KR101983489B1 - SiC 단결정의 제조 방법 - Google Patents

SiC 단결정의 제조 방법 Download PDF

Info

Publication number
KR101983489B1
KR101983489B1 KR1020177029323A KR20177029323A KR101983489B1 KR 101983489 B1 KR101983489 B1 KR 101983489B1 KR 1020177029323 A KR1020177029323 A KR 1020177029323A KR 20177029323 A KR20177029323 A KR 20177029323A KR 101983489 B1 KR101983489 B1 KR 101983489B1
Authority
KR
South Korea
Prior art keywords
crystal
growth
sic single
single crystal
solution
Prior art date
Application number
KR1020177029323A
Other languages
English (en)
Other versions
KR20170128475A (ko
Inventor
가즈아키 세키
가즈히토 가메이
가즈히코 구스노키
가쓰노리 단노
히로노리 다이코쿠
마사요시 도이
Original Assignee
도요타지도샤가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도요타지도샤가부시키가이샤 filed Critical 도요타지도샤가부시키가이샤
Publication of KR20170128475A publication Critical patent/KR20170128475A/ko
Application granted granted Critical
Publication of KR101983489B1 publication Critical patent/KR101983489B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/08Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/10Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/06Single-crystal growth from melt solutions using molten solvents by cooling of the solution using as solvent a component of the crystal composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

본 발명의 실시형태의 용액 성장법에 의한 SiC 단결정의 제조 방법은, 생성 공정과 성장 공정을 구비한다. 생성 공정에서는, 도가니(5)에 수용되는 Si-C 용액(7)의 원료를 용융하고, Si-C 용액(7)을 생성한다. 성장 공정에서는, 시드 샤프트(6)에 부착된 SiC 종결정(8)을 Si-C 용액(7)에 접촉시키고, SiC 종결정(8)의 결정 성장면(8S)에 SiC 단결정을 성장시킨다. 성장 공정에서는, Si-C 용액(7)을 승온시키면서 SiC 단결정을 성장시킨다. 본 발명의 실시형태에 의한 SiC 단결정의 제조 방법은, 원하는 결정다형의 SiC 단결정을 성장시키기 쉽다.

