WO2013051584A1 - 密閉型リチウム二次電池 - Google Patents

密閉型リチウム二次電池 Download PDF

Info

Publication number
WO2013051584A1
WO2013051584A1 PCT/JP2012/075567 JP2012075567W WO2013051584A1 WO 2013051584 A1 WO2013051584 A1 WO 2013051584A1 JP 2012075567 W JP2012075567 W JP 2012075567W WO 2013051584 A1 WO2013051584 A1 WO 2013051584A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
mixture layer
lithium secondary
secondary battery
current collector
Prior art date
Application number
PCT/JP2012/075567
Other languages
English (en)
French (fr)
Inventor
浩二 高畑
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201280048930.3A priority Critical patent/CN103858265B/zh
Priority to KR1020147011344A priority patent/KR101669344B1/ko
Priority to DE112012004170.4T priority patent/DE112012004170B4/de
Priority to US14/348,910 priority patent/US9431683B2/en
Publication of WO2013051584A1 publication Critical patent/WO2013051584A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a sealed lithium secondary battery. Specifically, the present invention relates to a sealed lithium secondary battery provided with a current interrupting mechanism that operates when the internal pressure of the battery increases.
  • lithium secondary batteries are preferably used as a high-output power source for mounting on vehicles because they are lightweight and provide high energy density.
  • a sealed lithium secondary battery is typically constructed by sealing an electrode body composed of positive and negative electrodes provided with an active material together with an electrolyte (typically, an electrolyte) and then sealing (sealing) the battery body.
  • a sealed lithium secondary battery is generally used in a state in which the voltage is controlled so as to be within a predetermined region (for example, 3.0 V to 4.2 V).
  • a predetermined region for example, 3.0 V to 4.2 V.
  • overcharge occurs exceeding a predetermined voltage.
  • gas may be generated due to decomposition of the electrolyte, or the temperature inside the battery may increase due to heat generation of the active material. Therefore, in order to deal with such overcharge, a current cutoff mechanism is widely used in which the current cutoff valve is activated to cut off the charging current when the pressure in the battery case becomes a predetermined value or more due to the generation of the gas.
  • a compound having a lower oxidation potential that is, a voltage at which oxidative decomposition starts
  • the overcharge inhibitor is used in the electrolyte.
  • the method of making it contain is known.
  • the overcharge inhibitor is oxidized and decomposed before the electrolyte is decomposed to generate a large amount of gas. This gas quickly increases the internal pressure of the battery, so that the current interruption mechanism can be operated earlier (that is, in a safer state of the battery).
  • a typical example of this type of overcharge inhibitor is an aromatic compound such as cyclohexylbenzene (CHB).
  • Patent Documents 1 and 2 are cited.
  • Patent Document 1 describes that the reaction efficiency of the overcharge inhibitor can be increased by adding a phosphate (phosphate ion-containing compound) as a reaction catalyst to the positive electrode mixture layer.
  • Patent Document 2 also states that by containing carbonate (specifically, lithium carbonate) in the positive electrode mixture layer, the carbonate is decomposed during overcharge and a large amount of carbon dioxide gas can be generated.
  • carbonate specifically, lithium carbonate
  • the above-described overcharge preventing agent contacts with the surface of the positive electrode (typically, the surface of the positive electrode active material or the conductive material) during overcharge, and oxidatively decomposes to generate hydrogen ions (H + ).
  • the hydrogen ions receive electrons at the negative electrode to generate hydrogen gas.
  • the amount of gas generated starting from the oxidative decomposition reaction of the overcharge inhibitor depends on the amount of the overcharge inhibitor present in the vicinity of the positive electrode and / or the contact area (reaction field) between the positive electrode and the overcharge inhibitor. It depends.
  • the present invention has been made in view of such points, and the object thereof is a sealed lithium secondary battery having a current interrupting mechanism that operates by increasing the internal pressure of the battery case, and has excellent battery performance. It is an object of the present invention to provide a sealed lithium secondary battery capable of operating a current interruption mechanism quickly and accurately at the time of overcharging.
  • a sealed lithium battery comprising: an electrode body having a positive electrode and a negative electrode; a battery case containing the electrode body together with an electrolyte; and a current interrupting mechanism that operates when the internal pressure of the battery case increases.
  • a secondary battery is provided.
  • the positive electrode includes a positive electrode current collector and a positive electrode mixture layer including a positive electrode active material formed on the current collector, a conductive material, and a binder. Further, on the positive electrode current collector, a positive electrode assist layer that is substantially free of a positive electrode active material and includes a conductive material and a binder is formed in at least a part of a portion adjacent to the positive electrode mixture layer. Yes.
  • the negative electrode includes a negative electrode current collector, and a negative electrode mixture layer including a negative electrode active material and a binder formed on the current collector.
  • the electrolyte contains an overcharge inhibitor that generates gas when a predetermined battery voltage is exceeded.
  • the overcharge inhibitor can cause a decomposition reaction not only on the surface of the (normal) positive electrode mixture layer but also on the surface of the positive electrode assist layer. Therefore, it is possible to secure a wider reaction field for the overcharge inhibitor. For this reason, a large amount of gas can be quickly discharged during overcharging without excessively adding the amount of overcharge inhibitor and the amount of conductive material in the positive electrode mixture layer (that is, the composition ratio of the conductive material in the positive electrode mixture layer). Can be generated.
  • Such a technique improves the operating capability of the current interruption mechanism by a method significantly different from the conventional one, and increases the resistance of the sealed lithium secondary battery during overcharge.
  • the density of the positive electrode mixture layer formed on the positive electrode current collector is, for example, 2.0 g / cm 3 or more (typically 2. 0 g / cm 3 to 4.5 g / cm 3 , preferably 2.5 g / cm 3 to 4.5 g / cm 3 ).
  • the positive electrode mixture layer has a higher density, and the voids in the positive electrode mixture layer tend to decrease.
  • the amount of the overcharge preventing agent present in the vicinity of the positive electrode and / or the contact area between the positive electrode and the overcharge preventing agent is reduced, the generation of decomposition gas at the time of overcharging is small and / or moderate.
  • the current interruption mechanism may not function quickly due to the delay of the decomposition reaction.
  • a decomposition reaction of the overcharge inhibitor occurs in the positive electrode assist layer, so even when the positive electrode mixture layer is densified, a large amount of gas is quickly generated during overcharge. Can be made. As a result, the current interruption mechanism can be operated more quickly and accurately.
  • the electrode body includes a positive electrode mixture layer having a predetermined width on a long positive electrode current collector.
  • a long positive electrode formed along the direction and a negative electrode mixture layer having a width exceeding the positive electrode mixture layer formed on the long negative electrode current collector along the longitudinal direction of the current collector.
  • the elongated negative electrode is a wound electrode body that is laminated and wound.
  • the positive electrode assist layer is formed along the longitudinal direction on at least one side along the longitudinal direction of the positive electrode mixture layer.
  • the overcharge preventing agent is generally insufficient at the center of the wound, that is, the diffusion of the overcharge preventing agent becomes rate limiting, and the generation of decomposition gas tends to be slow. This tendency is particularly noticeable during large current charging.
  • the overcharge prevention Since the decomposition reaction of the agent occurs, a large amount of gas can be generated efficiently. As a result, the current interruption mechanism can be operated quickly and accurately.
  • the total width of the positive electrode mixture layer and the positive electrode assist layer in the width direction of the long positive electrode is the negative electrode. It is formed so as to exceed the width of the composite material layer.
  • the positive electrode assist layer disclosed here does not substantially contain the positive electrode active material, it can be widely produced without being restricted by the width of the negative electrode mixture layer. For this reason, the reaction field of the overcharge inhibitor can be remarkably increased, and a large amount of gas can be generated quickly during overcharge. Therefore, the current interruption mechanism can be operated more quickly.
  • the conductive material contained in the positive electrode assist layer disclosed herein one having a specific surface area of about 100 m 2 / g or more (for example, about 100 m 2 / g to 500 m 2 / g) can be preferably used.
  • a wide reaction field with the overcharge inhibitor can be secured, so that the gas generation efficiency during overcharge can be suitably improved.
  • the current interrupt mechanism can be quickly activated.
  • the “specific surface area” means a specific surface area (BET specific surface area) measured by a BET method using nitrogen gas (for example, a BET single point method).
  • the overcharge preventing agent disclosed herein is oxidized and decomposed when the oxidation potential (vs.Li/Li + ) is equal to or higher than the charge upper limit potential of the positive electrode and exceeds this potential to become an overcharge state.
  • a substance capable of generating a gas can be used.
  • a compound having an oxidation potential of 4.4 V to 4.9 V is preferably used. it can.
  • the compound having this kind of property include biphenyl (BP) and cyclohexylbenzene (CHB).
  • the sealed lithium secondary disclosed herein as a power source (power source) for driving a motor of a vehicle (typically an automobile, particularly a hybrid automobile, a plug-in hybrid automobile, an electric automobile, a fuel cell automobile)
  • a battery can be suitably used. That is, according to the present invention, there is provided a vehicle including any of the sealed lithium secondary batteries disclosed herein (which may be in the form of an assembled battery in which a plurality of batteries are connected).
  • FIG. 1 is a cross-sectional view schematically showing a configuration of a sealed lithium secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a configuration of a wound electrode body of a sealed lithium secondary battery according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing a cross section taken along line III-III in FIG.
  • FIG. 4 is a graph showing gas generation amounts of the example of the present invention and the comparative example.
  • FIG. 5 is a side view schematically showing a vehicle (automobile) equipped with a sealed lithium secondary battery according to an embodiment of the present invention.
  • the sealed lithium secondary battery disclosed herein includes an electrode body having a positive electrode and a negative electrode, a battery case that accommodates the electrode body together with an electrolyte, and a current interruption mechanism that operates when the pressure in the battery case increases.
  • the positive electrode includes a positive electrode mixture layer containing a positive electrode active material on a positive electrode current collector.
  • the positive electrode includes a positive electrode assist layer that is substantially free of the positive electrode active material and includes a conductive material and a binder, at least partially adjacent to the positive electrode mixture layer.
  • the negative electrode includes a negative electrode mixture layer containing a negative electrode active material on a negative electrode current collector.
  • the electrolyte includes an overcharge inhibitor that generates gas when a predetermined battery voltage is exceeded. Therefore, as long as the object of the present invention can be realized, the contents (for example, material and composition) of other battery constituent materials and members are not particularly limited, and those similar to conventional lithium secondary batteries can be used. .
  • lithium secondary battery refers to a secondary battery that uses lithium ions as a supporting salt and is charged and discharged by movement of lithium ions between the positive and negative electrodes.
  • a secondary battery generally referred to as a lithium ion battery (or a lithium ion secondary battery), a lithium polymer battery, or the like is a typical example included in the lithium secondary battery in this specification.
  • the “active material” refers to a substance (compound) involved in power storage on the positive electrode side or the negative electrode side. That is, it refers to a substance involved in electron emission or capture during battery charge / discharge.
  • the positive electrode of the sealed lithium secondary battery disclosed herein includes a positive electrode current collector, a positive electrode mixture layer (also referred to as a positive electrode active material layer) formed on the positive electrode current collector, and the positive electrode mixture. And a positive electrode assist layer in at least a part of a portion adjacent to the layer.
  • a slurry-like composition including paste-like and ink-like materials; the same applies hereinafter
  • a positive electrode active material is dispersed in a suitable medium together with a conductive material, a binder and the like (hereinafter the same).
  • the positive electrode mixture layer is formed by applying and drying the positive electrode mixture slurry on one or both sides of the positive electrode current collector.
  • a slurry-like composition (hereinafter referred to as “positive electrode assist slurry”) in which a conductive material and a binder are dispersed in an appropriate solvent is prepared, and the positive electrode assist slurry is adjacent to the positive electrode mixture layer.
  • the positive electrode assist layer is formed by applying and drying at least a part of the positive electrode assist layer.
  • the solvent any of an aqueous solvent and an organic solvent can be used.
  • NMP N-methyl-2-pyrrolidone
  • a conductive member made of a metal having good conductivity for example, aluminum, nickel, titanium, stainless steel, etc.
  • the shape of the current collector may be different depending on the shape of the battery to be constructed, and is not particularly limited.
  • a rod-like body, a plate-like body, a foil-like body, a net-like body, or the like can be used.
  • a foil-like body is mainly used.
  • the thickness of the foil current collector is not particularly limited, but it should be about 5 ⁇ m to 200 ⁇ m (typically 5 ⁇ m to 50 ⁇ m, preferably 8 ⁇ m to 30 ⁇ m) in consideration of the capacity density of the battery and the strength of the current collector. It can be preferably used.
  • the positive electrode mixture layer includes a positive electrode active material, a conductive material, and a binder.
  • the positive electrode active material one kind or two or more kinds of various materials known to be usable as a positive electrode active material of a lithium secondary battery can be used without particular limitation.
  • a layered structure containing lithium and a transition metal element as constituent metal elements such as lithium nickel oxide (for example, LiNiO 2 ), lithium cobalt oxide (for example, LiCoO 2 ), and lithium manganese oxide (for example, LiMn 2 O 4 ).
  • an oxide having a spinel structure (lithium transition metal oxide) or the like can be used.
  • a positive electrode active material typically, substantially lithium nickel cobalt manganese composite oxide
  • lithium nickel cobalt manganese composite oxide for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2
  • Positive electrode active material made of a product can be preferably used.
  • the lithium nickel cobalt manganese composite oxide is an oxide having Li, Ni, Co, and Mn as constituent metal elements, and at least one other metal element in addition to Li, Ni, Co, and Mn (that is, It is meant to include oxides containing transition metal elements and / or typical metal elements other than Li, Ni, Co, and Mn.
  • metal elements are, for example, one or more elements of Al, Cr, Fe, V, Mg, Ti, Zr, Nb, Mo, W, Cu, Zn, Ga, In, Sn, La, and Ce. It can be. The same applies to lithium nickel oxide, lithium cobalt oxide, and lithium manganese oxide.
