたかどうか判定する。コントローラ10は、シフトレバーがNレンジからDレンジに変更された場合にはステップS401へ進み、シフトレバーがNレンジからDレンジに変更されていない場合にはステップS405へ進む。
 ステップS401では、コントローラ10は、通常制御によって締結要素6に油圧を供給する。
 ステップS402では、コントローラ10は、自動変速機3の状態を示す物理量である締結要素6への指示油圧が所定油圧以上であるかどうか判定する。所定油圧は、ピストンストローク制御中であると判定できる油圧である。コントローラ10は、指示油圧が所定油圧以上となった場合にはステップS403へ進み、指示油圧が所定油圧よりも低い場合にはステップS401に戻り上記制御を繰り返す。
 ステップS403以降の制御は第1実施形態のステップS103と同じ制御なのでここでの説明は省略する。
 なお、本実施形態では指示油圧に基づいて判定を行ったが、油圧センサなどによって締結要素6に供給されている油圧を検出し、検出した油圧に基づいて判定を行ってもよい。また、シフトレバーがNレンジからDレンジへ変更されてから所定時間経過後の油圧に基づいて判定を行ってもよい。
 本発明の第4実施形態の効果について説明する。
 締結要素6への指示油圧に基づいても第1実施形態と同様の効果を得ることができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 第1オープンモード条件が成立するかどうかの判定に進行度を用いたが、車速がしきい車速以上となった場合に通常制御からオープンモード制御へ変更してもよい。
 本願は2011年11月18日に日本国特許庁に出願された特願2011-253169に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (6)

  1.  自動変速機の制御装置であって、
     シフト位置を検出する位置検出手段と、
     車速を検出する車速検出手段と、
     前記自動変速機の入力回転数を検出する回転数検出手段と、
     前記シフト位置が駐車位置または中立位置から走行位置へ切り替えられた場合に、前記自動変速機の状態を示す物理量が所定値以上となった後に、前記自動変速機の入力回転数に基づいて締結要素への供給油圧を制御する停止時制御から前記自動変速機の入力回転数を用いずに前記締結要素への供給油圧を制御する走行時制御への切り替え判定を前記車速に基づいて行う制御手段とを備える自動変速機の制御装置。
  2.  請求項1に記載の自動変速機の制御装置であって、
     前記物理量は、前記シフト位置が前記駐車位置または前記中立位置から前記走行位置へ切り替えられてからの経過時間であり、
     前記制御手段は、前記経過時間が第1所定時間以上となった後に前記停止時制御から前記走行時制御への切り替え判定を行う自動変速機の制御装置。
  3.  請求項1に記載の自動変速機の制御装置であって、
     前記物理量は、前記締結要素を締結する油圧アクチュエータのピストンストローク量であり、
     前記制御手段は、前記ピストンストローク量が所定量以上となった後に前記停止時制御から前記走行時制御への切り替え判定を行う自動変速機の制御装置。
  4.  請求項1に記載の自動変速機の制御装置であって、
     前記物理量は、前記車速検出手段が出力する信号の継続時間または前記車速検出手段が出力する信号の信号数であり、
     前記制御手段は、前記信号数が所定数以上となった後、または前記信号数に基づいて検出される車速が所定車速以上となる状態が第2所定時間継続した後に前記停止時制御から前記走行時制御への切り替え判定を行う自動変速機の制御装置。
  5.  請求項1に記載の自動変速機の制御装置であって、
     前記物理量は、前記締結要素への供給油圧、または指示油圧であり、
     前記制御手段は、前記供給油圧または前記指示油圧が所定油圧よりも高くなった後に前記停止時制御から前記走行時制御への切り替え判定を行う自動変速機の制御装置。
  6.  自動変速機の制御方法であって、
     シフト位置が駐車位置または中立位置から走行位置へ切り替えられた場合に、前記自動変速機の状態を示す物理量が所定値以上となった後に、前記自動変速機の入力回転数に基づいて締結要素への供給油圧を制御する停止時制御から前記自動変速機の入力回転数を用いずに前記締結要素への供給油圧を制御する走行時制御への切り替え判定を前記車速に基づいて行う自動変速機の制御方法。
PCT/JP2012/075820 2011-11-18 2012-10-04 自動変速機の制御装置およびその制御方法 WO2013073309A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147015864A KR101601576B1 (ko) 2011-11-18 2012-10-04 자동 변속기의 제어 장치 및 그 제어 방법
JP2013544182A JP5836390B2 (ja) 2011-11-18 2012-10-04 自動変速機の制御装置およびその制御方法
CN201280056583.9A CN103946602B (zh) 2011-11-18 2012-10-04 自动变速器的控制装置及其控制方法
US14/359,026 US9028356B2 (en) 2011-11-18 2012-10-04 Device for controlling automatic transmission and method for controlling same
EP12849825.0A EP2781804B1 (en) 2011-11-18 2012-10-04 Device for controlling automatic transmission and method for controlling same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-253169 2011-11-18
JP2011253169 2011-11-18

Publications (1)

Publication Number Publication Date
WO2013073309A1 true WO2013073309A1 (ja) 2013-05-23

Family

ID=48429379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075820 WO2013073309A1 (ja) 2011-11-18 2012-10-04 自動変速機の制御装置およびその制御方法

Country Status (6)

Country Link
US (1) US9028356B2 (ja)
EP (1) EP2781804B1 (ja)
JP (1) JP5836390B2 (ja)
KR (1) KR101601576B1 (ja)
CN (1) CN103946602B (ja)
WO (1) WO2013073309A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112337A (ja) * 2011-11-30 2013-06-10 Hyundai Motor Co Ltd ハイブリッド車のオイルポンプ制御方法
CN109139899A (zh) * 2018-08-14 2019-01-04 吉利汽车研究院(宁波)有限公司 一种换挡装置、方法及车辆

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106958651B (zh) * 2017-04-01 2018-12-21 重庆大学 一种机械式刚柔换挡装置
JP7128642B2 (ja) * 2018-04-04 2022-08-31 ナブテスコ株式会社 油圧駆動装置
CN110985662A (zh) * 2020-02-28 2020-04-10 盛瑞传动股份有限公司 一种防止自动变速器离合器故障的控制方法
CN114893310A (zh) * 2022-04-24 2022-08-12 潍柴动力股份有限公司 发动机保护控制方法、装置及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322027A (ja) 1992-05-18 1993-12-07 Mitsubishi Motors Corp 車両用自動変速機の変速制御方法
JPH094706A (ja) * 1995-04-17 1997-01-07 Honda Motor Co Ltd 自動変速機の変速制御装置
JP2003097688A (ja) 2001-09-26 2003-04-03 Jatco Ltd 自動変速機の制御装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0324878A1 (de) * 1988-01-20 1989-07-26 Csepel Autogyár Verfahren und Einrichtung zum sicherheitsvollen Anfahren und energiesparenden Parken von mit elektrohydraulisch gesteuertem hydromechanischen automatischen Wechselgetriebe ausgestatteten Strassenkraftfahrzeugen
US5046178A (en) * 1990-01-11 1991-09-03 General Motors Corporation Control method for automatic transmission garage shifts
US5655993A (en) * 1995-04-17 1997-08-12 Honda Giken Kogyo Kabushiki Kaisha Shift control apparatus for an automatic transmission
JP2002039366A (ja) * 2000-07-31 2002-02-06 Toyota Motor Corp 車両用変速機の制御装置
JP4193965B2 (ja) * 2001-01-11 2008-12-10 ジヤトコ株式会社 自動変速機の変速制御装置
JP4306132B2 (ja) * 2001-02-22 2009-07-29 いすゞ自動車株式会社 副変速機の切換制御装置及び切換制御方法
FR2823351B1 (fr) * 2001-04-04 2003-07-18 Siemens Automotive Sa Dispositif de transmission de mesures d'un capteur vers une unite centrale
JP2003106437A (ja) * 2001-09-28 2003-04-09 Jatco Ltd 自動変速機の変速制御装置
FR2876455B1 (fr) * 2004-10-13 2007-01-05 Siemens Vdo Automotive Sas Procede et dispositif de traitement des signaux de mesures issus d'un capteur de deplacement embarque sur un vehicule automobile
JP4603600B2 (ja) * 2008-06-06 2010-12-22 ジヤトコ株式会社 自動変速機の油圧制御装置
JP5071422B2 (ja) * 2009-03-25 2012-11-14 トヨタ自動車株式会社 車両用シフト制御装置
JP4852130B2 (ja) * 2009-07-17 2012-01-11 日産自動車株式会社 車両用無段変速機の制御装置
JP5266158B2 (ja) * 2009-08-03 2013-08-21 本田技研工業株式会社 変速機の制御装置
JP2011099530A (ja) * 2009-11-09 2011-05-19 Hino Motors Ltd 機械式自動変速機の制御装置及び同期開始タイミング取得装置
US8386132B2 (en) * 2010-01-11 2013-02-26 Chrysler Group Llc Manual transmission neutral switch diagnostic and movement prevention method and system
JP5406744B2 (ja) * 2010-01-21 2014-02-05 株式会社クボタ 作業車の車速制御構造
CN103354880B (zh) * 2011-02-14 2015-07-15 丰田自动车株式会社 车辆的控制装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322027A (ja) 1992-05-18 1993-12-07 Mitsubishi Motors Corp 車両用自動変速機の変速制御方法
JPH094706A (ja) * 1995-04-17 1997-01-07 Honda Motor Co Ltd 自動変速機の変速制御装置
JP2003097688A (ja) 2001-09-26 2003-04-03 Jatco Ltd 自動変速機の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2781804A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112337A (ja) * 2011-11-30 2013-06-10 Hyundai Motor Co Ltd ハイブリッド車のオイルポンプ制御方法
CN109139899A (zh) * 2018-08-14 2019-01-04 吉利汽车研究院(宁波)有限公司 一种换挡装置、方法及车辆
CN109139899B (zh) * 2018-08-14 2020-09-11 吉利汽车研究院(宁波)有限公司 一种换挡装置、方法及车辆

Also Published As

Publication number Publication date
EP2781804B1 (en) 2017-12-20
US20140349816A1 (en) 2014-11-27
US9028356B2 (en) 2015-05-12
JPWO2013073309A1 (ja) 2015-04-02
CN103946602A (zh) 2014-07-23
KR101601576B1 (ko) 2016-03-08
KR20140101360A (ko) 2014-08-19
JP5836390B2 (ja) 2015-12-24
EP2781804A4 (en) 2017-03-15
CN103946602B (zh) 2016-06-08
EP2781804A1 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5836390B2 (ja) 自動変速機の制御装置およびその制御方法
JP4661823B2 (ja) エンジン制御装置
EP2017152B1 (en) Vehicle engine control apparatus
JP4972566B2 (ja) 自動変速機の制御方法及び制御装置
CN103998830A (zh) 自动变速器的控制装置
JP5771699B2 (ja) 自動変速機及びその発進時制御方法
JP2008286185A (ja) エンジン制御装置
JP2003028290A (ja) 動力伝達装置におけるエンジン再始動発進制御装置
JP6718021B2 (ja) シフターの異常診断装置及びシフターの異常診断方法
KR101629591B1 (ko) 자동 변속기의 제어 장치
JP6518331B2 (ja) 自動変速機の制御装置および自動変速機の制御方法
KR101793075B1 (ko) 자동 변속기의 변속 제어 장치 및 방법
JP2005042809A (ja) 自動変速機の変速制御装置
JP5407985B2 (ja) 自動変速機の制御装置
KR101114459B1 (ko) 자동변속기용 파워 오프 다운 시프트 제어방법
JP4858282B2 (ja) エンジン制御装置
JP5836391B2 (ja) 自動変速機の制御装置
JP2020094654A (ja) 学習制御装置及び学習制御方法
JP2009014130A (ja) 自動変速機および自動変速機の制御装置
JP2010242677A (ja) 車両の制御装置
JP2010059800A (ja) 車両の制御装置
JP2010255654A (ja) 変速機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013544182

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14359026

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012849825

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147015864

Country of ref document: KR

Kind code of ref document: A