Description

SiC 단결정의 제조 방법
본 발명은, 단결정의 제조 방법에 관한 것이며, 더욱 상세하게는, SiC 단결정의 제조 방법에 관한 것이다.
탄화규소(SiC)는, 열적 및 화학적으로 안정적인 화합물이다. SiC는 Si에 비해 우수한 밴드 갭, 절연 파괴 전압, 전자 포화 속도 및 열전도율을 갖는다. 그 때문에, SiC는 차세대 반도체 재료로서 기대되고 있다.
SiC는, 결정다형을 나타내는 재료로서 알려져 있다. SiC의 결정 구조는 예를 들면, 육방정계의 6H, 4H 및 입방정계의 3C 등이 있다. 이들 결정 구조 중, 4H의 결정 구조를 갖는 SiC 단결정(이하, 4H-SiC 단결정이라 칭한다.)은, 다른 결정 구조를 갖는 SiC 단결정에 비해, 밴드 갭이 크다. 그 때문에, 4H-SiC 단결정은, 차세대 파워 디바이스 재료로서 주목되고 있다.
SiC 단결정의 제조 방법으로서, 용액 성장법이 있다. 용액 성장법에서는, SiC 단결정으로 이루어지는 종결정의 결정 성장면을 Si-C 용액에 접촉시킨다. Si-C 용액 중 종결정의 근방 부분을 과냉각 상태로 하여, 종결정의 결정 성장면에 SiC 단결정을 성장시킨다.
4H-SiC 단결정의 성장에 있어서, 종결정의 결정다형을 계승시키는 방법의 하나로서, 나선 성장이 있다. 나선 성장은, 종결정에 존재하는 나선 전위를 이용하여 결정 성장면에 적층 정보를 전파시켜, 결정을 성장시킨다.
4H-SiC 단결정의 벌크 성장에서는, 4H-SiC 이외의 다른 결정다형이 혼재되어 복수의 결정다형이 성장하는 경우가 종종 있다. 이 경우, 제조된 SiC의 일부가 다결정(결함)이 되어, 4H-SiC 단결정이 안정적으로 성장하지 않는다.
4H-SiC 단결정을 안정적으로 성장시키기 위해서는, 종결정의 결정다형(즉 4H 다형)을 성장하는 단결정에 계승시키거나, 또는 4H-SiC의 핵 형성을 발생시키거나 하는 두 가지 방식이 있다. 후자의 수법에서는, 결정다형을 제어하는 것은 곤란하다. 한편, 전자의 수법에서는, 성장 중에 종결정의 결정다형(4H 다형)을 성장 중의 단결정에 승계할 수 없는 경우가 있다. 이 경우, 성장 중의 결정에 4H-SiC 이외의 다른 결정다형(6H 다형 등)이 혼재되어, 4H-SiC 단결정의 벌크 결정 성장이 곤란하다.
SiC 단결정의 결함을 억제하는 제조 방법은, 일본국 특허 공개 2009-91222호 공보(특허 문헌 1), 국제 공개 제2013/065204호(특허 문헌 2) 및 일본국 특허 공개 2014-122133호 공보(특허 문헌 3)에 개시되어 있다.
특허 문헌 1에 개시된 제조 방법은, Si-C 용액에, {0001}면으로부터 경사진 결정 성장면을 갖는 SiC 종결정을 침지하고, 종결정 상에 SiC 단결정을 성장시킨다. 이에 의해, SiC 단결정의 3차원 성장을 억제하고, 고품위의 2차원 성장을 안정적으로 진행시킬 수 있다고 특허 문헌 1에는 기재되어 있다.
특허 문헌 2에 개시된 제조 방법은, SiC 종결정의 결정 성장면의 근방에 있어서 Si 용액 중의 C의 과포화도를 제어한다. 구체적으로는, C의 과포화도가 높은 시기와 낮은 시기를 번갈아 반복한다. 이에 의해, 높은 성장 속도로 결정 성장면이 균일한 SiC 단결정을 제조할 수 있다고 특허 문헌 2에는 기재되어 있다.
특허 문헌 3에 개시된 제조 방법은, SiC 단결정의 성장 중에 결정 성장면을 Si-C 용액으로부터 떨어뜨리고, 결정 성장을 중지한다. 결정 성장을 중지 후, Si-C 용액을 승온시킨다. Si-C 용액의 승온 후, 결정 성장 온도를 일정하게 하여 다시, 결정 성장을 중지한 SiC 단결정을 성장시킨다. 이에 의해, Si-C 용액 중의 C 농도를 조정해, 다형 변화나 전위의 발생을 억제할 수 있다고 특허 문헌 3에는 기재되어 있다.
일본국 특허 공개 2009-91222호 공보 국제 공개 2013/065204호 일본국 특허 공개 2014-122133호 공보
그러나, 특허 문헌 1의 제조 방법에서는, SiC 단결정의 특정의 결정다형을 유지하는 방법에 대해서는 기재되어 있지 않다. 특허 문헌 2의 제조 방법에서는, Si-C 용액 중의 C의 과포화도가 높은 시기에, 결정 성장면에 종결정의 결정다형과 상이한 다른 결정다형이 생성되는 경우가 있다. 특허 문헌 3의 제조 방법은, 결정 성장 중에 결정 성장 온도를 일정하게 유지한다. 이 경우, 여전히 원하는 결정다형 이외의 다른 결정다형이 생성되는 경우가 있다.
본 발명의 목적은, 원하는 결정다형의 SiC 단결정을 성장시키기 쉬운 제조 방법을 제공하는 것이다.
본 발명의 실시형태의 용액 성장법에 의한 SiC 단결정의 제조 방법은, 생성 공정과 성장 공정을 구비한다. 생성 공정에서는, 도가니에 수용되는 Si-C 용액의 원료를 용융하고, Si-C 용액을 생성한다. 성장 공정에서는, 시드 샤프트에 부착된 SiC 종결정을 Si-C 용액에 접촉시키고, SiC 종결정의 결정 성장면에 SiC 단결정을 성장시킨다. 성장 공정에서는, Si-C 용액을 승온시키면서 SiC 단결정을 성장시킨다.
본 발명에 따른 SiC 단결정의 제조 방법은, 원하는 결정다형의 SiC 단결정을 성장시키기 쉽다.
도 1은, 본 실시형태의 SiC 단결정의 제조 장치의 전체도이다.
도 2는, 결정 성장 중에 있어서의 결정 성장 시간과, Si-C 용액 중의 C의 과포화도의 관계를 나타내는 도면이다.
도 3은, 실시예 중의 본 발명예 1의 SiC 단결정의 결정 성장면의 모폴로지의 화상이다.
도 4는, 실시예 중의 비교예 1의 SiC 단결정의 결정 성장면의 모폴로지의 화상이다.
본 실시형태의 용액 성장법에 의한 SiC 단결정의 제조 방법은, 생성 공정과 성장 공정을 구비한다. 생성 공정에서는, 도가니에 수용되는 Si-C 용액의 원료를 용융하고, Si-C 용액을 생성한다. 성장 공정에서는, 시드 샤프트에 부착된 SiC 종결정을 Si-C 용액에 접촉시키고, SiC 종결정의 결정 성장면에 SiC 단결정을 성장시킨다. 성장 공정에서는, Si-C 용액을 승온시키면서 SiC 단결정을 성장시킨다.
본 실시형태의 제조 방법은, 결정 성장 중의 Si-C 용액을 시간의 경과에 따라 승온시킨다. 이 경우, 결정 성장 중에 Si-C 용액의 C의 용해도가 높아지기 때문에, Si-C 용액 중의 C의 과포화도를 억제할 수 있다. 이에 의해, 이종의 결정다형의 발생을 억제한다.
바람직하게는, 성장 공정에서는, SiC 단결정의 성장 종료시에 있어서의 결정 성장 온도는, 성장 개시시의 결정 성장 온도보다 높다.
바람직하게는, 성장 공정에서는, Si-C 용액의 액면과 SiC 종결정의 결정 성장면 사이에 메니스커스를 형성한다.
이 경우, 결정 성장 중에, 이종의 결정다형의 발생을 더 억제할 수 있다.
바람직하게는, 성장 공정에서의 메니스커스의 높이는, 3mm 이하이다.
이 경우, 제조되는 SiC 단결정의 결정 결함을 억제한다. 또, 제조되는 SiC 단결정의 축경을 억제할 수 있다.
본 실시형태의 승화 재결정법 또는 고온 CVD법에 의한 SiC 단결정의 제조 방법은, 준비 공정과 성장 공정을 구비한다. 준비 공정에서는, 상술한 제조 방법에 의해 제조된 SiC 단결정을 준비한다. 성장 공정에서는, 준비한 SiC 단결정을 종결정으로 하고, SiC 종결정의 결정 성장면에 SiC 단결정을 성장시킨다.
이 경우, 이종의 결정다형의 발생을 억제한 SiC 단결정을, 빠른 성장 속도로 제조할 수 있다.
이하, 도면을 참조하여, 본 발명의 실시형태를 상세하게 설명한다. 도면 중 동일 또는 상당 부분에는 동일 부호를 부여하여 그 설명은 반복하지 않는다.
[제1의 실시형태]
[제조 장치]
도 1은, 본 실시형태의 용액 성장법에 의한 SiC 단결정의 제조 장치의 전체 도이다. 도 1을 참조하여, 제조 장치(1)는, 챔버(2), 유도 가열 장치(3), 단열 부재(4), 도가니(5), 시드 샤프트(6), 구동원(9) 및 회전 장치(20)를 구비한다.
챔버(2)는, 유도 가열 장치(3), 단열 부재(4)를 수납한다. 챔버(2)는 또한, 도가니(5)를 수용 가능하다. SiC 단결정을 제조할 때, 챔버(2)는 냉각된다.
유도 가열 장치(3)는, 도가니(5)의 둘레, 보다 구체적으로는, 단열 부재(4)의 둘레에 배치된다. 유도 가열 장치(3)는 예를 들어, 고주파 코일이다. 유도 가열 장치(3)의 코일의 중심축은, 제조 장치(1)의 연직 방향을 향한다. 바람직하게는, 유도 가열 장치(3)의 코일은, 시드 샤프트(6)와 동축에 배치된다.
단열 부재(4)는, 하우징형상이다. 단열 부재(4)는, 도가니(5)를 내부에 수납 가능하다. 단열 부재(4)는, 내부에 수납된 도가니(5)를 보온한다. 단열 부재(4)는, 상측 덮개 및 바닥부의 중앙에 관통 구멍을 갖는다. 상측 덮개의 관통 구멍에는, 시드 샤프트(6)가 통과된다. 바닥부의 관통 구멍에는, 샤프트형상의 회전 장치(20)가 통과된다.
도가니(5)는, 상단이 개구한 하우징이며, Si-C 용액(7)을 수용한다. 바람직하게는, 도가니(5)는, 탄소를 함유한다. 이 경우, 도가니(5)는, Si-C 용액(7)으로의 탄소의 공급원이 된다. 도가니(5)는 예를 들어, 흑연제이다.
시드 샤프트(6)는 봉형상의 샤프트이며, 챔버(2)의 상방으로부터 하방을 향해 연장된다. 시드 샤프트(6)의 상단은, 구동 장치(9)와 연결된다. 시드 샤프트(6)는, 챔버(2) 및 단열 부재(4)를 관통한다. 결정 성장시, 시드 샤프트(6)의 하단은, 도가니(5) 내에 배치된다. 시드 샤프트(6)는, 하단에 SiC의 종결정(8)을 부착 가능하다. SiC 단결정의 제조시에, 시드 샤프트(6)의 하단에 종결정(8)이 부착된다. 구동원(9)에 의해, 시드 샤프트(6)는 승강 가능하다. 시드 샤프트(6)는 또한, 구동원(9)에 의해 축 둘레로 회전 가능하다.
Si-C 용액(7)은, SiC 단결정의 원료이며, 실리콘(Si)과 탄소(C)를 함유한다. Si-C 용액(7)은 또한, Si 및 C 이외의 다른 금속 원소를 함유해도 된다. Si-C 용액(7)은, Si-C 용액(7)의 원료를 가열에 의해 용융하여 생성된다.
회전 장치(20)는, 샤프트형상이며, 단열 용기(4)의 하면 및 챔버(2)의 하면을 관통한다. 회전 장치(20)의 상단에는, 도가니(5)가 배치 가능하다. 회전 장치(20)는, 상단에 배치된 도가니(5)를 회전 장치(20)의 중심축 둘레로 회전할 수 있다. 회전 장치(20)는 또한, 도가니(5)를 승강 가능하다.
[제조 방법]
본 실시형태에 의한 제조 방법은, 생성 공정과 성장 공정을 구비한다. 생성 공정에서는, 제조 장치(1)를 이용하여 Si-C 용액(7)을 생성한다. 성장 공정에서는, SiC 종결정(8)을 Si-C 용액(7)에 접촉시키고, 결정 성장 중에 Si-C 용액(7)을 승온시키면서 SiC 단결정을 성장시킨다. 이하, 각 공정을 설명한다.
[생성 공정]
Si-C 용액의 원료를 포함하는 도가니(5)를, 챔버(2) 내의 회전 장치(20) 위에 배치한다. 계속해서, 챔버(2)를 닫고, 챔버(2) 내에 불활성 가스를 충전한다. 불활성 가스는 예를 들어, 헬륨이나 아르곤이다. 유도 가열 장치(3)를 이용하여, 도가니(5) 내의 원료를 가열한다. 가열된 원료가 융해되고, Si-C 용액(7)이 생성된다.
[성장 공정]
Si-C 용액(7)이 생성된 후, SiC 종결정(8)을 Si-C 용액(7)에 침지한다. 구체적으로는, 시드 샤프트(6)를 강하시켜, 시드 샤프트(6)의 하단에 부착된 SiC 종결정(8)을, Si-C 용액(7)에 접촉시킨다. 4H-SiC 단결정을 제조하는 경우, SiC 종결정(8)의 결정 성장면은 (0001)면 또는 (000-1)면이거나, 이들 면으로부터 8° 이하의 각도로 경사진 면인 것이 바람직하다. 이 경우, 4H-SiC 단결정의 성장이 안정되기 쉽다. 이하, 본 예에서는, 4H-SiC 단결정을 제조하는 전제로 설명을 계속한다. 그러나, 본 실시형태의 제조 방법은, 4H-SiC 이외의 다른 결정다형의 SiC 단결정을 제조하는 경우에도 동일하다.
SiC 종결정(8)을 Si-C 용액(7)에 접촉시킨 후, 유도 가열 장치(3)는, Si-C 용액(7)을 결정 성장 온도까지 가열한다. 결정 성장 온도란, 성장 공정에 있어서 SiC 단결정을 성장시키는 경우의 Si-C 용액의 액면 온도이다. 일반적인 결정 성장 온도는 1600~2200℃이다. 성장 공정에서는, 상기 결정 성장 온도로 SiC 단결정을 성장시킨다.
계속해서, Si-C 용액(7) 중, SiC 종결정(8)의 근방 부분(이하, 단순히 근방 부분이라고도 한다)을 과냉각한다. 예를 들어, 시드 샤프트(6)의 내부에 냉매를 순환시킨다. 냉매는 예를 들면, 아르곤이나 헬륨 등의 불활성 가스이다. 이에 의해, Si-C 용액(7) 중, SiC 종결정(8)의 근방 부분에서는, C가 과포화 상태가 된다. 따라서, SiC 종결정(8)의 결정 성장면(8S) 상에 SiC 단결정이 생성되고, 성장한다.
성장 공정에서는 또한, SiC 종결정(8)의 결정다형을 성장 중의 SiC 단결정에 승계시키기 위해서, Si-C 용액(7)을 승온시키면서, SiC 단결정을 성장시킨다. 이 경우, 근방 부분에서 C가 과잉으로 과포화가 되는 것을 억제할 수 있다. 그 때문에, SiC 종결정(8)의 결정다형을 SiC 단결정에 승계하기 쉽다. 그에 따라, 4H다형의 SiC 단결정을 안정적으로 제조하기 쉽다. 이하, 이 점에 대해서 상세하게 기술한다.
[결정다형의 유지]
SiC 단결정의 성장에 있어서, 결정다형을 계승시키는 방법의 하나로서, 나선 성장이 있다. 나선 성장은, 나선 전위를 이용하여 결정 성장면에 적층 정보를 전파시키고, 결정을 성장시킨다. 4H-SiC 단결정의 성장에서는, 결정 성장면(8S)의 전체에서 나선 성장을 유지함으로, 다른 결정다형의 혼재가 적은 4H-SiC 단결정을 제조할 수 있다.
성장 공정에 있어서, Si-C 용액(7) 중의 C는, SiC 단결정의 성장에 이용된다. 그 때문에, 성장 공정에서는 시간의 경과에 따라 C 농도가 저하된다고 생각되었다. 그러나, 본 발명자들의 조사 결과, 성장 공정에서는, 시간 경과에 따라 Si-C 용액(7) 중의 C 농도가 상승하는 것이 판명되었다.
성장 공정에 있어서 시간 경과에 따라 Si-C 용액(7)의 C 농도가 상승하는 이유는 다음과 같다고 생각된다. 통상, 성장 공정에서는 결정 성장 온도를 일정하게 유지한다. 시간의 경과에 따라, 도가니(7)로부터 Si-C 용액(7)에 탄소가 공급된다. 결정 성장 온도가 일정한 경우, C의 용해도는 일정하다. 그 때문에, 시간의 경과에 따라 C가 Si-C 용액(7)에 계속 공급되면, Si-C 용액(7) 중의 C량이 C 용해도에 상당하는 양을 초과해, 과포화 상태가 된다. 또, 도가니(7)가 C 공급원으로 되어 있지 않고, Si-C 용액(7)의 원료에 C를 함유시킨 경우, 시간의 경과에 따라, Si-C 용액(7)이 증발한다. 이 경우에도, Si-C 용액(7) 중의 C량이 C 용해도를 초과해, 과포화 상태가 될 수 있다.
C의 과포화도가 일정 이상으로 높아지면, SiC 종결정(8)의 결정 성장면(8S)에 이종의 결정다형이 생성되기 쉬워진다. 이 이종의 다형이 에피택셜 성장하면, 4H-SiC의 나선 성장이 저해되어, 동일한 결정다형(즉 본 예에서는 4H 다형)을 유지하기 어려워진다.
이종의 결정다형이 혼재되지 않는 SiC 단결정을 성장시키려면, Si-C 용액(7) 중의 C의 과포화도를 일정 이하로 제어하면 된다. 여기서, C의 과포화도는 다음 식으로 정의된다.
(C의 과포화도 σ)=[(Si-C 용액 중의 C 농도)-(Si-C 용액 중의 평형 C 농도)]/(결정 성장 개시시의 Si-C 용액 중의 평형 C 농도)
도 2는, 결정 성장 중에 있어서의 Si-C 용액(7)의 C의 과포화도의 변화를 나타내는 도면이다. 종축은 C의 과포화도 σ를 나타내고, 횡축은 시간을 나타낸다. 도 2 중의 σ0은 결정 성장 개시시의 과포화도를 나타낸다. σ1은, 이종의 결정다형이 생성되는 임계의 과포화도를 나타낸다. 즉, 과포화도 σ가 σ1 이상이 되면 결정 성장면(8S)이나 도가니(5)의 내벽에 다결정이 생성되어 부착된다.
도 2 중의 파선은, 종래(통상)의 제조 방법, 즉, 성장 공정 중, 결정 성장 온도를 일정하게 유지한 경우의 Si-C 용액(7) 중의 C의 과포화도 σb의 추이를 나타낸다. 도 2의 실선은, 본 실시형태의 제조 방법, 즉, 성장 공정 중, 시간의 경과와 함께 결정 성장 온도가 상승하는 경우의 Si-C 용액(7) 중의 C의 과포화도 σa의 추이를 나타낸다.
도 2를 참조하여, 종래의 제조 방법의 경우(도면 중 파선 σb), 상술한 바와 같이, 시간의 경과와 함께 C의 과포화도 σb가 높아진다. 이 경우, 성장 공정 중에서 시간 t 경과 후에, Si-C 용액(7)의 C의 과포화도 σb가, σ1을 초과한다. 그 때문에, 4H 이외의 다른 결정다형이 생성되기 쉬워진다.
한편, 본 실시형태의 제조 방법의 경우(도면 중 실선 σa), 시간의 경과에 따른 C의 과포화도의 상승이 억제된다. 결정 성장 온도가 높을수록, C의 용해도는 높아진다. 즉, σa의 쪽이 σb보다 결정 성장 중에 C의 용해도가 높아진다. 따라서, Si-C 용액(7) 중의 C의 과포화도가 억제된다. 이와 같이, 결정 성장 중에 있어서, 시간의 경과에 따라 결정 성장 온도가 상승하면, C의 과포화도가 과잉으로 상승하는 것을 억제할 수 있어, C의 과포화도를 적정한 범위로 억제할 수 있다. 이에 의해, 이종의 결정다형의 생성을 억제해, 4H-SiC 단결정의 나선 성장이 유지되므로, 순도가 높은 4H-SiC 단결정을 제조할 수 있다.
상술한 바와 같이, Si-C 용액(7) 중의 C의 과포화도는 시간의 경과에 따라 높아진다. 이것을 억제하기 위해서, Si-C 용액(7)의 C의 용해도는 시간의 경과에 따라 높게 하는 것이 바람직하다. 바꿔 말하면, SiC 단결정의 결정 성장 종료시의 결정 성장 온도는, 결정 성장 개시시의 결정 성장 온도보다 높은 것이 바람직하다. 또, Si-C 용액(7)은, 일정한 승온 속도로 승온시키는 것이 바람직하다. 이 경우, 유도 가열 장치(3)의 출력 제어도 용이하다.
성장 공정 중에 있어서의 Si-C 용액(7)의 승온 속도는 1~10℃/h가 바람직하다. 승온 속도가 1℃/h 미만인 경우, C의 과포화도의 상승이 충분히 억제되지 않기 때문에, 이종의 다형이 생성되는 경우가 있다. 승온 속도가 10℃/h를 초과하는 경우, Si-C 용액(7) 중의 C가 미포화가 되므로, 성장한 SiC 단결정이 용해되는 일이 있다. 따라서, 바람직한 승온 속도는 1~10℃/h이다. 승온 속도의 보다 바람직한 하한은 1℃/h 초과이며, 더욱 바람직하게는 1.2℃/h 이상, 특히 바람직하게는 1.5℃/h 이상이다. 승온 속도의 보다 바람직한 상한은 10℃/h 미만이며, 더욱 바람직하게는 9℃/h 이하, 특히 바람직하게는 5℃/h 이하이다.
결정 성장 개시시의 Si-C 용액(7)의 결정 성장 온도의 바람직한 하한은, 1800℃이다. 결정 성장 온도가 1800℃ 미만인 경우, 4H-SiC가 불안정해져, 이종의 결정다형이 생성되는 경우가 있다. 결정 성장 종료시의 Si-C 용액(7)의 결정 성장 온도의 바람직한 상한은, 2200℃이다. 결정 성장 온도가 2200℃를 넘는 경우, 특히 대기압 하에서는, Si-C 용액(7)이 현저하게 증발하는 일이 있다. 결정 성장 종료시의 결정 성장 온도의 더욱 바람직한 상한은 2100℃이다. 결정 성장 종료시의 결정 성장 온도의 바람직한 하한은 1850℃이며, 더욱 바람직하게는 1900℃이다.
바람직하게는, 성장 공정에서는, SiC 종결정(8)의 결정 성장면(8S)과 Si-C 용액(7)의 액면 사이에 메니스커스를 형성한다. 메니스커스를 형성한 경우, 결정 성장면(8S)에서의 SiC 다결정의 발생을 억제할 수 있다.
바람직하게는, 메니스커스의 높이는 3mm 이하이다. 메니스커스의 높이가 3mm를 초과하는 경우, 메니스커스가 잘록해져, 성장한 SiC 단결정의 직경이 작아진다. 메니스커스가 잘록해진 경우, 결정 성장면(8S) 근방의 C의 과포화도가 높아진다. 그 때문에, 이종의 다형이 혼재되어, SiC 다결정이 생성되는 경우가 있다.
성장 공정에서는, 결정 성장 개시 전에 멜트 백 공정을 포함해도 된다. 멜트 백 공정에서는, 결정 성장 온도를 올려, Si-C 용액(7) 중의 C를 미포화로 한다. 그 후, SiC 종결정(8)의 결정 성장면(8S)을 Si-C 용액(7)에 접촉시킨다. 이 경우, SiC 종결정(8) 중, Si-C 용액(7)과의 접촉 부분이 Si-C 용액(7)에 용해된다. 이에 의해, SiC 종결정(8)의 결정 성장면(8S)에 가공에 의해서 형성된 데미지층이나, 결정 성장면(8S) 근방의 결함 등을 제거할 수 있다.
상기 실시형태의 제조 방법에서는, Si-C 용액(7)을 일정한 승온 속도로 승온시키는 경우를 설명했다. 그러나, Si-C 용액(7)의 승온 속도는, 일정하지 않아도 된다. Si-C 용액(7) 중의 C의 과포화도에 대응하여 결정 성장 온도를 제어하면 된다.
결정 성장면은, SiC 단결정의 C면, 즉, (0001)면 또는 (000-1)면인 것이 바람직하다. 이 경우, 결정 성장면이 평탄하기 때문에, 나선 성장에 의한 4H-SiC의 결정다형을 유지하기 쉽다.
[제2의 실시형태]
제2의 실시형태에서는, 제1의 실시형태의 제조 방법으로 제조된 SiC 단결정을, 다른 SiC 단결정의 제조 방법의 종결정으로서 이용한다. 다른 SiC 단결정의 제조 방법은 예를 들면, 승화 재결정법이나 고온 CVD법 등이 있다.
승화 재결정법이나 고온 CVD법은, 용액 성장법에 비해 SiC 단결정의 성장 속도가 빠르다. 그 때문에, 원하는 치수의 SiC 단결정을 단시간에 제조할 수 있다.
그러나, 승화 재결정법 등에서는 SiC 종결정에 이종의 결정다형이 혼재되어 있는 경우, 제조되는 SiC 단결정에 이종의 결정다형이 혼재되기 쉽다. 그래서, 제1의 실시형태의 제조 방법에 의해 제조된 SiC 단결정을, 승화 재결정법 등의 SiC 종결정으로서 이용하는 것이 바람직하다. 이에 의해, 승화 재결정법 등으로 제조되는 SiC 단결정이어도, 이종의 결정다형의 발생이나 결정 결함이 억제된다.
본 실시형태에서는, 4H-SiC 단결정을 제조하는 경우를 설명했다. 그러나, 본 실시형태의 제조 방법에 의해 제조되는 SiC 단결정의 결정다형은 4H-SiC로 한정되지 않는다. 본 실시형태의 제조 방법은, 6H형 및 3C형의 SiC 단결정의 제조에도 적용할 수 있다. 이 경우에도 상술한 바와 같이, 이종의 결정다형의 혼재가 억제된 SiC 단결정을 제조할 수 있다.
실시예
성장 공정에서의 조건이 상이한 복수의 제조 방법으로, SiC 단결정을 제조했다. SiC 종결정은, 모든 실시예에서 4H-SiC 단결정을 사용했다. 그리고, 제조된 SiC 단결정의 결정다형의 종류 및 결정의 질을 평가했다. 표 1에, 각 시험의 조건을 나타낸다.
Figure 112017100356704-pct00001
본 발명예 1~3에서는, 성장 공정에서 Si-C 용액을 승온시켰다. 비교예 1에서는, 성장 공정에서 결정 성장 온도를 일정하게 유지했다. 본 발명예 3에서는, 메니스커스의 높이를 본 발명예 1, 2 및 비교예 1에 비해 높게 했다. 본 발명예 1~3 및 비교예 1에서는, 동일한 조성의 Si-C 용액을 사용했다.
[성장 시간]
성장 시간은, SiC 단결정의 성장 개시시부터 성장 종료시까지의 시간을 나타낸다. 본 발명예 1 및 비교예 1에서는 성장 시간은 5시간이었다. 본 발명예 2 및 본 발명예 3에서는 성장 시간은 20시간이었다.
[성장 개시 온도 및 성장 종료 온도]
성장 개시 온도는, SiC 단결정의 성장 개시시의 결정 성장 온도를 나타낸다. 성장 종료 온도는, SiC 단결정의 성장 종료시의 결정 성장 온도를 나타낸다.
[승온 속도]
승온 속도는 1시간당 Si-C 용액의 상승 온도를 나타낸다. 승온 속도는, 본 발명예 1에서는 11.2℃/h, 본 발명예 2 및 본 발명예 3에서는 2.75℃/h였다. 비교예 1에서는 Si-C 용액을 승온시키지 않았다.
[성장 두께]
성장 두께는, 제조된 SiC 단결정의 두께를 나타낸다. 즉, SiC 종결정의 결정 성장면과 제조된 SiC 단결정의 결정 성장면의 거리를 나타낸다.
[성장 속도]
성장 속도는, 1시간당 SiC 단결정의 성장 두께를 나타낸다.
[메니스커스 높이]
메니스커스 높이는, 성장 공정에서의 SiC 단결정의 결정 성장면과 Si-C 용액의 액면의 거리를 나타낸다. 결정 성장면 및 Si-C 용액의 액면은 시간의 경과에 따라 변화된다. 본 실시예에서는, 시드 샤프트와 도가니를 상대적으로 이동시켜 성장 공정에서의 메니스커스 높이를 유지했다. 본 발명예 1, 2 및 비교예 1에서는, 메니스커스 높이는 2mm였다. 본 발명예 3에서는, 메니스커스 높이는 4mm였다.
[결정다형의 종류]
제조된 SiC 단결정의 결정 성장면을, 광학 현미경을 이용하여 관찰했다. 4H-SiC 단결정이 결정 성장면의 전체에 보인 경우에는, 「G」(Good)로 했다. 4H-SiC 단결정이 결정 성장면의 전체에 보이지 않았던 경우, 및, 제조된 SiC 단결정에 결함이 보인 경우는 「NA」(Not Acceptable)로 했다.
[결정 결함]
제조된 SiC 단결정을 절단해, 절단면을 광학 현미경으로 관찰했다. 결정 내부에 결함이 보이지 않았던 경우에는, 「G」(Good)로 했다. 결함이 보인 경우에는, 「NA」(Not Acceptable)로 했다.
도 3은, 본 발명예 1의 SiC 단결정의 결정 성장면(8S)의 모폴로지의 화상이다. 구체적으로는, 미분 간섭 광학 현미경으로 결정 성장면(8S)의 모폴로지를 촬영했다. 후술하는 도 4에 대해서도 동일한 촬영 방법으로 결정 성장면(8S)의 모폴로지를 촬영했다. 도 3을 참조하여, 결정 성장면(8S) 전체에 섬형상의 모폴로지가 확인되었다. 개개의 섬형상의 모폴로지의 중앙에는 나선 전위가 존재하고 있어, 결정 성장면(8S) 전체에서 나선 성장이 확인되었다. 즉, 4H-SiC 단결정의 나선 성장이 유지되고, 4H-SiC 단결정의 결정다형이 계승된 것을 확인했다. 본 발명예 2 및 본 발명예 3도 본 발명예 1과 마찬가지로 4H-SiC 단결정의 나선 성장이 확인되었다.
도 4는, 비교예 1의 SiC 단결정의 결정 성장면(8S)의 모폴로지의 화상이다. 도 4를 참조하여, 섬형상의 모폴로지가 결정 성장면(8S) 전체로 퍼져있지 않았다. 즉, 결정 성장면(8S)의 일부의 영역에 있어서, 나선 성장이 유지되지 않았다. 그 때문에, 이대로 결정의 성장을 계속하면, SiC 단결정에 이종의 다형이 혼재될 가능성이 있다.
계속해서, 본 실시예에서 제조된 SiC 단결정을 절단해, 결정 내부를 관찰했다.
본 발명예 1, 2 및 비교예 1의 SiC 단결정에서는, 결정 내부에 결함 등은 보이지 않았다. 본 발명예 3의 SiC 단결정에서는, 결정다형은 4H-SiC 단결정이었다. 그러나, 제조된 SiC 단결정에는, 내부에 침투하는 공극이 보였다. 따라서, 본 발명예 3의 SiC 단결정은, 결정 결함이 있다고 판단했다.
본 발명예 2 및 본 발명예 3의 승온 속도는 2.75℃/h이며, 10℃/h 이하였다. 본 발명예 2 및 본 발명예 3에서는, 결정 성장 중에 Si-C 용액 중의 C의 과포화 상태가 유지되었다고 생각된다. 그 때문에, 본 발명예 2 및 본 발명예 3의 SiC 단결정의 성장 속도는, 승온 속도가 10℃/h보다 컸던 본 발명예 1의 성장 속도보다 높았다.
이상, 본 발명의 실시형태를 설명했다. 그러나, 상술한 실시형태는 본 발명을 실시하기 위한 예시에 지나지 않는다. 따라서, 본 발명은 상술한 실시형태로 한정되지 않고, 그 취지를 일탈하지 않는 범위 내에서 상술한 실시형태를 적절히 변경하여 실시할 수 있다.
1:제조 장치
7:Si-C 용액
8:SiC 종결정
8S:결정 성장면

Claims (7)

  1. 용액 성장법에 의한 SiC 단결정의 제조 방법으로서,
    도가니에 수용되는 Si-C 용액의 원료를 용융하고, 상기 Si-C 용액을 생성하는 생성 공정과,
    시드 샤프트의 하단에 부착된 SiC 종결정을 상기 Si-C 용액에 접촉시키고, 상기 SiC 종결정의 결정 성장면에 상기 SiC 단결정을 성장시키는 성장 공정을 구비하고,
    상기 성장 공정에서는,
    상기 SiC 단결정의 성장 개시시부터 성장 종료시까지, 상기 Si-C 용액을 승온시키면서 상기 SiC 단결정을 성장시키는, SiC 단결정의 제조 방법.
  2. 청구항 1에 있어서,
    상기 성장 공정에서는,
    상기 SiC 단결정의 상기 성장 종료시에 있어서의 결정 성장 온도는, 상기 성장 개시시의 결정 성장 온도보다 높은, SiC 단결정의 제조 방법.
  3. 청구항 1 또는 청구항 2에 있어서,
    상기 성장 공정에서는,
    상기 Si-C 용액의 액면과 상기 SiC 종결정의 상기 결정 성장면 사이에 메니스커스를 형성하는, SiC 단결정의 제조 방법.
  4. 청구항 3에 있어서,
    상기 메니스커스의 높이는 3mm 이하인, SiC 단결정의 제조 방법.
  5. 승화 재결정법 또는 고온 CVD법에 의한 SiC 단결정의 제조 방법으로서,
    청구항 1 또는 청구항 2에 기재된 제조 방법에 의해 제조된 상기 SiC 단결정을 준비하는 준비 공정과,
    상기 SiC 단결정을 종결정으로 하고, 상기 SiC 종결정의 결정 성장면에 SiC 단결정을 성장시키는 성장 공정을 구비하는, SiC 단결정의 제조 방법.
  6. 승화 재결정법 또는 고온 CVD법에 의한 SiC 단결정의 제조 방법으로서,
    청구항 3에 기재된 제조 방법에 의해 제조된 상기 SiC 단결정을 준비하는 준비 공정과,
    상기 SiC 단결정을 종결정으로 하고, 상기 SiC 종결정의 결정 성장면에 SiC 단결정을 성장시키는 성장 공정을 구비하는, SiC 단결정의 제조 방법.
  7. 승화 재결정법 또는 고온 CVD법에 의한 SiC 단결정의 제조 방법으로서,
    청구항 4에 기재된 제조 방법에 의해 제조된 상기 SiC 단결정을 준비하는 준비 공정과,
    상기 SiC 단결정을 종결정으로 하고, 상기 SiC 종결정의 결정 성장면에 SiC 단결정을 성장시키는 성장 공정을 구비하는, SiC 단결정의 제조 방법.
KR1020177029323A 2015-03-18 2016-03-17 SiC 단결정의 제조 방법 KR101983489B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015055454 2015-03-18
JPJP-P-2015-055454 2015-03-18
PCT/JP2016/001573 WO2016147673A1 (ja) 2015-03-18 2016-03-17 SiC単結晶の製造方法

Publications (2)

Publication Number Publication Date
KR20170128475A KR20170128475A (ko) 2017-11-22
KR101983489B1 true KR101983489B1 (ko) 2019-05-28

Family

ID=56919982

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177029323A KR101983489B1 (ko) 2015-03-18 2016-03-17 SiC 단결정의 제조 방법

Country Status (5)

Country Link
US (1) US10119199B2 (ko)
JP (1) JP6409955B2 (ko)
KR (1) KR101983489B1 (ko)
CN (1) CN107532328B (ko)
WO (1) WO2016147673A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6583989B2 (ja) * 2015-04-21 2019-10-02 昭和電工株式会社 SiC単結晶シード、SiCインゴット、SiC単結晶シードの製造方法及びSiC単結晶インゴットの製造方法
KR102187817B1 (ko) * 2018-10-19 2020-12-08 한국세라믹기술원 증착공정에서 발생되는 탄화규소 부산물을 단결정 원료로 재생하는 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5234184B2 (ja) * 2009-07-17 2013-07-10 トヨタ自動車株式会社 SiC単結晶の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07172998A (ja) * 1993-12-21 1995-07-11 Toshiba Corp 炭化ケイ素単結晶の製造方法
JP4853449B2 (ja) 2007-10-11 2012-01-11 住友金属工業株式会社 SiC単結晶の製造方法、SiC単結晶ウエハ及びSiC半導体デバイス
JP2010248003A (ja) * 2009-04-10 2010-11-04 Toyota Motor Corp SiC単結晶の製造方法
DE112009005154B4 (de) * 2009-07-17 2016-07-14 Toyota Jidosha Kabushiki Kaisha Verfahren zum Erzeugen eines SiC-Einkristalls
JP5318300B1 (ja) * 2011-10-28 2013-10-16 京セラ株式会社 結晶の製造方法
JP5746362B2 (ja) * 2011-10-31 2015-07-08 トヨタ自動車株式会社 SiC単結晶の製造方法
KR20130065204A (ko) 2011-12-09 2013-06-19 현대모비스 주식회사 단말 통신 모드를 구비한 하이패스 단말기 및 그 제어 방법
JP6046405B2 (ja) * 2012-07-19 2016-12-14 トヨタ自動車株式会社 SiC単結晶のインゴット、その製造装置及びその製造方法
JP2014122133A (ja) 2012-12-21 2014-07-03 Kyocera Corp 結晶の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5234184B2 (ja) * 2009-07-17 2013-07-10 トヨタ自動車株式会社 SiC単結晶の製造方法

Also Published As

Publication number Publication date
CN107532328A (zh) 2018-01-02
JPWO2016147673A1 (ja) 2017-12-28
US10119199B2 (en) 2018-11-06
WO2016147673A1 (ja) 2016-09-22
KR20170128475A (ko) 2017-11-22
US20180112328A1 (en) 2018-04-26
CN107532328B (zh) 2020-06-19
JP6409955B2 (ja) 2018-10-24

Similar Documents

Publication Publication Date Title
JP4736401B2 (ja) 炭化珪素単結晶の製造方法
WO2016059788A1 (ja) SiC単結晶の製造方法及びSiC単結晶の製造装置
JP2008105896A (ja) SiC単結晶の製造方法
JP2008100854A (ja) SiC単結晶の製造装置および製造方法
JPWO2012127703A1 (ja) SiC単結晶の製造方法および製造装置
US10443149B2 (en) Method of producing crystal
JP6238249B2 (ja) 炭化珪素単結晶及びその製造方法
KR101983489B1 (ko) SiC 단결정의 제조 방법
JP2008247706A (ja) コランダム単結晶の育成方法、コランダム単結晶およびコランダム単結晶ウェーハ
JP4966007B2 (ja) InP単結晶ウェハ及びInP単結晶の製造方法
KR101801867B1 (ko) SiC 단결정의 제조 방법
KR101983491B1 (ko) SiC 단결정의 제조 방법
WO2017135272A1 (ja) SiC単結晶の製造方法及びSiC種結晶
JPWO2016038845A1 (ja) p型SiC単結晶の製造方法
JP6062045B2 (ja) SiC単結晶の製造装置及び当該製造装置を用いるSiC単結晶の製造方法
JP5172881B2 (ja) 化合物半導体単結晶の製造装置及びその製造方法
JP5651480B2 (ja) 3b族窒化物結晶の製法
JPWO2016143398A1 (ja) 結晶の製造方法
JP2004277266A (ja) 化合物半導体単結晶の製造方法
JP2002274995A (ja) 炭化珪素単結晶インゴットの製造方法
WO2017086449A1 (ja) SiC単結晶の製造方法及びSiC単結晶インゴット
JP2010030847A (ja) 半導体単結晶の製造方法
US20150075419A1 (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JPH0597566A (ja) 単結晶の育成方法及びその装置
JP2016132600A (ja) サファイア単結晶製造装置、及びサファイア単結晶の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant