WO2016147673A1 - SiC単結晶の製造方法 - Google Patents

SiC単結晶の製造方法 Download PDF

Info

Publication number
WO2016147673A1
WO2016147673A1 PCT/JP2016/001573 JP2016001573W WO2016147673A1 WO 2016147673 A1 WO2016147673 A1 WO 2016147673A1 JP 2016001573 W JP2016001573 W JP 2016001573W WO 2016147673 A1 WO2016147673 A1 WO 2016147673A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
growth
sic single
single crystal
solution
Prior art date
Application number
PCT/JP2016/001573
Other languages
English (en)
French (fr)
Inventor
和明 関
亀井 一人
楠 一彦
克典 旦野
寛典 大黒
雅喜 土井
Original Assignee
新日鐵住金株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社, トヨタ自動車株式会社 filed Critical 新日鐵住金株式会社
Priority to US15/558,683 priority Critical patent/US10119199B2/en
Priority to CN201680027058.2A priority patent/CN107532328B/zh
Priority to JP2017506103A priority patent/JP6409955B2/ja
Priority to KR1020177029323A priority patent/KR101983489B1/ko
Publication of WO2016147673A1 publication Critical patent/WO2016147673A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/10Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/08Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/06Single-crystal growth from melt solutions using molten solvents by cooling of the solution using as solvent a component of the crystal composition

Definitions

  • the present invention relates to a method for producing a single crystal, and more particularly to a method for producing an SiC single crystal.
  • SiC Silicon carbide
  • SiC is a thermally and chemically stable compound. SiC has an excellent band gap, dielectric breakdown voltage, electron saturation speed, and thermal conductivity compared to Si. Therefore, SiC is expected as a next-generation semiconductor material.
  • SiC is known as a material exhibiting crystal polymorphism.
  • Examples of the crystal structure of SiC include hexagonal 6H, 4H and cubic 3C.
  • a SiC single crystal having a 4H crystal structure (hereinafter referred to as a 4H—SiC single crystal) has a larger band gap than SiC single crystals having other crystal structures. Therefore, 4H—SiC single crystal has attracted attention as a next-generation power device material.
  • the crystal growth surface of a seed crystal made of a SiC single crystal is brought into contact with the Si—C solution.
  • a portion near the seed crystal in the Si—C solution is supercooled to grow a SiC single crystal on the crystal growth surface of the seed crystal.
  • one method of inheriting the crystal polymorph of the seed crystal is spiral growth.
  • stacking information is propagated to the crystal growth surface using the screw dislocations existing in the seed crystal, and the crystal is grown.
  • the crystal polymorph of the seed crystal (that is, the 4H polymorph) is inherited by the growing single crystal, or nucleation of 4H—SiC is caused.
  • the crystal polymorph of the seed crystal (4H polymorph) may not be succeeded to the growing single crystal during the growth.
  • other crystal polymorphs (6H polymorph, etc.) other than 4H—SiC are mixed in the growing crystal, and bulk crystal growth of the 4H—SiC single crystal is difficult.
  • Patent Document 1 JP 2009-91222 A
  • Patent Document 2 International Publication No. 2013/0665204
  • Patent Document 3 JP 2014-122133 A
  • Patent Document 1 In the manufacturing method disclosed in Patent Document 1, a SiC seed crystal having a crystal growth surface inclined from the ⁇ 0001 ⁇ plane is immersed in a Si—C solution, and a SiC single crystal is grown on the seed crystal. Thus, Patent Document 1 describes that three-dimensional growth of a SiC single crystal can be suppressed and high-quality two-dimensional growth can be stably advanced.
  • Patent Document 2 controls the degree of supersaturation of C in the Si solution in the vicinity of the crystal growth surface of the SiC seed crystal. Specifically, the time when the degree of supersaturation of C is high and the time when it is low are alternately repeated. Thus, Patent Document 2 describes that an SiC single crystal having a uniform crystal growth surface can be manufactured at a high growth rate.
  • Patent Document 3 separates the crystal growth surface from the Si—C solution during the growth of the SiC single crystal and stops the crystal growth. After stopping the crystal growth, the temperature of the Si—C solution is raised. After raising the temperature of the Si—C solution, the SiC single crystal in which the crystal growth is stopped is grown again at a constant crystal growth temperature. Patent Document 3 describes that this makes it possible to adjust the C concentration in the Si—C solution and suppress the occurrence of polymorphic changes and dislocations.
  • Patent Document 1 does not describe a method for maintaining a specific crystal polymorph of the SiC single crystal.
  • the degree of supersaturation of C in the Si—C solution is high, another crystal polymorph that is different from the crystal polymorph of the seed crystal may be generated on the crystal growth surface.
  • the crystal growth temperature is kept constant during crystal growth. In this case, crystal polymorphs other than the desired crystal polymorph may still be produced.
  • An object of the present invention is to provide a manufacturing method that facilitates the growth of a desired polymorphic SiC single crystal.
  • the manufacturing method of the SiC single crystal by the solution growth method of the embodiment of the present invention includes a generation step and a growth step.
  • the Si—C solution raw material stored in the crucible is melted to produce the Si—C solution.
  • the SiC seed crystal attached to the seed shaft is brought into contact with the Si—C solution, and an SiC single crystal is grown on the crystal growth surface of the SiC seed crystal.
  • a SiC single crystal is grown while raising the temperature of the Si—C solution.
  • the method for producing a SiC single crystal according to the present invention facilitates the growth of a desired crystal polymorph SiC single crystal.
  • FIG. 1 is an overall view of the SiC single crystal manufacturing apparatus of the present embodiment.
  • FIG. 2 is a graph showing the relationship between the crystal growth time during crystal growth and the degree of supersaturation of C in the Si—C solution.
  • FIG. 3 is an image of the morphology of the crystal growth surface of the SiC single crystal of Invention Example 1 in the examples.
  • FIG. 4 is an image of the morphology of the crystal growth surface of the SiC single crystal of Comparative Example 1 in the examples.
  • the manufacturing method of the SiC single crystal by the solution growth method of this embodiment includes a generation step and a growth step.
  • the Si—C solution raw material stored in the crucible is melted to produce the Si—C solution.
  • the SiC seed crystal attached to the seed shaft is brought into contact with the Si—C solution, and an SiC single crystal is grown on the crystal growth surface of the SiC seed crystal.
  • a SiC single crystal is grown while raising the temperature of the Si—C solution.
  • the temperature of the Si—C solution during crystal growth is increased with time.
  • the solubility of C in the Si—C solution increases during crystal growth, the degree of supersaturation of C in the Si—C solution can be suppressed.
  • production of a different crystal polymorphism is suppressed.
  • the crystal growth temperature at the end of the growth of the SiC single crystal is higher than the crystal growth temperature at the start of the growth.
  • a meniscus is formed between the liquid surface of the Si—C solution and the crystal growth surface of the SiC seed crystal.
  • the height of the meniscus in the growth process is 3 mm or less.
  • the manufacturing method of the SiC single crystal by the sublimation recrystallization method or the high temperature CVD method of this embodiment includes a preparation process and a growth process.
  • a SiC single crystal manufactured by the above-described manufacturing method is prepared.
  • the prepared SiC single crystal is used as a seed crystal, and the SiC single crystal is grown on the crystal growth surface of the SiC seed crystal.
  • a SiC single crystal in which generation of different crystal polymorphs is suppressed can be produced at a high growth rate.
  • FIG. 1 is an overall view of an apparatus for producing an SiC single crystal by the solution growth method of the present embodiment.
  • the manufacturing apparatus 1 includes a chamber 2, an induction heating device 3, a heat insulating member 4, a crucible 5, a seed shaft 6, a driving source 9, and a rotating device 20.
  • the chamber 2 houses the induction heating device 3 and the heat insulating member 4.
  • the chamber 2 can further accommodate a crucible 5. When manufacturing a SiC single crystal, the chamber 2 is cooled.
  • the induction heating device 3 is arranged around the crucible 5, more specifically, around the heat insulating member 4.
  • the induction heating device 3 is, for example, a high frequency coil.
  • the central axis of the coil of the induction heating device 3 faces the vertical direction of the manufacturing device 1.
  • the coil of the induction heating device 3 is arranged coaxially with the seed shaft 6.
  • the heat insulating member 4 has a casing shape.
  • the heat insulating member 4 can accommodate the crucible 5 therein.
  • the heat insulating member 4 keeps the crucible 5 housed therein.
  • the heat insulating member 4 has a through hole in the center of the upper lid and the bottom.
  • a seed shaft 6 is passed through the through hole of the upper lid.
  • a shaft-like rotating device 20 is passed through the bottom through-hole.
  • the crucible 5 is a case having an open upper end and stores the Si—C solution 7.
  • the crucible 5 contains carbon.
  • the crucible 5 serves as a supply source of carbon to the Si—C solution 7.
  • the crucible 5 is made of graphite, for example.
  • the seed shaft 6 is a rod-shaped shaft and extends downward from the upper side of the chamber 2.
  • the upper end of the seed shaft 6 is connected to the drive device 9.
  • the seed shaft 6 passes through the chamber 2 and the heat insulating member 4.
  • the lower end of the seed shaft 6 is disposed in the crucible 5.
  • the seed shaft 6 can be attached with a SiC seed crystal 8 at the lower end.
  • a seed crystal 8 is attached to the lower end of the seed shaft 6 when the SiC single crystal is manufactured.
  • the seed shaft 6 can be moved up and down by the drive source 9.
  • the seed shaft 6 is further rotatable about an axis by a drive source 9.
  • the Si—C solution 7 is a raw material of SiC single crystal and contains silicon (Si) and carbon (C).
  • the Si—C solution 7 may further contain a metal element other than Si and C.
  • the Si—C solution 7 is generated by melting the raw material of the Si—C solution 7 by heating.
  • the rotating device 20 has a shaft shape and penetrates the lower surface of the heat insulating container 4 and the lower surface of the chamber 2.
  • a crucible 5 can be arranged at the upper end of the rotating device 20.
  • the rotating device 20 can rotate the crucible 5 arranged at the upper end around the central axis of the rotating device 20.
  • the rotating device 20 can further move the crucible 5 up and down.
  • the manufacturing method according to the present embodiment includes a generation process and a growth process.
  • the Si—C solution 7 is generated using the manufacturing apparatus 1.
  • the SiC seed crystal 8 is brought into contact with the Si—C solution 7, and a SiC single crystal is grown while the temperature of the Si—C solution 7 is raised during crystal growth.
  • each process will be described.
  • the crucible 5 containing the raw material of the Si—C solution is disposed on the rotating device 20 in the chamber 2. Subsequently, the chamber 2 is closed, and the chamber 2 is filled with an inert gas.
  • the inert gas is, for example, helium or argon.
  • the raw material in the crucible 5 is heated using the induction heating device 3. The heated raw material is melted, and the Si—C solution 7 is generated.
  • the SiC seed crystal 8 is immersed in the Si—C solution 7. Specifically, the seed shaft 6 is lowered, and the SiC seed crystal 8 attached to the lower end of the seed shaft 6 is brought into contact with the Si—C solution 7.
  • the crystal growth surface of the SiC seed crystal 8 is a (0001) plane or a (000-1) plane, or a plane inclined at an angle of 8 ° or less from these planes. Is preferred. In this case, the growth of the 4H—SiC single crystal tends to be stable.
  • the manufacturing method of the present embodiment is the same even in the case of manufacturing a SiC polycrystal having a crystal polymorph other than 4H—SiC.
  • the induction heating device 3 heats the Si—C solution 7 to the crystal growth temperature.
  • the crystal growth temperature is the liquid surface temperature of the Si—C solution when an SiC single crystal is grown in the growth process.
  • the typical crystal growth temperature is 1600-2200 ° C.
  • a SiC single crystal is grown at the crystal growth temperature.
  • the vicinity of the SiC seed crystal 8 (hereinafter also simply referred to as the vicinity) is supercooled.
  • a refrigerant is circulated inside the seed shaft 6.
  • the refrigerant is, for example, an inert gas such as argon or helium.
  • the SiC single crystal is grown while raising the temperature of the Si—C solution 7 in order to succeed the crystal polymorph of the SiC seed crystal 8 to the growing SiC single crystal.
  • the SiC single crystal it is possible to suppress excessive supersaturation of C in the vicinity. Therefore, it is easy to succeed the crystal polymorph of SiC seed crystal 8 to the SiC single crystal. Therefore, it is easy to stably produce 4H polymorphic SiC single crystal.
  • One method for inheriting crystal polymorphism in the growth of SiC single crystals is helical growth.
  • stacking information is propagated to the crystal growth surface by using screw dislocations to grow a crystal.
  • the 4H—SiC single crystal the 4H—SiC single crystal with less mixture of other crystal polymorphs can be produced by maintaining the helical growth on the entire crystal growth surface 8S.
  • the reason why the C concentration of the Si—C solution 7 increases with time in the growth process is considered as follows.
  • the crystal growth temperature is kept constant in the growth process.
  • carbon is supplied from the crucible 7 to the Si—C solution 7.
  • the solubility of C is constant. Therefore, if C continues to be supplied to the Si—C solution 7 as time passes, the amount of C in the Si—C solution 7 exceeds the amount corresponding to the C solubility, resulting in a supersaturated state.
  • the Si—C solution 7 evaporates as time passes. Also in this case, the amount of C in the Si—C solution 7 exceeds the C solubility, and can be in a supersaturated state.
  • the supersaturation degree of C in the Si—C solution 7 may be controlled to a certain level or less.
  • FIG. 2 is a graph showing changes in the degree of supersaturation of C in the Si—C solution 7 during crystal growth.
  • the vertical axis represents the supersaturation ⁇ of C, and the horizontal axis represents time.
  • ⁇ 0 in FIG. 2 indicates the degree of supersaturation at the start of crystal growth.
  • ⁇ 1 indicates the critical supersaturation degree at which different crystal polymorphs are produced. That is, when the degree of supersaturation ⁇ is equal to or greater than ⁇ 1, polycrystals are generated and attached to the crystal growth surface 8S and the inner wall of the crucible 5.
  • the broken line in FIG. 2 shows the transition of the supersaturation ⁇ b of C in the Si—C solution 7 when the crystal growth temperature is kept constant during the conventional (ordinary) manufacturing method, that is, the crystal growth temperature.
  • the solid line in FIG. 2 shows the transition of the degree of supersaturation ⁇ a of C in the Si—C solution 7 when the crystal growth temperature rises with time during the manufacturing method of the present embodiment, that is, the growth process.
  • the degree of supersaturation ⁇ b of C increases with time.
  • the supersaturation level ⁇ b of C in the Si—C solution 7 exceeds ⁇ 1. Therefore, other crystal polymorphs other than 4H are easily generated.
  • the degree of supersaturation of C in the Si—C solution 7 increases with time.
  • the solubility of C in the Si—C solution 7 is preferably increased as time passes.
  • the crystal growth temperature at the end of crystal growth of the SiC single crystal is preferably higher than the crystal growth temperature at the start of crystal growth.
  • the temperature of the Si—C solution 7 is preferably increased at a constant temperature increase rate. In this case, the output control of the induction heating device 3 is also easy.
  • the heating rate of the Si—C solution 7 during the growth process is preferably 1 to 10 ° C./h.
  • the rate of temperature increase is less than 1 ° C./h, an increase in the degree of supersaturation of C is not sufficiently suppressed, and thus different types of polymorphs may be generated.
  • the rate of temperature rise exceeds 10 ° C./h, C in the Si—C solution 7 becomes unsaturated, and thus the grown SiC single crystal may be dissolved. Therefore, a preferable temperature increase rate is 1 to 10 ° C./h.
  • a more preferable lower limit of the rate of temperature increase is more than 1 ° C / h, more preferably 1.2 ° C / h or more, and particularly preferably 1.5 ° C / h or more.
  • a more preferable upper limit of the heating rate is less than 10 ° C./h, more preferably 9 ° C./h or less, and particularly preferably 5 ° C./h or less.
  • the preferred lower limit of the crystal growth temperature of the Si—C solution 7 at the start of crystal growth is 1800 ° C.
  • a preferable upper limit of the crystal growth temperature of the Si—C solution 7 at the end of crystal growth is 2200 ° C.
  • a more preferable upper limit of the crystal growth temperature at the end of crystal growth is 2100 ° C.
  • a preferred lower limit of the crystal growth temperature at the end of crystal growth is 1850 ° C., more preferably 1900 ° C.
  • a meniscus is formed between the crystal growth surface 8S of the SiC seed crystal 8 and the liquid surface of the Si—C solution 7.
  • the meniscus is formed, generation of SiC polycrystals on the crystal growth surface 8S can be suppressed.
  • the height of the meniscus is 3 mm or less.
  • the meniscus is constricted and the diameter of the grown SiC single crystal is reduced.
  • the degree of supersaturation of C near the crystal growth surface 8S increases. Therefore, different types of polymorphs may be mixed and SiC polycrystals may be generated.
  • the growth process may include a meltback process before the start of crystal growth.
  • the meltback step the crystal growth temperature is raised and C in the Si—C solution 7 is unsaturated. Thereafter, the crystal growth surface 8S of the SiC seed crystal 8 is brought into contact with the Si—C solution 7. In this case, the contact portion of the SiC seed crystal 8 with the Si—C solution 7 is dissolved in the Si—C solution 7. Thereby, a damage layer formed by processing on the crystal growth surface 8S of the SiC seed crystal 8, defects near the crystal growth surface 8S, and the like can be removed.
  • the temperature of the Si—C solution 7 is increased at a constant temperature increase rate.
  • the temperature rising rate of the Si—C solution 7 may not be constant.
  • the crystal growth temperature may be controlled in accordance with the degree of supersaturation of C in the Si—C solution 7.
  • the crystal growth plane is preferably the C plane of the SiC single crystal, that is, the (0001) plane or the (000-1) plane. In this case, since the crystal growth surface is flat, it is easy to maintain the 4H—SiC crystal polymorph by spiral growth.
  • the SiC single crystal manufactured with the manufacturing method of 1st Embodiment is used as a seed crystal of the manufacturing method of another SiC single crystal.
  • Other SiC single crystal manufacturing methods include, for example, a sublimation recrystallization method and a high temperature CVD method.
  • the sublimation recrystallization method and the high temperature CVD method have a faster SiC single crystal growth rate than the solution growth method. Therefore, a SiC single crystal having a desired dimension can be manufactured in a short time.
  • the SiC single crystal manufactured by the manufacturing method of the first embodiment as a SiC seed crystal such as a sublimation recrystallization method.
  • production of a different crystal polymorphism and a crystal defect are suppressed.
  • the crystal polymorph of the SiC single crystal manufactured by the manufacturing method of the present embodiment is not limited to 4H—SiC.
  • the manufacturing method of the present embodiment can also be applied to the manufacture of 6H-type and 3C-type SiC single crystals. Also in this case, as described above, it is possible to manufacture a SiC single crystal in which mixing of different crystal polymorphs is suppressed.
  • the SiC single crystal was manufactured by a plurality of manufacturing methods with different conditions in the growth process.
  • a SiC seed crystal a 4H—SiC single crystal was used in all examples. And the kind of crystal polymorph of the manufactured SiC single crystal and the quality of the crystal were evaluated. Table 1 shows the conditions for each test.
  • the growth time indicates the time from the start of the growth of the SiC single crystal to the end of the growth.
  • the growth time was 5 hours.
  • the growth time was 20 hours.
  • the growth start temperature indicates the crystal growth temperature at the start of the growth of the SiC single crystal.
  • the growth end temperature indicates the crystal growth temperature at the end of the growth of the SiC single crystal.
  • the rate of temperature rise indicates the rising temperature of the Si—C solution per hour.
  • the heating rate was 11.2 ° C./h in Invention Example 1 and 2.75 ° C./h in Invention Example 2 and Invention Example 3.
  • the temperature of the Si—C solution was not increased.
  • the growth thickness indicates the thickness of the manufactured SiC single crystal. That is, the distance between the crystal growth surface of the SiC seed crystal and the crystal growth surface of the manufactured SiC single crystal is shown.
  • the growth rate indicates the growth thickness of the SiC single crystal per hour.
  • the meniscus height indicates the distance between the crystal growth surface of the SiC single crystal and the liquid surface of the Si—C solution in the growth process.
  • the crystal growth surface and the liquid level of the Si—C solution change with time.
  • the meniscus height in the growth process was maintained by relatively moving the seed shaft and the crucible.
  • the meniscus height was 2 mm.
  • the meniscus height was 4 mm.
  • FIG. 3 is a morphological image of the crystal growth surface 8S of the SiC single crystal of Example 1 of the present invention. Specifically, the morphology of the crystal growth surface 8S was photographed with a differential interference optical microscope. Also for FIG. 4 described later, the morphology of the crystal growth surface 8S was photographed by the same photographing method. Referring to FIG. 3, island-like morphology was confirmed on the entire crystal growth surface 8S. A screw dislocation was present at the center of each island-like morphology, and helical growth was confirmed over the entire crystal growth surface 8S. That is, it was confirmed that the helical growth of the 4H—SiC single crystal was maintained and the crystal polymorph of the 4H—SiC single crystal was inherited. In Invention Example 2 and Invention Example 3, as in Invention Example 1, the helical growth of 4H—SiC single crystal was confirmed.
  • FIG. 4 is an image of the morphology of the crystal growth surface 8S of the SiC single crystal of Comparative Example 1.
  • the island-like morphology did not spread over the entire crystal growth surface 8S. That is, the spiral growth was not maintained in a partial region of the crystal growth surface 8S. Therefore, if the crystal growth is continued as it is, there is a possibility that different polymorphs are mixed in the SiC single crystal.
  • the SiC single crystal produced in this example was cut and the inside of the crystal was observed.
  • the heating rate of Invention Example 2 and Invention Example 3 was 2.75 ° C./h, which was 10 ° C./h or less. In Invention Example 2 and Invention Example 3, it is considered that the supersaturated state of C in the Si—C solution was maintained during crystal growth. Therefore, the growth rate of the SiC single crystals of Invention Example 2 and Invention Example 3 was higher than the growth rate of Invention Example 1 in which the heating rate was larger than 10 ° C./h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 本発明の実施形態の溶液成長法によるSiC単結晶の製造方法は、生成工程と、成長工程とを備える。生成工程では、坩堝(5)に収容されるSi-C溶液(7)の原料を溶融し、Si-C溶液(7)を生成する。成長工程では、シードシャフト(6)に取り付けられたSiC種結晶(8)をSi-C溶液(7)に接触させ、SiC種結晶(8)の結晶成長面(8S)にSiC単結晶を成長させる。成長工程では、Si-C溶液(7)を昇温させながらSiC単結晶を成長させる。本発明の実施形態によるSiC単結晶の製造方法は、所望の結晶多形のSiC単結晶を成長させやすい。

Description

SiC単結晶の製造方法
 本発明は、単結晶の製造方法に関し、さらに詳しくは、SiC単結晶の製造方法に関する。
 炭化珪素(SiC)は、熱的及び化学的に安定な化合物である。SiCはSiと比較して優れたバンドギャップ、絶縁破壊電圧、電子飽和速度及び熱伝導率を有する。そのため、SiCは次世代の半導体材料として期待されている。
 SiCは、結晶多形を示す材料として知られている。SiCの結晶構造はたとえば、六方晶系の6H、4H及び立方晶系の3C等がある。これらの結晶構造のうち、4Hの結晶構造を有するSiC単結晶(以下、4H-SiC単結晶と称する。)は、他の結晶構造を有するSiC単結晶と比べて、バンドギャップが大きい。そのため、4H-SiC単結晶は、次世代のパワーデバイス材料として注目されている。
 SiC単結晶の製造方法として、溶液成長法がある。溶液成長法では、SiC単結晶からなる種結晶の結晶成長面をSi-C溶液に接触させる。Si-C溶液のうち種結晶の近傍部分を過冷却状態にして、種結晶の結晶成長面にSiC単結晶を成長させる。
 4H-SiC単結晶の成長において、種結晶の結晶多形を継承させる方法の一つとして、らせん成長がある。らせん成長は、種結晶に存在するらせん転位を利用して結晶成長面に積層情報を伝播させ、結晶を成長させる。
 4H-SiC単結晶のバルク成長では、4H-SiC以外の他の結晶多形が混在して複数の結晶多形が成長することがしばしばある。この場合、製造されたSiCの一部が多結晶(欠陥)となり、4H-SiC単結晶が安定して成長しない。
 4H-SiC単結晶を安定して成長させるためには、種結晶の結晶多形(つまり4H多形)を成長する単結晶に継承させるか、又は4H-SiCの核形成を生じさせるかの、二通りの考え方がある。後者の手法では、結晶多形を制御することは困難である。一方、前者の手法では、成長中に種結晶の結晶多形(4H多形)を成長中の単結晶に承継できない場合がある。この場合、成長中の結晶に4H-SiC以外の他の結晶多形(6H多形等)が混在してしまい、4H-SiC単結晶のバルク結晶成長が困難である。
 SiC単結晶の欠陥を抑制する製造方法は、特開2009-91222号公報(特許文献1)、国際公開第2013/065204号(特許文献2)及び特開2014-122133号公報(特許文献3)に開示されている。
 特許文献1に開示された製造方法は、Si-C溶液に、{0001}面から傾斜した結晶成長面を有するSiC種結晶を浸漬し、種結晶上にSiC単結晶を成長させる。これにより、SiC単結晶の3次元成長を抑制し、高品位な2次元成長を安定して進行させることができる、と特許文献1には記載されている。
 特許文献2に開示された製造方法は、SiC種結晶の結晶成長面の近傍においてSi溶液中のCの過飽和度を制御する。具体的には、Cの過飽和度が高い時期と低い時期とを交互に繰り返す。これにより、高い成長速度で結晶成長面が均一なSiC単結晶を製造できる、と特許文献2には記載されている。
 特許文献3に開示された製造方法は、SiC単結晶の成長中に結晶成長面をSi-C溶液から離し、結晶成長を中止する。結晶成長を中止後、Si-C溶液を昇温する。Si-C溶液の昇温後、結晶成長温度を一定にして再度、結晶成長を中止したSiC単結晶を成長させる。これにより、Si-C溶液中のC濃度を調整し、多形変化や転位の発生を抑制することができる、と特許文献3には記載されている。
特開2009-91222号公報 国際公開2013/065204号 特開2014-122133号公報
 しかしながら、特許文献1の製造方法では、SiC単結晶の特定の結晶多形を維持する方法については記載されていない。特許文献2の製造方法では、Si-C溶液中のCの過飽和度が高い時期に、結晶成長面に種結晶の結晶多形と異なる他の結晶多形が生成される場合がある。特許文献3の製造方法は、結晶成長中に結晶成長温度を一定に保つ。この場合、依然として所望の結晶多形以外の他の結晶多形が生成されることがある。
 本発明の目的は、所望の結晶多形のSiC単結晶を成長させやすい製造方法を提供することである。
 本発明の実施形態の溶液成長法によるSiC単結晶の製造方法は、生成工程と、成長工程とを備える。生成工程では、坩堝に収容されるSi-C溶液の原料を溶融し、Si-C溶液を生成する。成長工程では、シードシャフトに取り付けられたSiC種結晶をSi-C溶液に接触させ、SiC種結晶の結晶成長面にSiC単結晶を成長させる。成長工程では、Si-C溶液を昇温させながらSiC単結晶を成長させる。
 本発明によるSiC単結晶の製造方法は、所望の結晶多形のSiC単結晶を成長させやすい。
図1は、本実施形態のSiC単結晶の製造装置の全体図である。 図2は、結晶成長中における結晶成長時間と、Si-C溶液中のCの過飽和度との関係を示す図である。 図3は、実施例中の本発明例1のSiC単結晶の結晶成長面のモフォロジーの画像である。 図4は、実施例中の比較例1のSiC単結晶の結晶成長面のモフォロジーの画像である。
 本実施形態の溶液成長法によるSiC単結晶の製造方法は、生成工程と、成長工程とを備える。生成工程では、坩堝に収容されるSi-C溶液の原料を溶融し、Si-C溶液を生成する。成長工程では、シードシャフトに取り付けられたSiC種結晶をSi-C溶液に接触させ、SiC種結晶の結晶成長面にSiC単結晶を成長させる。成長工程では、Si-C溶液を昇温させながらSiC単結晶を成長させる。
 本実施形態の製造方法は、結晶成長中のSi-C溶液を時間の経過に伴い昇温させる。この場合、結晶成長中にSi-C溶液のCの溶解度が高くなるため、Si-C溶液中のCの過飽和度を抑制できる。これにより、異種の結晶多形の発生を抑制する。
 好ましくは、成長工程では、SiC単結晶の成長終了時における結晶成長温度は、成長開始時の結晶成長温度よりも高い。
 好ましくは、成長工程では、Si-C溶液の液面とSiC種結晶の結晶成長面との間にメニスカスを形成する。
 この場合、結晶成長中に、異種の結晶多形の発生をさらに抑制できる。
 好ましくは、成長工程でのメニスカスの高さは、3mm以下である。
 この場合、製造されるSiC単結晶の結晶欠陥を抑制する。また、製造されるSiC単結晶の縮径を抑制できる。
 本実施形態の昇華再結晶法又は高温CVD法によるSiC単結晶の製造方法は、準備工程と、成長工程とを備える。準備工程では、上述の製造方法により製造されたSiC単結晶を準備する。成長工程では、準備したSiC単結晶を種結晶とし、SiC種結晶の結晶成長面にSiC単結晶を成長させる。
 この場合、異種の結晶多形の発生を抑制したSiC単結晶を、速い成長速度で製造することができる。
 以下、図面を参照して、本発明の実施の形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。
 [第1の実施の形態]
 [製造装置]
 図1は、本実施形態の溶液成長法によるSiC単結晶の製造装置の全体図である。図1を参照して、製造装置1は、チャンバ2、誘導加熱装置3、断熱部材4、坩堝5、シードシャフト6、駆動源9及び回転装置20を備える。
 チャンバ2は、誘導加熱装置3、断熱部材4を収納する。チャンバ2はさらに、坩堝5を収容可能である。SiC単結晶を製造するとき、チャンバ2は冷却される。
 誘導加熱装置3は、坩堝5の周り、より具体的には、断熱部材4の周りに配置される。誘導加熱装置3はたとえば、高周波コイルである。誘導加熱装置3のコイルの中心軸は、製造装置1の鉛直方向に向く。好ましくは、誘導加熱装置3のコイルは、シードシャフト6と同軸に配置される。
 断熱部材4は、筐体状である。断熱部材4は、坩堝5を内部に収納可能である。断熱部材4は、内部に収納された坩堝5を保温する。断熱部材4は、上蓋及び底部の中央に貫通孔を有する。上蓋の貫通孔には、シードシャフト6が通される。底部の貫通孔には、シャフト状の回転装置20が通される。
 坩堝5は、上端が開口した筐体であり、Si-C溶液7を収容する。好ましくは、坩堝5は、炭素を含有する。この場合、坩堝5は、Si-C溶液7への炭素の供給源になる。坩堝5はたとえば、黒鉛製である。
 シードシャフト6は棒状のシャフトであり、チャンバ2の上方から下方に向かって延在する。シードシャフト6の上端は、駆動装置9と連結される。シードシャフト6は、チャンバ2及び断熱部材4を貫通する。結晶成長時、シードシャフト6の下端は、坩堝5内に配置される。シードシャフト6は、下端にSiCの種結晶8を取り付け可能である。SiC単結晶の製造時に、シードシャフト6の下端に種結晶8が取り付けられる。駆動源9により、シードシャフト6は昇降可能である。シードシャフト6はさらに、駆動源9により軸周りに回転可能である。
 Si-C溶液7は、SiC単結晶の原料であり、シリコン(Si)と炭素(C)とを含有する。Si-C溶液7はさらに、Si及びC以外の他の金属元素を含有してもよい。Si-C溶液7は、Si-C溶液7の原料を加熱により溶融して生成される。
 回転装置20は、シャフト状であり、断熱容器4の下面及びチャンバ2の下面を貫通する。回転装置20の上端には、坩堝5が配置可能である。回転装置20は、上端に配置された坩堝5を回転装置20の中心軸周りに回転できる。回転装置20はさらに、坩堝5を昇降可能である。
 [製造方法]
 本実施形態による製造方法は、生成工程と、成長工程とを備える。生成工程では、製造装置1を用いてSi-C溶液7を生成する。成長工程では、SiC種結晶8をSi-C溶液7に接触させ、結晶成長中にSi-C溶液7を昇温しながらSiC単結晶を成長させる。以下、各工程を説明する。
 [生成工程]
 Si-C溶液の原料を含む坩堝5を、チャンバ2内の回転装置20の上に配置する。続いて、チャンバ2を閉め、チャンバ2内に不活性ガスを充填する。不活性ガスはたとえば、ヘリウムやアルゴンである。誘導加熱装置3を用いて、坩堝5内の原料を加熱する。加熱された原料が融解し、Si-C溶液7が生成される。
 [成長工程]
 Si-C溶液7が生成された後、SiC種結晶8をSi-C溶液7に浸漬する。具体的には、シードシャフト6を降下し、シードシャフト6の下端に取り付けられたSiC種結晶8を、Si-C溶液7に接触させる。4H-SiC単結晶を製造する場合、SiC種結晶8の結晶成長面は(0001)面又は(000-1)面であるか、これらの面から8°以下の角度で傾斜した面であることが好ましい。この場合、4H-SiC単結晶の成長が安定しやすい。以下、本例では、4H-SiC単結晶を製造する前提で説明を続ける。しかしながら、本実施形態の製造方法は、4H-SiC以外の他の結晶多形のSiC単結晶を製造する場合でも同様である。
 SiC種結晶8をSi-C溶液7に接触させた後、誘導加熱装置3は、Si-C溶液7を結晶成長温度まで加熱する。結晶成長温度とは、成長工程においてSiC単結晶を成長させる場合のSi-C溶液の液面温度である。一般的な結晶成長温度は1600~2200℃である。成長工程では、上記結晶成長温度でSiC単結晶を成長させる。
 続いて、Si-C溶液7のうち、SiC種結晶8の近傍部分(以下、単に近傍部分ともいう)を過冷却する。たとえば、シードシャフト6の内部に冷媒を循環させる。冷媒はたとえば、アルゴンやヘリウムなどの不活性ガスである。これにより、Si-C溶液7中のうち、SiC種結晶8の近傍部分では、Cが過飽和状態になる。したがって、SiC種結晶8の結晶成長面8S上にSiC単結晶が生成され、成長する。
 成長工程ではさらに、SiC種結晶8の結晶多形を成長中のSiC単結晶に承継させるために、Si-C溶液7を昇温しながら、SiC単結晶を成長させる。この場合、近傍部分でCが過剰に過飽和となるのを抑制できる。そのため、SiC種結晶8の結晶多形をSiC単結晶に承継しやすい。そのため、4H多形のSiC単結晶を安定して製造しやすい。以下、この点について詳述する。
 [結晶多形の維持]
 SiC単結晶の成長において、結晶多形を継承させる方法の一つとして、らせん成長がある。らせん成長は、らせん転位を利用して結晶成長面に積層情報を伝播させ、結晶を成長させる。4H-SiC単結晶の成長では、結晶成長面8Sの全体でらせん成長を維持することで、他の結晶多形の混在が少ない4H-SiC単結晶を製造することができる。
 成長工程において、Si-C溶液7中のCは、SiC単結晶の成長に利用される。そのため、成長工程では時間の経過に伴いC濃度が低下すると考えられていた。しかしながら、本発明者らの調査の結果、成長工程では、時間経過に伴いSi-C溶液7中のC濃度が上昇することが判明した。
 成長工程において時間経過に伴いSi-C溶液7のC濃度が上昇する理由は次のとおりと考えられる。通常、成長工程では結晶成長温度を一定に保つ。時間の経過に伴い、坩堝7からSi-C溶液7に炭素が供給される。結晶成長温度が一定の場合、Cの溶解度は一定である。そのため、時間の経過に伴いCがSi-C溶液7に供給され続ければ、Si-C溶液7中のC量がC溶解度に相当する量を超え、過飽和状態となる。また、坩堝7がC供給源となっておらず、Si-C溶液7の原料にCを含有させた場合、時間の経過に伴い、Si-C溶液7が蒸発する。この場合も、Si-C溶液7中のC量がC溶解度を超え、過飽和状態となり得る。
 Cの過飽和度が一定以上に高くなると、SiC種結晶8の結晶成長面8Sに異種の結晶多形が生成されやすくなる。この異種の多形がエピタキシャル成長すると、4H-SiCのらせん成長が阻害され、同じ結晶多形(つまり本例では4H多形)を維持しにくくなる。
 異種の結晶多形が混在しないSiC単結晶を成長させるには、Si-C溶液7中のCの過飽和度を一定以下に制御すればよい。ここで、Cの過飽和度は次の式で定義される。
(Cの過飽和度σ)=[(Si-C溶液中のC濃度)-(Si-C溶液中の平衡C濃度)]/(結晶成長開始時のSi-C溶液中の平衡C濃度)
 図2は、結晶成長中におけるSi-C溶液7のCの過飽和度の変化を示す図である。縦軸はCの過飽和度σを示し、横軸は時間を示す。図2中のσ0は結晶成長開始時の過飽和度を示す。σ1は、異種の結晶多形が生成される臨界の過飽和度を示す。すなわち、過飽和度σがσ1以上になると結晶成長面8Sや坩堝5の内壁に多結晶が生成され付着する。
 図2中の破線は、従来(通常)の製造方法、つまり、成長工程中、結晶成長温度を一定に保った場合のSi-C溶液7中のCの過飽和度σbの推移を示す。図2の実線は、本実施形態の製造方法、つまり、成長工程中、時間の経過とともに結晶成長温度が上昇する場合のSi-C溶液7中のCの過飽和度σaの推移を示す。
 図2を参照して、従来の製造方法の場合(図中破線σb)、上述のとおり、時間の経過とともにCの過飽和度σbが高まる。この場合、成長工程中で時間t経過後に、Si-C溶液7のCの過飽和度σbが、σ1を超える。そのため、4H以外の他の結晶多形が生成しやすくなる。
 一方、本実施形態の製造方法の場合(図中実線σa)、時間の経過に伴うCの過飽和度の上昇が抑制される。結晶成長温度が高いほど、Cの溶解度は高くなる。すなわち、σaの方がσbより結晶成長中にCの溶解度が高くなる。したがって、Si-C溶液7中のCの過飽和度が抑制される。このように、結晶成長中において、時間の経過に伴い結晶成長温度が上昇すれば、Cの過飽和度が過剰に上昇するのを抑制でき、Cの過飽和度を適正な範囲に抑えることができる。これにより、異種の結晶多形の生成を抑制し、4H-SiC単結晶のらせん成長が維持されるため、純度の高い4H-SiC単結晶を製造することができる。
 上述したように、Si-C溶液7中のCの過飽和度は時間の経過に伴い高くなる。これを抑制するために、Si-C溶液7のCの溶解度は時間の経過に伴い高くするのが好ましい。言い換えると、SiC単結晶の結晶成長終了時の結晶成長温度は、結晶成長開始時の結晶成長温度よりも高いほうが好ましい。また、Si-C溶液7は、一定の昇温速度で昇温するのが好ましい。この場合、誘導加熱装置3の出力制御も容易である。
 成長工程中におけるSi-C溶液7の昇温速度は1~10℃/hが好ましい。昇温速度が1℃/h未満の場合、Cの過飽和度の上昇が十分に抑制されないため、異種の多形が生成されることがある。昇温速度が10℃/hを超える場合、Si-C溶液7中のCが未飽和となるため、成長したSiC単結晶が溶解することがある。したがって、好ましい昇温速度は1~10℃/hである。昇温速度のより好ましい下限は1℃/h超であり、さらに好ましくは1.2℃/h以上、特に好ましくは1.5℃/h以上である。昇温速度のより好ましい上限は10℃/h未満であり、さらに好ましくは9℃/h以下、特に好ましくは5℃/h以下である。
 結晶成長開始時のSi-C溶液7の結晶成長温度の好ましい下限は、1800℃である。結晶成長温度が1800℃未満の場合、4H-SiCが不安定になり、異種の結晶多形が生成されることがある。結晶成長終了時のSi-C溶液7の結晶成長温度の好ましい上限は、2200℃である。結晶成長温度が2200℃を超える場合、特に大気圧下では、Si-C溶液7が顕著に蒸発することがある。結晶成長終了時の結晶成長温度のさらに好ましい上限は2100℃である。結晶成長終了時の結晶成長温度の好ましい下限は1850℃であり、さらに好ましくは1900℃である。
 好ましくは、成長工程では、SiC種結晶8の結晶成長面8SとSi-C溶液7の液面との間にメニスカスを形成する。メニスカスを形成した場合、結晶成長面8SでのSiC多結晶の発生を抑制することができる。
 好ましくは、メニスカスの高さは3mm以下である。メニスカスの高さが3mmを超える場合、メニスカスがくびれ、成長したSiC単結晶の直径が小さくなる。メニスカスがくびれた場合、結晶成長面8S近傍のCの過飽和度が高くなる。そのため、異種の多形が混在し、SiC多結晶が生成されることがある。
 成長工程では、結晶成長開始前にメルトバック工程を含んでもよい。メルトバック工程では、結晶成長温度を上げ、Si-C溶液7中のCを未飽和にする。その後、SiC種結晶8の結晶成長面8SをSi-C溶液7に接触させる。この場合、SiC種結晶8のうち、Si-C溶液7との接触部分がSi-C溶液7に溶解する。これにより、SiC種結晶8の結晶成長面8Sに加工によって形成されたダメージ層や、結晶成長面8S近傍の欠陥等を除去することができる。
 上記実施形態の製造方法では、Si-C溶液7を一定の昇温速度で昇温する場合を説明した。しかしながら、Si-C溶液7の昇温速度は、一定でなくてもよい。Si-C溶液7中のCの過飽和度に対応して結晶成長温度を制御すればよい。
 結晶成長面は、SiC単結晶のC面、つまり、(0001)面又は(000-1)面であるのが好ましい。この場合、結晶成長面が平坦であるため、らせん成長による4H-SiCの結晶多形を維持しやすい。
 [第2の実施の形態]
 第2の実施形態では、第1の実施形態の製造方法で製造されたSiC単結晶を、他のSiC単結晶の製造方法の種結晶として用いる。他のSiC単結晶の製造方法はたとえば、昇華再結晶法や高温CVD法等がある。
 昇華再結晶法や高温CVD法は、溶液成長法と比べてSiC単結晶の成長速度が速い。そのため、所望の寸法のSiC単結晶を短時間で製造できる。
 しかしながら、昇華再結晶法等ではSiC種結晶に異種の結晶多形が混在している場合、製造されるSiC単結晶に異種の結晶多形が混在しやすい。そこで、第1の実施形態の製造方法によって製造されたSiC単結晶を、昇華再結晶法等のSiC種結晶として用いるのが好ましい。これにより、昇華再結晶法等で製造されるSiC単結晶であっても、異種の結晶多形の発生や結晶欠陥が抑制される。
 本実施形態では、4H-SiC単結晶を製造する場合を説明した。しかしながら、本実施形態の製造方法によって製造されるSiC単結晶の結晶多形は4H-SiCに限定されない。本実施形態の製造方法は、6H型及び3C型のSiC単結晶の製造にも適用することができる。この場合も上述したように、異種の結晶多形の混在が抑制されたSiC単結晶を製造することができる。
 成長工程での条件が異なる複数の製造方法で、SiC単結晶を製造した。SiC種結晶は、全ての実施例で4H-SiC単結晶を使用した。そして、製造されたSiC単結晶の結晶多形の種類及び結晶の質を評価した。表1に、各試験の条件を示す。
Figure JPOXMLDOC01-appb-T000001
 本発明例1~3では、成長工程でSi-C溶液を昇温した。比較例1では、成長工程で結晶成長温度を一定に保った。本発明例3では、メニスカスの高さを本発明例1、2及び比較例1と比較して高くした。本発明例1~3及び比較例1では、同じ組成のSi-C溶液を使用した。
 [成長時間]
 成長時間は、SiC単結晶の成長開始時から成長終了時までの時間を示す。本発明例1及び比較例1では成長時間は5時間であった。本発明例2及び本発明例3では成長時間は20時間であった。
 [成長開始温度及び成長終了温度]
 成長開始温度は、SiC単結晶の成長開始時の結晶成長温度を示す。成長終了温度は、SiC単結晶の成長終了時の結晶成長温度を示す。
 [昇温速度]
 昇温速度は1時間当たりのSi-C溶液の上昇温度を示す。昇温速度は、本発明例1では11.2℃/h、本発明例2及び本発明例3では2.75℃/hであった。比較例1ではSi-C溶液を昇温しなかった。
 [成長厚さ]
 成長厚さは、製造されたSiC単結晶の厚さを示す。すなわち、SiC種結晶の結晶成長面と製造されたSiC単結晶の結晶成長面との距離を示す。
 [成長速度]
 成長速度は、1時間当たりのSiC単結晶の成長厚さを示す。
 [メニスカス高さ]
 メニスカス高さは、成長工程でのSiC単結晶の結晶成長面とSi-C溶液の液面との距離を示す。結晶成長面及びSi-C溶液の液面は時間の経過に伴い変化する。本実施例では、シードシャフトと坩堝とを相対的に移動させ成長工程でのメニスカス高さを維持した。本発明例1、2及び比較例1では、メニスカス高さは2mmであった。本発明例3では、メニスカス高さは4mmであった。
 [結晶多形の種類]
 製造されたSiC単結晶の結晶成長面を、光学顕微鏡を用いて観察した。4H-SiC単結晶が結晶成長面の全体にみられた場合は、「G」(Good)とした。4H-SiC単結晶が結晶成長面の全体にみられなかった場合、及び、製造されたSiC単結晶に欠陥がみられた場合は「NA」(Not Acceptable)とした。
 [結晶欠陥]
 製造されたSiC単結晶を切断し、切断面を光学顕微鏡で観察した。結晶内部に欠陥がみられなかった場合は、「G」(Good)とした。欠陥がみられた場合は、「NA」(Not Acceptable)とした。
 図3は、本発明例1のSiC単結晶の結晶成長面8Sのモフォロジーの画像である。具体的には、微分干渉光学顕微鏡で結晶成長面8Sのモフォロジーを撮影した。後述する図4についても同様の撮影方法で結晶成長面8Sのモフォロジーを撮影した。図3を参照して、結晶成長面8S全体に島状のモフォロジーが確認された。個々の島状のモフォロジーの中央にはらせん転位が存在しており、結晶成長面8S全体でらせん成長が確認された。すなわち、4H-SiC単結晶のらせん成長が維持され、4H-SiC単結晶の結晶多形が継承されたことを確認した。本発明例2及び本発明例3も本発明例1と同様に4H-SiC単結晶のらせん成長が確認された。
 図4は、比較例1のSiC単結晶の結晶成長面8Sのモフォロジーの画像である。図4を参照して、島状のモフォロジーが結晶成長面8Sの全体に広がっていなかった。すなわち、結晶成長面8Sの一部の領域において、らせん成長が維持されなかった。そのため、このまま結晶の成長を継続すると、SiC単結晶に異種の多形が混在する可能性がある。
 続いて、本実施例で製造されたSiC単結晶を切断し、結晶内部を観察した。
 本発明例1、2及び比較例1のSiC単結晶では、結晶内部に欠陥等はみられなかった。本発明例3のSiC単結晶では、結晶多形は4H-SiC単結晶であった。しかしながら、製造されたSiC単結晶には、内部に浸透する空隙がみられた。したがって、本発明例3のSiC単結晶は、結晶欠陥があると判断した。
 本発明例2及び本発明例3の昇温速度は2.75℃/hであり、10℃/h以下であった。本発明例2及び本発明例3では、結晶成長中にSi-C溶液中のCの過飽和状態が維持されたと考えられる。そのため、本発明例2及び本発明例3のSiC単結晶の成長速度は、昇温速度が10℃/hよりも大きかった本発明例1の成長速度よりも高かった。
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。
  1  製造装置
  7  Si-C溶液
  8  SiC種結晶
 8S  結晶成長面

Claims (5)

  1.  溶液成長法によるSiC単結晶の製造方法であって、
     坩堝に収容されるSi-C溶液の原料を溶融し、前記Si-C溶液を生成する生成工程と、
     シードシャフトの下端に取り付けられたSiC種結晶を前記Si-C溶液に接触させ、前記SiC種結晶の結晶成長面に前記SiC単結晶を成長させる成長工程とを備え、
     前記成長工程では、
     前記Si-C溶液を昇温させながら前記SiC単結晶を成長させる、SiC単結晶の製造方法。
  2.  請求項1に記載のSiC単結晶の製造方法であって、
     前記成長工程では、
     前記SiC単結晶の成長終了時における結晶成長温度は、成長開始時の結晶成長温度よりも高い、SiC単結晶の製造方法。
  3.  請求項1又は請求項2に記載のSiC単結晶の製造方法であって、
     前記成長工程では、
     前記Si-C溶液の液面と前記SiC種結晶の前記結晶成長面との間にメニスカスを形成する、SiC単結晶の製造方法。
  4.  請求項3に記載のSiC単結晶の製造方法であって、
     前記メニスカスの高さは、3mm以下である、SiC単結晶の製造方法。
  5.  昇華再結晶法又は高温CVD法によるSiC単結晶の製造方法であって、
     請求項1~請求項4のいずれか1項に記載の製造方法により製造された前記SiC単結晶を準備する準備工程と、
     前記SiC単結晶を種結晶とし、前記SiC種結晶の結晶成長面にSiC単結晶を成長させる成長工程と、を備える、SiC単結晶の製造方法。
PCT/JP2016/001573 2015-03-18 2016-03-17 SiC単結晶の製造方法 WO2016147673A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/558,683 US10119199B2 (en) 2015-03-18 2016-03-17 Method for producing SiC single crystal
CN201680027058.2A CN107532328B (zh) 2015-03-18 2016-03-17 SiC单晶的制造方法
JP2017506103A JP6409955B2 (ja) 2015-03-18 2016-03-17 SiC単結晶の製造方法
KR1020177029323A KR101983489B1 (ko) 2015-03-18 2016-03-17 SiC 단결정의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015055454 2015-03-18
JP2015-055454 2015-03-18

Publications (1)

Publication Number Publication Date
WO2016147673A1 true WO2016147673A1 (ja) 2016-09-22

Family

ID=56919982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001573 WO2016147673A1 (ja) 2015-03-18 2016-03-17 SiC単結晶の製造方法

Country Status (5)

Country Link
US (1) US10119199B2 (ja)
JP (1) JP6409955B2 (ja)
KR (1) KR101983489B1 (ja)
CN (1) CN107532328B (ja)
WO (1) WO2016147673A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6583989B2 (ja) * 2015-04-21 2019-10-02 昭和電工株式会社 SiC単結晶シード、SiCインゴット、SiC単結晶シードの製造方法及びSiC単結晶インゴットの製造方法
KR102187817B1 (ko) * 2018-10-19 2020-12-08 한국세라믹기술원 증착공정에서 발생되는 탄화규소 부산물을 단결정 원료로 재생하는 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007457A1 (ja) * 2009-07-17 2011-01-20 トヨタ自動車株式会社 SiC単結晶の製造方法
WO2013065204A1 (ja) * 2011-10-31 2013-05-10 トヨタ自動車株式会社 SiC単結晶の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07172998A (ja) * 1993-12-21 1995-07-11 Toshiba Corp 炭化ケイ素単結晶の製造方法
JP4853449B2 (ja) 2007-10-11 2012-01-11 住友金属工業株式会社 SiC単結晶の製造方法、SiC単結晶ウエハ及びSiC半導体デバイス
JP2010248003A (ja) * 2009-04-10 2010-11-04 Toyota Motor Corp SiC単結晶の製造方法
WO2011007458A1 (ja) * 2009-07-17 2011-01-20 トヨタ自動車株式会社 SiC単結晶の製造方法
WO2013062130A1 (ja) * 2011-10-28 2013-05-02 京セラ株式会社 結晶の製造方法
KR20130065204A (ko) 2011-12-09 2013-06-19 현대모비스 주식회사 단말 통신 모드를 구비한 하이패스 단말기 및 그 제어 방법
JP6046405B2 (ja) * 2012-07-19 2016-12-14 トヨタ自動車株式会社 SiC単結晶のインゴット、その製造装置及びその製造方法
JP2014122133A (ja) 2012-12-21 2014-07-03 Kyocera Corp 結晶の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007457A1 (ja) * 2009-07-17 2011-01-20 トヨタ自動車株式会社 SiC単結晶の製造方法
WO2013065204A1 (ja) * 2011-10-31 2013-05-10 トヨタ自動車株式会社 SiC単結晶の製造方法

Also Published As

Publication number Publication date
CN107532328A (zh) 2018-01-02
KR101983489B1 (ko) 2019-05-28
CN107532328B (zh) 2020-06-19
KR20170128475A (ko) 2017-11-22
US20180112328A1 (en) 2018-04-26
JPWO2016147673A1 (ja) 2017-12-28
JP6409955B2 (ja) 2018-10-24
US10119199B2 (en) 2018-11-06

Similar Documents

Publication Publication Date Title
JP4736401B2 (ja) 炭化珪素単結晶の製造方法
JP2004002173A (ja) 炭化珪素単結晶とその製造方法
WO2015137439A1 (ja) SiC単結晶の製造方法
JP2008100854A (ja) SiC単結晶の製造装置および製造方法
WO2014189008A1 (ja) 炭化珪素単結晶及びその製造方法
JP6409955B2 (ja) SiC単結晶の製造方法
JP6249494B2 (ja) 炭化珪素単結晶の製造方法
JP2004196591A (ja) 化合物半導体単結晶の製造方法および結晶成長装置
KR101801867B1 (ko) SiC 단결정의 제조 방법
US20170283982A1 (en) METHOD FOR PRODUCING P-TYPE SiC SINGLE CRYSTAL
JP6128588B2 (ja) SiC単結晶、その製造方法およびその表面清浄化方法
WO2017135272A1 (ja) SiC単結晶の製造方法及びSiC種結晶
WO2018062224A1 (ja) SiC単結晶の製造方法及びSiC種結晶
WO2017047536A1 (ja) SiC単結晶の製造装置、SiC単結晶の製造方法及びSiC単結晶材
WO2016148207A1 (ja) SiC単結晶の製造方法
WO2014192573A1 (ja) SiC単結晶の製造装置及び当該製造装置を用いるSiC単結晶の製造方法
JP2014024705A (ja) 炭化珪素基板の製造方法
JP6821896B2 (ja) シリコン系溶融組成物及びこれを用いるシリコンカーバイド単結晶の製造方法
KR20160135651A (ko) SiC 단결정의 제조 방법
JP5172881B2 (ja) 化合物半導体単結晶の製造装置及びその製造方法
JP2011006309A (ja) サファイア単結晶の製造方法
JP5471398B2 (ja) エピタキシャル成長用のサファイア単結晶ウエハ及びその製造方法
WO2017043215A1 (ja) SiC単結晶の製造方法
JP2006306638A (ja) AlN単結晶の製造方法
WO2020241578A1 (ja) SiC単結晶インゴットの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764504

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506103

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15558683

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177029323

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16764504

Country of ref document: EP

Kind code of ref document: A1