WO2013058318A1 - 絶縁塗料、絶縁電線、及び絶縁電線の製造方法 - Google Patents

絶縁塗料、絶縁電線、及び絶縁電線の製造方法 Download PDF

Info

Publication number
WO2013058318A1
WO2013058318A1 PCT/JP2012/076952 JP2012076952W WO2013058318A1 WO 2013058318 A1 WO2013058318 A1 WO 2013058318A1 JP 2012076952 W JP2012076952 W JP 2012076952W WO 2013058318 A1 WO2013058318 A1 WO 2013058318A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing agent
insulated wire
insulating
insulating film
conductor
Prior art date
Application number
PCT/JP2012/076952
Other languages
English (en)
French (fr)
Inventor
真 大矢
真 小野寺
佳祐 池田
恵一 冨澤
Original Assignee
古河電気工業株式会社
古河マグネットワイヤ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 古河マグネットワイヤ株式会社 filed Critical 古河電気工業株式会社
Priority to CA 2823730 priority Critical patent/CA2823730A1/en
Priority to KR1020137014256A priority patent/KR101641757B1/ko
Priority to EP12841164.2A priority patent/EP2698405B1/en
Priority to CN201280004327.5A priority patent/CN103270120B/zh
Priority to JP2013513464A priority patent/JP5871439B2/ja
Publication of WO2013058318A1 publication Critical patent/WO2013058318A1/ja
Priority to US13/967,786 priority patent/US20130330554A1/en
Priority to HK14101166.0A priority patent/HK1188241A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/308Wires with resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/421Polyesters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer

Definitions

  • the present invention relates to an insulating paint, an insulated wire, and a method for producing an insulated wire.
  • an insulated wire in which a conductor is covered with an insulating film has been used in electric coils for various electric devices such as motors and transformers.
  • the insulated wire forming this electric coil is required to have adhesion to a conductor, electrical insulation and heat resistance.
  • space electrical devices, aircraft electrical devices, nuclear electrical devices, energy electrical devices, and automotive electrical devices have been required to have higher performance as well as to be smaller and lighter.
  • rotating electrical machines such as motors and transformers are required to have higher output than ever before.
  • rotating electrical machines have been required to be smaller, lighter and have higher performance.
  • the insulation film of the insulated wires has a high adhesion.
  • the demand for is increasing. Therefore, it is necessary to suppress a decrease in adhesion due to the formation of an oxide film after being exposed to a high temperature.
  • a component that improves the adhesion of the insulating coating to the metal conductor is added to the insulating coating to improve the mechanical strength of the insulating coating, thereby improving the workability of the insulated wire.
  • adheresion improver a component that improves the adhesion of the insulating coating to the metal conductor
  • the heat resistance of the insulating film itself may be insufficient by adding an adhesion improver. For this reason, the mechanical strength is lowered due to a heat history such as heating during winding, which causes a problem that the workability of the insulated wire is deteriorated and the insulating film is damaged, and the insulating properties are lowered.
  • JP-A-8-218007 International Publication No. 2009/0408102 JP 2009-9824 A JP 2009-123403 A
  • An object of the present invention is to provide an insulating coating material that can form an insulating film having adhesion to a conductor and excellent in heat resistance. Furthermore, this invention makes it a subject to provide the insulated wire with which the adhesive force of an insulating film does not fall even if it exposes to a high temperature environment for a long time. Furthermore, this invention makes it a subject to provide the manufacturing method of the said insulated wire.
  • the present inventors have suppressed the generation of an oxide film on the surface of a conductor by including a specific reducing agent in the insulating film of the insulated wire, and the adhesion of the insulating film to the metal conductor even in a high temperature environment.
  • the insulating film is formed by using an insulating coating that contains a specific reducing agent that is uniformly dispersed in the solvent component of the resin composition constituting the insulating film and has a sufficiently high boiling point.
  • the reducing agent remaining in the film can prevent the conductor from being oxidized after the heat treatment, and can produce an insulated wire excellent in long-term heat resistance without impairing various properties of the insulating film.
  • the present invention has been made based on this finding.
  • the reducing agent is selected from the group consisting of citronellol, octanol, hydroquinone, geraniol, ascorbic acid, linalool, tetraethylene glycol, and dodecanethiol.
  • a reducing agent having a boiling point of 160 ° C. or higher is contained.
  • the reducing agent is a terpenoid having a hydroxy group.
  • the reducing agent is selected from the group consisting of citronellol, octanol, hydroquinone, geraniol, ascorbic acid, linalool, tetraethylene glycol, and dodecanethiol.
  • a method of manufacturing an insulated wire (16) An insulating film is formed by applying and baking a reducing agent having a boiling point of 160 ° C. or higher on a conductor, and further applying and baking an insulating paint containing a resin capable of forming an insulating film by application and baking. Electric wire manufacturing method. (17) The method for producing an insulated wire according to any one of (14) to (16), wherein the reducing agent is a compound having a reducing hydroxy group. (18) The method for producing an insulated wire according to any one of (14) to (17), wherein the reducing agent is a compound having 10 or more carbon atoms in one molecule.
  • the insulating coating material of the present invention it is possible to form an insulating film that maintains the adhesion to the conductor and is excellent in heat resistance.
  • the insulated wire of this invention has the outstanding effect that the adhesive force of the insulating film with respect to a conductor does not fall even if it exposes to a high temperature environment for a long time.
  • the method for producing an insulated wire of the present invention can provide an insulated wire in which the adhesion of the insulating film to the conductor does not decrease even when exposed to a high temperature environment for a long time.
  • the insulated wire of the present invention can clear such a test. Therefore, according to the present invention, it is possible to provide a highly reliable insulated wire.
  • the “reducing agent” is a reducing property that suppresses the generation of an oxide film generated by a reaction with oxygen in the metal conductor of an insulated wire by a reduction reaction over a long period of time even in a high-temperature environment.
  • a general term for substances. The present inventors have found that the adhesion of the insulating film can be made constant even after the heat treatment by always keeping the surface of the metal conductor in a normal state with a reducing agent.
  • FIGS. 1 to 5 are schematic sectional views showing a preferred embodiment of the insulated wire of the present invention.
  • an insulated wire 10 of the present invention is provided with an insulating film 2 containing a reducing agent on the outer periphery of a conductor 1.
  • the insulating film 2 containing the reducing agent may be provided directly on the outer periphery of the conductor 1 as shown in FIGS. 2, 4 and 5, or as shown in FIG. 3, the layer 4 containing an adhesion improving agent, etc. You may provide on the conductor 1 through another layer. Further, as shown in FIGS.
  • an insulating film 3 containing no reducing agent is provided between the conductor 1 and the insulating film 2 containing the reducing agent, outside the insulating film 2 containing the reducing agent, and the like. May be. That is, in the present invention, the layer (coating) containing the reducing agent may be directly formed on the conductor, or may be provided on the outer periphery of the conductor via another layer.
  • the specific reducing agent is uniformly dispersed in the solvent component of the resin composition constituting the insulating film.
  • the solvent component used in the present invention is not particularly limited, and examples thereof include amide solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide; N, N-dimethylethyleneurea, Urea solvents such as N, N-dimethylpropylene urea and tetramethylurea; lactone solvents such as ⁇ -butyrolactone and ⁇ -caprolactone; carbonate solvents such as propylene carbonate; ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone A sulfone solvent such as sulfolane.
  • amide solvents and urea solvents are preferable in terms of high solubility, high reaction acceleration, and the like, and N-methyl-2 is preferable in that it does not have a hydrogen atom that easily inhibits a crosslinking reaction by heating.
  • -Pyrrolidone, N, N-dimethylacetamide, N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea and tetramethylurea are more preferred, and N-methyl-2-pyrrolidone is particularly preferred.
  • the boiling point is 160 ° C. or higher (preferably 180 ° C. or higher, preferably 210 ° C. or higher, preferably 210 ° C. or higher, in order to avoid the evaporation of the reducing agent by applying and baking the insulating paint on the conductor.
  • 290 ° C. or less more preferably 250 ° C. or less, preferably 180 ° C. to 290 ° C., more preferably 210 ° C. to 250 ° C.).
  • the boiling point of the reducing agent is less than 160 ° C.
  • the reactivity of the reducing agent is high, so that the reducing agent reacts with the low molecular weight component in a temperature range where the low molecular weight components constituting the thermosetting resin are polymerized and cured.
  • the polymerization reaction of the thermosetting resin is hindered, resulting in insufficient curing due to baking, and the strength of the insulating film is reduced.
  • the boiling point of the reducing agent is 160 ° C. or higher, the reducing agent can be mixed into the thermosetting resin moderately without completely evaporating or reacting with the components of the thermosetting resin. Become.
  • Such a reducing agent is not particularly limited as long as it is compatible with a resin capable of forming an insulating film by coating and baking, and suppresses the formation of an oxide film of a conductor.
  • the reducing agent is preferably oxidized in the range of 150 ° C. or higher and 250 ° C. or lower.
  • the reducing agent may be solid or liquid in the standard state (23 ° C.).
  • Primary alcohol, secondary alcohol, primary thiol, and secondary thiol are oxidized and converted to carboxylic acid, carbonyl group, sulfinic acid, and thiocarbonyl group, respectively, and the conductor can be reduced.
  • This reduction of the conductor particularly promotes the reaction when placed in a thermal environment, so that the adhesion between the conductor and the insulating film can be maintained when exposed to a high temperature environment for a long time.
  • Alcohols that can be used in the present invention are not particularly limited, but monoterpenes (carbon number: 10), sesquiterpenes (carbon number: 15), diterpenes (carbon number: 20), sesterterpenes (carbon number: 25). ), Terpenoids having a hydroxy group (for example, geraniol, linalool, farnesol, picrotoxin, phorbol anisatin, linalool, glycyrrhetic acid) among terpenes such as triterpenes (carbon number: 30) and tetraterpenes (carbon number: 40) Terpineol, carveol, citronellol, terpineol); anis alcohol, benzyl alcohol, dihydromyrcenol, dimethylbenzyl carbinol, dipropylene glycol, dodecanol, fenkyl alcohol, 3-methoxy-3-methylbutanol, o Saturated alcohols such as t
  • Polyols that can be used in the present invention are not particularly limited, but ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, dipropylene glycol, 1,2-butanediol, 1, Examples include diols such as 3-butanediol, 1,4-butanediol, 2,3-butanediol-1,5-pentanediol, and polyethylene glycol. In the present invention, among these polyols, one kind may be used alone, or two or more kinds may be used in combination. Of these polyols, diols having a hydroxyl group at both ends are more preferable, and tetraethylene glycol is more preferable in view of excellent solubility of the thermosetting resin.
  • the aldehydes that can be used in the present invention are not particularly limited, and examples include perylaldehyde, citronellal, geranial, and neral. Of these, geranial and neral are more preferable in terms of varnish stability in the presence of oxygen and solubility in a solvent. Among these aldehydes, one kind may be used alone, or two or more kinds may be used in combination.
  • the thiols that can be used in the present invention are not particularly limited, but aliphatic thiols such as octanethiol, decanethiol, dodecanethiol, octadecanethiol, bis (2-mercaptoethyl) sulfide, bis (2,3- Dimercaptopropyl) sulfide, 1,2-bis (2-mercaptoethylthio) ethane, 2- (2-mercaptoethylthio) -1,3-dimercaptopropane, 1,2-bis (2-mercaptoethylthio) -3-mercaptopropane, 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 2,4-bis (mercaptomethyl) -1,5-dimercapto-3-thiapentane, 4,8-bis (mercapto) Methyl) -1,11-di
  • dodecanethiol and 4,7-bis (mercaptomethyl) -1,11-dimercapto-3,6,9-trithiaundecane are more preferable because of their solubility in a solvent and resistance to deterioration in air.
  • these thiols one kind may be used alone, or two or more kinds may be used in combination.
  • Hydroquinones that can be used in the present invention are not particularly limited, but hydroquinone, monomethylhydroquinone, monoethylhydroquinone, 2,3-dimethylhydroquinone, 2,5-dimethylhydroquinone, 2,6-dimethylhydroquinone, and hydroquinone compounds (For example, 3-methyl-4-hydroxyphenyl valerate, 3-methyl-4-hydroxyphenyl decanoate, 3-methyl-4-hydroxyphenyl oleate, 3-ethyl-4-hydroxyphenyl octanoate, 3 -Ethyl-4-hydroxyphenyl oleate, 3-propyl-4-hydroxyphenyl myristate, 3-propyl-4-hydroxyphenyl palmitate, 3-isopropyl-4-hydroxyphenyl palmitate, 3-isopropyl-4- Hydroxyphenyl myristoleate, 3-butyl-4-hydroxyphenyl laurate 3-butyl-4-hydroxyphenyl linoleate, 3-
  • Saccharides that can be used in the present invention include monosaccharides and polysaccharides. Specific examples include allose, altrose, glucose, fructose, lactose, mannose, gulose, idose, galactose, talose and the like. In the present invention, one of these saccharides may be used alone, or two or more thereof may be used in combination. Among these saccharides, glucose is preferably used because it is a general-purpose substance and is inexpensive.
  • the carboxylic acid that can be used in the present invention is not particularly limited, and examples thereof include oxalic acid that converts to formic acid having a formyl group (aldehyde) and ascorbic acid having a hydroxy group when decomposed at high temperatures.
  • the reducing agent used in the present invention it is preferable that the reducing action is actively developed at a high temperature of 180 ° C. or higher.
  • the reducing agent used in the present invention is preferably a compound having a reducing hydroxy group.
  • the reducing agent used in the present invention is preferably a compound having a certain molecular weight so that the reducing agent does not completely decompose and evaporate even when an insulating coating is applied and baked on the conductor.
  • the reducing agent used in the present invention has 10 or more carbon atoms in a reducing agent molecule (preferably 15 or less, more preferably 12 or less, preferably 10 to 15, more preferably 10 to 12). Is preferred.
  • the organic reducing agent that can be used in the present invention preferably has a high boiling point and sufficient solubility for the thermosetting resin oligomer.
  • the reducing agent used in the present invention is preferably a terpenoid having a hydroxy group, which has an unsaturated hydrocarbon group, has high volatility, and exhibits reducibility only after becoming a gas.
  • one of the reducing agents may be used alone, or two or more may be used in combination.
  • the content of the reducing agent in the insulating coating of the present invention can be appropriately set depending on the type of the reducing agent, but it is 1% by mass or more (preferably 2% by mass or more) and 30% by mass or less (preferably based on the resin solid content). Is 15% by mass or less, more preferably 10% by mass), or 1 to 30% by mass, preferably 1 to 15% by mass, more preferably 2 to 10% by mass.
  • the content of the reducing agent is too small relative to the resin solid content, all the reducing agent evaporates during baking, and the effect is hardly exhibited.
  • thermosetting resin such as a polyester resin, a polyimide resin, a polyesterimide resin, or a polyamideimide resin is preferably used.
  • a thermosetting resin may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • polyester resin which can be used for this invention
  • denatured by adding a phenol resin etc. to aromatic polyester is mentioned.
  • a polyester resin having a heat resistance class H can be used.
  • commercially available H-type polyester resins include Isonel 200 (trade name, manufactured by Schenectady International).
  • the polyimide resin that can be used in the present invention is not particularly limited, but a normal polyimide resin such as a thermosetting aromatic polyimide, for example, an aromatic tetracarboxylic dianhydride and an aromatic diamine in a polar solvent.
  • thermoset by using the polyamic-acid solution obtained by making it react and imidating by the heat processing at the time of baking at the time of forming an insulating film is mentioned.
  • examples of commercially available polyimide resins include U varnish (trade name, manufactured by Ube Industries), U imide varnish (trade name, manufactured by Unitika), and the like.
  • the polyamide-imide resin that can be used in the present invention is not particularly limited, but is obtained by directly reacting a tricarboxylic acid anhydride and a diisocyanate in a polar solvent, or adding a diamine to a tricarboxylic acid anhydride in a polar solvent. Those obtained by mixing and amidation with diisocyanates can be mentioned.
  • polyamideimide resins examples include HI406 (trade name, manufactured by Hitachi Chemical Co., Ltd.). Although there is no restriction
  • the insulating paint of the present invention is not limited to the effects of the present invention, and includes a crystallization nucleating agent, a crystallization accelerator, a bubbling nucleating agent, an antioxidant, an antistatic agent, an anti-UV agent, a light stabilizer, and a fluorescence.
  • additives such as brighteners, pigments, dyes, compatibilizers, lubricants, reinforcing agents, flame retardants, crosslinking agents, crosslinking aids, plasticizers, thickeners, thickeners and elastomers, melamine resins, epoxies You may mix
  • Examples of the conductor 1 used for the insulated wire of the present invention include those usually used as a conductor of an insulated wire, such as copper, copper alloy, aluminum, aluminum alloy, or a combination thereof.
  • the cross-sectional shape of the conductor 1 is not particularly limited, and may be a round shape as shown in FIGS. 1 to 4 or a rectangular shape with rounded corners as shown in FIG.
  • the insulated wire of the present invention is an insulated wire in which one or more insulating films are formed by applying and baking an insulating paint containing a resin capable of forming an insulating film on a conductor, and at least of the insulating film.
  • a reducing agent having a boiling point of 160 ° C. or higher is contained in one layer.
  • the reducing agent contained in the insulating film suppresses the growth of the oxide film generated on the conductor in a high temperature environment, whereby the adhesion of the insulating film to the conductor is maintained. Therefore, the insulated wire of the present invention is excellent in heat resistance and mechanical properties, and has an excellent effect that the adhesion of the insulating coating does not deteriorate even when exposed to a high temperature environment for a long time.
  • the resin and the reducing agent that can form an insulating film used for the insulated wire of the present invention are the same as those used for the insulating paint, and the preferred range is also the same. Further, the preferable range of the content of the reducing agent is the same as the preferable range in the insulating paint.
  • the method for producing an insulated wire of the present invention is not particularly limited as long as the insulating film contains a reducing agent having a boiling point of 160 ° C. or higher.
  • a method for forming an insulating film in the insulated wire of the present invention a method of applying and baking the insulating coating of the present invention on a conductor; after applying or baking an insulating coating containing no reducing agent on a conductor, or during baking, A method of spraying a gaseous reducing agent; a method of forming an insulating film by applying and baking an insulating paint containing a resin capable of forming an insulating film on a conductor, and applying and baking a reducing agent on the insulating film; Examples thereof include a method of applying and baking an agent on a conductor, and further applying and baking an insulating paint containing a resin capable of forming an insulating film.
  • the reducing agent alone or a reducing agent composition may be sprayed on the conductor or the insulating film, or the conductor and the conductor provided with the insulating film together with the reducing agent composition. It may be immersed in.
  • the concentration of the reducing agent in the reducing agent composition is not particularly limited, but is preferably 30% by weight or more so that the solvent of the reducing agent composition is easily evaporated by baking.
  • the solvent is not particularly limited as long as the reducing agent dissolves, but is relatively volatile, such as ethyl methyl ketone, acetone, ethyl acetate, methyl acetate, toluene, tetrahydrofuran, methanol, ethanol, isopropanol, chloroform, dichloromethylene It is preferable to use one having a high value.
  • the reducing agent used for the insulated wire of the present invention can exert its effect without applying and baking an insulating coating containing the reducing agent as a conductor or other layer.
  • a reducing agent having a boiling point of 160 ° C. or more may be directly applied on the conductor, and a thermosetting resin layer not containing the reducing agent may be formed thereon.
  • coating method of a reducing agent Before applying thermosetting resin varnish, you may spray-apply a reducing agent solution to a conductor, and you may immerse a conductor in a reducing agent solution. Or the insulating layer which does not contain a reducing agent may be formed on a conductor, and a reducing agent solution may be spray-coated on it, or it may be immersed in a reducing agent solution.
  • the reducing agent may be applied as it is, or diluted with a volatile organic solvent (for example, ethyl acetate, methanol, acetone, methyl ethyl ketone, chloroform, toluene, hexane, cyclohexane, tetrahydrofuran, etc.). It may be used.
  • a volatile organic solvent for example, ethyl acetate, methanol, acetone, methyl ethyl ketone, chloroform, toluene, hexane, cyclohexane, tetrahydrofuran, etc.
  • concentration of the reducing agent is not particularly limited, but 5% to 80% by volume is preferable in that the strong scent of the reducing agent can be suppressed.
  • the insulated wire of the present invention preferably has at least one insulating film formed by applying and baking the insulating paint of the present invention.
  • Such an insulating film may be provided directly on the conductor, or may be provided on the outer periphery of the conductor via another layer.
  • an adhesion layer containing an adhesion improving agent having excellent adhesion to the conductor may be formed.
  • the adhesion layer can be formed by applying a thermosetting resin varnish for the adhesion layer on the conductor and baking and curing.
  • the initial adhesion that is, the adhesion of the insulating film in the step of forming the insulating film on the conductor can be enhanced.
  • the thermosetting resin that can be used for the adhesion layer include polyimide, polyurethane, polyamideimide, polyester, polybenzimidazole, polyesterimide, melamine resin, and epoxy resin.
  • adhesion improvers include, for example, silane alkoxide adhesion improvers (silane coupling agents), titanium alkoxides, titanium acylates, titanium chelates such as titanium chelates, triazine adhesion improvers, imidazole adhesion improvers, and melamines.
  • silane alkoxide adhesion improvers silane coupling agents
  • titanium alkoxides titanium acylates
  • titanium chelates such as titanium chelates
  • triazine adhesion improvers such as system adhesion improvers, carbodiimide adhesion improvers, and thiol adhesion improvers
  • Those commonly used as adhesion improvers for insulated wires such as system adhesion improvers, carbodiimide adhesion improvers, and thiol adhesion improvers, can be used.
  • the addition amount of the adhesion improving agent is not particularly limited, but is preferably 0.01% by mass or more, preferably 10% by mass or less, and preferably about 0.01 to 10% by mass with respect to the resin solid content.
  • the thickness of the adhesion layer is not particularly limited, but is preferably 1 ⁇ m or more.
  • the reduction is not performed until the insulated wire is exposed to the above temperature range or higher.
  • the generation of an oxide film generated by the reaction with oxygen contained in the conductor by the agent is suppressed.
  • the insulation coating contains an adhesion improver
  • the adhesion layer containing the adhesion improver is in direct contact with the conductor in order to form a coordinate bond between the adhesion improver and the conductor metal in order to develop adhesion.
  • the reaction by this adhesion improving agent occurs only in a solid or liquid state.
  • the reducing agent used in the present invention acts on copper oxide generated on the conductor surface in a liquid or gas state, and has an action of reducing this to copper. For this reason, even if the reducing agent alone or the insulating layer containing the reducing agent is not in direct contact with the conductor surface, the reducing agent in the form of gas may pass through the resin constituting the insulating film and reach the conductor surface.
  • the reducing agent used in the present invention starts the vaporization reaction at about 140 ° C. Thereby, the growth of copper oxide on the conductor surface can be suppressed.
  • the reduction reaction with the reducing agent proceeds more easily when the insulated wire is exposed to a higher temperature.
  • the temperature of the insulating film does not rise to the above temperature while the solvent contained in the insulating paint evaporates, and is kept at 300 ° C. It is said that it is not satisfied. Therefore, in consideration of this point, in the insulated wire of the present invention, the baking temperature, the baking time, the type of reducing agent, the boiling point of the reducing agent, the content of the reducing agent so that the reducing agent remains in the insulating film even after baking. Etc. may be set as appropriate.
  • thermosetting polyester resin varnish (trade name: Neoheat 8200K2, manufactured by Tohoku Paint Co., Ltd., resin solid content: 40%) as a thermosetting resin varnish. -670 g of dimethylacetamide was added. The mixture was stirred at room temperature to obtain a dark brown transparent insulating resin varnish for the layer in contact with the conductor.
  • thermosetting polyester resin varnish (trade name: Neoheat 8200K2, manufactured by Tohoku Paint Co., Ltd., resin solid content: 40%) was added little by little as a thermosetting resin varnish.
  • FIG. 1 A cross-sectional view of an insulated wire according to the first embodiment is shown in FIG.
  • Example 2 To a 2 L separable flask, 2000 g of polyamideimide resin varnish (trade name: HI-406 series, manufactured by Hitachi Chemical Co., Ltd., resin solid content: 32%) was added little by little as a thermosetting resin varnish. Further, 19.2 g of octanol was added and stirred at room temperature to obtain a dark brown transparent reducing agent-containing insulating paint.
  • polyamideimide resin varnish (trade name: HI-406 series, manufactured by Hitachi Chemical Co., Ltd., resin solid content: 32%) was added little by little as a thermosetting resin varnish. Further, 19.2 g of octanol was added and stirred at room temperature to obtain a dark brown transparent reducing agent-containing insulating paint.
  • polyamideimide resin varnish (trade name: HI-406 series, manufactured by Hitachi Chemical Co., Ltd., resin solid content: 32%) was added in small portions as a thermosetting resin varnish, and further as a diluent solvent 135 g of NMP (N-methyl-2-pyrrolidone) was added.
  • NMP N-methyl-2-pyrrolidone
  • FIG. 2 shows a cross-sectional view of the insulated wire according to the second embodiment.
  • Examples 3, 4, 6 and 8 to 12 and Comparative Examples 2 to 4 An insulated wire was produced in the same manner as in Example 2 except that the thermosetting resin, the reducing agent, and the reducing agent content relative to the solid content of the thermosetting resin were changed as shown in Tables 1 to 3.
  • FIG. 2 shows a cross-sectional view of insulated wires according to these examples and comparative examples.
  • Example 5 To a 2 L separable flask, 2000 g of polyamideimide resin varnish (trade name: HI-406 series, manufactured by Hitachi Chemical Co., Ltd., resin solid content: 32%) was added little by little as a thermosetting resin varnish. Further, 6.4 g of ascorbic acid was added and stirred at room temperature to obtain a dark brown transparent, reducing agent-containing insulating coating for the layer in contact with the conductor.
  • polyamideimide resin varnish trade name: HI-406 series, manufactured by Hitachi Chemical Co., Ltd., resin solid content: 32%) was added little by little as a thermosetting resin varnish. Further, 6.4 g of ascorbic acid was added and stirred at room temperature to obtain a dark brown transparent, reducing agent-containing insulating coating for the layer in contact with the conductor.
  • An agent layer was formed. Further, an outer layer coating was applied and baked thereon to form an outer layer, and an insulated wire having an insulating film thickness of 30 ⁇ m was produced. A cross-sectional view of the insulated wire according to Example 5 is shown in FIG.
  • Example 7 An insulated wire was produced in the same manner as in Example 5, except that the reducing agent and the reducing agent content relative to the solid content of the thermosetting resin were changed as shown in Table 1. A cross-sectional view of the insulated wire according to Example 7 is shown in FIG.
  • thermosetting resin varnish (trade name: HI-406 series, manufactured by Hitachi Chemical Co., Ltd., resin solid content: 32%) as a thermosetting resin varnish was added little by little, and melamine resin ( (Product name: Super Becamine, manufactured by DIC) 24 g was added. The mixture was stirred at room temperature to obtain a dark brown transparent adhesion improving agent-containing insulating resin varnish.
  • polyamideimide resin varnish (trade name: HI-406 series, manufactured by Hitachi Chemical Co., Ltd., resin solid content: 32%) was added in small portions as a thermosetting resin varnish.
  • the adhesion improving agent-containing insulating resin varnish was coated and baked on a copper wire with a conductor diameter of 1 mm at a passing temperature of 10 to 20 seconds at a temperature of 520 ° C. in a hot air circulating vertical furnace of about 10 m, and a thickness of 6 ⁇ m.
  • An adhesion layer was formed.
  • the reducing agent-containing insulating paint is applied and baked thereon in the same manner as the adhesion layer to form a reducing agent layer, and further, the outermost insulating resin varnish is applied thereon in the same manner as the reducing agent layer.
  • -An outermost layer was formed by baking to produce an insulated wire with an insulating film thickness of 30 ⁇ m.
  • a cross-sectional view of an insulated wire according to Example 13 is shown in FIG.
  • Example 14 A polyimide resin varnish (trade name: U-Varnish, manufactured by Ube Industries, resin solid content: 20%) is applied onto the conductor as a thermosetting resin and passed at 520 ° C. in a 10 m hot air circulation vertical furnace. Application and baking were performed on a copper wire having a conductor diameter of 1 mm in a time of 10 to 20 seconds to produce an insulated wire having an insulating film thickness of 30 ⁇ m. Furthermore, the insulated wire was immersed in a reducing agent solution in which 150 g of citronellol was diluted with 500 g of ethyl acetate for about 1 second, and the ethyl acetate was removed by air drying. A cross-sectional view of the insulated wire according to Example 14 is shown in FIG.
  • Example 15 Insulating film in the same manner as in Example 14 except that instead of immersing the insulated wire in the reducing agent solution, a reducing agent solution obtained by diluting 150 g of citronellol with 500 g of ethyl acetate was applied directly onto the conductor using a spray. An insulated wire having a thickness of 30 ⁇ m was obtained. A cross-sectional view of the insulated wire according to Example 15 is shown in FIG.
  • Comparative Example 5 An insulated wire with an insulation film thickness of 30 ⁇ m was prepared in the same manner as in Comparative Example 1 except that polyimide (trade name: U-Varnish, manufactured by Ube Industries, resin solid content: 20%) was used as the thermosetting resin. did.
  • polyimide trade name: U-Varnish, manufactured by Ube Industries, resin solid content: 20%
  • ⁇ Peeling twist> About the insulated wire before and after heat treatment at 210 ° C. for 24 hours, a test piece having a length of 30 cm is taken, one side is fixed to a rotating machine, and the other side is also fixed. Scratches were made in the flow direction of the line from a point on the circumference of the fixed test piece, and the rotating machine was turned to measure the number of times until the insulating film was cut. It shows that the adhesive force of the insulating film of an insulated wire is so high that there are many frequency
  • ⁇ Reduction method oxide film thickness measurement> A slit with a width of 0.5 mm was inserted into an insulated wire before and after heat treatment at 210 ° C. for 24 hours, and immersed in a 0.1 mol / L potassium chloride aqueous solution to flow a current of 5 mA. The recording speed of measurement was 20 mm / min. At this time, the thickness of the oxide film of the insulated wire was measured from the power used for reducing the conductor.
  • PAI Polyamideimide resin varnish (trade name: HI-406 series, manufactured by Hitachi Chemical Co., Ltd., resin solid content: 32%)
  • PEsI Thermosetting polyester resin varnish (trade name: Neoheat 8200K2, manufactured by Tohoku Paint Co., Ltd., resin solid content: 40%)
  • PI Polyimide resin varnish (trade name: U-varnish, Ube Industries, resin solid content: 20%)
  • Examples 1 to 15 are excellent in mechanical properties, can prevent oxidation of the conductor even after long-time heat treatment, and suppress a decrease in adhesion strength of the insulating film. .
  • Table 3 in Comparative Example 1 and Comparative Example 5, since the insulating film does not contain a reducing agent, the growth of the oxide film generated on the conductor in a high temperature environment cannot be suppressed. The adhesion of the insulating film was lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Paints Or Removers (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)

Abstract

 塗布、焼付けにより絶縁皮膜を形成しうる樹脂を含む絶縁塗料中に沸点が160℃以上の還元剤を含有する、絶縁塗料。

Description

絶縁塗料、絶縁電線、及び絶縁電線の製造方法
 本発明は、絶縁塗料、絶縁電線、及び絶縁電線の製造方法に関する。
 従来から、導体を絶縁皮膜で被覆した絶縁電線は、モーターや変圧器などの各種電気機器用の電気コイルに使用されている。この電気コイルを形成する絶縁電線には、導体への密着性、電気絶縁性及び耐熱性が必要とされている。特に近年は、宇宙用電気機器、航空機用電気機器、原子力用電気機器、エネルギー用電気機器、自動車用電気機器については、小型化や軽量化とともに、高性能化が求められている。例えば、モーター等の回転電機や変圧器には、従来にも増して高出力化が必要とされている。
 さらに近年、機器の小型化、軽量化の傾向に伴い、回転電機についてもより小型、軽量で、しかも高性能のものが要求されるようになってきた。この要求に応えるには、モーターのコアに、より多くの絶縁電線を巻き付ける必要があるが、コアのスロット中に可能な限り多くの絶縁電線を押し込めるために、絶縁電線の絶縁皮膜の高密着化への要求が高まっている。そこで、高温に晒された後の酸化皮膜生成による密着力低下の抑制が必要とされている。
 絶縁皮膜の作製に従来から用いられている、熱硬化性樹脂を含む絶縁塗料としては、導体上に絶縁皮膜を形成する工程における絶縁皮膜の密着性を高めたものが数多く報告されている。しかし、これらの絶縁塗料では、初期における密着性は得られるものの、長期間に亘って絶縁電線が高温環境下に晒された場合には、導体と絶縁皮膜との密着性を保つことが難しかった。さらに、上記のような従来の絶縁塗料による密着性改良の効果は、絶縁塗料が導体と直接的に接している限りにおいてのみ効果が発現するものであり、機械強度など絶縁電線に求められる他の特性を向上させるために皮膜構造を工夫しようとすると、その構成が限られてしまうという欠点があった。
 そこで、絶縁被膜の金属導体との密着性を高める成分(密着改良剤)を絶縁塗料に添加して、絶縁被膜の機械的強度を向上させ、それによって絶縁電線の耐加工性をも改善する試みがなされている(例えば、特許文献1~4参照)。密着改良剤は、樹脂に対して数%添加することが一般的である。しかし、このような絶縁電線は、金属導体に対する絶縁皮膜の密着力の保持は可能であるが、密着改良剤を添加することにより絶縁皮膜自体の耐熱性が不十分となる場合がある。このため、捲線時の加熱等の熱履歴によって機械的強度が低下することにより、絶縁電線の耐加工性が悪化して絶縁被膜の損傷を招き、絶縁特性が低下するという問題が生じる。
 以上のように、従来は、導体と絶縁皮膜の密着性を向上させる手段として、絶縁塗料を導体上に焼き付けた後に皮膜に含まれる添加剤や残留する溶剤成分によって導体への積極的な化学反応が起こることを利用するものはなかった。
特開平8-218007号公報 国際公開第2009/048102号 特開2009-9824号公報 特開2009-123403号公報
 本発明は、導体に対する密着性を有し、耐熱性に優れた絶縁被膜を形成しうる、絶縁塗料の提供を課題とする。
 さらに、本発明は、高温環境に長時間晒されても絶縁皮膜の密着力が低下しない絶縁電線の提供を課題とする。
 さらに本発明は、前記絶縁電線の製造方法の提供を課題とする。
 本発明者らは上記課題に鑑み、絶縁電線の絶縁皮膜に特定の還元剤を含有させることにより、導体表面の酸化皮膜の生成を抑制し、高温環境下でも金属導体に対する絶縁皮膜の密着力を保持できる絶縁電線の製造方法について鋭意検討を行った。その結果、絶縁皮膜を構成する樹脂組成物の溶剤成分に均一分散し、かつその沸点が十分に高い特定の還元剤を含有させた絶縁塗料を用いて絶縁皮膜を形成することで、焼付け工程後の皮膜中に残留している還元剤によって熱処理後の導体の酸化を防ぐことができ、絶縁皮膜の諸特性を損なうことなく、長期耐熱性に優れた絶縁電線を作製できることを見出した。本発明はこの知見に基づきなされたものである。
 本発明によれば、下記の手段が提供される。
(1)塗布、焼付けにより絶縁皮膜を形成しうる樹脂を含む絶縁塗料中に沸点が160℃以上の還元剤を含有する、絶縁塗料。
(2)前記還元剤の含有量が、樹脂固形分に対して1質量%以上30質量%以下である、前記(1)項記載の絶縁塗料。
(3)前記還元剤が還元性のヒドロキシ基を有する化合物である、前記(1)又は(2)項記載の絶縁塗料。
(4)前記還元剤1分子中の炭素数が10以上の化合物である、前記(1)~(3)のいずれか1項記載の絶縁塗料。
(5)前記還元剤がヒドロキシ基を有するテルペノイドである、前記(1)~(4)のいずれか1項記載の絶縁塗料。
(6)前記還元剤が、シトロネロール、オクタノール、ヒドロキノン、ゲラニオール、アスコルビン酸、リナロール、テトラエチレングリコール及びドデカンチオールからなる群より選ばれる、前記(1)又は(2)項記載の絶縁塗料。
(7)絶縁皮膜を形成しうる樹脂を含む絶縁塗料を導体上に塗布、焼付けることにより1層又は2層以上の絶縁皮膜を形成した絶縁電線であって、該絶縁皮膜の少なくとも1層中に沸点が160℃以上の還元剤が含まれる、絶縁電線。
(8)前記還元剤の含有量が、樹脂固形分に対して1質量%以上30質量%以下である、前記(7)項記載の絶縁電線。
(9)前記還元剤が還元性のヒドロキシ基を有する化合物である、前記(7)又は(8)項記載の絶縁電線。
(10)前記還元剤1分子中の炭素数が10以上の化合物である、前記(7)~(9)のいずれか1項記載の絶縁電線。
(11)前記還元剤がヒドロキシ基を有するテルペノイドである、前記(7)~(10)のいずれか1項記載の絶縁電線。
(12)前記還元剤が、シトロネロール、オクタノール、ヒドロキノン、ゲラニオール、アスコルビン酸、リナロール、テトラエチレングリコール及びドデカンチオールからなる群より選ばれる、前記(7)又は(8)項記載の絶縁電線。
(13)前記(1)~(6)項のいずれか記載の絶縁塗料を塗布、焼付けて形成した絶縁皮膜を少なくとも1層有する、前記(7)~(12)のいずれか1項に記載の絶縁電線。
(14)塗布、焼付けにより絶縁皮膜を形成しうる樹脂を含む絶縁塗料を導体上に塗布、焼付けする工程を含む絶縁電線の製造方法であって、前記絶縁塗料中に沸点が160℃以上の還元剤を含有する、絶縁電線の製造方法。
(15)塗布、焼付けにより絶縁皮膜を形成しうる樹脂を含む絶縁塗料を導体上に塗布、焼付けすることにより絶縁皮膜を形成し、絶縁皮膜上に沸点が160℃以上の還元剤を塗布、焼付けする、絶縁電線の製造方法。
(16)沸点が160℃以上の還元剤を導体上に塗布、焼付けし、さらに塗布、焼付けにより絶縁皮膜を形成しうる樹脂を含む絶縁塗料を塗布、焼付けすることにより絶縁皮膜を形成する、絶縁電線の製造方法。
(17)前記還元剤が還元性のヒドロキシ基を有する化合物である、前記(14)~(16)のいずれか1項記載の絶縁電線の製造方法。
(18)前記還元剤1分子中の炭素数が10以上の化合物である、前記(14)~(17)のいずれか1項記載の絶縁電線の製造方法。
(19)前記還元剤がヒドロキシ基を有するテルペノイドである、前記(14)~(18)のいずれか1項記載の絶縁電線の製造方法。
(20)前記還元剤が、シトロネロール、オクタノール、ヒドロキノン、ゲラニオール、アスコルビン酸、リナロール、テトラエチレングリコール及びドデカンチオールからなる群より選ばれる、前記(14)~(16)のいずれか1項記載の絶縁電線の製造方法。
 本発明の絶縁塗料によれば、導体に対する密着性を保持し、耐熱性に優れた絶縁被膜を形成することができる。
 また、本発明の絶縁電線は、高温環境に長時間晒されても導体に対する絶縁皮膜の密着力が低下しないという、優れた効果を奏する。
 さらに、本発明の絶縁電線の製造方法は、高温環境に長時間晒されても導体に対する絶縁皮膜の密着力が低下しない絶縁電線を提供することができる。
 また、絶縁電線の耐熱試験としては、実際の使用環境よりも高い温度領域にて熱処理が施されるが、本発明の絶縁電線はこのような試験をクリアできる。そのため、本発明によれば、信頼性の高い絶縁電線を提供することが可能になる。
本発明の絶縁電線の一実施態様を示す断面図である。 本発明の絶縁電線の別の一実施態様を示す断面図である。 本発明の絶縁電線のさらに別の一実施態様を示す断面図である。 本発明の絶縁電線のさらに別の一実施態様を示す断面図である。 本発明の絶縁電線のさらに別の一実施態様を示す断面図である。
 本発明を、図面を参照して詳細に説明する。しかし、本発明はこれに制限されるものではない。
 なお、本明細書において、「還元剤」とは、絶縁電線の金属導体中の酸素との反応によって生成される酸化膜の生成を、長時間にわたり高温環境下においても還元反応によって抑制する還元性物質の総称である。金属導体の表面を還元剤により常に正常な状態に保つことで、熱処理後も絶縁皮膜の密着力を一定にすることが可能になることを本発明者らが見出した。
 図1~5は、本発明の絶縁電線の好ましい一実施形態を示す概略断面図である。図1~5に示すように、本発明の絶縁電線10は、導体1の外周に、還元剤を含む絶縁皮膜2が設けられている。なお、還元剤を含む絶縁皮膜2は、図2、4及び5に示すように導体1の外周に直接設けてもよいし、図3に示すように、密着改良剤を含有する層4等、他の層を介して導体1上に設けてもよい。さらに、図1~3及び5に示すように、導体1と還元剤を含む絶縁皮膜2との間、還元剤を含む絶縁皮膜2の外側、などに還元剤を含まない絶縁皮膜3等を設けてもよい。すなわち、本発明において、還元剤の含まれる層(皮膜)は、導体上に直接形成されていてもよいし、他の層を介して導体の外周に設けられていてもよい。
 本発明の絶縁塗料は、絶縁皮膜を構成する樹脂組成物の溶剤成分に、特定の還元剤が均一に分散している。本発明に用いる溶剤成分としては特に制限はなく、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド系溶媒;N,N-ジメチルエチレンウレア、N,N-ジメチルプロピレンウレア、テトラメチル尿素等の尿素系溶媒;γ-ブチロラクトン、γ-カプロラクトン等のラクトン系溶媒;プロピレンカーボネート等のカーボネート系溶媒;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;スルホラン等のスルホン系溶媒などが挙げられる。これらのうち、高溶解性、高反応促進性等の点でアミド系溶媒、尿素系溶媒が好ましく、加熱による架橋反応を阻害しやすい水素原子をもたない等の点で、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルエチレンウレア、N,N-ジメチルプロピレンウレア、テトラメチル尿素がより好ましく、N-メチル-2-ピロリドンが特に好ましい。
 本発明において、絶縁塗料を導体上に塗布、焼付けすることで還元剤が完全に蒸発することを避けるために、その沸点が160℃以上(好ましくは180℃以上、より好ましくは210℃以上、好ましくは290℃以下、より好ましくは250℃以下、好ましくは180℃~290℃、より好ましくは210℃~250℃)のものを用いる。還元剤の沸点が160℃未満の場合、還元剤の反応性が高いため、熱硬化性樹脂を構成する低分子量成分同士が重合して硬化する温度領域で、還元剤が当該低分子量成分と反応を起こすことにより熱硬化性樹脂の重合反応を阻害し、焼き付けによる硬化が不足する結果となり、絶縁皮膜の強度が低下してしまう。
 還元剤の沸点を160℃以上のものとすれば、還元剤が完全に蒸発したり、熱硬化性樹脂の成分と反応したりすることなく、程よく熱硬化性樹脂中に混入させることが可能になる。このような還元剤としては、塗布、焼付けにより絶縁皮膜を形成しうる樹脂と相溶し、導体の酸化膜の生成を抑制するものであれば特に制限はなく、アルコール類、ポリオール類、アルデヒド類、チオール類、ヒドロキノン類、糖類等の有機化合物が挙げられる。また、前記還元剤は、150℃以上250℃以下の範囲で酸化されるものが好ましい。還元剤は、標準状態(23℃)にて固体状でも、液体状でもよい。
 一級アルコール、二級アルコール、一級チオール、二級チオールは酸化されてそれぞれカルボン酸、カルボニル基、スルフィン酸、チオカルボニル基にそれぞれ変換し、導体の還元が可能となる。この導体の還元は熱環境に置かれたときに特に反応が促進されることから、高温環境に長時間晒されたときの導体と絶縁皮膜との間の密着力の維持が可能となる。
 本発明に用いることができるアルコール類としては特に制限はないが、モノテルペン(炭素数:10)、セスキテルペン(炭素数:15)、ジテルペン(炭素数:20)、セスタテルペン(炭素数:25)、トリテルペン(炭素数:30)、テトラテルペン(炭素数:40)等のテルペン類のうち、ヒドロキシ基を持つテルペノイド(例えば、ゲラニオール、リナロール、ファルネソール、ピクロトキシン、ホルボールアニサチン、リナロール、グリチルレチン酸、テルピネオール、カルベオール、シトロネロール、テルピネオール);アニスアルコール、ベンジルアルコール、ジヒドロミルセノール、ジメチルベンジルカルビノール、ジプロピレングリコール、ドデカノール、フェンキルアルコール、3-メトキシ-3-メチルブタノール、オクタノール、3-(5-イソカンフィル)-シクロヘキサノール、テトラヒドロリナロール、ヘキサノール、2-t-ブチルシクロヘキサノール等の飽和アルコール;シトロネロール、ファルネソール、ネロール、2-フェニルエチルアルコール、アスコルビン酸、フェニルエチルジメチルカルビノール、2-メチル-4-(2,2,3-トリメチル-3-シクロペンテン-1-イル)-2-ブテン-1-オール、サンタロール、カルベオール、シトロネロール、テルピネオール、シンナミックアルコール、シス-3-ヘキセノール等の不飽和アルコール等が挙げられる。本発明において、これらのアルコール類のうち、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本発明に用いることができるポリオール類としては特に制限はないが、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロパンジオール、ジプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール-1,5-ペンタンジオール及びポリエチレングリコールなどのジオール類が挙げられる。本発明において、これらのポリオール類のうち、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらのポリオール類のうち、両末端にヒドロキシ基を有するジオール類がより好ましく、熱硬化性樹脂の溶解力に優れている点でテトラエチレングリコールがさらに好ましい。
 本発明に用いることができるアルデヒド類としては特に制限はないが、ペリルアルデヒド、シトロネラール、ゲラニアール、ネラールが挙げられる。これらのうち、酸素の存在下でのワニス安定性、溶剤への溶解性の点でゲラニアール、ネラールがより好ましい。これらのアルデヒド類のうち、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本発明に用いることができるチオール類としては特に制限はないが、オクタンチオール、デカンチオール、ドデカンチオール、オクタデカンチオール等の脂肪族チオール類、ビス(2-メルカプトエチル)スルフィド、ビス(2,3-ジメルカプトプロピル)スルフィド、1,2-ビス(2-メルカプトエチルチオ)エタン、2-(2-メルカプトエチルチオ)-1,3-ジメルカプトプロパン、1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、2,4-ビス(メルカプトメチル)-1,5-ジメルカプト-3-チアペンタン、4,8-ビス(メルカプトメチル)-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ビス(メルカプトメチル)-1,11-ジメルカプト-3,6,9-トリチアウンデカン、5,7-ビス(メルカプトメチル)-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,2,7-トリメルカプト-4,6-ジチアヘプタン、1,2,9-トリメルカプト-4,6,8-トリチアノナン、1,2,8,9-テトラメルカプト-4,6-ジチアノナン、1,2,10,11-テトラメルカプト-4,6,8-トリチアウンデカン、1,2,12,13-テトラメルカプト-4,6,8,10-テトラチアトリデカン、テトラキス(4-メルカプト-2-チアブチル)メタン、テトラキス(7-メルカプト-2,5-ジチアヘプチル)メタン、1,5-ジメルカプト-3-メルカプトメチルチオ-2,4-ジチアペンタン、3,7-ビス(メルカプトメチルチオ)-1,9-ジメルカプト-2,4,6,8-テトラチアノナン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、2,5-ビス(メルカプトメチル)-1,4-ジチアン、2,5-ビス(2-メルカプトエチル)-1,4-ジチアン、2,5-ビス(メルカプトメチル)-1-チアン、2,5-ビス(2-メルカプトエチル)-1-チアン、ビス(4-メルカプトフェニル)スルフィド、ビス(4-メルカプトメチルフェニル)スルフィド、3,4-チオフェンジチオール等のポリチオール類、及びこれらの2量体~20量体といったオリゴマーなどのチオール類が挙げられる。これらのうち、溶剤への溶解性、空気中で劣化しにくい点でドデカンチオール、4,7-ビス(メルカプトメチル)-1,11-ジメルカプト-3,6,9-トリチアウンデカンがより好ましい。これらのチオール類のうち、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本発明に用いることができるヒドロキノン類としては特に制限はないが、ヒドロキノン、モノメチルヒドロキノン、モノエチルヒドロキノン、2,3-ジメチルヒドロキノン、2,5-ジメチルヒドロキノン、2,6-ジメチルヒドロキノン、及びヒドロキノン化合物(例えば、3-メチル-4-ヒドロキシフェニルバレレート、3-メチル-4-ヒドロキシフェニルデカノエート、3-メチル-4-ヒドロキシフェニルオレエート、3-エチル-4-ヒドロキシフェニルオクタノエート、3-エチル-4-ヒドロキシフェニルオレエート、3-プロピル-4-ヒドロキシフェニルミリステート、3-プロピル-4-ヒドロキシフェニルパルミトレエート、3-イソプロピル-4-ヒドロキシフェニルパルミテート、3-イソプロピル-4-ヒドロキシフェニルミリストレエート、3-ブチル-4-ヒドロキシフェニルラウレート、3-ブチル-4-ヒドロキシフェニルリノレエート、3-イソブチル-4-ヒドロキシフェニルバレレート、3-イソブチル-4-ヒドロキシフェニルリノレネート、3-sec-ブチル-4-ヒドロキシフェニルステアレート、3-sec-ブチル-4-ヒドロキシフェニルミリストレエート、3-tert-ブチル-4-ヒドロキシフェニルバレレート、3-tert-ブチル-4-ヒドロキシフェニルデカノエート、3-tert-ブチル-4-ヒドロキシフェニルオレエート、3-ペンチル-4-ヒドロキシフェニルオクタノエート、3-ペンチル-4-ヒドロキシフェニルリノレネート)が挙げられる。これらのうち、溶剤への溶解性の観点からヒドロキノン、モノエチルヒドロキノンがより好ましい。これらのヒドロキノン類のうち、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本発明に用いることができる糖類としては、単糖類及び多糖類が挙げられる。具体的には、アロース、アルトロース、グルコース、フルクトース、ラクトース、マンノース、グロース、イドース、ガラクトース、タロース等が挙げられる。本発明において、これらの糖類のうち1種を単独用いてもよいし、2種以上を組み合わせて用いてもよい。これらの糖類のうち、汎用的な物質であり、かつ安価である点からグルコースを用いることが好ましい。
 本発明に用いることができるカルボン酸としては特に制限はないが、高温で分解されるとホルミル基(アルデヒド)を持つギ酸に変換するシュウ酸や、ヒドロキシ基を有するアスコルビン酸が挙げられる。
 本発明に用いる還元剤としては、180℃以上の高温で活発に還元作用が発現することが好ましい。このような観点から、本発明に用いる還元剤として、還元性のヒドロキシ基を有する化合物が好ましい。
 また、本発明に用いる還元剤としては、絶縁塗料を導体上に塗布、焼付けしても還元剤が完全に分解、蒸発することのないよう、ある程度の分子量を有する化合物であることが好ましい。このような観点から、本発明に用いる還元剤として、還元剤1分子中の炭素数が10以上(好ましくは15以下、より好ましくは12以下、好ましくは10~15、より好ましくは10~12)である化合物が好ましい。
 さらに、本発明に用いることができる有機系還元剤としては、高沸点、かつ熱硬化性樹脂オリゴマーの溶解能が十分であることが好ましい。このような観点から、本発明に用いる還元剤として、不飽和炭化水素基を有するために揮発性が高く、気体となって初めて還元性を示す、ヒドロキシ基を有するテルペノイドが好ましい。
 本発明において、前記還元剤のうち1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本発明の絶縁塗料における還元剤の含有量は、還元剤の種類によって適宜設定することができるが、樹脂固形分に対して1質量%以上(好ましくは2質量%以上)30質量%以下(好ましくは15質量%以下、より好ましくは10質量%)、あるいは、1~30質量%、好ましくは1~15質量%、より好ましくは2~10質量%である。還元剤の含有量が樹脂固形分に対して少なすぎると、焼き付け時にすべての還元剤が蒸発して効果が発現しにくくなる。一方還元剤の含有量が樹脂固形分に対して多すぎると、樹脂固形分の溶解能が低下し、熱硬化性樹脂の硬化反応が進行しにくくなり、熱硬化性樹脂の析出が発生するなど、ワニスの安定性が悪くなり、絶縁皮膜の強度が低下する。
 本発明に用いる、絶縁皮膜を形成しうる樹脂としては特に制限はないが、耐熱性の観点から、ポリエステル樹脂、ポリイミド樹脂、ポリエステルイミド樹脂、ポリアミドイミド樹脂などの熱硬化性樹脂が好ましく用いられる。本発明において、熱硬化性樹脂は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 本発明に用いることができるポリエステル樹脂としては特に制限はないが、芳香族ポリエステルにフェノール樹脂などを添加することによって変性したものが挙げられる。具体的には、耐熱クラスがH種のポリエステル樹脂が挙げられる。市販のH種ポリエステル樹脂としては、Isonel200(商品名、スケネクタディインターナショナル社製)等を挙げることができる。
 本発明に用いることができるポリイミド樹脂としては特に制限はないが、熱硬化性芳香族ポリイミドなどの通常のポリイミド樹脂、例えば、芳香族テトラカルボン酸二無水物と芳香族ジアミン類を極性溶媒中で反応させて得られるポリアミド酸溶液を用い、絶縁皮膜を形成する際の焼付け時の加熱処理によりイミド化させることによって熱硬化させるものが挙げられる。市販のポリイミド樹脂としては、Uワニス(商品名、宇部興産社製)、Uイミドワニス(商品名、ユニチカ社製)等を挙げることができる。
 本発明に用いることができるポリアミドイミド樹脂としては特に制限はないが、極性溶媒中でトリカルボン酸無水物とジイソシアネート類を直接反応させて得たもの、極性溶媒中でトリカルボン酸無水物にジアミン類を混合しジイソシアネート類でアミド化して得たものが挙げられる。市販のポリアミドイミド樹脂としては、HI406(商品名、日立化成社製)等を挙げることができる。
 本発明に用いることができるポリエステル樹脂としては特に制限はないが、市販のポリエステルイミド樹脂としてNeoheat 8200K2、Neoheat 8600、LITON 3300(商品名、東特塗料社製))等を挙げることができる。
 本発明の絶縁塗料に、本発明の効果を損なわない範囲内で、結晶化核剤、結晶化促進剤、気泡化核剤、酸化防止剤、帯電防止剤、紫外線防止剤、光安定剤、蛍光増白剤、顔料、染料、相溶化剤、滑剤、強化剤、難燃剤、架橋剤、架橋助剤、可塑剤、増粘剤、減粘剤及びエラストマーなどの各種添加剤や、メラミン樹脂、エポキシ樹脂などの密着改良剤、皮膜強度を向上させるための無機酸化物フィラー、樹脂フィラー、タルク等の鉱物を配合してもよい。
 本発明の絶縁電線に用いる導体1としては、例えば、銅、銅合金、アルミニウム、アルミニウム合金又はそれらの組み合わせなど、絶縁電線の導体として通常使用されているものが挙げられる。また、導体1の断面形状も特に制限はなく、図1~4に示すように丸形状でも、図5に示すように矩形で角が丸くなったものでもよい。
 本発明の絶縁電線は、絶縁皮膜を形成しうる樹脂を含む絶縁塗料を導体上に塗布、焼付けるより1層又は2層以上の絶縁皮膜を形成した絶縁電線であって、該絶縁皮膜の少なくとも1層中に沸点が160℃以上の還元剤が含まれる。絶縁皮膜中に含まれる還元剤が高温環境で導体に発生する酸化膜の成長を抑制することで、絶縁皮膜の導体に対する密着性が保持される。したがって、本発明の絶縁電線は、耐熱性と機械特性に優れるとともに、高温環境に長時間晒されたときであっても絶縁被膜の密着性が低下しないという、優れた効果を奏する。
 本発明の絶縁電線に用いる絶縁皮膜を形成しうる樹脂及び還元剤の具体例としては、前記絶縁塗料に用いられるものと同様であり、好ましい範囲も同様である。また、還元剤の含有量の好ましい範囲についても、前記絶縁塗料における好ましい範囲と同様である。
 本発明の絶縁電線の製造方法としては、絶縁皮膜中に160℃以上の沸点を有する還元剤が含まれる方法であれば特に制限はない。本発明の絶縁電線における絶縁被膜の形成方法としては、本発明の絶縁塗料を導体上に塗布、焼付けする方法;還元剤を含まない絶縁塗料を導体上に塗布、焼付けた後又は焼付け中に、気体状の還元剤を吹き付ける方法;絶縁皮膜を形成しうる樹脂を含む絶縁塗料を導体上に塗布、焼付けすることにより絶縁皮膜を形成し、絶縁皮膜上に還元剤を塗布、焼付けする方法;還元剤を導体上に塗布、焼付けし、さらに絶縁皮膜を形成しうる樹脂を含む絶縁塗料を塗布、焼付けする方法、等が挙げられる。これらの方法により、高温環境に長時間晒されたときであっても、絶縁電線の導体と絶縁被膜との間の密着力を保持することができる。
 還元剤を導体上又は絶縁皮膜上に塗布、焼付ける場合、導体又は絶縁皮膜に還元剤単体又は還元剤組成物を噴霧してもよいし、導体又は絶縁皮膜を設けた導体ごと還元剤組成物に浸漬してもよい。この場合、還元剤組成物における還元剤の濃度に特に制限はないが、還元剤組成物の溶剤が焼き付けで蒸発しやすいよう、30重量%以上であることが好ましい。前記溶剤としては、還元剤が溶解すれば特に制限はないが、例えば、エチルメチルケトン、アセトン、酢酸エチル、酢酸メチル、トルエン、テトラヒドロフラン、メタノール、エタノール、イソプロパノール、クロロホルム、ジクロロメチレンなど比較的揮発性の高いものを用いるのが好ましい。
 本発明の絶縁電線に用いる還元剤は、還元剤を含む絶縁塗料を導体上やその他の層として塗布、焼付けしなくとも、その効果を発現させることができる。本発明において、沸点が160℃以上の還元剤を導体上に直接塗布し、その上に、還元剤を含まない熱硬化性樹脂層を形成してもよい。還元剤の塗布方法に特に制限はないが、熱硬化性樹脂ワニス塗布の前に、還元剤溶液を導体にスプレー塗布してもよいし、還元剤溶液に導体を浸漬させてもよい。あるいは、還元剤を含まない絶縁層を導体上に形成し、その上に還元剤溶液をスプレー塗布してもよいし、還元剤溶液に浸漬させてもよい。
 本発明において、還元剤は単体でそのまま塗布しても良いし、揮発性の良い有機溶剤(例えば、酢酸エチル、メタノール、アセトン、メチルエチルケトン、クロロホルム、トルエン、ヘキサン、シクロヘキサン、テトラヒドロフランなど)で希釈して用いてもよい。還元剤の濃度に特に制限はないが、5%~80体積%が、還元剤の強い香りを抑えることができる点で好ましい。
 本発明の絶縁電線は、本発明の絶縁塗料を塗布、焼付けて形成した絶縁皮膜を少なくとも1層有することが好ましい。このような絶縁皮膜は、導体上に直接設けてもよいし、他の層を介して導体の外周に設けてもよい。
 本発明の絶縁電線において、導体との密着性に優れた、密着改良剤を含む密着層を形成してもよい。密着層は、導体上に密着層用の熱硬化性樹脂ワニスを塗布し、焼き付け硬化を行うことで形成することができる。このような密着層を形成することにより、特に、初期の密着性、すなわち導体上に絶縁皮膜を形成する工程における絶縁皮膜の密着性を高めることができる。
 密着層に使用できる熱硬化性樹脂としては、例えば、ポリイミド、ポリウレタン、ポリアミドイミド、ポリエステル、ポリベンゾイミダゾール、ポリエステルイミド、メラミン樹脂、エポキシ樹脂などを挙げることができる。
 密着改良剤としては、例えば、シランアルコキシド系密着改良剤(シランカップリング剤)、チタンアルコキシド、チタンアシレート、チタンキレートなどチタン系密着改良剤、トリアジン系密着改良剤、イミダゾール系密着改良剤、メラミン系密着改良剤、カルボジイミド系密着改良剤、チオール系密着改良剤など、絶縁電線の密着改良剤として通常用いられるものを用いることができる。
 密着改良剤の添加量に特に制限はないが、樹脂固形分に対して0.01質量以上が好ましく、10質量%以下が好ましく、0.01~10質量%程度が好ましい。また、密着層の厚さに特に制限はないが、1μm以上であることが好ましい。
 本発明では、沸点が160℃以上であり、約150~250℃で特に酸化されやすい還元剤を用いているので、前記範囲又はそれ以上の温度範囲に絶縁電線が晒された場合に初めて、還元剤による導体に含まれる酸素のとの反応によって生成される酸化膜の生成が抑制される。
 絶縁電線の被膜に密着改良剤が含まれる場合、密着力を発現させるべく密着改良剤と導体金属との間で配位結合を形成させるために、密着改良剤を含む密着層は導体に直接接していなければいけない。さらに、この密着改良剤による反応は固体又は液体の状態でのみ起こる。これに対して、本発明に用いる還元剤は、例えば導体が銅である場合、液体又は気体状態で導体表面に生成される酸化銅に作用し、これを銅に還元する作用を有する。そのため、還元剤単体又は還元剤を含む絶縁層が導体表面に直接接していなくとも、絶縁皮膜を構成する樹脂内部を気体となった還元剤が透過して、導体表面に達すればよい。本発明に用いる還元剤は、約140℃程度で気化反応が始まる。これにより、導体表面における酸化銅の成長を抑制することができる。また、還元剤による還元反応は、絶縁電線の晒される温度が高いほうが進みやすい。
 さらに、絶縁塗料の焼付けは500℃以上で行う場合があっても、絶縁塗料に含まれる溶剤が蒸発している間は、絶縁皮膜の温度が前記温度にまで上昇することはなく、300℃にも満たないとされている。したがって、この点を考慮し、本発明の絶縁電線においては、焼付後でも絶縁皮膜に還元剤が残存するよう、焼付温度、焼付時間、還元剤の種類、還元剤の沸点、還元剤の含有量など、適宜設定すればよい。
 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1)
 2Lセパラブルフラスコに、熱硬化性樹脂ワニスとして熱硬化性ポリエステル樹脂ワニス(商品名:Neoheat 8200K2、東特塗料社製、樹脂固形分:40%)2000gを少量ずつ加え、溶剤としてN,N’-ジメチルアセトアミド670gを加えた。室温にて攪拌し、暗褐色透明の、導体に接する層用絶縁樹脂ワニスを得た。
 別の2Lセパラブルフラスコに、熱硬化性樹脂ワニスとして熱硬化性ポリエステル樹脂ワニス(商品名:Neoheat 8200K2、東特塗料社製、樹脂固形分:40%)2000gを少量ずつ加えた。さらにシトロネロール19.2gを添加し、室温にて攪拌し、暗赤色透明の、還元剤含有絶縁塗料(外層用)を得た。
 導体(導体径1mmの銅線)上に、前記導体に接する層用ワニスを塗布し、およそ10mの熱風循環式の竪型炉で520℃にて通過時間10~20秒で塗布・焼付を行い、厚さ8μmの層を形成した。さらに、この上に、前記還元剤含有絶縁塗料を用いて、およそ10mの熱風循環式の竪型炉で520℃にて通過時間10~20秒で塗布・焼付を行い還元剤層を形成し、絶縁皮膜の厚さ30μmの絶縁電線を作製した。
 この実施例1に係る絶縁電線の断面図を図1に示す。
(実施例2)
 2Lセパラブルフラスコに、熱硬化性樹脂ワニスとして、ポリアミドイミド樹脂ワニス(商品名:HI-406シリーズ、日立化成社製、樹脂固形分:32%)2000gを少量ずつ加えた。さらにオクタノール19.2gを添加し、室温にて攪拌し、暗褐色透明の還元剤含有絶縁塗料を得た。
 別の2Lセパラブルフラスコに、熱硬化性樹脂ワニスとして、ポリアミドイミド樹脂ワニス(商品名:HI-406シリーズ、日立化成社製、樹脂固形分:32%)2000gを少量ずつ加え、さらに希釈溶剤としてNMP(N-メチル-2-ピロリドン)を135g加えた。室温にて攪拌し、暗褐色透明の外層用の絶縁塗料を得た。
 調製した還元剤含有絶縁塗料を用いて、およそ10mの熱風循環式の竪型炉で520℃にて通過時間10~20秒で導体径1mmの銅線に塗布・焼付を行い、厚さ8μmの還元剤層を形成した。さらに、この上に、前記外層用絶縁塗料を還元剤層と同様に塗布・焼付し、厚さ22μmの外層を形成し、絶縁皮膜の厚さ30μmの絶縁電線を作製した。
 この実施例2に係る絶縁電線の断面図を図2に示す。
(実施例3、4、6及び8~12、並びに比較例2~4)
 熱硬化性樹脂、還元剤、及び熱硬化性樹脂の固形分に対する還元剤の含有量を表1~3の通り変更した以外は実施例2と同様に、絶縁電線を作製した。
 これらの実施例及び比較例に係る絶縁電線の断面図を図2に示す。
(実施例5)
 2Lセパラブルフラスコに、熱硬化性樹脂ワニスとして、ポリアミドイミド樹脂ワニス(商品名:HI-406シリーズ、日立化成社製、樹脂固形分:32%)2000gを少量ずつ加えた。さらにアスコルビン酸6.4gを添加し、室温にて攪拌し、暗褐色透明の、導体に接する層用の還元剤含有絶縁塗料を得た。
 別の2Lセパラブルフラスコに、熱硬化性樹脂ワニスとして、ポリアミドイミド樹脂ワニス(商品名:HI-406シリーズ、日立化成社製、樹脂固形分:32%)2000gを少量ずつ加え、さらに希釈溶剤としてNMPを135g、及びアスコルビン酸6.4gを加え、室温にて攪拌し、暗褐色透明の外層用の還元剤含有絶縁塗料を得た。
 調製した導体に接する層用の還元剤含有絶縁塗料を用いて、およそ10mの熱風循環式の竪型炉で520℃にて通過時間10~20秒での銅線に塗布・焼付を行い、還元剤層を形成した。さらに、この上に、外層用塗料を塗布・焼付して外層を形成し、絶縁皮膜の厚さ30μmの絶縁電線を作製した。
 この実施例5に係る絶縁電線の断面図を図2に示す。
(実施例7)
 還元剤、及び熱硬化性樹脂の固形分に対する還元剤の含有量を表1の通り変更した以外は実施例5と同様に、絶縁電線を作製した。
 この実施例7に係る絶縁電線の断面図を図2に示す。
(実施例13)
 2Lセパラブルフラスコに、熱硬化性樹脂ワニスとしてポリアミドイミド樹脂ワニス(商品名:HI-406シリーズ、日立化成社製、樹脂固形分:32%)2000gを少量ずつ加え、密着改良剤としてメラミン樹脂(商品名:スーパーベッカミン、DIC社製)24gを加えた。室温にて攪拌し、暗褐色透明の密着改良剤含有絶縁樹脂ワニスを得た。
 別の2Lセパラブルフラスコに、熱硬化性樹脂ワニスとしてポリアミドイミド樹脂ワニス(商品名:HI-406シリーズ、日立化成社製、樹脂固形分:32%)2000gを少量ずつ加えた。さらにリナロール19.2gを添加し、室温にて攪拌し、暗赤色透明の還元剤含有絶縁塗料(中間層用)を得た。
 さらに別の2Lセパラブルフラスコに、熱硬化性樹脂ワニスとして ポリアミドイミド樹脂ワニス(商品名:HI-406シリーズ、日立化成社製、樹脂固形分:32%)2000gを少量ずつ加え、さらに希釈溶剤としてNMPを135g加えた。室温にて攪拌し、暗褐色透明の最外層用絶縁樹脂ワニスを得た。
 前記密着改良剤含有絶縁樹脂ワニスを用いて、およそ10mの熱風循環式の竪型炉で520℃にて通過時間10~20秒で導体径1mmの銅線に塗布・焼付を行い、厚さ6μmの密着層を形成した。さらに、この上に、前記還元剤含有絶縁塗料を密着層と同様に塗布・焼付して還元剤層を形成し、さらにこの上に、前記最外層用絶縁樹脂ワニスを還元剤層と同様に塗布・焼付して最外層を形成し、絶縁皮膜の厚さ30μmの絶縁電線を作製した。
 この実施例13に係る絶縁電線の断面図を図3に示す。
(実施例14)
 熱硬化性樹脂としてポリイミド樹脂ワニス(商品名:U-ワニス、宇部興産社製、樹脂固形分:20%)を導体上に塗布し、10mの熱風循環式の竪型炉で520℃にて通過時間10~20秒で導体径1mmの銅線に塗布・焼付を行い、絶縁皮膜の厚さ30μmの絶縁電線を作製した。さらに、シトロネロール150gを酢酸エチル500gで希釈した還元剤溶液に前記絶縁電線を1秒程度浸漬し、空気乾燥によって酢酸エチルを除去した。
 この実施例14に係る絶縁電線の断面図を図4に示す。
(実施例15)
 絶縁電線を還元剤溶液に浸漬するのに代えて、シトロネロール150gを酢酸エチル500gで希釈した還元剤溶液を導体上に直接スプレーを用いて塗布した以外は、実施例14と同様にして、絶縁皮膜の厚さ30μmの絶縁電線を得た。
 この実施例15に係る絶縁電線の断面図を図4に示す。
(比較例1)
 2Lセパラブルフラスコに、熱硬化性樹脂ワニスとして、ポリアミドイミド樹脂ワニス(商品名:HI-406シリーズ、日立化成社製、樹脂固形分:32%)2000gを少量ずつ加え、さらに希釈溶剤としてNMPを135g加えた。室温にて攪拌し、暗褐色透明の絶縁塗料を得た。
 絶縁塗料を用いて、およそ10mの熱風循環式の竪型炉で520℃にて通過時間10~20秒で導体径1mmの銅線に塗布・焼付を行った。さらに、この上に、同じ絶縁塗料を用いて外層を形成し、絶縁皮膜の厚さ30μmの絶縁電線を作製した。
(比較例5)
 熱硬化性樹脂としてポリイミド(商品名:U-ワニス、宇部興産社製、樹脂固形分:20%)を用いた以外は比較例1と同様にして、絶縁皮膜の厚さ30μmの絶縁電線を作製した。
 実施例1~15及び比較例1~5の絶縁電線に対して、下記の試験を行った。試験結果を表1~3に示す。
<可とう性>
 JIS C3003に記載のエナメル線試験方法に準じて、可とう性を試験した。実施例1~15及び比較例1~5の絶縁電線から適当な長さの試験片を3本切り取り、それぞれについて試験片自身の周囲に線と線とが接触するように緊密に10回巻きつけたとき、皮膜に導体が見える亀裂を生じないかを目視で観察した。亀裂の発生しなかったものを可とう性が良好(GOOD)と判断し、亀裂が発生したものを可とう性が不良(BAD)と判断した。
<剥離捻回>
 210℃、24時間の熱処理前後の絶縁電線について、長さ30cmの試験片を取り、片側を回転機に、もう一方の側も固定する。固定した試験片の円周上の一点から線の流れ方向に傷をつけて回転機を回し、絶縁皮膜が切断されるまでの回数を測定した。回数が多いほど、絶縁電線の絶縁被膜の密着力が高いことを示す。
<熱処理後の剥離強度>
 引張試験機(JIS B7721に準拠)を用いて、絶縁電線の180°剥離試験を行った。210℃、24時間の熱処理前後の絶縁電線をプレス機で潰し、絶縁皮膜に対して1mm幅のスリットを入れた。スリット部の絶縁皮膜を引張り試験機に固定して、25℃、20mm/分の速度で剥離強度を測定した。強度が大きいほど、絶縁電線の絶縁被膜の密着力が強いことを示す。
<伸長切断>
 210℃、24時間の熱処理前後の絶縁電線について、長さ40cmの試験片を取り、その中央部に長さ250mmの標線を記した。引張試験機(JISB7721に準拠)を用いて、25℃、200mm/分の速度で切断するまで引っ張り、切断時の標線の変位を絶縁電線の伸びの目安として測定した。さらに、切断時の絶縁皮膜の収縮によって露出した導体の長さを絶縁電線の絶縁被膜の密着力として観測した。なお、導体の露出について、伸長した場合に、密着している箇所が少なく筒状になっているものについては不良(NG)と判断した。
<還元法酸化膜厚測定>
 210℃、24時間の熱処理前後の絶縁電線に幅0.5mmのスリットを入れ、0.1mol/Lの塩化カリウム水溶液中に浸漬し5mAの電流を流した。測定の記録速度は20mm/minとした。このとき導体の還元に使用した電力から、絶縁電線の酸化皮膜の厚さを測定した。
 なお、表1~3中、PAI、PEsI及びPIは、下記のものを示す。
PAI:ポリアミドイミド樹脂ワニス(商品名:HI-406シリーズ、日立化成社製、樹脂固形分:32%)
PEsI:熱硬化性ポリエステル樹脂ワニス(商品名:Neoheat 8200K2、東特塗料社製、樹脂固形分:40%)
PI:ポリイミド樹脂ワニス(商品名:U-ワニス、宇部興産社製、樹脂固形分:20%)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1及び2に示すように、実施例1~15では、機械特性に優れ、長時間の熱処理後であっても導体の酸化を防ぐことができ、絶縁皮膜の密着力の低下が抑制された。
 これに対して、表3に示すように、比較例1及び比較例5では、絶縁皮膜に還元剤を含まないので、高温環境で導体に発生する酸化膜の成長を抑制することができず、絶縁皮膜の密着性が低下した。比較例2及び比較例3では、還元剤の沸点が低く、熱硬化性樹脂の低分子量成分が硬化する温度領域で還元剤と反応してしまい、焼付け後の分子量が低くなってしまう熱硬化性樹脂の硬化反応を阻害してしまい、焼付後の絶縁皮膜の強度が低下した。比較例4では、還元力のないフェノール性のヒドロキシ基を持つクレゾールを用いたので、導体と絶縁層とが密着している箇所が少なく、加熱処理後に何らかの機械特性に端を発する密着不良が発生した。
  1 導体
  2 還元剤を含む絶縁皮膜
  3 還元剤を含まない絶縁層
  4 密着改良剤を含む絶縁層
 10 絶縁電線

Claims (20)

  1.  塗布、焼付けにより絶縁皮膜を形成しうる樹脂を含む絶縁塗料中に沸点が160℃以上の還元剤を含有する、絶縁塗料。
  2.  前記還元剤の含有量が、樹脂固形分に対して1質量%以上30質量%以下である、請求項1記載の絶縁塗料。
  3.  前記還元剤が還元性のヒドロキシ基を有する化合物である、請求項1又は2記載の絶縁塗料。
  4.  前記還元剤1分子中の炭素数が10以上の化合物である、請求項1~3のいずれか記載の絶縁塗料。
  5.  前記還元剤がヒドロキシ基を有するテルペノイドである、請求項1~4のいずれか記載の絶縁塗料。
  6.  前記還元剤が、シトロネロール、オクタノール、ヒドロキノン、ゲラニオール、アスコルビン酸、リナロール、テトラエチレングリコール及びドデカンチオールからなる群より選ばれる、請求項1又は2記載の絶縁塗料。
  7.  絶縁皮膜を形成しうる樹脂を含む絶縁塗料を導体上に塗布、焼付けることにより1層又は2層以上の絶縁皮膜を形成した絶縁電線であって、該絶縁皮膜の少なくとも1層中に沸点が160℃以上の還元剤が含まれる、絶縁電線。
  8.  前記還元剤の含有量が、樹脂固形分に対して1質量%以上30質量%以下である、請求項7記載の絶縁電線。
  9.  前記還元剤が還元性のヒドロキシ基を有する化合物である、請求項7又は8記載の絶縁電線。
  10.  前記還元剤1分子中の炭素数が10以上の化合物である、請求項7~9のいずれか記載の絶縁電線。
  11.  前記還元剤がヒドロキシ基を有するテルペノイドである、請求項7~10のいずれか記載の絶縁電線。
  12.  前記還元剤が、シトロネロール、オクタノール、ヒドロキノン、ゲラニオール、アスコルビン酸、リナロール、テトラエチレングリコール及びドデカンチオールからなる群より選ばれる、請求項7又は8記載の絶縁電線。
  13.  請求項1~6のいずれか記載の絶縁塗料を塗布、焼付けて形成した絶縁皮膜を少なくとも1層有する、請求項7~12のいずれか記載の絶縁電線。
  14.  塗布、焼付けにより絶縁皮膜を形成しうる樹脂を含む絶縁塗料を導体上に塗布、焼付けする工程を含む絶縁電線の製造方法であって、前記絶縁塗料中に沸点が160℃以上の還元剤を含有する、絶縁電線の製造方法。
  15.  塗布、焼付けにより絶縁皮膜を形成しうる樹脂を含む絶縁塗料を導体上に塗布、焼付けすることにより絶縁皮膜を形成し、絶縁皮膜上に沸点が160℃以上の還元剤を塗布、焼付けする、絶縁電線の製造方法。
  16.  沸点が160℃以上の還元剤を導体上に塗布、焼付けし、さらに塗布、焼付けにより絶縁皮膜を形成しうる樹脂を含む絶縁塗料を塗布、焼付けすることにより絶縁皮膜を形成する、絶縁電線の製造方法。
  17.  前記還元剤が還元性のヒドロキシ基を有する化合物である、請求項14~16のいずれか1項記載の絶縁電線の製造方法。
  18.  前記還元剤1分子中の炭素数が10以上の化合物である、請求項14~17のいずれか1項記載の絶縁電線の製造方法。
  19.  前記還元剤がヒドロキシ基を有するテルペノイドである、請求項14~18のいずれか1項記載の絶縁電線の製造方法。
  20.  前記還元剤が、シトロネロール、オクタノール、ヒドロキノン、ゲラニオール、アスコルビン酸、リナロール、テトラエチレングリコール及びドデカンチオールからなる群より選ばれる、請求項14~16のいずれか1項記載の絶縁電線の製造方法。
PCT/JP2012/076952 2011-10-19 2012-10-18 絶縁塗料、絶縁電線、及び絶縁電線の製造方法 WO2013058318A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA 2823730 CA2823730A1 (en) 2011-10-19 2012-10-18 Insulating paint, insulated wire and method of producing insulated wire
KR1020137014256A KR101641757B1 (ko) 2011-10-19 2012-10-18 절연 도료, 절연 전선, 및 절연 전선의 제조 방법
EP12841164.2A EP2698405B1 (en) 2011-10-19 2012-10-18 Insulating paint, insulated wire, method and use
CN201280004327.5A CN103270120B (zh) 2011-10-19 2012-10-18 绝缘涂料、绝缘电线、及绝缘电线的制造方法
JP2013513464A JP5871439B2 (ja) 2011-10-19 2012-10-18 絶縁塗料、絶縁電線、及び絶縁電線の製造方法
US13/967,786 US20130330554A1 (en) 2011-10-19 2013-08-15 Insulating paint, insulated wire and method of producing insulated wire
HK14101166.0A HK1188241A1 (zh) 2011-10-19 2014-02-07 絕緣塗料、絕緣電線、及絕緣電線的製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011229734 2011-10-19
JP2011-229734 2011-10-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/967,786 Continuation US20130330554A1 (en) 2011-10-19 2013-08-15 Insulating paint, insulated wire and method of producing insulated wire

Publications (1)

Publication Number Publication Date
WO2013058318A1 true WO2013058318A1 (ja) 2013-04-25

Family

ID=48140961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076952 WO2013058318A1 (ja) 2011-10-19 2012-10-18 絶縁塗料、絶縁電線、及び絶縁電線の製造方法

Country Status (9)

Country Link
US (1) US20130330554A1 (ja)
EP (1) EP2698405B1 (ja)
JP (1) JP5871439B2 (ja)
KR (1) KR101641757B1 (ja)
CN (1) CN103270120B (ja)
CA (1) CA2823730A1 (ja)
HK (1) HK1188241A1 (ja)
MY (1) MY158600A (ja)
WO (1) WO2013058318A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033820A1 (ja) * 2013-09-06 2015-03-12 古河電気工業株式会社 平角電線およびその製造方法並びに電気機器
JP6769425B2 (ja) 2017-11-21 2020-10-14 三菱マテリアル株式会社 絶縁皮膜形成用樹脂、ワニス、電着液、絶縁導体の製造方法
JP7238548B2 (ja) * 2019-03-29 2023-03-14 Tdk株式会社 多層基板用絶縁シート、多層基板および多層基板の製造方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190261A (ja) * 1986-02-17 1987-08-20 Toagosei Chem Ind Co Ltd 絶縁ペ−スト
JPH05230400A (ja) * 1992-02-20 1993-09-07 Kao Corp 導電性ペーストおよび導電性塗膜
JPH07157714A (ja) * 1993-12-07 1995-06-20 Fujikura Ltd ポリウレタン塗料および絶縁電線
JPH08218007A (ja) 1995-02-09 1996-08-27 Sumitomo Electric Ind Ltd 絶縁塗料およびそれを用いた絶縁電線
JPH09106711A (ja) * 1995-10-11 1997-04-22 Sumitomo Electric Ind Ltd 絶縁された電線
JPH11306865A (ja) * 1998-04-24 1999-11-05 Kanegafuchi Chem Ind Co Ltd 自己融着性絶縁電線
JP2002008453A (ja) * 2000-03-31 2002-01-11 Kanegafuchi Chem Ind Co Ltd 自己融着性絶縁電線およびそれを用いた自己融着性リッツ線
JP2003020409A (ja) * 2001-07-06 2003-01-24 Asahi Kasei Corp 感温性樹脂組成物
JP2008081587A (ja) * 2006-09-27 2008-04-10 Hitachi Chem Co Ltd 電気絶縁用樹脂組成物、電気絶縁用樹脂組成物を塗膜成分としてなる塗料及びこの塗料を用いたエナメル線
JP2009009824A (ja) 2007-06-28 2009-01-15 Hitachi Cable Ltd 絶縁電線及びその製造方法
WO2009048102A1 (ja) 2007-10-12 2009-04-16 Sumitomo Electric Wintec, Inc. 絶縁電線、その絶縁電線を用いた電気コイル、及びモータ
JP2009123403A (ja) 2007-11-13 2009-06-04 Hitachi Cable Ltd 絶縁電線及びその製造方法
JP2010153099A (ja) * 2008-12-24 2010-07-08 Sumitomo Electric Wintec Inc 絶縁電線

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4154896A (en) * 1978-02-17 1979-05-15 Westinghouse Electric Corp. Photosensitive solventless oil free low viscosity coating composition
US5670255A (en) * 1995-01-23 1997-09-23 Ppg Industries, Inc. Antioxidant compositions for coating substrates, substrates coated with the same and methods for inhibiting the oxidation of such compositions applied to a substrate
JP3301722B2 (ja) * 1997-11-06 2002-07-15 ティーディーケイ株式会社 薄膜型電子デバイス
JPH11303865A (ja) * 1998-04-16 1999-11-02 Sony Corp ガイド軸の支持構造及びその支持方法
JP3572938B2 (ja) * 1998-04-17 2004-10-06 Jfeスチール株式会社 耐スティッキング性及び耐食性に優れた電磁鋼板
JP2000034574A (ja) * 1998-07-15 2000-02-02 Nkk Corp 耐臭気性、耐スティッキング性及び耐食性に優れた電磁鋼板
US6444916B2 (en) * 2000-03-31 2002-09-03 Kaneka Corporation Self-bonding insulated wire and self-bonding litz wire comprising the same
JP4096732B2 (ja) * 2002-12-26 2008-06-04 Jfeスチール株式会社 高周波誘導加熱による塗膜の焼付け方法
JP2008081517A (ja) * 2006-09-25 2008-04-10 Fujifilm Corp Uv硬化型インクジェット用インク組成物
CN101821329A (zh) * 2007-08-06 2010-09-01 通用电缆技术公司 耐受树枝化的绝缘组合物
JP2010095649A (ja) * 2008-10-17 2010-04-30 Hitachi Chem Co Ltd 電気絶縁用樹脂組成物及びこれを用いたエナメル線

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190261A (ja) * 1986-02-17 1987-08-20 Toagosei Chem Ind Co Ltd 絶縁ペ−スト
JPH05230400A (ja) * 1992-02-20 1993-09-07 Kao Corp 導電性ペーストおよび導電性塗膜
JPH07157714A (ja) * 1993-12-07 1995-06-20 Fujikura Ltd ポリウレタン塗料および絶縁電線
JPH08218007A (ja) 1995-02-09 1996-08-27 Sumitomo Electric Ind Ltd 絶縁塗料およびそれを用いた絶縁電線
JPH09106711A (ja) * 1995-10-11 1997-04-22 Sumitomo Electric Ind Ltd 絶縁された電線
JPH11306865A (ja) * 1998-04-24 1999-11-05 Kanegafuchi Chem Ind Co Ltd 自己融着性絶縁電線
JP2002008453A (ja) * 2000-03-31 2002-01-11 Kanegafuchi Chem Ind Co Ltd 自己融着性絶縁電線およびそれを用いた自己融着性リッツ線
JP2003020409A (ja) * 2001-07-06 2003-01-24 Asahi Kasei Corp 感温性樹脂組成物
JP2008081587A (ja) * 2006-09-27 2008-04-10 Hitachi Chem Co Ltd 電気絶縁用樹脂組成物、電気絶縁用樹脂組成物を塗膜成分としてなる塗料及びこの塗料を用いたエナメル線
JP2009009824A (ja) 2007-06-28 2009-01-15 Hitachi Cable Ltd 絶縁電線及びその製造方法
WO2009048102A1 (ja) 2007-10-12 2009-04-16 Sumitomo Electric Wintec, Inc. 絶縁電線、その絶縁電線を用いた電気コイル、及びモータ
JP2009123403A (ja) 2007-11-13 2009-06-04 Hitachi Cable Ltd 絶縁電線及びその製造方法
JP2010153099A (ja) * 2008-12-24 2010-07-08 Sumitomo Electric Wintec Inc 絶縁電線

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2698405A4

Also Published As

Publication number Publication date
KR20140020839A (ko) 2014-02-19
CN103270120A (zh) 2013-08-28
CA2823730A1 (en) 2013-04-25
JP5871439B2 (ja) 2016-03-01
JPWO2013058318A1 (ja) 2015-04-02
EP2698405B1 (en) 2019-06-26
HK1188241A1 (zh) 2014-04-25
MY158600A (en) 2016-10-31
EP2698405A1 (en) 2014-02-19
EP2698405A4 (en) 2015-11-18
US20130330554A1 (en) 2013-12-12
CN103270120B (zh) 2016-06-22
KR101641757B1 (ko) 2016-07-21

Similar Documents

Publication Publication Date Title
JP5761151B2 (ja) 絶縁電線及びコイル
EP3093855B1 (en) Insulated electric wire, coil and electric/electronic device, and cracking prevention method for insulated electric wire
JP5871439B2 (ja) 絶縁塗料、絶縁電線、及び絶縁電線の製造方法
JP2011210645A (ja) 絶縁塗料およびそれを用いた絶縁電線
WO2017094789A1 (ja) 自己融着性絶縁電線、コイル及び電気・電子機器
WO2017098993A1 (ja) 絶縁電線、コイルおよび電気・電子機器
CN109071954B (zh) 固化性组合物、使用该组合物的固化膜及外涂膜
JP5080915B2 (ja) 耐熱自己融着性塗料組成物及び耐熱自己融着性エナメル線
TWI512061B (zh) Insulating coatings, insulated wires, and insulated wires
JP3724922B2 (ja) ポリイミド系絶縁塗料及び絶縁電線
EP4116993A1 (en) Polyamide precursor, resin composition, and flexible substrate
JP4440535B2 (ja) ポリエステル系絶縁塗料の製造方法
JP2010031101A (ja) ポリアミドイミド樹脂塗料及びこれを用いた絶縁電線
JP2003138167A (ja) エナメル線用絶縁塗料
JP5364939B2 (ja) 絶縁電線
WO2019102994A1 (ja) 絶縁皮膜形成用樹脂、ワニス、電着液、絶縁導体の製造方法
WO2022215743A1 (ja) 硬化用組成物及び硬化物
TW201809048A (zh) 硬化性組成物、使用該組成物之硬化膜及被覆膜
JP5876686B2 (ja) 絶縁性材料
JP2009235162A (ja) 熱硬化性樹脂組成物
Bhanu Polyester Wire Enamels‐Reliable Coatings in the Wire Industry from the Beginning to Nowadays
JP2015214602A (ja) ポリアミドイミド塗料及び絶縁電線
JP5166715B2 (ja) 絶縁電線用塗料及びそれを用いた絶縁電線
JPH0434912A (ja) コイルの製法
JP2017095627A (ja) ポリエステルイミド塗料、それを用いて形成される絶縁電線およびコイル

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013513464

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137014256

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841164

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2823730

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012841164

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE