WO2013057945A1 - 表面被覆処理した無機粉体 - Google Patents

表面被覆処理した無機粉体 Download PDF

Info

Publication number
WO2013057945A1
WO2013057945A1 PCT/JP2012/006663 JP2012006663W WO2013057945A1 WO 2013057945 A1 WO2013057945 A1 WO 2013057945A1 JP 2012006663 W JP2012006663 W JP 2012006663W WO 2013057945 A1 WO2013057945 A1 WO 2013057945A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic powder
formula
thin film
group
organic thin
Prior art date
Application number
PCT/JP2012/006663
Other languages
English (en)
French (fr)
Inventor
島田 幹也
憲史 中本
香太郎 荒井
肥高 友也
Original Assignee
日本曹達株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本曹達株式会社 filed Critical 日本曹達株式会社
Priority to JP2013539535A priority Critical patent/JP5793198B2/ja
Priority to IN2843CHN2014 priority patent/IN2014CN02843A/en
Priority to US14/352,193 priority patent/US20140302325A1/en
Priority to KR1020147009244A priority patent/KR101588149B1/ko
Priority to EP12842562.6A priority patent/EP2769959A4/en
Priority to CN201280050738.8A priority patent/CN103874654B/zh
Publication of WO2013057945A1 publication Critical patent/WO2013057945A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3684Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/407Aluminium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2995Silane, siloxane or silicone coating

Definitions

  • the present invention relates to a surface-coated inorganic powder useful as a filler or the like.
  • the present invention relates to an inorganic powder that is surface-coated with a monomolecular film derived from an organosilicon compound.
  • Patent Documents 1 to 6 the surface of a substrate made of glass, metal, plastics, ceramics, or the like is modified in various fields according to the purpose.
  • coating with a fluorine-containing silane surfactant has been performed (Patent Documents 1 to 6).
  • Patent Document 7 the technique for rapidly forming a dense monomolecular film with few impurities. Agents have also been developed (Patent Document 7).
  • silicones such as silane coupling agents or surfactants such as dimethicone, hydrogenmethylpolysiloxane, and perfluoroalkyldimethylmethoxysilane, diethanolamine salts of perfluoroalkyl phosphate, phosphate esters containing perfluoroalkyl groups, etc.
  • examples include fluorine compounds, fatty acid metal soaps such as zinc stearate, acylated amino acid derivatives such as aluminum acylglutamate, lecithin or metal salts thereof, and phosphate triester-modified organo (poly) siloxanes (for example, Patent Documents 8 to 8). 18 etc.).
  • Patent Document 19 describes fine particles coated with a monomolecular film, but it is known that a crystalline monomolecular film can be formed on a non-planar substrate such as an inorganic powder. There wasn't. Similarly, a method for forming a monomolecular film on an inorganic powder with a high coverage has not been known.
  • the present invention includes dispersibility, fluidity, packing density, slidability, lubricity, liquid ejection, non-adhesiveness, acid resistance, alkali resistance, shape maintenance performance, storage stability, safety, solvent and resin
  • An object of the present invention is to provide a surface-coated inorganic powder having excellent properties such as affinity, ecological affinity, and molecular recognition ability.
  • the inventors of the present invention have used inorganic powder as a surface by a crystalline monomolecular film derived from an organosilicon compound such as a hydrolyzate of octadecyltrimethoxysilane and / or an oligomer thereof.
  • an organosilicon compound such as a hydrolyzate of octadecyltrimethoxysilane and / or an oligomer thereof.
  • Inorganic powder coated with a monomolecular film formed of at least one structural unit represented by The inorganic powder according to (1) is characterized in that at least a part of the film has crystallinity, and (2) R 1 is an octadecyl group.
  • the present invention also provides: (3) (A) Formula (II) R 1 Si (OH) n X 3 3-n (II) (Wherein R 1 represents an optionally substituted alkyl group having 1 to 30 carbon atoms, X 3 represents a hydrolyzable group, and n represents any integer of 1 to 3. At least a part of which is characterized in that the inorganic powder is brought into contact with an organic thin film forming solution containing 10 ppm to saturated concentration of water (B), and (C) an organic solvent. A method for producing an inorganic powder coated with a crystalline monomolecular film; (4) The organic thin film forming solution is further added to the formula (III)
  • each R 1 independently represents the same substituent as R 1 in the formula (II), and X 4 , X 5 , X 6 and X 7 are each independently a hydroxyl group or hydrolyzable. And X 4 and X 7 together form an oxygen atom and may form a ring in which Si and oxygen atoms are alternately bonded, and m represents an integer of 1 to 3.
  • FIG. 1 shows a titration curve of alumina.
  • FIG. 2 is a schematic diagram of hexagonal crystals.
  • FIG. 3 is a diagram showing an IR spectrum of the surface-coated powder (E-7, E-8, and E-9) of the present invention.
  • Metal oxides such as titanium oxide, iron oxide, zinc oxide, aluminum oxide, zirconium oxide, silicon oxide, magnesium oxide and chromium oxide; carbonates such as magnesium carbonate and calcium carbonate; aluminum silicate, magnesium silicate and aluminum silicate
  • silicates such as magnesium, aluminum hydroxide, magnesium hydroxide, chromium hydroxide, carbon black, mica, synthetic mica, sericite, talc, kaolin, silicon carbide, barium titanate, barium sulfate, bentonite, smectite, Examples thereof include boron nitride, conch and ultramarine.
  • the inorganic powder includes organic particles such as an organic pigment whose surface is covered with the inorganic compound as described above.
  • the surface of the inorganic powder is treated in advance in a plasma atmosphere containing oxygen, or a hydrophilic group is introduced by corona treatment. be able to.
  • the hydrophilic group is preferably a hydroxyl group (—OH), but may be a functional group having active hydrogen such as —COOH, —CHO, ⁇ NH, —NH 2 or the like.
  • a silica underlayer having active hydrogen on the surface can be formed by contacting at least one compound selected from the group consisting of 0 and a dehydrochlorination reaction.
  • the particle size of the inorganic powder is not particularly limited, but is 5 nm to 50,000 nm, preferably 10 nm to 50,000 nm, and more preferably 10 nm to 5,000 nm.
  • the organic thin film forming solution used in the present invention is: (A) Formula (II) R 1 Si (OH) n X 3 3-n (II) (Wherein R 1 represents an optionally substituted alkyl group having 1 to 30 carbon atoms, X 3 represents a hydrolyzable group, and n represents any integer of 1 to 3. ) And / or at least one organosilicon compound represented by formula (III)
  • each R 1 independently represents the same substituent as R 1 in formula (II), and X 4 , X 5 , X 6 and X 7 are each independently a hydroxyl group or a hydrolyzable group. X 4 and X 7 may be combined together to form an oxygen atom and form a ring in which Si and oxygen atoms are alternately bonded.
  • M represents an integer of 1 to 3.
  • the organosilicon compound represented by the formula (III) corresponds to an oligomer of the organosilicon compound represented by the formula (II).
  • the mass ratio of the organosilicon compound represented by the formula (II) and the organosilicon compound represented by the formula (III) can be appropriately selected within the range of 100: 0 to 0: 100. : 0 to 1:99.
  • the organic thin film forming solution may further contain a silanol condensation catalyst.
  • the content of the organosilicon compound represented by the formula (II) in the organic thin film forming solution is 0.01% by mass or more, preferably 0.01 to 30% by mass, more preferably 0.8%.
  • the content is 01 to 10% by mass, and more preferably 0.05 to 10% by mass.
  • the presence and ratio of organosilicon compounds having different degrees of polymerization can be determined from, for example, the peak position to peak area ratio in GPC (gel permeation chromatography).
  • the presence and ratio of organosilicon compounds having different numbers of hydroxyl groups can be determined from, for example, the peak position and abundance ratio of HPLC (high performance liquid chromatography).
  • R 1 of the compound represented by the formula (II) is an octadecyl group
  • the content of the corresponding compound represented by the formula (II) from the peak area ratio of HPLC The amount can be determined.
  • the reaction rate of the organosilicon compound with respect to the inorganic powder can be improved, and an inorganic powder excellent in the coverage of the monomolecular film can be obtained.
  • the coverage of the inorganic powder is 30% or more, more preferably 40% or more, more preferably 50% or more, and particularly preferably 60% or more.
  • the coverage can be calculated by performing a thermal analysis measurement of the surface-coated powder.
  • Organosilicon compound represented by formula (II) The definition of the substituent in formula (II) is as follows.
  • R 1 Methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n- Hexyl, isohexyl, n-heptyl, n-octyl, n-decyl, n-tetradecyl, n-octadecyl, n-icosyl, n-tetradocosyl, n-octadocosyl, etc.
  • a linear alkyl group having 1 to 30 carbon atoms is preferable, a linear alkyl group having 6 to
  • an alkoxy group having 1 to 6 carbon atoms such as a methoxy group and an ethoxy group
  • a fluorinated alkyl group having 1 to 3 carbon atoms such as CF 3 and C 2 F 5 ;
  • a fluorinated alkoxy group having 1 to 3 carbon atoms such as CF 3 O and C 2 F 5 O
  • Aryl groups such as phenyl and naphthyl groups;
  • Aryloxy groups such as phenoxy group and naphthoxy group;
  • An alkylthio group having 1 to 6 carbon atoms such as a methylthio group or an ethylthio group;
  • Arylthio groups such as a phenylthio group and a naphthylthio group;
  • heterocyclic groups such as a pyrrol-2-yl group, an imidazol-2-yl group, and a pyrimidin-2-yl group.
  • the substituent is preferably at the end of R 1 .
  • the “optionally substituted alkyl group having 1 to 30 carbon atoms” “the number of carbon atoms 1 to 30” is the number of carbon atoms in the substituent of “optionally substituted”. Not included.
  • the hydrolyzable group for X 3 is not particularly limited as long as it is a group that decomposes by reacting with water, but examples thereof include an alkoxy group having 1 to 6 carbon atoms; an acyloxy group; a halogen atom such as F, Cl, and Br. It is done.
  • alkoxy group having 1 to 6 carbon atoms examples include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, t-butoxy group, n-pentyloxy group, and n-to A xyloxy group etc. are mentioned.
  • acyloxy group examples include an acetoxy group, a propionyloxy group, an n-propylcarbonyloxy group, an isopropylcarbonyloxy group, an n-butylcarbonyloxy group and the like, an alkylcarbonyloxy group having 1 to 6 carbon atoms; a benzoyloxy group, a naphthylcarbonyloxy group Arylcarbonyloxy groups such as a group; arylalkylcarbonyloxy groups such as a benzylcarbonyloxy group and a phenethylcarbonyloxy group.
  • Examples of the compound represented by the formula (II) include those shown below.
  • R 1 is an alkyl group having no substituent
  • CH 3 Si (OCH 3 ) (OH) 2 C 2 H 5 Si (OCH 3 ) (OH) 2 , C 3 H 7 Si (OCH 3 ) 2 (OH), C 4 H 9 Si (OCH 3 ) 2 (OH), C 4 H 9 Si (OCH 3 ) (OH) 2 , CH 3 (CH 2) 5 Si (OCH 3) (OH) 2, CH 3 (CH 2) 7 Si (OCH 3) (OH) 2, CH 3 (CH 2 ) 9 Si (OCH 3 ) 2 (OH), CH 3 (CH 2 ) 11 Si (OCH 3 ) 2 (OH), CH 3 (CH 2 ) 13 Si (OCH 3 ) 2 (OH), CH 3 (CH 2 ) 15 Si (OH 3 ) 3 , CH 3 (CH 2) 17 Si (OCH 3) (OH) 2, CH 3 (CH 2 ) 17 Si (OCH 3 ) 2 (OH), CH 3 (
  • R 1 is an alkyl group having a substituent
  • R 1 represents the same substituents as R 1 in above-mentioned formula (II), each R 1 may be the same or different.
  • Examples of the hydrolyzable group in X 4 , X 5 , X 6 and X 7 include the same substituents as the hydrolyzable group in the above formula (II).
  • X 4 and X 7 together form an oxygen atom.
  • the case of forming a ring in which Si and oxygen atoms are alternately bonded means, for example, a compound having the following structure.
  • Organic solvents used in the present invention include alcohol solvents, hydrocarbon solvents, fluorocarbon solvents, and silicone solvents. Hydrocarbon solvents, fluorocarbon solvents, and silicone solvents are preferable, hydrocarbon solvents are particularly preferable, and hydrocarbon solvents having a boiling point of 100 to 250 ° C. are more preferable.
  • hydrocarbon solvents CBr 2 ClCF 3, CClF 2 CF 2 CCl 3, CClF 2 CF 2 CHFCl, CF 3 CF 2 CHCl 2, CF 3 CBrFCBrF 2, CClF 2 CClFCF 2 CCl 3, Cl (CF 2 CFCl) 2 Cl
  • Fluorocarbon solvents such as chlorofluorocarbon solvents such as Cl (CF 2 CFCl) 2 CF 2 CCl 3 , Cl (CF 2 CFCl) 3 Cl, Fluorinert (product of 3M), Afludo (product of Asahi Glass);
  • silicone solvents such as phenyl silicone, alkyl-modified silicone, and polyether silicone.
  • silanol condensation catalyst used in the present invention is an organosilicon compound represented by formula (II) or an organosilicon compound that is a raw material of an organosilicon compound represented by formula (III).
  • the compound represented by (IV) is activated with a hydroxyl group or a hydrolyzable group by interacting with a hydroxyl group or a hydrolyzable group moiety through a coordination bond or a hydrogen bond, thereby promoting hydrolysis. And a catalyst having an action of promoting condensation.
  • silanol condensation catalyst of the present invention examples include metal oxide, carboxylate metal salt, carboxylate metal salt, carboxylate metal salt polymer, carboxylate metal salt chelate, titanate ester, titanate ester chelate, acid catalyst, metal alkoxide. And partial hydrolysis products of metal alkoxides are preferable, and at least one of metal alkoxides and partial hydrolysis products of metal alkoxides is more preferably used.
  • metal oxide Although it does not specifically limit as a metal oxide, The oxide of one type of metal element chosen from the group which consists of titanium, zirconium, aluminum, silicon, germanium, indium, tin, tantalum, zinc, tungsten, and lead is illustrated preferably. be able to.
  • the metal oxide can be used in any state such as sol, gel, and solid.
  • the method for producing the gel or sol is not particularly limited.
  • silica sol is taken as an example, a method of cation exchange of a sodium silicate solution, a method of hydrolyzing silicon alkoxide, and the like can be exemplified.
  • a sol that is stably dispersed in an organic solvent is preferable, and a sol having a particle size in the range of 10 to 100 nm, more preferably in the range of 10 to 20 nm is preferable.
  • the shape of the sol is not particularly limited, and any shape such as a spherical shape or an elongated shape can be used.
  • methanol silica sol IPA-ST, IPA-ST-UP, IPA-ST-ZL, NPC-ST-30, DMAC-ST, MEK-ST, MIBK-ST, XBA-ST, PMA-ST ( As mentioned above, all represent the trade name of the organosilica sol by Nissan Chemical Industries Ltd.) etc.
  • carboxylate metal salt examples include the following.
  • Acid catalysts include mineral acids such as hydrochloric acid, nitric acid, boric acid, borohydrofluoric acid; carbonic acid; organic acids such as acetic acid, formic acid, oxalic acid, trifluoroacetic acid, p-toluenesulfonic acid, methanesulfonic acid; preferably Acid of pKa ⁇ 0, perfluorosulfonic acid / PTFE copolymer (H + type) (for example, Nafion NR50 (registered trademark) manufactured by DuPont), polystyrene sulfonic acid (for example, Amberlyst 15 (registered trademark) manufactured by Rohm and Haas) )) And the like; and further, a photoacid generator that generates an acid by light irradiation, specifically, diphenyliodonium hexafluorophosphate, triphenylphosphonium hexafluorophosphate, and the like.
  • organic acids
  • metal alkoxides consists of titanium, zirconium, aluminum, silicon, germanium, indium, tin, tantalum, zinc, tungsten, and lead because an organic thin film excellent in transparency can be obtained. Preference is given to alkoxides of at least one metal element selected from the group.
  • the carbon number of the alkoxy group of the metal alkoxides is not particularly limited, but those having 1 to 4 carbon atoms are preferable from the viewpoint of the concentration of the contained oxide, the ease of detachment of organic substances, the availability, and the like.
  • metal alkoxides used in the present invention include Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , Si (OC 3 H 7 -i) 4 , Si (OC 4 H 9 -t) 4 Silicon alkoxides such as Ti (OCH 3 ) 4 , Ti (OC 2 H 5 ) 4 , Ti (OC 3 H 7 -i) 4 , Ti (OC 4 H 9 ) 4 and other titanium alkoxides; Ti [OSi (CH 3 ) 3 ] 4 , tetrakistrialkylsiloxytitanium such as Ti [OSi (C 2 H 5 ) 3 ] 4 ; Zr (OCH 3 ) 4 , Zr (OC 2 H 5 ) 4 , Zr (OC 3 H 7 ) 4 , Zr (OC 4 H 9 ) 4 and other zirconium alkoxides; Al (OCH 3 ) 3 , Al (OC 2 H 5 ) 3 , Al (OC 3 H 7 ) 4
  • Tin alkoxides Ta (OCH 3 ) 5 , tantalum alkoxides such as Ta (OC 2 H 5 ) 5 , Ta (OC 3 H 7 -i) 5 , Ta (OC 4 H 9 ) 5 ; W (OCH 3 ) 6 , W (OC 2 H 5 ) 6 , Tungsten alkoxides such as W (OC 3 H 7 -i) 6 , W (OC 4 H 9 ) 6 ; zinc alkoxides such as Zn (OC 2 H 5 ) 2 ; lead alkoxides such as Pb (OC 4 H 9 ) 4 ; Etc. It is.
  • These metal alkoxides can be used alone or in combination of two or more.
  • a metal alkoxide a reaction of a composite alkoxide obtained by reaction of two or more metal alkoxides, one or more metal alkoxides, and one or two or more metal salts. It is also possible to use a composite alkoxide obtained by the above and a combination thereof.
  • composite alkoxide obtained by the reaction of two or more kinds of metal alkoxides a composite alkoxide obtained by reaction of an alkoxide of an alkali metal element or an alkaline earth metal element and an alkoxide of a transition metal element, or a group 3B element
  • Complex alkoxides obtained in the form of complex salts by combination can be exemplified.
  • R and R ′ represent an alkyl group or the like.
  • Examples of the composite alkoxide obtained by reaction of one or more metal alkoxides with one or more metal salts include compounds obtained by reaction of metal salts with metal alkoxides. .
  • Examples of the metal salt include chlorides, nitrates, sulfates, acetates, formates, oxalates, and the like, and examples of the metal alkoxides include those similar to the metal alkoxides described above.
  • the partial hydrolysis product of the metal alkoxide is obtained before the metal alkoxide is completely hydrolyzed, and exists in an oligomer state.
  • an organic solvent is used in an amount of less than 0.5 to 2.0 times moles of water with respect to the metal alkoxide exemplified above, and from ⁇ 100 ° C. to an organic solvent reflux temperature.
  • a method of hydrolyzing within a range can be preferably exemplified.
  • (I) a method of adding 0.5 to less than 1.0 mole of water to the metal alkoxide in an organic solvent, (Ii) in an organic solvent at a temperature not higher than the temperature at which hydrolysis starts, preferably 0 ° C. or lower, more preferably in the range of ⁇ 20 to ⁇ 100 ° C.
  • a method of adding water (Iii) A metal alkoxide while controlling the hydrolysis rate by a method of controlling the rate of water addition in an organic solvent or a method of using an aqueous solution in which a water-soluble solvent is added to water to reduce the water concentration. Examples thereof include a method of adding 0.5 to less than 2.0 moles of water at room temperature.
  • the reaction after adding a predetermined amount of water at an arbitrary temperature, the reaction can be carried out by further adding water at a temperature not higher than the temperature at which hydrolysis starts, preferably not higher than ⁇ 20 ° C. .
  • the reaction between the metal alkoxide and water can be carried out by directly mixing the metal alkoxide with water without using an organic solvent, but it is preferably carried out in an organic solvent.
  • a method of adding water diluted with an organic solvent to an organic solvent solution of a metal alkoxide a method of adding a metal alkoxide or an organic solvent solution thereof into an organic solvent in which water is suspended or dissolved;
  • the former method of adding water is preferable.
  • the concentration of the metal alkoxides in the organic solvent is not particularly limited as long as it has a fluidity capable of suppressing rapid heat generation and can be stirred, but is usually in the range of 5 to 30% by weight.
  • the reaction temperature between the metal alkoxide and water in the method (i) is not particularly limited, and is usually eliminated in the range of ⁇ 100 to + 100 ° C., preferably from ⁇ 20 ° C. by the organic solvent or hydrolysis.
  • the temperature range is up to the boiling point of the alcohol.
  • the temperature at which water is added in the method (ii) depends on the stability of the metal alkoxide, and is not particularly limited as long as it is a hydrolysis start temperature or lower or 0 ° C. or lower. Depending on the type, it is preferable to add water to the metal alkoxide in a temperature range of ⁇ 50 ° C. to ⁇ 100 ° C. In addition, after adding water at a low temperature and aging for a certain period of time, hydrolysis can be performed at the reflux temperature of the solvent used from room temperature, and a dehydration condensation reaction can also be performed.
  • the reaction between the metal alkoxides and water in the method (iii) is controlled in a temperature range in which cooling is possible without using a special cooling device, for example, in the range of 0 ° C. to room temperature.
  • the hydrolysis rate can be controlled by a method other than the above temperature. After aging for a certain period of time, hydrolysis can be performed from room temperature to the reflux temperature of the solvent used, and a dehydration condensation reaction can also be performed.
  • the hydrolysis product of the metal alkoxide in the organic solvent can be dispersed as a dispersoid, and the reaction of treating the metal surfactant with water at a low temperature.
  • a solvent that has high water solubility and does not solidify at low temperatures is more preferable because it can be performed.
  • organic solvent used examples include alcohol solvents such as methanol, ethanol and isopropanol; halogenated hydrocarbon solvents such as methylene chloride, chloroform and chlorobenzene; hydrocarbon solvents such as hexane, cyclohexane, benzene, toluene and xylene.
  • alcohol solvents such as methanol, ethanol and isopropanol
  • halogenated hydrocarbon solvents such as methylene chloride, chloroform and chlorobenzene
  • hydrocarbon solvents such as hexane, cyclohexane, benzene, toluene and xylene.
  • Ether solvents such as tetrahydrofuran, diethyl ether and dioxane; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; amide solvents such as dimethylformamide and N-methylpyrrolidone; sulfoxide solvents such as dimethyl sulfoxide; methyl polysiloxane , Silicones such as octamethylcyclotetrasiloxane, decamethylcyclopentanesiloxane, and methylphenylpolysiloxane (JP-A-9-208438). That.
  • solvents can be used alone or in combination of two or more.
  • a combination of a hydrocarbon solvent such as toluene or xylene and a lower alcohol solvent system such as methanol, ethanol, isopropanol, or t-butanol is preferable.
  • the lower alcohol solvent is more preferably a secondary or higher alcohol solvent such as isopropanol or t-butanol.
  • the mixing ratio of the mixed solvent is not particularly limited, but it is preferable to use a hydrocarbon solvent and a lower alcohol solvent in a volume ratio of 99/1 to 50/50.
  • the water to be used is not particularly limited as long as it is neutral, but it is preferable to use pure water, distilled water or ion-exchanged water from the viewpoint of obtaining a dense organic thin film with few impurities.
  • the amount of water used is 0.5 to less than 2.0 moles per mole of the metal alkoxides.
  • an acid, a base or a dispersion stabilizer may be added.
  • Acids and bases were produced as a deflocculant for redispersing the precipitate formed by condensation, and as a catalyst for producing dispersoids such as colloidal particles by hydrolyzing and dehydrating metal alkoxides. There is no particular limitation as long as it functions as a dispersoid dispersant.
  • Acids used include mineral acids such as hydrochloric acid, nitric acid, boric acid, borohydrofluoric acid; carbonic acid; organic acids such as acetic acid, formic acid, oxalic acid, trifluoroacetic acid, p-toluenesulfonic acid, methanesulfonic acid; diphenyliodonium And a photoacid generator that generates an acid by light irradiation, such as hexafluorophosphate and triphenylphosphonium hexafluorophosphate.
  • Examples of the base used include triethanolamine, triethylamine, 1,8-diazabicyclo [5.4.0] -7-undecene, ammonia, dimethylformamide, phosphine and the like.
  • the dispersion stabilizer is an agent having the effect of stably dispersing the dispersoid in the dispersion medium, and examples thereof include anti-caking agents such as a peptizer, a protective colloid, and a surfactant.
  • anti-caking agents such as a peptizer, a protective colloid, and a surfactant.
  • polyhydric carboxylic acids such as glycolic acid, gluconic acid, lactic acid, tartaric acid, citric acid, malic acid, and succinic acid; hydroxycarboxylic acids; phosphoric acids such as pyrophosphoric acid and tripolyphosphoric acid; acetylacetone, methyl acetoacetate, aceto Ethyl acetate, n-propyl acetoacetate, isopropyl acetoacetate, n-butyl acetoacetate, sec-butyl acetoacetate, t-butyl acetoacetate, 2,4-hexan
  • the partial hydrolysis product obtained as described above becomes a dispersoid having a property of stably dispersing without aggregation in an organic solvent in the absence of an acid, a base and / or a dispersion stabilizer. ing.
  • the dispersoid refers to fine particles dispersed in the dispersion system, and specific examples include colloidal particles.
  • the state of being stably dispersed without agglomeration means that the dispersoid of the hydrolysis product is condensed and heterogeneous in the absence of an acid, a base and / or a dispersion stabilizer in an organic solvent. It represents a state where they are not separated, and preferably represents a transparent and homogeneous state.
  • Transparent means a state where the transmittance in visible light is high. Specifically, the concentration of the dispersoid is 0.5% by mass in terms of oxide, the optical path length of the quartz cell is 1 cm, and the control sample is organic. This is a state in which the transmittance is preferably 80 to 100%, expressed as a spectral transmittance measured under the condition of using a solvent and a light wavelength of 550 nm.
  • the particle size of the dispersoid of the partially hydrolyzed product is not particularly limited, but is usually in the range of 1 to 100 nm, preferably 1 to 50 nm, more preferably 1 to 10 nm in order to obtain a high transmittance in visible light. .
  • the amount of the silanol condensation catalyst used is not particularly limited as long as it does not affect the physical properties of the organic thin film to be formed, but is usually 0.0001 to 1 mol in terms of oxide equivalents per 1 mol of the organic silane compound.
  • the amount is preferably 0.0001 to 0.2 mol.
  • the organic thin film forming solution of the present invention can be prepared, for example, by the following method.
  • 1) Manufacturing method 1 Production Method 1 is a compound of formula (IV) in an organic solvent.
  • R 2 SiX 8 3 (IV) (In the formula, R 2 represents the same substituent as R 1 in the above formula (II), and X 8 represents a hydroxyl group or a hydrolyzable group) and a silanol condensation catalyst is mixed.
  • This is an organic thin film forming method for forming an organic thin film on the surface of the substrate by bringing the obtained organic thin film forming solution into contact with the substrate.
  • the organosilicon compound is hydrolyzed and / or condensed by a silanol condensation catalyst to form the organosilicon compound represented by the above formula (II) and, optionally, the formula (III).
  • organosilicon compound represented by the formula (IV) include the following.
  • the organic thin film forming solution contains a predetermined amount of moisture, and the amount is determined by the type of inorganic powder, organic silicon compound, silanol condensation catalyst, organic solvent, and the like. Specifically, the chemical adsorption to the inorganic powder is not inhibited, a dense monomolecular film can be produced, the loss of the organosilane compound represented by the formula (IV) is small, and the catalyst is not deactivated. And it is more than the amount sufficient to promote activation of film formation.
  • the amount sufficient to promote and activate the formation of the organic thin film means, for example, when the solution is brought into contact with the substrate by the dipping method, the contact time is within 10 minutes, preferably within 5 minutes, and the dense and homogeneous organic thin film Is a degree that can be formed on the entire surface of the inorganic powder at once.
  • the water content is preferably in the range of 10 ppm or more to the saturated water content of the organic solvent. Since the saturated water content varies depending on the solvent, the range is appropriately determined depending on the solvent used.
  • the amount of water shown here is a value obtained by collecting a part of the solution for forming an organic thin film and measured by the Karl Fischer method. If the value is measured by a device using the method principle, the measuring device is particularly limited. Not.
  • the organic thin film forming solution When the organic thin film forming solution is uniform, a part of the uniform solution is sampled and measured. When the organic solvent layer and the moisture layer are two layers, a part of the organic solvent layer is sampled from the organic solvent layer. When the water layer is dispersed in an organic solvent and cannot be separated, the measured value is obtained by collecting the dispersion as it is.
  • a method of bringing the water content in the organic thin film forming solution into a predetermined range specifically, (A) a method of providing an aqueous layer in contact with the organic thin film forming solution; (B) a method of allowing a water-retaining substance containing water to coexist in a solution for forming an organic thin film; (C) A method of bringing the organic thin film forming solution into contact with a gas containing moisture, (D) a method of adding water as appropriate, Etc. can be illustrated. These methods may be used alone or in combination of two or more.
  • the water used is not particularly limited as long as it is neutral, but it is preferable to use pure water or distilled water.
  • the organic solvent to be used may be anhydrous or may contain a certain amount of moisture in advance.
  • the silanol condensation catalyst used is an acid catalyst
  • the organic silane compound represented by the formula (IV) is hydrolyzed and condensed in an aliphatic ether solvent or an aliphatic ketone solvent in the presence of water and an acid.
  • the obtained solution may be diluted with an organic solvent to obtain an organic thin film forming solution.
  • the amount of water used for the hydrolysis and condensation reaction is 0.1 to 20 mol, preferably 0.5 to 6 mol, based on 1 mol of the organosilane compound represented by the formula (IV). More preferably, it is 1 to 4 mol.
  • the reaction temperature for the hydrolysis and condensation reaction is 0 ° C. to the boiling point of the solvent, and the reaction time is 1 hour to 100 days.
  • the amount of the silanol condensation catalyst used is 0.01 mmol to 1 mol with respect to 1 mol of the organic silane compound represented by the formula (IV) in the case of a mineral acid or an organic acid. Is used in an amount of 0.05 to 20% by mass based on the organosilane compound represented by the formula (IV).
  • the aliphatic ether solvent or aliphatic ketone solvent used in the hydrolysis and condensation reaction include aliphatic ethers such as tetrahydrofuran, tetrahydropyran, cyclopentyl methyl ether, and 1,2-diethoxyethane, and fats such as methyl isobutyl ketone. Group ketones are preferred.
  • the organic solvent for dilution is preferably a hydrocarbon solvent, a fluorocarbon solvent, or a silicone solvent.
  • An organic thin film forming auxiliary can be obtained by reacting an organosilicon compound represented by the formula (IV) with a silanol condensation catalyst. More specifically, the organic thin film forming auxiliary agent can be prepared by treating the organosilicon compound represented by the formula (IV) with water in an organic solvent in the presence of a catalyst.
  • the organic thin film forming adjuvant preferably contains 0.5 to 8.0 moles of the organosilicon compound represented by the formula (IV) with respect to 1 mole of the catalyst. More preferably 5 to 5.0 mol is contained.
  • an organic solvent solution containing the organosilicon compound represented by the formula (IV) and the catalyst As a method of treating the organosilicon compound represented by the formula (IV) with water in the presence of a catalyst in an organic solvent, an organic solvent solution containing the organosilicon compound represented by the formula (IV) and the catalyst. And a method of adding water to the water.
  • the water used is 0.01 to 5.0 mol, preferably 0.1 to 2.0 mol, per 1 mol of the organosilicon compound represented by the formula (IV).
  • the organic solvent used for the preparation of the organic thin film forming auxiliary agent the organic solvent is used.
  • the reaction temperature is 0 to 100 ° C, preferably 20 to 70 ° C.
  • the reaction time for preparing the organic thin film forming adjuvant is 1 hour to 10 days, preferably 1 hour to 3 days.
  • the organic silicon compound represented by formula (IV), the organic solvent, the organic thin film forming adjuvant, and optionally a mixture of water are stirred to prepare an organic solution.
  • a thin film forming solution is prepared.
  • the organosilicon compound represented by the formula (IV) may be the same as or different from that used when preparing the auxiliary agent for forming an organic thin film.
  • the amount of the auxiliary agent for forming an organic thin film used for preparing the organic thin film forming solution of the present invention is not particularly limited as long as it does not affect the physical properties of the organic thin film to be formed. ), Usually 0.001 to 1 mol, preferably 0.001 to 0.2 mol in terms of moles in terms of oxide with respect to 1 mol of the organosilicon compound.
  • the organic thin film forming solution of the present invention is a method of adding water to an organic solvent solution containing (a) the organic thin film forming auxiliary agent and the organosilicon compound represented by the formula (IV). (B) The method of adding the said organic thin film formation adjuvant to the mixed solution of the organosilicon compound represented by Formula (IV), and water etc. are mentioned.
  • organic solvent those similar to the organic solvent used for the preparation of the organic thin film forming auxiliary agent are used.
  • the stirring temperature of the mixture of the organosilicon compound represented by the formula (IV), the organic solvent, the organic thin film forming auxiliary agent and water is usually 0 ° C. to 100 ° C., preferably 20 ° C. to 70 ° C.
  • the stirring time is usually several minutes to several hours. In this case, it is also preferable to perform ultrasonic treatment in order to obtain a uniform solution for forming an organic thin film.
  • precipitates containing metal oxides and the like may be produced, but impurities such as these precipitates are used to obtain a dense monomolecular organic thin film without impurities. It is preferable to remove it here. Precipitates can be easily removed by operations such as filtration and decanting.
  • the water content of the organic thin film forming solution is in the range of 10 ppm to a saturated concentration in an organic solvent, preferably 50 to 3000 ppm, more preferably 50 to 1000 ppm, and still more preferably 100 to 1000 ppm.
  • a method for adjusting or maintaining the water content of the organic thin film forming solution within a predetermined range (i) a method of providing a water layer in contact with the organic thin film forming solution, (ii) Examples thereof include a method in which a water-holding substance containing moisture is allowed to coexist, and (iii) a method in which a gas containing moisture is blown.
  • the organic thin film forming auxiliary agent is prepared.
  • the total amount of the organosilicon compound (a) represented by the formula (IV) used and the organosilicon compound (b) represented by the formula (IV) newly added in the second step is 0.1 wt% to
  • a final solution for forming an organic thin film may be obtained by preparing a hydroxyl group-containing solution by mixing so as to be 80% by weight, preferably 0.5 to 50% by weight, and diluting it with the aforementioned organic solvent. .
  • the use ratio at the time of preparing the solution is 1:10 to 50,000 by weight, preferably 1: 150 to 20,000, and the stirring temperature is 0 ° C. to 100 ° C., preferably 20 ° C. to 70 ° C.
  • the stirring time is 1 hour to 100 days, preferably 1 hour to 14 days.
  • the dilution ratio is 1.0 to 200 times, preferably 1.5 to 200 times, more preferably 1.5 to 100 times, and still more preferably 1.5 to 50 times. It is.
  • the same conditions as those for preparing the auxiliary agent for forming an organic thin film can be used.
  • the organic thin film forming solution of the present invention prepared by the production methods 3 and 4 is a solution suitable for obtaining an inorganic powder having an excellent monomolecular film coverage.
  • R 1 represents an optionally substituted alkyl group having 1 to 30 carbon atoms
  • X 1 and X 2 each independently represents any of a hydroxyl group, an OR 2 or an O—Si bond. And represents the bonding position with the atom on the inorganic powder side.
  • the oxygen atom of O. of the formula (I) may be an oxygen atom derived from an inorganic powder, or may be an oxygen atom derived from an organic silane compound represented by the formula (II) or the formula (III), for example.
  • the “inorganic powder coated with a monomolecular film” means an inorganic powder coated with at least a part of the inorganic powder, and the coverage of the inorganic powder is preferably 30% or more, More preferably, it is 40% or more, more preferably 50% or more, and particularly preferably 60% or more. The coverage can be calculated by performing thermal analysis measurement of the surface-coated powder.
  • “inorganic powder having at least a part of a monomolecular film having crystallinity” means that at least a part of the monomolecular film covering the inorganic powder is crystalline. Is preferably crystalline.
  • the water content contained in the organic thin film forming solution is preferably maintained within a predetermined range, and the water content in the organic thin film forming solution is preferably 10 ppm to a saturated concentration, preferably Is kept in the range of 50 to 3000 ppm, more preferably 50 to 1000 ppm, and still more preferably 100 to 1000 ppm.
  • the method for bringing the organic thin film forming solution of the present invention into contact with the surface of the inorganic powder is not particularly limited, and a known method can be used. Specific examples include a dipping method and a spray method, and among these, the dipping method is preferable.
  • the temperature at which the organic thin film forming solution of the present invention is brought into contact with the surface of the inorganic powder is not particularly limited as long as the temperature of the solution of the present invention is stable.
  • the reaction can be carried out in the range from room temperature to the reflux temperature of the solvent used for preparing the solution, preferably 15 ° C. to 100 ° C., more preferably 15 ° C. to 70 ° C.
  • the solution of the present invention may be heated or the inorganic powder itself may be heated.
  • ultrasonic waves can be used to promote film formation.
  • the step of contacting the surface of the inorganic powder may be performed for a long time at a time or may be performed in a short time in several steps.
  • a cleaning step can be provided in order to remove excess reagents, impurities, etc. adhering to the film surface.
  • the cleaning method is not particularly limited as long as it can remove surface deposits. Specifically, a method of immersing the substrate in a solvent capable of dissolving the organosilicon compound represented by the formula (IV) used; a method of evaporating by leaving it in the atmosphere under vacuum or normal pressure; dry nitrogen gas And a method of blowing off an inert gas such as;
  • the inorganic powder After contacting or washing the organic thin film forming solution of the present invention on the surface of the inorganic powder, it is preferable to heat the inorganic powder in order to stabilize the film formed on the surface of the inorganic powder.
  • the heating temperature can be appropriately selected depending on the inorganic powder, the stability of the formed organic thin film, and the like.
  • the organosilicon compounds represented by the formulas (II) and (III) in the solution are adsorbed on the surface of the inorganic powder, and a thin film is formed.
  • the details of the mechanism by which the organosilicon compounds represented by the formulas (II) and (III) are adsorbed on the surface of the inorganic powder are not clear, but in the case of an inorganic powder having active hydrogen on the surface, Can think.
  • the hydroxyl group of the organosilicon compound represented by the formulas (II) and (III) reacts with active hydrogen on the surface of the inorganic powder to form a strong chemical bond with the substrate.
  • a thin film is formed. This thin film is formed by reacting with the active hydrogen of the substrate and becomes a monomolecular film.
  • the monomolecular film formed by the organic thin film forming method of the present invention is a film that is at least partially crystalline. Whether the monomolecular film is crystalline can be confirmed by measuring the monomolecular film using a thin film X-ray diffractometer or an IR analyzer.
  • the film thickness of the monomolecular film formed by the organic thin film forming method of the present invention is approximately equal to the chain length of the substituent R 1 of the used organosilane compound.
  • the monomolecular film formed by the organic thin film forming method of the present invention is a chemisorbed film, and examples of the chemisorbed film include a monomolecular film covalently bonded through a metal-oxygen bond.
  • the monomolecular film formed by the organic thin film forming method of the present invention is preferably a self-assembled film.
  • the self-assembled film means a film formed with an ordered structure without external forcing.
  • the molecules forming the self-assembled film are obtained from the organosilicon compounds represented by the formulas (II) and (III).
  • the molecules of the organosilicon compound represented by the formula (II) and the formula (III) are not solvated by the solvent alone in the solution for forming a self-assembled film, but are aggregated together. Is forming.
  • the form of the aggregate is a form in which molecules are assembled by hydrophobic forces or hydrophilic parts by intermolecular force, coordination bond, hydrogen bond, etc .; the molecules forming the membrane are bonded by covalent bonds Aggregated form; Form in which other medium such as water forms micelles or the like as a nucleus or mediation; or form in which these are combined;
  • the shape of the aggregate is not particularly limited, and may be any shape such as a spherical shape, a chain shape, or a belt shape. Moreover, it is preferable that the zeta potential (interface potential) of the aggregate is larger than the zeta potential of the substrate in the same solvent. It is particularly preferred that the zeta potential of the aggregate is positive and the zeta potential of the substrate is negative. When a self-assembled film forming solution that forms an aggregate having such a zeta potential value is used, a dense monomolecular film having crystallinity can be produced.
  • a 900 mL mayonnaise bottle was charged with 100 g of the powder and 400 g of the organic thin film forming solution (1), so that the slurry concentration of the powder was 20 wt%. Then, a stirrer chip was placed in a mayonnaise bottle and stirred at 400 rpm for 3 hours at room temperature with a magnetic stirrer. After completion of the stirring, a Kiriyama funnel was used for vacuum filtration to separate the solid. 300 g of a cleaning solvent (NS Clean 100 manufactured by JX Nippon Mining & Energy Co., Ltd.) was poured into the filtered solid on the Kiriyama funnel, and the solid was filtered again by vacuum filtration. The wet solid was dried under reduced pressure at 90-100 ° C. under reduced pressure of a vacuum pump (1 kPa or less) for about 7 hours to obtain a surface-coated powder.
  • a cleaning solvent Nippon Mining & Energy Co., Ltd.
  • Part 2 Production of surface-coated powder (Part 2) 2-1) To a 5000 mL four-necked flask, add 1200 g of toluene, 300 g of alumina having an average particle diameter of 31 nm (CIK Nanotech, NanoTek Al 2 O 3 , specific surface area 51.9 [m 2 / g]) Was stirred. Thereafter, 120 g of the organic thin film forming solution (2) was charged and stirred for 3 hours. Then, solid content was isolate
  • toluene 300 g of alumina having an average particle diameter of 31 nm (CIK Nanotech, NanoTek Al
  • a 900 mL mayonnaise bottle is charged with 100 g of alumina having an average particle size of 300 nm (AKP-30 specific surface area 7.5 (m 2 / g) manufactured by Sumitomo Chemical) and 400 g of the organic thin film forming solution (1).
  • the slurry concentration was 20 wt%.
  • a stirrer chip was placed in a mayonnaise bottle and stirred at 400 rpm for 3 hours at room temperature with a magnetic stirrer. After completion of the stirring, a Kiriyama funnel was used for vacuum filtration to separate the solid.
  • washing solvent (NS Clean 100 manufactured by JX Nippon Mining & Energy) was poured into the filtered solid on the Kiriyama funnel and filtered again under reduced pressure to separate the solid.
  • the wet solid was dried under reduced pressure at 90-100 ° C. under reduced pressure (1 kPa or less) under a vacuum pump for about 7 hours to obtain surface-coated powder E-10.
  • Specific surface area (specific surface area measurement by N 2 gas adsorption) Measuring device: High-speed specific surface area / pore size distribution measuring device NOVA-1200 (Quanachrome.Co) Pretreatment conditions: A measurement sample was placed in a measurement cell and degassed at 100 ° C. (under vacuum) for 60 minutes.
  • Measurement device Laser diffraction / scattering particle size distribution measuring device
  • Pretreatment conditions Ultrasonic waves were irradiated for 30 minutes in an ultrasonic bath.
  • Measurement method Place the dispersion medium in the measurement cell, measure the blank, and then add the pretreated sample solution.
  • Measurement mode Manual flow cell measurement Measurement range: 0.01 to 3000 ⁇ m
  • Dispersion medium Ethanol Relative refractive index: Sample refractive index / Dispersion medium refractive index Number of measurements: Measured twice with different samples
  • Angle of repose [1] Install an accessory such as a sieve on the shaking table. [2] Gently put an appropriate amount of powder for measurement on a sieve. [3] The powder is allowed to flow out from the funnel at the upper part of the screen in the vibration mode, and when the angle of repose reaches a certain state, the powder flow is stopped. [4] Set the attached protractor stand, and read the scale by moving the protractor so that the linear part of the protractor is parallel to the deposited powder line.
  • Measuring device POWDER TESTER (Powder Property Total Measuring Device)
  • TYPE PT-E HOSOKAWA MICROMERITICS LABORATORY
  • Table 1 shows the measurement results of 1-1) to 1-6).
  • thermogravimetric / differential thermal analyzer (Rigaku TG8120 measurement weight: about 10 mg) was used.
  • Container used alumina container, flow rate: Air 500 ml / min, Measurement conditions: observation temperature range RT to 1000 ° C., heating rate: 10 ° C./min
  • Spectral processing weight loss rate from the onset temperature of decomposition peak derived from ODS detected by differential thermal analysis to the temperature at which the peak disappears Measured with a thermogravimetry. The results are shown in Table 2.
  • a crystalline monomolecular film can be formed at a higher speed and with less impurities than conventional metal surfactants, regardless of the type of inorganic powder. Since the surface-coated inorganic powder of the present invention has a surface covered with a crystalline monomolecular film, the dispersibility, fluidity, packing density, slidability, lubricity, liquid ejection, non-adhesiveness Compared to conventional surface-coated inorganic powders in terms of acid resistance, alkali resistance, shape maintenance performance, storage stability, safety, compatibility with solvents and resins, ecological affinity, molecular recognition ability, etc. Excellent.
  • the surface-coated inorganic powder of the present invention includes cutting / cutting products, ceramics / porcelain, medical / pharmaceuticals, pigments / cosmetics, vehicle parts, electrical / electronic element parts, optical / optical element parts, building materials, resin products, fibers It is useful in fields such as sliding / lubricants, explosives, water quality and soil purification / modification aids, catalysts, and adsorbents.
  • paste for electrode material for display paste for electrode material for multilayer ceramic capacitor, inorganic filler for semiconductor encapsulant, inorganic filler for underfill, inorganic filler for heat sink for mounting substrate, inorganic filler for heat dissipation filler, It is useful as a paste, ink, or powder for fillers for heat dissipation materials, phosphor powders, inorganic powders for solar cell inks, fine particles for toners, fillers for various additives, powders for chromatograms, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Silicon Polymers (AREA)
  • Paints Or Removers (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

 本発明は、新規な物性を有する表面被覆処理した無機粉体を提供することである。 表面被覆処理した無機粉体は、 式(I)(式中、Rは置換基を有していてもよい炭素数1~30のアルキル基を表し、X1及びX2は、それぞれ独立して、水酸基、OR又はO-Si結合のいずれかを表し、・は無機粉体側の原子との結合位置を示す。)で表される少なくとも一種の構成単位により形成された単分子膜で被覆された無機粉体であって、該単分子膜の少なくとも一部が結晶性を有する。 上記表面被覆処理した無機粉体は、たとえば、(A)式(II)(式中、Rは置換基を有していてもよい炭素数1~30のアルキル基を表し、Xは加水分解性基を表し、nは1~3のいずれかの整数を表す。)で表される少なくとも一種の化合物、(B)10ppm~飽和濃度の水、及び(C)有機溶媒を含有する有機薄膜形成溶液に、無機粉体を接触させることにより製造される。

Description

表面被覆処理した無機粉体
 本発明は、フィラー等として有用な表面被覆処理した無機粉体に関する。特に、有機ケイ素化合物由来の単分子膜により表面被覆処理した無機粉体に関する。
 本願は、2011年10月18日に出願された日本国特許出願第2011-229218号及び2012年1月16日に出願された日本国特許出願第2012-006171号に対し優先権を主張し、その内容をここに援用する。
 従来から、ガラス、金属、プラスチックス、セラミックス等からなる基板の表面を目的に応じて改質することが様々な分野で行われている。例えば、ガラスやプラスチックスの表面に撥水性・撥油性を付与するために、含フッ素シラン系界面活性剤をコーティングすることが行われてきた(特許文献1~6)。
 また、特に電気デバイス等の設計における微細なパターニング等の分野においては、不純物の少ない緻密な単分子膜を迅速に形成する技術の開発が要望されており、フッ素を含有しないアルコキシシラン系の界面活性剤も開発されてきた(特許文献7)。
 一方、従来から無機粉体等の粉体の表面を改質することも行われている。たとえば、ジメチコン、ハイドロジェンメチルポリシロキサン、パーフルオロアルキルジメチルメトキシシランなどのシラン系カップリング剤又は界面活性剤などのシリコーン類、パーフルオロアルキルリン酸ジエタノールアミン塩、パーフルオロアルキル基含有リン酸エステルなどのフッ素系化合物、ステアリン酸亜鉛などの脂肪酸金属石鹸、アシルグルタミン酸アルミニウムなどのアシル化アミノ酸誘導体、レシチン乃至その金属塩、リン酸トリエステル変性オルガノ(ポリ)シロキサンなどが挙げられる(例えば、特許文献8~18等)。
 更に、特許文献19には、単分子膜で被覆された微粒子について記載されているが、無機粉体の様に平面では無い基材上に結晶性の単分子膜が形成できる事は知られていなかった。同様に、無機粉体上に高被覆率で単分子膜を形成する方法も知られていなかった。
特開平4-132637号公報 特開平4-221630号公報 特開平4-367721号公報 特開平8-337654号公報 特開平11-228942号公報 特開平11-322368号公報 WO2006/009202公報 特開平5-339518号公報 特開2003-55142号公報 特開2009-263213号公報 特開昭62-250074号公報 特開平10-167931号公報 特開平10-203926号公報 特開平11-335227号公報 特許再公表2006―106728号公報 特開2008-247834号公報 特開平09-136815号公報 特開平09-157397号公報 特開2007-117828
 本発明は、分散性、流動性、充填密度、摺動性、潤滑性、発液性、非接着性、耐酸性、耐アルカリ性、形状維持性能、保存安定性、安全性、溶剤や樹脂への親和性、生態親和性、分子認識能等の点で優れた特性を有する表面被覆処理した無機粉体を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究した結果、無機粉体をオクタデシルトリメトキシシランの加水分解物及び/又はそのオリゴマー等の有機ケイ素化合物由来の結晶性の単分子膜により表面被覆処理することにより、各種材料のフィラー等として、より優れた特性を有する無機粉体が得られることを見出し、本発明を完成するに至った。
 すなわち本発明は、
 式(I)
Figure JPOXMLDOC01-appb-C000001
(式中、Rは置換基を有していてもよい炭素数1~30のアルキル基を表し、X1及びX2は、それぞれ独立して、水酸基、OR又はO-Si結合のいずれかを表し、・は無機粉体側の原子との結合位置を示す。)で表される少なくとも一種の構成単位により形成された単分子膜で被覆された無機粉体であって、該単分子膜の少なくとも一部が結晶性を有する無機粉体、及び
(2)Rがオクタデシル基であることを特徴とする上記(1)に記載の無機粉体に関する。
 また、本発明は、
(3)(A)式(II)
   RSi(OH) 3-n  (II)
(式中、Rは置換基を有していてもよい炭素数1~30のアルキル基を表し、Xは加水分解性基を表し、nは1~3のいずれかの整数を表す。)で表される少なくとも一種の化合物
(B)10ppm~飽和濃度の水、及び
(C)有機溶媒
を含有する有機薄膜形成溶液に、無機粉体を接触させることを特徴とする、少なくとも一部が結晶性の単分子膜で被覆された無機粉体の製造方法、
(4)有機薄膜形成溶液に、さらに式(III)
Figure JPOXMLDOC01-appb-C000002
(式中、各Rは、それぞれ独立して、式(II)におけるRと同じ置換基を表し、X、X、X及びXは、それぞれ独立して水酸基または加水分解性基を表し、XとXは、一緒になって酸素原子となりSiと酸素原子が交互に結合した環を形成していても良い。mは1~3のいずれかの整数を表す。)で表された少なくとも一種の化合物、
を含有する(3)に記載の無機粉体の製造方法、
(5)有機薄膜形成溶液中、式(II)で表される化合物の含有量が、0.01質量%以上であることを特徴とする(3)又は(4)に記載の無機粉体の製造方法、及び、
(6)有機溶媒が炭化水素系溶媒、フッ素系溶媒及びシリコン系溶媒からなる群より選ばれる少なくとも1種の溶媒であることを特徴とする上記(3)又は(4)に記載の無機粉体の製造方法に関する。
図1はアルミナの滴定曲線を示す図である。 図2は六方晶の模式図である。 図3は、本発明の表面被覆処理粉体(E-7、E-8及びE-9)のIRスペクトルを示す図である。
1 無機粉体
 本発明において、表面被覆処理の対象となる無機粉体としては、以下のものが挙げられる。
 酸化チタン、酸化鉄、酸化亜鉛、酸化アルミニウム、酸化ジルコニウム、酸化ケイ素、酸化マグネシウム、酸化クロム等の金属酸化物;炭酸マグネシウム、炭酸カルシウム等の炭酸塩;ケイ酸アルミニウム、ケイ酸マグネシウム、ケイ酸アルミニウムマグネシウム等のケイ酸塩のほか、水酸化アルミニウム、水酸化マグネシウム、水酸化クロム、カーボンブラック、マイカ、合成マイカ、セリサイト、タルク、カオリン、炭化珪素、チタン酸バリウム、硫酸バリウム、ベントナイト、スメクタイト、窒化硼素、コンジョウ、群青等が挙げられる。
 好ましくは、金属酸化物であり、さらに好ましくは、酸化チタン及び酸化アルミニウムである。
 ここで、無機粉体とは上記のような無機化合物で表面を覆われている有機顔料などの有機物の粒子も包含する。
 表面に水酸基等をもたない材質からなる無機粉体の場合には、予め無機粉体の表面を、酸素を含むプラズマ雰囲気中で処理したり、コロナ処理して親水性基を導入したりすることができる。親水性基としては、水酸基(-OH)が好ましいが、活性水素を有する-COOH、-CHO、=NH、-NH等の官能基等でも良い。
 また、表面に活性水素をもたない無機粉体の場合、この無機粉体の表面に、予めSiCl、SiHCl、SiHCl、Cl-(SiClO)x-SiCl(式中、xは0又は自然数を表す。)から選ばれる少なくとも一つの化合物を接触させた後、脱塩化水素反応させることにより、表面に活性水素を有するシリカ下地層を形成しておくこともできる。
 無機粉体の粒径は、特に制限されないが、5nm~50,000nm、好ましくは10nm~50,000nmであり、より好ましくは10nm~5,000nmである。
2 有機薄膜形成用溶液の調製
 本発明において使用される有機薄膜形成用溶液は、
(A)式(II)
   RSi(OH) 3-n  (II)
(式中、Rは置換基を有していてもよい炭素数1~30のアルキル基を表し、Xは加水分解性基を表し、nは1~3のいずれかの整数を表す。)
で表される少なくとも一種の有機ケイ素化合物、及び/又は
式(III)
Figure JPOXMLDOC01-appb-C000003
(式中、各Rは、それぞれ独立して式(II)におけるRと同じ置換基を表し、X、X、X及びXは、それぞれ独立して水酸基または加水分解性基を表し、XとXは、一緒になって酸素原子となりSiと酸素原子が交互に結合した環を形成していても良い。mは1~3のいずれかの整数を表す。)で表される少なくとも一種の有機ケイ素化合物
(B)10ppm~飽和濃度の水、及び
(C)有機溶媒
を含有する。
 式(III)で表される有機ケイ素化合物は、式(II)で表される有機ケイ素化合物のオリゴマーに相当する。
 式(II)で表される有機ケイ素化合物と式(III)で表される有機ケイ素化合物との質量比は、100:0~0:100の範囲内で適宜選択しうるが、好ましくは、100:0~1:99である。
 また、有機薄膜形成用溶液には、更にシラノール縮合触媒を含有していてもよい。
 有機薄膜形成用溶液中における、式(II)で表される有機ケイ素化合物の含有量は、0.01質量%以上であり、好ましくは0.01~30質量%であり、より好ましくは0.01~10質量%であり、更に好ましくは0.05~10質量%である。
 ここで、重合度の異なる有機ケイ素化合物の存在とそれらの割合は、例えばGPC(ゲルパーミエーションクロマトグラフィー)におけるピーク位置とピークの面積比から求めることができる。また、水酸基の数の異なる有機ケイ素化合物の存在とそれらの割合は、例えば、HPLC(高速液体クロマトグラフィー)のピーク位置と存在比から求めることができる。
 例えば、式(II)で表される化合物のRがオクタデシル基の場合、オクタデシルトリメトキシシランの標準溶液を用いて、HPLCのピーク面積比から対応する式(II)で表される化合物の含有量を求めることができる。
 式(II)で表される有機ケイ素化合物を用いることにより、無機粉体に対する有機ケイ素化合物の反応率が向上し、単分子膜の被覆率に優れる無機粉体を得ることが出来る。この場合の無機粉体の被覆率は30%以上であり、より好ましくは40%以上であり、より好ましくは50%以上であり、特に好ましくは60%以上である。
 被覆率は、表面被覆処理粉体の熱分析測定を行い、算出することが出来る。 
(1)式(II)で表される有機ケイ素化合物
 式(II)における置換基の定義は以下のとおりである。
 Rにおける、「炭素数1~30のアルキル基」としては、
メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、n-へキシル基、イソへキシル基、n-ヘプチル基、n-オクチル基、n-デシル基、n-テトラデシル基、n-オクタデシル基、n-イコシル基、n-テトラドコシル基、n-オクタドコシル基等が挙げられる。炭素数1~30の直鎖のアルキル基が好ましく、炭素数6~24の直鎖のアルキル基がより好ましく、炭素数12~24の直鎖のアルキル基が特に好ましい。
 「置換基を有していてもよい」における「置換基」としては、
メトキシ基、エトキシ基等の炭素数1~6のアルコキシ基;
CF、C等の炭素数1~3のフッ化アルキル基;
CFO、CO等の炭素数1~3のフッ化アルコキシ基;
フェニル基、ナフチル基などのアリール基;
フェノキシ基、ナフトキシ基等のアリールオキシ基;
メチルチオ基、エチルチオ基等の炭素数1~6のアルキルチオ基;
フェニルチオ基、ナフチルチオ基等のアリールチオ基;
ピロールー2-イル基、イミダゾール-2-イル基、ピリミジン-2-イル基等のヘテロ環基;等が挙げられる。
 上記置換基はRの末端にあることが好ましい。
 なお、「置換基を有していてもよい炭素数1~30のアルキル基」の「炭素数1~30」は、「置換基を有していてもよい」の置換基中の炭素数は含まない。
 Xの加水分解性基としては、水と反応して分解する基であれば特に制約されないが、炭素数1~6のアルコキシ基;アシルオキシ基;F、Cl、Br等のハロゲン原子等が挙げられる。
 炭素数1~6のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、n-へキシルオキシ基等が挙げられる。
 アシルオキシ基としては、アセトキシ基、プロピオニルオキシ基、n-プロピルカルボニルオキシ基、イソプロピルカルボニルオキシ基、n-ブチルカルボニルオキシ基等の炭素数1~6のアルキルカルボニルオキシ基;ベンゾイルオキシ基、ナフチルカルボニルオキシ基等のアリールカルボニルオキシ基;ベンジルカルボニルオキシ基、フェネチルカルボニルオキシ基等のアリールアルキルカルボニルオキシ基等が挙げられる。
 上記式(II)で表される化合物としては、例えば、以下に示すものが挙げられる。
 (Rが置換基を有しないアルキル基である場合)
CHSi(OCH)(OH)
Si(OCH)(OH)
Si(OCH(OH)、
Si(OCH(OH)、
Si(OCH)(OH)
CH(CHSi(OCH)(OH)
CH(CHSi(OCH)(OH)
CH(CHSi(OCH(OH)、
CH(CH11Si(OCH(OH)、
CH(CH13Si(OCH(OH)、
CH(CH15Si(OH
CH(CH17Si(OCH)(OH)
CH(CH17Si(OCH(OH)、
CH(CH19Si(OCH)(OH)
CH(CH21Si(OCH)(OH)
CH(CH17Si(OH
CH(CHSiCl(OH)
CH(CHSiCl(OH)
CH(CHSiCl(OH)、
CH(CH15Si(OH
CH(CH17SiCl(OH)
CH(CH17SiCl(OH)、
CH(CH21SiCl(OH)等。
(Rが置換基を有するアルキル基である場合)
CF(CH18Si(OCH(OH)、
CF(CF)(CH18Si(OCH(OH)、
CFO(CH18Si(OCH(OH)、
CF(CF)O(CH18Si(OCH(OH)、
CHO(CH18Si(OCH(OH)、
O(CH18Si(OCH(OH)、
O(CH18Si(OCH(OH)、
(CH18Si(OCH(OH)、
 CF(CH18Si(OCH)(OH)
CF(CF)(CH18Si(OCH)(OH)
CFO(CH18Si(OCH)(OH)
CF(CF)O(CH18Si(OCH)(OH)
CHO(CH18Si(OCH)(OH)
O(CH18Si(OCH)(OH)
O(CH18Si(OCH)(OH)
(CH18Si(OCH)(OH)、 
CF(CH18Si(OH)
CF(CF)(CH18Si(OH)
CFO(CH18Si(OH)
CF(CF)O(CH18Si(OH)
CHO(CH18Si(OH)
O(CH18Si(OH)
O(CH18Si(OH)
(CH18Si(OH)等。
 また、これらの化合物は1種単独で、あるいは2種以上を組み合わせて用いることができる。
(2)式(III)で表される有機ケイ素化合物
 式(III)における置換基の定義は以下のとおりである。
 Rは、上記式(II)におけるRと同じ置換基を表し、各Rは同一でも相異なっていても良い。
 X、X、X及びXにおける加水分解性基は、上記式(II)における加水分解性基と同じ置換基が挙げられる
 また、XとXが一緒になって酸素原子となりSiと酸素原子が交互に結合した環を形成する場合とは、例えば、以下の構造を有する化合物を意味する。
Figure JPOXMLDOC01-appb-C000004
(3)有機溶媒
 本発明において使用される有機溶媒としては、アルコール系溶媒、炭化水素系溶媒、フッ化炭素系溶媒、及びシリコーン系溶媒が挙げられる。炭化水素系溶媒、フッ化炭素系溶媒、及びシリコーン系溶媒が好ましく、炭化水素系溶媒が特に好ましく、沸点が100~250℃の炭化水素系溶媒が更に好ましい。
 具体的には、エタノール、プロパノール、イソプロパノール、n-ヘキサン、シクロヘキサン、ベンゼン、トルエン、キシレン、石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、灯油、リグロイン等の炭化水素系溶媒;CBrClCF、CClFCFCCl、CClFCFCHFCl、CFCFCHCl、CFCBrFCBrF、CClFCClFCFCCl、Cl(CFCFCl)Cl、Cl(CFCFCl)CFCCl、Cl(CFCFCl)Cl等フロン系溶媒、フロリナート(3M社製品)、アフルード(旭ガラス社製品)等のフッ化炭素系溶媒;ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン等のシリコーン系溶媒;が挙げられる。これらの溶媒は1種単独で、あるいは2種以上を組み合わせて用いることができる。
(4)シラノール縮合触媒
 本発明に用いられるシラノール縮合触媒は、式(II)で表される有機ケイ素化合物又は式(III)で表される有機ケイ素化合物の原料である有機ケイ素化合物(後述する式(IV)で表される化合物)の水酸基又は加水分解性基部分と配位結合や水素結合等を介して相互作用をすることにより、水酸基又は加水分解性基を活性化させ、加水分解を促進させると共に、縮合を促進させる作用を有する触媒である。
 本発明のシラノール縮合触媒としては、金属酸化物、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル、チタン酸エステルキレート、酸触媒、金属アルコキシド類、金属アルコキシド類の部分加水分解生成物等が好ましく、金属アルコキシド類、金属アルコキシド類の部分加水分解生成物の少なくとも1種を用いるのがより好ましい。
 金属酸化物としては、特に限定されないが、チタン、ジルコニウム、アルミニウム、ケイ素、ゲルマニウム、インジウム、スズ、タンタル、亜鉛、タングステン及び鉛からなる群から選ばれる1種の金属元素の酸化物を好ましく例示することができる。
 金属酸化物は、ゾル、ゲル、固体状等の何れの状態のものも使用することができる。ゲル、ゾルの製造方法は、特に限定されず、例えばシリカゾルを例にとると、珪酸ナトリウム溶液を陽イオン交換する方法、シリコンアルコキシドを加水分解する方法等を例示することができる。特に、有機溶媒中に安定に分散しているゾルが好ましく、さらに、ゾルの粒子径が10~100nmの範囲、さらに好ましくは、10~20nmの範囲であるものが好ましい。ゾルの形状は特に限定されず、球状、細長い形状等、いずれのものも用いることができる。
 具体的には、メタノールシリカゾル、IPA-ST、IPA-ST-UP、IPA-ST-ZL、NPC-ST-30、DMAC-ST、MEK-ST、MIBK-ST、XBA-ST、PMA-ST(以上、いずれも日産化学工業(株)社製オルガノシリカゾルの商品名を表す。)等を例示することができる。
 カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル又はチタン酸エステルキレートとしては、以下のものを例示することができる。
 酢酸第一スズ、ジブチルスズジラウレート、ジブチルスズジオクテート、ジブチルスズジアセテート、ジオクチルスズジラウレート、ジオクチルスズジオクテート、ジオクチルスズジアセテート、ジオクタン酸第一スズ、ナフテン酸鉛、ナフテン酸コバルト、2-エチルヘキセン酸鉄、ジオクチルスズビスオクチリチオグリコール酸エステル塩、ジオクチルスズマレイン酸エステル塩、ジブチルスズマレイン酸塩ポリマー、ジメチルスズメルカプトプロピオン酸塩ポリマー、ジブチルスズビスアセチルアセテート、ジオクチルスズビスアセチルラウレート、チタンテトラエトキサイド、チタンテトラブトキサイド、チタンテトライソプロポキサイド、チタンビス(アセチルアセトニル)ジプロポキサイド等。
 酸触媒としては、塩酸、硝酸、ホウ酸、ホウフッ化水素酸等の鉱酸;炭酸;酢酸、ギ酸、シュウ酸、トリフルオロ酢酸、p-トルエンスルホン酸、メタンスルホン酸等の有機酸;好ましくはpKa≦0の酸、パーフルオロスルホン酸/PTFE共重合体(H型)(例えばデュポン社製ナフィオンNR50(登録商標))、ポリスチレンスルホン酸(例えば、ロームアンドハース社製アンバーリスト15(登録商標))等の固体酸;さらには、光照射によって酸を発生する光酸発生剤、具体的には、ジフェニルヨードニウムヘキサフルオロホスフェート、トリフェニルホスホニウムヘキサフルオロホスフェート等を例示することができる。
 金属アルコキシド類としては、特に限定されないが、透明性に優れる有機薄膜を得ることができること等の理由から、チタン、ジルコニウム、アルミニウム、ケイ素、ゲルマニウム、インジウム、スズ、タンタル、亜鉛、タングステン及び鉛からなる群から選ばれる少なくとも1種の金属元素のアルコキシド類が好ましい。
 金属アルコキシド類のアルコキシ基の炭素数は特に限定されないが、含有酸化物濃度、有機物の脱離容易性、入手容易性等から、炭素数1~4のものが好ましい。
 本発明に用いる金属アルコキシド類の具体例としては、Si(OCH、Si(OC、Si(OC-i)、Si(OC-t)等のケイ素アルコキシド;Ti(OCH、Ti(OC、Ti(OC-i)、Ti(OC等のチタンアルコキシド;Ti[OSi(CH、Ti[OSi(C等のテトラキストリアルキルシロキシチタン;Zr(OCH、Zr(OC、Zr(OC、Zr(OC等のジルコニウムアルコキシド;Al(OCH、Al(OC、Al(OC-i)、Al(OC等のアルミニウムアルコキシド;Ge(OC等のゲルマニウムアルコキシド;In(OCH、In(OC、In(OC-i)、In(OC等のインジウムアルコキシド;Sn(OCH、Sn(OC、Sn(OC-i)、Sn(OC等のスズアルコキシド;Ta(OCH、Ta(OC、Ta(OC-i)、Ta(OC等のタンタルアルコキシド;W(OCH、W(OC、W(OC-i)、W(OC等のタングステンアルコキシド;Zn(OC等の亜鉛アルコキシド;Pb(OC等の鉛アルコキシド;等が挙げられる。これらの金属アルコキシド類は1種単独で、あるいは2種以上を組み合わせて用いることができる。
 また本発明においては、金属アルコキシド類として、2種以上の金属アルコキシド類の反応により得られる複合アルコキシド、1種もしくは2種以上の金属アルコキシド類と、1種もしくは2種以上の金属塩との反応により得られる複合アルコキシド、及びこれらの組み合わせを用いることもできる。
 2種以上の金属アルコキシド類の反応により得られる複合アルコキシドとしては、アルカリ金属元素又はアルカリ土類金属元素のアルコキシドと、遷移金属元素のアルコキシドとの反応により得られる複合アルコキシドや、第3B族元素の組合せにより錯塩の形で得られる複合アルコキシド等を例示することができる。
 その具体例としては、BaTi(OR)、SrTi(OR)、BaZr(OR)、SrZr(OR)、LiNb(OR)、LiTa(OR)、及び、これらの組合せ、LiVO(OR)、MgAl(OR)、(RO)SiOAl(OR’)、(RO)SiOTi(OR’)、(RO)SiOZr(OR’)、(RO)SiOB(OR’)、(RO)SiONb(OR’)、(RO)SiOTa(OR’)等のケイ素アルコキシドと、前記金属アルコキシド類との反応物及びその縮重合物等が挙げられる。ここで、R及びR’はアルキル基等を表す。
 1種もしくは2種以上の金属アルコキシド類と1種もしくは2種以上の金属塩との反応により得られる複合アルコキシドとしては、金属塩と金属アルコキシド類との反応により得られる化合物を例示することができる。
 金属塩としては、塩化物、硝酸塩、硫酸塩、酢酸塩、ギ酸塩、シュウ酸塩等を、金属アルコキシド類としては、上述した金属アルコキシド類と同様のものをそれぞれ例示することができる。
 金属アルコキシド類の部分加水分解生成物は、金属アルコキシド類を完全に加水分解する前に得られるものであって、オリゴマーの状態で存在する。
 金属アルコキシド類の部分加水分解生成物の製造方法としては、有機溶媒中、上記例示した金属アルコキシド類に対し0.5~2.0倍モル未満の水を用い、-100℃から有機溶媒還流温度範囲で加水分解する方法を好ましく例示することができる。
 具体的には、
(i)有機溶媒中、金属アルコキシド類に対し0.5~1.0倍モル未満の水を添加する方法、
(ii)有機溶媒中、加水分解が開始する温度以下、好ましくは0℃以下、より好ましくは-20~-100℃の範囲で、金属アルコキシド類に対し1.0~2.0倍モル未満の水を添加する方法、
(iii)有機溶媒中、水の添加速度を制御する方法や、水に水溶性溶媒を添加して水濃度を低下させた水溶液を使用する方法等により、加水分解速度を制御しながら、金属アルコキシド類に対し0.5~2.0倍モル未満の水を室温で添加する方法、等を例示することができる。
 上記(i)の方法においては、任意の温度で所定量の水を添加した後、加水分解を開始する温度以下、好ましくは-20℃以下で、水をさらに追加して反応を行うこともできる。
 金属アルコキシド類と水との反応は、有機溶媒を用いずに直接金属アルコキシド類と水を混合することにより行うこともできるが、有機溶媒中で行うのが好ましい。具体的には、金属アルコキシド類の有機溶媒溶液に有機溶媒で希釈した水を添加する方法;水が懸濁又は溶解した有機溶媒中に、金属アルコキシド類、又はその有機溶媒溶液を添加する方法;のいずれの方法でも行うことができるが、前者の水を後から添加する方法が好ましい。
 有機溶媒中の金属アルコキシド類の濃度は、急激な発熱を抑制し、撹拌が可能な流動性を有する範囲であれば特に限定されないが、通常、5~30重量%の範囲である。
 上記(i)の方法における金属アルコキシド類と水との反応温度は特に制限されず、通常、-100~+100℃の範囲、好ましくは、-20℃から用いる有機溶媒又は加水分解によって脱離してくるアルコールの沸点までの温度範囲である。
 上記(ii)の方法における水の添加温度は、金属アルコキシド類の安定性に依存するものであり、加水分解開始温度以下、又は0℃以下の温度であれば特に限定されないが、金属アルコキシド類の種類によっては、金属アルコキシド類への水の添加を-50℃~-100℃の温度範囲で行うことが好ましい。また、低温で水を添加し、一定時間熟成した後、室温から用いた溶媒の還流温度で加水分解し、さらに脱水縮合反応を行うこともできる。
 上記(iii)の方法における金属アルコキシド類と水との反応は、特殊な冷却装置を用いなくても冷却可能な温度範囲、例えば、0℃から室温の範囲で、水の添加速度を制御する等の温度以外の方法により加水分解速度を制御することにより行うことができる。一定時間熟成した後、室温から用いる溶媒の還流温度で加水分解し、さらに脱水縮合反応を行うこともできる。
 用いる有機溶媒としては、その有機溶媒中で、金属アルコキシド類の加水分解生成物が、分散質となって分散できるものであるのが好ましく、金属系界面活性剤を水で処理する反応を低温で行うことができることから、水の溶解度が大きく、低温で凝固しない溶媒がより好ましい。
 用いる有機溶媒の具体例としては、メタノール、エタノール、イソプロパノール等のアルコール系溶媒;塩化メチレン、クロロホルム、クロロベンゼン等のハロゲン化炭化水素系溶媒;ヘキサン、シクロヘキサン、ベンゼン、トルエン、キシレン等の炭化水素系溶媒;テトラヒドロフラン、ジエチルエーテル、ジオキサン等のエーテル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒;ジメチルホルムアミド、N-メチルピロリドン等のアミド系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;メチルポリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタンシロキサン、メチルフェニルポリシロキサン等のシリコーン(特開平9-208438号公報等)等;が挙げられる。
 これらの溶媒は1種単独で、あるいは2種以上を混合して用いることができる。
 混合溶媒として用いる場合には、トルエン、キシレン等の炭化水素系溶媒と、メタノール、エタノール、イソプロパノ-ル、t-ブタノール等の低級アルコール溶媒系の組み合わせが好ましい。この場合の低級アルコール系溶媒としては、イソプロパノ-ル、t-ブタノール等の2級以上のアルコール系溶媒がより好ましい。混合溶媒の混合比は特に制限されないが、炭化水素系溶媒と低級アルコール系溶媒を、体積比で、99/1~50/50の範囲で用いるのが好ましい。
 用いる水は、中性であれば特に制限されないが、不純物が少なく、緻密な有機薄膜を得る観点から、純水、蒸留水又はイオン交換水を用いるのが好ましい。
 水の使用量は、前記金属アルコキシド類1モルに対し、0.5~2.0倍モル未満である。
 また、金属アルコキシド類の水による部分加水分解反応においては、酸、塩基又は分散安定化剤を添加してもよい。酸及び塩基は、凝結してできた沈殿を再び分散させる解膠剤として、また、金属アルコキシド類を加水分解、脱水縮合させてコロイド粒子等の分散質を製造するための触媒として、及び生成した分散質の分散剤として機能するものであれば特に制限されない。
 用いる酸としては、塩酸、硝酸、ホウ酸、ホウフッ化水素酸等の鉱酸;炭酸;酢酸、ギ酸、シュウ酸、トリフルオロ酢酸、p-トルエンスルホン酸、メタンスルホン酸等の有機酸;ジフェニルヨードニウムヘキサフルオロホスフェート、トリフェニルホスホニウムヘキサフルオロホスフェート等の光照射によって酸を発生する光酸発生剤;が挙げられる。
 用いる塩基としては、トリエタノールアミン、トリエチルアミン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、アンモニア、ジメチルホルムアミド、ホスフィン等が挙げられる。
 分散安定化剤は、分散質を分散媒中に安定に分散させる効力を有する剤であり、解膠剤、保護コロイド、界面活性剤等の凝結防止剤等が挙げられる。具体的には、グリコール酸、グルコン酸、乳酸、酒石酸、クエン酸、リンゴ酸、コハク酸等の多価カルボン酸;ヒドロキシカルボン酸;ピロ燐酸、トリポリ燐酸等の燐酸;アセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸n-プロピル、アセト酢酸イソプロピル、アセト酢酸n-ブチル、アセト酢酸sec-ブチル、アセト酢酸t-ブチル、2,4-ヘキサン-ジオン、2,4-ヘプタン-ジオン、3,5-ヘプタン-ジオン、2,4-オクタン-ジオン、2,4-ノナン-ジオン、5-メチル-ヘキサンジオン等の金属原子に対して強いキレート能力を有する多座配位子化合物;スルパース3000、9000、17000、20000、24000(以上、ゼネカ社製)、Disperbyk-161、-162、-163、-164(以上、ビックケミー社製)等の脂肪族アミン系、ハイドロステアリン酸系、ポリエステルアミン;ジメチルポリシロキサン・メチル(ポリシロキシアルキレン)シロキサン共重合体、トリメチルシロキシケイ酸、カルボキシ変性シリコーンオイル、アミン変性シリコーン等(特開平9-208438号公報、特開2000-53421号公報等)のシリコーン化合物;等が例示される。
 上記のようにして得られる部分加水分解生成物は、有機溶媒中、酸、塩基及び/又は分散安定化剤の非存在下、凝集せずに安定に分散している性質を有する分散質となっている。この場合、分散質とは、分散系中に分散している微細粒子のことをいい、具体的には、コロイド粒子等を例示することができる。
 ここで、凝集せずに安定に分散している状態とは、有機溶媒中、酸、塩基及び/又は分散安定化剤の非存在下、加水分解生成物の分散質が、凝結して不均質に分離していない状態を表し、好ましくは透明で均質な状態を表す。
 また透明とは、可視光における透過率が高い状態をいい、具体的には、分散質の濃度を酸化物換算で0.5質量%とし、石英セルの光路長を1cmとし、対照試料を有機溶媒とし、光の波長を550nmとする条件で測定した分光透過率で表して、好ましくは80~100%の透過率を表す状態をいう。
 部分加水分解生成物の分散質の粒子径は特に限定されないが、可視光における高い透過率を得るためには、通常1~100nm、好ましくは1~50nm、より好ましくは1~10nmの範囲である。
 シラノール縮合触媒の使用量は、形成する有機薄膜の物性に影響を与えない量であれば特に制限されないが、有機シラン化合物1モルに対して酸化物換算モル数で、通常0.0001~1モル、好ましくは0.0001~0.2モルである。
(4)有機薄膜形成用溶液の調製方法
 本発明の有機薄膜形成用溶液は、例えば以下の方法で作製することができる。
1)製法1
 製法1は、有機溶媒中で、式(IV)
   RSiX    (IV)
(式中、Rは上記式(II)におけるRと同じ置換基を表し、Xは水酸基又は加水分解性基を表す)で表される有機ケイ素化合物とシラノール縮合触媒とを混合して得られた有機薄膜形成用溶液を基板と接触させることにより、前記基板表面に有機薄膜を形成する有機薄膜形成方法である。
 有機ケイ素化合物は、シラノール縮合触媒により、加水分解及び/又は縮合され、上記式(II)、及び、場合により、式(III)で表される有機ケイ素化合物が形成される。
 式(IV)で表される有機ケイ素化合物の具体例としては、以下のものが挙げられる。
(Rが無置換アルキル基、かつ、Xが加水分解性基である化合物の例)
CHSi(OCH
Si(OCH
Si(OCH
Si(OCH
CH(CHSi(OCH
CH(CHSi(OCH
CH(CHSi(OCH
CH(CH11Si(OCH
CH(CH13Si(OCH
CH(CH15Si(OCH
CH(CH17Si(OCH
CH(CH19Si(OCH
CH(CH21Si(OCH
CH(CHSi(OCHCH
CH(CH17Si(OCHCH
CH(CHSiCl
CH(CH17SiCl
CH(CH21SiCl等。
(Rが置換基を有し、かつ、Xが加水分解性基である化合物の例)
CF(CH18Si(OCH
CF(CF)(CH18Si(OCH
CFO(CH18Si(OCH
CF(CF)O(CH18Si(OCH
CHO(CH18Si(OCH
O(CH18Si(OCH
O(CH18Si(OCH
(CH18Si(OCH
CF(CH18Si(Cl
CF(CF)(CH18Si(Cl
CFO(CH18Si(Cl
CF(CF)O(CH18Si(Cl
CHO(CH18Si(Cl
O(CH18Si(Cl
O(CH18Si(Cl
(CH18Si(Cl、等。
 式(IV)で表される有機ケイ素化合物としては、オクタデシルトリメトキシシラン等が好ましい。
 当該有機薄膜形成用溶液は、水分を所定量含有し、該分量は、無機粉体、有機ケイ素化合物、シラノール縮合触媒、有機溶媒等の種類により決定される。具体的には、無機粉体への化学吸着が阻害されず、緻密な単分子膜が製造でき、式(IV)で表される有機シラン化合物の損失量が小さく、触媒が失活しない範囲で、かつ、膜の形成を促進活性化させるのに十分な量以上である。
 有機薄膜の形成を促進活性化させるのに十分な量とは、例えば、ディップ法により前記溶液を基板に接触させる場合、接触時間10分以内、好ましくは5分以内で、緻密で均質な有機薄膜を1度にしかも無機粉体全面に形成させることができる程度をいう。
 水分含有量としては、10ppm以上から有機溶媒の飽和水分量の範囲が好ましい。飽和水分量は溶媒により異なるので、使用する溶媒により適宜範囲を決定する。
 ここで示す水分量は、有機薄膜形成用溶液の一部を採取してカールフィッシャー法で測定した値を示し、その方法原理を用いた装置で測定した値であれば、測定装置については特に限定されない。有機薄膜形成用溶液が均一である場合には、均一な溶液を一部採取して測定し、有機溶媒層と水分層が2層となっている場合には、有機溶媒層より一部採取して測定し、有機溶媒中に水分層が分散し分離不可能な状態な場合には、その分散液をそのまま採取して測定した値を示す。
 有機薄膜形成用溶液中の水分含有量を所定範囲内にする方法として、具体的には、
(a)有機薄膜形成用溶液に接触して水層を設ける方法、
(b)有機薄膜形成用溶液中に、水を含ませた保水性物質を共存させる方法、
(c)有機薄膜形成用溶液を、水分を含む気体に接触させる方法、
(d)適宜水を添加する方法、
等を例示することができる。
 これらの方法は単独で用いても、2以上を組み合わせて用いてもよい。
 上記(a)~(d)の方法において、用いる水は中性であれば特に制限されないが、純水又は蒸留水を用いるのが好ましい。また、用いる有機溶媒は、無水のものでも、あらかじめ一定量の水分を含むものでも構わない。
2)製法2
 使用するシラノール縮合触媒が酸触媒である場合、式(IV)で表される有機シラン化合物を脂肪族エーテル系溶媒又は脂肪族ケトン系溶媒中、水、及び酸の存在下で加水分解及び縮合反応させ、得られた溶液を有機溶媒で希釈して有機薄膜形成用溶液を得ても良い。
 加水分解及び縮合反応のために使用する水の量は、式(IV)で表される有機シラン化合物1モルに対して0.1~20モルであり、好ましくは0.5モル~6モル、更に好ましくは1~4モルである。
 加水分解及び縮合反応の反応温度は0℃~溶媒の沸点、反応時間は1時間~100日である。
 シラノール縮合触媒である酸の使用量は、鉱酸または有機酸の場合は式(IV)で表される有機シラン化合物1モルに対して、0.01ミリモル~1モルであり、固体酸の場合は式(IV)で表される有機シラン化合物に対して0.05~20質量%使用される。
 加水分解及び縮合反応時に使用する脂肪族エーテル系溶媒又は脂肪族ケトン系溶媒としては、テトラヒドロフラン、テトラヒドロピラン、シクロペンチルメチルエーテル、1,2-ジエトキシエタン等の脂肪族エーテル又はメチルイソブチルケトン等の脂肪族ケトンが好ましい。中でも脂環式エーテルが好ましく、特にテトラヒドロフラン、テトラヒドロピランが好ましい。
希釈用の有機溶媒は炭化水素系溶媒、フッ化炭素系溶媒、及びシリコーン系溶媒が好ましい。
3)製法3
 製法3は、第1工程で有機薄膜形成用補助剤を作製し、第2工程で、当該有機薄膜形成用補助剤と式(IV)で表される有機ケイ素化合物を混合して有機薄膜形成溶液を得る方法である。
第1工程 有機薄膜形成用補助剤の調製
 有機薄膜形成用補助剤は、式(IV)で表される有機ケイ素化合物と、シラノール縮合触媒を反応させて得ることができる。
 有機薄膜形成用補助剤は、より具体的には、式(IV)で表される有機ケイ素化合物を、触媒の存在下、有機溶媒中、水で処理することによって調製することができる。
 本発明においては、前記有機薄膜形成用補助剤中、前記式(IV)で表される有機ケイ素化合物を、触媒1モルに対して、0.5~8.0モル含むのが好ましく、1.5~5.0モル含むのがより好ましい。
 前記式(IV)で表される有機ケイ素化合物を、有機溶媒中、触媒の存在下、水で処理する方法としては、式(IV)で表される有機ケイ素化合物及び触媒を含有する有機溶媒溶液に水を添加する方法などが挙げられる。
 使用する水は式(IV)で表される有機ケイ素化合物1モルに対して0.01~5.0モルであり、好ましくは0.1~2.0モルである。
 有機薄膜形成用補助剤の調製に用いる有機溶媒としては、前記有機溶媒が使用される。
 反応温度は0~100℃、好ましくは20℃~70℃である。有機薄膜形成用補助剤調整のための反応時間は1時間~10日であり、好ましくは1時間~3日である。
第2工程 有機薄膜形成用溶液の調製
 第2工程では、式(IV)で表される有機ケイ素化合物、有機溶媒、有機薄膜形成用補助剤、及び所望により水の混合物を撹拌することにより、有機薄膜形成用溶液を作製する。
 式(IV)で表される有機ケイ素化合物は、有機薄膜形成用補助剤を作製するときに使用するものと同じものであってもよいし、異なるものであってもよい。
 本発明の有機薄膜形成用溶液の調製に用いる有機薄膜形成用補助剤の使用量は、形成する有機薄膜の物性に影響を与えない量であれば特に制限されないが、新たに混合する式(IV)で表される有機ケイ素化合物1モルに対して酸化物換算モル数で、通常0.001~1モル、好ましくは0.001~0.2モルである。
 本発明の有機薄膜形成用溶液は、より具体的には、(a)前記有機薄膜形成用補助剤及び式(IV)で表される有機ケイ素化合物を含有する有機溶媒溶液に水を添加する方法、(b)式(IV)で表される有機ケイ素化合物と水の混合溶液に、前記有機薄膜形成用補助剤を添加する方法等が挙げられる。
 有機溶媒としては、有機薄膜形成用補助剤の調製に用いる有機溶媒と同様のものが用いられる。
 前記式(IV)で表される有機ケイ素化合物、有機溶媒、有機薄膜形成用補助剤及び水の混合物の撹拌温度は、通常0℃~100℃、好ましくは20℃~70℃である。撹拌時間は、通常、数分から数時間である。
 また、この場合においては、均一な有機薄膜形成用溶液を得るために、超音波処理を施すことも好ましい。
 調製した有機薄膜形成用溶液中に、金属酸化物等を含む析出物が生じる場合があるが、これらの析出物等の不純物は、不純物のない緻密な単分子の有機薄膜を得るためには、ここで除去しておくのが好ましい。析出物は、濾過、デカント等の操作で簡便に除去することができる。
 有機薄膜形成用溶液の水分含量は、10ppm~有機溶媒への飽和濃度、好ましくは50~3000ppm、より好ましくは50~1000ppm、さらに好ましくは100~1000ppmの範囲である。
 前記有機薄膜形成用溶液の水分含量を所定量範囲内になるように調整するか又は保持する方法としては、(i)前記有機薄膜形成用溶液に接触して水層を設ける方法、(ii)水分を含ませた保水性物質を共存させておく方法、(iii)水分を含む気体を吹き込む方法、等が挙げられる。
4)製法4
 製法3の第2工程において、式(IV)で表される有機ケイ素化合物、有機溶媒、有機薄膜形成用補助剤、及び所望により水の混合物を撹拌する際に、有機薄膜形成用補助剤作成に使用した式(IV)で表される有機ケイ素化合物(a)と、第2工程において新たに加える式(IV)で表される有機ケイ素化合物(b)との合計量が0.1重量%~80重量%、好ましくは0.5~50重量%となるように混合して水酸基含有溶液を作成し、それを前述の有機溶媒で希釈して最終的な有機薄膜形成用溶液を得ても良い。
 有機薄膜形成用補助剤作成に使用した式(IV)で表される有機ケイ素化合物(a)と第2工程において新たに加える式(IV)で表される有機ケイ素化合物(b)の、水酸基含有溶液作成時における使用比は、重量比で1:10~50,000、好ましくは1:150~20,000であり、攪拌温度は0℃~100℃、好ましくは20℃~70℃であり、攪拌時間は1時間~100日、好ましくは1時間~14日である。水酸基含有溶液を有機溶媒で希釈するときの希釈率は、1.0~200倍、好ましくは1.5~200倍、更に好ましくは1.5~100倍、更に好ましくは1.5~50倍である。水酸基含有溶液作成のためのその他の条件は有機薄膜形成用補助剤の作成と同様の条件を使用することができる。
 特に製法3及び4で作成した本発明の有機薄膜形成用溶液は、単分子膜の被覆率に優れる無機粉体を得るのに適した溶液である。
3 無機粉体表面への有機薄膜の形成
 上記のようにして得られた有機薄膜形成用溶液を無機粉体と接触させることにより、
 式(I)
Figure JPOXMLDOC01-appb-C000005
(式中、Rは置換基を有していてもよい炭素数1~30のアルキル基を表し、X1及びX2は、それぞれ独立して、水酸基、OR又はO-Si結合のいずれかを表し、・は無機粉体側の原子との結合位置を示す。)で表される少なくとも一種の構成単位により形成された単分子膜で被覆された無機粉体であって、該単分子膜の少なくとも一部が結晶性を有する無機粉体が得られる。
 尚、式(I)のO・の酸素原子は、無機粉体由来の酸素原子でもよいし、例えば式(II)または式(III)で表される有機シラン化合物由来の酸素原子でもよい。
 上記「単分子膜で被覆された無機粉体」とは、無機粉体の少なくとも一部が被覆された無機粉体を意味し、無機粉体の被覆率は、好ましくは30%以上であり、より好ましくは40%以上であり、より好ましくは50%以上であり、特に好ましくは60%以上である。
 被覆率は、表面被覆処理粉体の熱分析測定を行って、算出することが出来る。
 また、「単分子膜の少なくとも一部が結晶性を有する無機粉体」とは、無機粉体を被覆する単分子膜のすくなくとも一部が結晶性であることを意味し、単分子膜のすべてが結晶性であることが好ましい。
 本発明の有機薄膜形成方法においては、前記有機薄膜形成用溶液に含まれる水分含有量を所定範囲内に保持することが好ましく、前記有機薄膜形成用溶液中の水分量を10ppm~飽和濃度、好ましくは、50~3000ppm、より好ましくは50~1000ppm、さらに好ましくは100~1000ppmの範囲に保持する。
 本発明の有機薄膜形成用溶液を無機粉体表面に接触する方法は特に制限されず、公知の方法を用いることができる。具体的には、ディップ法、スプレー法等が挙げられ、これらの中でも、ディップ法が好ましい。
 本発明の有機薄膜形成用溶液を無機粉体表面に接触する温度は、本発明溶液が安定性を保てる温度範囲であれば、特に制限されない。通常、室温から溶液の調製に用いた溶媒の還流温度までの範囲で行うことができ、好ましくは15℃~100℃、より好ましくは15℃~70℃である。接触に好適な温度とするには、本発明溶液を加熱するか、無機粉体そのものを加熱すればよい。
 また、膜形成を促進するために超音波を用いることもできる。無機粉体表面に接触する工程は、1度に長い時間行っても、短時間の接触を数回に分けて行ってもよい。
 本発明の有機薄膜形成用溶液を無機粉体表面に接触した後、膜表面に付着した余分な試剤、不純物等を除去するために、洗浄工程を設けることもできる。洗浄工程を設けることにより、より膜厚を制御することができる。洗浄方法は、表面の付着物を除去できる方法であれば、特に制限されない。具体的には、用いた式(IV)で表される有機ケイ素化合物を溶解し得る溶媒中に基板を浸漬させる方法;真空中又は常圧下で大気中に放置して蒸発させる方法;乾燥窒素ガス等の不活性ガスを吹き付けて吹き飛ばす方法;等が挙げられる。
 本発明の有機薄膜形成用溶液を無機粉体表面に接触又は洗浄した後は、無機粉体表面上に形成された膜を安定化させるために、無機粉体を加熱するのが好ましい。加熱する温度は、無機粉体、形成された有機薄膜の安定性等によって適宜選択することができる。
 本発明の有機薄膜形成用溶液を無機粉体表面に接触すると、前記溶液中の式(II)及び式(III)で表される有機ケイ素化合物が無機粉体表面に吸着され、薄膜が形成される。式(II)及び式(III)で表される有機ケイ素化合物が無機粉体表面に吸着される機構の詳細は明らかではないが、表面に活性水素を有する無機粉体の場合には次のように考えることができる。すなわち、有機薄膜形成用溶液中においては、式(II)及び式(III)で表される有機ケイ素化合物の水酸基が無機粉体表面の活性水素と反応して、基板と強固な化学結合を形成してなる薄膜が形成される。この薄膜は、基板の活性水素と反応して形成されるものであって、単分子膜となる。
本発明の有機薄膜形成方法により形成される単分子膜は、少なくとも一部が結晶性の膜である。単分子膜が結晶性であることは、単分子膜を、薄膜X線回折装置またはIR分析装置を使用して測定することにより確認することができる。
 本発明の有機薄膜形成方法により形成される単分子膜の膜厚は、使用した有機シラン化合物の置換基Rの鎖長にほぼ等しい厚さになる。
 本発明の有機薄膜形成方法により形成される単分子膜は、化学吸着膜であり、化学吸着膜としては、金属-酸素結合を介して共有結合した単分子膜を例示することができる。
 本発明の有機薄膜形成方法により形成される単分子膜は、自己集合膜であるのが好ましい。ここで自己集合膜とは、外部からの強制力なしに秩序だった構造を形成してなる膜を意味する。自己集合膜を形成する分子は、式(II)及び式(III)で表される有機ケイ素化合物から得られたものである。式(II)及び式(III)で表される有機ケイ素化合物の分子は、自己集合膜形成用溶液中で、溶媒により溶媒和されて単独に存在するのではなく、幾つかが集まって集合体を形成している。
 集合体の形態は、分子が、疎水性部分同士、又は親水性部分同士で分子間力、配位結合、又は水素結合等により集合した形態;膜を形成する分子が、共有結合により結合して集合した形態;水等の他の媒体が、核もしくは仲介としてミセル等を形成した形態;又はこれらが組み合わさった形態;等である。
 集合体の形状は特に限定されず、球状、鎖状、帯状等いずれの形状であってもよい。
 また、集合体のゼーター電位(界面動電位)の値は、同一溶媒中における基板のゼーター電位の値よりも大きいことが好ましい。集合体のゼーター電位がプラスで、基板のゼーター電位がマイナスであるのが特に好ましい。このようなゼーター電位値を有する集合体を形成する自己集合膜形成用溶液を用いると、結晶性を有した緻密な単分子膜を製造することができる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明は下記の実施例によって限定されるものではない。
(1)有機薄膜形成用溶液の調製
1)有機薄膜形成用溶液(1)の調製
 200mlの四つ口フラスコに、室温でオクタデシルトリメトキシシラン(Gelest社製:純度95%)16.1g(43.0mmol)を仕込み、テトライソプロポキシチタン(日本曹達製)4.6g(16.4mmol)を加え、トルエン77.6gを加えた。
 この溶液に蒸留水1.7gを加え、室温で24時間反応させ、溶液Aを得た。
 次いで、1000mlの四つ口フラスコに、室温でオクタデシルトリメトキシシラン(以下、ODSとも言う)78.9g(200mmol)を仕込み、前記溶液Aを0.16g加え、トルエンを419g加えて希釈した。
 この溶液に蒸留水3.7gを加え、室温で10日間反応させて溶液Bを得た。
この溶液BをGPC分析した結果、単量体:58.6%、2量体:3.7%、3量体:3.3%、4量体:34.4%(相対面積比)であった。
 その後、1000mLの四つ口フラスコに、室温で前記溶液Bを20g仕込み、トルエン480g加えて希釈し、有機薄膜形成溶液(1)を得た。HPLC分析した結果、単量体の加水分解物(式(II)に相当)は、有機薄膜形成溶液中0.07%であった。
2)有機薄膜形成溶液(2)の調整
 1000mlの四つ口フラスコに、室温でODS(Gelest社製:純度95%)80g(0.20mol)、THF 410gと純水 0.53g(0.5mol)を仕込み溶解させた。
 その溶液に固体酸触媒(ナフィオン) 1.0gを加え攪拌して、室温で2日間反応させて溶液Cを得た。この溶液CをGPC分析した結果、単量体:6.3%、2量体:41.1%、3量体:39.7%、4量体以上:12.9%(相対面積比)であった。HPLC分析した結果、単量体の加水分解物(式(II)に相当)は、有機薄膜形成溶液中0.1%であった。
(2)表面被覆処理粉体の作製
1)表面被覆処理粉体の作製(その1)
 表1に記載の無機粉体からなる粉体を、上記により調製した有機薄膜形成用溶液(1)を用いて、以下のようにして処理し、表面被覆処理粉体E-1~E-4を得た。
 900mLのマヨネーズ瓶に粉体100g及び上記有機薄膜形成用溶液(1)400gを仕込み、粉末のスラリー濃度を20wt%とした。ついで、マヨネーズ瓶にスターラーチップを入れ、室温下、マグネチックスターラーにより400r.p.m.で3時間撹拌した。
 撹拌終了後、桐山ロートを用いて、減圧ろ過処理し、固体をろ別した。桐山ロート上のろ別した固体に対して、洗浄溶剤(JX日鉱日石エネルギー社製NSクリーン100)300gを流し込み、再度、減圧ろ過処理し、固体をろ別した。wet状の固体を90-100℃、真空ポンプ減圧下(1kPa以下)、約7時間で減圧乾燥し、表面被覆処理粉体を得た。
2)表面被覆処理粉体の作製(その2)
2-1)5000mLの四つ口フラスコに、トルエン1200g、平均粒径31nmのアルミナ(CIKナノテック社製、NanoTek Al、比表面積51.9〔m/g〕)300gを加え、充分に攪拌した。その後、前記有機薄膜形成用溶液(2)を120g仕込み、3時間撹拌した。その後、遠心分離機で固形分を分離し、分離した固形分をトルエンで再分散して洗浄、遠心分離での固形分分離を行った。この洗浄操作を数回行った。
洗浄して分離した固形分は、50-100℃、真空ポンプ減圧下(1kPa以下)、約7時間で減圧乾燥し、表面被覆処理粉体E-5を得た。
2-2)5000mLの四つ口フラスコに、トルエン1200g、平均粒径109nmのアルミナ(大明化学工業社製、タイミクロン(TM-D)、比表面積13.8(m/g))300gを加え、充分に攪拌した。その後、前記有機薄膜形成用溶液(2)を40g仕込み、3時間撹拌した。その後、遠心分離機で固形分を分離し、分離した固形分をトルエンで再分散して洗浄、遠心分離での固形分分離を行った。この洗浄操作を数回行った。
 洗浄して分離した固形分は、50-100℃、真空ポンプ減圧下(1kPa以下)、約7時間で減圧乾燥し、表面被覆処理粉体E-6を得た。
2-3)5000mLの四つ口フラスコに、トルエン2400g、平均粒径1μmのアルミナ(α-Alumina,1-2μm、研磨用(和光純薬、013-23115))600gを加え、充分に攪拌した。その後、前記有機薄膜形成用溶液(2)を41g仕込み、3時間撹拌した。その後、遠心分離機で固形分を分離し、分離した固形分をトルエンで再分散して洗浄、減圧濾過による固形分分離を行った。
 洗浄して分離した固形分は、50-100℃、真空ポンプ減圧下(1kPa以下)、約7時間で減圧乾燥し、表面被覆処理粉体E-7を得た。
2-4)2000mLの四つ口フラスコに、前記有機薄膜形成用溶液(1)1000gを仕込み、平均粒径31nmのアルミナ(CIKナノテック社製、NanoTek Al、比表面積51.9(m/g))を10g加えて、24時間撹拌した。
 その後、遠心分離機で固形分を分離し、分離した固形分をトルエンで再分散して洗浄、遠心分離での固形分分離を行った。この洗浄操作を数回行った。
 洗浄して分離した固形分は、50-100℃、真空ポンプ減圧下(1kPa以下)、約7時間で減圧乾燥し、表面被覆処理粉体E-8を得た。
2-5)1000mLの四つ口フラスコに、前記有機薄膜形成用溶液(1)500gを仕込み、平均粒径109nmのアルミナ(大明化学工業社製、タイミクロン(TM-D)、比表面積13.8(m/g))を10g加えて、24時間撹拌した。
 その後、遠心分離機で固形分を分離し、分離した固形分をトルエンで再分散して洗浄、遠心分離での固形分分離を行った。この洗浄操作を数回行った。
 洗浄して分離した固形分は、50-100℃、真空ポンプ減圧下(1kPa以下)、約7時間で減圧乾燥し、表面被覆処理粉体E-9を得た。
2-6)900mLのマヨネーズ瓶に平均粒径300nmのアルミナ(住友化学製AKP-30比表面積7.5(m/g))100g及び前記有機薄膜形成用溶液(1)400gを仕込み、粉末のスラリー濃度を20wt%とした。ついで、マヨネーズ瓶にスターラーチップを入れ、室温下、マグネチックスターラーにより400r.p.m.で3時間撹拌した。
 撹拌終了後、桐山ロートを用いて、減圧ろ過処理し、固体をろ別した。桐山ロート上のろ別した固体に対して、洗浄溶剤(JX日鉱日石エネルギー製NSクリーン100)300gを流し込み、再度、減圧ろ過処理し、固体をろ別した。wet状の固体を90-100℃、真空ポンプ減圧下(1kPa以下)、約7時間で減圧乾燥し、表面被覆処理粉体E-10を得た。
(3)表面被覆処理粉体の測定
1)(2)で得られた表面被覆処理粉体E-1~E-4及び比較として無処理粉体R-1~R-4について、それぞれ、以下の測定を行った。
1-1)比表面積(Nガス吸着による比表面積測定)
 測定装置:高速比表面積・細孔径分布測定装置 NOVA-1200(Quanachrome.Co製)
 前処理条件:測定試料を測定セルに入れ、100℃(真空下)で60分間脱気した。
 測定原理:定容法(ブランク補正型)
 検出法:相対圧力;圧力トランスデューサによるサンプルセル内の吸着平衡圧力と飽和蒸気圧の比
 吸着ガス量;圧力トランスデューサによる圧力検出とサーミスタによるマニホールド温度検出から理想気体での注入ガス量を計算
 吸着ガス:窒素ガス
 セルサイズ:スモールペレットセル 1.8cm(ステム外径9mm)
 測定項目:P/P=0.1,0.2,0.3の吸着側3点
 解析項目:BET多点による比表面積
 測定回数:試料を替えて2回測定
1-2)メジアン径(レーザー回折/散乱法による粒度分布測定)
 測定装置:レーザー回折/散乱式粒子径分布測定装置
 前処理条件:超音波浴槽中で30分間超音波を照射した。
 測定方法:分散媒を測定セルに入れてブランク測定後,前処理した試料溶液を入れて測定
 測定モード:マニュアルフロ-式セル測定
 測定範囲:0.01~3000μm
 分散媒:エタノール
 相対屈折率:試料屈折率/分散媒屈折率
 測定回数:試料を替えて2回測定
1-3)ゆるみ見掛け比重
〔1〕振動台にフルイなどの付属部品を設置する。
〔2〕内容積が100ccのカップに粉体を静かに山盛りに入れる。
〔3〕ブレードを垂直に立てて、粉体表面をすり切って、重量を測定する。
〔4〕粉体の重量[g]/100[cc]=ゆるみ見掛け比重[g/cc]となる。
1-4)固め見掛け比重
〔1〕振動台にフルイなどの付属部品を設置する。
〔2〕内容積が100ccのカップに粉体を振動させながら入れる。
〔3〕振動が始まって粉体が圧縮されたら粉体を追加する。振動(タッピング)回数は180回で実施する。
〔4〕振動終了後、ブレードを垂直に立てて、余分な粉体をすり切って、重量を測定する。
〔5〕粉体の重量[g]/100[cc]=固め見掛け比重[g/cc]となる。
1-5)安息角
〔1〕振動台にフルイなどの付属部品を設置する。
〔2〕測定用粉体を適当量フルイの上に静かに入れる。
〔3〕振動モードでフルイ上部のロートから粉体を流出させて、安息角が一定の状態に達したら粉体の流出を停止する。
〔4〕付属の分度器スタンドをセットして、堆積した粉体の陵線に分度器の直線部が平行になるように分度器を動かして目盛を読み取る。
1-6)圧縮度
〔1〕圧縮度Cは次式で算出する。
〔2〕C=100x(P-A)/P[%] A:ゆるみ見掛比重,P:固め見掛比重
 注)1-3)~1-6)は粉体特性総合測定装置を用いた。
 測定装置:POWDER TESTER(粉体特性総合測定装置)TYPE PT-E(HOSOKAWA MICROMERITICS LABORATORY製)
1-1)~1-6)の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
1-7)KOHによる滴定
 アルミナの表面処理粉体(E-10)と無処理粉体のそれぞれ1gを100mlの溶媒(エタノール:水=1:1)に分散させ、1NのKOHで滴定を行った。滴定曲線を図1に示す。
 表面処理粉体の滴定曲線が、BLANKの場合と同じ挙動を示すことから、アルミナ表面が緻密な有機薄膜で覆われており、アルミナの水酸基が表面に存在しないことが確認された。
2) (2)で得られた表面被覆処理粉体E-8~E10について、以下の測定を行った。
2-1)熱分析測定
 熱重量測定・示差熱分析計(リガク社 TG8120 測定重量:約10mg)を使用した。
 使用容器:アルミナ容器、流量:Air500ml/分、
 測定条件:観察温度範囲RT~1000℃、昇温速:10℃/分
 スペクトル処理:示差熱分析によって検出されるODS由来の分解ピークの発生開始温度からピークが消滅する温度までの重量減少率を、熱重量測定計で測定した。その結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
2-2)被覆率の算出
 表2記載の重量減少率(%)を使用して、下記の方法でE-8~E-10の被覆率を算出した。
(i)...被覆率(%)=被覆したODS重量(g)÷ODSが表面全体を被覆したとした時のODS重量(g)×100%
(ii)...被覆したODS重量(g)=粒子重量(g)×重量減少率(%)÷100
(iii)...ODSが表面全体を被覆したとした時のODS重量(g)
 =粒子重量(g)×[原料粒子の比表面積(m/g)÷単分子膜の比表面積(m/g)]
(iv)...原料粒子の比表面積(m/g)...カタログ値から引用(製造メーカーの提供データ)
(v)...単分子膜の比表面積(m/g)...平板へ、ODSで被覆処理した際のX線分析結果から、六方晶の結晶性を有していることが示唆されており(図2参照)、その間隔は、a=4.2Åである。全面がこの間隔で成膜されていると仮定すると、単分子膜の比表面積(m/g)は以下のように求められる。
 単分子膜の比表面積(m/g)=ODS1分子が被覆する面積[m/分子]÷ODS1分子の重量[g/分子]
 =図2のa(Å)×図2のb(Å)÷(ODS分子量[g/mol]÷1mol当りの分子数[分子/mol])
 =4.2×10-10[m]×4.2×2/√3×10-10[m]÷(374[g/mol]÷6.02×1023[分子/mol]=328[m/g]
 熱分析結果から被覆率を算出し、表3に示した。
Figure JPOXMLDOC01-appb-T000003
3)表面被覆処理粉体のIR測定
(2)で得られた表面被覆処理粉体のうち、E-7(平均粒径1000nm)、E-8(平均粒径31nm)、E-9(平均粒径109nm)について下記の条件で、IRスペクトルの測定を行った。未処理品との差スペクトルを図3に示した。
 フーリエ変換赤外分光光度計(FTIR)
 測定手法:拡散反射法
 測定装置:Thermo Fisher Scientific社製Magna 550型FT-IR
 アタッチメント:Harrick社製The Seagull
 試料前処理:各粉末を試料カップに入れ,表面を平らにならした状態に調整した。
 測定条件:非偏光、入射角60度
 スペクトル処理:得られたデータを、規定に従いKM変換を実施した。
 どのスペクトルにおいても、2918cm-1、2850 cm-1に、CHのオールトランスでジグザグ構造を示す、非対称伸縮振動と対称伸縮振動のピークがあり、ODSのアルキル基が非常に規則的に配列しており、結晶性であることが示されている。1468cm-1のピークも、単分子膜が結晶性であることを示している。
 また、2960cm-1にODSのアルキル基の末端のCH基の伸縮振動が観察されているので、本発明で無機粒子表面に形成された膜は、最表面にCH基が規則的に並んだ単分子膜であることが推察される。
 本発明の方法を用いることにより、無機粉体の種類に係わらず、従来の金属系界面活性剤より高速で、かつ、不純物の少ない結晶性の単分子膜を形成することができる。
 本発明の表面被覆処理無機粉体は、その表面が結晶性の単分子膜で覆われているため、分散性、流動性、充填密度、摺動性、潤滑性、発液性、非接着性、耐酸性、耐アルカリ性、形状維持性能、保存安定性、安全性、溶剤や樹脂への親和性、生態親和性、分子認識能等の点で、従来の表面被覆処理された無機粉体よりも優れる。
 本発明の表面被覆処理無機粉体は、切削・裁断加工用品、陶器・磁器、医療・医薬品、顔料・化粧品、車両部品、電気・電子素子部品、光学・光学素子部品、建材、樹脂製品、繊維、摺動・潤滑剤、火薬、水質や土壌の浄化・改質助剤、触媒、吸着剤などの分野で有用である。特に、ディスプレイ用電極材用ペースト、積層セラミックコンデンサー用電極材用ペースト、半導体用封止剤用無機フィラー、アンダーフィル用無機フィラー、実装基板用放熱剤用無機フィラー、放熱用充填剤用無機フィラー、放熱材料用フィラー、蛍光体粉末、太陽電池用インク用無機粉末、トナー用微粒子、各種添加剤用フィラー、クロマトグラム用粉体などのペーストやインク、粉体として有用である。

Claims (6)

  1. 式(I)
    Figure JPOXMLDOC01-appb-C000006
    (式中、Rは置換基を有していてもよい炭素数1~30のアルキル基を表し、X1及びX2は、それぞれ独立して、水酸基、OR又はO-Si結合のいずれかを表し、・は無機粉体側の原子との結合位置を示す。)で表される少なくとも一種の構成単位により形成された単分子膜で被覆された無機粉体であって、該単分子膜の少なくとも一部が結晶性を有する無機粉体。
  2. がオクタデシル基であることを特徴とする請求項1に記載の無機粉体。
  3. (A)式(II)
       RSi(OH) 3-n  (II)
    (式中、Rは置換基を有していてもよい炭素数1~30のアルキル基を表し、Xは加水分解性基を表し、nは1~3のいずれかの整数を表す。)で表される少なくとも一種の化合物
    (B)10ppm~飽和濃度の水、及び
    (C)有機溶媒
    を含有する有機薄膜形成溶液に、無機粉体を接触させることを特徴とする、少なくとも一部が結晶性の単分子膜で被覆された無機粉体の製造方法。
  4. 有機薄膜形成溶液に、さらに式(III)
    Figure JPOXMLDOC01-appb-C000007
    (式中、各Rは、それぞれ独立して、式(II)におけるRと同じ置換基を表し、X、X、X及びXは、それぞれ独立して水酸基または加水分解性基を表し、XとXは、一緒になって酸素原子となりSiと酸素原子が交互に結合した環を形成していても良い。mは1~3のいずれかの整数を表す。)で表される少なくとも一種の化合物、
    を含有する請求項3に記載の無機粉体の製造方法。
  5. 有機薄膜形成溶液中、式(II)で表される化合物の含有量が、0.01質量%以上であることを特徴とする請求項3又は4に記載の無機粉体の製造方法。
  6. 有機溶媒が炭化水素系溶媒、フッ素系溶媒及びシリコン系溶媒からなる群より選ばれる少なくとも1種の溶媒であることを特徴とする請求項3又は4に記載の無機粉体の製造方法。
     
