WO2013065204A1 - SiC単結晶の製造方法 - Google Patents

SiC単結晶の製造方法 Download PDF

Info

Publication number
WO2013065204A1
WO2013065204A1 PCT/JP2011/078592 JP2011078592W WO2013065204A1 WO 2013065204 A1 WO2013065204 A1 WO 2013065204A1 JP 2011078592 W JP2011078592 W JP 2011078592W WO 2013065204 A1 WO2013065204 A1 WO 2013065204A1
Authority
WO
WIPO (PCT)
Prior art keywords
growth
single crystal
supersaturation
sic single
solution
Prior art date
Application number
PCT/JP2011/078592
Other languages
English (en)
French (fr)
Inventor
幹尚 加渡
寛典 大黒
楠 一彦
Original Assignee
トヨタ自動車株式会社
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, 住友金属工業株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/350,448 priority Critical patent/US9624599B2/en
Priority to JP2013541584A priority patent/JP5746362B2/ja
Priority to CN201180074036.9A priority patent/CN103930601B/zh
Priority to KR1020147009131A priority patent/KR101622858B1/ko
Priority to EP11875192.4A priority patent/EP2775015B1/en
Publication of WO2013065204A1 publication Critical patent/WO2013065204A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Definitions

  • the present invention relates to a method for producing a SiC single crystal by a solution method.
  • a method for producing an SiC single crystal by a solution method typified by a solution pulling method maintains a temperature gradient in which the temperature decreases from the bottom to the top from the inside toward the solution surface in the Si solution in the graphite crucible.
  • C dissolved in the Si solution from the graphite crucible in the lower high temperature portion rises mainly by the convection of the solution, reaches the low temperature portion near the solution surface, and becomes supersaturated.
  • a SiC single crystal grows from a supersaturated solution on the crystal growth surface of the seed crystal by holding the SiC seed crystal at the tip of the support rod (made of graphite) and bringing the lower surface of the seed crystal into contact with the solution as the crystal growth surface. .
  • Patent Document 1 in the growth of a single crystal semiconductor by the Czochralski crystal growth process, it is necessary to slow the growth rate when shifting from a seed crystal to a target diameter through a diameter expansion process by taper growth. It is disclosed.
  • Patent Documents 2 and 3 when growing a Si single crystal from a Si melt, the pulling rate is periodically changed to increase production efficiency (Patent Document 1) or to make the in-plane oxygen concentration uniform. (Patent Document 2) and growing Si single crystal is disclosed.
  • JP 2003-512282 A JP-A-6-271388 JP-A-6-316483
  • a SiC single crystal when growing a SiC single crystal by a solution method, a SiC single crystal capable of achieving an increase in growth rate necessary for realizing high productivity while maintaining a flat growth capable of maintaining a uniform single crystal growth. It aims at providing the manufacturing method of a crystal
  • a method for growing a SiC single crystal from a C Si solution in a crucible wherein the Si single crystal at the growth interface between the growing SiC single crystal and the Si solution is obtained.
  • a high supersaturation growth period in which the supersaturation degree of C in the solution is maintained higher than the upper limit critical value at which flat growth can be maintained and the growth proceeds, and the supersaturation degree is maintained below the critical value and the growth proceeds.
  • a method for producing a SiC single crystal characterized by alternately repeating low supersaturation growth periods.
  • a solution containing Si melt as a solvent and C as a solute is called a C Si solution.
  • This Si solution may contain Cr, Ni, etc. in addition to C as a solute.
  • a high growth rate is obtained in a growth section at a high supersaturation level and at the same time a rough growth interface is generated.
  • the growth speed is reduced in the growth section at a low supersaturation level, but the rough growth interface described above.
  • FIG. 1 shows, according to the present invention, (1) a method of periodically increasing / decreasing supersaturation with respect to a critical value and (2) the principle of achieving a high growth rate while maintaining flat growth.
  • FIG. 2 shows a state in the vicinity of the growth interface during single crystal growth by the solution method.
  • FIG. 3 shows (1) the end face of the SiC single crystal grown while maintaining a meniscus height below the critical value (upper limit value) and (2) the meniscus height exceeding the critical value in the preliminary experiment of Example 1.
  • 4 is a photograph showing end faces of SiC single crystals grown in this manner.
  • FIG. 4 shows three types of fluctuation patterns of the meniscus height used in the first embodiment.
  • FIG. 5 is a photograph showing the end face of the SiC single crystal grown by each variation pattern of FIG.
  • FIG. 6 shows (1) an end face of a SiC single crystal grown while maintaining a temperature gradient of a critical value (upper limit value) and (2) a temperature gradient exceeding the critical value in the preliminary experiment of Example 2. It is a photograph which shows the end surface of the obtained SiC single crystal, respectively.
  • FIG. 7 shows the variation pattern of the temperature gradient used in Example 2.
  • FIG. 8 is a photograph showing an end face of the SiC single crystal grown by the variation pattern of FIG.
  • FIG. 9 shows (1) the end face of a SiC single crystal grown while maintaining a meniscus height below the critical value (upper limit value) and (2) the meniscus height exceeding the critical value in the preliminary experiment of Example 3.
  • 4 is a photograph showing end faces of SiC single crystals grown in this manner.
  • FIG. 10 shows two types of fluctuation patterns of the meniscus height used in Example 3.
  • FIG. 11 is a photograph showing an end face of the SiC single crystal grown by each variation pattern of FIG.
  • the degree of supersaturation becomes a driving force for growth, so the growth rate can be increased by increasing the degree of supersaturation.
  • the degree of supersaturation strongly affects the state of the growth interface.
  • the degree of supersaturation is below a certain critical value, facet growth continues and the growth interface remains flat.
  • the supersaturation degree exceeds the critical value, two-dimensional critical nuclei are generated, and the growth interface is roughened along with the growth. If the growth is continued as it is, defects (such as solvent entrainment) due to the rough growth interface will occur.
  • the present invention solves such a conventional problem.
  • the supersaturation degree D alternates between a high supersaturation growth period A and a low low supersaturation growth period B with respect to the critical value (critical supersaturation degree) Dc. It is the feature to repeat.
  • the present inventor flattened the rough growth interface by switching to a low degree of supersaturation D ⁇ Dc during the growth even if the growth is performed with a high degree of supersaturation D> Dc.
  • the present invention was completed by newly finding that it can be recovered.
  • defects caused by roughening of the growth interface are obtained by alternately repeating the high supersaturation growth period A with D> Dc and the low supersaturation growth period B with D ⁇ Dc. It is possible to perform growth at a higher growth rate than in the conventional growth method that maintains low supersaturation growth with D ⁇ Dc.
  • FIG. 2 shows a state in the vicinity of a growth interface during single crystal growth by a solution method.
  • the figure shows a point in time when a SiC single crystal grows on the lower surface of the seed crystal and a meniscus is formed between the growth interface of the SiC single crystal and the Si solution.
  • the meniscus height is the height from the surface of the Si solution in the crucible at the growth interface of the SiC single crystal grown on the lower surface of the seed crystal.
  • Table 1 shows the change in growth rate and the possibility of flat growth (Ox) with respect to the change in meniscus height.
  • the Si solution had a surface temperature of 1996 ° C., an internal temperature 2011 ° C. at a depth of 1 cm from the surface, and a temperature gradient of 15 ° C./cm.
  • FIG. 3 shows a photograph of the end face of the grown crystal obtained at this time.
  • FIG. 3 (1) shows a case where the meniscus height is 1.0 mm and flat growth is maintained, and a smooth end face is obtained.
  • the solution adhesion part in a photograph is the trace of the solution adhering to an end surface when it pulls up from a solution surface after growth, and is not related to the success or failure of crystal growth.
  • FIG. 3 (2) shows a case where the meniscus height was 2.0 mm and flat growth could not be maintained.
  • the growth interface was very rough, and a large amount of the solution was adhered during pulling.
  • the upper limit value that is, the critical value of the meniscus height at which flat growth can be maintained was set to 1.5 mm.
  • the meniscus height was varied above and below the critical value and grown.
  • Three types of variation patterns shown in FIG. 4 were used. As shown in the figure, the growth period A with high supersaturation degree D> Dc and the growth period B with low supersaturation degree D ⁇ Dc were alternately repeated.
  • FIG. 5 shows a photograph of the end face of the SiC single crystal grown by the above three types of fluctuation patterns.
  • FIG. 5 (1) shows the state of the end face according to the variation pattern of FIG. 4 (1).
  • a growth rate of 0.57 mm / hr was obtained, but the growth interface was very rough, and a large amount of solution was adhered. .
  • FIG. 5 (2) shows the state of the end face according to the variation pattern of FIG. 4 (2), and a growth rate of 0.51 mm / hr was obtained. Yes.
  • FIG. 5 (3) shows the state of the end face according to the variation pattern of FIG. 4 (3), a growth rate of 0.52 mm / hr was obtained, and the flat end growth was achieved with a smooth end face. This growth rate is greatly improved with respect to the growth rate of 0.37 mm / hr obtained at a critical meniscus height of 1.5 mm at which flat growth is obtained in the preliminary experiment.
  • the meniscus height is periodically increased or decreased with respect to the critical height, and accordingly, the supersaturation degree D of C at the growth interface is periodically increased or decreased with respect to the critical value Dc,
  • the ratio of the difference integrated values Sa and Sb for the high supersaturation growth period A and the low supersaturation growth period B it is possible to significantly improve the growth rate while ensuring flat growth.
  • the growth rate can be increased while maintaining flat growth in a range where the relationship between the integrated values of the differences is Sb ⁇ 1.5Sa. However, it is assumed that the growth rate decreases as Sb increases.
  • Example 2 Increase / decrease in supersaturation due to increase / decrease in solution temperature gradient
  • the temperature gradient in the Si solution was controlled in various ways by a two-stage high-frequency induction coil for heating the crucible. The higher the temperature gradient, the higher the degree of supersaturation directly below the growth interface. Along with this, the growth rate increases, but flat growth cannot be maintained when the critical value is exceeded.
  • Table 2 shows changes in the growth rate with respect to changes in the temperature gradient and whether flat growth is possible (Ox).
  • the surface temperature of the Si solution was as shown in Table 2, and the meniscus height was a constant value of 1 mm.
  • FIG. 6 shows a photograph of the end face of the grown crystal obtained at this time.
  • FIG. 6 (1) shows a case where flat growth is maintained at a temperature gradient of 30 ° C./cm, and a smooth end face is obtained.
  • FIG. 6 (2) shows a case where flat growth could not be maintained at a temperature gradient of 40 ° C./cm.
  • the growth interface was very rough, and a large amount of the solution was adhered during pulling.
  • the upper limit of the temperature gradient that can maintain the flat growth that is, the critical value was set to 30 ° C./cm.
  • the fluctuation pattern is based on the integrated value Sa of the difference between the high temperature gradient 40 ° C./cm and the critical value 30 ° C./cm in the high supersaturation growth period A, as shown in FIG.
  • the time required for the increase / decrease is longer than that of the pattern of Example 1, the change in the temperature gradient is more likely to be curved at the transition as shown in FIG.
  • FIG. 8 shows a photograph of the end face of the SiC single crystal grown by this variation pattern. As shown in the figure, flat growth was achieved with a smooth end face. Moreover, the growth rate is 0.48 mm / hr, which is a significant improvement over the growth rate of 0.39 mm / hr obtained at a critical temperature gradient of 30 ° C./cm at which flat growth is obtained in the preliminary experiment.
  • the temperature gradient is periodically increased or decreased with respect to the critical value, and the supersaturation degree D of C at the growth interface is periodically increased or decreased with respect to the critical value Dc.
  • the growth rate can be increased while maintaining flat growth in a range where the relationship between the integrated values of the differences is Sb ⁇ 1.5Sa. However, it is assumed that the growth rate decreases as Sb increases.
  • Example 3 Influence of vertical temperature gradient in support shaft
  • ⁇ X vertical temperature gradient
  • the influence of vertical temperature gradient ( ⁇ X) in the support shaft was examined.
  • ⁇ X vertical temperature gradient
  • ⁇ X 85 ° C./cm was increased, and the degree of supersaturation was increased or decreased by increasing or decreasing the meniscus height as in Example 1.
  • ⁇ X is an average temperature gradient from the seed crystal to the upper part of 20 cm in the support shaft.
  • Table 3 shows the change in growth rate and the possibility of flat growth (Ox) with respect to the change in meniscus height.
  • the Si solution had a surface temperature of 1996 ° C., an internal temperature 2011 ° C. at a depth of 1 cm from the surface, and a temperature gradient of 15 ° C./cm.
  • the growth was carried out while maintaining the meniscus height at four levels of 1.0 to 2.0 mm.
  • the growth rate increased from 0.56 mm / hr to 1.0 mm / hr corresponding to the increase in meniscus height.
  • the amount of heat removed from the support shaft is increased, so that the growth rate is higher than the growth speed of 0.30 to 0.62 mm / hr in the same meniscus height range of 1.0 to 2.0 mm in Embodiment 1.
  • Speed has been obtained.
  • Flat growth was maintained when the meniscus height was 1.0 to 1.3 mm ( ⁇ in the table), but flat growth could not be maintained when the meniscus height was 1.5 mm or more ( ⁇ in the table).
  • FIG. 9 shows a photograph of the end face of the grown crystal obtained at this time.
  • FIG. 9 (1) shows a case where the meniscus height is 1.0 mm and flat growth is maintained, and a smooth end face is obtained.
  • the solution adhesion part in a photograph is the trace of the solution adhering to an end surface when it pulls up from a solution surface after growth, and is not related to the success or failure of crystal growth.
  • FIG. 9 (2) shows a case where the meniscus height is 2.0 mm and flat growth cannot be maintained.
  • the growth interface is very rough, and a large amount of the solution adheres when it is pulled up.
  • the upper limit value of the meniscus height that can maintain flat growth that is, the critical value was set to 1.3 mm.
  • the meniscus height was varied above and below the critical value and grown.
  • Two types of fluctuation patterns shown in FIG. 10 were used. As shown in the figure, the growth period A with high supersaturation degree D> Dc and the growth period B with low supersaturation degree D ⁇ Dc were alternately repeated.
  • FIG. 11 shows a photograph of the end face of the SiC single crystal grown by the above two types of fluctuation patterns.
  • FIG. 11 (1) shows the state of the end face according to the fluctuation pattern of FIG. 10 (1).
  • a growth rate of 0.68 mm / hr was obtained, but the growth interface was very rough, and a large amount of solution was adhered. .
  • FIG. 11 (2) shows the state of the end face according to the variation pattern of FIG. 10 (2), a growth rate of 0.72 mm / hr was obtained, and the flat end face was achieved.
  • This growth rate is greatly improved with respect to the growth rate of 0.60 mm / hr obtained at a critical meniscus height of 1.3 mm, which allows flat growth in a preliminary experiment. Furthermore, this growth rate is significantly improved with respect to the maximum growth rate of 0.52 mm / hr obtained in the variation pattern (3) in Example 1.
  • the present invention when growing a SiC single crystal by a solution method, it is possible to achieve an improvement in growth rate necessary for realizing high productivity while maintaining a flat growth capable of maintaining a uniform single crystal growth.
  • a method for producing a SiC single crystal is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 溶液法によりSiC単結晶を成長させる際に、均一な単結晶成長が持続できる平坦成長を維持しつつ、高い生産性を実現するために必要な成長速度の向上を達成できるSiC単結晶の製造方法を提供する。坩堝内でCのSi溶液からSiC単結晶を成長させる方法であって、成長しつつあるSiC単結晶とSi溶液との成長界面におけるSi溶液中のCの過飽和度を、平坦成長が維持できる上限の臨界値より高く維持して成長を進行させる高過飽和度成長期と、上記過飽和度を上記臨界値より低く維持して成長を進行させる低過飽和度成長期とを、交互に繰り返すことを特徴とするSiC単結晶の製造方法。

Description

SiC単結晶の製造方法
 本発明は、溶液法によるSiC単結晶の製造方法に関する。
 溶液引き上げ法(TSSG法)に代表される溶液法によるSiC単結晶の製造方法は、黒鉛坩堝内のSi溶液内に内部から溶液面へ向けて下部から上部へ温度低下する温度勾配を維持する。下方の高温部で黒鉛坩堝からSi溶液内に溶解したCは主として溶液の対流に乗って上昇し溶液面近傍の低温部に達して過飽和になる。支持棒(黒鉛製)の先端にSiC種結晶を保持し、種結晶の下面を結晶成長面として溶液に接触させることで、種結晶の結晶成長面上で過飽和の溶液からSiC単結晶が成長する。
 SiC単結晶を実用材料として製造するには、成長速度を増加させて生産効率を向上させる必要がある。成長速度を増加させるには溶質の過飽和度D(degree of supersaturation)を高くすることが必要であるが、過飽和度Dがある一定値Dcを超えると成長界面が「荒れた面」となり、均一な単結晶成長を持続するための平坦成長が維持できなくなる。
 特に、特許文献1には、チョクラルスキ結晶成長プロセスによる単結晶半導体の成長において、種結晶からテーパ成長による径拡大過程を経て目標直径に移行する際に成長速度を遅くすることが必要であることが開示されている。
 また、特許文献2、3には、Si融液からSi単結晶を成長させる際に、引き上げ速度を周期的に変化させることによって、生産効率を高め(特許文献1)あるいは面内酸素濃度を均一化して(特許文献2)、Si単結晶を成長させることが開示されている。
 しかしこれらは何れもSi「融液」からの成長であって、融液表面温度が融点であり、単にそれ以上の高さに引き上げることでSi単結晶が成長する事実を利用したに過ぎず、Si-C「溶液」からCの「過飽和」によりSiC単結晶を成長させる方法に適用することはできない。
 そのため、溶液法によりSiC単結晶を成長させる方法において、均一な単結晶成長が持続できる平坦成長を維持しつつ、高い生産性を実現するために必要な成長速度の向上を両立できる方法の開発が望まれていた。
特開2003-512282号公報 特開平6-271388号公報 特開平6-316483号公報
 本発明は、溶液法によりSiC単結晶を成長させる際に、均一な単結晶成長が持続できる平坦成長を維持しつつ、高い生産性を実現するために必要な成長速度の向上を達成できるSiC単結晶の製造方法を提供することを目的とする。
 上記の目的を達成するために、本発明によれば、坩堝内でCのSi溶液からSiC単結晶を成長させる方法であって、成長しつつあるSiC単結晶とSi溶液との成長界面におけるSi溶液中のCの過飽和度を、平坦成長が維持できる上限の臨界値より高く維持して成長を進行させる高過飽和度成長期と、上記過飽和度を上記臨界値より低く維持して成長を進行させる低過飽和度成長期とを、交互に繰り返すことを特徴とするSiC単結晶の製造方法が提供される。Si融液を溶媒としCを溶質とする溶液をCのSi溶液と呼ぶ。このSi溶液は、溶質としてCの他にCr、Ni等を含むことがある。
 本発明によれば、高過飽和度での成長区間において高い成長速度を得ると同時に荒れた成長界面が生成するが、低過飽和度での成長区間において成長速度は低下するが上記の荒れた成長界面が回復して平坦化することにより、SiC単結晶の全区間についてみれば、臨界値より低い過飽和度を維持して成長させた場合に比べて高い成長速度で均一な単結晶成長が実現できる。
図1は、本発明により、(1)過飽和度を臨界値に対して周期的に増減させる方法と(2)それにより平坦成長を維持しつつ高い成長速度を達成する原理を示す。 図2は、溶液法による単結晶成長時の成長界面付近の状態を示す。 図3は、実施例1の予備実験において、(1)臨界値(上限値)以下のメニスカス高さを維持して成長したSiC単結晶の端面および(2)臨界値を超えるメニスカス高さを維持して成長したSiC単結晶の端面をそれぞれ示す写真である。 図4は、実施例1において用いたメニスカス高さの3種類の変動パターンを示す。 図5は、図4の各変動パターンにより成長したSiC単結晶の端面を示す写真である。 図6は、実施例2の予備実験において、(1)臨界値(上限値)の温度勾配を維持して成長したSiC単結晶の端面および(2)臨界値を超える温度勾配を維持して成長したSiC単結晶の端面をそれぞれ示す写真である。 図7は、実施例2において用いた温度勾配の変動パターンを示す。 図8は、図7の変動パターンにより成長したSiC単結晶の端面を示す写真である。 図9は、実施例3の予備実験において、(1)臨界値(上限値)以下のメニスカス高さを維持して成長したSiC単結晶の端面および(2)臨界値を超えるメニスカス高さを維持して成長したSiC単結晶の端面をそれぞれ示す写真である。 図10は、実施例3において用いたメニスカス高さの2種類の変動パターンを示す。 図11は、図10の各変動パターンにより成長したSiC単結晶の端面を示す写真である。
 一般に、溶液からの結晶成長において、過飽和度は成長の駆動力になるので、過飽和度を高くすることで成長速度を上げることができる。
 一方、過飽和度は成長界面の状態にも強く影響する。過飽和度がある臨界値以下の範囲では、ファセット成長が持続して成長界面は平坦なまま維持される。しかし、過飽和度が臨界値を超えると2次元臨界核が発生し、成長に伴って成長界面に荒れが発生する。そのまま成長を続けると、成長界面の荒れに起因する欠陥(溶媒の巻き込みなど)が発生してしまう。
 本発明は、このような従来の問題を解消する。
 図1を参照して、本発明の原理を説明する。
 図1(1)に示すように、本発明においては、過飽和度Dが、その臨界値(臨界過飽和度)Dcに対して高い高過飽和度成長期Aと低い低過飽和度成長期Bとを交互に繰り返すことが特徴である。
 図1(2)<1>に示すように、高過飽和度D>Dcでの成長では、成長速度は速いが、成長界面のあれが増加し、成長結晶中に欠陥が発生する。これに対して、図1(2)<2>に示すように、低過飽和度D<Dcでの成長では、ファセット成長が持続して平坦な成長界面が維持されて均一な単結晶成長が確保されるが、成長速度は遅く、結局高コストになり実用性の妨げになる。
 本発明者は、過飽和度Dとその臨界値Dcの関係について、高い過飽和度D>Dcで成長を行なっても、成長途中で低い過飽和度D<Dcに切り替えれば、荒れた成長界面を平坦に回復できることを新規に見出して本発明を完成させた。
 すなわち、図1(1)に示すように、D>Dcの高過飽和度成長期Aと、D<Dcの低過飽和度成長期Bとを交互に繰り返すことで、成長界面の荒れに起因する欠陥を発生させることなく、D<Dcでの低過飽和度成長を維持した従来の成長法に比べて高い成長速度で成長を行なうことが可能となる。
 以下に、実施例により本発明を更に詳細に説明する。
 以下の実施例1、2、3において、黒鉛坩堝内への仕込み量をSi/Cr/Ni=54at%/40at%/6at%の組成とし、これに黒鉛坩堝からのCを溶解させたSi溶液を用いた。
 〔実施例1〕 メニスカス高さの増減による過飽和度の増減
 図2に溶液法による単結晶成長時の成長界面付近の状態を示す。
 黒鉛製等の支持軸の下端に種結晶を保持し、坩堝(図示せず)内のSi溶液面に種結晶を接触させた後に少し引き上げると、種結晶とSi溶液面との間にはSi溶液の表面張力によってメニスカスが形成される。図には、種結晶の下面にSiC単結晶が成長し、そのSiC単結晶の成長界面とSi溶液との間にメニスカスが形成された時点を示してある。メニスカス高さとは、種結晶下面に成長したSiC単結晶の成長界面の、坩堝内のSi溶液の表面からの高さである。
 メニスカス高さが増加するほど、メニスカスからの放熱が増加するのでメニスカス内の溶液温度が低下し、それに伴って成長界面直下でのCの過飽和度が高くなる。過飽和度の増加によって成長速度も増加するが、臨界値を超えると平坦成長が維持できなくなる。
 まず、予備実験として、メニスカス高さを種々の一定値に維持して成長を行なった。
 表1に、メニスカス高さの変化に対する、成長速度の変化と、平坦成長の可否(○×)を示す。Si溶液は、表面温度1996℃、表面から深さ1cmの内部温度2011℃、温度勾配15℃/cmであった。
Figure JPOXMLDOC01-appb-T000001
 表1に示したように、メニスカス高さを0.5~2.5mmの5水準に維持して成長を行なった。その結果、メニスカス高さの増加に対応して、成長速度は0.26mm/hrから1.0mm/hrまで増加した。メニスカス高さが0.5mmから1.5mmまでは平坦成長が維持されたが(表中○)、メニスカス高さが2.0mm以上では平坦成長は維持できなかった(表中×)。
 図3に、このとき得られた成長結晶の端面の写真を示す。
 図3(1)はメニスカス高さが1.0mmで平坦成長が維持された場合であり、平滑な端面が得られている。なお、写真中の溶液付着部とは、成長後に溶液面から引き上げた際に端面に付着した溶液の痕跡であり、結晶成長の成否とは関係ない。
 これに対し、図3(2)はメニスカス高さが2.0mmで平坦成長が維持できなかった場合であり、成長界面の荒れが激しく、引き上げ時に溶液が多量に付着している。
 上記予備実験の結果に基づき、平坦成長が維持できるメニスカス高さの上限値すなわち臨界値を1.5mmとした。
 次に、過飽和度を変化させるためにメニスカス高さを臨界値の上下に変動させて成長を行なった。図4に示す3種類の変動パターンを用いた。図示したように、高過飽和度D>Dcでの成長期Aと、低過飽和度D<Dcでの成長期Bとを交互に繰り返した。
 図4(1)の変動パターンにおいては、高過飽和度成長期Aにおいて高メニスカス高さ2.5mmと臨界高さ1.5mmとの差分を成長期Aに亘って積算した値Saに対して、低過飽和度成長期Bにおいて低メニスカス高さ1.0mmと臨界高さ1.5mmとの差分を成長期Bに亘って積算した値Sbが1/2になるように、すなわちSb=0.5Saとした。
 図4(2)の変動パターンでは、高過飽和度成長期Aの積算値Saと、低過飽和度成長期Bの積算値Sbとが等しくなるように、すなわちSb=Saとした。
 図4(3)の変動パターンでは、高過飽和度成長期Aの積算値Saに対して、低過飽和度成長期Bの積算値Sbが1.5倍になるように、すなわちSb=1.5Saとした。
 図5に、上記3種類の変動パターンにより成長したSiC単結晶の端面の写真を示す。
 図5(1)は、図4(1)の変動パターンによる端面の状態であり、成長速度0.57mm/hrが得られたが、成長界面の荒れが激しく、溶液が多量に付着している。
 図5(2)は、図4(2)の変動パターンによる端面の状態であり、成長速度0.51mm/hrが得られたが、やはり成長界面の荒れが激しく、溶液が多量に付着している。
 図5(3)は、図4(3)の変動パターンによる端面の状態であり、成長速度0.52mm/hrが得られ、しかも平滑な端面であり平坦成長が達成された。この成長速度は、予備実験において平坦成長の得られる臨界のメニスカス高さ1.5mmで得られた成長速度0.37mm/hrに対して大幅に向上している。
 このように、本発明により、メニスカス高さを臨界高さに対して周期的に増減させ、それに伴って成長界面でのCの過飽和度Dをその臨界値Dcに対して周期的に増減させ、高過飽和度成長期Aと低過飽和度成長期Bについての差分積算値SaとSbとの比率を適正に選択することにより、平坦成長を確保しつつ、成長速度を大幅に向上させることができる。
 本実施例においては、差分の積算値の関係がSb≧1.5Saとなる範囲で、平坦成長を維持しつつ成長速度を高めることができると判断される。ただしSbが大きくなるほど、成長速度は遅くなると想定される。
 〔実施例2〕溶液内温度勾配の増減による過飽和度の増減
 Si溶液内の温度勾配を、坩堝加熱用の2段の高周波誘導コイルによって種々に制御した。温度勾配が高いほど成長界面直下の過飽和度は高くなる。それに伴って成長速度も高くなるが、臨界値を超えると平坦成長が維持できなくなる。
 まず、予備実験として、温度勾配を種々の一定値に維持して成長を行なった。ただし、Si溶液の表面温度と、表面から1cmの深さの内部温度との差を温度勾配とした。
 表2に、温度勾配の変化に対する、成長速度の変化と、平坦成長の可否(○×)を示す。Si溶液の表面温度は表2に示したとおりであり、メニスカス高さは1mmの一定値とした。
Figure JPOXMLDOC01-appb-T000002
 表2に示したように、Si溶液内の温度勾配を15、30、40℃/cmの3水準に維持して成長を行なった。その結果、温度勾配の増加に対応して、成長速度は0.30、0.39、0.85mm/hrと増加した。温度勾配が15~30℃/cmの範囲では平坦成長が維持されたが(表中○)、温度勾配が40℃/cmに増加すると平坦成長は維持できなかった(表中×)。
 図6に、このとき得られた成長結晶の端面の写真を示す。
 図6(1)は温度勾配が30℃/cmで平坦成長が維持された場合であり、平滑な端面が得られている。
 これに対し、図6(2)は温度勾配が40℃/cmで平坦成長が維持できなかった場合であり、成長界面の荒れが激しく、引き上げ時に溶液が多量に付着している。
 上記予備実験の結果に基づき、平坦成長が維持できる温度勾配の上限値すなわち臨界値を30℃/cmとした。
 次に、過飽和度を変化させるために温度勾配を臨界値の上下に変動させて成長を行なった。変動パターンは、実施例1の結果に基づき、図7に示すように、高過飽和度成長期Aにおける高温度勾配40℃/cmと臨界値30℃/cmとの差分の積算値Saに対して、低過飽和度成長期Bにおける低温度勾配15℃/cmと臨界値30℃/cmとの差分の積算値Sbが1.5倍になるように、すなわちSb=1.5Saとした。ただし、実施例1のパターンと比べて、増減にかかる時間が長いので、図7に示すように温度勾配の変化はその変わり目で曲線的になる度合いが強い。
 図8に、この変動パターンにより成長したSiC単結晶の端面の写真を示す。図示したように、平滑な端面であり平坦成長が達成された。しかも成長速度は0.48mm/hrであり、予備実験において平坦成長の得られる臨界の温度勾配30℃/cmで得られた成長速度0.39mm/hrに対して大幅に向上している。
 このように、本発明により、温度勾配をその臨界値に対して周期的に増減させ、それに伴って成長界面でのCの過飽和度Dをその臨界値Dcに対して周期的に増減させ、高過飽和度成長期Aと低過飽和度成長期Bについての差分積算値SaとSbとの比率を適正に選択することにより、平坦成長を確保しつつ、成長速度を大幅に向上させることができる。
 本実施例においては、差分の積算値の関係がSb≧1.5Saとなる範囲で、平坦成長を維持しつつ成長速度を高めることができると判断される。ただしSbが大きくなるほど、成長速度は遅くなると想定される。
 〔実施例3〕支持軸内の鉛直方向温度勾配の影響
 本実施例においては、支持軸内の鉛直方向温度勾配(ΔX)の影響を調べた。ΔXが大きいと支持軸からの抜熱量が増加し、過飽和度が高まり、成長速度が大きくなる。
 すなわち、実施例1、2においては、ΔX=80℃/cmであった。これに対して本実施例においては、ΔX=85℃/cmと大きくして、実施例1のようにメニスカス高さの増減により過飽和度を増減させた。なお、ΔXは種結晶から支持軸内の20cm上部までの平均温度勾配である。
 まず、予備実験として、メニスカス高さを種々の一定値に維持して成長を行った。
 表3に、メニスカス高さの変化に対する、成長速度の変化と、平坦成長の可否(○×)を示す。Si溶液は、表面温度1996℃、表面から深さ1cmの内部温度2011℃、温度勾配15℃/cmであった。
Figure JPOXMLDOC01-appb-T000003
 表3に示したように、メニスカス高さを1.0~2.0mmの4水準に維持して成長を行なった。その結果、メニスカス高さの増加に対応して、成長速度は0.56mm/hrから1.0mm/hrまで増加した。
 本実施例では支持軸からの抜熱量が増加したことにより、実施例1における同じメニスカス高さ範囲1.0~2.0mmの成長速度0.30~0.62mm/hrと比べて、高い成長速度が得られている。
 メニスカス高さが1.0から1.3mmまでは平坦成長が維持されたが(表中○)、メニスカス高さが1.5mm以上では平坦成長は維持できなかった(表中×)。
 図9に、このとき得られた成長結晶の端面の写真を示す。
 図9(1)はメニスカス高さが1.0mmで平坦成長が維持された場合であり、平滑な端面が得られている。なお、写真中の溶液付着部とは、成長後に溶液面から引き上げた際に端面に付着した溶液の痕跡であり、結晶成長の成否とは関係ない。
 これに対し、図9(2)はメニスカス高さが2.0mmで平坦成長が維持できなかった場合であり、成長界面の荒れが激しく、引き上げ時に溶液が多量に付着している。
 上記予備実験の結果に基づき、平坦成長が維持できるメニスカス高さの上限値すなわち臨界値を1.3mmとした。
 次に、過飽和度を変化させるためにメニスカス高さを臨界値の上下に変動させて成長を行なった。図10に示す2種類の変動パターンを用いた。図示したように、高過飽和度D>Dcでの成長期Aと、低過飽和度D<Dcでの成長期Bとを交互に繰り返した。
 図10(1)の変動パターンにおいては、高過飽和度成長期Aにおいて高メニスカス高さ2.5mmと臨界高さ1.3mmとの差分を成長期Aに亘って積算した値Saに対して、低過飽和度成長期Bにおいて低メニスカス高さ1.0mmと臨界高さ1.5mmとの差分を成長期Bに亘って積算した値Sbが1/4になるように、すなわちSb=0.25Saとした。
 図10(2)の変動パターンでは、高過飽和度成長期Aの積算値Saに対して、低過飽和度成長期Bの積算値Sbが1.25倍になるように、すなわちSb=1.25Saとした。
 図11に、上記2種類の変動パターンにより成長したSiC単結晶の端面の写真を示す。
 図11(1)は、図10(1)の変動パターンによる端面の状態であり、成長速度0.68mm/hrが得られたが、成長界面の荒れが激しく、溶液が多量に付着している。
 図11(2)は、図10(2)の変動パターンによる端面の状態であり、成長速度0.72mm/hrが得られ、しかも平坦な端面であり平坦成長が達成された。この成長速度は、予備実験において平坦成長が得られる臨界メニスカス高さ1.3mmで得られた成長速度0.60mm/hrに対して大幅に向上している。更に、この成長速度は、実施例1で変動パターン(3)で得られた最大の成長速度0.52mm/hrに対して、大幅に向上している。
 このように、本発明により、支持軸内の鉛直方向温度勾配を増加させる(支持軸からの抜熱作用を強化する)ことにより、本発明の変動パターンによる平坦成長速度の向上効果が一段と顕著になる。更に、実施例2、3より、平坦成長を維持しつつ成長速度を向上させるには、Sb≧1.25Saの関係が適切であると判断される。
 本発明によれば、溶液法によりSiC単結晶を成長させる際に、均一な単結晶成長が持続できる平坦成長を維持しつつ、高い生産性を実現するために必要な成長速度の向上を達成できるSiC単結晶の製造方法が提供される。

Claims (5)

  1.  坩堝内でCのSi溶液からSiC単結晶を成長させる方法であって、成長しつつあるSiC単結晶とSi溶液との成長界面におけるSi溶液中のCの過飽和度を、平坦成長が維持できる上限の臨界値より高く維持して成長を進行させる高過飽和度成長期と、上記過飽和度を上記臨界値より低く維持して成長を進行させる低過飽和度成長期とを、交互に繰り返すことを特徴とするSiC単結晶の製造方法。
  2.  請求項1において、上記高過飽和度と上記臨界値との差分を上記高過飽和度成長期の継続時間に亘って積算した値Saと、上記低高過飽和度と上記臨界値との差分を上記低過飽和度成長期の継続時間に亘って積算した値Sbとの比率を最適化パラメータとして用いることを特徴とするSiC単結晶の製造方法。
  3.  請求項1または2において、上記成長界面から上記坩堝内のSi溶液表面まで形成されるメニスカスの高さを増減させることにより、上記過飽和度を増減させることを特徴とするSiC単結晶の製造方法。
  4.  請求項1または2において、上記坩堝内のSi溶液中の温度勾配を増減させることにより、上記過飽和度を増減させることを特徴とするSiC単結晶の製造方法。
  5.  請求項2において、Sb/Sa≧1.25とすることを特徴とするSiC単結晶の製造方法。
PCT/JP2011/078592 2011-10-31 2011-12-09 SiC単結晶の製造方法 WO2013065204A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/350,448 US9624599B2 (en) 2011-10-31 2011-12-09 SiC single crystal manufacturing method using alternating states of supersaturation
JP2013541584A JP5746362B2 (ja) 2011-10-31 2011-12-09 SiC単結晶の製造方法
CN201180074036.9A CN103930601B (zh) 2011-10-31 2011-12-09 SiC单晶的制造方法
KR1020147009131A KR101622858B1 (ko) 2011-10-31 2011-12-09 SiC 단결정의 제조 방법
EP11875192.4A EP2775015B1 (en) 2011-10-31 2011-12-09 SiC SINGLE CRYSTAL MANUFACTURING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-239494 2011-10-31
JP2011239494 2011-10-31

Publications (1)

Publication Number Publication Date
WO2013065204A1 true WO2013065204A1 (ja) 2013-05-10

Family

ID=48191591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078592 WO2013065204A1 (ja) 2011-10-31 2011-12-09 SiC単結晶の製造方法

Country Status (7)

Country Link
US (1) US9624599B2 (ja)
EP (1) EP2775015B1 (ja)
JP (1) JP5746362B2 (ja)
KR (1) KR101622858B1 (ja)
CN (1) CN103930601B (ja)
TW (1) TWI454598B (ja)
WO (1) WO2013065204A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015054815A (ja) * 2013-09-13 2015-03-23 トヨタ自動車株式会社 SiC単結晶及びその製造方法
WO2016147673A1 (ja) * 2015-03-18 2016-09-22 新日鐵住金株式会社 SiC単結晶の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167844A1 (ja) * 2013-04-09 2014-10-16 新日鐵住金株式会社 SiC単結晶の製造方法
JP6287870B2 (ja) * 2015-01-22 2018-03-07 トヨタ自動車株式会社 SiC単結晶の製造方法
KR101966707B1 (ko) * 2017-09-14 2019-04-08 한국세라믹기술원 종자결정의 소형화 또는 박형화를 가능하게 하고 내부 결함 발생을 억제하는 종자결정의 지지구조 및 이로부터 제조되는 단결정
CN113718337B (zh) * 2021-09-03 2022-06-03 北京晶格领域半导体有限公司 一种液相法生长碳化硅晶体的装置及方法
US11961929B1 (en) 2022-11-29 2024-04-16 King Fahd University Of Petroleum And Minerals Thermal management device for photovoltaic module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271388A (ja) 1993-03-22 1994-09-27 Nippon Steel Corp 半導体単結晶棒の製造方法
JPH06316483A (ja) 1993-04-28 1994-11-15 Komatsu Electron Metals Co Ltd シリコン単結晶の製造方法
JP2003512282A (ja) 1999-10-19 2003-04-02 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド 半導体結晶の成長を制御する方法
JP2004002173A (ja) * 2002-04-15 2004-01-08 Sumitomo Metal Ind Ltd 炭化珪素単結晶とその製造方法
JP2008100854A (ja) * 2006-10-17 2008-05-01 Toyota Motor Corp SiC単結晶の製造装置および製造方法
JP2010208926A (ja) * 2009-03-12 2010-09-24 Toyota Motor Corp SiC単結晶の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4070353B2 (ja) * 1999-04-23 2008-04-02 新日本無線株式会社 シリコンカーバイドのエピタキシャル成長方法
EP1498518B1 (en) * 2002-04-15 2008-10-29 Sumitomo Metal Industries, Ltd. Method for the production of silicon carbide single crystal
US7520930B2 (en) 2002-04-15 2009-04-21 Sumitomo Metal Industries, Ltd. Silicon carbide single crystal and a method for its production
JP4453348B2 (ja) 2003-11-25 2010-04-21 トヨタ自動車株式会社 炭化珪素単結晶の製造方法
JP4389574B2 (ja) 2003-12-16 2009-12-24 住友金属工業株式会社 SiC単結晶の製造方法および製造装置
JP4270034B2 (ja) * 2004-06-14 2009-05-27 トヨタ自動車株式会社 SiC単結晶の製造方法
JP4475091B2 (ja) 2004-10-19 2010-06-09 住友金属工業株式会社 炭化珪素単結晶の製造方法
JP4466293B2 (ja) 2004-09-03 2010-05-26 住友金属工業株式会社 炭化珪素単結晶の製造方法
EP1806437B1 (en) 2004-09-03 2016-08-17 Nippon Steel & Sumitomo Metal Corporation Method for preparing silicon carbide single crystal
JP4225296B2 (ja) * 2005-06-20 2009-02-18 トヨタ自動車株式会社 炭化珪素単結晶の製造方法
JP4179331B2 (ja) * 2006-04-07 2008-11-12 トヨタ自動車株式会社 SiC単結晶の製造方法
JP2007284301A (ja) 2006-04-18 2007-11-01 Toyota Motor Corp SiC単結晶の製造方法
JP2008100890A (ja) 2006-10-20 2008-05-01 Sumitomo Metal Ind Ltd SiC単結晶の製造方法
JP4811354B2 (ja) * 2007-06-11 2011-11-09 トヨタ自動車株式会社 SiC単結晶の製造方法
JP4450074B2 (ja) * 2008-01-15 2010-04-14 トヨタ自動車株式会社 炭化珪素単結晶の成長方法
JP5051179B2 (ja) * 2009-05-22 2012-10-17 トヨタ自動車株式会社 温度勾配炉を用いた単結晶の製造方法
JP5803519B2 (ja) * 2011-09-29 2015-11-04 トヨタ自動車株式会社 SiC単結晶の製造方法及び製造装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271388A (ja) 1993-03-22 1994-09-27 Nippon Steel Corp 半導体単結晶棒の製造方法
JPH06316483A (ja) 1993-04-28 1994-11-15 Komatsu Electron Metals Co Ltd シリコン単結晶の製造方法
JP2003512282A (ja) 1999-10-19 2003-04-02 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド 半導体結晶の成長を制御する方法
JP2004002173A (ja) * 2002-04-15 2004-01-08 Sumitomo Metal Ind Ltd 炭化珪素単結晶とその製造方法
JP2008100854A (ja) * 2006-10-17 2008-05-01 Toyota Motor Corp SiC単結晶の製造装置および製造方法
JP2010208926A (ja) * 2009-03-12 2010-09-24 Toyota Motor Corp SiC単結晶の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2775015A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015054815A (ja) * 2013-09-13 2015-03-23 トヨタ自動車株式会社 SiC単結晶及びその製造方法
WO2016147673A1 (ja) * 2015-03-18 2016-09-22 新日鐵住金株式会社 SiC単結晶の製造方法
JPWO2016147673A1 (ja) * 2015-03-18 2017-12-28 トヨタ自動車株式会社 SiC単結晶の製造方法
US10119199B2 (en) 2015-03-18 2018-11-06 Toyota Jidosha Kabushiki Kaisha Method for producing SiC single crystal

Also Published As

Publication number Publication date
EP2775015A4 (en) 2015-01-21
JP5746362B2 (ja) 2015-07-08
EP2775015A1 (en) 2014-09-10
EP2775015B1 (en) 2017-06-21
US9624599B2 (en) 2017-04-18
KR101622858B1 (ko) 2016-05-19
KR20140058684A (ko) 2014-05-14
CN103930601B (zh) 2016-11-02
JPWO2013065204A1 (ja) 2015-04-02
US20140245945A1 (en) 2014-09-04
CN103930601A (zh) 2014-07-16
TWI454598B (zh) 2014-10-01
TW201317406A (zh) 2013-05-01

Similar Documents

Publication Publication Date Title
JP5746362B2 (ja) SiC単結晶の製造方法
JP5831436B2 (ja) シリコン単結晶の製造方法
JP2007197231A (ja) SiC単結晶の製造方法
JP2007284301A (ja) SiC単結晶の製造方法
JP6798637B1 (ja) ヒ化ガリウム単結晶基板
JP2008184374A (ja) シリコン結晶素材及びその製造方法
JP5729135B2 (ja) サファイアシードおよびその製造方法、ならびにサファイア単結晶の製造方法
TWI265217B (en) Method and device for manufacturing silicon wafer, method for manufacturing silicon single crystal, and device for pulling up silicon single crystal
JP6845418B2 (ja) 炭化ケイ素単結晶ウェハ、インゴット及びその製造方法
JP2009057270A (ja) シリコン単結晶の引上方法
JP6645409B2 (ja) シリコン単結晶製造方法
JP4521933B2 (ja) シリコン単結晶の成長方法
JP2007186374A (ja) SiC単結晶の製造方法
TWI851250B (zh) 碳化矽單結晶基板
JP5375794B2 (ja) シリコン単結晶の製造方法
CN107532328B (zh) SiC单晶的制造方法
JP6645408B2 (ja) シリコン単結晶製造方法及びシリコン単結晶ウェーハ
WO2017043215A1 (ja) SiC単結晶の製造方法
JP5679361B2 (ja) シリコン結晶素材及びその製造方法
JP5679362B2 (ja) シリコン結晶素材及びその製造方法
JP2023512948A (ja) 炭化ケイ素単結晶ウェハ、結晶及び製造方法、半導体デバイス
WO2017138516A1 (ja) SiC単結晶の製造方法
JP2012001393A (ja) 単結晶インゴットおよびその育成方法
JP2013087045A (ja) リン化ガリウム単結晶およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875192

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541584

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147009131

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011875192

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011875192

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14350448

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE