WO2013073276A1 - ヒータ並びにそれを備える定着装置及び乾燥装置 - Google Patents

ヒータ並びにそれを備える定着装置及び乾燥装置 Download PDF

Info

Publication number
WO2013073276A1
WO2013073276A1 PCT/JP2012/073373 JP2012073373W WO2013073276A1 WO 2013073276 A1 WO2013073276 A1 WO 2013073276A1 JP 2012073373 W JP2012073373 W JP 2012073373W WO 2013073276 A1 WO2013073276 A1 WO 2013073276A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance heating
heater
wiring portion
base
heating wiring
Prior art date
Application number
PCT/JP2012/073373
Other languages
English (en)
French (fr)
Inventor
文勝 鈴木
裕司 梅村
智克 青山
宜三 岩田
智晴 今井
Original Assignee
株式会社美鈴工業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社美鈴工業 filed Critical 株式会社美鈴工業
Priority to KR1020147015146A priority Critical patent/KR102037827B1/ko
Priority to JP2013544166A priority patent/JP6228458B2/ja
Priority to CN201280055012.3A priority patent/CN103931271B/zh
Publication of WO2013073276A1 publication Critical patent/WO2013073276A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/262Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an insulated metal plate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/265Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an inorganic material, e.g. ceramic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/003Heaters using a particular layout for the resistive material or resistive elements using serpentine layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/016Heaters using particular connecting means

Definitions

  • the present invention relates to a long heater having a resistance heating wiring portion that generates heat when energized, and a fixing device and a drying device including the heater.
  • a heating means for heat treatment As a heating means for heat treatment, a stainless steel heater, a ceramic heater or the like having a resistance heating wiring portion is known. And an apparatus provided with such a heater is used for a wide range of applications, and a stable heat treatment is performed at a desired temperature. For example, in order to form an image on the surface of a recording medium such as paper or film using an image forming apparatus such as an electrophotographic printing machine or copying machine, a long ceramic heater is provided in the image forming apparatus. Arranged to fix toner, ink, and the like. A specific image forming method is to supply a recording medium having an unfixed toner image on its surface between a fixing roll provided with a heater and a pressure roll, and to pass through both press contact portions. It is to fix.
  • the recording medium is generally performed while moving in the width direction of the long heater (direction perpendicular to the longitudinal direction of the heater). For this reason, a heater capable of performing stable heat treatment while suppressing temperature unevenness without depending on the size of the recording medium has been studied.
  • the conventional fixing heater passes the maximum length (width) of paper that can pass through the entire length of the paper or the paper of a smaller size. It may be mentioned that a different heating element is provided and the energization is switched according to the sheet passing size. In this case, if paper having a length (width) equivalent to the entire length of the fixing heater is passed, there is a problem that the temperature of the entire heating element decreases.
  • Patent Document 1 includes a heating element that generates heat by energization on the surface of an insulating substrate, and a plurality of heating elements having different widths along the longitudinal direction are arranged on the insulating substrate in parallel, and the traveling direction of a recording medium such as paper Has disclosed a heater in which a narrow heating element is arranged on the upstream side of the insulating substrate in the width direction.
  • Patent Document 2 a long plate-like insulating substrate having high thermal conductivity such as aluminum nitride, a heating resistor formed on one surface of the insulating substrate, and a power supply to the heating resistor are formed.
  • Insulating substrate in a portion that generates heat higher than other portions of the heating resistor when power is supplied from the electrode portion for feeding, an overcoat layer disposed so as to cover the heating resistor, and the electrode portion for feeding And a heat dissipation pattern formed of a material having a higher thermal conductivity than the insulating substrate on the back surface of the fixing heater.
  • Patent Document 3 a long flat substrate formed of a heat-resistant and insulating material, a heating resistor formed on one surface of the substrate, and a power supply formed to supply power to the heating resistor An electrode portion and an overcoat layer disposed so as to cover the heating resistor, the heating resistor having a first specific resistance value formed at the center in the longitudinal direction.
  • a fixing heater is disclosed in which a heat generating resistor and a second heat generating resistor having a second specific resistance value smaller than the first specific resistance connected to both ends of the first heat generating resistor are connected in series. ing.
  • an image forming apparatus such as an electrophotographic copying machine or a printer
  • image heating and fixing apparatuses that thermally fix an unfixed toner image formed and supported on a recording material such as a transfer material or photosensitive paper as a permanent fixed image.
  • On-demand film heating systems are known. This has a heater and a film whose one surface slides on this heater and whose other surface is in contact with the recording material and moves together, and the unfixed toner image is covered by the heat from the heater via the film. It is heat-fixed on the recording material.
  • the heater and the film as the member that conducts the heat of the heater to the recording material can be reduced in heat capacity, so on-demand power saving and shortening of the wait time (quick time) Startability) is possible. That is, it takes only a short time to raise the temperature of the apparatus from the cooled state to a predetermined temperature, and there is no need to heat the heater during standby.
  • the heater can be sufficiently heated up to a predetermined temperature until the recording material reaches the fixing portion, so that power consumption can be kept low. It is possible to reduce the temperature increase in the image forming apparatus.
  • a ceramic heater is suitable as a heating member that gives a high temperature rising rate with a low heat capacity.
  • This heater is, for example, a ceramic substrate (for example, an alumina substrate) having electrical insulation, heat resistance, or good thermal conductivity, and a resistance heating that generates heat upon power supply, which is patterned on the substrate by printing, baking, etc.
  • a primary circuit (hereinafter, referred to as an AC line) including a body (for example, silver-palladium), and supplies power to the resistance heating element to generate heat.
  • the heater is provided with a secondary system circuit (hereinafter referred to as a DC line) including a temperature measuring element (for example, a thermistor), and the heater is controlled to a predetermined set temperature by a temperature control system connected to the DC line.
  • the electric power supplied to the resistance heating element is controlled so that the temperature is adjusted to a low temperature.
  • a safety element such as a thermal fuse is inserted in series with the AC line, and this element is placed in contact with or close to the heater. The power supply to the resistance heating element is cut off urgently by the operation of the element.
  • a conductive base material made of SUS430, an insulating glass layer having a glass transition point T1 formed on the conductive base material, and a glass transition point formed on the insulating glass layer A heater having a resistor pattern having T2, a conductor pattern for supplying power to the resistor pattern, and an insulating glass layer having a glass transition point T3 formed on the resistor pattern and the conductor pattern.
  • a heater in which the relationship between the glass transition points of the layers formed on the material satisfies T1> T3 ⁇ T2 or T1> T2 ⁇ T3 is known, and is said to be suitable for a transfer type electrophotographic process (patent) Reference 4).
  • a dryer provided with a heating resistor for example, a dryer provided with a self-adjusting electric resistance heater disclosed in Patent Document 5 is known.
  • This self-regulating electrical resistance heating element is adjacent to a non-conductive substrate, a first metal oxide having a positive or negative temperature coefficient less than a predetermined operating temperature deposited on the substrate, and adjacent to the first metal oxide.
  • First and second electrical contacts positioned such that current can flow between the contacts, wherein the first and second metal oxides in combination are substantially from ambient temperature to a predetermined operating temperature. It is a heating element that provides a constant resistance combined and a very significant increase in resistance above the operating temperature.
  • the present invention suppresses a local temperature rise in the resistance heating wiring portion during use, and can perform a stable heat treatment while suppressing temperature unevenness of the object to be heat-treated without depending on its size. It is another object of the present invention to provide a fixing device and a drying device including the same.
  • the resistance heating wiring reaches a high temperature of, for example, 800 ° C. It is known.
  • the present invention provides a heater that interrupts power supply to a resistance heating wiring portion when the resistance heating wiring portion that generates heat exceeds a predetermined temperature due to thermal runaway or the like, and a fixing device and a drying device including the heater The purpose is to do.
  • the present invention is shown below. 1.
  • An elongated base and a resistance heating part formed in a state of being electrically insulated with respect to the base on the surface side or inside of the base, and having a plurality of parallel wirings that generate heat when energized
  • a resistance heating wiring portion and a power supply terminal portion formed on the surface side or inside of the base portion in a state of being electrically insulated from the base portion, wherein the number of the power supply terminal portions is at least 2
  • a heater including a power feeding terminal portion that electrically connects one terminal portion and the other terminal portion via the resistance heating wiring portion The resistance heating wiring portion includes a material having a resistance temperature coefficient of 500 to 4,400 ppm / ° C., and the parallel wiring includes an inclined rectangular pattern.
  • the number of the power supply terminal portions is two, and further, a conductor wiring portion formed on the surface side or inside of the base portion in a state of being electrically insulated from the base portion, wherein the conductor The number of wiring parts is two, the conductive wiring part for electrically connecting the one end side and the other end side of the resistance heating wiring part and the two power feeding terminal parts separately, and the resistance heating On the upper layer side surface or lower layer side surface of at least one of the part of the wiring part and the part of the conductor wiring part, the line width of the resistance heating wiring part or the line width of the conductor wiring part is equal to or greater than that.
  • the heater is a laminated heater including the resistance heating wiring portion and the conductor wiring portion in this order on the surface of the electrical insulating layer of the base, and a part of the resistance heating wiring portion, for forming the disconnection portion. 4. The heater according to 3 above, wherein at least a part of the insulating part and a part of the conductor wiring part are sequentially provided in surface contact with each other. 5. 3. The heater according to 2 above, wherein the base portion includes an insulating ceramic, and the resistance heating wiring portion is formed on a surface of the base portion. 6).
  • the heater is a laminated heater including the resistance heating wiring portion and the conductor wiring portion in this order on the surface of the base portion, and a part of the resistance heating wiring portion and at least a part of the disconnection portion forming insulating portion.
  • the base comprises a base layer containing stainless steel, aluminum or an aluminum alloy, and an electrically insulating layer formed on the surface of the base layer, 3.
  • the heater is a laminated heater including the conductor wiring portion and the resistance heating wiring portion in this order on the surface of the electrical insulating layer of the base, and a part of the conductor wiring portion, the insulation for forming the disconnection portion.
  • the heater according to 7 above wherein at least a part of the part and a part of the resistance heating wiring part are sequentially in surface contact with each other.
  • the base includes an insulating ceramic, 3.
  • the heater is a laminated heater including the conductor wiring portion and the resistance heating wiring portion in this order on the surface of the base, and a part of the conductor wiring portion, at least a part of the disconnection portion forming insulating portion, The heater as described in 9 above, wherein a part of the resistance heating wiring portion includes a surface contact portion in order. 11.
  • the heater according to any one of 2 to 10 wherein the resistance heating wiring portion includes a silver alloy.
  • the conductor wiring portion contains silver.
  • the disconnection portion forming insulating portion includes at least one selected from bismuth-based glass and lead-based glass.
  • the base portion includes a base layer containing stainless steel, aluminum, or an aluminum alloy, and an electrical insulating layer formed on the surface of the base layer, and the resistance heating wiring portion and the power feeding terminal portion are formed of the electrical insulating layer. 2.
  • the base portion includes an insulating ceramic, and the resistance heating wiring portion and the power feeding terminal portion are formed on a surface of the base portion. 17.
  • the base portion includes an insulating ceramic, and the resistance heating wiring portion is formed inside the base portion. 18. 18.
  • Conductor wiring parts formed in an electrically insulated state the number of the conductor wiring parts being two, one end side and the other end side of the resistance heating wiring part and the two power supply terminals
  • the line width of the heat generation wiring section or the same or longer than the line width of the conductor wiring section A disconnection forming insulating portion formed in contact with the material (m1) constituting the resistance heating wiring portion and the conductor wiring portion when the resistance heating wiring portion reaches a predetermined temperature or higher.
  • An insulating part for forming a disconnection part that includes a material that reacts with at least one selected from the constituent materials (m2), forms an electrical insulating part by the reaction, and disconnects the resistance heating wiring part or the conductor wiring part And a heater.
  • a fixing device comprising the heater according to any one of 1 to 19 above.
  • a drying apparatus comprising the heater according to any one of 1 to 19 above.
  • the local temperature rise of the resistance heating wiring portion during use is suppressed, and the heat-treated object is subjected to stable heat treatment while suppressing temperature unevenness without depending on its size. be able to.
  • the resistance heating wiring portion includes an inclined rectangular pattern, the desired effect can be obtained even if the heater width is reduced.
  • the heater of the present invention is not only heat-treated in a state where both the heater and the object to be heat-treated are fixed, but also in a state where the object to be heat-treated is fixed, the heater is arranged in the width direction (direction perpendicular to the longitudinal direction of the heater).
  • heat treatment object is either Is moved so as to cross the width direction of the long heater, the heat-treated object can be subjected to stable heat treatment while suppressing temperature unevenness without depending on its size. Further, even when heat-treated materials having different thermal properties are heat-treated at the same temperature, stable treatment can be performed at a predetermined temperature without causing abnormal heat generation.
  • the heat treatment can be stably performed at a desired temperature, for example, a set temperature in the range of ⁇ 40 ° C. to 1,000 ° C., without depending on the size of the object to be heat treated.
  • the heater of the present invention By arranging the heater of the present invention in a heat treatment apparatus, fixing of toner, ink, etc., bonding a plurality of members, heat treatment of a coating film or film, heat treatment of a metal product or resin product, drying, solder reflow, etc. It can be done efficiently with power saving.
  • the heater since the heater can be reduced in width, it is suitable for placement in a small heat treatment apparatus.
  • the rectangular pattern shown in FIG. 1 (A) is applied to the resistance heating wiring portion in FIG. 4 and toner, ink, etc. are fixed, it has a non-wiring portion in the width direction of the heater. Although a linear fixing failure may occur, the problem is solved by using the heater of the present invention.
  • the heater of the present invention is a fixing heater in an image forming apparatus or a fixing apparatus such as a printing machine, a copying machine, and a facsimile machine. It is suitable as.
  • the fixing device of the present invention is suitable for fixing toner, ink, and the like using heat from a heater, bonding a plurality of members, and the like.
  • an integrated product can be obtained efficiently by using a pressure bonding means in combination.
  • a fixing device including a fixing roll including a long heater and a pressure roll a recording medium having an unfixed toner image on the surface is supplied between the fixing roll and the pressure roll.
  • the local temperature rise of the resistance heating wiring portion is suppressed and the size depends on the size. Therefore, toner, ink, and the like can be efficiently fixed on a recording medium such as paper or film.
  • drying apparatus of the present invention drying in a desired atmosphere can be efficiently advanced. And it can use as a vacuum dryer (vacuum dryer), a pressure dryer, a dehumidification dryer, a hot air dryer, an explosion-proof dryer, etc.
  • a vacuum dryer vacuum dryer
  • pressure dryer pressure dryer
  • dehumidification dryer a hot air dryer
  • explosion-proof dryer etc.
  • the excessive heating of the resistance heating wiring portion starts due to the thermal runaway or the like, and when the temperature exceeds a predetermined temperature, the resistance heating wiring portion and / or the conductor wiring portion In the contact part (covering part) with the insulation part for forming the disconnection part, each constituent material reacts to form an electrical insulation part, and the resistance heating wiring part or the conductor wiring part is smoothly disconnected to operate. Can be stopped. Therefore, also in the fixing device and the drying device using the heater of this aspect, when the heater reaches a predetermined temperature or more, the resistance heating wiring portion or the conductor wiring portion can be self-disconnected to ensure safety. be able to.
  • FIG. 5 is a schematic view showing a cross section taken along line XX of FIG. 4. It is a schematic plan view which shows the other example of the heater of 1 aspect. It is a schematic plan view which shows the other example of the heater of 1 aspect. It is a schematic sectional drawing which shows the other example of the heater of 1 aspect. It is a schematic sectional drawing which shows the other example of the heater of 1 aspect. It is a schematic sectional drawing which shows the other example of the heater of 1 aspect.
  • FIG. 13 is a schematic cross-sectional view showing that the heater of FIG. 12 is thermally runaway and an electrically insulating portion is formed in a part of the conductor wiring portion, and the conductor wiring portion is disconnected.
  • FIG. 1 It is a schematic sectional drawing which shows an example of the heater of the other aspect by which the insulation part for disconnection part formation is coat-coated by the surface of the resistance heating wiring part. It is a schematic sectional drawing which shows the other example of the heater of the other aspect by which the insulation part for disconnection part formation is coat-formed on the surface of the resistance heating wiring part. It is a schematic plan view which shows the other example of the heater of the other aspect by which the insulation part for disconnection part formation is coat-formed on the surface of the conductor wiring part. Schematic cross section showing another example of the heater of another aspect in which the disconnection portion forming insulating portion is formed on the surface side of the conductor wiring portion and in the overcoat layer so as to be surrounded by the overcoat layer FIG.
  • FIG. 19 is a schematic cross-sectional view showing that the heater of FIG.
  • FIG. 21 is a schematic cross-sectional view showing that the heater of FIG. 20 is thermally runaway, an electrically insulating portion is formed in a part of the conductor wiring portion and the resistance heating wiring portion, and the conductor wiring portion and the resistance heating wiring portion are disconnected.
  • the outline which shows the other example of the heater of the other aspect currently formed between the base and the conductor wiring part so that the insulation part for disconnection part formation may be enclosed in the 1st insulation layer in the 1st insulation layer It is sectional drawing.
  • FIG. 1 Schematic cross section showing another example of the heater of another aspect in which the disconnection portion forming insulating portion is formed on the surface side of the conductor wiring portion and in the overcoat layer so as to be surrounded by the overcoat layer
  • FIG. 2 It is a schematic sectional drawing which shows the other example of the heater of the other aspect in which the insulation part for disconnection part formation is formed facing the base side of a conductor wiring part, and the surface side of a resistance heating wiring part. It is a schematic sectional drawing which shows the other example of the heater of the other aspect which has the insulation part for two disconnection part formation.
  • the outline which shows the other example of the heater of the other aspect in which the insulation part for disconnection part formation is formed so that it may be surrounded by the overcoat layer in the surface side of a resistance heating wiring part, and in an overcoat layer It is sectional drawing. It is a schematic sectional drawing which shows the other example of the heater of the other aspect in which the insulation part for disconnection part formation is formed facing the base side of a resistance heating wiring part, and the surface side of a conductor wiring part. It is a schematic sectional drawing which shows the other example of the heater of the other aspect which has the insulation part for two disconnection part formation.
  • FIG. 1 is a schematic perspective view illustrating an example of a fixing device of the present invention.
  • FIG. 6 is a plan view showing a heater manufactured in Example 2.
  • FIG. 6 is a plan view showing a heater manufactured in Comparative Example 1.
  • FIG. 47 is a schematic view showing a cross section taken along line YY of FIG. 46. It is a graph which shows the test result (evaluation E1) in the heater of the comparative example 1.
  • 10 is a schematic plan view showing a heater used in Comparative Example 2.
  • FIG. It is a graph which shows the test result (evaluation E1) in the heater of the comparative example 2.
  • 6 is a plan view showing a heater manufactured in Example 3.
  • FIG. It is a schematic plan view which shows the apparatus for evaluation E2 of a heater.
  • 6 is a plan view showing a heater manufactured in Example 4.
  • FIG. It is a graph which shows the test result (evaluation E2) in the heater of Example 4.
  • the heater according to one aspect of the present invention is a long base and a resistance heating portion formed on the surface side or inside of the base in a state of being electrically insulated from the base, and generates heat when energized.
  • a resistance heating wiring portion having a plurality of parallel wirings, and a power feeding terminal portion formed on the surface side or inside of the base portion in a state of being electrically insulated from the base portion, The number of terminals is at least two, and in order to supply electric power to the resistance heating wiring portion, a power feeding terminal portion that electrically connects one terminal portion and the other terminal portion via the resistance heating wiring portion is provided.
  • the resistance heating wiring portion includes a material having a resistance temperature coefficient of 500 to 4,400 ppm / ° C., and the parallel wiring includes an inclined rectangular pattern.
  • the resistance heating wiring portion and the power feeding terminal portion may be connected by a conductor wiring portion.
  • the heater according to another aspect of the present invention is a resistance heating portion formed in a state of being electrically insulated with respect to the base portion on the surface side or inside of the elongated base portion, and generates heat when energized.
  • Two heat-feeding terminal portions formed on the surface side or inside of the base portion, in a state of being electrically insulated from the base portion, and on the surface side or inside of the base portion.
  • a conductor wiring portion formed in an electrically insulated state with two conductor wiring portions, one end side and the other end side of the resistance heating wiring portion, and two power supply terminals A conductive wiring portion that is electrically connected separately, and a resistance heating wiring portion on at least one of the upper surface or the lower surface of the resistance heating wiring portion and the conductor wiring portion.
  • the disconnected portion forming insulating portion, and when the resistance heating wiring portion reaches a predetermined temperature or more, the material (m1) constituting the resistance heating wiring portion and the material (m2) constituting the conductor wiring portion Including a material that reacts with at least one selected from the above, forming an electrically insulating portion by this reaction, and providing an insulating portion for forming a disconnected portion that disconnects the resistance heating wiring portion or the conductor wiring portion.
  • the heater according to one aspect of the present invention is electrically insulated from the base 11 on the surface side or inside of the long base 11 (the base 11 including the base layer 12 and the electrical insulating layer 13) and the base 11.
  • the resistance heating part is formed in a heated state and is electrically insulated from the base part 11 on the surface side or inside of the base part 11 and the resistance heating wiring part 15 having a plurality of parallel wirings that generate heat when energized.
  • the power supply terminal portion is formed in a state where the number of power supply terminal portions is at least two, and in order to supply power to the resistance heat generation wiring portion 15, one side is provided via the resistance heat generation wiring portion 15.
  • the terminal part for electric power supply and the terminal part 17 for electric power feeding which connects the other terminal part electrically are provided.
  • the heater according to another aspect of the present invention is electrically connected to the base 11 on the surface side or inside of the long base 11 (base 11 including the base layer 12 and the electrical insulating layer 13) and the base 11. It is a resistance heating part formed in an insulated state, and is formed in a state electrically insulated from the base 11 on the surface side or inside of the resistance heating wiring part 15 that generates heat when energized.
  • An insulating portion for forming a disconnection portion which is formed in contact with the upper layer surface or the lower layer surface with a length equal to or longer than the line width of the resistance heating wiring portion 15 or the conductor wiring portion 19 and having a resistance.
  • the heating wiring portion 15 reaches a predetermined temperature or more, it reacts with at least one selected from the material (m1) constituting the resistance heating wiring portion 15 and the material (m2) constituting the conductor wiring portion 19. It includes a material, and an electrical insulating portion is formed by this reaction, and includes a disconnected portion forming insulating portion 32 that disconnects the resistance heating wiring portion 15 or the conductor wiring portion 19.
  • FIGS. 5, 8, and 9, the cross-sectional structure of the heater is shown in FIGS. 5, 8, and 9, for example.
  • These drawings include a conductor wiring portion 19 that connects the resistance heating wiring portion 15 and the feeding terminal portion 17, and the resistance heating wiring portion 15, the feeding terminal portion 17, and the conductor wiring portion 19 are formed on the surface of the base 11. The aspect formed in the state electrically insulated with respect to the base 11 is shown.
  • the shape of the heater usually depends on the shape of the base or base layer.
  • the shape of the base or base layer is usually a flat plate shape and may be provided with a concave portion, a convex portion, a hollow portion, or the like. Further, the shape of the base or base layer may be a curved plate shape.
  • the components such as the resistance heating wiring portion, the power supply terminal portion, and the conductor wiring portion are not only formed on the surface (one surface side or both surfaces) of the base portion, but also formed therein. It can be set as an aspect.
  • the shape of the base in the latter case can be a hollow body or the like.
  • “formation (arrangement)” on the surface of the base or on the surface side of the base is, for example, the surface of the flat base or the surface side (others formed on the surface of the base) It means that it is formed (arranged) with respect to the surface of the layer.
  • the base is made of a hollow body, it means that it is formed (arranged) on the inner surface of the hollow portion.
  • the thickness of the base 11 is appropriately selected depending on the purpose, application, etc., but is usually 0.4 to 20 mm.
  • the length of the base 11 is usually 20 mm or more, preferably 200 to 350 mm.
  • the constituent material of the base or base layer is preferably stainless steel, aluminum, an aluminum alloy or insulating ceramics.
  • the stainless steel is preferably ferritic heat resistant steel, particularly preferably SUS430, SUS444 and SUS436. Since stainless steel, aluminum, or aluminum alloy has a low electric resistance value, components such as the resistance heating wiring portion 15, the feeding terminal portion 17, and the conductor wiring portion 19 cannot be directly formed on the surface thereof. . Accordingly, the base 11 including the base layer 12 including stainless steel, aluminum, or an aluminum alloy and the electrically insulating layer 13 bonded to the base layer is used. As described above, the components such as the resistance heating wiring portion 15, the power supply terminal portion 17, and the conductor wiring portion 19 may be formed on both surfaces of the base portion 11.
  • a base 11 comprising the formed electrically insulating layer 13 is used.
  • the constituent material of the base layer 12 is preferably stainless steel, and the constituent material of the electrical insulating layer 13 is preferably crystallized glass and semi-crystallized glass from the viewpoint of thermal expansion balance with stainless steel.
  • SiO 2 —Al 2 O 3 —MO glass having a softening point of 600 ° C. or higher is preferable.
  • MO is an alkaline earth metal oxide (MgO, CaO, BaO, SrO, etc.).
  • the thickness of the electrically insulating layer 13 is preferably 60 to 120 ⁇ m, more preferably 70 to 110 ⁇ m, still more preferably 75 to 100 ⁇ m.
  • the insulating ceramic is preferably an inorganic compound having an electric resistance value of 10 7 ⁇ ⁇ cm or more, and examples thereof include aluminum oxide, aluminum nitride, zirconia, silica, mullite, spinel, cordierite, and silicon nitride. Of these, aluminum oxide and aluminum nitride are preferred.
  • the structure of the heater depends on the constituent material of the base 11, and as a plan view, for example, FIG. 4, FIG. 6, FIG. 7, FIG. 8, FIG. 9, FIG. 12, FIG. 13, FIG. 14, FIG.
  • the constituent material of the base 11 includes stainless steel as the base layer 12
  • components such as the resistance heating wiring portion 15, the power feeding terminal portion 17, and the conductor wiring portion 19 are not directly in contact with the stainless steel portion of the base layer 12.
  • FIGS. 4, 5, 6, 7, 10, 11, 12, 12, and 13 formed on the surface of an electrical insulating layer 13 (hereinafter also referred to as "first insulating layer 13"). (See FIG. 14).
  • the thickness of the first insulating layer 13 is preferably 60 to 120 ⁇ m, more preferably 70 to 110 ⁇ m, and still more preferably 75 to 100 ⁇ m.
  • constituent elements such as the resistance heating wiring portion 15, the feeding terminal portion 17, and the conductor wiring portion 19 are arranged on the surface of the base portion 11 as shown in FIG. Alternatively, it may be separately formed so as to be in contact with a portion made of an electrically insulating material (not shown).
  • the resistance heating wiring portion 15 which is a main portion of the heater is excellent in temperature followability with respect to a change in resistance value, and therefore has a resistance temperature coefficient of 500 to 4,400 ppm / ° C.
  • Including material Specific examples are silver alloys such as silver-palladium and silver-platinum; silver; molybdenum: tungsten and the like. These materials may be used alone or in combination of two or more. A preferable material is appropriately selected depending on the cross-sectional structure of the heater, the constituent material of the base, and the like.
  • the line thickness of the resistance heating wiring portion 15 is preferably 3 to 27 ⁇ m.
  • the “inclined rectangular pattern” is, for example, the pattern 20 having the shape shown in FIG.
  • the resistance heating wiring portion 15 is a resistance heating portion formed on the surface side or inside of the elongated base portion 11 in a state of being electrically insulated from the base portion 11. And a plurality of wirings for connecting at least two power supply terminal portions 17 in parallel.
  • the power feeding terminal portion 17 is also formed on the surface side or inside of the elongated base portion 11 in a state of being electrically insulated from the base portion 11.
  • the form of the parallel wiring is not particularly limited.
  • One parallel wiring may be formed in the longitudinal direction of the heater, may be formed in the width direction of the heater, or may be formed obliquely in the width direction of the heater.
  • the heater including the resistance heating wiring portion 15 having an inclined rectangular pattern is preferably shown in FIGS. 4, 6 and 7. 4 and 7 are examples in which the resistance heating wiring portion 15 includes parallel wiring in the width direction by a folding pattern in the longitudinal direction of the heater 1.
  • FIG. 6 is an example in which the resistance heating wiring portion 15 is provided with parallel wiring in the width direction by a folding pattern in the width direction of the heater 1.
  • FIG. 4 includes two power supply terminal portions 17 on both ends in the longitudinal direction of the heater 1.
  • FIG. 7 in which two power supply terminal portions 17 are provided on one end side in the longitudinal direction of the heater 1 is a particularly preferable aspect.
  • 4 and 7 show an aspect in which the inclined rectangular pattern shown in FIG.
  • FIG. 1 (B) is arranged obliquely with respect to the width direction of the heater 1, and FIG. 6 is shown in FIG. 1 (B).
  • An inclined rectangular pattern is arranged horizontally with respect to the longitudinal direction of the heater 1.
  • the non-formed portion 14 of the wiring is inclined with respect to the longitudinal direction or the width direction of the heater, so that the object to be heat-treated is stationary.
  • the heat treatment is performed while moving the heater 1 in the width direction, and while the heater 1 is fixed, the heat treatment is performed while moving the heat treatment object in a direction perpendicular to the elongated heater 1. In this case, stable heat treatment can be performed without causing a local temperature rise in the resistance heating wiring portion during use.
  • FIG. 4 is a schematic view showing a cross section taken along line XX in FIG.
  • the heater 1 shown in FIGS. 4, 5, 6, 7, 10, and 11 includes a long base layer 12, an electrical insulating layer 13 formed on the surface of the base layer 12, and an electrical insulating layer 13. Are formed on the surface of the resistance heating wiring portion 15 having a plurality of parallel wirings that generate heat when energized, and the surface of the electrical insulating layer 13, and supplies two power to the resistance heating wiring portion 15 A power supply terminal unit 17.
  • These heaters are provided with a conductor wiring portion 19 that is electrically connected to each power supply terminal portion 17 on the surface of the electrically insulating layer 13, and the conductor wiring portion 19 is branched to form a plurality of resistance heating wires having parallel wiring.
  • the aspect connected to the unit 15 is adopted.
  • the electrical insulating layer 13 is electrically insulated between the base layer 12 and the resistance heating wiring portion 15, and is also electrically insulated between the base layer 12 and the power feeding terminal portion 17. Furthermore, the electrical insulating layer 13 is also electrically insulated between the base layer 12 and the conductor wiring portion 19.
  • the constituent material of the resistance heating wiring portion 15 preferably contains a silver alloy such as silver-palladium having a temperature coefficient of resistance of 1,000 to 3,000 ppm / ° C.
  • the thickness of the resistance heating wiring portion 15 is preferably 3 to 27 ⁇ m, more preferably 4 to 20 ⁇ m, still more preferably 5 to 17 ⁇ m, and particularly preferably 8 to 12 ⁇ m from the viewpoint of area specific resistance.
  • the constituent material of the power supply terminal portion 17 and the conductor wiring portion 19 can be silver, silver-palladium, silver-platinum, copper, gold, platinum-rhodium, or the like.
  • the material, line width, and the like of the power supply terminal portion 17 or the conductor wiring portion 19 are selected so that the resistance value per unit area is lower than that of the resistance heating wiring portion 15.
  • the constituent material of the base layer 12 is preferably ferritic heat resistant steel. Particularly preferred materials are SUS430, SUS444 and SUS436.
  • the thickness of the base 11 is preferably 0.4 to 20 mm, more preferably 0.6 to 5 mm.
  • the constituent material of the electrical insulating layer 13 is preferably SiO 2 —Al 2 O 3 —MO based glass from the viewpoint of thermal expansion balance with stainless steel.
  • MO is an alkaline earth metal oxide (MgO, CaO, BaO, SrO, etc.).
  • the thickness of the electrically insulating layer 13 is preferably 60 to 120 ⁇ m, more preferably 70 to 110 ⁇ m, still more preferably 75 to 100 ⁇ m.
  • the electrical insulating layer 13 is large on the surface of the base 11 so as to be in contact with the regions of the resistance heating wiring portion 15, the power feeding terminal portion 17, and the conductor wiring portion 19.
  • the same region as the pattern of the resistance heating wiring portion 15, the power feeding terminal portion 17, and the conductor wiring portion 19 may be formed on each of these lower sides.
  • the heater (I) can include a protective layer that covers the resistance heating wiring portion 15, the power supply terminal portion 17, and the conductor wiring portion 19.
  • This protective layer may have the same region as the pattern of the resistance heating wiring portion 15, the power supply terminal portion 17, and the conductor wiring portion 19, and may be formed on each upper side of these, or the base portion 11 (the base layer 12 or the electrical insulation). It may be formed on the entire surface of the layer 13).
  • the protective layer is preferably made of an electrically insulating material, and may be made of the same material as the electrically insulating layer 13.
  • the heater (I) shown in FIGS. 4, 5, 6, and 7 is, for example, a step of forming an electrical insulating film on the surface of a long stainless steel plate, A step of forming a resistance heating wiring portion including a material having a temperature coefficient of 500 to 4,400 ppm / ° C. and including an inclined rectangular pattern; It can be obtained by a manufacturing method including a step of forming at least two power supply terminal portions in the peripheral portion. Furthermore, the process of forming a conductor wiring part, the process of forming a protective layer, etc. can be provided.
  • a method of heat-treating a film formed using a composition containing a precursor of an electrically insulating material or the like can be applied.
  • a printing method; a dip method; a physical vapor deposition method such as a vapor deposition method, or the like can be applied.
  • the heater (I) has a problem such as thermal runaway in the heater, and the resistance heating wiring portion 15 that is generating heat has overheated and has reached a predetermined temperature or more.
  • a disconnection portion forming insulating portion 32 for disconnecting the resistance heating wiring portion 15 or the conductor wiring portion 19.
  • the disconnected portion forming insulating portion 32 is disconnected from at least one of the resistive heating wiring portion 15 and the conductor wiring portion 19 when the heated resistance heating wiring portion 15 reaches a predetermined temperature or more.
  • the contact portion with the portion forming insulating portion 32 is formed and converted into the electrical insulating portion 34.
  • the disconnection portion forming insulating portion 32 is formed on at least one of the upper layer surface or the lower layer surface of the resistance heating wiring portion 15 and the conductor wiring portion 19.
  • the resistance heating wiring portion 15 has a line width equal to or longer than the line width of the resistance heating wiring portion 15 or the conductor wiring portion 19 and is formed so as to cross the resistance heating wiring portion 15 or the conductor wiring portion 19. Therefore, when the resistance heating wiring portion 15 is overheated and exceeds a predetermined temperature, the constituent material of the disconnection portion forming insulating portion 32, the constituent material (m1) of the resistance heating wiring portion 15, and the conductor wiring portion 19 are used.
  • At least one selected from the constituent material (m2) of the above reacts to form an electrically insulating portion 34 made of an electrically insulating material.
  • the resistance heating wiring portion 15 or the conductor wiring portion. 19 breaks.
  • the disconnection portion forming insulating portion 32 may be disposed at one location in one heater, or may be disposed at two or more locations.
  • FIG. 12 shows an aspect in which a part of the surface of the conductor wiring part 19 is provided with a disconnection part forming insulating part 32.
  • FIG. 13 shows an electrical connection in which the conductor part 19 is disconnected in the disconnection part forming insulating part 32. The aspect in which the insulation part 34 was formed is shown.
  • FIG. 36 is, for example, an enlarged view of a main part when the heater of FIG. 10 or the like is viewed from above, and (A1) shows that the insulating part 32 for forming the disconnection part is part of the resistance heating wiring part 15 or the conductor wiring part 19.
  • the insulating part 32 for forming the disconnection part is a resistance heating wiring part. This is a mode in which a part of 15 or a part of the surface of the conductor wiring portion 19 is arranged with the same length as the line width without exceeding the line width.
  • (B1) shows a resistance heating wiring portion on the surface of the disconnection portion forming insulating portion 32 provided with a length exceeding the line width of a part of the resistance heating wiring portion 15 or a part of the conductor wiring portion 19.
  • 15 (B2) is arranged with the same length as the line width of a part of the resistance heating wiring part 15 or a part of the conductor wiring part 19.
  • a part of the resistance heating wiring part 15 or a part of the conductor wiring part 19 is disposed on the surface of the provided disconnecting part forming insulating part 32.
  • the shape of the disconnection portion forming insulating portion 32 is a square surface, but is not limited to this, and is equal to or larger than the line width of the resistance heating wiring portion 15 or the conductor wiring portion 19. It may be an arbitrary shape (line or the like).
  • FIGS. 10 and 12 show an aspect in which the disconnection portion forming insulating portion 32 is disposed on the surface of the conductor wiring portion 19. Moreover, the aspect by which the insulation part 32 for disconnection part formation is arrange
  • positioned on the surface of the resistance heating wiring part 15 is shown by FIG.11, FIG14 and FIG.15, for example.
  • the disconnected portion forming insulating portion 32 is a heater in contact with the resistance heating wiring portion 15
  • the disconnected portion forming insulating portion 32 is formed in contact with all of the parallel wiring portions as shown in FIG. 11. There is a need.
  • the disconnected portion forming insulating portion 32 is a heater in contact with the conductor wiring portion 19, all the parallel wiring portions constituting the resistance heating wiring portion 15 are energized as shown in FIG. 10.
  • the number may be one or two.
  • the thickness of the insulating portion 32 for forming the disconnection portion is preferably 5 to 100 ⁇ m, more preferably 10 to 60 ⁇ m, and still more preferably 15 to 40 ⁇ m because the resistance heating wiring portion 15 or the conductor wiring portion 19 is surely disconnected. is there.
  • the constituent material of the insulating part 32 for forming the disconnection part reacts with the constituent material (m1) of the resistance heating wiring part 15 or the constituent material (m2) of the conductor wiring part 19, it becomes an electrically insulating material.
  • a preferred material is glass, which may be crystallized glass or amorphous glass.
  • the constituent material (m1) of the resistance heating wiring portion 15 and the constituent material (m2) of the conductor wiring portion 19 preferably contain silver or a silver alloy.
  • the constituent materials are bismuth glass and lead glass, and particularly preferable constituent materials are bismuth glass and lead glass having a softening point of 370 ° C. to 550 ° C.
  • the disconnection portion forming insulating portion 32 includes bismuth-based glass or lead-based glass, for example, when the resistance heating wiring portion 15 reaches 600 ° C. or higher, the bismuth-based glass or lead-based glass softens, and silver or silver alloy By reacting, the electrical insulating portion 34 can be formed, and the resistance heating wiring portion 15 or the conductor wiring portion 19 can be disconnected.
  • the bismuth glass include Bi 2 O 3 —ZnO—B 2 O 3 glass.
  • the lead glass include PbO—B 2 O 3 glass.
  • FIG. 12 includes a disconnection portion forming insulating portion 32 formed in contact with the same or longer length than the line width of the conductor wiring portion 19 on the upper layer side surface of a part of the conductor wiring portion 19, and generates resistance heat.
  • FIG. 13 is a schematic diagram of a heater that does not show the wiring portion 15. When the resistance heating wiring portion 15 reaches a predetermined temperature or more, as shown in FIG. 13, the constituent material of the disconnection portion forming insulating portion 32 and the conductor wiring portion 19.
  • the entire base portion 11 becomes a heat source with the resistance heating wiring portion 15 as a center, so that the electrical insulating portion 34 is formed.
  • the disconnection forming insulating portion 32 is in contact with the resistance heating wiring portion 15 (see FIGS. 11 and 14), or the disconnection forming insulating portion 32 is in contact with the conductor wiring portion 19.
  • the conductor wiring portion 19 is formed so as to extend between the densely-packed wirings (resistance heating wiring portions 15), and an insulation for forming a disconnection portion is formed in a part of the heater.
  • the heater 32 see FIG. 16
  • the residual heat temperature of the resistance heating wiring portion 15 can be lowered more quickly.
  • the heater (I) includes a base 11 made of a stainless steel base layer 12 and an electrical insulating layer 13, no fine particles are generated from the constituent members during use. It is suitable for use in accompanying heat treatment devices, fixing devices, and the like.
  • FIG. 8 is a cross-sectional view showing a heater (hereinafter also referred to as “heater (II)”) provided with the resistance heating wiring portion 15 and the like on the surface of the base portion 11 made of insulating ceramic.
  • the constituent elements on the surface of the base portion 11 made of insulating ceramic are the same as the constituent elements on the surface of the electrical insulating layer 13 in the heater (I) shown in FIGS. can do.
  • the heater shown in FIG. 8 is formed on the surface of the elongate base portion 11, the resistance heating wiring portion 15 having a plurality of parallel wirings that generate heat when energized, and the surface of the base portion 11.
  • this heater (II) can be provided with a protective layer (not shown). Moreover, it can also be equipped with the insulation part 32 for a disconnection part formation with the same form as heater (I) (refer FIG. 15).
  • FIG. 9 is a cross-sectional view showing a heater (hereinafter, also referred to as “heater (III)”) including the resistance heating wiring portion 15 and the like inside the base portion 11 made of an insulating ceramic.
  • the components inside the insulating ceramic base 11 may be the same as the components on the surface of the electrical insulating layer 13 in the heater (I) shown in FIGS. it can.
  • it can also be set as the aspect which does not provide a conductor wiring part, In this case, it is the structure by which the resistance heating wiring part 15 is connected between the terminal parts 17 for electric power feeding.
  • the protective layer in the heater (I) is not usually provided.
  • this heater (III) can be provided with the conductor wiring part 19 which is not shown in FIG. 9 as mentioned above.
  • the constituent material of the resistance heating wiring portion 15 is made of silver, molybdenum, tungsten, silver-palladium, silver-platinum or the like having a resistance value temperature coefficient of 500 to 4,400 ppm / ° C. It is preferable to include.
  • the thickness of the resistance heating wiring portion 15 is preferably 3 to 20 ⁇ m, more preferably 5 to 17 ⁇ m, and still more preferably 8 to 12 ⁇ m, from the viewpoint of area specific resistance.
  • the constituent material of the power feeding terminal portion 17 and the constituent material of the conductor wiring portion 19 are silver, silver-palladium, silver-platinum, copper, gold, platinum-rhodium, etc. It can be.
  • the constituent material of the base 11 is preferably aluminum oxide or aluminum nitride.
  • the thickness of the base 11 in the heater (II) is preferably 0.2 to 5 mm, more preferably 0.4 to 2 mm.
  • the thickness of the base 11 in the heater (III) is preferably 0.2 to 5 mm, more preferably 0.4 to 2 mm.
  • the power supply terminal portion 17 is connected to the resistance heating wiring portion 15 and the inside of the base portion 11, but is not limited to this mode, and the power supply terminal portion 17 is connected to the heater.
  • positioned at each end surface of the both ends in the longitudinal direction may be sufficient.
  • the conductor wiring portion 19 is not shown. However, even when the conductor wiring portion 19 that is electrically connected to the resistance heating wiring portion 15 is provided, the conductor wiring portion 19 may be disposed on each end face. Good.
  • the heater (II) is a step of producing a long plate containing an insulating ceramic, the surface of the ceramic plate contains a material having a resistance value temperature coefficient of 500 to 4,400 ppm / ° C., and is an inclined rectangular shape. Obtained by a manufacturing method comprising a step of forming a resistance heating wiring portion including a pattern, and a step of forming at least two power supply terminal portions on both ends of the plate in the longitudinal direction or on the periphery thereof on the surface of the ceramic plate. Can do. Furthermore, the process of forming a conductor wiring part can be provided.
  • the method for producing the ceramic plate is exemplified below.
  • the ceramic slurry is sintered with silicon oxide, calcium oxide, titanium oxide, magnesium oxide, zirconium oxide or the like. Auxiliaries, dispersants, plasticizers, organic solvents and the like can be added.
  • the heater (II) has a resistance temperature coefficient of 500 to 4 at a predetermined position on the surface of the long green sheet containing the insulating ceramic powder produced as described above.
  • a step of forming a protective layer can be further provided.
  • the heater (III) is, for example, a step of producing two long green sheets containing insulating ceramic powder, a resistance temperature for the resistance heating wiring portion at a predetermined position on the surface of one of the green sheets.
  • a step of arranging a paste containing a material having a coefficient of 500 to 4,400 ppm / ° C. or a metal foil made of the material, a material for a power supply terminal portion or a conductor wiring portion at a predetermined position on the surface of the green sheet Can be obtained by a manufacturing method including a step of arranging a paste containing a metal foil or a metal foil made of the material, and a step of arranging another green sheet and performing a heat treatment so as to sandwich the surface of the laminate.
  • the positions of the power supply terminal portion 17, the conductor wiring portion 19 and the like specifically shown are not limited to the positions shown in FIGS. 4 to 7 show an embodiment in which one base 11 is provided with one circuit.
  • the present invention is not limited to this, and may be provided with a plurality of circuits.
  • the entire base portion 11 becomes a heat source centering on the resistance heating wiring portion 15 during the operation, so that it is electrically insulated by thermal runaway or the like. Even if the portion 34 is formed and the power supply is interrupted, the heater temperature may not be instantaneously reduced.
  • the disconnection portion forming insulating portion 32 is formed in contact with the resistance heating wiring portion 15 (see FIG. 15), or the disconnection portion forming insulating portion 32 is formed in contact with the conductor wiring portion 19.
  • the conductor wiring part 19 is formed to extend between the densely-packed wirings (resistance heating wiring part 15) so as to interrupt, and a disconnection part forming insulating part 32 is formed in a part thereof.
  • a heater (not shown) formed in contact with the heater, the remaining heat temperature of the resistance heating wiring portion 15 can be lowered more quickly.
  • the heater according to one aspect of the present invention can generate heat by connecting to a conventionally known power supply device at the power supply terminal portion 17.
  • the exothermic temperature is preferably 50 ° C. to 600 ° C., more preferably 120 ° C. to 500 ° C.
  • the temperature is preferably 50 ° C. to 1,000 ° C.
  • the resistance heating wiring portion 15, the power feeding terminal portion 17, the conductor wiring portion 19, and the like may not be directly formed on the surface of the base portion.
  • FIG. 18 shows a first insulating layer 13 that is an electrically insulating layer, a resistance heating wiring portion 15, a second insulating layer 16 that is an electrically insulating layer, and a second insulating layer 13 on the surface of a base layer 12 made of stainless steel or the like.
  • the insulating layer 16 includes a disconnection portion forming insulating portion 32 disposed so as to be surrounded by the second insulating layer 16, and the surface of the second insulating layer 16 and the disconnection portion forming insulating portion 32. And an overcoat layer made of an insulating material and formed on the surface of the conductor wiring portion 19.
  • the conductor wiring portion 19 is formed from the left end portion of the resistance heating wiring portion 15 toward the surface side. 21.
  • FIG. 20 shows a first insulating layer 13 that is an electrically insulating layer, a resistance heating wiring portion 15, a second insulating layer 16 that is an electrically insulating layer, and a surface of a base layer 12 made of stainless steel.
  • the second insulating layer 16 includes a disconnection portion forming insulating portion 32 disposed so as to be surrounded by the second insulating layer 16, and the second insulating layer 16 and the disconnection portion forming insulating portion 32 are provided.
  • FIG. 29 shows a resistance heating wiring portion 15, a second insulating layer 16 that is an electrically insulating layer, and a second insulating layer 16 in the second insulating layer 16 on the surface of the base portion 11 made of insulating ceramics.
  • a disconnection portion forming insulating portion 32 disposed so as to be surrounded by the layer 16, formed on the surfaces of the second insulating layer 16 and the disconnection portion forming insulating portion 32, and a resistance heating wiring portion 15 is provided with a conductor wiring portion 19 deposited from the left end portion toward the surface side, and an overcoat layer 21 made of an insulating material formed on the surface of the conductor wiring portion 19.
  • FIG. 30 shows a resistance heating wiring portion 15, a second insulating layer 16 that is an electrically insulating layer, and a second insulating layer 16 in the second insulating layer 16 on the surface of the base portion 11 made of insulating ceramics.
  • a disconnection portion forming insulating portion 32 disposed so as to be surrounded by the layer 16, formed on the surfaces of the second insulating layer 16 and the disconnection portion forming insulating portion 32, and further, the resistance heating wiring portion 15.
  • a conductor wiring portion 19 deposited from the left end portion toward the surface side, and an overcoat layer 21 made of an insulating material formed on the surface of the conductor wiring portion 19.
  • a disconnection portion forming insulating portion 32 is provided so as to be surrounded by the overcoat layer 21.
  • the constituent material of the disconnected portion forming insulating portion 32 is the constituent material and conductor of the resistance heating wiring portion 15. It reacts with both the constituent materials of the wiring part 19 to form an electrical insulating part 34, and the resistance heating wiring part 15 and the conductor wiring part 19 are disconnected.
  • the constituent material of the disconnection portion forming insulating portion 32 is the constituent material of the resistance heating wiring portion 15.
  • the constituent material of the conductor wiring portion 19, and the constituent material of the disconnection portion forming insulating portion 32 reacts with the constituent material of the conductor wiring portion 19 to form the electrical insulating portion 34.
  • the heat generating wiring portion 15 and the conductor wiring portion 19 are disconnected.
  • the heaters of FIGS. 24, 26, 32, and 33 are laminated heaters having a conductor wiring portion 19 and a resistance heating wiring portion 15 in this order on one surface side of the base portion 11.
  • a part of the conductor wiring part 19, at least a part of the disconnection part forming insulating part 32, and a part of the resistance heating wiring part 15 are heaters having portions in surface contact with each other.
  • FIG. 24 shows a first insulating layer 13 that is an electrically insulating layer, a conductor wiring portion 19, a second insulating layer 16 that is an electrically insulating layer, and a second insulating layer on the surface of a base layer 12 made of stainless steel or the like.
  • the layer 16 includes a disconnection portion forming insulating portion 32 disposed so as to be surrounded by the second insulating layer 16, and is formed on the surfaces of the second insulating layer 16 and the disconnection portion forming insulating portion 32. Furthermore, a resistance heating wiring portion 15 connected to the conductor wiring portion 19 deposited from the left end portion of the conductor wiring portion 19 toward the surface side, and an insulating material formed on the surface of the resistance heating wiring portion 15 It is an aspect provided with the overcoat layer 21 which consists of. Further, FIG.
  • first insulating layer 13 that is an electrically insulating layer
  • conductor wiring portion 19 a conductor wiring portion 19
  • second insulating layer 16 that is an electrically insulating layer
  • first insulating layer 13 on the surface of a base layer 12 made of stainless steel or the like.
  • disconnection portion forming insulating portion 32 disposed so as to be surrounded by the second insulating layer 16, and the surfaces of the second insulating layer 16 and the disconnection portion forming insulating portion 32.
  • a resistance heating wiring portion 15 connected to the conductor wiring portion 19 deposited from the left end portion of the conductor wiring portion 19 toward the surface side, and a surface of the resistance heating wiring portion 15 are formed.
  • the overcoat layer 21 made of an insulating material is provided, and in this overcoat layer 21, a disconnection portion forming insulating portion 32 is provided so as to be surrounded by the overcoat layer 21.
  • FIG. 32 shows a conductor wiring portion 19, a second insulating layer 16 that is an electrically insulating layer, and a second insulating layer in the second insulating layer 16 on the surface of the base portion 11 made of insulating ceramics. 16 is formed on the surfaces of the second insulating layer 16 and the disconnected portion forming insulating portion 32, and further, the left end of the conductor wiring portion 19.
  • FIG. 33 shows a conductor wiring portion 19, a second insulating layer 16 that is an electrically insulating layer, and a second insulating layer in the second insulating layer 16 on the surface of the base portion 11 made of insulating ceramics. 16 is formed on the surfaces of the second insulating layer 16 and the disconnected portion forming insulating portion 32, and further, the left end of the conductor wiring portion 19.
  • the overcoat layer 21 is provided with a disconnection portion forming insulating portion 32 disposed so as to be surrounded by the overcoat layer 21.
  • the resistance heating wiring portion 15 reaches a predetermined temperature or more, a part of the conductor wiring portion 19, at least a part of the disconnection portion forming insulating portion 32, and the resistance heating wiring At least a portion of the portion 15 is in surface contact with the surface, and at least an electrical insulating portion 34 is formed (not shown).
  • the disconnection portion forming insulating portion 32 is in contact with both the resistance heating wiring portion 15 and the conductor wiring portion 19. It is.
  • the heater according to one aspect of the present invention may be configured such that the disconnecting portion forming insulating portion 32 is in contact with either the resistance heating wiring portion 15 or the conductor wiring portion 19 (FIGS. 17, 19, and 23). 25, FIG. 28, FIG. 31, FIG. 34 and FIG. 35).
  • the materials constituting the second insulating layer 16 or the third insulating layer 23 shown in FIGS. 17 to 33 are selected from crystallized glass and semi-crystallized glass, which are constituent materials of the first insulating layer 13.
  • the softening point can be 600 ° C. or higher, and SiO 2 —Al 2 O 3 —MO glass or the like is preferable.
  • MO is an alkaline earth metal oxide (MgO, CaO, BaO, SrO, etc.).
  • the overcoat layers 21, 21A and 22B shown in FIGS. 17 to 35 are arranged for protecting the resistance heating wiring portion 15, the conductor wiring portion 19 and the like, and specifically, the heater is operating.
  • the constituent material of the overcoat layer is preferably SiO 2 —Al 2 O 3 —MO glass.
  • the softening point of the constituent material of the overcoat layer is preferably higher than the softening point of the constituent material of the disconnected portion forming insulating portion 32.
  • the temperature difference between the two is preferably 100 ° C. or higher, more preferably 150 ° C. or higher.
  • the constituent material of the resistance heating wiring portion 15, its wiring configuration, and the number of power supply electrode portions are not particularly limited.
  • the constituent material of the resistance heating wiring portion 15 has a resistance value temperature coefficient of preferably 500 to 4,400 ppm / ° C., but is not limited thereto.
  • the wiring of the resistance heating wiring portion 15 is preferably a parallel wiring, but is not limited to this, and may be a serial wiring. Furthermore, when the rectangular pattern is provided, the inclined rectangular pattern 20 shown in FIGS. 1B, 2 and 3 is preferable, but the pattern shown in FIG. 1A may be used.
  • the thickness of the resistance heating wiring portion 15 is preferably 5 to 27 ⁇ m, more preferably 7 to 24 ⁇ m, and still more preferably 8 to 13 ⁇ m.
  • the power supply terminal portion can be provided at three or more locations (not shown) if necessary.
  • each of the power supply terminal portion and the conductor wiring portion is preferably 5 to 27 ⁇ m, more preferably 7 to 24 ⁇ m, and still more preferably 9 to 12 ⁇ m.
  • the heaters according to other aspects of the present invention are preferably shown in FIGS. 12, 14, 15, 17, 18, 18, 19, 23, 24, 25, 26, 27, and 27. 28, 29, 30, 31, 32, 33, 34 and 35.
  • the explanations in these drawings are as described above except for the wiring form, and the explanations relating to all the components apply.
  • the heater according to another aspect of the present invention can generate heat by connecting to a conventionally known power supply device at the power supply terminal portion 17.
  • the exothermic temperature is preferably 50 ° C. to 1,000 ° C.
  • the organic material, the inorganic material, and the composite material combining these materials can be stabilized while suppressing temperature unevenness without depending on the size.
  • Heat treatment can be performed.
  • the heat treatment method is selected depending on the purpose, application, etc., and may be performed while moving the heater and the object to be heat-treated, or may be performed while one is fixed and the other is moved.
  • the fixing device of the present invention includes the heater of the present invention. That is, the fixing device of the present invention is a device that joins two articles by causing a heater to generate heat.
  • the configuration of the fixing device of the present invention can be appropriately selected depending on the use of the product to be obtained, fixing means, and the like. For example, in the case where a fixing unit that involves pressure bonding is provided, when a toner or the like is fixed to a recording medium such as paper, and when a plurality of members are bonded, a heating unit including a heater, And a fixing device. Of course, it is possible to use a fixing means that does not involve pressure bonding. In the present invention, as shown in FIGS. 37 and 38, it is preferable that the fixing device 5 fix an unfixed image including toner formed on the surface of a recording medium such as paper or film on the recording medium. .
  • FIG. 37 is a schematic view showing the main part of the fixing device 5 arranged in the electrophotographic image forming apparatus, which includes a rotatable fixing roll 51 and a rotatable pressure roll 54, and a heater. 1 is disposed inside the fixing roll 51.
  • the heater 1 is preferably arranged so as to be close to the inner surface of the fixing roll 51.
  • the heater 1 is driven by voltage application from a power supply device (not shown), and heat detected by a temperature measuring device (not shown) is transmitted to the fixing roll 51.
  • FIG. 38 is also a schematic view showing a main part of the fixing device 5 disposed in the electrophotographic image forming apparatus, and includes a rotatable fixing roll 51 and a rotatable pressure roll 54. And a heater 1 that transfers heat to the fixing roll 51 and a pressing roll 52 that presses the recording medium together with the pressing roll 54 are disposed inside the fixing roll 51.
  • the heater 1 is preferably disposed along the inner surface of the fixing roll 51.
  • the heater 1 is driven by voltage application from a power supply device (not shown), and the heat detected by a temperature measurement device (not shown) is transmitted to the fixing roll 51.
  • the fixing roll 51 When a recording medium having an unfixed toner image on the surface is supplied between the fixing roll 51 and the pressing roll 54, the fixing roll 51 pressed against the pressing roll 52; At the pressure contact portion with the pressure roll 54, the toner melts to form a fixed image.
  • the fixing roller 51 and the pressing roller 54 have a pressure contact portion, so that the fixing roller 51 and the pressing roller 54 are rotated while the fixing device is driven.
  • the heater 1 suppresses a local temperature increase that is likely to occur when a small recording medium is used, temperature unevenness in the fixing roll 51 hardly occurs, and the fixing can proceed smoothly. Can do. Further, damage to members disposed around the heater 1 can be suppressed.
  • a mold including an upper mold and a lower mold, in which a heater is disposed in at least one of the upper mold and the lower mold, can be used.
  • the drying apparatus includes a heater unit including the heater according to the present invention.
  • the configuration of the drying apparatus of the present invention can be appropriately selected depending on the shape, size, etc. of the object to be heat treated.
  • an aspect including a housing part, a sealable window part arranged for taking in and out of the object to be heat treated, and a movable heater part arranged inside the housing part It can be.
  • a pressure adjusting unit such as a vacuum pump for adjusting the internal pressure can be provided.
  • Drying may be performed with the object to be heat-treated and the heater unit fixed, or may be performed while either one is moved.
  • the heater of the present invention is suitable as a constituent member of an image forming apparatus.
  • the configuration of the image forming apparatus can be appropriately selected depending on the use of the product to be obtained, the purpose of heating, and the like.
  • an image forming means for forming an unfixed image on the surface of a recording medium such as paper or film, and a fixing means 5 for fixing the unfixed image on the recording medium are provided.
  • 5 may be the image forming apparatus 4 including the heater of the present invention.
  • FIG. 39 is a schematic view showing a main part of the electrophotographic image forming apparatus 4.
  • the image forming means may be either a system with a transfer drum or a system without a transfer drum, but FIG. 39 shows an embodiment with a transfer drum.
  • the toner supplied from the developing unit 45 is irradiated with the laser output from the laser scanner 41 on the charging processing surface of the photosensitive drum 44 that has been charged to a predetermined potential by the charging device 43 while rotating.
  • an electrostatic latent image corresponding to the target image information is formed.
  • the toner image is transferred to the surface of the transfer drum 46 that is linked to the photosensitive drum 44 using the potential difference.
  • the toner image is transferred onto the surface of the recording medium supplied between the transfer drum 46 and the transfer roll 47, and a recording medium having an unfixed image is obtained.
  • the image forming means can be provided with a cleaning device for removing insoluble toner or the like on the surfaces of the photosensitive drum 44 and the transfer drum 46, but this is not shown in FIG.
  • the toner is particles including a binder resin, a colorant, and an additive, and the melting temperature of the binder resin is usually 90 ° C. to 220 ° C.
  • the fixing unit 5 can have the same configuration as the fixing device according to the present invention, and includes a pressurizing roll 54 and a heater holder 53 that holds the sheet-passing direction energization type heater 1 inside, and the pressurizing roll And a fixing roll 51 interlocking with the fixing roller 51.
  • the recording medium having an unfixed image from the image forming means is supplied between the fixing roll 51 and the pressing roll 54, and a recording medium on which the image is fixed is obtained. That is, the heat of the fixing roll 51 melts the toner image on the recording medium, and the melted toner is further pressed at the pressure contact portion between the fixing roll 51 and the pressing roll 54 to record the toner image. It is fixed on the medium.
  • the fixing roll 51 may make a round and reattach to the recording medium.
  • the adjustment to a predetermined temperature is quick, so that the problem is not solved. Can be suppressed.
  • the fixing unit 5 of FIG. 39 is configured to include a fixing roll 51 and a pressing roll 54, but the image forming apparatus includes a fixing belt in which the heater 1 is disposed in close proximity to the fixing roll 51. An aspect may be sufficient.
  • other means include a recording medium conveying means, this recording medium conveying means, and a control means for controlling each of the above means.
  • Example 1 Manufacture of stainless steel heater 1A of stainless steel shown in FIG. 40 was manufactured in the following manner. After smoothing the surface of a substrate made of SUS430 (length 270 mm, width 24 mm and thickness 0.6 mm), a crystallized glass forming material whose component is SiO 2 —Al 2 O 3 —RO is dried. It apply
  • the resistance heating wiring portion 15 has a line width of 0.5 mm and a line thickness of 13 ⁇ m.
  • a pattern for forming a power supply terminal portion 17 and a conductor wiring portion 19 for supplying power to the resistance heating wiring portion 15 was printed at predetermined positions. Then, this printed part is baked at 850 ° C. and connected from one power supply terminal part 17 to the other power supply terminal part 17 through the resistance heating wiring part 15 and the conductor wiring part 19 having a plurality of parallel wirings. (See FIG. 40). Next, the crystallized glass forming material used in forming the insulating layer 13 is used on the entire surface of the substrate including the surfaces of the resistance heating wiring portion 15, the power feeding terminal portion 17 and the conductor wiring portion 19 obtained. Thus, a first protective layer having a thickness of 50 ⁇ m was formed.
  • an amorphous glass forming material composed of SiO 2 —Al 2 O 3 —B 2 O 3 —RO was applied to the surface of the first protective layer. Thereafter, the coating film was baked at 750 ° C. to form a second protective layer having a film thickness of 25 ⁇ m to obtain a stainless steel heater 1A (see FIG. 40, the first protective layer and the second protective layer are not shown). ).
  • Heater Evaluation This evaluation (hereinafter referred to as “Evaluation E1”) is used in image forming apparatuses such as printing machines, copiers, facsimiles, etc. that employ an electrophotographic system, etc., on a recording medium such as paper.
  • the heat sink 3A which looks like a recording medium that takes heat away, is brought into contact with the back surface of the stainless steel heater 1A when the toner image is fixed to the moving recording medium.
  • the temperature at the contact portion where the heat sink 3A contacts the stainless steel heater 1A and the temperature at the non-contact portion where the heat sink 3A does not contact the stainless steel heater 1A are observed over time.
  • the heat sink 3A is made of aluminum, and is an integrated product in which eight fins (16 mm ⁇ 100 mm) are arranged in parallel with an interval of 5 mm, as shown in FIG.
  • FIG. 42 is a schematic diagram of an apparatus for evaluation E1.
  • the stainless steel heater 1A is arranged with both ends supported with the resistance heating wiring portion or the like facing upward.
  • a thermocouple (K type) is connected to the center of the heater 1A, and an AC voltage (100V) is supplied from the temperature controller “E5EN” manufactured by OMRON to the power supply terminal portions 17 on both ends of the stainless steel heater 1A.
  • the stainless steel heater is operated by PID control and generates heat to a predetermined temperature. Then, the temperature of the heater that changes due to the contact with the heat sink 3A was measured with a NEC thermotracer “TH9100MR / WRI” installed above the stainless steel heater 1A.
  • thermocouple and the temperature measuring device are not shown in FIG.
  • three predetermined positions (P), (Q ) And (R) were continuously measured for temperature.
  • P), (Q) and (R) are all the center in the width direction of the stainless steel heater 1A
  • Q is the center of the stainless steel heater 1A
  • P and (R) are the center. 75 mm away from the center.
  • the area of the temperature measuring point is about 0.8 mm 2 in all cases.
  • the method of using the heat sink 3A is as follows.
  • the heat sink 3A is removed, and it waits for the temperature of the stainless steel heater 1A to recover to 200 ° C.
  • the heat sink 3A is brought into contact with the position (Q) of the stainless steel heater 1A for 2 minutes, the heat sink 3A is removed, and it waits for the temperature of the stainless steel heater 1A to recover to 200 ° C.
  • the heat sink 3A was brought into contact with the stainless steel heater 1A at the position (R) for 2 minutes, and then the heat sink 3A was removed, and the experiment was performed when the temperatures at the three locations (P), (Q), and (R) became substantially constant. Exit.
  • the experimental result of evaluation E1 is shown in FIG. According to FIG. 43, when the heat sink 3A is in contact with the positions (P) and (R) in the stainless steel heater 1A, the temperature drop at each position was about 30 ° C. to 40 ° C. When in contact with position (Q), the temperature rise at positions (P) and (R) was about 40 ° C. to 50 ° C.
  • Example 2 As a paste for forming the resistance heating wiring portion 15, a paste containing a powder made of a silver-palladium alloy (resistance value temperature coefficient 1,000 ppm / ° C.) without containing lead, cadmium and nickel is shown in FIG. A stainless steel heater 1A shown in FIG. 44 was manufactured in the same manner as in Example 1 except that the resistance heating wiring portion 15 having a pattern was formed, and the same evaluation as in Example 1 was performed.
  • a paste for forming the resistance heating wiring portion 15 a paste containing a powder made of a silver-palladium alloy (resistance value temperature coefficient 1,000 ppm / ° C.) without containing lead, cadmium and nickel is shown in FIG.
  • a stainless steel heater 1A shown in FIG. 44 was manufactured in the same manner as in Example 1 except that the resistance heating wiring portion 15 having a pattern was formed, and the same evaluation as in Example 1 was performed.
  • the experimental result of evaluation E1 is shown in FIG. According to FIG. 45, when the heat sink 3A is in contact with the positions (P) and (R) in the stainless steel heater 1A, the temperature drop at each position was about 30 ° C. to 40 ° C., but the position (Q ) Is in contact with the heat sink 3A, the temperature rise at the positions (P) and (R) was about 60 ° C. to 70 ° C.
  • Comparative Example 1 As a paste for forming the resistance heating wiring portion 15, a paste containing a powder made of a silver-palladium alloy (resistance value temperature coefficient 1,000 ppm / ° C.) without containing lead, cadmium and nickel is shown in FIG. A stainless steel heater shown in FIGS. 46 and 47 was manufactured in the same manner as in Example 1 except that the resistance heating wiring portion 15 having a pattern was formed, and the same evaluation as in Example 1 was performed.
  • a paste for forming the resistance heating wiring portion 15 a paste containing a powder made of a silver-palladium alloy (resistance value temperature coefficient 1,000 ppm / ° C.) without containing lead, cadmium and nickel is shown in FIG.
  • a stainless steel heater shown in FIGS. 46 and 47 was manufactured in the same manner as in Example 1 except that the resistance heating wiring portion 15 having a pattern was formed, and the same evaluation as in Example 1 was performed.
  • the experimental result of evaluation E1 is shown in FIG. According to FIG. 48, when the heat sink 3A is in contact with the positions (P) and (R) in the heater, the temperature drop at each position was about 20 ° C. to 80 ° C., but at the position (Q). When the heat sink 3A was in contact, the temperature rise at positions (P) and (R) was about 80 ° C. to 90 ° C.
  • Comparative Example 2 Evaluation same as Example 1 was performed using the commercially available ceramic heater provided with the resistance heating wiring part which has the pattern shown in FIG.
  • the material of the base is Al 2 O 3 .
  • the experimental result of evaluation E1 is shown in FIG. According to FIG. 50, when the heat sink 3A is in contact with the positions (P) and (R) in the heater, the temperature drop at each position was about 50 ° C. to 60 ° C., but at the position (Q). When the heat sink 3A was in contact, the temperature rise at positions (P) and (R) was about 90 ° C. to 110 ° C.
  • Example 3 Manufacture of stainless steel heater
  • the stainless steel heater 1B shown in FIG. 51 was manufactured in the following manner. After smoothing the surface of a substrate made of SUS430 (length 270 mm, width 24 mm and thickness 0.6 mm), a crystallized glass forming material whose component is SiO 2 —Al 2 O 3 —RO is dried. It apply
  • an inclined rectangular pattern for forming the resistance heating wiring portion 15 shown in FIG. 51 is formed on the surface of the insulating layer by using a paste containing a powder made of silver-palladium alloy (resistance temperature coefficient 1,500 ppm / ° C.).
  • a circuit pattern that was folded in the longitudinal direction of the stainless steel substrate was printed.
  • this printed part was baked at 850 ° C. to form the resistance heating wiring part 15.
  • the resistance heating wiring portion 15 has a line width of 0.5 mm and a line thickness of 13 ⁇ m.
  • a pattern for forming a power supply terminal portion 17 and a conductor wiring portion 19 for supplying power to the resistance heating wiring portion 15 was printed at predetermined positions.
  • this printing part is baked at 850 ° C. and connected from one power supply terminal part 17 to the other power supply terminal part 17 via the resistance heating wiring part 15 and the conductor wiring part 19 having a plurality of parallel wirings.
  • the crystallized glass forming material used at the time of forming the insulating layer 13 is used on the entire surface of the substrate including the surfaces of the resistance heating wiring portion 15, the power feeding terminal portion 17 and the conductor wiring portion 19 obtained.
  • coating and baking were repeated twice to form a first protective layer having a thickness of 44 ⁇ m.
  • an amorphous glass forming material composed of SiO 2 —Al 2 O 3 —B 2 O 3 —RO was applied to the surface of the first protective layer.
  • the coating film was baked at 750 ° C. to form a second protective layer having a thickness of 20 ⁇ m, and a stainless steel heater 1B was obtained (see FIG. 51, the first protective layer and the second protective layer are not shown). ).
  • the stainless steel heater 1B is arranged with both ends supported with the resistance heating wiring portion or the like facing upward.
  • a thermocouple K type is connected to the center of the stainless steel heater 1B, and an AC voltage (100V) is supplied from the temperature controller “E5EN” manufactured by OMRON to the power supply terminal portions 17 on both ends of the stainless steel heater 1B. Then, the heater is operated by PID control and generates heat to a predetermined temperature. And the temperature of the heater which changes with installation of the aluminum plate 3B was measured by a thermo tracer “TH9100MR / WRI” manufactured by NEC installed above the stainless steel heater 1B. Note that the thermocouple and the temperature measuring device are not shown in FIG.
  • the mounting point of the aluminum plate 3B is set as the position (Q ′), and the predetermined three places (P ′) and (Q The temperature was measured continuously in ') and (R').
  • (P ′), (Q ′) and (R ′) are all the center in the width direction of the stainless steel heater 1B, and (Q ′) is the center of the heater, and (P ′) and (R ′).
  • the area of the temperature measuring point is about 0.8 mm 2 in all cases.
  • the test method using the aluminum plate 3B is as follows.
  • the experimental result of evaluation E2 is shown in FIG. According to FIG. 53, when the aluminum plate 3B is at the position (Q ′), the temperature rise at the positions (P ′) and (R ′) was about 25 ° C. to 30 ° C.
  • Example 4 A stainless steel heater 1B shown in FIG. 54 was manufactured in the following manner, and evaluation E2 was performed in the same manner as in Example 3. After smoothing the surface of a substrate made of SUS430 (length 270 mm, width 24 mm and thickness 0.6 mm), a crystallized glass forming material whose component is SiO 2 —Al 2 O 3 —RO is dried. It apply
  • an inclined rectangular pattern for forming the resistance heating wiring portion 15 shown in FIG. 54 is formed on the surface of the insulating layer by using a paste containing a powder made of silver-palladium alloy (resistance temperature coefficient 1,000 ppm / ° C.).
  • a circuit pattern that was folded in the longitudinal direction of the stainless steel substrate was printed.
  • this printed part was baked at 850 ° C. to form the resistance heating wiring part 15.
  • the resistance heating wiring portion 15 has a line width of 0.5 mm and a line thickness of 13 ⁇ m.
  • a pattern for forming a power supply terminal portion 17 and a conductor wiring portion 19 for supplying power to the resistance heating wiring portion 15 was printed at predetermined positions.
  • this printed part is baked at 850 ° C. and connected from one power supply terminal part 17 to the other power supply terminal part 17 through the resistance heating wiring part 15 and the conductor wiring part 19 having a plurality of parallel wirings. (See FIG. 54).
  • the crystallized glass forming material used at the time of forming the insulating layer 13 is used on the entire surface of the substrate including the surfaces of the resistance heating wiring portion 15, the power feeding terminal portion 17 and the conductor wiring portion 19 obtained.
  • coating and baking were repeated twice to form a first protective layer having a thickness of 44 ⁇ m.
  • an amorphous glass forming material composed of SiO 2 —Al 2 O 3 —B 2 O 3 —RO was applied to the surface of the first protective layer.
  • the coating film was baked at 750 ° C. to form a second protective layer having a thickness of 20 ⁇ m, and a stainless steel heater 1B was obtained (see FIG. 54, the first protective layer and the second protective layer are not shown). ).
  • the experimental result of evaluation E2 is shown in FIG. According to FIG. 55, when the aluminum plate 3B is at the position (Q ′), the temperature rise at the positions (P ′) and (R ′) was about 25 ° C. to 30 ° C.
  • Example 5 The stainless steel heaters shown in FIGS. 10 and 12, which are schematic views, were manufactured in the following manner. After the surface of a substrate made of SUS430 (270 mm ⁇ 24 mm ⁇ 0.6 mm) is smoothed, a crystallized glass forming material whose component is SiO 2 —Al 2 O 3 —RO (softening point: 740 ° C.) is dried. It apply
  • a crystallized glass forming material whose component is SiO 2 —Al 2 O 3 —RO (softening point: 740 ° C.) is dried. It apply
  • the resistance heating wiring portion 15 has a line width of 0.5 mm and a line thickness of 10 ⁇ m.
  • each pattern for forming a power supply terminal portion 17 and a conductor wiring portion 19 for supplying power to the resistance heating wiring portion 15 was printed at predetermined positions. Then, this printed part is baked at 850 ° C., and is electrically connected from one power supply terminal part 17 to the other power supply terminal part 17 through the resistance heating wiring part 15 and the conductor wiring part 19 having a plurality of parallel wirings. (See FIG. 10). Next, a second insulating layer having a thickness of 40 ⁇ m is formed on the surfaces of the resistance heating wiring portion 15 and the conductor wiring portion 19 by using the crystallized glass forming material used in forming the first insulating layer 13. did.
  • the portion indicated by “32” in FIG. 10 (the portion that will later become the insulating portion for forming the disconnection portion, size: 2 mm ⁇ 4 mm) is unprinted, and This portion was printed so as to exceed the line width of the conductor wiring portion 19. Then, after the second insulating layer was formed, a recess was formed, and a part of the conductor wiring portion 19 indicated by “32” was exposed. Thereafter, by using the same screen mask, the exposed portion of the conductor wiring portion 19 indicated by “32” is left, and the non-made of SiO 2 —Al 2 O 3 —B 2 O 3 —RO (softening point: 580 ° C.).
  • a material for forming crystalline glass was applied to the surface of the second insulating layer. And the coating film was baked at 750 degreeC and the 20-micrometer-thick overcoat layer was formed. Next, an amorphous glass-forming material containing PbO—B 2 O 3 (softening point: 375 ° C.) is filled in the recess before “32” is formed, and fired at 450 ° C. to form a disconnected portion.
  • the insulating portion 32 was formed to obtain a stainless steel heater (in FIG. 10, the second insulating layer and the overcoat layer are not shown. In FIG. 12, the resistance heating wiring portion 15, the second insulating layer, and the The overcoat layer is not shown).
  • a voltage of AC 100 V is applied to each of the two power supply terminal portions 17 in the stainless steel heater obtained as described above to cause the resistance heating wiring portion 15 to generate heat, and the temperature of the stainless steel substrate portion is about 570 ° C. ( NEC / Avio Thermo Tracer “TH9100MR / WRI”). 15 seconds after applying the voltage, it was confirmed that the conductor wiring part 19 that had been in contact with the insulating part 32 for forming the disconnected part was disconnected (see FIG. 4).
  • the heater in which the disconnection portion forming insulating portion 32 is formed in one place on the right side of the drawing is shown.
  • another disconnection is provided at the symmetrical position on the left side of the drawing. It can be set as the heater provided with the insulation part for part formation.
  • Example 6 The stainless steel heaters shown in FIGS. 11 and 14, which are schematic views, were manufactured in the following manner. After smoothing the surface of the substrate made of SUS430, the crystallized glass forming material whose component is SiO 2 —Al 2 O 3 —RO (softening point: 740 ° C.) is dried so that the substrate becomes 100 ⁇ m. It was applied to the surface. Subsequently, the coating film was baked at 850 degreeC and the 1st insulating layer 13 which consists of crystallized glass with a film thickness of 85 micrometers was obtained. Thereafter, the resistance shown in FIG.
  • the crystallized glass forming material whose component is SiO 2 —Al 2 O 3 —RO (softening point: 740 ° C.) is dried so that the substrate becomes 100 ⁇ m. It was applied to the surface. Subsequently, the coating film was baked at 850 degreeC and the 1st insulating layer 13 which consists of crystallized glass with a film thickness of 85
  • the resistance heating wiring portion 15 has a line width of 0.5 mm and a line thickness of 12 ⁇ m.
  • each pattern for forming a power supply terminal portion 17 and a conductor wiring portion 19 for supplying power to the resistance heating wiring portion 15 was printed at predetermined positions. Then, this printed part is baked at 850 ° C., and is electrically connected from one power supply terminal part 17 to the other power supply terminal part 17 through the resistance heating wiring part 15 and the conductor wiring part 19 having a plurality of parallel wirings. (See FIG. 11). Next, a second insulating layer having a thickness of 40 ⁇ m is formed on the surfaces of the resistance heating wiring portion 15 and the conductor wiring portion 19 by using the crystallized glass forming material used in forming the first insulating layer 13. did.
  • the crystallized glass forming material is not printed in the portion indicated by “32” in FIG. 11 (the portion that will later become the insulating portion for forming the broken portion, size: 1.7 mm ⁇ 2.5 mm). And this part was printed so that the line width of the resistance heating wiring part 15 might be exceeded. Then, after the second insulating layer was formed, a recess was formed, and a part of the resistance heating wiring portion 15 indicated by “32” was exposed. Thereafter, using the same screen mask, SiO 2 —Al 2 O 3 —B 2 O 3 —RO (softening point: 580 ° C.) is formed while leaving the exposed portion of the resistance heating wiring portion 15 indicated by “32”.
  • amorphous glass forming material was applied to the surface of the second insulating layer. And the coating film was baked at 750 degreeC and the 20-micrometer-thick overcoat layer was formed. Next, an amorphous glass-forming material containing PbO—B 2 O 3 (softening point: 375 ° C.) is filled in the recess before “32” is formed, and fired at 450 ° C. to form a disconnected portion.
  • the insulating portion 32 was formed to obtain a stainless steel heater (in FIG. 11, the second insulating layer and the overcoat layer are not shown. In FIG. 14, the resistance heating wiring portion 15, the second insulating layer, and the The overcoat layer is not shown).
  • a voltage of AC 100 V is applied to each of the two power supply terminal portions 17 in the stainless steel heater obtained as described above to cause the resistance heating wiring portion 15 to generate heat, and the temperature of the stainless steel substrate portion is about 570 ° C. ( NEC / Avio Thermo Tracer “TH9100MR / WRI”). 10 seconds after applying the voltage, it was confirmed that the resistance heating wiring portion 15 that had been in contact with the insulating portion 32 for forming the disconnection portion was disconnected.
  • Example 7 instead of SUS430 provided with the first insulating layer 13, a resistance heating wiring portion 15, a feeding terminal portion 17, a conductor wiring portion 19 and the like are formed on a substrate using aluminum nitride in the same manner as in the sixth embodiment.
  • an amorphous glass forming material composed of SiO 2 —Al 2 O 3 —B 2 O 3 —RO (softening point: 580 ° C.) is applied to the surface of the second insulating layer.
  • An overcoat layer was formed, but instead of this amorphous glass forming material, an amorphous material containing PbO—B 2 O 3 (softening point: 375 ° C.) used for forming the disconnected portion forming insulating portion 32 was formed.
  • a glass forming material can be used to fill the recesses, and a coating film can be formed on the surface of the second insulating layer to form an overcoat layer made of an insulating material.
  • the overcoat layer having the same composition as the disconnection portion forming insulating portion 32 does not become an obstacle to disconnection during thermal runaway. .
  • Example 8 In the following manner, the base 11 made of stainless steel is provided with a first insulating layer 13, a resistance heating wiring portion 15, a disconnection forming insulating portion 32 (second insulating layer), and a conductor wiring portion 19 in order, and is a schematic diagram.
  • a laminated stainless steel heater shown in FIG. 18 was manufactured. After smoothing the surface of the substrate made of SUS430, the crystallized glass forming material whose component is SiO 2 —Al 2 O 3 —RO (softening point: 740 ° C.) is dried so that the substrate becomes 100 ⁇ m. It was applied to the surface.
  • the coating film was baked at 850 degreeC and the 1st insulating layer 13 which consists of crystallized glass with a film thickness of 85 micrometers was obtained.
  • a paste containing a powder composed of a silver-palladium alloy (resistance temperature coefficient 1,500 ppm / ° C.) and a paste containing silver powder, which does not contain lead, cadmium and nickel was printed and baked at 850 ° C.
  • a resistance heating wiring portion 15 including a rectangular pattern and having a series wiring folded in the width direction of the stainless steel substrate was obtained.
  • a second insulating layer 16 having a thickness of 55 ⁇ m was formed on the surface of the resistance heating wiring portion 15 by using the crystallized glass forming material used in forming the first insulating layer 13.
  • the portion of the crystallized glass forming material indicated by “32” in FIG. 18 (the portion that will later become the insulating portion for forming the broken portion, size: 1.7 mm ⁇ 2.5 mm) is not printed. And this part was printed so that the line width of the resistance heating wiring part 15 might be exceeded.
  • a concave portion was formed, and a part of the resistance heating wiring portion 15 indicated by “32” was exposed.
  • the recess before “32” is formed is filled with an amorphous glass-forming material containing Bi 2 O 3 —Zn—B 2 O 3 (softening point: 506 ° C.) and fired at 550 ° C.
  • the insulating part 32 for forming the disconnection part was formed.
  • each pattern of the conductor wiring part 19 and the power supply terminal part 17B is printed using a paste containing silver powder so as to cover the exposed insulating part 32 for forming the disconnection part.
  • the conductor wiring part 19 and the power supply terminal part 17B were formed by baking.
  • the conductor wiring part 19 had a line width of 1 mm and a wire thickness of 10 ⁇ m, and it was confirmed that the disconnection part forming insulating part 32 located on the lower layer side was longer than the line width of the conductor wiring part 19. Thereafter, an amorphous glass forming material made of Bi 2 O 3 —Zn—B 2 O 3 (softening point: 506 ° C.) was applied to the surface of the conductor wiring portion 19. And the coating film was baked at 500 degreeC and the overcoat layer 21 with a film thickness of 20 micrometers was formed, and the stainless steel heater was obtained.
  • a voltage of AC 100 V is applied to each of the two power supply terminal portions 17A and 17B in the obtained stainless steel heater to cause the resistance heating wiring portion 15 to generate heat, and the temperature of the stainless steel substrate portion is about 650 ° C. (NEC / Avio Thermotracer “TH9100MR / WRI”). 12 seconds after applying the voltage, it was confirmed that the resistance heating wiring portion 15 and the conductor wiring portion 19 that were in contact with the insulating portion 32 for forming the disconnection portion were disconnected.
  • Example 9 In place of the SUS430 provided with the first insulating layer 13, the resistance heating wiring portion 15, the power supply terminal portions 17A and 17B, the conductor wiring portion 19 and the like are formed on the substrate using aluminum nitride in the same manner as in the eighth embodiment.
  • Example 10 In the following manner, the base 11 made of stainless steel is sequentially provided with a first insulating layer 13, a conductor wiring portion 19, a disconnection portion forming insulating portion 32 (second insulating layer), and a resistance heating wiring portion 15 in order.
  • a laminated stainless steel heater shown in FIG. After smoothing the surface of the substrate made of SUS430, the crystallized glass forming material whose component is SiO 2 —Al 2 O 3 —RO (softening point: 740 ° C.) is dried so that the substrate becomes 100 ⁇ m. It was applied to the surface. Subsequently, the coating film was baked at 850 degreeC and the 1st insulating layer 13 which consists of crystallized glass with a film thickness of 85 micrometers was obtained.
  • each pattern of the power supply terminal portion 17A and the conductor wiring portion 19 for supplying power to the resistance heating wiring portion 15 was printed at a predetermined position and baked at 850 ° C. .
  • a second insulating layer 16 having a film thickness of 55 ⁇ m was formed on the surface of the conductor wiring portion 19 using the crystallized glass forming material used in forming the first insulating layer 13.
  • the portion indicated by “32” in FIG. 24 (the portion that will later become a disconnected portion forming insulating portion, size: 1.7 mm ⁇ 2.5 mm) is not printed. And this part was printed so that the line width of the conductor wiring part 19 might be exceeded.
  • the recessed part was formed and a part of conductor wiring part 19 shown by "32" was exposed. Thereafter, the recess before “32” is formed is filled with an amorphous glass forming material containing SiO 2 —Al 2 O 3 —B 2 O 3 —RO (softening point: 580 ° C.), and 750 ° C.
  • the insulating part 32 for disconnection part formation was formed by baking.
  • a circuit pattern that is folded back in the width direction of the stainless steel substrate was printed, including an inclined rectangular pattern for forming the resistance heating wiring portion 15 shown in FIG. 24 so as to cover the forming insulating portion 32.
  • this printed part was baked at 550 ° C. to form a resistance heating wiring part 15 having a series wiring.
  • the resistance heating wiring portion 15 had a line width of 1 mm and a wire thickness of 10 ⁇ m, and the disconnection portion forming insulating portion 32 located on the lower layer side was longer than the resistance heating wiring portion 15. Thereafter, a pattern of the power feeding terminal portion 17B for supplying power to the resistance heating wiring portion 15 was printed at a predetermined position using a paste containing silver powder (material softening point: 550 ° C.). Next, an amorphous glass forming material made of Bi 2 O 3 —Zn—B 2 O 3 (softening point: 506 ° C.) was applied to the surface of the resistance heating wiring portion 15.
  • the coating film was baked at 550 degreeC, the 20-micrometer-thick overcoat layer 21 was formed, and the stainless steel heater was obtained. Thereafter, a voltage of AC 100 V is applied to each of the two power supply terminal portions 17A and 17B in the obtained stainless steel heater to cause the resistance heating wiring portion 15 to generate heat, and the temperature of the stainless steel substrate portion is about 650 ° C. (NEC / Avio Thermotracer “TH9100MR / WRI”). 12 seconds after applying the voltage, it was confirmed that the resistance heating wiring portion 15 and the conductor wiring portion 19 that were in contact with the insulating portion 32 for forming the disconnection portion were disconnected.
  • the resistance heating wiring portion 15 is used as a series wiring, and the heater in which the conductor wiring portion 19, the disconnection portion forming insulating portion 32, and the resistance heating wiring portion 15 are in contact with each other in the vertical direction from the substrate is shown.
  • the resistance heating wiring portion 15 is a parallel wiring, and further, for example, a heater in which an insulating portion for forming a disconnection portion is formed at a position “32” shown in FIG. be able to.
  • FIG. 5 is a schematic diagram including a resistance heating wiring portion 15 on one surface side of a base portion 11 made of stainless steel and a conductor wiring portion 19 and a disconnection portion forming insulating portion 32 in order on the other surface side in the following manner.
  • a laminated stainless steel heater shown in FIG. After smoothing both surfaces of the substrate made of SUS430, the material for forming crystallized glass whose component is SiO 2 —Al 2 O 3 —RO (softening point: 740 ° C.) is dried so that the substrate becomes 100 ⁇ m. It was applied to both sides.
  • the coating film was baked at 850 ° C., and the first insulating layer 13 and the third insulating layer 23 made of crystallized glass having a film thickness of 85 ⁇ m were obtained.
  • the surface of the first insulating layer 13 is made of a paste containing a powder made of a silver-palladium alloy (resistance temperature coefficient 1,500 ppm / ° C.) without containing lead, cadmium and nickel.
  • a circuit pattern including a rectangular pattern that is inclined to form a resistance heating wiring portion 15 and folded in the width direction of the stainless steel substrate was printed. And this printing part was baked at 850 degreeC, and the resistance heating wiring part 15 was formed.
  • the resistance heating wiring portion 15 has a line width of 0.5 mm and a line thickness of 11 ⁇ m.
  • each pattern for forming the power supply terminal portion 17B and the conductor wiring portion 19 was printed at a predetermined position on the surface of the third insulating layer 23. Then, these printed parts were baked at 850 ° C. to form the resistance heating wiring part 15 having a plurality of parallel wirings on one side and the conductor wiring part 19 on the other side.
  • both of the film thicknesses are used.
  • the first overcoat layer 21A and the second overcoat layer 21B having a thickness of 55 ⁇ m were formed.
  • the portion of the crystallized glass forming material indicated by “32” in FIG. 27 (the portion that will later become the insulating portion for forming the disconnection portion, size: 1.7 mm ⁇ 2.5 mm) is unprinted. And this part was printed so that the line width of the conductor wiring part 19 might be exceeded.
  • the recessed part was formed and a part of 2nd overcoat layer 21B shown by "32" was exposed.
  • an amorphous glass-forming material containing PbO—B 2 O 3 (softening point: 375 ° C.) is filled in the recess before “32” is formed, and fired at 450 ° C. to form a disconnected portion.
  • a stainless steel heater was obtained by forming an insulating part 32 for use. In this stainless steel heater, the conductor wiring part (terminal part) 25 on the side (upper side) on which the resistance heating wiring part 15 is formed and the left end part of the lower conductor wiring part 19 are connected to a connector, a socket or the like.
  • the connection member 27 is used for conducting.
  • Example 12 In place of SUS430 having the first insulating layer 13 and the third insulating layer 23, a resistance heating wiring portion 15, power supply terminal portions 17A and 17B, and a substrate using aluminum nitride, in the same manner as in Example 11, A conductor wiring portion (terminal portion) 25, a conductor wiring portion 19 and the like were formed, and a ceramic heater shown in FIG.
  • Example 13 In the following manner, a ceramic heater shown in FIG. 35, which is a schematic view, is manufactured using a substrate made of aluminum nitride and having a through-hole (cross-sectional shape: circular, inner diameter: 0.3 mm) that opens vertically on one end side. did.
  • FIG. 10 shows a paste containing powder containing silver-palladium alloy (resistance temperature coefficient 1,500 ppm / ° C.) without containing lead, cadmium and nickel at a predetermined position on the surface on one side of the substrate.
  • a circuit pattern was printed, including an inclined rectangular pattern for forming the resistance heating wiring portion 15 as shown, and folded in the width direction of the stainless steel substrate.
  • the resistance heating wiring portion 15 has a line width of 0.5 mm and a line thickness of 10 ⁇ m.
  • each pattern for forming the power supply terminal portion 17B and the conductor wiring portion 19 was printed at a predetermined position on the other surface side surface of the substrate, and the through holes were filled.
  • each pattern for providing a power supply terminal portion 17A for supplying power to the resistance heating wiring portion 15 is printed at a predetermined position on the surface of the resistance heating wiring portion 15 to obtain continuity with the conductor wiring portion 19. I was able to. Then, these printed parts were baked at 950 ° C.
  • a first overcoat is formed on the surface of the resistance heating wiring portion 15 and the conductor wiring portion 19 using a crystallized glass forming material whose component is SiO 2 —Al 2 O 3 —RO (softening point: 740 ° C.). Layer 21A and second overcoat layer 21B were formed. At this time, in the crystallized glass forming material, the portion indicated by “32” in FIG. 35 (the portion that will later become the insulating portion for forming the disconnection portion, size: 1.7 mm ⁇ 2.5 mm) is not printed.
  • the heater of the present invention By arranging the heater of the present invention in a heat treatment apparatus, fixing of toner, ink, etc., bonding of a plurality of members, heat treatment of a coating film or film, heat treatment of a metal product or resin product, drying, solder reflow, etc. It can be done efficiently with power saving. In the present invention, since the heater can be reduced in width, it is suitable for placement in a small heat treatment apparatus.
  • the fixing device of the present invention is mounted on an image forming apparatus such as an electrophotographic printing machine, a copying machine, etc., a household electric product, a commercial or experimental precision instrument, and is used as a heat source for heating, heat retention, etc. It is suitable as.
  • the drying apparatus of the present invention is suitable as an apparatus for drying a heat-treated material containing water, an organic solvent and the like at a desired temperature. And it can use as a vacuum dryer (vacuum dryer), a pressure dryer, a dehumidification dryer, a hot air dryer, an explosion-proof dryer, etc.
  • a vacuum dryer vacuum dryer
  • pressure dryer pressure dryer
  • dehumidification dryer a hot air dryer
  • explosion-proof dryer etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)
  • Fixing For Electrophotography (AREA)
  • Surface Heating Bodies (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

本発明のヒータは、長尺状の基部11と、基部11の表面側又は内部に、この基部に対して、電気的絶縁状態で形成された、通電発熱する複数の並列配線を有する抵抗発熱配線部15及び少なくとも2つの給電用端子部であって、抵抗発熱配線部15に電力を供給するために、抵抗発熱配線部15を介して一方の端子部17及び他方の端子部17を電気的に接続する給電用電極部17とを備え、抵抗発熱配線部15は、抵抗値温度係数が500~4,400ppm/℃の材料を含み、並列配線は、傾斜した矩形パターンを含む。

Description

ヒータ並びにそれを備える定着装置及び乾燥装置
 本発明は、通電により発熱する抵抗発熱配線部を有する長尺状のヒータ並びにそれを備える定着装置及び乾燥装置に関する。
 熱処理用の加熱手段として、抵抗発熱配線部を有するステンレスヒータ、セラミックスヒータ等が知られている。そして、このようなヒータを備える装置が広い用途で用いられ、所望の温度で安定した熱処理が行われている。例えば、電子写真方式の印刷機、複写機等の画像形成装置を用いて、紙、フィルム等の記録用媒体の表面に画像を形成するために、画像形成装置に、長尺状のセラミックヒータを配設して、トナー、インク等を定着させている。具体的な画像形成方法は、その表面に未定着のトナー画像を有する記録用媒体を、ヒータを備える定着用ロールと加圧用ロールとの間に供給し、両者の圧接部を通過させることにより、定着させるものである。このとき、記録用媒体を、長尺状のヒータの幅方向(ヒータの長手方向に対して垂直の方向)に移動させながら行うことが一般的である。このため、記録用媒体の大きさに依存することなく、温度むらが抑制され安定した熱処理を行うことができるヒータの検討がなされている。この検討理由としては、従来の定着用ヒータが、その全長に対して、通紙できる最大長さ(幅)の紙や、それより小さいサイズの紙を通紙する場合を考えて、長さの異なる発熱体を備え、通紙サイズにより通電を切り替え動作させるものであったことが挙げられる。この場合、定着用ヒータの全長と同等の長さ(幅)の紙を通紙すると、発熱体全域の温度が低下するという問題がある。また、定着用ヒータの全長より短い長さ(幅)を有する、小さいサイズの紙を通紙させると、通紙していない領域の温度が局所的に上昇してしまい、通紙領域における温度制御が困難となり、通紙中の紙における定着効率も低下するという問題がある。そして、他の周辺部品にダメージを与える等の問題があった。
 上記不具合を抑制するために、下記の技術が知られている。
 特許文献1には、絶縁基板表面に通電により発熱する発熱体を備え、絶縁基板上にその長手方向に沿って幅が異なる複数の発熱体を並設し、紙等の記録用媒体の進行方向の絶縁基板幅方向上流側に幅の狭い発熱体を配置したヒータが開示されている。
 特許文献2には、窒化アルミニウム等の高熱伝導特性を有する長尺平板状の絶縁基板と、絶縁基板の一面に形成された発熱抵抗体と、発熱抵抗体に電力を供給するために形成された給電用電極部と、発熱抵抗体を覆うように配置されたオーバーコート層と、給電用電極部から電力が供給された場合に、発熱抵抗体の他の部分より高い熱を発する部分の絶縁基板の裏面に、絶縁基板より熱伝導率の高い材料で形成された放熱パターンと、を備える定着ヒータが開示されている。
 特許文献3には、耐熱・絶縁性材料で形成される長尺平板状の基板と、基板の一面に形成された発熱抵抗体と、発熱抵抗体に電力を供給するために形成された給電用電極部と、発熱抵抗体を覆うように配置されたオーバーコート層と、を備え、発熱抵抗体は、長手方向に中央に位置して形成された第1の比抵抗の値を有する第1の発熱抵抗体と第1の発熱抵抗体の両端に接続した第1の比抵抗より小さい第2の比抵抗の値を有する第2の発熱抵抗体が直列接続されたものである定着ヒータが開示されている。
 ところで、電子写真複写機、プリンタ等の画像形成装置において、転写材、感光紙等の被記録材に形成担持させた未定着トナー画像を永久定着像として熱定着させる画像加熱定着装置の1つとしてオンデマンドのフィルム加熱方式の装置が知られている。
 これは、ヒータと、一方の面がこのヒータと摺動し他方の面が被記録材と接して共に移動するフィルムとを有し、フィルムを介したヒータからの熱により未定着トナー画像を被記録材に熱定着させるものである。
 このようなフィルム加熱方式の装置においては、ヒータや、ヒータの熱を被記録材に伝導する部材としてのフィルムを低熱容量化できるため、オンデマンドで、省電力化、ウエイトタイムの短縮化(クイックスタート性)が可能である。即ち、装置を冷めた状態から所定温度へ昇温させる時間が短時間で済み、待機中にヒータの通電加熱を行う必要がない。また、画像形成装置への電源投入後すぐに通紙しても被記録材が定着部位に到達するまでにヒータを所定温度まで十分に昇温させることができて、消費電力を低く抑えることや画像形成装置の機内昇温を低下させることが可能である。
 セラミックヒータは、低熱容量で高い昇温速度を与える加熱用部材として好適であることが知られている。このヒータは、例えば、電気絶縁性、耐熱性又は良熱伝導性を有するセラミック基板(例えば、アルミナ基板)と、基板に印刷、焼成等によりパターン形成した、電力の供給を受けて発熱する抵抗発熱体(例えば、銀-パラジウム)を含む1次系回路(以下、ACラインと記す)を有し、抵抗発熱体に電力を供給して発熱させるものである。また、ヒータには、検温素子(例えば、サーミスタ)を含む2次系回路(以下、DCラインと記す)を具備させて、このDCラインを接続した温調制御系により、ヒータが所定の設定温度に温調されるように抵抗発熱体に対する供給電力が制御される。
 このようなヒータを備える装置における安全対策として、ACラインに直列に温度ヒューズ等の安全素子を介入させ、これをヒータに当接もしくは近接させて配設することで、ヒータの熱暴走時にはこの安全素子の作動で抵抗発熱体に対する電力供給を緊急遮断させるようにしてある。
 更に、安全対策が講じられたヒータとして、SUS430等からなる導体基材と、導体基材上に形成されたガラス転移点T1を有する絶縁ガラス層と、絶縁ガラス層上に形成されたガラス転移点T2を有する抵抗体パターンと抵抗体パターンへの給電を行う導体パターンと、さらに抵抗体パターンと導体パターンの上に形成されたガラス転移点T3を有する絶縁ガラス層を有するヒータであって、導体基材上に形成された各層のガラス転移点の関係が、T1>T3≧T2ないしT1>T2≧T3となるヒータが知られており、転写式電子写真プロセスに好適であるとされている(特許文献4参照)。
 また、発熱抵抗体を備える乾燥機として、例えば、特許文献5に開示された自己調節電気抵抗発熱体を備える乾燥機が知られている。この自己調節電気抵抗発熱体は、非導電性基板、基板上に付着された所定の動作温度未満の正又は負の温度係数の抵抗を有する第1金属酸化物、第1金属酸化物に隣接して基板上に付着された、第1金属酸化物とは反対の温度係数の抵抗を有する第2金属酸化物、第1及び第2電気接点であって、第1及び第2金属酸化物を通って電流が接点の間を流れることができるように位置された、第1及び第2電気接点と、を備え、第1及び第2金属酸化物は組み合わせで、周囲温度から所定の動作温度まで実質的に一定の合成抵抗、及び、動作温度より上で抵抗に非常に著しい増加を提供する発熱体である。
特開2001-194936号公報 特開2007-121955号公報 特開2007-232819号公報 特開2002-25752号公報 特公表2011-523174号公報
 上記のように、記録用媒体を通紙していない領域で、ヒータの温度が上昇する現象は、実際には、完全に解消されるものではなく、この不具合を更に抑制する部材又は装置が求められている。
 本発明は、使用時における抵抗発熱配線部の局所的な温度上昇が抑制され、被熱処理物を、その大きさに依存することなく、温度むらを抑制しつつ安定した熱処理を行うことができるヒータ並びにそれを備える定着装置及び乾燥装置を提供することを目的とする。
 また、抵抗発熱配線を含む、定着装置や、電子写真複写機、プリンタ等の画像形成装置において、熱暴走等が発生した場合には、抵抗発熱配線部が、例えば、800℃といった高い温度に達することが知られている。
 本発明は、熱暴走等によって、発熱している抵抗発熱配線部が所定温度以上になった際に抵抗発熱配線部への電力供給が中断されるヒータ並びにそれを備える定着装置及び乾燥装置を提供することを目的とする。
 本発明は、以下に示される。
1.長尺状の基部と、上記基部の表面側又は内部に、該基部に対して電気的に絶縁された状態で形成されている抵抗発熱部であって、通電により発熱する複数の並列配線を有する抵抗発熱配線部と、上記基部の表面側又は内部に、該基部に対して電気的に絶縁された状態で形成されている給電用端子部であって、該給電用端子部の数は少なくとも2つであり、上記抵抗発熱配線部に電力を供給するために、上記抵抗発熱配線部を介して一方の端子部及び他方の端子部を電気的に接続する給電用端子部と、を備えるヒータにおいて、上記抵抗発熱配線部は、抵抗値温度係数が500~4,400ppm/℃の材料を含み、上記並列配線は、傾斜した矩形パターンを含むことを特徴とするヒータ。
2.上記給電用端子部の数が2つであり、更に、上記基部の表面側又は内部に、該基部に対して電気的に絶縁された状態で形成されている導体配線部であって、該導体配線部の数は2つであり、上記抵抗発熱配線部の1端側及び他端側と上記2つの給電用端子部とを、別々に、電気的に接続する導体配線部と、上記抵抗発熱配線部の一部及び上記導体配線部の一部のうちの少なくとも一方の上層側表面又は下層側表面に、上記抵抗発熱配線部の線幅若しくは上記導体配線部の線幅と同じ又はそれ以上の長さで、接触形成された断線部形成用絶縁部であって、上記抵抗発熱配線部が所定温度以上になった場合に、該抵抗発熱配線部を構成する材料(m1)、及び、上記導体配線部を構成する材料(m2)から選ばれた少なくとも1種と反応する材料を含み、該反応により電気的絶縁部を形成し、上記抵抗発熱配線部又は上記導体配線部を断線させる断線部形成用絶縁部と、を備える上記1に記載のヒータ。
3.上記基部が、ステンレス、アルミニウム又はアルミニウム合金を含む基層と、該基層の表面に形成された電気的絶縁層とからなり、上記抵抗発熱配線部が、上記電気的絶縁層の表面に形成されている上記2に記載のヒータ。
4.上記ヒータが、上記基部の上記電気的絶縁層の表面に、上記抵抗発熱配線部及び上記導体配線部をこの順に備える積層型ヒータであり、上記抵抗発熱配線部の一部、上記断線部形成用絶縁部の少なくとも一部、及び、上記導体配線部の一部が、順次、面接触した部分を備える上記3に記載のヒータ。
5.上記基部が、絶縁性セラミックスを含み、上記抵抗発熱配線部が、上記基部の表面に形成されている上記2に記載のヒータ。
6.上記ヒータが、上記基部の表面に、上記抵抗発熱配線部及び上記導体配線部をこの順に備える積層型ヒータであり、上記抵抗発熱配線部の一部、上記断線部形成用絶縁部の少なくとも一部、及び、上記導体配線部の一部が、順次、面接触した部分を備える上記5に記載のヒータ。
7.上記基部が、ステンレス、アルミニウム又はアルミニウム合金を含む基層と、該基層の表面に形成された電気的絶縁層とからなり、
 上記導体配線部が、上記電気的絶縁層の表面に形成されている上記2に記載のヒータ。
8.上記ヒータが、上記基部の上記電気的絶縁層の表面に、上記導体配線部及び上記抵抗発熱配線部をこの順に備える積層型ヒータであり、上記導体配線部の一部、上記断線部形成用絶縁部の少なくとも一部、及び、上記抵抗発熱配線部の一部が、順次、面接触した部分を備える上記7に記載のヒータ。
9.上記基部が、絶縁性セラミックスを含み、
 上記導体配線部が、上記基部の表面に形成されている上記2に記載のヒータ。
10.上記ヒータが、上記基部の表面に、上記導体配線部及び上記抵抗発熱配線部をこの順に備える積層型ヒータであり、上記導体配線部の一部、上記断線部形成用絶縁部の少なくとも一部、及び、上記抵抗発熱配線部の一部が、順次、面接触した部分を備える上記9に記載のヒータ。
11.上記抵抗発熱配線部が銀合金を含む上記2乃至10のいずれか1項に記載のヒータ。
12.上記導体配線部が銀を含む上記2乃至11のいずれか1項に記載のヒータ。
13.上記断線部形成用絶縁部が、ビスマス系ガラス及び鉛系ガラスから選ばれた少なくとも1種を含む上記2乃至12のいずれか1項に記載のヒータ。
14.上記基部が、ステンレス、アルミニウム又はアルミニウム合金を含む基層と、該基層の表面に形成された電気的絶縁層とからなり、上記抵抗発熱配線部及び上記給電用端子部が、上記電気的絶縁層の表面に形成されている上記1に記載のヒータ。
15.上記抵抗発熱配線部が銀合金を含む上記14に記載のヒータ。
16.上記基部が、絶縁性セラミックスを含み、上記抵抗発熱配線部及び上記給電用端子部が、上記基部の表面に形成されている上記1に記載のヒータ。
17.上記基部が、絶縁性セラミックスを含み、上記抵抗発熱配線部が、上記基部の内部に形成されている上記1に記載のヒータ。
18.上記抵抗発熱配線部が、タングステン又はモリブデンを含む上記16又は17に記載のヒータ。
19.長尺状の基部と、上記基部の表面側又は内部に、該基部に対して電気的に絶縁された状態で形成されている抵抗発熱部であって、通電により発熱する抵抗発熱配線部と、上記基部の表面側又は内部に、該基部に対して電気的に絶縁された状態で形成されている、2つの給電用端子部と、上記基部の表面側又は内部に、該基部に対して電気的に絶縁された状態で形成されている導体配線部であって、該導体配線部の数は2つであり、上記抵抗発熱配線部の1端側及び他端側と上記2つの給電用端子部とを、別々に、電気的に接続する導体配線部と、上記抵抗発熱配線部の一部及び上記導体配線部の一部のうちの少なくとも一方の上層側表面又は下層側表面に、上記抵抗発熱配線部の線幅若しくは上記導体配線部の線幅と同じ又はそれ以上の長さで、接触形成された断線部形成用絶縁部であって、上記抵抗発熱配線部が所定温度以上になった場合に、該抵抗発熱配線部を構成する材料(m1)、及び、上記導体配線部を構成する材料(m2)から選ばれた少なくとも1種と反応する材料を含み、該反応により電気的絶縁部を形成し、上記抵抗発熱配線部又は上記導体配線部を断線させる断線部形成用絶縁部と、を備えることを特徴とするヒータ。
20.上記1乃至19のいずれか1項に記載のヒータを備えることを特徴とする定着装置。
21.上記1乃至19のいずれか1項に記載のヒータを備えることを特徴とする乾燥装置。
 本発明のヒータによれば、使用時における抵抗発熱配線部の局所的な温度上昇が抑制され、被熱処理物を、その大きさに依存することなく、温度むらを抑制しつつ安定した熱処理を行うことができる。また、抵抗発熱配線部が傾斜した矩形パターンを含むので、ヒータの幅を縮小しても、所期の効果を得ることができる。
 本発明のヒータは、ヒータ及び被熱処理物の両方を固定した状態で熱処理するだけでなく、被熱処理物を固定した状態で、ヒータを、その幅方向(ヒータの長手方向に対して垂直の方向)に移動させながら、熱処理する場合、及び、ヒータを固定した状態で、被熱処理物を、長尺状のヒータに対して垂直の方向に移動させながら、熱処理する場合、に好適である。特に、被熱処理物を固定した状態で、ヒータを移動させながら、熱処理する場合、及び、ヒータを固定した状態で、被熱処理物を移動させながら、熱処理する場合、のいずれにおいても、被熱処理物を、長尺状のヒータの幅方向に横切るように移動させると、被熱処理物を、その大きさに依存することなく、温度むらを抑制しつつ安定した熱処理を行うことができる。
 また、互いに熱的性質の異なる被熱処理物を、同じ温度で熱処理する場合にも、異常発熱を招くことなく、所定の温度で安定した処理を行うことができる。
 本発明において、被熱処理物の大きさが、ヒータの長手方向における抵抗発熱配線部の全長より小さい場合には、被熱処理物の大きさに応じて、その近接した抵抗発熱配線部の均一発熱により熱処理されるが、このとき、近接していない抵抗発熱配線部における局所的な温度上昇が抑制され、他の周辺部品にダメージを与えることがない。従って、被熱処理物を、その大きさに依存することなく、所望の温度、例えば、-40℃~1,000℃の範囲における設定温度で熱処理を安定して行うことができる。
 本発明のヒータを、熱処理装置に配することにより、トナー、インク等の定着、複数の部材どうし貼り合わせ、塗膜又は皮膜の熱処理、金属製品又は樹脂製品の熱処理、乾燥、半田リフロー等を、省電力で効率よく行うことができる。また、上記のように、幅が縮小されたヒータとすることができるので、小型の熱処理装置への配設に好適である。
 図1(A)に示される矩形パターンを図4における抵抗発熱配線部に適用し、トナー、インク等の定着を行った場合、ヒータの幅方向に配線の非形成部分を有することとなるので、線状の定着不良が発生するおそれがあるが、本発明のヒータを用いると、その不具合が解消される。
 特に、被熱処理物が、紙、フィルム等であって、印刷等に供される場合には、本発明のヒータは、印刷機、複写機、ファクシミリ等の画像形成装置又は定着装置における定着用ヒータとして好適である。
 本発明の定着装置は、ヒータによる熱を利用した、トナー、インク等の定着、複数の部材の貼り合わせ等に好適である。特に、圧着手段を併用することにより、一体化物を効率よく得ることができる。例えば、長尺状のヒータを含む定着用ロールと加圧用ロールとを備える定着装置として、表面に未定着のトナー画像を有する記録用媒体を、定着用ロールと加圧用ロールとの間に供給し、記録用媒体をヒータの幅方向に移動させながら、定着用ロール及び加圧用ロールの圧接部を通過させることにより、抵抗発熱配線部の局所的な温度上昇を抑制しつつ、その大きさに依存することなく、紙、フィルム等の記録用媒体に、トナー、インク等を効率よく定着させることができる。
 本発明の乾燥装置によれば、所望の雰囲気における乾燥を、効率よく進めることができる。そして、真空乾燥機(減圧乾燥機)、加圧乾燥機、除湿乾燥機、熱風乾燥機、防爆型乾燥機等として用いることができる。
 また、断線部形成用絶縁部を備える本発明のヒータによれば、その熱暴走等により抵抗発熱配線部の過昇温が始まり、所定温度以上になると、抵抗発熱配線部及び/又は導体配線部と、断線部形成用絶縁部との接触部(被覆部分)において、各構成材料が反応して、電気的絶縁部を形成し、抵抗発熱配線部又は導体配線部を円滑に断線させ、稼働を停止させることができる。
 従って、この態様のヒータを用いた定着装置及び乾燥装置についても、ヒータが所定温度以上になった際には、抵抗発熱配線部又は導体配線部において自己断線させることができ、安全性を確保することができる。
(A)は、従来、公知の矩形パターンを示す概略図であり、(B)は、傾斜した矩形パターンを示す概略図である。 傾斜した矩形パターンの他の例を示す概略図である。 傾斜した矩形パターンの他の例を示す概略図である。 1態様のヒータの一例を示す概略平面図である。 図4のX-X線断面を示す概略図である。 1態様のヒータの他の例を示す概略平面図である。 1態様のヒータの他の例を示す概略平面図である。 1態様のヒータの他の例を示す概略断面図である。 1態様のヒータの他の例を示す概略断面図である。 断線部形成用絶縁部が導体配線部の表面に被覆形成されている他態様のヒータの一例を示す概略平面図である。 断線部形成用絶縁部が抵抗発熱配線部の表面に被覆形成されている他態様のヒータの他の例を示す概略平面図である。 断線部形成用絶縁部が導体配線部の表面に被覆形成されている他態様のヒータを示す概略断面図である。 図12のヒータが熱暴走して導体配線部の一部に電気的絶縁部が形成されて導体配線部が断線したことを示す概略断面図である。 断線部形成用絶縁部が抵抗発熱配線部の表面に被覆形成されている他態様のヒータの一例を示す概略断面図である。 断線部形成用絶縁部が抵抗発熱配線部の表面に被覆形成されている他態様のヒータの他の例を示す概略断面図である。 断線部形成用絶縁部が、導体配線部の表面に被覆形成されている他態様のヒータの他の例を示す概略平面図である。 断線部形成用絶縁部が、導体配線部の表面側に、且つ、オーバーコート層の中において、オーバーコート層に包囲されるように形成されている他態様のヒータの他の例を示す概略断面図である。 断線部形成用絶縁部が、導体配線部の基部側、及び、抵抗発熱配線部の表面側、に面して形成されている他態様のヒータの一例を示す概略断面図である。 断線部形成用絶縁部が、第1絶縁層の中において、第1絶縁層に包囲されるように、基部及び抵抗発熱配線部の間に形成されている他態様のヒータの一例を示す概略断面図である。 2箇所の断線部形成用絶縁部を有する他態様のヒータの一例を示す概略断面図である。 図18のヒータが熱暴走して、導体配線部及び抵抗発熱配線部の一部に電気的絶縁部が形成されて導体配線部及び抵抗発熱配線部が断線したことを示す概略断面図である。 図20のヒータが熱暴走して、導体配線部及び抵抗発熱配線部の一部に電気的絶縁部が形成されて導体配線部及び抵抗発熱配線部が断線したことを示す概略断面図である。 断線部形成用絶縁部が、抵抗発熱配線部の表面側に、且つ、オーバーコート層の中において、オーバーコート層に包囲されるように形成されている他態様のヒータの他の例を示す概略断面図である。 断線部形成用絶縁部が、抵抗発熱配線部の基部側、及び、導体配線部の表面側、に面して形成されている他態様のヒータの他の例を示す概略断面図である。 断線部形成用絶縁部が、第1絶縁層の中において、第1絶縁層に包囲されるように、基部及び導体配線部の間に形成されている他態様のヒータの他の例を示す概略断面図である。 2箇所の断線部形成用絶縁部を有する他態様のヒータの他の例を示す概略断面図である。 断線部形成用絶縁部が導体配線部の表面に形成されている他態様のヒータの他の例を示す概略断面図である。 断線部形成用絶縁部が、導体配線部の表面側に、且つ、オーバーコート層の中において、オーバーコート層に包囲されるように形成されている他態様のヒータの他の例を示す概略断面図である。 断線部形成用絶縁部が、導体配線部の基部側、及び、抵抗発熱配線部の表面側、に面して形成されている他態様のヒータの他の例を示す概略断面図である。 2箇所の断線部形成用絶縁部を有する他態様のヒータの他の例を示す概略断面図である。 断線部形成用絶縁部が、抵抗発熱配線部の表面側に、且つ、オーバーコート層の中において、オーバーコート層に包囲されるように形成されている他態様のヒータの他の例を示す概略断面図である。 断線部形成用絶縁部が、抵抗発熱配線部の基部側、及び、導体配線部の表面側、に面して形成されている他態様のヒータの他の例を示す概略断面図である。 2箇所の断線部形成用絶縁部を有する他態様のヒータの他の例を示す概略断面図である。 断線部形成用絶縁部が、導体配線部の表面に形成されている他態様のヒータの他の例を示す概略断面図である。 断線部形成用絶縁部が、導体配線部の表面に形成されている他態様のヒータの他の例を示す概略断面図である。 (A1)及び(A2)は、断線部形成用絶縁部が抵抗発熱配線部又は導体配線部を覆っていることを示す平面図であり、(B1)及び(B2)は、断線部形成用絶縁部が抵抗発熱配線部又は導体配線部により覆われていることを示す平面図である。 本発明の定着装置の一例を示す概略斜視図である。 本発明の定着装置の他の例を示す概略斜視図である。 本発明のヒータを備える画像形成装置の一例を示す概略図である。 実施例1で製造したヒータを示す平面図である。 ヒータの評価E1用のヒートシンクを示す概略斜視図である。 ヒータの評価E1用の装置を示す概略平面図である。 実施例1のヒータにおける試験結果(評価E1)を示すグラフである。 実施例2で製造したヒータを示す平面図である。 実施例2のヒータにおける試験結果(評価E1)を示すグラフである。 比較例1で製造したヒータを示す平面図である。 図46のY-Y線断面を示す概略図である。 比較例1のヒータにおける試験結果(評価E1)を示すグラフである。 比較例2で用いたヒータを示す概略平面図である。 比較例2のヒータにおける試験結果(評価E1)を示すグラフである。 実施例3で製造したヒータを示す平面図である。 ヒータの評価E2用の装置を示す概略平面図である。 実施例3のヒータにおける試験結果(評価E2)を示すグラフである。 実施例4で製造したヒータを示す平面図である。 実施例4のヒータにおける試験結果(評価E2)を示すグラフである。
1,1A,1B:ヒータ
11:基部
12:基層
13:電気的絶縁層(第1絶縁層)
15:抵抗発熱配線部
16:第2絶縁層
17,17A,17B:給電用端子部
19:導体配線部
20:傾斜した矩形パターン
21,21A,21B:オーバーコート層
23:第3絶縁層
24:第1保護層
25:第2保護層
32:断線部形成用絶縁部
34:電気的絶縁部
3A,3B:ヒートシンク
4:画像形成装置
41:レーザースキャナー
42:ミラー
43:帯電装置
44:感光ドラム
45:現像器
46:転写ドラム
47:転写用ロール
5:定着装置(定着手段)
51:定着用ロール
52:加圧用ロール
53:ヒータホルダ
54:加圧用ロール
6:ヒータの支持台
7:温度コントローラー
P:記録用媒体
 本発明における1態様のヒータは、長尺状の基部と、基部の表面側又は内部に、基部に対して電気的に絶縁された状態で形成されている抵抗発熱部であって、通電により発熱する複数の並列配線を有する抵抗発熱配線部と、基部の表面側又は内部に、基部に対して電気的に絶縁された状態で形成されている給電用端子部であって、給電用端子部の数は少なくとも2つであり、抵抗発熱配線部に電力を供給するために、抵抗発熱配線部を介して一方の端子部及び他方の端子部を電気的に接続する給電用端子部と、を備え、抵抗発熱配線部は、抵抗値温度係数が500~4,400ppm/℃の材料を含み、並列配線は、傾斜した矩形パターンを含むことを特徴とする。抵抗発熱配線部及び給電用端子部は、導体配線部により接続されていてもよい。
 本発明における他態様のヒータは、長尺状の基部と、基部の表面側又は内部に、基部に対して電気的に絶縁された状態で形成されている抵抗発熱部であって、通電により発熱する抵抗発熱配線部と、基部の表面側又は内部に、基部に対して電気的に絶縁された状態で形成されている、2つの給電用端子部と、基部の表面側又は内部に、基部に対して電気的に絶縁された状態で形成されている導体配線部であって、導体配線部の数は2つであり、抵抗発熱配線部の1端側及び他端側と2つの給電用端子部とを、別々に、電気的に接続する導体配線部と、抵抗発熱配線部の一部及び導体配線部の一部のうちの少なくとも一方の上層側表面又は下層側表面に、抵抗発熱配線部の線幅若しくは導体配線部の線幅と同じ又はそれ以上の長さで、接触形成された断線部形成用絶縁部であって、抵抗発熱配線部が所定温度以上になった場合に、抵抗発熱配線部を構成する材料(m1)、及び、導体配線部を構成する材料(m2)から選ばれた少なくとも1種と反応する材料を含み、この反応により電気的絶縁部を形成し、抵抗発熱配線部又は導体配線部を断線させる断線部形成用絶縁部と、を備えることを特徴とする。
 本発明における1態様のヒータは、長尺状の基部11(基層12及び電気的絶縁層13からなる基部11)と、基部11の表面側又は内部に、基部11に対して電気的に絶縁された状態で形成されている抵抗発熱部であって、通電により発熱する複数の並列配線を有する抵抗発熱配線部15と、基部11の表面側又は内部に、基部11に対して電気的に絶縁された状態で形成されている給電用端子部であって、給電用端子部の数は少なくとも2つであり、抵抗発熱配線部15に電力を供給するために、抵抗発熱配線部15を介して一方の端子部及び他方の端子部を電気的に接続する給電用端子部17とを備える。
 また、本発明における他態様のヒータは、長尺状の基部11(基層12及び電気的絶縁層13からなる基部11)と、基部11の表面側又は内部に、基部11に対して電気的に絶縁された状態で形成されている抵抗発熱部であって、通電により発熱する抵抗発熱配線部15と、基部11の表面側又は内部に、基部11に対して電気的に絶縁された状態で形成されている、2つの給電用端子部17と、基部11の表面側又は内部に、基部11に対して電気的に絶縁された状態で形成されている導体配線部であって、導体配線部の数は2つであり、抵抗発熱配線部15の1端側及び他端側と2つの給電用端子部17とを、別々に、電気的に接続する導体配線部19と、抵抗発熱配線部15の一部及び導体配線部19の一部のうちの少なくとも一方の上層側表面又は下層側表面に、抵抗発熱配線部15の線幅若しくは導体配線部19の線幅と同じ又はそれ以上の長さで、接触形成された断線部形成用絶縁部であって、抵抗発熱配線部15が所定温度以上になった場合に、抵抗発熱配線部15を構成する材料(m1)、及び、導体配線部19を構成する材料(m2)から選ばれた少なくとも1種と反応する材料を含み、この反応により電気的絶縁部を形成し、抵抗発熱配線部15又は導体配線部19を断線させる断線部形成用絶縁部32とを備える。
 両方の態様において、ヒータの断面構造は、例えば、図5、図8及び図9に示される。これらの図は、抵抗発熱配線部15と給電用端子部17とを接続する導体配線部19を含み、抵抗発熱配線部15、給電用端子部17及び導体配線部19が、基部11の表面に、基部11に対して電気的に絶縁された状態で形成された態様を示している。
 本発明において、ヒータの形状は、通常、基部又は基層の形状に依存する。基部又は基層の形状は、通常、平板状であり、凹部、凸部、中空部等を備えてもよい。また、基部又は基層の形状は、曲板状であってもよい。
 本発明において、抵抗発熱配線部、給電用端子部、導体配線部等の構成要素は、基部の表面(1面側又は両面)に形成された態様とするだけでなく、その内部に形成された態様とすることができる。後者の場合の基部の形状は中空体等とすることができる。
 以下の説明において、「基部の表面、又は、基部の表面側に形成(配設)」等の記載は、例えば、平板状の基部の表面、又は、表面側(基部の表面に形成された他の層の表面)に対して、形成(配設)されることを意味する。基部が中空体からなる場合には、中空部の内表面に対して、形成(配設)されることを意味する。
 基部11の厚さは、目的、用途等に応じて、適宜、選択されるが、通常、0.4~20mmである。
 また、基部11の長さは、通常、20mm以上、好ましくは200~350mmである。
 基部又は基層の構成材料は、好ましくはステンレス、アルミニウム、アルミニウム合金又は絶縁性セラミックスである。
 ステンレスは、好ましくはフェライト系耐熱鋼、特に好ましくは、SUS430、SUS444及びSUS436である。
 尚、ステンレス、アルミニウム又はアルミニウム合金は、電気抵抗値が低いので、その表面に、抵抗発熱配線部15、給電用端子部17、導体配線部19等の構成要素を、直接、形成することができない。従って、ステンレス、アルミニウム又はアルミニウム合金を含む基層12と、この基層に接合された電気的絶縁層13とを備える基部11が用いられる。上記のように、抵抗発熱配線部15、給電用端子部17、導体配線部19等の構成要素は、基部11の両面に形成されていてもよいので、この場合には、基層12の両面に形成された電気的絶縁層13を備える基部11が用いられる。
 本発明において、基層12の構成材料は、好ましくはステンレスであり、電気的絶縁層13の構成材料は、ステンレスとの熱膨張バランスの観点から、好ましくは、結晶化ガラス及び半結晶化ガラスであり、軟化点が600℃以上である、SiO-Al-MO系ガラスが好ましい。但し、MOは、アルカリ土類金属の酸化物(MgO,CaO,BaO,SrO等)である。電気的絶縁層13の厚さは、好ましくは60~120μm、より好ましくは70~110μm、更に好ましくは75~100μmである。
 また、絶縁性セラミックスは、好ましくは、電気抵抗値が10Ω・cm以上の無機化合物であり、酸化アルミニウム、窒化アルミニウム、ジルコニア、シリカ、ムライト、スピネル、コージェライト、窒化ケイ素等が挙げられる。これらのうち、酸化アルミニウム及び窒化アルミニウムが好ましい。
 本発明において、ヒータの構造は、基部11の構成材料に依存し、平面図として、例えば、図4、図6、図7、図10、図11等、断面図として、例えば、図5、図8、図9、図12、図13、図14、図15等で示されるものとすることができる。
 基部11の構成材料が、ステンレスを基層12として含む場合、抵抗発熱配線部15、給電用端子部17、導体配線部19等の構成要素は、基層12のステンレス部分に、直接、接触しないよう、電気的絶縁層13(以下、「第1絶縁層13」ともいう)の表面に形成されている(図4、図5、図6、図7、図10、図11、図12、図13、図14等参照)。
 第1絶縁層13の厚さは、好ましくは60~120μm、より好ましくは70~110μm、更に好ましくは75~100μmである。
 また、基部の構成材料が絶縁性セラミックスである場合、抵抗発熱配線部15、給電用端子部17、導体配線部19等の構成要素は、図8に示されるように、基部11の表面に配されてもよいし、別途、図示しない、電気的絶縁材料からなる部分に接触するように形成されていてもよい。
 本発明における1態様のヒータにおいて、ヒータの主要部である抵抗発熱配線部15は、抵抗値の変化に対して温度の追随性に優れることから、抵抗値温度係数が500~4,400ppm/℃の材料を含む。具体例は、銀-パラジウム、銀-白金等の銀合金;銀;モリブデン:タングステン等である。これらの材料は、単独で用いてよいし、2種以上を組み合わせて用いてもよい。好ましい材料は、ヒータの断面構造、基部の構成材料等により、適宜、選択される。また、抵抗発熱配線部15の線厚は、好ましくは3~27μmである。
 また、「傾斜した矩形パターン」とは、例えば、図1(B)、図2及び図3に示される形状を有するパターン20である。即ち、図1(A)に示される、従来、公知の矩形パターンの立ち上がり部分がθの角度をもって傾斜している形状のパターンを、「傾斜した矩形パターン」とする。角度θは、好ましくは10~80度、より好ましくは20~70度である。尚、隣り合う矩形は、互いに同一形状であってよいし、異なる形状であってもよい。また、配線は、各所において、直線である必要はなく、部分的に曲線を有してもよい。
 抵抗発熱配線部15は、長尺状の基部11の表面側又は内部に、基部11に対して電気的に絶縁された状態で形成されている抵抗発熱部であり、並列配線、即ち、電気的に並列に少なくとも2つの給電用端子部17を接続する配線、を複数含む。給電用端子部17もまた、長尺状の基部11の表面側又は内部に、基部11に対して電気的に絶縁された状態で形成されている。
 並列配線の形態は、特に限定されない。1つの並列配線は、ヒータの長手方向に形成されていてよいし、ヒータの幅方向に形成されていてよいし、ヒータの幅方向に斜めに形成されていてもよい。
 本発明において、傾斜した矩形パターンを備える抵抗発熱配線部15を含むヒータは、好ましくは図4、図6及び図7に示される。図4及び図7は、抵抗発熱配線部15が、ヒータ1の長手方向への折り返しパターンにより、幅方向に並列配線を備える例である。また、図6は、抵抗発熱配線部15が、ヒータ1の幅方向への折り返しパターンにより、幅方向に並列配線を備える例である。図4、図6及び図7は、ヒータ1の長手方向における温度補完性の観点から好ましい態様であり、2つの給電用端子部17をヒータ1の長手方向の両端側に備える図4、及び、2つの給電用端子部17をヒータ1の長手方向の一端側に備える図7は、特に好ましい態様である。更に、これらの図において、抵抗発熱配線部15の隙間の部分の中には、ヒータ1の幅方向に対して斜めになった非形成部分14がある(図4参照)。即ち、並列配線を構成する一部が、ヒータ1の長手方向又は幅方向に対して斜めになっている態様もまた、ヒータ1の長手方向における温度補完性の観点から好ましい。
 図4及び図7は、図1(B)に示される傾斜した矩形パターンを、ヒータ1の幅方向に対して、斜めに配置した態様であり、図6は、図1(B)に示される傾斜した矩形パターンを、ヒータ1の長手方向に対して、水平に配置した態様である。
 これらの態様の場合、傾斜した矩形パターンを備えた結果、配線の非形成部分14が、ヒータの長手方向又は幅方向に対して斜めになっているので、被熱処理物が静止している状態で、ヒータ1を、その幅方向に移動させながら、熱処理する場合、及び、ヒータ1を固定した状態で、被熱処理物を、長尺状のヒータ1に対して垂直の方向に移動させながら、熱処理する場合、に、使用時における抵抗発熱配線部の局所的な温度上昇を招くことなく、安定した熱処理を行うことができる。
 図4、図6、図7、図10及び図11は、ステンレス製の基層12及び電気的絶縁層13からなる基部11を備えるヒータ(以下、「ヒータ(I)」ともいう。)を例示する平面図である。図5は、図4におけるX-X線断面を示す概略図である。
 図4、図5、図6、図7、図10及び図11のヒータ1は、長尺状の基層12と、基層12の表面に形成された電気的絶縁層13と、電気的絶縁層13の表面に形成されており、通電により発熱する複数の並列配線を有する抵抗発熱配線部15と、電気的絶縁層13の表面に形成されており、抵抗発熱配線部15に電力を供給する2つの給電用端子部17と、を備える。尚、これらのヒータは、各給電用端子部17に導通する導体配線部19を電気的絶縁層13の表面に備え、この導体配線部19を分岐させて、並列配線を有する複数の抵抗発熱配線部15に接続した態様としている。並列配線の効率的な構築のために、導体配線部19を備えることが好ましい。また、電気的絶縁層13は、基層12及び抵抗発熱配線部15の間において、電気的に絶縁しており、基層12及び給電用端子部17の間においても、電気的に絶縁している。更に、電気的絶縁層13は、基層12及び導体配線部19の間においても、電気的に絶縁している。
 ヒータ(I)において、抵抗発熱配線部15の構成材料は、抵抗値温度係数が1,000~3,000ppm/℃である、銀-パラジウム等の銀合金を含むことが好ましい。
 尚、抵抗発熱配線部15の線厚は、面積固有抵抗の観点から、好ましくは3~27μm、より好ましくは4~20μm、更に好ましくは5~17μm、特に好ましくは8~12μmである。
 また、ヒータ(I)において、給電用端子部17及び導体配線部19の構成材料は、銀、銀-パラジウム、銀-白金、銅、金、白金-ロジウム等とすることができる。尚、抵抗発熱配線部15よりも単位面積当たりの抵抗値が低くなるように、給電用端子部17又は導体配線部19の材料及び線幅等が選択される。
 ヒータ(I)において、基層12の構成材料は、好ましくはフェライト系耐熱鋼である。特に好ましい材料は、SUS430、SUS444及びSUS436である。
 基部11の厚さは、好ましくは0.4~20mm、より好ましくは0.6~5mmである。
 また、電気的絶縁層13の構成材料は、ステンレスとの熱膨張バランスの観点から、SiO-Al-MO系ガラスが好ましい。但し、MOは、アルカリ土類金属の酸化物(MgO,CaO,BaO,SrO等)である。
 電気的絶縁層13の厚さは、好ましくは60~120μm、より好ましくは70~110μm、更に好ましくは75~100μmである。
 図4、図5、図6及び図7において、電気的絶縁層13は、抵抗発熱配線部15、給電用端子部17及び導体配線部19の領域に接触するように、基部11の表面の大部分に配されているが、この態様に限定されない。例えば、抵抗発熱配線部15、給電用端子部17及び導体配線部19のパターンと同じ領域をもって、これらの各下方側に形成されていてもよい。
 尚、図5等に図示していないが、ヒータ(I)は、抵抗発熱配線部15、給電用端子部17及び導体配線部19を覆う保護層を備えることができる。この保護層は、抵抗発熱配線部15、給電用端子部17及び導体配線部19のパターンと同じ領域をもって、これらの各上方側に形成されていてよいし、基部11(基層12又は電気的絶縁層13)の全面に形成されていてもよい。
 保護層は、電気的絶縁材料からなることが好ましく、電気的絶縁層13と同じ材料からなるものであってもよい。
 図4、図5、図6及び図7に示されるヒータ(I)は、例えば、長尺状のステンレス板の表面に電気的絶縁膜を形成する工程、電気的絶縁膜の表面に、抵抗値温度係数が500~4,400ppm/℃の材料を含み、且つ、傾斜した矩形パターンを含む抵抗発熱配線部を形成する工程、電気的絶縁膜の表面であって、ステンレス板の長手方向の両端又はその周辺部に少なくとも2つの給電用端子部を形成する工程、を備える製造方法により得ることができる。更に、導体配線部を形成する工程、保護層を形成する工程等を備えることができる。
 電気的絶縁膜及び保護層を形成する場合には、電気的絶縁材料の前駆体を含む組成物等を用いて形成した膜を熱処理する方法等を適用することができる。
 抵抗発熱配線部、給電用端子部及び導体配線部を形成する場合には、印刷法;ディップ法;蒸着法等の物理的気相成長法等を適用することができる。
 上記ヒータ(I)は、図10及び図11に示されるように、ヒータに熱暴走等の不具合が発生し、発熱している抵抗発熱配線部15が過昇温して所定温度以上になった際に、抵抗発熱配線部15又は導体配線部19を断線させる断線部形成用絶縁部32を備えることができる。この断線部形成用絶縁部32は、具体的には、発熱している抵抗発熱配線部15が所定温度以上になった際に、抵抗発熱配線部15及び導体配線部19の少なくとも一方と、断線部形成用絶縁部32との接触部を電気的絶縁部34に形成変換する作用を有する。即ち、以下に好ましい態様を示すように、断線部形成用絶縁部32は、抵抗発熱配線部15の一部及び導体配線部19の一部のうちの少なくとも一方の上層側表面又は下層側表面に、抵抗発熱配線部15の線幅若しくは導体配線部19の線幅と同じ又はそれ以上の長さで、抵抗発熱配線部15又は導体配線部19を横断するように接触形成されている。従って、抵抗発熱配線部15が過昇温して所定温度以上になった際に、断線部形成用絶縁部32の構成材料と、抵抗発熱配線部15の構成材料(m1)及び導体配線部19の構成材料(m2)から選ばれた少なくとも1種とが反応し、電気的絶縁材料からなる電気的絶縁部34が形成され、この電気的絶縁部34において、抵抗発熱配線部15又は導体配線部19が断線する。断線部形成用絶縁部32は、1のヒータにおいて、1箇所のみ配されていてよいし、2箇所以上配されていてもよい。図12は、導体配線部19の一部の表面に断線部形成用絶縁部32を備える態様を示し、図13は、この断線部形成用絶縁部32において導体配線部19が断線し、電気的絶縁部34が形成された態様を示す。
 断線部形成用絶縁部32の配設形態は、図36に示される。図36は、例えば、図10等のヒータを上方から見た要部拡大図であり、(A1)は、断線部形成用絶縁部32が、抵抗発熱配線部15の一部又は導体配線部19の一部の表面に、その幅方向に、線幅を超えて、これらを覆うように配設されている態様であり、(A2)は、断線部形成用絶縁部32が、抵抗発熱配線部15の一部又は導体配線部19の一部の表面に、その線幅を超えることなく、線幅と同じ長さで配設されている態様である。また、(B1)は、抵抗発熱配線部15の一部又は導体配線部19の一部の線幅を超える長さで配設された断線部形成用絶縁部32の表面に、抵抗発熱配線部15の一部又は導体配線部19が配設されている態様であり、(B2)は、抵抗発熱配線部15の一部又は導体配線部19の一部、の線幅と同じ長さで配設された断線部形成用絶縁部32の表面に、抵抗発熱配線部15の一部又は導体配線部19の一部が配設されている態様である。これらの図において、断線部形成用絶縁部32の形状は、四角形の面としているが、これに限定されず、抵抗発熱配線部15の線幅若しくは導体配線部19の線幅と同じ又はそれ以上の長さの任意の形状(線等)であってもよい。
 断線部形成用絶縁部32が導体配線部19の表面に配設されている態様は、例えば、図10及び図12に示される。また、断線部形成用絶縁部32が抵抗発熱配線部15の表面に配設されている態様は、例えば、図11、図14及び図15に示される。
 断線部形成用絶縁部32が抵抗発熱配線部15に接触したヒータとする場合には、図11に示すように、並列配線部の全てにおいて、断線部形成用絶縁部32を接触形成させておく必要がある。
 また、断線部形成用絶縁部32が導体配線部19に接触したヒータとする場合には、図10に示すように、抵抗発熱配線部15を構成する並列配線部の全てに通電させることとなる導体配線部19の主配線において、好ましくは給電用端子部17に近い位置において、断線部形成用絶縁部32を接触形成させておく必要があり、1箇所でも2箇所でもよい。
 断線部形成用絶縁部32の厚さは、抵抗発熱配線部15又は導体配線部19において確実に断線させることから、好ましくは5~100μm、より好ましくは10~60μm、更に好ましくは15~40μmである。
 断線部形成用絶縁部32の構成材料は、抵抗発熱配線部15の構成材料(m1)、又は、導体配線部19の構成材料(m2)と反応して電気的絶縁材料となるものであれば、特に限定されない。好ましい材料はガラスであり、結晶化ガラス及び非晶質ガラスのいずれでもよい。本発明においては、抵抗発熱配線部15の構成材料(m1)及び導体配線部19の構成材料(m2)が銀又は銀合金を含むことが好ましいことから、更に好ましい断線部形成用絶縁部32の構成材料は、ビスマス系ガラス及び鉛系ガラスであり、特に好ましい構成材料は、軟化点が370℃~550℃である、ビスマス系ガラス及び鉛系ガラスである。断線部形成用絶縁部32がビスマス系ガラス又は鉛系ガラスを含む場合、抵抗発熱配線部15が、例えば、600℃以上になると、ビスマス系ガラス又は鉛系ガラスが軟化し、銀又は銀合金と反応して、電気的絶縁部34を形成し、抵抗発熱配線部15又は導体配線部19を断線させることができる。
 ビスマス系ガラスとしては、Bi-ZnO-B系ガラス等が挙げられる。また、鉛系ガラスとしては、PbO-B系ガラス等が挙げられる。
 上記のように、抵抗発熱配線部15が、熱暴走等により、所定温度以上になった場合には、断線部形成用絶縁部32が電気的絶縁部34を形成させる。この現象を、図12及び図13を用いて説明する。図12は、導体配線部19の一部の上層側表面に、導体配線部19の線幅と同じ又はそれ以上の長さで、接触形成された断線部形成用絶縁部32を備え、抵抗発熱配線部15を図示していないヒータの概略図であり、抵抗発熱配線部15が所定温度以上になると、図13に示すように、断線部形成用絶縁部32の構成材料と、導体配線部19の構成材料とが反応して、電気的絶縁部34を形成し、導体配線部19を断線する。
 並列配線を有する抵抗発熱配線部15の上層側表面に接触形成された断線部形成用絶縁部32を備える図14のヒータにおいて、抵抗発熱配線部15が所定温度以上になると、断線部形成用絶縁部32の構成材料と、抵抗発熱配線部15の構成材料とが反応して、図示していない電気的絶縁部34を形成し、抵抗発熱配線部15を断線する。
 断線部形成用絶縁部32を有するヒータ(I)を稼働させると、抵抗発熱配線部15を中心として、基部11(又は基層12)の全体が熱源となるので、電気的絶縁部34が形成されて、電力供給が中断されても、瞬時にヒータの温度が低下しない場合がある。本発明においては、断線部形成用絶縁部32が抵抗発熱配線部15に接触形成されているヒータ(図11及び図14参照)、又は、断線部形成用絶縁部32が導体配線部19に接触形成しているヒータであって、更に、導体配線部19を、密集する配線(抵抗発熱配線部15)の間に、割り込むように延長して形成させて、その一部に断線部形成用絶縁部32を接触形成されているヒータ(図16参照)とすることによって、抵抗発熱配線部15の余熱温度をより早く低下させることができる。
 ヒータ(I)は、ステンレス製の基層12及び電気的絶縁層13からなる基部11を備えるので、その使用時において、構成部材からの微粒子が生成しないため、クリーンルーム、精密機械、減圧又は加圧を伴う熱処理装置、定着装置等における使用に好適である。
 一方、図8は、抵抗発熱配線部15等を、絶縁性セラミックス製の基部11の表面に備えるヒータ(以下、「ヒータ(II)」ともいう。)を示す断面図である。このヒータ(II)において、絶縁性セラミックス製の基部11の表面の構成要素は、図4、図6及び図7に示されるヒータ(I)における電気的絶縁層13の表面の構成要素と同様とすることができる。
 図8により示されたヒータは、長尺状の基部11と、基部11の表面に形成されており、通電により発熱する複数の並列配線を有する抵抗発熱配線部15と、基部11の表面に形成されており、導体配線部19を介して抵抗発熱配線部15に電力を供給する2つの給電用端子部17と、を備える。尚、このヒータ(II)は、図示していない保護層を備えることができる。また、ヒータ(I)と同じ形態で、断線部形成用絶縁部32を備えることもできる(図15参照)。
 また、図9は、抵抗発熱配線部15等を、絶縁性セラミックス製の基部11の内部に備えるヒータ(以下、「ヒータ(III)」ともいう。)を示す断面図である。このヒータ(III)において、絶縁性セラミックス製の基部11の内部の構成要素は、図4及び図6に示されるヒータ(I)における電気的絶縁層13の表面の構成要素と同様とすることができる。また、導体配線部を備えない態様とすることもでき、この場合、給電用端子部17の間に抵抗発熱配線部15が接続している構成である。但し、このヒータ(III)において、ヒータ(I)における保護層は、通常、配設されない。
 図9の断面図により示されたヒータ(III)は、長尺状の基部11と、基部11の内部に埋設されており、通電により発熱する複数の並列配線を有する抵抗発熱配線部15と、一部が基部11の内部において抵抗発熱配線部15に接続されて、一部が基部11の表面に露出しており、抵抗発熱配線部15に電力を供給する2つの給電用端子部17と、を備える。尚、このヒータ(III)は、上記のように、図9に示していない導体配線部19を備えることができる。
 ヒータ(II)及び(III)において、抵抗発熱配線部15の構成材料は、抵抗値温度係数が500~4,400ppm/℃である、銀、モリブデン、タングステン、銀-パラジウム、銀-白金等を含むことが好ましい。
 尚、抵抗発熱配線部15の線厚は、面積固有抵抗の観点から、好ましくは3~20μm、より好ましくは5~17μm、更に好ましくは8~12μmである。
 また、ヒータ(II)及び(III)において、給電用端子部17の構成材料、及び、導体配線部19の構成材料は、銀、銀-パラジウム、銀-白金、銅、金、白金-ロジウム等とすることができる。
 ヒータ(II)及び(III)において、基部11の構成材料としては、酸化アルミニウム及び窒化アルミニウムが好ましい。
 ヒータ(II)における基部11の厚さは、好ましくは0.2~5mm、より好ましくは0.4~2mmである。
 また、ヒータ(III)における基部11の厚さは、好ましくは0.2~5mm、より好ましくは0.4~2mmである。
 ヒータ(III)を示す図9において、給電用端子部17は、抵抗発熱配線部15と、基部11の内部において接続されているが、この態様に限定されず、給電用端子部17が、ヒータの長手方向における両端側の各端面に配設される態様であってもよい。図9では、導体配線部19を示していないが、抵抗発熱配線部15と導通する導体配線部19を備える場合にも、各端面において、導体配線部19が配設される態様であってもよい。
 ヒータ(II)は、絶縁性セラミックスを含む長尺状の板を作製する工程、このセラミックス板の表面に、抵抗値温度係数が500~4,400ppm/℃の材料を含み、且つ、傾斜した矩形パターンを含む抵抗発熱配線部を形成する工程、セラミックス板の表面であって、板の長手方向の両端又はその周辺部に少なくとも2つの給電用端子部を形成する工程、を備える製造方法により得ることができる。更に、導体配線部を形成する工程を備えることができる。
 セラミックス板を作製する方法は、以下に例示される。
(1)絶縁性セラミックスの粉末を含有するセラミックススラリーを用いてグリーンシートを作製し、これを熱処理する方法
 セラミックススラリーには、酸化ケイ素、酸化カルシウム、酸化チタン、酸化マグネシウム、酸化ジルコニウム等の焼結助剤、分散剤、可塑剤、有機溶媒等を添加することができる。
(2)絶縁性セラミックスの粉末、焼結助剤等の混合物を、加圧成形等に供して作製された所定形状の成形体を熱処理する方法
 また、ヒータ(II)は、上記のように作製した絶縁性セラミックスの粉末を含む長尺状のグリーンシートの表面の所定の位置に、抵抗発熱配線部用の、抵抗値温度係数が500~4,400ppm/℃の材料を含むペースト、又は、その材料からなる金属箔を配する工程、グリーンシートの表面の所定の位置に、給電用端子部用又は導体配線部用の材料を含むペースト、又は、その材料からなる金属箔を配する工程、これらの積層状態において熱処理を行う工程を備える製造方法により得ることができる。
 上記に示したヒータ(II)の製造方法におけるいずれの場合も、更に、保護層を形成する工程等を備えることができる。
 ヒータ(III)は、例えば、絶縁性セラミックスの粉末を含む長尺状のグリーンシートを2体作製する工程、一方のグリーンシートの表面の所定の位置に、抵抗発熱配線部用の、抵抗値温度係数が500~4,400ppm/℃の材料を含むペースト、又は、その材料からなる金属箔を配する工程、グリーンシートの表面の所定の位置に、給電用端子部用又は導体配線部用の材料を含むペースト、又は、その材料からなる金属箔を配する工程、これらの積層物の表面を挟むように、他のグリーンシートを配して熱処理を行う工程を備える製造方法により得ることができる。
 本発明において、具体的に示した給電用端子部17、導体配線部19等の位置は、図4~図9に示した位置に限定されるものではない。
 また、図4~図7において、1体の基部11に、1つの回路を備える態様を示したが、これに限定されず、複数の回路を備える態様とすることができる。
 断線部形成用絶縁部32を有するヒータ(II)又は(III)においても、その稼働時に、抵抗発熱配線部15を中心として、基部11の全体が熱源となるので、熱暴走等により電気的絶縁部34が形成されて、電力供給が中断されても、瞬時に、ヒータの温度が低下しない場合がある。本発明においては、断線部形成用絶縁部32が抵抗発熱配線部15に接触形成されているヒータ(図15参照)、又は、断線部形成用絶縁部32が導体配線部19に接触形成しているヒータであって、更に、導体配線部19を、密集する配線(抵抗発熱配線部15)の間に、割り込むように延長して形成させて、その一部に断線部形成用絶縁部32を接触形成されているヒータ(図示せず)とすることによって、抵抗発熱配線部15の余熱温度をより早く低下させることができる。
 本発明における1態様のヒータは、給電用端子部17において、従来、公知の電力供給装置に接続することにより、発熱させることができる。発熱温度は、ヒータ(I)及び(II)において、好ましくは50℃~600℃、より好ましくは120℃~500℃である。また、ヒータ(III)において、好ましくは50℃~1,000℃である。
 本発明における1態様のヒータは、抵抗発熱配線部15、給電用端子部17、導体配線部19等が、基部の表面に直接形成されていなくてもよい。
 以下、断線部形成用絶縁部32を備えるヒータであって、抵抗発熱配線部15、給電用端子部17及び導体配線部19の少なくとも1つが、基部11の表面に直接形成されている態様について、説明する。
 図18、図20、図29及び図30のヒータは、基部11の1面側に、抵抗発熱配線部15及び導体配線部19をこの順に備える積層型ヒータであって、基部11からこれらを見た場合に、抵抗発熱配線部15の一部、断線部形成用絶縁部32の少なくとも一部、及び、導体配線部19の一部が、順次、面接触している部分を有するヒータである。
 図18は、ステンレス等からなる基層12の表面に、電気的絶縁層である第1絶縁層13と、抵抗発熱配線部15と、電気的絶縁層である第2絶縁層16と、この第2絶縁層16の中に、第2絶縁層16に包囲されるように配設された断線部形成用絶縁部32と、を備え、これら第2絶縁層16及び断線部形成用絶縁部32の表面に形成され、更に、抵抗発熱配線部15の左端部から表面側に向けて堆積形成された導体配線部19を備え、この導体配線部19の表面に形成された、絶縁材料からなるオーバーコート層21を備える態様である。また、図20は、ステンレス等からなる基層12の表面に、電気的絶縁層である第1絶縁層13と、抵抗発熱配線部15と、電気的絶縁層である第2絶縁層16と、この第2絶縁層16の中に、第2絶縁層16に包囲されるように配設された断線部形成用絶縁部32とを備え、これら第2絶縁層16及び断線部形成用絶縁部32の表面に形成され、更に、抵抗発熱配線部15の左端部から表面側に向けて堆積形成された導体配線部19と、この導体配線部19の表面に形成された、絶縁材料からなるオーバーコート層21とを備え、このオーバーコート層21の中に、オーバーコート層21に包囲されるように配設された断線部形成用絶縁部32を備える態様である。
 更に、図29は、絶縁性セラミックスからなる基部11の表面に、抵抗発熱配線部15と、電気的絶縁層である第2絶縁層16と、この第2絶縁層16の中に、第2絶縁層16に包囲されるように配設された断線部形成用絶縁部32と、を備え、これら第2絶縁層16及び断線部形成用絶縁部32の表面に形成され、更に、抵抗発熱配線部15の左端部から表面側に向けて堆積形成された導体配線部19を備え、この導体配線部19の表面に形成された、絶縁材料からなるオーバーコート層21を備える態様である。また、図30は、絶縁性セラミックスからなる基部11の表面に、抵抗発熱配線部15と、電気的絶縁層である第2絶縁層16と、この第2絶縁層16の中に、第2絶縁層16に包囲されるように配設された断線部形成用絶縁部32とを備え、これら第2絶縁層16及び断線部形成用絶縁部32の表面に形成され、更に、抵抗発熱配線部15の左端部から表面側に向けて堆積形成された導体配線部19と、この導体配線部19の表面に形成された、絶縁材料からなるオーバーコート層21とを備え、このオーバーコート層21の中に、オーバーコート層21に包囲されるように配設された断線部形成用絶縁部32を備える態様である。
 図18及び図29のヒータにおいて、抵抗発熱配線部15が所定温度以上になると、図21に示すように、断線部形成用絶縁部32の構成材料が、抵抗発熱配線部15の構成材料及び導体配線部19の構成材料の両方と反応して、電気的絶縁部34を形成し、抵抗発熱配線部15及び導体配線部19を断線する。
 また、図20及び図30のヒータにおいて、抵抗発熱配線部15が所定温度以上になると、図22に示すように、断線部形成用絶縁部32の構成材料が、抵抗発熱配線部15の構成材料及び導体配線部19の構成材料の両方と反応し、更に、断線部形成用絶縁部32の構成材料が、導体配線部19の構成材料と反応して、電気的絶縁部34を形成し、抵抗発熱配線部15及び導体配線部19を断線する。
 図24、図26、図32及び図33のヒータは、基部11の1面側に、導体配線部19及び抵抗発熱配線部15をこの順に備える積層型ヒータであって、基部11からこれらを見た場合に、導体配線部19の一部、断線部形成用絶縁部32の少なくとも一部、及び、抵抗発熱配線部15の一部が、順次、面接触している部分を有するヒータである。
 図24は、ステンレス等からなる基層12の表面に、電気的絶縁層である第1絶縁層13と、導体配線部19と、電気的絶縁層である第2絶縁層16と、この第2絶縁層16の中に、第2絶縁層16に包囲されるように配設された断線部形成用絶縁部32とを備え、これら第2絶縁層16及び断線部形成用絶縁部32の表面に形成され、更に、導体配線部19の左端部から表面側に向けて堆積形成された導体配線部19に接続する抵抗発熱配線部15と、この抵抗発熱配線部15の表面に形成された、絶縁材料からなるオーバーコート層21とを備える態様である。また、図26は、ステンレス等からなる基層12の表面に、電気的絶縁層である第1絶縁層13と、導体配線部19と、電気的絶縁層である第2絶縁層16と、この第2絶縁層16の中に、第2絶縁層16に包囲されるように配設された断線部形成用絶縁部32とを備え、これら第2絶縁層16及び断線部形成用絶縁部32の表面に形成され、更に、導体配線部19の左端部から表面側に向けて堆積形成された導体配線部19に接続する抵抗発熱配線部15と、この抵抗発熱配線部15の表面に形成された、絶縁材料からなるオーバーコート層21とを備え、このオーバーコート層21の中に、オーバーコート層21に包囲されるように配設された断線部形成用絶縁部32を備える態様である。
 更に、図32は、絶縁性セラミックスからなる基部11の表面に、導体配線部19と、電気的絶縁層である第2絶縁層16と、この第2絶縁層16の中に、第2絶縁層16に包囲されるように配設された断線部形成用絶縁部32とを備え、これら第2絶縁層16及び断線部形成用絶縁部32の表面に形成され、更に、導体配線部19の左端部から表面側に向けて堆積形成された導体配線部19に接続する抵抗発熱配線部15と、この抵抗発熱配線部15の表面に形成された、絶縁材料からなるオーバーコート層21とを備える態様である。また、図33は、絶縁性セラミックスからなる基部11の表面に、導体配線部19と、電気的絶縁層である第2絶縁層16と、この第2絶縁層16の中に、第2絶縁層16に包囲されるように配設された断線部形成用絶縁部32とを備え、これら第2絶縁層16及び断線部形成用絶縁部32の表面に形成され、更に、導体配線部19の左端部から表面側に向けて堆積形成された導体配線部19に接続する抵抗発熱配線部15と、この抵抗発熱配線部15の表面に形成された、絶縁材料からなるオーバーコート層21とを備え、このオーバーコート層21の中に、オーバーコート層21に包囲されるように配設された断線部形成用絶縁部32を備える態様である。
 図24及び図26のヒータにおいて、抵抗発熱配線部15が所定温度以上になった場合にも、導体配線部19の一部、断線部形成用絶縁部32の少なくとも一部、及び、抵抗発熱配線部15の一部が、順次、面接触している部分において、少なくとも電気的絶縁部34が形成される(図示せず)。
 図18、図20、図24、図26、図29、図30、図32及び図33は、断線部形成用絶縁部32が、抵抗発熱配線部15及び導体配線部19の両方に接触した態様である。本発明における1態様のヒータは、断線部形成用絶縁部32が、抵抗発熱配線部15及び導体配線部19のいずれか一方に接触した態様とすることができる(図17、図19、図23、図25、図28、図31、図34及び図35参照)。
 図17~図33において示した第2絶縁層16又は第3絶縁層23を構成する材料は、第1絶縁層13の構成材料である、結晶化ガラス及び半結晶化ガラスから選ばれたものであって、軟化点が600℃以上であるものとすることができ、SiO-Al-MO系ガラス等が好ましい。但し、MOは、アルカリ土類金属の酸化物(MgO,CaO,BaO,SrO等)である。
 また、図17~図35において示したオーバーコート層21、21A及び22Bは、抵抗発熱配線部15、導体配線部19等の保護のために配され、具体的には、ヒータが稼働している際に、抵抗発熱配線部15、導体配線部19等の酸化劣化等を抑制する作用を備えるものである。オーバーコート層の構成材料は、好ましくはSiO-Al-MO系ガラス等である。
 オーバーコート層の構成材料の軟化点は、断線部形成用絶縁部32の構成材料の軟化点より高いことが好ましい。両者の温度差は、好ましくは100℃以上、より好ましくは150℃以上である。
 次に、本発明における他態様のヒータでは、抵抗発熱配線部15の構成材料及びその配線形態並びに給電用電極部の数は、特に限定されない。
 抵抗発熱配線部15の構成材料は、抵抗値温度係数が好ましくは500~4,400ppm/℃であるが、これに限定されない。抵抗発熱配線部15の配線は、好ましくは並列配線であるが、これに限定されず、直列配線であってもよい。更に、矩形パターンを備える場合、図1(B)、図2及び図3に示される傾斜矩形パターン20が好ましいが、図1(A)に示されるパターンであってもよい。また、抵抗発熱配線部15の線厚は、好ましくは5~27μm、より好ましくは7~24μm、更に好ましくは8~13μmである。
 本発明における他態様のヒータでは、給電用端子部は、必要により、3箇所以上とすることができる(図示せず)。
 給電用端子部及び導体配線部の厚さは、いずれも、好ましくは5~27μm、より好ましくは7~24μm、更に好ましくは9~12μmである。
 本発明における他態様のヒータとしては、好ましくは、図12、図14、図15、図17、図18、図19、図20、図23、図24、図25、図26、図27、図28、図29、図30、図31、図32、図33、図34及び図35に示される。これらの図面における説明は、配線形態を除いて上記の通りであり、すべての構成要素に係る説明が適用される。
 本発明における他態様のヒータは、給電用端子部17において、従来、公知の電力供給装置に接続することにより、発熱させることができる。発熱温度は、好ましくは50℃~1,000℃である。
 本発明のヒータを用いると、被熱処理物として、有機物、無機物、及び、これらを組み合わせた複合物、のいずれに対しても、その大きさに依存することなく、温度むらを抑制しつつ安定した熱処理を行うことができる。熱処理の方法は、目的、用途等により選択されるが、ヒータ及び被熱処理物を移動させながら行ってよいし、一方を固定し、他方を移動させながら行ってもよい。
 本発明の定着装置は、上記本発明のヒータを備える。即ち、本発明の定着装置は、ヒータを発熱させて、2つの物品を接合する装置である。
 本発明の定着装置の構成は、得られる製品の用途、定着手段等により、適宜、選択されたものとすることができる。例えば、圧着を伴う定着手段を備える場合であって、紙等の記録用媒体に、トナー等を定着させる場合、及び、複数の部材を貼り合わせる場合には、ヒータを備える加熱部と、加圧部とを備える定着装置とすることができる。勿論、圧着を伴わない定着手段とすることもできる。本発明においては、図37及び図38に示すように、紙、フィルム等の記録用媒体の表面に形成されたトナーを含む未定着画像を記録用媒体に定着させる定着装置5であることが好ましい。
 以下、図37及び図38に基づいて、本発明の定着装置を説明する。
 図37は、電子写真方式の画像形成装置に配設される定着装置5の要部を示す概略図であり、回転可能な定着用ロール51と、回転可能な加圧用ロール54とを備え、ヒータ1を定着用ロール51の内部に配設する態様である。ヒータ1は、好ましくは、定着用ロール51の内表面に近接するように配設されている。
 図37の定着装置5において、図示していない電源装置からの電圧印加によりヒータ1を駆動させ、図示していない温度測定装置により検知されている熱が、定着用ロール51に伝えられる。そして、表面に未定着のトナー画像を有する記録用媒体が、定着用ロール51と、加圧用ロール54との間に供給されると、定着用ロール51及び加圧用ロール54の圧接部において、トナーが溶融して定着画像が形成される。
 尚、図37では、定着用ロール51及び加圧用ロール54の圧接部を有するので、定着装置の駆動中において、定着用ロール51及び加圧用ロール54は連れだって回転する。上記のように、ヒータ1は、小さい記録用媒体を用いた際に発生しやすい局所的な温度上昇が抑制されるので、定着用ロール51における温度むらも発生しにくく、定着を円滑に進めることができる。また、ヒータ1の周辺に配設された部材の損傷を抑制することができる。
 更に、図38もまた、電子写真方式の画像形成装置に配設される定着装置5の要部を示す概略図であり、回転可能な定着用ロール51と、回転可能な加圧用ロール54とを備え、定着用ロール51に熱を伝えるヒータ1、及び、加圧用ロール54とともに記録用媒体を圧接する加圧用ロール52、を定着用ロール51の内部に配設する態様である。ヒータ1は、好ましくは、定着用ロール51の内表面に沿うように配設されている。
 図38の定着装置5において、図示していない電源装置からの電圧印加によりヒータ1を駆動させ、図示していない温度測定装置により検知されている熱が、定着用ロール51に伝えられる。そして、表面に未定着のトナー画像を有する記録用媒体が、定着用ロール51と、加圧用ロール54との間に供給されると、加圧用ロール52に加圧される定着用ロール51と、加圧用ロール54との圧接部において、トナーが溶融して定着画像が形成される。
 尚、図38においても、定着用ロール51及び加圧用ロール54の圧接部を有するので、定着装置の駆動中において、定着用ロール51及び加圧用ロール54は連れだって回転する。上記のように、ヒータ1は、小さい記録用媒体を用いた際に発生しやすい局所的な温度上昇が抑制されるので、定着用ロール51における温度むらも発生しにくく、定着を円滑に進めることができる。また、ヒータ1の周辺に配設された部材の損傷を抑制することができる。
 本発明の定着装置における他の態様としては、上型及び下型を備える金型であって、上型及び下型の少なくとも一方の内部にヒータを配設した態様とすることができる。
 本発明の乾燥装置は、上記本発明のヒータからなるヒータ部を備える。
 本発明の乾燥装置の構成は、被熱処理物の形状、大きさ等により、適宜、選択されたものとすることができる。本発明においては、例えば、筐体部と、被熱処理物の出し入れ等のために配された密閉可能な窓部と、筐体部の内部に配された移動可能なヒータ部と、を備える態様とすることができる。必要に応じて、筐体部の内部に、被熱処理物を配置する被熱処理物設置部、被熱処理物の乾燥により気体が排出された場合に、この気体を排出する排気部、筐体部の内部の圧力を調整する、真空ポンプ等の圧力調整部等を備えることができる。
 乾燥は、被熱処理物及びヒータ部を固定した状態で行ってよいし、いずれか一方を移動させながら行ってもよい。
 本発明のヒータは、画像形成装置の構成部材として好適である。
 画像形成装置の構成は、得られる製品の用途、加熱の目的等により、適宜、選択されたものとすることができる。例えば、図39に示すように、紙、フィルム等の記録用媒体の表面に未定着画像を形成する作像手段と、未定着画像を記録用媒体に定着させる定着手段5とを備え、定着手段5が上記本発明のヒータを備える画像形成装置4とすることができる。
 以下、図39に基づいて、画像形成装置を説明する。
 図39は、電子写真方式の画像形成装置4の要部を示す概略図である。
 作像手段としては、転写ドラムを備える方式及び転写ドラムを備えない方式のいずれでもよいが、図39は、転写ドラムを備える態様である。
 作像手段では、回転しながら、帯電装置43により所定の電位に帯電処理された感光ドラム44の帯電処理面に、レーザースキャナー41から出力されるレーザーが照射され、現像器45から供給されるトナーにより目的の画像情報に対応した静電潜像が形成される。次いで、電位差を利用して、感光ドラム44と連動する転写ドラム46の表面に、トナー画像が転写される。その後、転写ドラム46及び転写用ロール47の間に供給される記録用媒体の表面に、トナー画像が転写され、未定着画像を有する記録用媒体が得られる。
 尚、作像手段は、感光ドラム44及び転写ドラム46の表面には、不溶なトナー等を除去するための清掃装置を備えることができるが、図39には示していない。
 また、トナーは、結着樹脂と、着色剤と、添加剤とを含む粒子であり、結着樹脂の溶融温度は、通常、90℃~220℃である。
 次に、定着手段5は、上記本発明における定着装置と同じ構成とすることができ、加圧用ロール54と、通紙方向通電型のヒータ1を保持したヒータホルダ53を内部に備え、加圧用ロール54と連動する定着用ロール51とを備える。作像手段からの未定着画像を有する記録用媒体は、定着用ロール51及び加圧用ロール54の間に供給され、画像が定着した記録媒体が得られる。即ち、定着用ロール51の熱が、記録用媒体のトナー画像を溶融し、更に、溶融したトナーが、定着用ロール51と加圧用ロール54との圧接部で加圧されて、トナー画像が記録用媒体に定着される。
 一般に、定着用ロール51の温度が不均一となって、トナーに与えられる熱量が小さすぎる場合、トナーが記録用媒体から剥がれ、一方、熱量が大きすぎる場合、トナーが定着用ロール51に付着し、定着用ロール51が一周して記録用媒体に再付着してしまうことがあるが、本発明のヒータを備える定着手段5によれば、所定の温度への調整が迅速であるので、不具合を抑制することができる。
 図39の定着手段5は、定着用ロール51と、加圧用ロール54とを備える態様としたが、画像形成装置は、定着用ロール51に代えて、ヒータ1を近接配置した定着用ベルトを備える態様であってもよい。
 図39の画像形成装置4において、図示していない、他の手段としては、記録用媒体搬送手段や、この記録用媒体搬送手段、及び、上記各手段を制御するための制御手段が挙げられる。
 以下に、実施例を挙げ、本発明を更に詳細に説明するが、本発明の主旨を超えない限り、本発明はかかる実施例に限定されるものではない。
  実施例1
(1)ステンレスヒータの製造
 以下の要領で、図40に示すステンレスヒータ1Aを製造した。
 SUS430からなる基板(長さ270mm、幅24mm及び厚さ0.6mm)の表面を平滑処理した後、成分がSiO-Al-ROである結晶化ガラス形成用材料を、乾燥処理後100μmとなるように、基板の全面に塗布した。次いで、塗膜を850℃で焼成して、膜厚85μmの結晶化ガラスからなる絶縁層を得た。
 その後、鉛、カドミウム、ニッケルを含まず、銀-パラジウム合金(抵抗値温度係数1,500ppm/℃)からなる粉末を含むペーストを用いて、絶縁層13の表面に、図40に示す抵抗発熱配線部15とするための傾斜した矩形パターンを含み、ステンレス基板の長手方向において折り返している回路状パターンを印刷した。次いで、この印刷部を850℃で焼成して抵抗発熱配線部15を形成した。尚、抵抗発熱配線部15の線幅は0.5mm、線厚は13μmである。更に、銀粉末を含むペーストを用いて、所定の位置に、この抵抗発熱配線部15に電力を供給するための給電用端子部17及び導体配線部19とするためのパターンを印刷した。そして、この印刷部を850℃で焼成して、複数の並列配線を有する抵抗発熱配線部15及び導体配線部19を介して、一方の給電用端子部17から他方の給電用端子部17に接続させた(図40参照)。
 次に、得られた抵抗発熱配線部15、給電用端子部17及び導体配線部19の表面を含む基板の全面に、上記絶縁層13の形成の際に用いた結晶化ガラス形成用材料を用いて、膜厚50μmの第1保護層を形成した。そして、SiO-Al-B-ROからなる非晶質ガラス形成用材料を第1保護層の表面に塗布した。その後、塗膜を750℃で焼成し、膜厚25μmの第2保護層を形成し、ステンレスヒータ1Aを得た(図40参照、尚、第1保護層及び第2保護層は、図示せず)。
(2)ヒータの評価
 この評価(以下、「評価E1」という。)は、電子写真方式等を採用した印刷機、複写機、ファクシミリ等の画像形成装置に用いられ、紙等の記録媒体上に担持された未定着トナー像を加熱することにより、トナー像を定着する装置において、移動する記録媒体へ定着を行う際に、熱を奪う記録媒体に見立てたヒートシンク3Aをステンレスヒータ1Aの裏面に接触させて、ヒートシンク3Aがステンレスヒータ1Aに接触する接触部分の温度、及び、ヒートシンク3Aがステンレスヒータ1Aに接触しない非接触部分における温度を経時観測したものである。尚、ヒートシンク3Aは、アルミニウム製であり、図41に示すように、8枚のフィン(16mm×100mm)を5mmの間隔をもって平行に配置した一体化物である。
 図42は、評価E1用の装置の概略図である。この評価装置において、ステンレスヒータ1Aは、抵抗発熱配線部等を上方に向けた状態で、両端を支持させて配置されている。ヒータ1Aの中央には、熱電対(Kタイプ)が接続され、ステンレスヒータ1Aの両端側の給電用端子部17には、オムロン社製温度コントローラー「E5EN」から交流電圧(100V)が供給されて、PID制御によりステンレスヒータを稼働し、所定の温度に発熱する。そして、ヒートシンク3Aの接触により変化するヒータの温度を、ステンレスヒータ1Aの上方に設置したNEC社製サーモトレーサー「TH9100MR/WRI」により測定した。尚、熱電対及び温度測定器は、図42には示していない。
 この評価実験では、ステンレスヒータ1Aの温度を200℃に保持した状態で、ヒートシンク3Aとステンレスヒータ1Aの裏面との接触位置を変化させながら、図42に示す所定の3カ所(P)、(Q)及び(R)において連続的に温度を測定した。尚、(P)、(Q)及び(R)は、いずれも、ステンレスヒータ1Aの幅方向の中央であって、(Q)がステンレスヒータ1Aの中心、(P)及び(R)が、中心から75mm離れた位置である。また、測温点の面積は、いずれも、約0.8mmである。
 ヒートシンク3Aの使用方法は、以下の通りである。即ち、ヒートシンク3Aを、200℃に保持されたステンレスヒータ1Aにおける位置(P)で2分間接触させた後、ヒートシンク3Aを除去し、ステンレスヒータ1Aの温度が200℃に回復するのを待つ。次いで、ヒートシンク3Aをステンレスヒータ1Aの位置(Q)で2分間接触させた後、ヒートシンク3Aを除去し、ステンレスヒータ1Aの温度が200℃に回復するのを待つ。その後、ヒートシンク3Aをステンレスヒータ1Aの位置(R)で2分間接触させた後、ヒートシンク3Aを除去し、3カ所(P)、(Q)及び(R)における温度がほぼ一定となったところで実験を終了する。
 評価E1の実験結果を図43に示す。図43によれば、ヒートシンク3Aがステンレスヒータ1Aにおける位置(P)及び(R)に接触しているときには、それぞれの位置における温度低下は、約30℃~40℃であったが、ヒートシンク3Aが位置(Q)に接触しているときには、位置(P)及び(R)における温度上昇は、約40℃~50℃であった。
  実施例2
 抵抗発熱配線部15とするためのペーストとして、鉛、カドミウム、ニッケルを含まず、銀-パラジウム合金(抵抗値温度係数1,000ppm/℃)からなる粉末を含むペーストを用いて、図44に示すパターンを有する抵抗発熱配線部15を形成した以外は、実施例1と同様にして、図44に示すステンレスヒータ1Aを製造し、実施例1と同じ評価を行った。
 評価E1の実験結果を図45に示す。図45によれば、ステンレスヒータ1Aにおける位置(P)及び(R)にヒートシンク3Aが接触しているときには、それぞれの位置における温度低下は、約30℃~40℃であったが、位置(Q)にヒートシンク3Aが接触しているときには、位置(P)及び(R)における温度上昇は、約60℃~70℃であった。
  比較例1
 抵抗発熱配線部15とするためのペーストとして、鉛、カドミウム、ニッケルを含まず、銀-パラジウム合金(抵抗値温度係数1,000ppm/℃)からなる粉末を含むペーストを用いて、図46に示すパターンを有する抵抗発熱配線部15を形成した以外は、実施例1と同様にして、図46及び図47に示すステンレスヒータを製造し、実施例1と同じ評価を行った。
 評価E1の実験結果を図48に示す。図48によれば、ヒータにおける位置(P)及び(R)にヒートシンク3Aが接触しているときには、それぞれの位置における温度低下は、約20℃~80℃であったが、位置(Q)にヒートシンク3Aが接触しているときには、位置(P)及び(R)における温度上昇は、約80℃~90℃であった。
  比較例2
 図49に示すパターンを有する抵抗発熱配線部を備える、市販のセラミックヒータを用いて、実施例1と同じ評価を行った。基部の材質は、Alである。
 評価E1の実験結果を図50に示す。図50によれば、ヒータにおける位置(P)及び(R)にヒートシンク3Aが接触しているときには、それぞれの位置における温度低下は、約50℃~60℃であったが、位置(Q)にヒートシンク3Aが接触しているときには、位置(P)及び(R)における温度上昇は、約90℃~110℃であった。
  実施例3
(1)ステンレスヒータの製造
 以下の要領で、図51に示すステンレスヒータ1Bを製造した。
 SUS430からなる基板(長さ270mm、幅24mm及び厚さ0.6mm)の表面を平滑処理した後、成分がSiO-Al-ROである結晶化ガラス形成用材料を、乾燥処理後39μmとなるように、基板の全面に塗布した。次いで、塗膜を850℃で焼成して、膜厚25μmの結晶化ガラス膜を形成した。この塗布及び焼成を、更に2回ずつ繰り返し、膜厚75μmの絶縁層を得た。
 その後、銀-パラジウム合金(抵抗値温度係数1,500ppm/℃)からなる粉末を含むペーストを用いて、絶縁層の表面に、図51に示す抵抗発熱配線部15とするための傾斜した矩形パターンを含み、ステンレス基板の長手方向において折り返している回路状パターンを印刷した。次いで、この印刷部を850℃で焼成して抵抗発熱配線部15を形成した。尚、抵抗発熱配線部15の線幅は0.5mm、線厚は13μmである。更に、銀粉末を含むペーストを用いて、所定の位置に、この抵抗発熱配線部15に電力を供給するための給電用端子部17及び導体配線部19とするためのパターンを印刷した。そして、この印刷部を850℃で焼成して、複数の並列配線を有する抵抗発熱配線部15及び導体配線部19を介して、一方の給電用端子部17から他方の給電用端子部17に接続させた(図51参照)。
 次に、得られた抵抗発熱配線部15、給電用端子部17及び導体配線部19の表面を含む基板の全面に、上記絶縁層13の形成の際に用いた結晶化ガラス形成用材料を用いて、塗布及び焼成を、2回ずつ繰り返し、膜厚44μmの第1保護層を形成した。そして、SiO-Al-B-ROからなる非晶質ガラス形成用材料を第1保護層の表面に塗布した。その後、塗膜を750℃で焼成し、膜厚20μmの第2保護層を形成し、ステンレスヒータ1Bを得た(図51参照、尚、第1保護層及び第2保護層は、図示せず)。
(2)ヒータの評価
 実施例1及び2と同じ目的で、図52に示す装置を用いて評価を行った(以下、「評価E2」という。)。尚、実施例1等で用いたヒートシンク3Aの代わりに、図41に示すヒートシンク3Aを土台とするアルミニウム板3B(幅100mm×長さ300mm×厚さ1mm)をヒートシンクとして載置した。このアルミニウム板3Bと、ヒータの裏面との間隔を約1mmとして、試験を行った。
 図52に示される評価E2用の装置において、ステンレスヒータ1Bは、抵抗発熱配線部等を上方に向けた状態で、両端を支持させて配置されている。ステンレスヒータ1Bの中央には、熱電対(Kタイプ)が接続され、ステンレスヒータ1Bの両端側の給電用端子部17には、オムロン社製温度コントローラー「E5EN」から交流電圧(100V)が供給されて、PID制御によりヒータを稼働し、所定の温度に発熱する。そして、アルミニウム板3Bの設置により変化するヒータの温度を、ステンレスヒータ1Bの上方に設置したNEC社製サーモトレーサー「TH9100MR/WRI」により測定した。尚、熱電対及び温度測定器は、図52には示していない。
 この評価実験では、ステンレスヒータ1Bの温度を200℃に保持した状態で、アルミニウム板3Bの載置点を、位置(Q’)として、図52に示す所定の3カ所(P’)、(Q’)及び(R’)において連続的に温度を測定した。尚、(P’)、(Q’)及び(R’)は、いずれも、ステンレスヒータ1Bの幅方向の中央であって、(Q’)がヒータの中心、(P’)及び(R’)が、中心から75mm離れた位置である。また、測温点の面積は、いずれも、約0.8mmである。
 アルミニウム板3Bを用いた試験方法は、以下の通りである。即ち、アルミニウム板3Bを、200℃に保持されたステンレスヒータ1Bにおける位置(Q’)に2分間載置した後、アルミニウム板3Bを除去し、ステンレスヒータ1Bの温度が200℃に回復するのを待ち、3カ所(P’)、(Q’)及び(R’)における温度がほぼ一定となったところで実験を終了する。
 評価E2の実験結果を図53に示す。図53によれば、アルミニウム板3Bが位置(Q’)にあるときには、位置(P’)及び(R’)における温度上昇は、約25℃~30℃であった。
  実施例4
 以下の要領で、図54に示すステンレスヒータ1Bを製造し、実施例3と同様にして、評価E2を行った。
 SUS430からなる基板(長さ270mm、幅24mm及び厚さ0.6mm)の表面を平滑処理した後、成分がSiO-Al-ROである結晶化ガラス形成用材料を、乾燥処理後39μmとなるように、基板の全面に塗布した。次いで、塗膜を850℃で焼成して、膜厚25μmの結晶化ガラス膜を形成した。この塗布及び焼成を、更に2回ずつ繰り返し、膜厚75μmの絶縁層を得た。
 その後、銀-パラジウム合金(抵抗値温度係数1,000ppm/℃)からなる粉末を含むペーストを用いて、絶縁層の表面に、図54に示す抵抗発熱配線部15とするための傾斜した矩形パターンを含み、ステンレス基板の長手方向において折り返している回路状パターンを印刷した。次いで、この印刷部を850℃で焼成して抵抗発熱配線部15を形成した。尚、抵抗発熱配線部15の線幅は0.5mm、線厚は13μmである。更に、銀粉末を含むペーストを用いて、所定の位置に、この抵抗発熱配線部15に電力を供給するための給電用端子部17及び導体配線部19とするためのパターンを印刷した。そして、この印刷部を850℃で焼成して、複数の並列配線を有する抵抗発熱配線部15及び導体配線部19を介して、一方の給電用端子部17から他方の給電用端子部17に接続させた(図54参照)。
 次に、得られた抵抗発熱配線部15、給電用端子部17及び導体配線部19の表面を含む基板の全面に、上記絶縁層13の形成の際に用いた結晶化ガラス形成用材料を用いて、塗布及び焼成を、2回ずつ繰り返し、膜厚44μmの第1保護層を形成した。そして、SiO-Al-B-ROからなる非晶質ガラス形成用材料を第1保護層の表面に塗布した。その後、塗膜を750℃で焼成し、膜厚20μmの第2保護層を形成し、ステンレスヒータ1Bを得た(図54参照、尚、第1保護層及び第2保護層は、図示せず)。
 評価E2の実験結果を図55に示す。図55によれば、アルミニウム板3Bが位置(Q’)にあるときには、位置(P’)及び(R’)における温度上昇は、約25℃~30℃であった。
  実施例5
 以下の要領で、いずれも概略図である図10及び図12に示すステンレスヒータを製造した。
 SUS430からなる基板(270mm×24mm×0.6mm)の表面を平滑処理した後、成分がSiO-Al-RO(軟化点:740℃)である結晶化ガラス形成用材料を、乾燥処理後100μmとなるように、基板の表面に塗布した。次いで、塗膜を850℃で焼成して、膜厚85μmの結晶化ガラスからなる第1絶縁層13を得た。
 その後、鉛、カドミウム、ニッケルを含まず、銀-パラジウム合金(抵抗値温度係数1,500ppm/℃)からなる粉末を含むペーストを用いて、第1絶縁層13の表面に、図10に示す抵抗発熱配線部15とするための傾斜した矩形パターンを含み、ステンレス基板の幅方向において折り返している回路状パターンを印刷した。次いで、この印刷部を850℃で焼成して抵抗発熱配線部15を形成した。尚、抵抗発熱配線部15の線幅は0.5mm、線厚は10μmである。更に、銀粉末を含むペーストを用いて、所定の位置に、この抵抗発熱配線部15に電力を供給するための給電用端子部17及び導体配線部19とするための各パターンを印刷した。そして、この印刷部を850℃で焼成して、複数の並列配線を有する抵抗発熱配線部15及び導体配線部19を介して、一方の給電用端子部17から他方の給電用端子部17に導通が得られるようにした(図10参照)。
 次に、抵抗発熱配線部15及び導体配線部19の表面に、上記第1絶縁層13の形成の際に用いた結晶化ガラス形成用材料を用いて、膜厚40μmの第2絶縁層を形成した。このとき、結晶化ガラス形成用材料を、図10において、「32」で示した部分(後に断線部形成用絶縁部となる部分。大きさ:2mm×4mm)が未印刷となるように、且つ、この部分が、導体配線部19の線幅を超えるように印刷した。そして、第2絶縁層が形成された後には、凹部が形成されて、「32」で示した導体配線部19の一部が露出した。
 その後、同じスクリーンマスクを用いて、「32」で示した導体配線部19の露出部を残しつつ、SiO-Al-B-RO(軟化点:580℃)からなる非晶質ガラス形成用材料を第2絶縁層の表面に塗布した。そして、塗膜を750℃で焼成し、膜厚20μmのオーバーコート層を形成した。次いで、「32」が形成される前の凹部に、PbO-B(軟化点:375℃)を含む非晶質ガラス形成用材料を充填し、450℃で焼成して、断線部形成用絶縁部32を形成させ、ステンレスヒータを得た(図10において、第2絶縁層及びオーバーコート層は、図示していない。また、図12において、抵抗発熱配線部15、第2絶縁層及びオーバーコート層は、図示していない。)。
 上記のようにして得られたステンレスヒータにおける2つの給電用端子部17のそれぞれに、AC100Vの電圧を印加して、抵抗発熱配線部15を発熱させて、ステンレス基板部の温度を約570℃(NEC/Avio社製サーモトレーサー「TH9100MR/WRI」により測定)とした。電圧を印加して15秒後、断線部形成用絶縁部32に接触していた導体配線部19が断線したことを確認した(図4参照)。
 この実施例5では、図10に示されるように、図面の右側に断線部形成用絶縁部32が1箇所形成されたヒータを示したが、例えば、図面の左側の対称位置にもう1つの断線部形成用絶縁部を備えるヒータとすることができる。
  実施例6
 以下の要領で、いずれも概略図である図11及び図14に示すステンレスヒータを製造した。
 SUS430からなる基板の表面を平滑処理した後、成分がSiO-Al-RO(軟化点:740℃)である結晶化ガラス形成用材料を、乾燥処理後100μmとなるように、基板の表面に塗布した。次いで、塗膜を850℃で焼成して、膜厚85μmの結晶化ガラスからなる第1絶縁層13を得た。
 その後、鉛、カドミウム、ニッケルを含まず、銀-パラジウム合金(抵抗値温度係数1,500ppm/℃)からなる粉末を含むペーストを用いて、第1絶縁層13の表面に、図11に示す抵抗発熱配線部15とするための傾斜した矩形パターンを含み、ステンレス基板の幅方向において折り返している回路状パターンを印刷した。次いで、この印刷部を850℃で焼成して抵抗発熱配線部15を形成した。尚、抵抗発熱配線部15の線幅は0.5mm、線厚は12μmである。更に、銀粉末を含むペーストを用いて、所定の位置に、この抵抗発熱配線部15に電力を供給するための給電用端子部17及び導体配線部19とするための各パターンを印刷した。そして、この印刷部を850℃で焼成して、複数の並列配線を有する抵抗発熱配線部15及び導体配線部19を介して、一方の給電用端子部17から他方の給電用端子部17に導通が得られるようにした(図11参照)。
 次に、抵抗発熱配線部15及び導体配線部19の表面に、上記第1絶縁層13の形成の際に用いた結晶化ガラス形成用材料を用いて、膜厚40μmの第2絶縁層を形成した。このとき、結晶化ガラス形成用材料を、図11において、「32」で示した部分(後に断線部形成用絶縁部となる部分。大きさ:1.7mm×2.5mm)が未印刷となるように、且つ、この部分が、抵抗発熱配線部15の線幅を超えるように印刷した。そして、第2絶縁層が形成された後には、凹部が形成されて、「32」で示した抵抗発熱配線部15の一部が露出した。
 その後、同じスクリーンマスクを用いて、「32」で示した抵抗発熱配線部15の露出部を残しつつ、SiO-Al-B-RO(軟化点:580℃)からなる非晶質ガラス形成用材料を第2絶縁層の表面に塗布した。そして、塗膜を750℃で焼成し、膜厚20μmのオーバーコート層を形成した。次いで、「32」が形成される前の凹部に、PbO-B(軟化点:375℃)を含む非晶質ガラス形成用材料を充填し、450℃で焼成して、断線部形成用絶縁部32を形成させ、ステンレスヒータを得た(図11において、第2絶縁層及びオーバーコート層は、図示していない。また、図14において、抵抗発熱配線部15、第2絶縁層及びオーバーコート層は、図示していない。)。
 上記のようにして得られたステンレスヒータにおける2つの給電用端子部17のそれぞれに、AC100Vの電圧を印加して、抵抗発熱配線部15を発熱させて、ステンレス基板部の温度を約570℃(NEC/Avio社製サーモトレーサー「TH9100MR/WRI」により測定)とした。電圧を印加して10秒後、断線部形成用絶縁部32に接触していた抵抗発熱配線部15が断線したことを確認した。
  実施例7
 第1絶縁層13を備えるSUS430に代えて、窒化アルミニウムを用いた基板に対して、実施例6と同じ要領で、抵抗発熱配線部15、給電用端子部17、導体配線部19等を形成し、概略図である図15に示すセラミックヒータを製造した。
 その後、得られたセラミックヒータにおける2つの給電用端子部17のそれぞれに、AC100Vの電圧を印加して、抵抗発熱配線部15を発熱させて、窒化アルミニウム基板部の温度を約570℃(NEC/Avio社製サーモトレーサー「TH9100MR/WRI」により測定)とした。電圧を印加して10秒後、断線部形成用絶縁部32に接触していた抵抗発熱配線部15が断線したことを確認した。
 これらの実施例5~7では、第2絶縁層の表面にSiO-Al-B-RO(軟化点:580℃)からなる非晶質ガラス形成用材料を塗布してオーバーコート層を形成したが、この非晶質ガラス形成用材料に代えて、断線部形成用絶縁部32の形成に用いたPbO-B(軟化点:375℃)を含む非晶質ガラス形成用材料を用い、凹部を充填するとともに、第2絶縁層の表面にも塗膜を形成し、絶縁材料からなるオーバーコート層とする態様とすることもできる。この場合、断線部形成用絶縁部32が抵抗発熱配線部15に接触しているので、断線部形成用絶縁部32と同じ組成のオーバーコート層が、熱暴走時に断線の障害となることはない。
  実施例8
 以下の要領で、ステンレスからなる基部11に、第1絶縁層13、抵抗発熱配線部15、断線部形成用絶縁部32(第2絶縁層)及び導体配線部19を、順次、備え、概略図である図18に示す積層型のステンレスヒータを製造した。
 SUS430からなる基板の表面を平滑処理した後、成分がSiO-Al-RO(軟化点:740℃)である結晶化ガラス形成用材料を、乾燥処理後100μmとなるように、基板の表面に塗布した。次いで、塗膜を850℃で焼成して、膜厚85μmの結晶化ガラスからなる第1絶縁層13を得た。
 その後、鉛、カドミウム、ニッケルを含まず、銀-パラジウム合金(抵抗値温度係数1,500ppm/℃)からなる粉末を含むペーストと、銀粉末を含むペーストとを用いて、所定の位置に、抵抗発熱配線部15及び給電用端子部17Aの各パターンを、それぞれ、印刷し、850℃で焼成した。これにより、矩形パターンを含み、ステンレス基板の幅方向において折り返している直列配線を有する抵抗発熱配線部15を得た。
 次に、抵抗発熱配線部15の表面に、上記第1絶縁層13の形成の際に用いた結晶化ガラス形成用材料を用いて、膜厚55μmの第2絶縁層16を形成した。このとき、結晶化ガラス形成用材料を、図18において、「32」で示した部分(後に断線部形成用絶縁部となる部分。大きさ:1.7mm×2.5mm)が未印刷となるように、且つ、この部分が、抵抗発熱配線部15の線幅を超えるように印刷した。そして、第2絶縁層16が形成された後には、凹部が形成されて、「32」で示した抵抗発熱配線部15の一部が露出した。
 その後、「32」が形成される前の凹部に、Bi-Zn-B(軟化点:506℃)を含む非晶質ガラス形成用材料を充填し、550℃で焼成して、断線部形成用絶縁部32を形成した。
 次に、銀粉末を含むペーストを用いて、露出した断線部形成用絶縁部32を被覆するように、導体配線部19及び給電用端子部17Bの各パターンを印刷し、この印刷部を500℃で焼成して導体配線部19及び給電用端子部17Bを形成した。尚、導体配線部19の線幅は1mm、線厚は10μmであり、下層側に位置する断線部形成用絶縁部32が導体配線部19の線幅よりも長いことを確認した。その後、導体配線部19の表面に、Bi-Zn-B(軟化点:506℃)からなる非晶質ガラス形成用材料を塗布した。そして、塗膜を500℃で焼成し、膜厚20μmのオーバーコート層21を形成させ、ステンレスヒータを得た。
 その後、得られたステンレスヒータにおける2つの給電用端子部17A及び17Bのそれぞれに、AC100Vの電圧を印加して、抵抗発熱配線部15を発熱させて、ステンレス基板部の温度を約650℃(NEC/Avio社製サーモトレーサー「TH9100MR/WRI」により測定)とした。電圧を印加して12秒後、断線部形成用絶縁部32に接触していた抵抗発熱配線部15及び導体配線部19が断線したことを確認した。
  実施例9
 第1絶縁層13を備えるSUS430に代えて、窒化アルミニウムを用いた基板に対して、実施例8と同じ要領で、抵抗発熱配線部15、給電用端子部17A及び17B、導体配線部19等を形成し、概略図である図29に示すセラミックヒータを製造した。
 その後、得られたセラミックヒータにおける2つの給電用端子部17A及び17Bのそれぞれに、AC100Vの電圧を印加して、抵抗発熱配線部15を発熱させて、窒化アルミニウム基板部の温度を約650℃(NEC/Avio社製サーモトレーサー「TH9100MR/WRI」により測定)とした。電圧を印加して13秒後、抵抗発熱配線部15及び導体配線部19が断線したことを確認した。
  実施例10
 以下の要領で、ステンレスからなる基部11に、第1絶縁層13、導体配線部19、断線部形成用絶縁部32(第2絶縁層)及び抵抗発熱配線部15を、順次、備え、概略図である図24に示す積層型のステンレスヒータを製造した。
 SUS430からなる基板の表面を平滑処理した後、成分がSiO-Al-RO(軟化点:740℃)である結晶化ガラス形成用材料を、乾燥処理後100μmとなるように、基板の表面に塗布した。次いで、塗膜を850℃で焼成して、膜厚85μmの結晶化ガラスからなる第1絶縁層13を得た。
 その後、銀粉末を含むペーストを用いて、所定の位置に、抵抗発熱配線部15に電力を供給するための給電用端子部17A及び導体配線部19の各パターンを印刷し、850℃で焼成した。
 次に、導体配線部19の表面に、上記第1絶縁層13の形成の際に用いた結晶化ガラス形成用材料を用いて、膜厚55μmの第2絶縁層16を形成した。このとき、結晶化ガラス形成用材料を、図24において、「32」で示した部分(後に断線部形成用絶縁部となる部分。大きさ:1.7mm×2.5mm)が未印刷となるように、且つ、この部分が、導体配線部19の線幅を超えるように印刷した。そして、第2絶縁層16が形成された後には、凹部が形成されて、「32」で示した導体配線部19の一部が露出した。
 その後、「32」が形成される前の凹部に、SiO-Al-B-RO(軟化点:580℃)を含む非晶質ガラス形成用材料を充填し、750℃で焼成して、断線部形成用絶縁部32を形成した。
 次に、鉛、カドミウム、ニッケルを含まず、銀-パラジウム合金(抵抗値温度係数1,500ppm/℃)からなる粉末を含むペースト(材料の軟化点:550℃)を用いて、露出した断線部形成用絶縁部32を被覆するように、図24に示す抵抗発熱配線部15とするための傾斜した矩形パターンを含み、ステンレス基板の幅方向において折り返している回路状パターンを印刷した。次いで、この印刷部を550℃で焼成して直列配線を有する抵抗発熱配線部15を形成した。尚、抵抗発熱配線部15の線幅は1mm、線厚は10μmであり、下層側に位置する断線部形成用絶縁部32が抵抗発熱配線部15の線幅よりも長いことを確認した。その後、銀粉末を含むペースト(材料の軟化点:550℃)を用いて、所定の位置に、この抵抗発熱配線部15に電力を供給するための給電用端子部17Bのパターンを印刷した。次いで、抵抗発熱配線部15の表面に、Bi-Zn-B(軟化点:506℃)からなる非晶質ガラス形成用材料を塗布した。そして、塗膜を550℃で焼成し、膜厚20μmのオーバーコート層21を形成させ、ステンレスヒータを得た。
 その後、得られたステンレスヒータにおける2つの給電用端子部17A及び17Bのそれぞれに、AC100Vの電圧を印加して、抵抗発熱配線部15を発熱させて、ステンレス基板部の温度を約650℃(NEC/Avio社製サーモトレーサー「TH9100MR/WRI」により測定)とした。電圧を印加して12秒後、断線部形成用絶縁部32に接触していた抵抗発熱配線部15及び導体配線部19が断線したことを確認した。
 これらの実施例8~10では、抵抗発熱配線部15を直列配線として、基板から垂直方向に導体配線部19、断線部形成用絶縁部32及び抵抗発熱配線部15が互いに接触したヒータを示したが、抵抗発熱配線部15が並列配線であって、更に、3者が互いに接触する位置として、例えば、図10に示す「32」の位置に、断線部形成用絶縁部を形成したヒータとすることができる。
  実施例11
 以下の要領で、ステンレスからなる基部11の1面側に抵抗発熱配線部15を、他面側に、導体配線部19及び断線部形成用絶縁部32を、順次、備え、概略図である図27に示す積層型のステンレスヒータを製造した。
 SUS430からなる基板の両面を平滑処理した後、成分がSiO-Al-RO(軟化点:740℃)である結晶化ガラス形成用材料を、乾燥処理後100μmとなるように、基板の両面に塗布した。次いで、塗膜を850℃で焼成して、いずれも、膜厚85μmの結晶化ガラスからなる第1絶縁層13及び第3絶縁層23を得た。
 その後、第1絶縁層13の表面に、鉛、カドミウム、ニッケルを含まず、銀-パラジウム合金(抵抗値温度係数1,500ppm/℃)からなる粉末を含むペーストを用いて、図10に示すような抵抗発熱配線部15とするための傾斜した矩形パターンを含み、ステンレス基板の幅方向において折り返している回路状パターンを印刷した。そして、この印刷部を850℃で焼成して抵抗発熱配線部15を形成した。尚、抵抗発熱配線部15の線幅は0.5mm、線厚は11μmである。
 次いで、銀粉末を含むペーストを用いて、第1絶縁層13の表面における所定の位置に、抵抗発熱配線部15に電力を供給するための給電用端子部17A及び導体配線部(端子部)25とするための各パターンを印刷し、一方、第3絶縁層23の表面における所定の位置に、給電用端子部17B及び導体配線部19とするための各パターンを印刷した。そして、これらの印刷部を850℃で焼成して、1面側に複数の並列配線を有する抵抗発熱配線部15を、他面側に導体配線部19を形成させた。
 その後、抵抗発熱配線部15及び導体配線部19の表面に、上記第1絶縁層13及び第3絶縁層23の形成の際に用いた結晶化ガラス形成用材料を用いて、いずれも、膜厚が55μmの第1オーバーコート層21A及び第2オーバーコート層21Bを形成した。このとき、結晶化ガラス形成用材料を、図27において、「32」で示した部分(後に断線部形成用絶縁部となる部分。大きさ:1.7mm×2.5mm)が未印刷となるように、且つ、この部分が、導体配線部19の線幅を超えるように印刷した。そして、第2オーバーコート層21Bが形成された後には、凹部が形成されて、「32」で示した第2オーバーコート層21Bの一部が露出した。
 次いで、「32」が形成される前の凹部に、PbO-B(軟化点:375℃)を含む非晶質ガラス形成用材料を充填し、450℃で焼成して、断線部形成用絶縁部32を形成させ、ステンレスヒータを得た。尚、このステンレスヒータでは、抵抗発熱配線部15が形成された側(上方側)の導体配線部(端子部)25と、下方側の導体配線部19の左端部とを、コネクター、ソケット等の接続部材27によって導通させる態様としている。
  実施例12
 第1絶縁層13及び第3絶縁層23を備えるSUS430に代えて、窒化アルミニウムを用いた基板に対して、実施例11と同じ要領で、抵抗発熱配線部15、給電用端子部17A及び17B、導体配線部(端子部)25、導体配線部19等を形成し、概略図である図34に示すセラミックヒータを製造した。
  実施例13
 以下の要領で、窒化アルミニウムからなり、その一端側に上下に開口する貫通孔(断面形状:円形、内径:0.3mm)を有する基板を用い、概略図である図35に示すセラミックヒータを製造した。
 この基板の1面側表面の所定の位置に、鉛、カドミウム、ニッケルを含まず、銀-パラジウム合金(抵抗値温度係数1,500ppm/℃)からなる粉末を含むペーストを用いて、図10に示すような抵抗発熱配線部15とするための傾斜した矩形パターンを含み、ステンレス基板の幅方向において折り返している回路状パターンを印刷した。そして、この印刷部を850℃で焼成して抵抗発熱配線部15を形成した。尚、抵抗発熱配線部15の線幅は0.5mm、線厚は10μmである。
 次いで、銀粉末を含むペーストを用いて、基板の他面側表面の所定の位置に、給電用端子部17B及び導体配線部19とするための各パターンを印刷するとともに、貫通孔を充填させた。一方、抵抗発熱配線部15の表面における所定の位置に、抵抗発熱配線部15に電力を供給するための給電用端子部17Aとするための各パターンを印刷し、導体配線部19と導通が得られるようにした。そして、これらの印刷部を950℃で焼成して、給電用端子部17A及び17Bの間に複数の並列配線を有する抵抗発熱配線部15及び導体配線部19が接続する配線を形成させた。
 その後、抵抗発熱配線部15及び導体配線部19の表面に、成分がSiO-Al-RO(軟化点:740℃)である結晶化ガラス形成用材料を用いて、第1オーバーコート層21A及び第2オーバーコート層21Bを形成した。このとき、結晶化ガラス形成用材料を、図35において、「32」で示した部分(後に断線部形成用絶縁部となる部分。大きさ:1.7mm×2.5mm)が未印刷となるように、且つ、この部分が、導体配線部19の線幅を超えるように印刷した。そして、第2オーバーコート層21Bが形成された後には、凹部が形成されて、「32」で示した第2オーバーコート層21Bの一部が露出した。
 次いで、「32」が形成される前の凹部に、PbO-B(軟化点:375℃)を含む非晶質ガラス形成用材料を充填し、450℃で焼成して、断線部形成用絶縁部32を形成させ、セラミックヒータを得た。
 本発明のヒータを、熱処理装置に配することにより、トナー、インク等の定着、複数の部材どうしの貼り合わせ、塗膜又は皮膜の熱処理、金属製品又は樹脂製品の熱処理、乾燥、半田リフロー等を、省電力で効率よく行うことができる。また、本発明においては、幅が縮小されたヒータとすることができるので、小型の熱処理装置への配設に好適である。
 本発明の定着装置は、電子写真方式の印刷機、複写機等の画像形成装置をはじめ、家庭用の電気製品、業務用、実験用の精密機器等に装着して、加熱、保温等の熱源として好適である。
 本発明の乾燥装置は、水、有機溶剤等を含む被熱処理物の乾燥を、所望の温度で行う装置として好適である。そして、真空乾燥機(減圧乾燥機)、加圧乾燥機、除湿乾燥機、熱風乾燥機、防爆型乾燥機等として用いることができる。

Claims (21)

  1.  長尺状の基部と、
     前記基部の表面側又は内部に、該基部に対して電気的に絶縁された状態で形成されている抵抗発熱部であって、通電により発熱する複数の並列配線を有する抵抗発熱配線部と、
     前記基部の表面側又は内部に、該基部に対して電気的に絶縁された状態で形成されている給電用端子部であって、該給電用端子部の数は少なくとも2つであり、前記抵抗発熱配線部に電力を供給するために、前記抵抗発熱配線部を介して一方の端子部及び他方の端子部を電気的に接続する給電用端子部と、
    を備えるヒータにおいて、
     前記抵抗発熱配線部は、抵抗値温度係数が500~4,400ppm/℃の材料を含み、前記並列配線は、傾斜した矩形パターンを含むことを特徴とするヒータ。
  2.  前記給電用端子部の数が2つであり、更に、
     前記基部の表面側又は内部に、該基部に対して電気的に絶縁された状態で形成されている導体配線部であって、該導体配線部の数は2つであり、前記抵抗発熱配線部の1端側及び他端側と前記2つの給電用端子部とを、別々に、電気的に接続する導体配線部と、
     前記抵抗発熱配線部の一部及び前記導体配線部の一部のうちの少なくとも一方の上層側表面又は下層側表面に、前記抵抗発熱配線部の線幅若しくは前記導体配線部の線幅と同じ又はそれ以上の長さで、接触形成された断線部形成用絶縁部であって、前記抵抗発熱配線部が所定温度以上になった場合に、該抵抗発熱配線部を構成する材料(m1)、及び、前記導体配線部を構成する材料(m2)から選ばれた少なくとも1種と反応する材料を含み、該反応により電気的絶縁部を形成し、前記抵抗発熱配線部又は前記導体配線部を断線させる断線部形成用絶縁部と、
    を備える請求項1に記載のヒータ。
  3.  前記基部が、ステンレス、アルミニウム又はアルミニウム合金を含む基層と、該基層の表面に形成された電気的絶縁層とからなり、
     前記抵抗発熱配線部が、前記電気的絶縁層の表面に形成されている請求項2に記載のヒータ。
  4.  前記ヒータが、前記基部の前記電気的絶縁層の表面に、前記抵抗発熱配線部及び前記導体配線部をこの順に備える積層型ヒータであり、前記抵抗発熱配線部の一部、前記断線部形成用絶縁部の少なくとも一部、及び、前記導体配線部の一部が、順次、面接触した部分を備える請求項3に記載のヒータ。
  5.  前記基部が、絶縁性セラミックスを含み、
     前記抵抗発熱配線部が、前記基部の表面に形成されている請求項2に記載のヒータ。
  6.  前記ヒータが、前記基部の表面に、前記抵抗発熱配線部及び前記導体配線部をこの順に備える積層型ヒータであり、前記抵抗発熱配線部の一部、前記断線部形成用絶縁部の少なくとも一部、及び、前記導体配線部の一部が、順次、面接触した部分を備える請求項5に記載のヒータ。
  7.  前記基部が、ステンレス、アルミニウム又はアルミニウム合金を含む基層と、該基層の表面に形成された電気的絶縁層とからなり、
     前記導体配線部が、前記電気的絶縁層の表面に形成されている請求項2に記載のヒータ。
  8.  前記ヒータが、前記基部の前記電気的絶縁層の表面に、前記導体配線部及び前記抵抗発熱配線部をこの順に備える積層型ヒータであり、前記導体配線部の一部、前記断線部形成用絶縁部の少なくとも一部、及び、前記抵抗発熱配線部の一部が、順次、面接触した部分を備える請求項7に記載のヒータ。
  9.  前記基部が、絶縁性セラミックスを含み、
     前記導体配線部が、前記基部の表面に形成されている請求項2に記載のヒータ。
  10.  前記ヒータが、前記基部の表面に、前記導体配線部及び前記抵抗発熱配線部をこの順に備える積層型ヒータであり、前記導体配線部の一部、前記断線部形成用絶縁部の少なくとも一部、及び、前記抵抗発熱配線部の一部が、順次、面接触した部分を備える請求項9に記載のヒータ。
  11.  前記抵抗発熱配線部が銀合金を含む請求項2乃至10のいずれか1項に記載のヒータ。
  12.  前記導体配線部が銀を含む請求項2乃至11のいずれか1項に記載のヒータ。
  13.  前記断線部形成用絶縁部が、ビスマス系ガラス及び鉛系ガラスから選ばれた少なくとも1種を含む請求項2乃至12のいずれか1項に記載のヒータ。
  14.  前記基部が、ステンレス、アルミニウム又はアルミニウム合金を含む基層と、該基層の表面に形成された電気的絶縁層とからなり、
     前記抵抗発熱配線部及び前記給電用端子部が、前記電気的絶縁層の表面に形成されている請求項1に記載のヒータ。
  15.  前記抵抗発熱配線部が銀合金を含む請求項14に記載のヒータ。
  16.  前記基部が、絶縁性セラミックスを含み、
     前記抵抗発熱配線部及び前記給電用端子部が、前記基部の表面に形成されている請求項1に記載のヒータ。
  17.  前記基部が、絶縁性セラミックスを含み、
     前記抵抗発熱配線部が、前記基部の内部に形成されている請求項1に記載のヒータ。
  18.  前記抵抗発熱配線部が、タングステン又はモリブデンを含む請求項16又は17に記載のヒータ。
  19.  長尺状の基部と、
     前記基部の表面側又は内部に、該基部に対して電気的に絶縁された状態で形成されている抵抗発熱部であって、通電により発熱する抵抗発熱配線部と、
     前記基部の表面側又は内部に、該基部に対して電気的に絶縁された状態で形成されている、2つの給電用端子部と、
     前記基部の表面側又は内部に、該基部に対して電気的に絶縁された状態で形成されている導体配線部であって、該導体配線部の数は2つであり、前記抵抗発熱配線部の1端側及び他端側と前記2つの給電用端子部とを、別々に、電気的に接続する導体配線部と、
     前記抵抗発熱配線部の一部及び前記導体配線部の一部のうちの少なくとも一方の上層側表面又は下層側表面に、前記抵抗発熱配線部の線幅若しくは前記導体配線部の線幅と同じ又はそれ以上の長さで、接触形成された断線部形成用絶縁部であって、前記抵抗発熱配線部が所定温度以上になった場合に、該抵抗発熱配線部を構成する材料(m1)、及び、前記導体配線部を構成する材料(m2)から選ばれた少なくとも1種と反応する材料を含み、該反応により電気的絶縁部を形成し、前記抵抗発熱配線部又は前記導体配線部を断線させる断線部形成用絶縁部と、
    を備えることを特徴とするヒータ。
  20.  請求項1乃至19のいずれか1項に記載のヒータを備えることを特徴とする定着装置。
  21.  請求項1乃至19のいずれか1項に記載のヒータを備えることを特徴とする乾燥装置。
PCT/JP2012/073373 2011-11-15 2012-09-12 ヒータ並びにそれを備える定着装置及び乾燥装置 WO2013073276A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147015146A KR102037827B1 (ko) 2011-11-15 2012-09-12 히터 및 그것을 구비하는 정착 장치 및 건조 장치
JP2013544166A JP6228458B2 (ja) 2011-11-15 2012-09-12 ヒータ並びにそれを備える定着装置及び乾燥装置
CN201280055012.3A CN103931271B (zh) 2011-11-15 2012-09-12 加热器以及具备该加热器的定影装置和干燥装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-250108 2011-11-15
JP2011250108 2011-11-15
JP2012-039324 2012-02-24
JP2012039324 2012-02-24

Publications (1)

Publication Number Publication Date
WO2013073276A1 true WO2013073276A1 (ja) 2013-05-23

Family

ID=48429350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073373 WO2013073276A1 (ja) 2011-11-15 2012-09-12 ヒータ並びにそれを備える定着装置及び乾燥装置

Country Status (4)

Country Link
JP (2) JP6228458B2 (ja)
KR (1) KR102037827B1 (ja)
CN (1) CN103931271B (ja)
WO (1) WO2013073276A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151905A1 (ja) * 2014-03-31 2015-10-08 株式会社美鈴工業 ヒータとそれを備える定着装置、画像形成装置及び加熱装置、並びにヒータの製造方法
WO2017090692A1 (ja) * 2015-11-27 2017-06-01 株式会社美鈴工業 ヒータ、定着装置、画像形成装置及び加熱装置
WO2017131041A1 (ja) * 2016-01-29 2017-08-03 株式会社美鈴工業 ヒータとそれを備える定着装置、画像形成装置及び加熱装置
US9802402B2 (en) 2016-03-07 2017-10-31 Fuji Xerox Co., Ltd. Method of manufacturing heating device by screen printing
JP2018106211A (ja) * 2018-04-05 2018-07-05 東芝テック株式会社 定着装置および画像形成装置
EP3364715A1 (en) * 2017-02-21 2018-08-22 LG Electronics Inc. The surface heater, the electric range comprising the same, and the manufacturing method of the same
WO2019112058A1 (ja) * 2017-12-08 2019-06-13 株式会社美鈴工業 ヒータ、定着装置、画像形成装置及び加熱装置
EP3522681A1 (en) * 2018-02-05 2019-08-07 NGK Spark Plug Co., Ltd. Ceramic heater
JP2019135713A (ja) * 2018-02-05 2019-08-15 日本特殊陶業株式会社 セラミックヒータ
JP2020073972A (ja) * 2019-10-01 2020-05-14 東芝テック株式会社 定着装置および画像形成装置
US10698350B2 (en) 2014-09-24 2020-06-30 Toshiba Tec Kabushiki Kaisha Fixing device and image forming apparatus
JP2020145016A (ja) * 2019-03-05 2020-09-10 東芝ライテック株式会社 ヒータ、および画像形成装置
US11537070B2 (en) 2020-07-01 2022-12-27 Ricoh Company, Ltd. Heater, heating device, fixing device, and image forming apparatus

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104185317B (zh) * 2014-08-14 2016-09-07 厦门格睿伟业电子科技有限公司 一种双层包压陶瓷发热管
US9798279B2 (en) * 2015-07-01 2017-10-24 Xerox Corporation Printed thermocouples in solid heater devices
DE102015222072B4 (de) * 2015-11-10 2019-03-28 Robert Bosch Gmbh Heizvorrichtung für MEMS-Sensor
KR102556009B1 (ko) * 2016-11-15 2023-07-18 삼성전자주식회사 필러 구조체 및 이를 포함하는 전자 기기
CN206993432U (zh) * 2017-07-21 2018-02-09 威滔电子科技(深圳)有限公司 一种发热片
CN108712790B (zh) * 2018-04-08 2021-04-06 佛山市瑞福物联科技有限公司 一种电路布置方法
JP7119280B2 (ja) * 2018-09-28 2022-08-17 株式会社リコー 加熱装置、定着装置および画像形成装置
TWI684311B (zh) * 2019-04-01 2020-02-01 聚鼎科技股份有限公司 保護元件
CN110582134A (zh) * 2019-09-03 2019-12-17 福耀玻璃工业集团股份有限公司 一种后挡加热玻璃窗
JP2020072905A (ja) * 2019-11-05 2020-05-14 株式会社三洋物産 遊技機
US11143996B2 (en) 2019-12-13 2021-10-12 Ricoh Company, Ltd. Heating device, fixing device and image forming apparatus
US11429043B2 (en) 2020-02-28 2022-08-30 Ricoh Company, Ltd. Image forming apparatus having variabale heat generation states
JP2022109781A (ja) * 2021-01-15 2022-07-28 東芝ライテック株式会社 ヒータ、および画像形成装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10133501A (ja) * 1996-10-31 1998-05-22 Canon Inc 加熱体、加熱装置及び画像形成装置
JP2002359059A (ja) * 2001-06-01 2002-12-13 Misuzu Kogyo:Kk 通電遮断機能付きヒーター
JP2004220782A (ja) * 2002-11-20 2004-08-05 Misuzu Kogyo:Kk スチールヒーター及び熱処理方法
JP2004342622A (ja) * 2004-07-16 2004-12-02 Ngk Spark Plug Co Ltd セラミックヒータ
JP2005032933A (ja) * 2003-07-10 2005-02-03 Hitachi Kokusai Electric Inc 基板処理装置
JP2007042615A (ja) * 2005-06-29 2007-02-15 Kyocera Corp セラミックヒータおよびその製造方法、並びにガスセンサ素子
JP2010156993A (ja) * 2004-06-16 2010-07-15 Mitsubishi Pencil Co Ltd 定着用ヒータとその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59214184A (ja) * 1983-05-18 1984-12-04 株式会社日本自動車部品総合研究所 デフロスタ用ヒ−タ
JPS62166235A (ja) * 1986-01-20 1987-07-22 Matsushita Electric Ind Co Ltd 電気カ−ペツト
JP2001102151A (ja) * 1999-09-30 2001-04-13 Miyoshi Electronics Corp 積層型ヒータの端子接続構造、その接続方法およびそれに用いるロウ付け材
JP2001194936A (ja) 2000-01-11 2001-07-19 Canon Inc ヒータと定着装置および画像形成装置
JP4512232B2 (ja) * 2000-04-28 2010-07-28 株式会社美鈴工業 発熱体の製造方法
JP2002025752A (ja) 2000-07-10 2002-01-25 Canon Inc ヒーター、加熱装置および画像形成装置
JP3967967B2 (ja) * 2002-06-14 2007-08-29 京都電子工業株式会社 擬似人体
JP2005209493A (ja) * 2004-01-23 2005-08-04 Canon Inc 加熱装置および画像形成装置
JP2007121955A (ja) 2005-10-31 2007-05-17 Harison Toshiba Lighting Corp 定着ヒータ、加熱装置、画像形成装置
JP2007232819A (ja) 2006-02-28 2007-09-13 Harison Toshiba Lighting Corp 定着ヒータ、加熱装置、画像形成装置
JP2009282335A (ja) * 2008-05-22 2009-12-03 Sharp Corp 定着装置およびそれを備えた画像形成装置
GB2460833B (en) 2008-06-09 2011-05-18 2D Heat Ltd A self-regulating electrical resistance heating element
EP2477453B1 (en) * 2009-09-11 2020-07-15 Canon Kabushiki Kaisha Heater and image heating device equipped with heater
JP2011065005A (ja) * 2009-09-18 2011-03-31 Konica Minolta Business Technologies Inc 筒状発熱体及び定着装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10133501A (ja) * 1996-10-31 1998-05-22 Canon Inc 加熱体、加熱装置及び画像形成装置
JP2002359059A (ja) * 2001-06-01 2002-12-13 Misuzu Kogyo:Kk 通電遮断機能付きヒーター
JP2004220782A (ja) * 2002-11-20 2004-08-05 Misuzu Kogyo:Kk スチールヒーター及び熱処理方法
JP2005032933A (ja) * 2003-07-10 2005-02-03 Hitachi Kokusai Electric Inc 基板処理装置
JP2010156993A (ja) * 2004-06-16 2010-07-15 Mitsubishi Pencil Co Ltd 定着用ヒータとその製造方法
JP2004342622A (ja) * 2004-07-16 2004-12-02 Ngk Spark Plug Co Ltd セラミックヒータ
JP2007042615A (ja) * 2005-06-29 2007-02-15 Kyocera Corp セラミックヒータおよびその製造方法、並びにガスセンサ素子

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015197971A (ja) * 2014-03-31 2015-11-09 株式会社美鈴工業 ヒータとそれを備える定着装置、画像形成装置及び加熱装置、並びにヒータの製造方法
CN106134284A (zh) * 2014-03-31 2016-11-16 株式会社美铃工业 加热器、具备该加热器的定影装置、图像形成装置、加热装置以及加热器的制造方法
KR20160138431A (ko) * 2014-03-31 2016-12-05 가부시키가이샤 미스즈 코우쿄우 히터와 그것을 구비하는 정착 장치, 화상 형성 장치 및 가열 장치, 및 히터의 제조 방법
CN106134284B (zh) * 2014-03-31 2020-06-09 株式会社美铃工业 加热器、具备该加热器的定影装置、图像形成装置、加热装置以及加热器的制造方法
WO2015151905A1 (ja) * 2014-03-31 2015-10-08 株式会社美鈴工業 ヒータとそれを備える定着装置、画像形成装置及び加熱装置、並びにヒータの製造方法
KR102325694B1 (ko) * 2014-03-31 2021-11-15 가부시키가이샤 미스즈 코우쿄우 히터와 그것을 구비하는 정착 장치, 화상 형성 장치 및 가열 장치, 및 히터의 제조 방법
TWI666965B (zh) * 2014-03-31 2019-07-21 日商美鈴工業股份有限公司 加熱器及具備其之定著裝置、畫像形成裝置及加熱裝置、以及加熱器之製造方法
US11294314B2 (en) 2014-09-24 2022-04-05 Toshiba Tec Kabushiki Kaisha Fixing device and image forming apparatus
US10698350B2 (en) 2014-09-24 2020-06-30 Toshiba Tec Kabushiki Kaisha Fixing device and image forming apparatus
US10955782B2 (en) 2014-09-24 2021-03-23 Toshiba Tec Kabushiki Kaisha Fixing device and image forming apparatus
US11754951B2 (en) 2014-09-24 2023-09-12 Toshiba Tec Kabushiki Kaisha Fixing device and image forming apparatus
WO2017090692A1 (ja) * 2015-11-27 2017-06-01 株式会社美鈴工業 ヒータ、定着装置、画像形成装置及び加熱装置
KR20180087138A (ko) 2015-11-27 2018-08-01 가부시키가이샤 미스즈 코우쿄우 히터, 정착 장치, 화상 형성 장치 및 가열 장치
KR102637446B1 (ko) 2015-11-27 2024-02-19 가부시키가이샤 미스즈 코우쿄우 히터, 정착 장치, 화상 형성 장치 및 가열 장치
JP6161859B1 (ja) * 2015-11-27 2017-07-12 株式会社美鈴工業 ヒータ、定着装置、画像形成装置及び加熱装置
WO2017131041A1 (ja) * 2016-01-29 2017-08-03 株式会社美鈴工業 ヒータとそれを備える定着装置、画像形成装置及び加熱装置
US9802402B2 (en) 2016-03-07 2017-10-31 Fuji Xerox Co., Ltd. Method of manufacturing heating device by screen printing
US10904952B2 (en) 2017-02-21 2021-01-26 Lg Electronics Inc. Surface heater, the electric range comprising the same, and the manufacturing method of the same
EP3364715A1 (en) * 2017-02-21 2018-08-22 LG Electronics Inc. The surface heater, the electric range comprising the same, and the manufacturing method of the same
WO2019112058A1 (ja) * 2017-12-08 2019-06-13 株式会社美鈴工業 ヒータ、定着装置、画像形成装置及び加熱装置
KR20200092255A (ko) 2017-12-08 2020-08-03 가부시키가이샤 미스즈 코우쿄우 히터, 정착 장치, 화상 형성 장치 및 가열 장치
US11991789B2 (en) 2017-12-08 2024-05-21 Misuzu Industry Co., Ltd. Heater, fixing device, image-forming device, and heating device
JPWO2019112058A1 (ja) * 2017-12-08 2019-12-19 株式会社美鈴工業 ヒータ、定着装置、画像形成装置及び加熱装置
US20210176825A1 (en) * 2017-12-08 2021-06-10 Misuzu Industry Co., Ltd. Heater, fixing device, image-forming device, and heating device
EP3522681A1 (en) * 2018-02-05 2019-08-07 NGK Spark Plug Co., Ltd. Ceramic heater
JP2019135713A (ja) * 2018-02-05 2019-08-15 日本特殊陶業株式会社 セラミックヒータ
JP2018106211A (ja) * 2018-04-05 2018-07-05 東芝テック株式会社 定着装置および画像形成装置
JP7167775B2 (ja) 2019-03-05 2022-11-09 東芝ライテック株式会社 ヒータ、および画像形成装置
JP2020145016A (ja) * 2019-03-05 2020-09-10 東芝ライテック株式会社 ヒータ、および画像形成装置
JP2020073972A (ja) * 2019-10-01 2020-05-14 東芝テック株式会社 定着装置および画像形成装置
US11537070B2 (en) 2020-07-01 2022-12-27 Ricoh Company, Ltd. Heater, heating device, fixing device, and image forming apparatus

Also Published As

Publication number Publication date
CN103931271A (zh) 2014-07-16
JPWO2013073276A1 (ja) 2015-04-02
CN103931271B (zh) 2016-08-31
JP6228458B2 (ja) 2017-11-08
KR20140089419A (ko) 2014-07-14
KR102037827B1 (ko) 2019-10-29
JP6444467B2 (ja) 2018-12-26
JP2018032631A (ja) 2018-03-01

Similar Documents

Publication Publication Date Title
JP6444467B2 (ja) ヒータ並びにそれを備える定着装置及び乾燥装置
CN106134284B (zh) 加热器、具备该加热器的定影装置、图像形成装置、加热装置以及加热器的制造方法
TWI587731B (zh) A heater, and a fixture, an image forming device, and a heating device
JP7167780B2 (ja) ヒータ、および画像形成装置
JP6530088B2 (ja) ヒータとそれを備える定着装置、画像形成装置及び加熱装置
JP2005142008A (ja) 板状ヒータおよび定着装置ならびに画像形成装置
TWI706689B (zh) 加熱器、定著裝置、畫像形成裝置以及加熱裝置
US11991789B2 (en) Heater, fixing device, image-forming device, and heating device
JP2010218893A (ja) 加熱装置
JP2011091006A (ja) セラミックヒータ、加熱装置、画像形成装置
JP2011096464A (ja) セラミックヒータ、加熱装置、画像形成装置
JP2009059539A (ja) 板状ヒータ、加熱装置、画像形成装置
JP2017026785A (ja) ヒータおよび画像形成装置
JP2923592B2 (ja) 加熱ヒータおよびその製造方法
JP2008040097A (ja) 加熱ヒータ、加熱装置、画像形成装置
JP2002108120A (ja) 定着ヒータ、定着装置および画像形成装置
JP7167775B2 (ja) ヒータ、および画像形成装置
JP2009199862A (ja) セラミックヒータ、加熱装置、画像形成装置
JP2010019965A (ja) 板状ヒータ、加熱装置、画像形成装置
JP2009009017A (ja) 板状ヒータ、加熱装置、画像形成装置
JPH0888076A (ja) 加熱体、定着装置および画像形成装置
JP2008078064A (ja) ヒータ、加熱装置、画像形成装置
JPH08129312A (ja) 定着ヒータ,定着装置および画像形成装置
JPH11212384A (ja) 加熱定着装置
JPH11212385A (ja) 加熱定着装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849162

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013544166

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147015146

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12849162

Country of ref document: EP

Kind code of ref document: A1