  • a lithium transition metal oxide (typically in particulate form), for example, a lithium transition metal oxide powder prepared by a conventionally known method can be used as it is.
  • a lithium transition metal oxide powder prepared by a conventionally known method can be used as it is.
  • it is substantially constituted by secondary particles having an average particle diameter in the range of about 0.1 ⁇ m to 25 ⁇ m (typically 0.1 ⁇ m to 20 ⁇ m, such as 0.5 ⁇ m to 15 ⁇ m, preferably 1 ⁇ m to 10 ⁇ m).
  • Lithium transition metal oxide powder can be preferably used as the positive electrode active material.
  • the positive electrode mixture layer used here may contain one or two or more materials that can be used as components of the positive electrode mixture layer in a general lithium secondary battery, if necessary.
  • a material include a conductive material and a binder.
  • the conductive material a substance conventionally used for manufacturing a lithium secondary battery can be used without any particular limitation. Specifically, various carbon blacks (for example, acetylene black (AB), furnace black, ketjen black, channel black, lamp black, thermal black), coke, activated carbon, graphite, carbon fiber (PAN-based carbon fiber, pitch) 1 type or 2 types or more selected from carbon materials, such as carbon fiber) and carbon nanotubes.
  • the binder a substance conventionally used for manufacturing a lithium secondary battery can be used without any particular limitation.
  • various polymer materials can be suitably used.
  • a polymer material that is dissolved or dispersed in water can be preferably used.
  • examples of such polymer materials include cellulose polymers, fluorine resins, vinyl acetate copolymers, rubbers, and the like.
  • carboxymethylcellulose typically sodium salt
  • HPMC hydroxypropylmethylcellulose
  • HPMC polyvinyl alcohol
  • PVA polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • SBR styrene butadiene rubber
  • SBR latex acrylic acid-modified SBR resin
  • a non-aqueous slurry that is, a solvent-based slurry in which the main component of the dispersion medium is an organic solvent
  • a polymer material that is dispersed or dissolved in an organic solvent can be preferably used.
  • polymer material examples include polyvinylidene fluoride (PVdF), polyvinylidene chloride (PVdC), polyethylene oxide (PEO), and the like.
  • PVdF polyvinylidene fluoride
  • PVdC polyvinylidene chloride
  • PEO polyethylene oxide
  • an inorganic compound for example, phosphate or carbonate
  • phosphate or carbonate that generates a gas during overcharge may be included in advance.
  • the mass of the positive electrode mixture layer provided per unit area of the positive electrode current collector is, for example, 5 mg / cm 2 to 40 mg / cm 2 (typically 10 mg / cm 2 to 20 mg / cm 2 ) is appropriate. In general, the mass of the positive electrode mixture layer provided on each surface of the positive electrode current collector is preferably approximately the same.
  • the proportion of the positive electrode active material in the entire positive electrode mixture layer is suitably about 50 mass% or more (typically 70 mass% to 95 mass%), and usually about 80 mass% to 95 mass%. It is preferable that it is mass%.
  • the proportion of the conductive material in the entire positive electrode mixture layer can be, for example, about 1% by mass to 20% by mass, and usually about 2% by mass to 15% by mass (eg, 3% by mass to 10% by mass). Is appropriate.
  • the proportion of the binder in the entire positive electrode mixture layer can be, for example, about 0.1% by mass to 20% by mass, and is usually about 0.5% by mass to 10% by mass (eg, 1% by mass to 5% by mass). ) Is appropriate.
  • the positive electrode mixture layer is appropriately subjected to press treatment (for example, various conventionally known press methods such as a roll press method and a flat plate press method can be adopted).
  • press treatment for example, various conventionally known press methods such as a roll press method and a flat plate press method can be adopted.
  • the density and density can be adjusted.
  • the density of the positive electrode mixture layer is, for example, 1.5 g / cm 3 to 4.5 g / cm 3 (typically 2.0 g / cm 3 to 4.0 g / cm 3 , preferably 2.0 g / cm 3 to 3.5 g / cm 3 ).
  • the porosity of the positive electrode mixture layer can be, for example, about 5% to 40% by volume (typically 10% to 35% by volume, preferably 15% to 30% by volume).
  • the decomposition reaction of the overcharge inhibitor occurs even in the positive electrode assist layer. For this reason, even if it is a case where the positive mix layer is densified as mentioned above, a large amount of gas can be rapidly generated at the time of overcharge. As a result, the current interruption mechanism can be operated more quickly and accurately.
  • the positive electrode assist layer substantially does not contain a positive electrode active material and is composed of a conductive material and a binder.
  • substantially does not contain means that the positive electrode active material is not at least intentionally contained, and does not mean, for example, that it is brought in as an unavoidable impurity.
  • the conductive material one or two or more of those exemplified for the positive electrode mixture layer can be used without any particular limitation. That is, the conductive material used may or may not be the same type as that used in the positive electrode mixture layer. Of these, those having a specific surface area of about 100 m 2 / g or more (for example, about 100 m 2 / g to 500 m 2 / g) can be preferably used. In the positive electrode assist layer provided with such a conductive material, a wide reaction field with the overcharge inhibitor can be secured, so that a large amount of gas can be generated quickly during overcharge. As a result, the current interrupt mechanism can be quickly activated.
  • the binder those exemplified for the positive electrode mixture layer can be used singly or in combination of two or more without particular limitation. That is, the binder used may or may not be the same as that used in the positive electrode mixture layer.
  • the mass of the positive electrode assist layer provided per unit area of the positive electrode current collector is, for example, 1 mg / cm 2 to 20 mg / cm 2 ( Typically, it can be about 5 mg / cm 2 to 10 mg / cm 2 .
  • the proportion of the conductive material in the entire positive electrode assist layer is suitably about 50% by mass or more (typically 70% to 95% by mass), and usually about 80% to 95% by mass. It is preferable that The proportion of the binder in the entire positive electrode assist layer can be, for example, about 1% by mass to 30% by mass, and is usually about 5% by mass to 20% by mass (eg, 5% by mass to 15% by mass). Is appropriate.
  • the thickness of the positive electrode assist layer is appropriately subjected to press treatment (for example, various conventionally known press methods such as a roll press method and a flat plate press method can be employed). And the density can be adjusted.
  • the density of the positive electrode assist layer can be, for example, about 0.5 g / cm 3 to 2.0 g / cm 3 (typically 1.0 g / cm 3 to 1.5 g / cm 3 ).
  • the porosity of the positive electrode assist layer can be, for example, about 5% to 40% by volume (typically 10% to 35% by volume, preferably 15% to 30% by volume).
  • the overcharge inhibitor can be suitably decomposed in the positive electrode assist layer, and a large amount of gas can be generated during overcharge.
  • the current interruption mechanism can be operated more quickly and accurately.
  • the said press process can also be performed collectively after drying of the positive mix slurry and the positive electrode assist slurry.
  • a negative electrode of a sealed lithium secondary battery disclosed herein includes a negative electrode current collector and a negative electrode mixture layer (also referred to as a negative electrode active material layer) formed on the negative electrode current collector. .
  • a negative electrode mixture layer (hereinafter referred to as “negative electrode mixture slurry”) in which a negative electrode active material is dispersed in an appropriate medium together with a binder or the like is prepared.
  • the negative electrode mixture layer is formed by applying the negative electrode mixture slurry to one or both sides of the negative electrode current collector and drying the slurry.
  • the solvent any of an aqueous solvent and an organic solvent can be used. For example, water can be used.
  • a conductive material made of a metal having good conductivity for example, copper, nickel, titanium, stainless steel, etc.
  • the shape of the negative electrode current collector can be the same as that of the positive electrode current collector.
  • the negative electrode mixture layer includes a negative electrode active material and a binder.
  • the negative electrode active material one kind or two or more kinds of various materials known to be usable as a negative electrode active material of a lithium secondary battery can be used without particular limitation.
  • various kinds of carbon materials such as so-called graphite (graphite), non-graphitizable carbon (hard carbon), graphitizable carbon (soft carbon), carbon nanotube, and a combination of these are used.
  • natural graphite (graphite) or artificial graphite can be preferably used.
  • the shape of the negative electrode active material is usually preferably a particle shape having an average particle diameter of about 0.5 ⁇ m to 20 ⁇ m (typically 1 ⁇ m to 15 ⁇ m, for example, 4 ⁇ m to 10 ⁇ m).
  • an appropriate material can be selected from the polymer materials exemplified as the binder for the positive electrode mixture layer.
  • the polymer materials include polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), and the like.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR styrene butadiene rubber
  • various polymer materials for example, carboxymethylcellulose (CMC) that can function as a thickener for the slurry for forming the negative electrode mixture layer, conductive materials, and the like can be used as appropriate.
  • CMC carboxymethylcellulose
  • the mass of the negative electrode mixture layer provided per unit area of the negative electrode current collector (the total mass of both surfaces in a configuration having the negative electrode mixture layer on both sides of the negative electrode current collector) is, for example, 5 mg / cm 2 to 20 mg / cm 2. (Typically 5 mg / cm 2 to 10 mg / cm 2 ).
  • the mass of the negative electrode mixture layer provided on each surface of the negative electrode current collector is usually preferably approximately the same.
  • the proportion of the negative electrode active material in the entire negative electrode mixture layer is suitably about 50% by mass or more, and preferably 90% by mass to 99% by mass (eg, 95% by mass to 99% by mass).
  • the proportion of the binder in the entire negative electrode composite layer can be, for example, about 1% by mass to 10% by mass, and is usually about 1% by mass to 5% by mass.
  • a negative electrode compound-material layer is suitably given by press processing (For example, conventionally well-known various press methods, such as a roll press method and a flat plate press method, are employable.).
  • the thickness and density can be adjusted.
  • the density of the negative electrode mixture layer can be, for example, about 0.5 g / cm 3 to 2.0 g / cm 3 (typically 1.0 g / cm 3 to 1.5 g / cm 3 ).
  • the porosity of the negative electrode mixture layer can be, for example, about 5% to 40% by volume (typically 10% to 35% by volume, preferably 15% to 30% by volume).
  • a lithium secondary battery is constructed by producing an electrode body in which the positive electrode and the negative electrode are laminated and storing the electrode body in an appropriate battery case together with an electrolyte containing an overcharge inhibitor.
  • a separator is interposed between the positive electrode and the negative electrode.
  • porous sheets similar to those conventionally used for lithium secondary batteries can be used.
  • porous resin sheets films, nonwoven fabrics, etc.
  • resins such as polyethylene (PE), polypropylene (PP), polyester, cellulose, and polyamide.
  • Such a porous resin sheet may have a single layer structure, or a plurality of two or more layers (for example, a three-layer structure in which a PP layer is laminated on both sides of a PE layer (PP / PE / PP)). Also good.
  • porous sheet typically a porous resin sheet
  • preferred properties of the porous sheet are an average pore diameter of about 0.001 ⁇ m to 30 ⁇ m and a thickness of 5 ⁇ m to 100 ⁇ m (more preferably 10 ⁇ m to The thing about 30 micrometers) is illustrated.
  • the air efficiency (porosity) of the porous sheet can be, for example, about 20% to 90% by volume (preferably 30% to 80% by volume).
  • the heat resistant separator provided with the porous heat resistant layer on one side or both sides (typically, one side) of the porous sheet may be used.
  • This heat-resistant layer can be, for example, a layer containing an inorganic filler and a binder.
  • alumina, boehmite alumina monohydrate represented by the composition formula Al 2 O 3 ⁇ H 2 O
  • silica titania
  • calcia calcia
  • magnesia zirconia
  • boron nitride can be preferably used an inorganic filler such as aluminum nitride .
  • the electrolyte may also serve as a separator.
  • the electrode body is a wound electrode body in which a long positive electrode and a long negative electrode are laminated and wound. Moreover, it is more preferable that the total width of the positive electrode mixture layer and the positive electrode assist layer in the width direction of the long positive electrode is formed so as to exceed the width of the negative electrode mixture layer. Since the positive electrode assist layer disclosed here does not substantially contain the positive electrode active material, it can be widely produced without being restricted by the width of the negative electrode mixture layer. For this reason, the reaction field of the overcharge inhibitor can be remarkably increased, and a large amount of gas can be generated quickly during overcharge. Therefore, the current interruption mechanism can be operated more quickly.
  • the electrolyte used here typically has a composition in which a supporting salt (ie, lithium salt) is contained in a suitable non-aqueous solvent.
  • a supporting salt ie, lithium salt
  • the same salt as a general lithium secondary battery can be appropriately selected and used.
  • the lithium salt used in the lithium secondary battery include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li (CF 3 SO 2 ) 2 N, LiCF 3 SO 3 and the like.
  • Such a supporting salt can be used singly or in combination of two or more. LiPF 6 may be mentioned as particularly preferred support salt.
  • the electrolyte is preferably prepared so that the concentration of the supporting salt is within a range of 0.1 mol / L to 5 mol / L (preferably 0.8 mol / L to 1.5 mol / L). Further, it may be a solid (gel) electrolyte in which a polymer is added to the liquid electrolyte.
  • non-aqueous solvent various non-aqueous solvents used in general lithium secondary batteries, for example, organic solvents such as carbonates, esters, ethers, nitriles, sulfones, lactones are used without any particular limitation. be able to.
  • the carbonates mean to include cyclic carbonates and chain carbonates
  • the ethers mean to include cyclic ethers and chain ethers.
  • Such a non-aqueous solvent can be used individually by 1 type or in combination of 2 or more types as appropriate.
  • a preferred embodiment is a non-aqueous solvent mainly composed of carbonates.
  • the inclusion of such a nonaqueous solvent as the electrolyte is preferable because a good-quality film can be formed on the surface of the negative electrode active material in the cell charging process described later.
  • EC having a high relative dielectric constant, DMC, EMC, or the like having a high oxidation potential (wide potential window) can be preferably used.
  • the nonaqueous solvent contains one or more carbonates, and the total volume of these carbonates is 60% by volume or more (more preferably 75% by volume or more, and further preferably 90% by volume) of the total volume of the nonaqueous solvent. That is, it may be substantially 100% by volume.)
  • a non-aqueous solvent can be preferably used.
  • the battery electrolyte disclosed herein contains an overcharge inhibitor.
  • the overcharge inhibitor is a substance that has an oxidation (decomposition) potential that is equal to or higher than the charge upper limit potential of the positive electrode, and that can be oxidized and decomposed to generate gas when it exceeds this potential and becomes overcharged. If there is no particular limitation, it can be used. Specific examples include biphenyl compounds, cycloalkylbenzene compounds, alkylbenzene compounds, organic phosphorus compounds, fluorine atom-substituted aromatic compounds, carbonate compounds, cyclic carbamate compounds, alicyclic hydrocarbons, and the like.
  • the oxidation potential of the overcharge preventing agent When the oxidation potential of the overcharge preventing agent is close to the charge upper limit potential of the positive electrode, there is a possibility that it is gradually decomposed due to a local potential increase or the like during normal charge / discharge. On the other hand, if the oxidation potential is too high, the reaction between the electrolyte and the electrode material (typically the positive electrode active material) may cause a rapid temperature rise before the gas resulting from the oxidative decomposition of the overcharge inhibitor is generated. May occur. Therefore, for example, a lithium secondary battery in which the upper limit charge potential (vs.Li/Li + ) of the positive electrode is set to about 4.0 V to 4.2 V (full charge state is about 4.0 to 4.2 V). In the lithium secondary battery, an overcharge inhibitor having an oxidation potential in the range of 4.4 V to 4.9 V is preferably used.
  • BP biphenyl
  • alkylbiphenyl terphenyl
  • 2-fluorobiphenyl 3-fluorobiphenyl
  • 4-fluorobiphenyl 4,4′-difluorobiphenyl
  • cyclohexylbenzene CHB
  • trans-butylcyclohexylbenzene cyclopentylbenzene
  • t-butylbenzene t-aminobenzene
  • o-cyclohexylfluorobenzene p-cyclohexylfluorobenzene
  • tris- (t-butylphenyl) phosphate phenyl fluoride
  • 4-fluorophenyl acetate Diphenyl carbonate, methylphenyl carbonate, Vistaly butyl phenyl carbonate, diphenyl ether, dibenzofuran and the like.
  • biphenyl (BP) cyclohexyl
  • the amount of the overcharge inhibitor used is not particularly limited, but from the viewpoint of securing a sufficient gas amount for operating the overcharge prevention mechanism, about 0.01 parts by mass or more (about 100 parts by mass of the electrolyte) ( (Typically 0.1 parts by mass) is appropriate, preferably 0.5 parts by mass or more.
  • the overcharge inhibitor can be a resistance component of the battery reaction, if it is added excessively, the input / output characteristics may be deteriorated. From this viewpoint, it is appropriate to suppress the amount of the overcharge inhibitor to about 10 parts by mass or less (typically 5 parts by mass), preferably 4 parts by mass or less (for example, 3 parts by mass or less).
  • 0.1 to 5 parts by mass (typically 0.5 to 5 parts by mass) is appropriate, and 0.1 to 4 parts by mass (particularly 0.5 to 3 parts by mass). Part) is preferred.
  • the reaction field of the overcharge inhibitor that is, the positive electrode assist layer
  • the amount of the overcharge inhibitor used can be reduced as compared with the conventional battery. For this reason, the outstanding battery performance (for example, high battery capacity) can be implement
  • the material and shape which are used for the conventional lithium secondary battery can be used.
  • the material include relatively light metal materials such as aluminum and steel, and resin materials such as polyphenylene sulfide resin and polyimide resin.
  • a relatively light metal for example, aluminum or aluminum alloy
  • the shape of the case is, for example, circular (cylindrical shape, coin shape, button shape), hexahedron shape (rectangular shape, cubic shape), bag shape, and a shape obtained by processing and deforming them. It can be.
  • the battery disclosed here includes a current interrupt mechanism that operates when the internal pressure of the battery case increases.
  • the current interrupting mechanism is not particularly limited as long as it can interrupt the current in accordance with the increase in internal pressure (that is, using the increase in internal pressure as a trigger for operation), and as a current interrupting mechanism provided in this type of battery.
  • a mechanism similar to any conventionally known one can be employed as appropriate.
  • a configuration as shown in FIG. 1 described later is preferably used. In such a configuration, when the internal pressure of the battery case rises, the member constituting the conductive path from the electrode terminal to the electrode body is deformed, and the conductive path is cut by being separated from the other.
  • FIG. 1 schematically shows a cross-sectional structure of a lithium secondary battery 100.
  • the lithium secondary battery 100 includes a wound electrode body 80 and a battery case 50.
  • FIG. 2 schematically shows the wound electrode body 80.
  • FIG. 3 shows a cross section taken along line III-III in FIG.
  • the lithium secondary battery 100 has a long positive electrode sheet 10 and a long negative electrode sheet 20 wound flatly via long separators 40A and 40B.
  • the electrode body (rolled electrode body) 80 in the form is configured to be accommodated in a flat box-shaped (cuboid shape) battery case 50 together with an electrolyte (not shown) containing an overcharge preventing agent.
  • the battery case 50 includes a flat cuboid case main body 52 having an open upper end, and a lid 54 that closes the opening. On the upper surface (that is, the lid 54) of the battery case 50, there are a positive electrode terminal 70 that is electrically connected to the positive electrode 10 of the wound electrode body 80 and a negative electrode terminal 72 that is electrically connected to the negative electrode 20 of the electrode body 80. Is provided.
  • a current interrupt mechanism 30 that operates when the internal pressure of the battery case increases.
  • the current interruption mechanism 30 is configured to cut off a charging current by cutting a conductive path (for example, a charging path) from at least one of the electrode terminals to the electrode body 80 when the internal pressure of the battery case 50 increases.
  • a conductive path for example, a charging path
  • the current interruption mechanism 30 is provided between the positive electrode terminal 70 fixed to the lid body 54 and the electrode body 80, and reaches from the positive electrode terminal 70 to the electrode body 80 when the internal pressure of the battery case 50 rises.
  • the conductive path is configured to be cut.
  • the current interrupt mechanism 30 may include a conductive member, for example.
  • the conducting member includes a first member 32 and a second member 34.
  • the first member 32 is a deformed metal plate
  • the second member 34 is a connection metal plate joined to the deformed metal plate 32.
  • the deformed metal plate (first member) 32 has an arch shape in which a central portion is curved downward, and a peripheral portion thereof is connected to the lower surface of the positive electrode terminal 70 via a current collecting lead terminal 35.
  • connection metal plate 34 A positive current collector plate 74 is bonded to the lower surface (back surface) of the connection metal plate 34, and the positive current collector plate 74 is connected to the positive electrode sheet 10 of the electrode body 80. In this way, a conductive path from the positive electrode terminal 70 to the electrode body 80 is formed.
  • the current interrupt mechanism 30 includes an insulating case 38 made of plastic or the like.
  • the insulating case 38 is provided so as to surround the deformed metal plate 32, and hermetically seals the upper surface of the deformed metal plate 32.
  • the internal pressure of the battery case 50 does not act on the upper surface of the hermetically sealed curved portion 33.
  • the insulating case 38 has an opening into which the curved portion 33 of the deformed metal plate 32 is fitted, and the lower surface of the curved portion 33 is exposed from the opening to the inside of the battery case 50.
  • the internal pressure of the battery case 50 acts on the lower surface of the curved portion 33 exposed inside the battery case 50.
  • the current interrupt mechanism 30 having such a configuration, when the internal pressure of the battery case 50 increases, the internal pressure acts on the lower surface of the curved portion 33 of the deformed metal plate 32, and the curved portion 33 curved downward is pushed upward.
  • the upward push of the curved portion 33 increases as the internal pressure of the battery case 50 increases.
  • the curved portion 33 is turned upside down and deformed so as to bend upward. Due to the deformation of the curved portion 33, the joint point 36 between the deformed metal plate 32 and the connection metal plate 34 is cut. As a result, the conductive path from the positive electrode terminal 70 to the electrode body 80 is cut, and the overcharge current is cut off.
  • the conducting member may be a single member.
  • the current interrupt mechanism 30 is not limited to the positive terminal 70 side, and may be provided on the negative terminal 72 side. Furthermore, the current interrupt mechanism 30 is not limited to the mechanical cutting accompanied by the deformation of the deformed metal plate 32 described above.
  • the internal pressure of the battery case 50 is detected by a sensor, and the internal pressure detected by the sensor exceeds the set pressure.
  • An external circuit that cuts off the charging current can also be provided as a current cut-off mechanism.
  • the wound electrode body 80 is characterized in that the positive electrode assist layer 16 is formed on the positive electrode current collector 12, and except for this point, the wound electrode body of a normal lithium secondary battery It is the same. That is, the configuration of the wound electrode body 80 has a long (strip-shaped) sheet structure (sheet-like electrode body) as shown in FIGS. 2 and 3 before the wound electrode body 80 is assembled. Yes.
  • the positive electrode mixture layer 14 is formed along the longitudinal direction on one side or both sides (here, both sides) of the elongated positive electrode current collector 12, and on the side of the positive electrode mixture layer.
  • the positive electrode sheet 10 on which the positive electrode assist layer 16 composed of a conductive material and a binder is formed, and the negative electrode mixture layer 24 along the longitudinal direction on one side or both sides (here, both sides) of the elongated negative electrode current collector 22 are provided.
  • the formed negative electrode sheet 20 is overlaid with two long separator sheets 40A and 40B and wound in the longitudinal direction, and the wound electrode body is produced by crushing and ablating from the side surface direction. obtain.
  • a positive current collector 74 (FIG. 1) is attached to the end of the positive electrode sheet 10 in the winding direction
  • a negative current collector 76 (FIG. 1) is attached to the end of the negative electrode sheet 20 in the winding direction.
  • FIG. 3 schematically shows an enlarged part of a III-III cross section along the winding axis of the wound electrode body 80 in FIG.
  • the positive electrode assist layer 16 does not substantially contain the positive electrode active material, the total width of the positive electrode mixture layer 14 and the positive electrode assist layer 16 in the width direction of the wound electrode body is the negative electrode. There is no problem even if the width of the composite layer 24 is exceeded. Therefore, the positive electrode assist layer 16 can be widely formed, and the reaction field of the overcharge inhibitor is widened, so that a large amount of gas can be generated quickly during overcharge.
  • the total width b1 of the positive electrode mixture layer 14 and the positive electrode assist layer 16 is slightly wider than the width a1 of the negative electrode mixture layer 24 (b1> a1). Further, the width c1 of the separators 40A and 40B is slightly wider than b1, that is, c1> b1> a1.
  • a sealed lithium secondary battery here, a lithium ion battery
  • a positive electrode assist layer was performed. It should be noted that the present invention is not intended to be limited to those shown in the specific examples.
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 powder as a positive electrode active material powder, acetylene black as a conductive material, and polyvinylidene fluoride (PVdF) as a binder have a mass ratio of 91 : 6: 3 and mixed with N-methylpyrrolidone (NMP) so that the solid content concentration (NV) is about 50% by mass, and a slurry composition for forming a positive electrode mixture layer (positive electrode mixture slurry) was prepared.
  • This positive electrode mixture slurry was applied to one side of a long aluminum foil (positive electrode current collector) having a thickness of about 15 ⁇ m along the longitudinal direction in a width of 50 mm to form a positive electrode mixture layer.
  • acetylene black (AB) as a conductive material and polyvinylidene fluoride (PVdF) are such that the mass ratio of these materials is 90:10 and the solid content concentration (NV) is approximately 50% by mass.
  • NMP N-methylpyrrolidone
  • This positive electrode assist slurry was applied to both sides of the positive electrode mixture layer on the produced positive electrode current collector along the longitudinal direction with a width of 4 mm to form a positive electrode assist layer.
  • the positive electrode thus obtained was dried and pressed, and cut at a length of 30 mm perpendicular to the longitudinal direction to produce a sheet-like positive electrode (positive electrode sheet).
  • natural graphite (powder), styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC) as a negative electrode active material have a mass ratio of 98: 1: 1 and NV of 45% by mass.
  • This negative electrode mixture layer slurry was applied to one side of a long copper foil (negative electrode current collector) having a thickness of about 10 ⁇ m along the longitudinal direction in a width of 54 mm to form a negative electrode mixture layer.
  • the negative electrode thus obtained was dried and pressed, and cut into a length of 30 mm perpendicular to the longitudinal direction to produce a sheet-like negative electrode (negative electrode sheet).
  • the positive electrode sheet (dimensions (mm) approximately 70 ⁇ 30) and the negative electrode sheet (dimensions (mm) approximately 70 ⁇ 30) prepared as described above are interposed via a separator (here, a porous polyethylene sheet (PE) is used). Then, the electrodes were prepared by placing them facing each other.
  • This electrode body is mixed with an electrolyte containing an overcharge inhibitor (here, a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of 3: 4: 3).
  • an overcharge inhibitor here, a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of 3: 4: 3
  • a positive electrode mixture layer was formed on the positive electrode current collector by the same composition and method as in the example, and the positive electrode assist layer applied thereafter in the example was not applied, but a positive electrode sheet was obtained. That is, a laminated sheet type lithium secondary battery was produced in the same manner as in the example except that the positive electrode assist layer was not formed on the positive electrode sheet.
  • the lithium secondary batteries manufactured in the examples and comparative examples were subjected to an appropriate conditioning treatment (for example, constant current charging for 3 hours at a charging rate of 1/10 C, and then constant voltage up to 4.1 V at a charging rate of 1/3 C.
  • an appropriate conditioning treatment for example, constant current charging for 3 hours at a charging rate of 1/10 C, and then constant voltage up to 4.1 V at a charging rate of 1/3 C.
  • the volume of the cell is determined by the Archimedes method. It was measured.
  • the Archimedes method is a method in which a measurement object (in this example, a laminate-type lithium secondary battery) is immersed in a liquid medium (for example, distilled water or alcohol) to measure the buoyancy that the measurement object receives. Thus, the volume of the measurement object is obtained.
  • a measurement object in this example, a laminate-type lithium secondary battery
  • a liquid medium for example, distilled water or alcohol
  • the lithium secondary batteries of the above examples and comparative examples are charged with a constant current of 1 C (1 C is a current value that can be fully charged and discharged in 1 hour) to an overcharged state (5.2 V in this example).
  • 1 C is a current value that can be fully charged and discharged in 1 hour
  • the cell volume was measured again by the Archimedes method.
  • the volume of the cell after the conditioning treatment was subtracted from the volume of the cell after overcharging to calculate the amount of gas generation (ml) during overcharging. The result is shown in FIG.
  • the sealed lithium secondary battery according to the present invention is characterized by excellent battery performance (for example, high battery capacity and high current output is possible) and excellent resistance (reliability) during overcharge as described above. . Therefore, it can be suitably used as a power source (driving power source) for a motor mounted on a vehicle such as an automobile by utilizing such properties. That is, according to the present invention, as shown in FIG. 5, a vehicle including any sealed lithium secondary battery (which may be in the form of an assembled battery in which a plurality of batteries are connected) 100 disclosed herein. 1 (typically a car, in particular a hybrid car, a plug-in hybrid car, an electric car, etc.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 優れた電池性能を有し、且つ過充電時に電流遮断機構が的確に作動する密閉型リチウム二次電池を提供する。かかる電池は、正極10を有する電極体80を備える。正極10は、正極集電体12と、該集電体上に形成された正極合材層14と、正極合材層14に隣接する該集電体上に形成された正極アシスト層16と、を有する。

Description

密閉型リチウム二次電池
 本発明は、密閉構造のリチウム二次電池に関する。詳しくは、電池内圧の上昇により作動する電流遮断機構を備えた密閉型リチウム二次電池に関する。
 なお、本国際出願は2011年10月6日に出願された日本国特許出願第2011-222340号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
 近年、リチウムイオン電池その他のリチウム二次電池は、車両搭載用電源あるいはパソコンや携帯端末等の電源として重要性が高まっている。特にリチウム二次電池は、軽量で高エネルギー密度が得られるため、車両搭載用高出力電源として好ましく利用されている。かかる電池の一形態として、密閉型リチウム二次電池が挙げられる。この電池は、典型的には、活物質を備えた正負極からなる電極体が電解質(典型的には、電解液)とともに電池ケースに収容された後、封口(密閉)されることにより構築される。
 ところで、密閉型リチウム二次電池は一般に電圧が所定の領域(例えば3.0V~4.2V)に収まるよう制御された状態で使用されるが、誤操作等により通常以上の電流が供給されると所定の電圧を超えて過充電となる場合がある。過充電時には、電解質の分解によってガスが発生したり、活物質の発熱によって電池内部の温度が上昇したりすることがあり得る。そこで、かかる過充電に対処するため、上記ガスの発生等によって電池ケース内の圧力が所定値以上になると電流遮断弁が作動し充電電流を遮断する電流遮断機構が広く用いられている。
 上記電流遮断機構を用いる際には、電解質中に予め該電解質の非水溶媒よりも酸化電位(即ち、酸化分解の始まる電圧)の低い化合物(以下、「過充電防止剤」ともいう。)を含有させておく手法が知られている。このような電池が過充電状態になると、電解質が分解される前に過充電防止剤が酸化分解され、大量のガスを発生させる。このガスが速やかに電池の内圧を上昇させることにより、電流遮断機構をより早期に(即ち、電池がより安全な状態で)作動させることができる。この種の過充電防止剤の典型的な例としては、シクロヘキシルベンゼン(CHB)等の芳香族化合物が挙げられる。
 また最近では、上記機構をより迅速に作動させるため、正極合材層中に無機化合物を添加することでガスの発生量を増加させる手法が提案されている。この種の従来技術として、例えば特許文献1、2が挙げられる。特許文献1には、反応触媒としてのリン酸塩(リン酸イオン含有化合物)を正極合材層中に添加することで、過充電防止剤の反応効率を高め得る旨が記載されている。また、特許文献2には、炭酸塩(具体的には、炭酸リチウム)を正極合材層に含有することで、過充電時に該炭酸塩が分解され、大量の炭酸ガスを発生させ得る旨が記載されている。
日本国特許出願公開2008-243659号公報 日本国特許出願公開2010-171020号公報
 上述した過充電防止剤は、過充電時に、正極の表面(典型的には、正極活物質や導電材の表面)と接触して酸化分解し、水素イオン(H)を発生する。そして、この水素イオンが負極で電子を受け取ることにより水素ガスを生ずる。このため、過充電防止剤の酸化分解反応を起点としたガスの発生量は、正極近傍に存在する過充電防止剤の量および/または正極と過充電防止剤との接触面積(反応場)に左右される。
 したがって、ガスの発生量を増加させる方法としては、例えば過充電防止剤の添加量を増やすことや、正極合材層中の導電材量を増やして過充電防止剤との接触面積を広げること、等が考えられる。しかしながら、過充電防止剤は電池反応の抵抗成分として働くため、添加量が増すと電池性能が低下(例えば内部抵抗の増大や耐久性の低下等)する虞があり、好ましくない。さらに、正極合材層中の導電材量を増加させた場合には、正極合材層の密度の低下や単位体積当たりの容量低下を招く虞がある。かかる課題に対し先行特許文献1および2に記載の技術では、対処が困難である。本発明はかかる点に鑑みてなされたものであり、その目的は、電池ケースの内圧上昇により作動する電流遮断機構を備えた密閉型リチウム二次電池であって、優れた電池性能を有し、過充電時に迅速かつ的確に電流遮断機構を作動し得る密閉型リチウム二次電池を提供することである。
 上記目的を実現すべく、正極と負極を有する電極体と、上記電極体を電解質とともに収容する電池ケースと、上記電池ケースの内圧が上昇した時に作動する電流遮断機構と、を備えた密閉型リチウム二次電池が提供される。上記正極は、正極集電体および該集電体上に形成された正極活物質と導電材とバインダとを含む正極合材層を備えている。また、上記正極集電体上には、上記正極合材層に隣接する部位の少なくとも一部において、実質的に正極活物質を含まず、導電材とバインダとからなる正極アシスト層が形成されている。上記負極は、負極集電体および該集電体上に形成された負極活物質とバインダとを含む負極合材層を備えている。そして、上記電解質には、所定の電池電圧を超えた際にガスを発生させる過充電防止剤が含まれている。
 ここで開示される密閉型リチウム二次電池では、(通常の)正極合材層表面だけでなく、正極アシスト層表面においても過充電防止剤が分解反応を生じ得る。したがって、過充電防止剤の反応場をより広く確保することができる。このため、過充電防止剤の添加量や正極合材層中の導電材量(即ち、正極合材層中の導電材の組成比率)を過剰にすることなく、過充電時に大量のガスを迅速に発生させることができる。かかる技術は、従来とは大きく異なる方法で電流遮断機構の作動能を向上させ、過充電時における密閉型リチウム二次電池の耐性を高めるものである。
 なお、電流遮断機構を迅速に作動させる手法としては、例えば、電流遮断弁を作動させる圧力の設定値を下げることも考えられる。しかし、かかる場合は、僅かな周辺環境の変化等で誤作動を生ずる虞がある。このため、過充電時における電流遮断機構の迅速な作動および誤作動防止のためには、ガスの発生量や圧力を増加させることが殊に重要である。近年、リチウム二次電池の応用範囲は大容量の電源を必要とする分野、即ち車両用等において急速に利用が拡大していることから、信頼性および過充電時の耐性の更なる向上が望まれている。ここで開示される技術は、かかる課題を解決し得るものである。
 ここで開示される密閉型リチウム二次電池の好適な一態様では、正極集電体上に形成された正極合材層の密度が、例えば2.0g/cm以上(典型的には2.0g/cm~4.5g/cm、好ましくは2.5g/cm~4.5g/cm)である。
 近年の電池の高容量化に伴い、正極合材層はより高密度化し、該正極合材層内の空隙はより減少する傾向にある。かかる場合においては、正極近傍に存在する過充電防止剤の量および/または正極と過充電防止剤との接触面積が減少するため、過充電時における分解ガスの発生が少量および/または緩やかになる虞がある。とりわけ大電流充電時に過充電となった場合には、上記分解反応が遅れることで電流遮断機構が迅速に機能しない場合があり得る。しかし、ここで開示される電池では、正極アシスト層で過充電防止剤の分解反応が生じるため、正極合材層が高密度化した場合であっても、過充電時に大量のガスを迅速に発生させることができる。その結果、電流遮断機構をより迅速かつ的確に作動させることができる。
 ここで開示される密閉型リチウム二次電池の好適な他の一態様では、上記電極体は、長尺状の正極集電体上に所定の幅の正極合材層が該集電体の長手方向に沿って形成されている長尺状の正極と、長尺状の負極集電体上に上記正極合材層を超える幅の負極合材層が該集電体の長手方向に沿って形成されている長尺状の負極とが、積層され捲回されてなる捲回電極体である。そして、上記長尺状の正極において、上記正極合材層の長手方向に沿う少なくとも一方の側方には、該長手方向に沿って上記正極アシスト層が形成されている。
 いわゆる一般的な捲回電極体では、一般的に捲回中心部で過充電防止剤が不足し、即ち過充電防止剤の拡散が律速となり、分解ガスの発生が緩やかになる傾向がある。この傾向は、とりわけ大電流充電時に顕著である。しかし、ここで開示される捲回電極体では、過充電防止剤が浸透し易い端部分で、(換言すれば、正極合材層の側部分に設けた正極アシスト層で)、該過充電防止剤の分解反応を生じるため、効率的に大量のガスを発生させることができる。その結果、電流遮断機構を迅速かつ的確に作動させることができる。
 かかる捲回電極体を備えた密閉型リチウム二次電池の好適な一態様では、長尺状の正極の幅方向における、上記正極合材層と上記正極アシスト層とを合算した幅が、上記負極合材層の幅を上回るように形成されている。
 一般的な捲回電極体では、リチウムの析出による内部短絡の発生等を防止するために、正極合材層の幅を対向する負極合材層の幅よりも狭くする必要がある。しかしながら、ここで開示される正極アシスト層は実質的に正極活物質を含まないため、負極合材層の幅に規制されることなく幅広く作製することができる。このため、過充電防止剤の反応場を著しく増大させることができ、過充電時に大量のガスを迅速に発生させることができる。したがって、より迅速に電流遮断機構を作動させることができる。
 ここで開示される正極アシスト層に含まれる導電材としては、比表面積が凡そ100m/g以上(例えば凡そ100m/g~500m/g)のものを好ましく使用することができる。
 かかる導電材を備えた正極アシスト層では、過充電防止剤との反応場を広く確保し得るため、過充電時のガスの発生効率を好適に向上させることができる。その結果、上記電流遮断機構を迅速に作動させることができる。なお、本明細書において「比表面積」とは、窒素ガスを用いたBET法(例えば、BET一点法)によって測定された比表面積(BET比表面積)をいう。
 ここで開示される過充電防止剤としては、酸化電位(vs.Li/Li+)が正極の充電上限電位以上であって、かかる電位を超えて過充電状態となった場合に酸化分解されてガスを発生させ得るような物質を用いることができる。例えば、正極の充電上限電位(vs.Li/Li+)が凡そ4.0V~4.2V程度に設定される電池では、酸化電位が4.4V~4.9Vの化合物を好ましく使用することができる。この種の性質を備える化合物として、ビフェニル(BP)やシクロヘキシルベンゼン(CHB)が例示される。
 ここで開示される技術は、より高容量化、高密度化された電池が大電流充電時に過充電となった場合に有効である。そのため、特に車両(典型的には自動車、特にハイブリッド自動車、プラグインハイブリッド自動車、電気自動車、燃料電池自動車)のモーター駆動のための動力源(電源)として、ここで開示される密閉型リチウム二次電池が好適に使用され得る。即ち、本発明によれば、ここで開示される何れかの密閉型リチウム二次電池(複数の電池が接続された組電池の形態であり得る。)を備える車両が提供される。
図1は、本発明の一実施形態に係る密閉型リチウム二次電池の構成を模式的に示す断面図である。 図2は、本発明の一実施形態に係る密閉型リチウム二次電池の捲回電極体の構成を示す模式図である。 図3は、図2中のIII-III線断面を示す模式図である。 図4は、本発明の実施例と比較例のガス発生量を表すグラフである。 図5は、本発明の一実施形態に係る密閉型リチウム二次電池を搭載した車両(自動車)を模式的に示す側面図である。
 以下、ここで開示される密閉型リチウム二次電池の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって、実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。かかる構造のリチウム二次電池は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 ここで開示される密閉型リチウム二次電池は、正極と負極を有する電極体と、上記電極体を電解質とともに収容する電池ケースと、上記電池ケース内の圧力が上昇した際に作動する電流遮断機構とを備えている。上記正極は、正極集電体上に正極活物質を含む正極合材層を備えている。また、上記正極は、正極合材層に隣接した少なくとも一部に、実質的に上記正極活物質を含まず、導電材とバインダからなる正極アシスト層を備えている。上記負極は、負極集電体上に負極活物質を含む負極合材層を備えている。上記電解質は、所定の電池電圧を超えた際にガスを発生させる過充電防止剤を含んでいる。したがって、本発明の目的を実現し得る限り、他の電池構成材料や部材等の内容(例えば、材質や組成)は特に制限されず、従来のリチウム二次電池と同様のものを用いることができる。
 なお、本明細書において「リチウム二次電池」とは、支持塩としてリチウムイオンを利用し、正負極間におけるリチウムイオンの移動により充放電が実現される二次電池をいう。一般にリチウムイオン電池(若しくはリチウムイオン二次電池)、リチウムポリマー電池等と称される二次電池は、本明細書におけるリチウム二次電池に包含される典型例である。また、本明細書において「活物質」とは、正極側又は負極側において蓄電に関与する物質(化合物)をいう。即ち、電池の充放電時において電子の放出若しくは取り込みに関与する物質をいう。
≪正極≫
 ここで開示される密閉型リチウム二次電池の正極は、正極集電体と、該正極集電体上に形成された正極合材層(正極活物質層ともいう。)と、該正極合材層に隣接する部位の少なくとも一部に正極アシスト層と、を備えている。
 このような正極の作製では、まず、正極活物質を導電材やバインダ等とともに適当な媒体に分散させたスラリー状(ペースト状、インク状のものを包含する。以下同様。)の組成物(以下、「正極合材スラリー」という。)を調製し、かかる正極合材スラリーを正極集電体の片面または両面に付与・乾燥することにより正極合材層を形成する。次に、導電材とバインダとを適当な溶媒に分散させたスラリー状の組成物(以下、「正極アシストスラリー」という。)を調製し、かかる正極アシストスラリーを上記正極合材層に隣接する部位の少なくとも一部に付与・乾燥することにより、正極アシスト層を形成する。なお、上記溶媒としては水性溶媒および有機溶媒のいずれも使用可能であり、例えばN-メチル-2-ピロリドン(NMP)を用いることができる。
 正極集電体としては、導電性の良好な金属(例えばアルミニウム、ニッケル、チタン、ステンレス鋼等)からなる導電性部材が好ましく用いられる。集電体の形状は構築される電池の形状等に応じて異なり得るため特に限定されないが、例えば棒状体、板状体、箔状体、網状体等を用いることができる。後述する捲回電極体を備えた電池では、主に箔状体が用いられる。箔状集電体の厚みは特に限定されないが、電池の容量密度と集電体の強度との兼ね合いから5μm~200μm(典型的には、5μm~50μm、好ましくは8μm~30μm)程度のものを好ましく用いることができる。
<正極合材層>
 正極合材層は、正極活物質と導電材とバインダとを含む。正極活物質としては、リチウム二次電池の正極活物質として使用し得ることが知られている各種の材料の一種または二種以上を、特に限定なく使用することができる。例えば、リチウムニッケル酸化物(例えばLiNiO)、リチウムコバルト酸化物(例えばLiCoO)、リチウムマンガン酸化物(例えばLiMn)等の、リチウムと遷移金属元素とを構成金属元素として含む層状構造やスピネル構造等の酸化物(リチウム遷移金属酸化物)等を用いることができる。なかでも、リチウムニッケルコバルトマンガン複合酸化物(例えばLiNi1/3Co1/3Mn1/3)を主成分とする正極活物質(典型的には、実質的にリチウムニッケルコバルトマンガン複合酸化物からなる正極活物質)を好ましく用いることができる。
 ここで、リチウムニッケルコバルトマンガン複合酸化物とは、Li、Ni、Co、Mnを構成金属元素とする酸化物のほか、Li、Ni、Co、Mn以外に他の少なくとも一種の金属元素(すなわち、Li、Ni、Co、Mn以外の遷移金属元素および/または典型金属元素)を含む酸化物をも包含する意味である。かかる金属元素は、例えば、Al、Cr、Fe、V、Mg、Ti、Zr、Nb、Mo、W、Cu、Zn、Ga、In、Sn、La、Ceのうちの一種または二種以上の元素であり得る。リチウムニッケル酸化物、リチウムコバルト酸化物およびリチウムマンガン酸化物についても同様である。このようなリチウム遷移金属酸化物(典型的には粒子状)としては、例えば、従来公知の方法で調製されるリチウム遷移金属酸化物粉末をそのまま使用することができる。例えば、平均粒径が凡そ0.1μm~25μm(典型的には0.1μm~20μm、例えば0.5μm~15μm、好ましくは1μm~10μm)の範囲にある二次粒子によって実質的に構成されたリチウム遷移金属酸化物粉末を正極活物質として好ましく用いることができる。
 ここで用いられる正極合材層には、一般的なリチウム二次電池において正極合材層の構成成分として使用され得る一種または二種以上の材料を必要に応じて含有することができる。そのような材料の例として、導電材やバインダが挙げられる。導電材としては、従来からリチウム二次電池の製造に用いられている物質を特に限定なく使用することができる。具体的には、種々のカーボンブラック(例えば、アセチレンブラック(AB)、ファーネスブラック、ケッチェンブラック、チャンネルブラック、ランプブラック、サーマルブラック)、コークス、活性炭、黒鉛、炭素繊維(PAN系炭素繊維、ピッチ系炭素繊維)、カーボンナノチューブ等の炭素材料から選択される、一種または二種以上であり得る。
 バインダとしては、従来からリチウム二次電池の製造に用いられる物質を特に限定なく使用することができる。例えば、各種のポリマー材料を好適に用いることができる。水系のスラリーを用いて正極合材層を形成する場合には、水に溶解または分散するポリマー材料を好ましく採用し得る。かかるポリマー材料としては、セルロース系ポリマー、フッ素系樹脂、酢酸ビニル共重合体、ゴム類等が例示される。より具体的には、カルボキシメチルセルロース(CMC;典型的にはナトリウム塩)、ヒドロキシプロピルメチルセルロース(HPMC)、ポリビニルアルコール(PVA)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、スチレンブタジエンゴム(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)等が挙げられる。あるいは、非水系のスラリー、即ち分散媒の主成分が有機溶媒である溶剤系スラリーを用いて正極合材層を形成する場合には、有機溶剤に分散または溶解するポリマー材料を好ましく採用し得る。かかるポリマー材料としては、ポリフッ化ビニリデン(PVdF)、ポリ塩化ビニリデン(PVdC)、ポリエチレンオキサイド(PEO)等が挙げられる。また、過充電時においてガスを発生させる無機化合物(例えば、リン酸塩や炭酸塩)等を予め含有させておいてもよい。
 正極集電体の単位面積当たりに設けられる正極合材層の質量(正極集電体の両面に正極合材層を有する構成では両面の合計質量。)は、例えば5mg/cm~40mg/cm(典型的には10mg/cm~20mg/cm)程度とすることが適当である。正極集電体の各々の面に設けられる正極合材層の質量は、通常、概ね同程度とすることが好ましい。また、正極合材層全体に占める正極活物質の割合は、凡そ50質量%以上(典型的には70質量%~95質量%)とすることが適当であり、通常は凡そ80質量%~95質量%であることが好ましい。正極合材層全体に占める導電材の割合は、例えば凡そ1質量%~20質量%とすることができ、通常は凡そ2質量%~15質量%(例えば3質量%~10質量%)とすることが適当である。正極合材層全体に占めるバインダの割合は、例えば凡そ0.1質量%~20質量%とすることができ、通常は凡そ0.5質量%~10質量%(例えば1質量%~5質量%)とすることが適当である。
 そして、正極合材スラリーを乾燥させた後、適宜プレス処理(例えば、ロールプレス法、平板プレス法等の従来公知の各種プレス方法を採用することができる。)を施すことによって、正極合材層の厚みや密度を調整することができる。正極合材層の密度は、例えば1.5g/cm~4.5g/cm(典型的には2.0g/cm~4.0g/cm、好ましくは2.0g/cm~3.5g/cm)程度とすることができる。また、正極合材層の空隙率は、例えば5体積%~40体積%(典型的には10体積%~35体積%、好ましくは15体積%~30体積%)程度とすることができる。ここで開示される電池では、正極アシスト層でも過充電防止剤の分解反応が生じる。このため、上記のように正極合材層が高密度化した場合であっても、過充電時に大量のガスを迅速に発生させることができる。その結果、電流遮断機構をより迅速かつ的確に作動させることができる。
<正極アシスト層>
 正極アシスト層は、実質的に正極活物質を含有せず、導電材とバインダとから構成される。ここで、「実質的に含有しない」とは、正極活物質を少なくとも意図的には含有させないことをいい、例えば、不可避的な不純物等として持ち込まれることを排除する意味ではない。
 導電材としては、上記正極合材層用として例示したものを、一種または二種以上、特に限定することなく用いることができる。即ち、使用する導電材は上記正極合材層で使用したものと同種であってもよいし、同種でなくともよい。なかでも特に、比表面積が凡そ100m/g以上(例えば凡そ100m/g~500m/g)のものを好ましく使用することができる。かかる導電材を備えた正極アシスト層では、過充電防止剤との反応場を広く確保し得るため、過充電時に大量のガスを迅速に発生させることができる。その結果、上記電流遮断機構を迅速に作動させることができる。
 バインダとしては、上記正極合材層用として例示したものを、一種または二種以上、特に限定することなく用いることができる。即ち、使用するバインダは上記正極合材層で使用したものと同種であってもよいし、同種でなくともよい。
 正極集電体の単位面積当たりに設けられる正極アシスト層の質量(正極集電体の両面に正極アシスト層を有する構成では両面の合計質量。)は、例えば1mg/cm~20mg/cm(典型的には5mg/cm~10mg/cm)程度とすることができる。また、正極アシスト層全体に占める導電材の割合は、凡そ50質量%以上(典型的には70質量%~95質量%)とすることが適当であり、通常は凡そ80質量%~95質量%であることが好ましい。正極アシスト層全体に占めるバインダの割合は、例えば凡そ1質量%~30質量%とすることができ、通常は凡そ5質量%~20質量%(例えば5質量%~15質量%)とすることが適当である。
 そして、正極アシストスラリーを乾燥させた後、適宜プレス処理(例えば、ロールプレス法、平板プレス法等の従来公知の各種プレス方法を採用することができる。)を施すことによって、正極アシスト層の厚みや密度を調整することができる。正極アシスト層の密度は、例えば0.5g/cm~2.0g/cm(典型的には1.0g/cm~1.5g/cm)程度とすることができる。また、正極アシスト層の空隙率は、例えば5体積%~40体積%(典型的には10体積%~35体積%、好ましくは15体積%~30体積%)程度とすることができる。これにより、正極アシスト層において過充電防止剤を好適に分解し得、過充電時に大量のガスを発生させることができる。その結果、電流遮断機構をより迅速かつ的確に作動させることができる。なお、上記プレス処理は、正極合材スラリーおよび正極アシストスラリーの乾燥後に纏めて行うこともできる。
≪負極≫
 ここで開示される密閉型リチウム二次電池の負極は、負極集電体と、該負極集電体上に形成された負極合材層(負極活物質層ともいう。)と、を備えている。
 このような負極の作製では、まず、負極活物質をバインダ等とともに適当な媒体に分散させたスラリー状の組成物(以下、「負極合材スラリー」という。)を調製する。この負極合材スラリーを負極集電体の片面または両面に付与し乾燥することによって負極合材層を形成する。なお、上記溶媒としては、水性溶媒および有機溶媒のいずれも使用可能であり、例えば水を用いることができる。
 負極集電体としては、導電性の良好な金属(例えば、銅、ニッケル、チタン、ステンレス鋼等)からなる導電性材料が好ましく用いられる。また負極集電体の形状は正極集電体と同様であり得る。
<負極合材層>
 負極合材層は、負極活物質とバインダとを含む。負極活物質としては、リチウム二次電池の負極活物質として使用し得ることが知られている各種の材料の一種または二種以上を、特に限定なく使用することができる。例えば、少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)が挙げられる。より具体的には、いわゆる黒鉛(グラファイト)、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)、カーボンナノチューブ、これらを組み合わせた構造を有するもの等の、各種の炭素材料を用いることができる。例えば、天然黒鉛(石墨)や人造黒鉛を好ましく使用することができる。負極活物質の形状は、通常、平均粒径0.5μm~20μm(典型的には1μm~15μm、例えば4μm~10μm)程度の粒子状であることが好ましい。
 バインダとしては、上記正極合材層用のバインダとして例示したポリマー材料から適当なものを選択することができる。例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)等が挙げられる。その他、負極合材層形成用スラリーの増粘剤として機能し得る各種のポリマー材料(例えばカルボキシメチルセルロース(CMC))や導電材等も適宜使用することができる。
 負極集電体の単位面積当たりに設けられる負極合材層の質量(負極集電体の両面に負極合材層を有する構成では両面の合計質量)は、例えば5mg/cm~20mg/cm(典型的には5mg/cm~10mg/cm)程度とすることができる。負極集電体の両面に負極合材層を有する構成において、負極集電体の各々の面に設けられる負極合材層の質量は、通常、概ね同程度とすることが好ましい。また、負極合材層全体に占める負極活物質の割合は、凡そ50質量%以上とすることが適当であり、好ましくは90質量%~99質量%(例えば95質量%~99質量%)である。負極合材層全体に占めるバインダの割合は、例えば凡そ1質量%~10質量%とすることができ、通常は凡そ1質量%~5質量%とすることが適当である。
 そして、負極合材スラリーを乾燥させた後、適宜プレス処理(例えば、ロールプレス法、平板プレス法等の従来公知の各種プレス方法を採用することができる。)を施すことによって、負極合材層の厚みや密度を調整することができる。負極合材層の密度は、例えば0.5g/cm~2.0g/cm(典型的には1.0g/cm~1.5g/cm)程度とすることができる。また、負極合材層の空隙率は、例えば5体積%~40体積%(典型的には10体積%~35体積%、好ましくは15体積%~30体積%)程度とすることができる。
 上記正極および負極を積層した電極体を作製し、過充電防止剤を含む電解質とともに適当な電池ケースに収容してリチウム二次電池が構築される。なお、ここで開示されるリチウム二次電池の代表的な構成では、正極と負極との間にセパレータが介在される。
≪セパレータ≫
 セパレータとしては、従来からリチウム二次電池に用いられるものと同様の各種多孔質シートを用いることができる。好適例として、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂から成る多孔質樹脂シート(フィルム、不織布等)が挙げられる。かかる多孔質樹脂シートは、単層構造であってもよく、二層以上の複数構造(例えば、PE層の両面にPP層が積層された三層構造(PP/PE/PP))であってもよい。特に限定されるものではないが、多孔質シート(典型的には多孔質樹脂シート)の好ましい性状として、平均孔径が0.001μm~30μm程度であり、厚みが5μm~100μm(より好ましくは10μm~30μm)程度のものが例示される。また、多孔質シートの気効率(空隙率)は、例えば凡そ20体積%~90体積%(好ましくは30体積%~80体積%)程度であり得る。
 また、上記多孔質シートの片面または両面(典型的には片面)に、多孔質の耐熱層を備えた耐熱性セパレータであってもよい。この耐熱層は、例えば、無機フィラーとバインダとを含む層であり得る。例えば、アルミナ、ベーマイト(組成式Al・HOで示されるアルミナ一水和物)、シリカ、チタニア、カルシア、マグネシア、ジルコニア、窒化ホウ素、窒化アルミニウム等の無機フィラーを好ましく採用し得る。なお、固体状の電解質を用いたリチウム二次電池(リチウムポリマー電池)では、上記電解質がセパレータを兼ねる構成としてもよい。
 ここで開示される好ましい一態様では、上記電極体は、長尺状の正極と、長尺状の負極とが、積層され捲回されてなる捲回電極体である。また、上記長尺状の正極の幅方向における、正極合材層と正極アシスト層とを合算した幅が、負極合材層の幅を上回るように形成されていることがより好ましい。ここで開示される正極アシスト層は実質的に正極活物質を含まないため、負極合材層の幅に規制されることなく幅広く作製することができる。このため、過充電防止剤の反応場を著しく増大させることができ、過充電時に大量のガスを迅速に発生させることができる。そのため、電流遮断機構をより迅速に作動させることができる。
≪電解質≫
 ここで用いられる電解質は、典型的には、適当な非水溶媒に支持塩(即ち、リチウム塩)を含有させた組成を有する。支持塩としては、一般的なリチウム二次電池と同様のものを、適宜選択して使用することができる。リチウム二次電池で用いられるリチウム塩としては、例えば、LiPF、LiBF、LiClO、LiAsF、Li(CFSON、LiCFSO等が例示される。このような支持塩は、1種を単独で、または2種以上を組み合わせて用いることができる。特に好ましい支持塩としてLiPFが挙げられる。また、電解質は上記支持塩の濃度が0.1mol/L~5mol/L(好ましくは、0.8mol/L~1.5mol/L)の範囲内となるように調製することが好ましい。また、かかる液状電解質にポリマーが添加された固体状(ゲル状)の電解質であってもよい。
 非水溶媒としては、一般的なリチウム二次電池に用いられる各種の非水溶媒、例えばカーボネート類、エステル類、エーテル類、ニトリル類、スルホン類、ラクトン類等の有機溶媒を特に限定なく使用することができる。具体例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ビニレンカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン、1,3-ジオキソラン、ジエチレングリコールジメチルエーテル、エチレングリコールジメチルエーテル、アセトニトリル、プロピオニトリル、ニトロメタン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、γ-ブチロラクトン等が例示される。なお、上記カーボネート類とは、環状カーボネートおよび鎖状カーボネートを包含する意味であり、上記エーテル類とは、環状エーテルおよび鎖状エーテルを包含する意味である。このような非水溶媒は、1種を単独で、あるいは2種以上を適宜組み合わせて用いることができる。
 好ましい一態様として、カーボネート類を主体とする非水溶媒が挙げられる。電解質としてかかる非水溶媒を含む場合、後述するセルの充電処理において負極活物質表面に良質な被膜を形成し得るため、好ましい。なかでも比誘電率の高いECや、酸化電位が高い(電位窓の広い)DMCやEMC等を好適に用いることができる。例えば、非水溶媒として一種または二種以上のカーボネート類を含み、それらカーボネート類の合計体積が非水溶媒全体の体積の60体積%以上(より好ましくは75体積%以上、さらに好ましくは90体積%以上であり、実質的に100体積%であってもよい。)を占める非水溶媒を好ましく用いることができる。
≪過充電防止剤≫
 ここで開示される電池の電解質には、過充電防止剤が含有される。該過充電防止剤としては、酸化(分解)電位が正極の充電上限電位以上であって、かかる電位を超えて過充電状態となった場合に酸化分解されてガスを発生させ得るような物質であれば特に限定なく用いることができる。具体例として、ビフェニル化合物、シクロアルキルベンゼン化合物、アルキルベンゼン化合物、有機リン化合物、フッ素原子置換芳香族化合物、カーボネート化合物、環状カルバメート化合物、脂環式炭化水素等が挙げられる。過充電防止剤の酸化電位が正極の充電上限電位と近接している場合、通常時の充放電時において、局所的な電位の上昇等で徐々に分解される虞がある。一方、酸化電位があまりに高いと、過充電防止剤の酸化分解に起因するガスが発生する前に、電解質と電極材料(典型的には正極活物質)との反応によって、急激な温度上昇等を生じる虞がある。したがって、例えば、正極の充電上限電位(vs.Li/Li+)が凡そ4.0V~4.2V程度に設定されるリチウム二次電池(凡そ4.0~4.2Vで満充電状態となるリチウム二次電池であり得る。)においては、酸化電位が4.4V~4.9Vの範囲の過充電防止剤が好ましく用いられる。
 この種の性質を備える化合物としては、ビフェニル(BP)、アルキルビフェニル、ターフェニル、2-フルオロビフェニル、3-フルオロビフェニル、4-フルオロビフェニル、4,4’-ジフルオロビフェニル、シクロヘキシルベンゼン(CHB)、trans-ブチルシクロヘキシルベンゼン、シクロペンチルベンゼン、t-ブチルベンゼン、t-アミノベンゼン、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン、トリス-(t-ブチルフェニル)ホスフェート、フェニルフルオライド、4-フルオロフェニルアセテート、ジフェニルカーボネート、メチルフェニルカーボネート、ビスターシャリーブチルフェニルカーボネート、ジフェニルエーテル、ジベンゾフラン等が例示される。なかでも特に、ビフェニル(BP)や、シクロヘキシルベンゼン(CHB)およびシクロヘキシルベンゼン誘導体が好ましく用いられる。
 過充電防止剤の使用量は特に限定されないが、過充電防止機構を作動させるのに十分なガス量を確保する観点からは、上記電解質100質量部に対して、凡そ0.01質量部以上(典型的には0.1質量部)が適当であり、好ましくは0.5質量部以上である。ただし、過充電防止剤は電池反応の抵抗成分となり得るため、過剰に添加した場合、入出力特性が低下する虞がある。かかる観点からは、該過充電防止剤の量を凡そ10質量部以下(典型的には5質量部)、好ましくは4質量部以下(例えば3質量部以下)に抑えることが適当である。例えば0.1質量部~5質量部(典型的には0.5質量部~5質量部)が適当であり、0.1質量部~4質量部(特には0.5質量部~3質量部)が好適である。ここで開示される電池では、過充電防止剤の反応場(即ち正極アシスト層)が広く確保されているため、従来に比べ過充電防止剤の使用量を削減し得る。このため、優れた電池性能(例えば高い電池容量)を実現し得る。
≪電池ケース≫
 電池ケースとしては、従来のリチウム二次電池に用いられる材料や形状を用いることができる。材質としては、例えばアルミニウム、スチール等の比較的軽量な金属材料や、ポリフェニレンサルファイド樹脂、ポリイミド樹脂等の樹脂材料が挙げられる。なかでも、放熱性向上やエネルギー密度を高める目的から、比較的軽量な金属(例えば、アルミニウムやアルミニウム合金)を好ましく採用し得る。また、該ケースの形状(容器の外形)は、例えば、円形(円筒形、コイン形、ボタン形)、六面体形(直方体形、立方体形)、袋体形、およびそれらを加工し変形させた形状等であり得る。
≪電流遮断機構≫
 ここで開示される電池は、上記電池ケースの内圧が上昇した際に作動する電流遮断機構を備える。該電流遮断機構としては、内圧の上昇に応じて(即ち、内圧の上昇を作動のトリガーとして)電流を遮断し得るものであれば特に限定されず、この種の電池に設けられる電流遮断機構として従来知られているいずれかのものと同様の機構を適宜採用することができる。例えば、後述する図1に示すような構成が好ましく用いられる。かかる構成では、電池ケースの内圧が上昇した際、電極端子から電極体に至る導電経路を構成する部材が変形し、他方から離隔することにより導電経路を切断するように構成されている。
 特に限定することを意図したものではないが、本発明の一実施形態に係るリチウム二次電池の概略構成として、扁平に捲回された電極体(捲回電極体)と、電解質と、過充電防止剤とを扁平な箱型(直方体形状)の容器に収容した形態のリチウム二次電池を例とし、図1~図3にその概略構成を示す。
 図1は、リチウム二次電池100の断面構造を模式的に示している。このリチウム二次電池100は、捲回電極体80と電池ケース50とを備えている。また、図2には捲回電極体80を模式的に示している。図3は、図2中のIII-III線断面を示している。
 図1に示すように、本実施形態に係るリチウム二次電池100は、長尺状の正極シート10と長尺状の負極シート20が長尺状のセパレータ40Aおよび40Bを介して扁平に捲回された形態の電極体(捲回電極体)80が、過充電防止剤を含む電解質(図示せず)とともに、扁平な箱型(直方体形状)の電池ケース50に収容された構成を有する。
 電池ケース50は、上端が開放された扁平な直方体状のケース本体52と、その開口部を塞ぐ蓋体54とを備える。電池ケース50の上面(即ち、蓋体54)には、捲回電極体80の正極10と電気的に接続する正極端子70および該電極体80の負極20と電気的に接続する負極端子72が設けられている。
 電池ケース50の内部には、電池ケースの内圧上昇により作動する電流遮断機構30が設けられている。電流遮断機構30は、電池ケース50の内圧が上昇した場合に少なくとも一方の電極端子から電極体80に至る導電経路(例えば、充電経路)を切断することで充電電流を遮断し得るように構成されている。この実施形態では、電流遮断機構30は、蓋体54に固定した正極端子70と電極体80との間に設けられ、電池ケース50の内圧が上昇した場合に正極端子70から電極体80に至る導電経路を切断するように構成されている。
 上記電流遮断機構30は、例えば導通部材を含み得る。この実施形態では、導通部材は、第一部材32と第二部材34とを備えている。そして、電池ケース50の内圧が上昇した場合に第一部材32および第二部材34の少なくとも一方(ここでは第一部材32)が変形して他方から離隔することにより上記導電経路を切断するように構成されている。この実施形態では、第一部材32は変形金属板であり、第二部材34は上記変形金属板32に接合された接続金属板である。変形金属板(第一部材)32は、中央部分が下方へ湾曲したアーチ形状を有し、その周縁部分が集電リード端子35を介して正極端子70の下面と接続されている。また、変形金属板32の湾曲部分33の先端が接続金属板34の上面と接合されている。接続金属板34の下面(裏面)には正極集電板74が接合され、かかる正極集電板74が電極体80の正極シート10に接続されている。このようにして、正極端子70から電極体80に至る導電経路が形成されている。
 また、電流遮断機構30は、プラスチック等により形成された絶縁ケース38を備えている。絶縁ケース38は、変形金属板32を囲むように設けられ、変形金属板32の上面を気密に密閉している。この気密に密閉された湾曲部分33の上面には、電池ケース50の内圧が作用しない。また、絶縁ケース38は、変形金属板32の湾曲部分33を嵌入する開口部を有しており、該開口部から湾曲部分33の下面を電池ケース50の内部に露出している。この電池ケース50の内部に露出した湾曲部分33の下面には、電池ケース50の内圧が作用する。
 かかる構成の電流遮断機構30において、電池ケース50の内圧が高まると、該内圧が変形金属板32の湾曲部分33の下面に作用し、下方へ湾曲した湾曲部分33が上方へ押し上げられる。この湾曲部分33の上方への押し上げは、電池ケース50の内圧が上昇するに従い増大する。そして、電池ケース50の内圧が設定圧力を超えると、湾曲部分33が上下反転し、上方へ湾曲するように変形する。かかる湾曲部分33の変形によって、変形金属板32と接続金属板34との接合点36が切断される。このことにより、正極端子70から電極体80に至る導電経路が切断され、過充電電流が遮断されるようになっている。
 なお、この実施形態では、内圧上昇時に変形する導通部材が、第一部材32と第二部材34とに分けて構成されている場合を例示したが、これに限定されない。例えば、導通部材が1つの部材であってもよい。また、電流遮断機構30は正極端子70側に限らず、負極端子72側に設けてもよい。さらに、電流遮断機構30は、上述した変形金属板32の変形を伴う機械的な切断に限定されず、例えば電池ケース50の内圧をセンサで検知し、該センサで検知した内圧が設定圧力を超えると充電電流を遮断するような外部回路を電流遮断機構として設けることもできる。
 本実施形態に係る捲回電極体80は、正極集電体12上に正極アシスト層16が形成されていることを特徴とし、この点を除いては通常のリチウム二次電池の捲回電極体と同様である。すなわち、捲回電極体80の構成は、捲回電極体80を組み立てる前段階において、図2および図3に示すように長尺状(帯状)のシート構造(シート状電極体)を有している。捲回電極体80は、長尺状の正極集電体12の片面または両面(ここでは両面)に長手方向に沿って正極合材層14が形成され、且つ上記正極合材層の側方に導電材とバインダとからなる正極アシスト層16が形成された正極シート10と、長尺状の負極集電体22の片面または両面(ここでは両面)に長手方向に沿って負極合材層24が形成された負極シート20とを、二枚の長尺状のセパレータシート40Aおよび40Bとともに重ね合わせて長尺方向に捲回し、かかる捲回電極体を側面方向から押しつぶして拉げさせることによって作製し得る。
 また、正極シート10の捲回方向の端部には正極集電板74(図1)が、負極シート20の捲回方向の端部には負極集電板76(図1)がそれぞれ付設されており、上記正極端子70および負極端子72とそれぞれ電気的に接続される。
 図3は、図2中の捲回電極体80の捲回軸に沿う、III-III断面の一部を拡大して模式的に示している。かかる構造では、正極アシスト層16に実質的には正極活物質が含まれていないため、捲回電極体の幅方向における、正極合材層14と正極アシスト層16とを合算した幅が、負極合材層24の幅を上回っても問題がない。よって、正極アシスト層16を広く形成することができ、過充電防止剤の反応場が広がることで、過充電時において大量のガスを迅速に発生させることができる。図2および図3に示す例では、正極合材層14と正極アシスト層16とを合算した幅b1は、負極合材層24の幅a1よりも少し広い(b1>a1)。さらに、セパレータ40Aおよび40Bの幅c1はb1よりも少し広く、即ちc1>b1>a1である。
 以下、具体的な実施例として、かかる電極体を備えた密閉型リチウム二次電池(ここではリチウムイオン電池)を構築し、正極アシスト層の性能評価を行った。なお、本発明をかかる具体例に示すものに限定することを意図したものではない。
 <実施例>
 正極活物質粉末としてのLiNi1/3Co1/3Mn1/3粉末と、導電材としてのアセチレンブラックと、バインダとしてのポリフッ化ビニリデン(PVdF)とを、これら材料の質量比率が91:6:3となり、且つ固形分濃度(NV)が凡そ50質量%となるようにN-メチルピロリドン(NMP)と混合し、正極合材層形成用のスラリー状組成物(正極合材スラリー)を調製した。この正極合材スラリーを、厚み凡そ15μmの長尺状アルミニウム箔(正極集電体)の片面に長手方向に沿って幅50mmで塗布し、正極合材層を形成した。
 次に、導電材としてのアセチレンブラック(AB)と、ポリフッ化ビニリデン(PVdF)とを、これらの材料の質量比率が90:10となり、且つ固形分濃度(NV)が凡そ50質量%となるようにN-メチルピロリドン(NMP)と混合し、正極アシスト層形成用のスラリー状組成物(正極アシストスラリー)を調製した。この正極アシストスラリーを、上記作製した正極集電体上の正極合材層の両側方に、幅4mmで長手方向に沿って塗布し、正極アシスト層を形成した。こうして得られた正極を乾燥およびプレスし、長尺方向に対して垂直に30mmの長さで切断し、シート状の正極(正極シート)を作製した。
 また、負極活物質としての天然黒鉛(粉末)とスチレンブタジエンゴム(SBR)と、カルボキシメチルセルロース(CMC)とを、これら材料の質量比が98:1:1であり、且つNVが45質量%となるようにイオン交換水と混合して、水系の負極合材層形成用スラリー状組成物(負極合材層用スラリー)を調製した。この負極合材層用スラリーを、厚み凡そ10μmの長尺状銅箔(負極集電体)の片面に長手方向に沿って幅54mmで塗布し、負極合材層を形成した。こうして得られた負極を乾燥およびプレスし、長尺方向に対して垂直に30mmの長さで切断し、シート状の負極(負極シート)を作製した。
 上記で作製した正極シート(寸法(mm)凡そ70×30)と負極シート(寸法(mm)凡そ70×30)とを、セパレータ(ここでは多孔質ポリエチレンシート(PE)を用いた。)を介して対面に配置し、電極体を作製した。この電極体を、過充電防止剤を含む電解質(ここでは、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを3:4:3の体積比で含む混合溶媒に、電解質としてのLiPFを凡そ1mol/Lの濃度で溶解し、さらに電解質100質量部に対して、過充電防止剤としてのシクロヘキシルベンゼン(CHB)を凡そ2質量部の濃度で含有させた電解質を用いた。)とともにラミネートシートに収容して、ラミネートシート型リチウム二次電池を作製した。
 <比較例>
 本例では、実施例と同じ組成、方法で正極集電体上に正極合材層を形成し、実施例でその後塗布した正極アシスト層は塗布せず、正極シートとした。即ち、正極シート上に正極アシスト層が形成されていないこと以外は実施例と同様に、ラミネートシート型リチウム二次電池を作製した。
 <電池セル内のガス発生量測定>
 実施例および比較例で作製したリチウム二次電池に、適当なコンディショニング処理(例えば、1/10Cの充電レートで3時間の定電流充電を行い、次いで1/3Cの充電レートで4.1Vまで定電流定電圧で充電する操作と、1/3Cの放電レートで3.0Vまで定電流放電させる操作とを2~3回繰り返す初期充放電処理)を行った後、アルキメデス法にてセルの体積を測定した。なお、アルキメデス法とは、測定対象物(本例では、ラミネート型のリチウム二次電池)を、媒液(例えば、蒸留水やアルコール等)に浸漬し、測定対象物が受ける浮力を測定することにより、該測定対象物の体積を求める方法である。
 その後、上記実施例と比較例のリチウム二次電池を、過充電状態(本例では、5.2V)まで1C(1Cは、1時間で満充放電可能な電流の値)の定電流で充電し、その後アルキメデス法にて再びセルの体積を測定した。そして、過充電後のセルの体積から、コンディショニング処理後のセルの体積を差し引いて、過充電時おけるガス発生量(ml)を算出した。この結果を、図4に示す。
 図4に示されるように、正極アシスト層を有しない比較例と比べ、正極アシスト層を有する実施例では凡そ2倍のガス(48ml)が発生した。本結果は、過充電防止剤が正極合材層表面だけでなく、正極アシスト層表面において好適に分解されたことに起因する効果と考えられる。このように、ここで開示されるリチウム二次電池では、過充電防止剤の添加量を変えたり正極合材層の組成比率を変えたりすることなく、過充電時におけるガスの発生量を増加させることができる。したがって、従来とは異なる手法で電流遮断機構の作動能を向上させ、過充電時におけるリチウム二次電池の耐性を高め得ることが確認できた。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
 本発明に係る密閉型リチウム二次電池は、電池性能に優れ(例えば高い電池容量や大電流出力が可能であり)、上記のとおり過充電時の耐性(信頼性)に優れることを特徴とする。したがって、かかる性質を利用して、特に自動車等の車両に搭載されるモーター用の動力源(駆動用電源)として好適に使用し得る。即ち、本発明によれば、図5に示すように、ここで開示される何れかの密閉型リチウム二次電池(複数の電池が接続された組電池の形態であり得る。)100を備える車両1(典型的には自動車、特にハイブリッド自動車、プラグインハイブリッド自動車、電気自動車等)が提供される。
1 自動車(車両)
10  正極シート(正極)
12  正極集電体
14  正極合材層
16  正極アシスト層
20  負極シート(負極)
22  負極集電体
24  負極合材層
30  電流遮断機構
32  変形金属板(第一部材)
34  接続金属板(第二部材)
38  絶縁ケース
40A、40B セパレータシート(セパレータ)
50  電池ケース
52  ケース本体
54  蓋体
70  正極端子
72  負極端子
74  正極集電板
76  負極集電板
80  捲回電極体
100 密閉型リチウム二次電池
 
 

Claims (7)

  1.  正極と負極を有する電極体と、
     前記電極体を電解質とともに収容する電池ケースと、
     前記電池ケースの内圧が上昇した時に作動する電流遮断機構と、
     を備えた密閉型リチウム二次電池であって;
     前記正極は、正極集電体および該集電体上に形成された正極活物質と導電材とバインダとを含む正極合材層を備えており、
     前記負極は、負極集電体および該集電体上に形成された負極活物質とバインダとを含む負極合材層を備えており、
     ここで前記正極集電体上には、前記正極合材層に隣接する部位の少なくとも一部において、実質的に正極活物質を含まず、導電材とバインダとからなる正極アシスト層が形成されており、
     ここで、前記電解質には、所定の電池電圧を超えた際にガスを発生させる過充電防止剤が含まれている、密閉型リチウム二次電池。
  2.  前記電極体は、
     長尺状の正極集電体上に、所定の幅の正極合材層が該集電体の長手方向に沿って形成されている長尺状の正極と、
     長尺状の負極集電体上に、前記正極合材層を超える幅の負極合材層が該集電体の長手方向に沿って形成されている長尺状の負極と、
    が積層され捲回されてなる捲回電極体であり、
     ここで、前記長尺状の正極において、前記正極合材層の前記長手方向に沿う少なくとも一方の側方に、前記正極アシスト層が該長手方向に沿って形成されている、請求項1に記載の密閉型リチウム二次電池。
  3.  長尺状の正極の幅方向における、前記正極合材層と前記正極アシスト層とを合算した幅が、前記負極合材層の幅を上回るように形成されている、請求項2に記載の密閉型リチウム二次電池。
  4.  前記正極合材層の密度が、2.0g/cm以上であることを特徴とする、請求項1から3のいずれか一項に記載の密閉型リチウム二次電池。
  5.  前記正極アシスト層に含まれる導電材の比表面積は100m/g以上である、請求項1から4のいずれか一項に記載の密閉型リチウム二次電池。
  6.  前記過充電防止剤として芳香族化合物のうち少なくとも一種類が含まれていることを特徴とする、請求項1から5のいずれか一項に記載の密閉型リチウム二次電池。
  7.  請求項1から6のいずれか一項に記載の密閉型リチウム二次電池を備える車両。
PCT/JP2012/075567 2011-10-06 2012-10-02 密閉型リチウム二次電池 WO2013051584A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280048930.3A CN103858265B (zh) 2011-10-06 2012-10-02 密闭型锂二次电池
KR1020147011344A KR101669344B1 (ko) 2011-10-06 2012-10-02 밀폐형 리튬 2차 전지
DE112012004170.4T DE112012004170B4 (de) 2011-10-06 2012-10-02 Hermetisch abgedichtete Lithiumsekundärbatterie
US14/348,910 US9431683B2 (en) 2011-10-06 2012-10-02 Hermetically sealed lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011222340A JP5822089B2 (ja) 2011-10-06 2011-10-06 密閉型リチウム二次電池
JP2011-222340 2011-10-06

Publications (1)

Publication Number Publication Date
WO2013051584A1 true WO2013051584A1 (ja) 2013-04-11

Family

ID=48043740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075567 WO2013051584A1 (ja) 2011-10-06 2012-10-02 密閉型リチウム二次電池

Country Status (6)

Country Link
US (1) US9431683B2 (ja)
JP (1) JP5822089B2 (ja)
KR (1) KR101669344B1 (ja)
CN (1) CN103858265B (ja)
DE (1) DE112012004170B4 (ja)
WO (1) WO2013051584A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015128052A (ja) * 2013-11-28 2015-07-09 株式会社Gsユアサ 蓄電素子
WO2016051907A1 (ja) * 2014-09-29 2016-04-07 日立オートモティブシステムズ株式会社 リチウムイオン二次電池
CN105684206A (zh) * 2013-10-31 2016-06-15 株式会社丰田自动织机 锂离子二次电池
CN108701816A (zh) * 2016-09-29 2018-10-23 株式会社Lg化学 包括天然石墨和人造石墨的多层负极以及包括该多层负极的锂二次电池
JP2020113487A (ja) * 2019-01-15 2020-07-27 トヨタ自動車株式会社 リチウムイオン二次電池
JP2020173942A (ja) * 2019-04-09 2020-10-22 トヨタ自動車株式会社 リチウムイオン電池

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101635300B1 (ko) 2012-02-16 2016-06-30 도요타지도샤가부시키가이샤 2차 전지의 제조 방법
JP5896218B2 (ja) 2012-02-23 2016-03-30 トヨタ自動車株式会社 密閉型非水電解質二次電池
JP6346178B2 (ja) * 2013-07-01 2018-06-20 三洋電機株式会社 非水電解質二次電池
JP6086249B2 (ja) * 2014-03-26 2017-03-01 トヨタ自動車株式会社 非水電解質二次電池
JP5963012B2 (ja) 2014-04-21 2016-08-03 トヨタ自動車株式会社 非水電解質二次電池
DE102015224921A1 (de) * 2015-12-10 2017-06-14 Volkswagen Aktiengesellschaft Lithiumionenzelle für einen Energiespeicher, Lithiumionenakkumulator
US11026315B2 (en) * 2017-08-22 2021-06-01 Signify Holding B.V. Device, system, and method for determining occupancy for automated lighting operations
CN109524612A (zh) * 2017-09-20 2019-03-26 宁德时代新能源科技股份有限公司 二次电池
KR102264906B1 (ko) * 2017-11-23 2021-06-14 주식회사 엘지에너지솔루션 안전성이 개선된 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
JP7022316B2 (ja) * 2018-02-05 2022-02-18 トヨタ自動車株式会社 密閉型電池
WO2019216267A1 (ja) * 2018-05-07 2019-11-14 本田技研工業株式会社 非水電解質二次電池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319436A (ja) * 2001-04-23 2002-10-31 Toyota Motor Corp 非水電解液電池
JP2005011540A (ja) * 2003-06-16 2005-01-13 Toshiba Corp 非水電解液二次電池
JP2005251445A (ja) * 2004-03-02 2005-09-15 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2005332650A (ja) * 2004-05-19 2005-12-02 Matsushita Electric Ind Co Ltd 非水電解質リチウム二次電池
JP2008226807A (ja) * 2007-02-14 2008-09-25 Nissan Motor Co Ltd 非水電解質二次電池
JP2008277106A (ja) * 2007-04-27 2008-11-13 Gs Yuasa Corporation:Kk 非水電解質電池及び電池システム
JP2010527134A (ja) * 2007-05-15 2010-08-05 エルジー・ケム・リミテッド 非水電解液添加剤及びこれを用いる二次電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4366783B2 (ja) * 1998-11-16 2009-11-18 株式会社デンソー 積層型電池及びその電極の製造方法
US6261722B1 (en) 1999-07-28 2001-07-17 Sankar Dasgupta Lithium battery having improved current collecting means
KR101094115B1 (ko) 2003-12-15 2011-12-15 미쓰비시 쥬시 가부시끼가이샤 비수계 전해질 이차 전지
US7148192B2 (en) * 2004-01-29 2006-12-12 Ebwe Pharma Ges. M.H. Nfg.Kg Neuroprotective dietary supplement
JP4499680B2 (ja) 2005-03-30 2010-07-07 三星エスディアイ株式会社 円筒形リチウムイオン二次電池
ATE535951T1 (de) 2006-06-27 2011-12-15 Boston Power Inc Integrierte stromunterbrechungsvorrichtung für lithiumionen-zellen
JP2008243659A (ja) 2007-03-28 2008-10-09 Sanyo Electric Co Ltd 非水電解質電池
JP4711151B2 (ja) * 2008-11-13 2011-06-29 トヨタ自動車株式会社 正極集電体およびその製造方法
JP5488899B2 (ja) 2010-03-15 2014-05-14 トヨタ自動車株式会社 リチウム二次電池
US20140023919A1 (en) * 2012-07-17 2014-01-23 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319436A (ja) * 2001-04-23 2002-10-31 Toyota Motor Corp 非水電解液電池
JP2005011540A (ja) * 2003-06-16 2005-01-13 Toshiba Corp 非水電解液二次電池
JP2005251445A (ja) * 2004-03-02 2005-09-15 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2005332650A (ja) * 2004-05-19 2005-12-02 Matsushita Electric Ind Co Ltd 非水電解質リチウム二次電池
JP2008226807A (ja) * 2007-02-14 2008-09-25 Nissan Motor Co Ltd 非水電解質二次電池
JP2008277106A (ja) * 2007-04-27 2008-11-13 Gs Yuasa Corporation:Kk 非水電解質電池及び電池システム
JP2010527134A (ja) * 2007-05-15 2010-08-05 エルジー・ケム・リミテッド 非水電解液添加剤及びこれを用いる二次電池

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105684206A (zh) * 2013-10-31 2016-06-15 株式会社丰田自动织机 锂离子二次电池
JP2015128052A (ja) * 2013-11-28 2015-07-09 株式会社Gsユアサ 蓄電素子
WO2016051907A1 (ja) * 2014-09-29 2016-04-07 日立オートモティブシステムズ株式会社 リチウムイオン二次電池
JPWO2016051907A1 (ja) * 2014-09-29 2017-05-25 日立オートモティブシステムズ株式会社 リチウムイオン二次電池
CN108701816A (zh) * 2016-09-29 2018-10-23 株式会社Lg化学 包括天然石墨和人造石墨的多层负极以及包括该多层负极的锂二次电池
CN108701816B (zh) * 2016-09-29 2021-11-12 株式会社Lg化学 包括天然石墨和人造石墨的多层负极以及包括该多层负极的锂二次电池
JP2020113487A (ja) * 2019-01-15 2020-07-27 トヨタ自動車株式会社 リチウムイオン二次電池
JP2020173942A (ja) * 2019-04-09 2020-10-22 トヨタ自動車株式会社 リチウムイオン電池
JP7085148B2 (ja) 2019-04-09 2022-06-16 トヨタ自動車株式会社 リチウムイオン電池

Also Published As

Publication number Publication date
CN103858265B (zh) 2016-09-07
KR101669344B1 (ko) 2016-10-25
US9431683B2 (en) 2016-08-30
DE112012004170T5 (de) 2014-06-26
JP2013084400A (ja) 2013-05-09
DE112012004170B4 (de) 2019-12-19
KR20140071460A (ko) 2014-06-11
JP5822089B2 (ja) 2015-11-24
US20140242430A1 (en) 2014-08-28
CN103858265A (zh) 2014-06-11

Similar Documents

Publication Publication Date Title
WO2013051584A1 (ja) 密閉型リチウム二次電池
KR101945639B1 (ko) 비수 전해질 이차 전지
JP5963022B2 (ja) 非水電解質二次電池およびその製造方法
WO2009157507A1 (ja) リチウムイオン二次電池
JP5818116B2 (ja) 密閉型リチウム二次電池とその製造方法
JP2013235653A (ja) 密閉型非水電解質二次電池
JP5930331B2 (ja) 非水電解質二次電池の製造方法
JP6016018B2 (ja) 非水電解液二次電池
JP5963012B2 (ja) 非水電解質二次電池
JP2014036010A (ja) 非水電解液二次電池
JP5962956B2 (ja) リチウム二次電池
JP5704409B2 (ja) 密閉型リチウム二次電池
JP5835617B2 (ja) 密閉型リチウム二次電池
JP2013182778A (ja) 密閉型非水電解質二次電池
JP2017054739A (ja) 二次電池
JP5618156B2 (ja) 密閉型リチウム二次電池の製造方法
JP2013239375A (ja) リチウムイオン二次電池およびその製造方法
JP5839233B2 (ja) 非水電解質二次電池
WO2014115403A1 (ja) 非水電解液二次電池及びその製造方法
JP2016192338A (ja) 非水電解質二次電池
CN112447941B (zh) 非水电解质二次电池
KR102080291B1 (ko) 방열 보조부가 형성되어 있는 팩 케이스를 포함하고 있는 전지팩
JP2013157219A (ja) 非水電解質二次電池
JP2013239374A (ja) リチウムイオン二次電池およびその製造方法
JP7096978B2 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838662

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14348910

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120041704

Country of ref document: DE

Ref document number: 112012004170

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20147011344

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12838662

Country of ref document: EP

Kind code of ref document: A1