PCT/JP2012/006663 2011-10-18 2012-10-18 表面被覆処理した無機粉体 WO2013057945A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013539535A JP5793198B2 (ja) 2011-10-18 2012-10-18 表面被覆処理した無機粉体
IN2843CHN2014 IN2014CN02843A (ja) 2011-10-18 2012-10-18
US14/352,193 US20140302325A1 (en) 2011-10-18 2012-10-18 Surface-covered inorganic powder
KR1020147009244A KR101588149B1 (ko) 2011-10-18 2012-10-18 표면 피복 처리한 무기 분체
EP12842562.6A EP2769959A4 (en) 2011-10-18 2012-10-18 SURFACE-COATED INORGANIC POWDER
CN201280050738.8A CN103874654B (zh) 2011-10-18 2012-10-18 经表面覆盖处理的无机粉体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011229218 2011-10-18
JP2011-229218 2011-10-18
JP2012006171 2012-01-16
JP2012-006171 2012-01-16

Publications (1)

Publication Number Publication Date
WO2013057945A1 true WO2013057945A1 (ja) 2013-04-25

Family

ID=48140608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006663 WO2013057945A1 (ja) 2011-10-18 2012-10-18 表面被覆処理した無機粉体

Country Status (8)

Country Link
US (1) US20140302325A1 (ja)
EP (1) EP2769959A4 (ja)
JP (1) JP5793198B2 (ja)
KR (1) KR101588149B1 (ja)
CN (1) CN103874654B (ja)
IN (1) IN2014CN02843A (ja)
TW (1) TWI466960B (ja)
WO (1) WO2013057945A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212313A (ja) * 2013-04-05 2014-11-13 日東電工株式会社 太陽電池パネル端部シール用組成物、太陽電池パネル端部シール用シートおよび太陽電池パネル
JP2016016388A (ja) * 2014-07-10 2016-02-01 日本曹達株式会社 有機薄膜形成方法
WO2016084873A1 (ja) * 2014-11-27 2016-06-02 富士フイルム株式会社 表面修飾無機物、表面修飾無機物の製造方法、および無機物表面を有機物で修飾する方法、ならびに放熱材料、熱伝導材料、および潤滑剤

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104098929B (zh) * 2014-07-15 2016-03-09 淮阴工学院 聚氨酯革中填料碳酸钙的处理方法
US10144816B2 (en) * 2014-07-28 2018-12-04 Denka Company Limited Spherical alumina powder and resin composition using same
JP6428345B2 (ja) * 2015-02-16 2018-11-28 三菱マテリアル株式会社 Ptzt圧電体膜及びその圧電体膜形成用液組成物の製造方法
JP6933881B2 (ja) * 2015-09-03 2021-09-08 株式会社村田製作所 セラミック電子部品の製造方法
CN107383939B (zh) * 2017-07-10 2019-04-30 林一中 一种包覆普鲁士蓝或类普鲁士蓝的颜料的制备方法
JP6375043B1 (ja) 2017-10-31 2018-08-15 日本パーカライジング株式会社 前処理剤、前処理方法、化成皮膜を有する金属材料およびその製造方法、並びに塗装金属材料およびその製造方法
KR102104665B1 (ko) * 2019-11-28 2020-04-24 형태경 무기물의 개질 방법
CN112679999B (zh) * 2020-12-29 2022-07-19 长沙族兴新材料股份有限公司 一种用于氟碳粉末涂料的铝颜料及其制备方法

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250074A (ja) 1986-04-21 1987-10-30 Daito Kasei Kogyo Kk 撥水撥油性顔料とその製造法
JPH04132637A (ja) 1990-09-26 1992-05-06 Matsushita Electric Ind Co Ltd ガラス
JPH04221630A (ja) 1990-12-25 1992-08-12 Matsushita Electric Ind Co Ltd 透光性基体の製造方法
JPH04367721A (ja) 1991-06-14 1992-12-21 Matsushita Electric Ind Co Ltd フッ素系化学吸着単分子累積膜及びその製造方法
JPH05339518A (ja) 1991-06-26 1993-12-21 Miyoshi Kasei:Kk 有機ケイ素化合物処理顔料、その製法および化粧料
JPH08337654A (ja) 1995-06-14 1996-12-24 Matsushita Electric Ind Co Ltd 化学吸着膜の製造方法及びこれに用いる化学吸着液
JPH09136815A (ja) 1995-11-15 1997-05-27 Kao Corp 化粧料用粉体及びこれを含有する化粧料
JPH09157397A (ja) 1995-12-06 1997-06-17 Kao Corp リン酸トリエステル変性オルガノ(ポリ)シロキサン、その製造法、並びにそれを含有する化粧料及び外用剤
JPH09208438A (ja) 1995-11-28 1997-08-12 Ishihara Sangyo Kaisha Ltd 微粒子二酸化チタンシリコ−ン分散体
JPH10167931A (ja) 1996-12-05 1998-06-23 Daikin Ind Ltd 化粧品用撥水撥油性粉体および該粉体を含有する化粧品
JPH10203926A (ja) 1997-01-24 1998-08-04 Asahi Glass Co Ltd 化粧用粉体および化粧料
JPH11228942A (ja) 1998-02-13 1999-08-24 Central Glass Co Ltd 撥水液および撥水性被膜の製造方法
JPH11322368A (ja) 1998-05-15 1999-11-24 Central Glass Co Ltd 撥水性被膜形成用溶液
JPH11335227A (ja) 1998-05-19 1999-12-07 Pola Chem Ind Inc 表面処理粉体及びそれを含有する化粧料
JP2000053421A (ja) 1998-08-07 2000-02-22 Ishihara Sangyo Kaisha Ltd 酸化チタンゾルおよびその製造方法
JP2003055142A (ja) 2001-08-08 2003-02-26 Daito Kasei Kogyo Kk 水中油型化粧料
WO2006009202A1 (ja) 2004-07-22 2006-01-26 Nippon Soda Co., Ltd. 有機薄膜形成方法、有機薄膜形成用補助剤及び有機薄膜形成用溶液
JP2006106728A (ja) 2004-09-13 2006-04-20 Canon Inc 結像光学系及びそれを用いた画像読取装置
JP2007117828A (ja) 2005-10-26 2007-05-17 Kagawa Univ 微粒子とその製造方法
JP2008247834A (ja) 2007-03-30 2008-10-16 Kose Corp 表面被覆粉体及びそれを含有する化粧料
JP2009263213A (ja) 2008-04-03 2009-11-12 Shin Etsu Chem Co Ltd カルボキシル基を有するオルガノポリシロキサンで表面処理された粉体、該粉体の分散物および該粉体を含む化粧料
JP2010094583A (ja) * 2008-10-14 2010-04-30 Nippon Soda Co Ltd 有機薄膜の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329058B1 (en) * 1998-07-30 2001-12-11 3M Innovative Properties Company Nanosize metal oxide particles for producing transparent metal oxide colloids and ceramers
DE19955816A1 (de) * 1999-11-19 2001-05-23 Cognis Deutschland Gmbh Verwendung
JP3939637B2 (ja) * 2002-12-18 2007-07-04 大塚化学ホールディングス株式会社 層状4チタン酸塩のアルキルシリル化複合体及びその製造方法
JP5034180B2 (ja) * 2005-07-19 2012-09-26 東洋インキScホールディングス株式会社 顔料分散体、その製造方法およびそれを用いた化粧料
EP2024421A1 (en) * 2006-06-02 2009-02-18 Ciba Holding Inc. Antimicrobial acids and salts
WO2009025954A2 (en) * 2007-07-24 2009-02-26 Northwestern University Coated colloidal materials
CN100554340C (zh) * 2007-10-15 2009-10-28 江苏河海纳米科技股份有限公司 一种无机粉体有机表面改性的方法

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250074A (ja) 1986-04-21 1987-10-30 Daito Kasei Kogyo Kk 撥水撥油性顔料とその製造法
JPH04132637A (ja) 1990-09-26 1992-05-06 Matsushita Electric Ind Co Ltd ガラス
JPH04221630A (ja) 1990-12-25 1992-08-12 Matsushita Electric Ind Co Ltd 透光性基体の製造方法
JPH04367721A (ja) 1991-06-14 1992-12-21 Matsushita Electric Ind Co Ltd フッ素系化学吸着単分子累積膜及びその製造方法
JPH05339518A (ja) 1991-06-26 1993-12-21 Miyoshi Kasei:Kk 有機ケイ素化合物処理顔料、その製法および化粧料
JPH08337654A (ja) 1995-06-14 1996-12-24 Matsushita Electric Ind Co Ltd 化学吸着膜の製造方法及びこれに用いる化学吸着液
JPH09136815A (ja) 1995-11-15 1997-05-27 Kao Corp 化粧料用粉体及びこれを含有する化粧料
JPH09208438A (ja) 1995-11-28 1997-08-12 Ishihara Sangyo Kaisha Ltd 微粒子二酸化チタンシリコ−ン分散体
JPH09157397A (ja) 1995-12-06 1997-06-17 Kao Corp リン酸トリエステル変性オルガノ(ポリ)シロキサン、その製造法、並びにそれを含有する化粧料及び外用剤
JPH10167931A (ja) 1996-12-05 1998-06-23 Daikin Ind Ltd 化粧品用撥水撥油性粉体および該粉体を含有する化粧品
JPH10203926A (ja) 1997-01-24 1998-08-04 Asahi Glass Co Ltd 化粧用粉体および化粧料
JPH11228942A (ja) 1998-02-13 1999-08-24 Central Glass Co Ltd 撥水液および撥水性被膜の製造方法
JPH11322368A (ja) 1998-05-15 1999-11-24 Central Glass Co Ltd 撥水性被膜形成用溶液
JPH11335227A (ja) 1998-05-19 1999-12-07 Pola Chem Ind Inc 表面処理粉体及びそれを含有する化粧料
JP2000053421A (ja) 1998-08-07 2000-02-22 Ishihara Sangyo Kaisha Ltd 酸化チタンゾルおよびその製造方法
JP2003055142A (ja) 2001-08-08 2003-02-26 Daito Kasei Kogyo Kk 水中油型化粧料
WO2006009202A1 (ja) 2004-07-22 2006-01-26 Nippon Soda Co., Ltd. 有機薄膜形成方法、有機薄膜形成用補助剤及び有機薄膜形成用溶液
JP2006106728A (ja) 2004-09-13 2006-04-20 Canon Inc 結像光学系及びそれを用いた画像読取装置
JP2007117828A (ja) 2005-10-26 2007-05-17 Kagawa Univ 微粒子とその製造方法
JP2008247834A (ja) 2007-03-30 2008-10-16 Kose Corp 表面被覆粉体及びそれを含有する化粧料
JP2009263213A (ja) 2008-04-03 2009-11-12 Shin Etsu Chem Co Ltd カルボキシル基を有するオルガノポリシロキサンで表面処理された粉体、該粉体の分散物および該粉体を含む化粧料
JP2010094583A (ja) * 2008-10-14 2010-04-30 Nippon Soda Co Ltd 有機薄膜の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2769959A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212313A (ja) * 2013-04-05 2014-11-13 日東電工株式会社 太陽電池パネル端部シール用組成物、太陽電池パネル端部シール用シートおよび太陽電池パネル
JP2016016388A (ja) * 2014-07-10 2016-02-01 日本曹達株式会社 有機薄膜形成方法
WO2016084873A1 (ja) * 2014-11-27 2016-06-02 富士フイルム株式会社 表面修飾無機物、表面修飾無機物の製造方法、および無機物表面を有機物で修飾する方法、ならびに放熱材料、熱伝導材料、および潤滑剤
JPWO2016084873A1 (ja) * 2014-11-27 2017-10-19 富士フイルム株式会社 表面修飾無機物、表面修飾無機物の製造方法、および無機物表面を有機物で修飾する方法、ならびに放熱材料、熱伝導材料、および潤滑剤
US10294372B2 (en) 2014-11-27 2019-05-21 Fujifilm Corporation Surface-modified inorganic substance, method for manufacturing surface-modified inorganic substance, method for modifying surface of inorganic substance with organic substance, heat dissipation material, thermally conductive material, and lubricant

Also Published As

Publication number Publication date
CN103874654A (zh) 2014-06-18
JP5793198B2 (ja) 2015-10-14
EP2769959A1 (en) 2014-08-27
US20140302325A1 (en) 2014-10-09
TW201321452A (zh) 2013-06-01
CN103874654B (zh) 2015-11-25
KR20140068168A (ko) 2014-06-05
KR101588149B1 (ko) 2016-01-22
EP2769959A4 (en) 2015-06-24
TWI466960B (zh) 2015-01-01
JPWO2013057945A1 (ja) 2015-04-02
IN2014CN02843A (ja) 2015-07-03

Similar Documents

Publication Publication Date Title
JP5793198B2 (ja) 表面被覆処理した無機粉体
JP4597368B2 (ja) ナノ構造の成形体及び層並びに安定な水溶性前駆物質を用いたその製造方法
JP5042011B2 (ja) 有機金属化合物の部分加水分解により得られ得る両親媒性ナノ粒子
KR101083951B1 (ko) 고온의 접착 방지층
JP4385052B2 (ja) 有機薄膜形成方法
KR101094112B1 (ko) 유기 박막 형성 방법
WO2000037359A1 (fr) Particules fines, sol de particules fines dispersees, procede de preparation dudit sol et substrat revetu
TWI830873B (zh) 無機氧化物粒子、無機氧化物粒子分散液及其製造方法以及表面修飾劑之製造方法
KR101244205B1 (ko) 산화알루미늄 및 주기율표의 제ⅰ 및 제ⅱ 주족 원소의산화물로부터의 표면-개질 나노입자 및 이의 제법
US7422642B2 (en) Method for preparing chemical adsorption film and solution for preparing chemical adsorption film used in the method
CA2435201A1 (en) Method for producing sol-gel condensates based on polyfunctional organosilanes and use thereof
TW202003778A (zh) 撥水性被膜形成用組成物及撥水性被膜
JP2001511467A (ja) ポリオルガノシロキサンを基とするバインダーを含む二酸化チタン粒子の分散体
Ramezani et al. Study of the water repellency of the modified silica films using different organoalkoxysilanes
WO2010073970A1 (en) Polysiloxane composition and method for producing the same
US9481801B2 (en) Organosilicon compound, thin film forming composition using same, and organic thin film
WO2024096021A1 (ja) 疎水化低誘電正接シリカゾル、及びその製造方法
JP5252810B2 (ja) 金属系界面活性剤オリゴマーを用いた有機薄膜形成方法
JP7157059B2 (ja) フッ素含有複合粒子
Purcar et al. The effect of different crosslinking agents on the properties of hybrid films
Oubaha et al. A Study on the Impact of Alkoxysilane Precursors on the Wettability, Surface Morphology and Structure of an Established Silicon/Zirconium-Based Hybrid Sol-Gel Coating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842562

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013539535

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147009244

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012842562

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14352193

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE