WO2014115403A1 - 非水電解液二次電池及びその製造方法 - Google Patents

非水電解液二次電池及びその製造方法 Download PDF

Info

Publication number
WO2014115403A1
WO2014115403A1 PCT/JP2013/080684 JP2013080684W WO2014115403A1 WO 2014115403 A1 WO2014115403 A1 WO 2014115403A1 JP 2013080684 W JP2013080684 W JP 2013080684W WO 2014115403 A1 WO2014115403 A1 WO 2014115403A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
secondary battery
battery
negative electrode
battery case
Prior art date
Application number
PCT/JP2013/080684
Other languages
English (en)
French (fr)
Inventor
三橋 利彦
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201380070823.5A priority Critical patent/CN104919640B/zh
Priority to US14/761,487 priority patent/US10177408B2/en
Publication of WO2014115403A1 publication Critical patent/WO2014115403A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery and a method for manufacturing the same.
  • Lithium ion secondary batteries and other non-aqueous electrolyte secondary batteries are becoming increasingly important as on-vehicle power supplies or personal computers and portable terminals.
  • a lithium ion secondary battery that is lightweight and obtains a high energy density is preferable as a high-output power source mounted on a vehicle.
  • a part of the non-aqueous electrolyte is decomposed during charging, and the decomposition product is formed on the surface of the negative electrode active material (for example, natural graphite particles).
  • a film that is, a SEI (Solid Electrolyte Interface) film may be formed.
  • the SEI film plays a role of protecting the negative electrode active material, but is formed by consuming charge carriers (for example, lithium ions) in the non-aqueous electrolyte. That is, since the charge carriers are fixed in the SEI film, the charge carriers can no longer contribute to the battery capacity. For this reason, if the amount of the SEI film is large, it becomes a factor of reducing the capacity retention rate (decreasing cycle characteristics).
  • Patent Document 1 describes a non-aqueous electrolyte solution for a secondary battery containing a compound having an oxalato complex as an anion (hereinafter referred to as “oxalato complex compound”).
  • a stable film can be formed on the surface of the negative electrode active material by decomposing the oxalato complex compound during initial charge / discharge.
  • the higher the concentration of the oxalato complex compound contained in the non-aqueous electrolyte solution the more likely the film of the preferred embodiment is formed on the surface of the negative electrode active material.
  • carbon monoxide (CO) and carbon dioxide (CO 2 ) are mainly generated based on the reductive decomposition of the oxalato complex compound.
  • the internal pressure of the battery case can increase. If the internal pressure of the battery case becomes too large, the volume in the non-aqueous electrolyte secondary battery increases and the battery case may expand in the thickness direction. Thus, if the battery case expands in the thickness direction, it becomes difficult to constrain a plurality of nonaqueous electrolyte secondary batteries (unit cells) to construct a battery pack having a predetermined shape.
  • the present invention has been created to solve the above-described conventional problems, and its purpose is to maintain a predetermined shape (that is, a predetermined thickness) of the battery case by suppressing an increase in the internal pressure of the battery case. And providing a non-aqueous electrolyte secondary battery having a coating of a preferred embodiment on the surface of the negative electrode active material and a method for producing the same.
  • an electrode body having a positive electrode containing a positive electrode active material and a negative electrode containing a negative electrode active material, a non-aqueous electrolyte, and a battery case containing the electrode body and the non-aqueous electrolyte
  • a method of manufacturing a non-aqueous electrolyte secondary battery that is, the non-aqueous electrolyte secondary battery manufacturing method disclosed herein prepares a positive electrode containing a positive electrode active material and a negative electrode containing a negative electrode active material, and produces an electrode body using the prepared positive electrode and negative electrode.
  • the electrode body is accommodated in a battery case, and an oxalato complex compound containing at least one of phosphorus and boron as a constituent element, and copper chloride that can adsorb at least carbon monoxide (molecules) and carbon dioxide (molecules)
  • a non-aqueous electrolyte containing a complex having I) as a constituent element hereinafter referred to as a “copper chloride (I) complex”
  • I copper chloride
  • non-aqueous electrolyte secondary battery includes a non-aqueous electrolyte (typically, an electrolyte containing a supporting salt (supporting electrolyte) in a non-aqueous solvent (organic solvent)).
  • Battery typically, an electrolyte containing a supporting salt (supporting electrolyte) in a non-aqueous solvent (organic solvent)).
  • secondary battery refers to a battery that can be repeatedly charged and discharged, and is a term that includes a so-called chemical battery such as a lithium ion secondary battery and a physical battery such as an electric double layer capacitor.
  • At least one of phosphorus and boron contained in the non-aqueous electrolyte is configured by subjecting the assembly to a predetermined charging process.
  • the oxalato complex compound contained as an element is decomposed, and a film based on the oxalato complex compound is formed on the surface of the negative electrode active material.
  • a non-aqueous electrolyte secondary battery having such a coating exhibits excellent battery characteristics (low reaction resistance and high capacity retention rate).
  • CO and CO 2 are mainly generated by the decomposition of the oxalato complex compound, and CO and CO 2 are diffused into the battery case.
  • the copper (I) chloride complex is contained in the nonaqueous electrolytic solution, CO and CO 2 are absorbed (adsorbed) by the copper chloride (I) complex. Thereby, the raise of the internal pressure of a battery case can be suppressed. For this reason, the deformation of the battery case shape (particularly the shape in the thickness direction) accompanying the generation of gas is prevented, and the non-aqueous electrolyte solution 2 can stably build the assembled battery with a preset binding force.
  • a secondary battery can be manufactured.
  • the process of extracting the gas (typically CO or CO 2 ) based on the decomposition of the oxalato complex compound from the battery case becomes unnecessary.
  • a copper (I) chloride-pyridine complex is used as the complex containing copper (I) chloride as a constituent element.
  • the copper (I) chloride-pyridine complex is particularly excellent in absorption (adsorption) of CO and CO 2 .
  • Patent Document 2 describes a laminated battery (lithium ion battery) in which a gas adsorbent is disposed on the inner surface of a corner portion of a storage unit that accommodates an electrode group, but the gas adsorbent is outside the electrode group. Which is different from the configuration of the present invention described above.
  • the non-aqueous electrolyte further includes a gas generating agent capable of decomposing and generating gas when exceeding a predetermined battery voltage
  • the battery case includes: A current interrupt mechanism is provided that operates when the pressure in the battery case increases with the generation of the gas.
  • the gas generating agent is decomposed and gas is generated. The generated gas increases the internal pressure in the battery case.
  • the current interruption mechanism is activated.
  • the concentration of the complex in the nonaqueous electrolytic solution is at least 16 mol / L per 1 mol / L of the oxalato complex compound. According to this configuration, the copper (I) chloride complex can more effectively adsorb CO and CO 2 generated by reductive decomposition of the oxalato complex compound.
  • the concentration of the oxalato complex compound in the non-aqueous electrolyte is 0.02 mol / L to 0.04 mol / L. According to this configuration, it is possible to produce a nonaqueous electrolyte secondary battery with reduced reaction resistance and an excellent capacity retention rate.
  • LiPF 2 (C 2 O 4 ) 2 is used as the oxalato complex compound. According to such a configuration, it is possible to form a film of a preferred embodiment on the surface of the negative electrode active material.
  • the non-aqueous electrolyte secondary battery disclosed herein includes an electrode body having a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material, a non-aqueous electrolyte, the electrode body, and the non-aqueous electrolyte.
  • the non-aqueous electrolyte contains a complex containing copper (I) chloride capable of adsorbing (absorbing) at least carbon monoxide and carbon dioxide.
  • a film containing at least one of phosphorus and boron is formed on the surface of the negative electrode active material.
  • a film containing at least one of phosphorus and boron is formed on the surface of the negative electrode active material, and the non-aqueous electrolyte is composed of a copper (I) chloride complex.
  • CO or CO 2 generated when a film containing at least one of phosphorus and boron is formed on the surface of the negative electrode active material is adsorbed to the copper (I) chloride complex in the nonaqueous electrolytic solution. . Thereby, the raise of the internal pressure of a battery case is suppressed.
  • the non-aqueous electrolyte can stably build the assembled battery with a preset binding force It can be a secondary battery.
  • a film containing at least one of phosphorus and boron is formed on the surface of the negative electrode active material in a preferable embodiment, such a nonaqueous electrolyte secondary battery exhibits excellent battery characteristics.
  • the complex having copper (I) chloride as a constituent element is a copper (I) chloride-pyridine complex.
  • the copper (I) chloride-pyridine complex is particularly excellent in absorption (adsorption) of CO and CO 2 .
  • the non-aqueous electrolyte further includes a gas generating agent capable of decomposing and generating gas when exceeding a predetermined battery voltage
  • the battery case includes a current interrupt mechanism that operates when the pressure in the battery case increases as the gas is generated.
  • CO and / or CO 2 is adsorbed on the copper chloride (I) complex.
  • the present invention provides, as another aspect, a structure for constructing the nonaqueous electrolyte secondary battery disclosed herein, that is, an electrode body having a positive electrode and a negative electrode, a nonaqueous electrolyte, and the above electrode body And a battery case containing the non-aqueous electrolyte solution, and a non-aqueous electrolyte secondary battery assembly before initial charging.
  • the non-aqueous electrolyte includes oxalate complex compounds containing at least one of phosphorus and boron as constituent elements, and copper (I) chloride capable of adsorbing at least carbon monoxide and carbon dioxide as constituent elements. And a complex.
  • a copper (I) chloride complex is contained in the non-aqueous electrolyte. Therefore, when the assembly is initially charged to a predetermined charging voltage, the gas (typically CO or CO 2 ) generated by reductive decomposition of the oxalato complex compound is adsorbed on the copper chloride (I) complex. Is done.
  • This is a nonaqueous electrolyte secondary battery in which the increase in the internal pressure of the battery case is suppressed, and a nonaqueous electrolysis in which a coating of a preferred embodiment is formed on the surface of the negative electrode active material based on the reductive decomposition of the oxalato complex compound
  • a liquid secondary battery can be obtained.
  • the complex having copper (I) chloride as a constituent element is a copper (I) chloride-pyridine complex.
  • the copper (I) chloride-pyridine complex is particularly excellent in absorption (adsorption) of CO and CO 2 .
  • the non-aqueous electrolyte further includes a gas generating agent capable of decomposing and generating gas when a predetermined battery voltage is exceeded
  • the battery case includes: A current interrupt mechanism is provided that operates when the pressure in the battery case increases with the generation of the gas.
  • the gas generating agent is decomposed to generate gas.
  • the generated gas increases the internal pressure in the battery case.
  • the current interruption mechanism is activated.
  • CO or CO 2 adsorbed on the copper chloride (I) complex is released from the copper chloride (I) complex into the battery case.
  • the concentration of the complex in the non-aqueous electrolyte is at least 16 mol / L per 1 mol / L of the oxalato complex compound. According to such a configuration, there are many copper (I) chloride complexes in the nonaqueous electrolytic solution. For this reason, CO and CO 2 generated during the initial charge are almost adsorbed by the copper (I) chloride complex.
  • the concentration of the oxalato complex compound in the non-aqueous electrolyte is 0.02 mol / L to 0.04 mol / L.
  • the oxalato complex compound is LiPF 2 (C 2 O 4 ) 2.
  • the surface of the negative electrode active material In addition, a non-aqueous electrolyte secondary battery in which a film of a preferred embodiment is formed can be obtained.
  • any non-aqueous electrolyte secondary battery disclosed herein or a non-aqueous electrolyte secondary battery obtained by any of the manufacturing methods disclosed herein. Then, since the coating of a preferred embodiment is formed on the surface of the negative electrode active material, the battery performance is excellent, and the increase in the internal pressure of the battery case is suppressed, so that the non-aqueous solution in which the predetermined shape of the battery case is maintained. It can be an electrolyte secondary battery. Therefore, a plurality of (for example, 40 to 80 nonaqueous electrolyte secondary batteries obtained by any of the nonaqueous electrolyte secondary batteries disclosed herein or any of the manufacturing methods disclosed herein are provided. ) Are connected by a predetermined binding force (typically connected in series). It can also be used as a drive power source for vehicles (typically automobiles, particularly automobiles equipped with electric motors such as hybrid cars, electric cars, and fuel cell cars).
  • vehicles typically automobiles, particularly automobiles equipped with electric motors such as hybrid cars, electric cars, and
  • FIG. 1 is a perspective view schematically showing the outer shape of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a flowchart for explaining a method of manufacturing a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • FIG. 4 is a perspective view schematically showing an assembled battery in which a plurality of nonaqueous electrolyte secondary batteries according to an embodiment of the present invention are combined.
  • FIG. 5 is a side view schematically showing a vehicle (automobile) provided with the nonaqueous electrolyte secondary battery according to the present invention.
  • FIG. 1 is a perspective view schematically showing the outer shape of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a flowchart for
  • FIG. 6 is a graph showing the relationship between the copper (I) chloride-pyridine complex concentration and the amount of gas generated.
  • FIG. 7 is a graph showing the relationship between the LiPF 2 (C 2 O 4 ) 2 concentration and the reaction resistance.
  • FIG. 8 is a graph showing the relationship between the LiPF 2 (C 2 O 4 ) 2 concentration and the capacity retention rate.
  • FIG. 9 is a graph showing changes in the battery case internal pressure during overcharging.
  • a method for producing a lithium ion secondary battery will be described in detail as an example. Is not intended to be limited to such types of secondary batteries.
  • the present invention can also be applied to a non-aqueous electrolyte secondary battery using other metal ions (for example, magnesium ions) as a charge carrier.
  • the manufacturing method of the lithium ion secondary battery (non-aqueous electrolyte secondary battery) disclosed herein includes a positive / negative electrode preparation step (S10), an electrode body preparation step (S20), A three-dimensional production process (S30) and an initial charging process (S40) are included.
  • the positive and negative electrode preparation step (S10) will be described.
  • a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material are prepared.
  • the method further includes preparing a separator disposed between the positive electrode and the negative electrode.
  • the negative electrode of the lithium ion secondary battery disclosed herein includes a negative electrode current collector and a negative electrode mixture layer including at least a negative electrode active material formed on the surface of the negative electrode current collector.
  • the negative electrode mixture layer can contain optional components such as a binder and a thickener as needed in addition to the negative electrode active material.
  • a conductive member made of a metal having good conductivity is preferably used, like the current collector used in the negative electrode of a conventional lithium ion secondary battery.
  • copper, nickel, or an alloy mainly composed of them can be used.
  • the shape of the negative electrode current collector can vary depending on the shape or the like of the lithium ion secondary battery, and is not particularly limited, and may be various forms such as a foil shape, a sheet shape, a rod shape, and a plate shape.
  • a particulate (or spherical, scale-like) carbon material including a graphite structure (layered structure) at least partially, a lithium transition metal composite oxide (for example, a lithium titanium composite oxide such as Li 4 Ti 5 O 12 ), Lithium transition metal composite nitride, etc.
  • the carbon material include natural graphite, artificial graphite (artificial graphite), non-graphitizable carbon (hard carbon), graphitizable carbon (soft carbon), and the like.
  • the average particle diameter of the negative electrode active material is, for example, in the range of about 1 ⁇ m to 50 ⁇ m (usually 5 ⁇ m to 30 ⁇ m), which is based on various commercially available laser diffraction / scattering methods.
  • the median diameter (D50: 50% volume average particle diameter) that can be derived from the particle size distribution measured based on the particle size distribution measuring device.
  • a negative electrode active material at least partially coated with an amorphous carbon film can be obtained by mixing a negative electrode active material with a pitch and baking it.
  • binder those similar to the binder used for the negative electrode of a general lithium ion secondary battery can be appropriately employed.
  • a water-soluble polymer material or a water-dispersible polymer material can be preferably used.
  • the water dispersible polymer include rubbers such as styrene butadiene rubber (SBR); polyethylene oxide (PEO), vinyl acetate copolymer and the like. Styrene butadiene rubber is preferably used.
  • “Aqueous paste-like composition” is a concept indicating a composition using water or a mixed solvent mainly composed of water as a dispersion medium of the negative electrode active material.
  • a solvent other than water constituting such a mixed solvent one or more organic solvents (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water can be appropriately selected and used.
  • a water-soluble or water-dispersible polymer can be used as the thickener.
  • the water-soluble polymer include cellulose polymers such as carboxymethylcellulose (CMC), methylcellulose (MC), cellulose acetate phthalate (CAP), and hydroxypropylmethylcellulose (HPMC); polyvinyl alcohol (PVA); .
  • CMC carboxymethylcellulose
  • MC methylcellulose
  • CAP cellulose acetate phthalate
  • HPMC hydroxypropylmethylcellulose
  • PVA polyvinyl alcohol
  • the same materials as those mentioned as the binder can be appropriately employed.
  • the negative electrode disclosed here can be suitably manufactured, for example, generally by the following procedure.
  • a paste-like composition for forming a negative electrode mixture layer is prepared by dispersing the above-described negative electrode active material and other optional components (binder, thickener, etc.) in an appropriate solvent (for example, water).
  • a negative electrode comprising a negative electrode current collector and a negative electrode mixture layer formed on the negative electrode current collector by applying the prepared composition to the negative electrode current collector, drying, and then compressing (pressing) the negative electrode current collector. Can be produced.
  • the positive electrode of the lithium ion secondary battery disclosed herein includes a positive electrode current collector and a positive electrode mixture layer including at least a positive electrode active material formed on the surface of the positive electrode current collector.
  • the positive electrode mixture layer may contain an optional component such as a conductive material and a binder (binder) in addition to the positive electrode active material.
  • the positive electrode current collector aluminum or an aluminum alloy mainly composed of aluminum is used as in the case of the positive electrode current collector used for the positive electrode of a conventional lithium ion secondary battery.
  • the shape of the positive electrode current collector can be the same as the shape of the negative electrode current collector.
  • the positive electrode active material examples include materials capable of inserting and extracting lithium ions, and include lithium-containing compounds (for example, lithium transition metal composite oxides) containing a lithium element and one or more transition metal elements.
  • lithium-containing compounds for example, lithium transition metal composite oxides
  • lithium nickel composite oxide for example, LiNiO 2
  • lithium cobalt composite oxide for example, LiCoO 2
  • lithium manganese composite oxide for example, LiMn 2 O 4
  • lithium nickel cobalt manganese composite oxide for example, LiNi 1).
  • LiNi 1.1 lithium nickel composite oxide
  • LiCoO 2 lithium manganese composite oxide
  • LiMn 2 O 4 lithium manganese composite oxide
  • a polyanionic compound for example, LiFePO 4 whose general formula is represented by LiMPO 4, LiMVO 4, or Li 2 MSiO 4 (wherein M is at least one element of Co, Ni, Mn, and Fe), etc. 4 , LiMnPO 4 , LiFeVO 4 , LiMnVO 4 , Li 2 FeSiO 4 , Li 2 MnSiO 4 , Li 2 CoSiO 4 ) may be used as the positive electrode active material.
  • the conductive material is not limited to a specific conductive material as long as it is conventionally used in this type of lithium ion secondary battery.
  • carbon materials such as carbon powder and carbon fiber can be used.
  • the carbon powder various carbon blacks (for example, acetylene black, furnace black, ketjen black, etc.), carbon powders such as graphite powder can be used.
  • acetylene black (AB) is a preferable carbon powder.
  • Such conductive materials can be used singly or in appropriate combination of two or more.
  • the same binder as that used for the positive electrode of a general lithium ion secondary battery can be appropriately employed.
  • a solvent-based paste-like composition a paste-like composition includes a slurry-like composition and an ink-like composition
  • a polyfluoride is used as the composition for forming the positive electrode mixture layer.
  • Polymer materials that dissolve in an organic solvent (non-aqueous solvent) such as vinylidene chloride (PVDF) and polyvinylidene chloride (PVDC) can be used.
  • PVDF vinylidene chloride
  • PVDC polyvinylidene chloride
  • a water-soluble (soluble in water) polymer material or a water-dispersible (water-dispersible) polymer material can be preferably used.
  • polytetrafluoroethylene PTFE
  • CMC carboxymethyl cellulose
  • SBR styrene butadiene rubber
  • the polymer material illustrated above may be used as a thickener or other additives in the above composition in addition to being used as a binder.
  • the “solvent-based paste composition” is a concept indicating a composition in which the dispersion medium of the positive electrode active material is mainly an organic solvent (non-aqueous solvent).
  • organic solvent for example, N-methyl-2-pyrrolidone (NMP) can be used.
  • the positive electrode disclosed herein can be suitably manufactured, for example, generally by the following procedure.
  • a paste-like composition for forming a positive electrode mixture layer is prepared by dispersing, in an organic solvent, the above-described positive electrode active material, conductive material, and a binder that is soluble in an organic solvent.
  • a positive electrode comprising a positive electrode current collector and a positive electrode mixture layer formed on the positive electrode current collector by applying the prepared composition to the positive electrode current collector, drying, and then compressing (pressing) the positive electrode current collector. can be produced.
  • a conventionally known separator can be used without any particular limitation.
  • a porous sheet made of resin a microporous resin sheet
  • a porous polyolefin resin sheet such as polyethylene (PE) or polypropylene (PP) is preferred.
  • PE polyethylene
  • PP polypropylene
  • a sheet of (PP / PE / PP structure) or the like can be preferably used.
  • Electrode body manufacturing step an electrode body is manufactured using the prepared positive electrode and negative electrode.
  • an electrode body is produced using the prepared positive electrode, negative electrode and separator.
  • An electrode body (for example, a stacked electrode body or a wound electrode body) of a lithium ion secondary battery disclosed herein includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode. Yes.
  • the positive electrode formed in a sheet shape, the negative electrode formed in a sheet shape, and a wound electrode body (wound electrode body) including the separator will be described as an example. It is not intended to be limiting.
  • FIG. 2 shows a wound electrode body 50 according to the present embodiment.
  • the wound electrode body 50 is wound in the longitudinal direction in a state where a sheet-like positive electrode 64 and a sheet-like negative electrode 84 are laminated with a total of two long separators 90 interposed therebetween. Then, the flat wound electrode body 50 is produced by crushing the obtained wound body from the side direction and causing it to be ablated.
  • the positive electrode mixture layer non-formed portion of the positive electrode 64 that is, the portion where the positive electrode current collector 62 is exposed without the formation of the positive electrode mixture layer 66
  • the negative electrode mixture layer of the negative electrode 84 are not formed.
  • the positive electrode 64 and the negative electrode 84 are arranged in the width direction so that the formation portion (that is, the portion where the negative electrode current collector 82 is not formed without forming the negative electrode mixture layer 86) 83 protrudes from both sides in the width direction of the separator 90. Slightly shift and overlap.
  • the electrode mixture layer non-formed portions 63 and 83 of the positive electrode 64 and the negative electrode 84 are respectively wound core portions (that is, the positive electrode mixture layer 66 of the positive electrode 64 and The negative electrode composite material layer 86 of the negative electrode 84 and the two separators 90 are closely wound around).
  • a positive electrode terminal 60 (for example, made of aluminum) is joined to the positive electrode mixture layer non-formed portion 63 via a positive electrode current collector plate 61, and the positive electrode 64 and the positive electrode terminal 60 of the wound electrode body 50 formed in the above-described flat shape. And electrically connect.
  • the negative electrode terminal 80 (for example, made of nickel) is joined to the negative electrode mixture layer non-formed portion 83 via the negative electrode current collector plate 81, and the negative electrode 84 and the negative electrode terminal 80 are electrically connected.
  • the positive and negative electrode terminals 60 and 80 and the positive and negative electrode current collectors 62 and 82 can be joined by, for example, ultrasonic welding, resistance welding, or the like.
  • the battery case 15 of the present embodiment is a battery case made of metal (for example, made of aluminum, and also preferably made of resin or laminate film), and the upper end is open.
  • a case body (exterior case) 30 having a flat bottomed box shape (typically a rectangular parallelepiped shape) and a lid body 25 that closes the opening 20 of the case body 30 are provided.
  • the lid body 25 is formed with an inlet 45 for injecting a non-aqueous electrolyte described later into the case body 30 (battery case 15) in which the wound electrode body 50 is accommodated.
  • the injection port 45 is sealed with a sealing plug 48 after the nonaqueous electrolyte is injected.
  • the lid 25 is provided with a safety valve 40 for discharging the gas generated inside the battery case 15 to the outside of the battery case 15 when the battery is abnormal. ing.
  • the wound electrode body 50 is placed in a case in a posture in which the wound axis of the wound electrode body 50 is laid down (that is, the opening 20 is formed in the normal direction of the wound axis of the wound electrode body 50). Housed in the main body 30. Thereafter, the opening portion 20 of the case body 30 is sealed with the lid body 25, thereby producing the assembly 70.
  • the lid 25 and the case body 30 are joined by welding or the like.
  • a current interruption mechanism (CID) 31 that operates when the pressure in the battery case 15 increases.
  • the current interruption mechanism 31 only needs to be configured to cut a conductive path (for example, a charging path) from at least one of the electrode terminals to the electrode body 50 when the internal pressure of the battery case 15 increases, and has a specific shape. It is not limited to.
  • the current interruption mechanism 31 is provided between the positive electrode terminal 60 fixed to the lid body 25 and the electrode body 50, and when the internal pressure of the battery case 15 rises, the electrode body 50 extends from the positive electrode terminal 60. It is configured to cut the conductive path leading to.
  • the current interrupt mechanism 31 may include a first member 32 and a second member 34, for example.
  • the first member 32 is a deformed metal plate
  • the second member 34 is a connection metal plate joined to the deformed metal plate 32.
  • the deformed metal plate (first member) 32 has an arch shape in which a central portion is curved downward, and a peripheral portion thereof is connected to the lower surface of the positive electrode terminal 60 via a current collecting lead terminal 35. Further, the tip of the curved portion 33 of the deformed metal plate 32 is joined to the upper surface of the connection metal plate 34.
  • a positive electrode current collector plate 61 is joined to the lower surface (back surface) of the connection metal plate 34, and the positive electrode current collector plate 61 is connected to the positive electrode 64 (positive electrode current collector 62) of the electrode body 50. In this way, a conductive path from the positive electrode terminal 60 to the electrode body 50 is formed.
  • the current interrupt mechanism 31 includes an insulating case 38 made of plastic or the like.
  • the insulating case 38 is provided so as to surround the deformed metal plate 32 and hermetically seals the upper surface of the deformed metal plate 32.
  • the internal pressure of the battery case 15 does not act on the upper surface of the hermetically sealed curved portion 33.
  • the insulating case 38 has an opening into which the curved portion 33 of the deformed metal plate 32 is inserted, and the lower surface of the curved portion 33 is exposed from the opening to the inside of the battery case 15.
  • the internal pressure of the battery case 15 acts on the lower surface of the curved portion 33 exposed inside the battery case 15.
  • the current interrupt mechanism 31 having such a configuration, when the internal pressure of the battery case 15 increases, the internal pressure acts on the lower surface of the curved portion 33 of the deformed metal plate 32, and the curved portion 33 curved downward is pushed upward.
  • the upward push of the curved portion 33 increases as the internal pressure of the battery case 15 increases.
  • the curved portion 33 is inverted so as to bend upside down and bend upward. Due to the deformation of the curved portion 33, the joint point 36 between the deformed metal plate 32 and the connection metal plate 34 is cut. As a result, the conductive path from the positive electrode terminal 60 to the electrode body 50 is cut, and the overcharge current is cut off.
  • the current interrupt mechanism 31 is not limited to the mechanical cutting accompanied by the deformation of the deformed metal plate 32 described above.
  • the internal pressure of the battery case 50 is detected by a sensor, and the internal pressure detected by the sensor sets the set pressure.
  • An external circuit that cuts off the charging current when exceeded can be provided as a current cut-off mechanism.
  • the non-aqueous electrolyte disclosed herein includes an oxalate complex compound (hereinafter referred to as “BP-oxalato compound”) containing at least one of phosphorus and boron as an additive, and at least carbon monoxide and carbon dioxide. It contains at least a complex containing copper (I) chloride capable of adsorbing carbon (for example, copper (I) chloride-pyridine complex) and a nonaqueous solvent (organic solvent). Typically, in addition to these, a nonaqueous electrolytic solution that further contains a lithium compound (supporting salt) that can be dissolved in a nonaqueous solvent to supply lithium ions is used.
  • the nonaqueous electrolytic solution disclosed herein preferably further includes a gas generating agent that can be decomposed to generate gas when a predetermined battery voltage is exceeded.
  • the BP-oxalato compound disclosed here is an oxalato complex having a structural portion in which at least one oxalate ion (C 2 O 4 2 ⁇ ) is coordinated to phosphorus (P) or boron (B).
  • the BP-oxalato compound one produced by a known method or one obtained by purchasing a commercially available product is not particularly limited, and one or two or more kinds can be used.
  • a phosphorus-containing oxalato complex compound represented by the following formula (I) is exemplified.
  • a boron-containing oxalato complex compound represented by the following formula (II) is exemplified.
  • a + in formulas (I) and (II) may be either an inorganic cation or an organic cation.
  • the inorganic cation include alkali metal cations such as Li, Na, and K; alkaline earth metal cations such as Be, Mg, and Ca; other, Ag, Zn, Cu, Co, Fe, Ni, Mn, And metal cations such as Ti, Pb, Cr, V, Ru, Y, lanthanoids and actinoids; protons; and the like.
  • organic cations include tetraalkylammonium ions such as tetrabutylammonium ion, tetraethylammonium ion and tetramethylammonium ion; trialkylammonium ions such as triethylmethylammonium ion and triethylammonium ion; other pyridinium ions and imidazolium ions Ion, tetraethylphosphonium ion, tetramethylphosphonium ion, tetraphenylphosphonium ion, triphenylsulfonium ion, triethylsulfonium ion; and the like.
  • preferred cations include lithium ions, tetraalkylammonium ions and protons.
  • BP-oxalato compound a compound represented by the formula (I) is preferably used.
  • LiPF 2 (C 2 O 4 ) 2 represented by the formula (I) is preferably used.
  • lithium bis (oxalato) borate (LiB (C 2 O 4 ) 2 ) represented by the formula (II) is preferably used.
  • the concentration of the BP-oxalato compound (for example, LiPF 2 (C 2 O 4 ) 2 ) in the non-aqueous electrolyte is, for example, 0.01 mol / L or more and 0.1 mol / L or less. Preferably, it is 0.02 mol / L or more and 0.06 mol / L or less. More preferably, they are 0.02 mol / L or more and 0.04 mol / L or less.
  • concentration of the BP-oxalato compound is in the above range, the effects of the present invention can be more exerted, and higher battery performance can be realized.
  • the complex (copper chloride (I) complex) having copper (I) as a constituent element disclosed here is a complex capable of adsorbing (absorbing) at least carbon monoxide (molecules) and carbon dioxide (molecules).
  • copper chloride (I) -pyridine complex copper chloride (I) -N, N, N ′, N′-tetramethyl-1,2-ethanediamine complex, copper chloride (I) -methylpyridine complex, etc. It is done.
  • a copper (I) chloride-pyridine complex is preferably used.
  • the copper (I) chloride-pyridine complex can absorb (adsorb) gases such as carbon monoxide (CO) and carbon dioxide (CO 2 ) at room temperature (for example, 20 ° C.
  • the concentration of the copper (I) chloride complex (for example, copper (I) chloride-pyridine complex) in the nonaqueous electrolytic solution is, for example, 0.01 mol / L or more and 1 mol / L. Preferably, they are 0.1 mol / L or more and 0.8 mol / L or less.
  • concentration of the copper (I) chloride complex is in the above range, CO and CO 2 generated based on the decomposition of the BP-oxalato compound can be sufficiently absorbed (adsorbed).
  • the concentration of the copper (I) chloride complex in the non-aqueous electrolyte is preferably at least 16 mol / L per 1 mol / L of the oxalato complex compound.
  • non-aqueous solvent aprotic solvents such as carbonates, esters, ethers, nitriles, sulfones, and lactones
  • carbonates such as ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC)
  • EC ethylene carbonate
  • PC propylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • Such organic solvents can be used alone or in combination of two or more.
  • the supporting salt lithium salts such as LiPF 6 , LiClO 4 , LiAsF 6 , Li (CF 3 SO 2 ) 2 N, LiBF 4 , and LiCF 3 SO 3 .
  • the supporting salts can be used alone or in combination of two or more. LiPF 6 is particularly preferable.
  • the concentration of the supporting salt is not particularly limited, but if it is too low, the amount of charge carriers (typically lithium ions) contained in the non-aqueous electrolyte is insufficient, and the ionic conductivity tends to decrease. On the other hand, if the concentration is extremely high, the viscosity of the non-aqueous electrolyte increases in a temperature range below room temperature (for example, 0 ° C. to 30 ° C.), and ion conductivity tends to decrease. For this reason, the concentration of the supporting salt is, for example, 0.1 mol / L or more (for example, 0.8 mol / L or more) and preferably 2 mol / L or less (for example, 1.5 mol / L or less).
  • the gas generating agent a compound capable of decomposing and generating a gas when exceeding a predetermined battery voltage (that is, an oxidation potential equal to or higher than an operating voltage of a lithium ion secondary battery (sealed nonaqueous electrolyte secondary battery)). If the compound is a compound that decomposes and generates gas when the battery is overcharged), one or more of those used in similar applications are particularly limited.
  • aromatic compounds such as biphenyl compounds, alkylbiphenyl compounds, cycloalkylbenzene compounds, alkylbenzene compounds, organic phosphorus compounds, fluorine atom-substituted aromatic compounds, carbonate compounds, cyclic carbamate compounds, and alicyclic hydrocarbons.
  • More specific compounds (and oxidation potential (vs. Li / Li + ) of the compound) include biphenyl (4.5V), cyclohexylbenzene (4.6V), 1-fluoro-2-cyclohexylbenzene (4 .8V), 1-fluoro-3-cyclohexylbenzene (4.8V) and the like. Of these, cyclohexylbenzene and biphenyl can be preferably used.
  • the amount of gas generating agent added is not particularly limited, but if it is too small, the amount of gas generated during overcharging will decrease, and the current interruption mechanism may not operate normally. Further, if an excessive amount is added to emphasize reliability, battery performance may be deteriorated. Therefore, the addition amount of the gas generating agent with respect to 100% by mass of the non-aqueous electrolyte is 0.1% by mass or more (typically 0.5% by mass or more, for example, 1% by mass or more), and 10% by mass or less. (Typically 5% by mass or less, for example, 4% by mass or less, preferably 3% by mass or less, more preferably 2% by mass or less).
  • the addition amount of a gas generating agent By making the addition amount of a gas generating agent into the said range, high reliability and the outstanding battery performance can be made compatible.
  • the addition amount [mass%] of cyclohexylbenzene to the non-aqueous electrolyte is A
  • the addition amount of biphenyl to the non-aqueous electrolyte [ A / B, which is a ratio when the mass%] is B is preferably 1 to 4 (for example, A / B is 3).
  • a / B is in the above range, a gas based on the decomposition of cyclohexylbenzene and biphenyl is satisfactorily generated when the pressure in the battery case rises, so that the current interruption mechanism can be operated quickly.
  • the assembly 70 includes a stacked or wound electrode body 50 including a positive electrode 64 and a negative electrode 84 (wound electrode body) 50 and an initial charge including a non-aqueous electrolyte.
  • the non-aqueous electrolyte includes an oxalato complex compound containing at least one of phosphorus and boron as a constituent element, a complex containing copper (I) chloride capable of adsorbing at least carbon monoxide and carbon dioxide, and a predetermined battery And a gas generating agent capable of decomposing and generating gas when the voltage is exceeded.
  • the assembly 70 is initially charged to a predetermined charging voltage, thereby forming a coating derived from the BP-oxalato compound on the surface of the negative electrode active material in the negative electrode mixture layer 86.
  • the assembly 70 is charged at a charging rate of approximately 0.1 C to 2 C to the upper limit voltage (eg, 3.7 V to 4.1 V) when the battery is used.
  • the BP-oxalato compound is decomposed, and a film derived from the BP-oxalato compound is formed on the surface of the negative electrode active material in the negative electrode mixture layer 86.
  • the decomposition of the BP-oxalato compound generates CO and CO 2 in the battery case 15, but the generated aqueous CO and CO 2 are chlorinated because the nonaqueous electrolyte contains a copper (I) chloride complex. It is absorbed (adsorbed) by the copper (I) complex.
  • the raise of the internal pressure of the battery case 15 can be suppressed.
  • deformation of the shape (particularly the shape in the thickness direction) of the battery case 15 due to the generation of CO or CO 2 is prevented. Therefore, it is not necessary to remove the gas generated in the battery case 15 after the charge / discharge process.
  • the battery After charging the assembly 70, the battery is discharged to a predetermined voltage (eg, 3V to 3.2V) at a discharge rate of about 0.1C to 2C. Moreover, it is preferable to repeat the said charging / discharging several times (for example, 3 times).
  • the assembly 70 becomes a usable battery, that is, a lithium ion secondary battery (non-aqueous electrolyte secondary battery) 10 (FIGS. 1 and 2). reference).
  • “1C” means the amount of current that can charge the battery capacity (Ah) predicted from the theoretical capacity of the positive electrode in one hour.
  • lithium ion secondary battery (nonaqueous electrolyte secondary battery) 10 manufactured by the manufacturing method disclosed herein will be described.
  • the lithium ion secondary battery 10 includes a stacked or wound electrode body 50 (here, a wound electrode body) 50 including a positive electrode 64 and a negative electrode 84 and a separator 90, and a non- The battery case 15 which accommodates water electrolyte solution, the electrode body 50, and nonaqueous electrolyte solution is provided.
  • a complex containing copper (I) chloride capable of adsorbing at least carbon monoxide and carbon dioxide for example, copper (I) chloride-pyridine complex
  • Any missing BP-oxalato compound may remain.
  • the positive electrode 64 includes a positive electrode current collector 62 and a positive electrode mixture layer 66 including at least a positive electrode active material formed on the surface of the positive electrode current collector 62.
  • the negative electrode 84 includes a negative electrode current collector 82 and a negative electrode mixture layer 86 including at least a negative electrode active material formed on the surface of the negative electrode current collector 82.
  • the lithium ion secondary battery 10 uses a copper (I) chloride complex that has absorbed (adsorbed) CO or CO 2 generated by the reductive decomposition of the BP-oxalato compound in the initial charging step S40. Contains in the liquid. For this reason, the rise in the internal pressure of the battery case 15 is suppressed, and deformation of the shape (particularly the shape in the thickness direction) of the battery case 15 is prevented. Moreover, since the film containing at least one of phosphorus and boron is formed in a preferable mode on the surface of the negative electrode active material, the lithium ion secondary battery 10 exhibits excellent battery characteristics.
  • the amount of phosphorus (P) or boron (B) contained in the coating can be grasped by analyzing the coating by ICP (high frequency inductively coupled plasma) emission analysis, ion chromatography or the like. Furthermore, when the battery voltage of the lithium ion secondary battery 10 exceeds a predetermined battery voltage, the gas generating agent in the non-aqueous electrolyte is decomposed, and the internal pressure in the battery case 15 is increased by the generated gas, thereby interrupting the current. The mechanism 31 is activated. At this time, CO and CO 2 adsorbed on the copper chloride (I) complex in the nonaqueous electrolytic solution are released from the copper chloride (I) complex into the battery case 15. For this reason, when the battery voltage of the lithium ion secondary battery 10 exceeds a predetermined battery voltage, the amount of gas that can exist in the battery case 15 increases, and the current interrupting mechanism 31 can be operated quickly.
  • ICP high frequency inductively coupled plasma
  • an assembled battery 200 including the lithium ion secondary battery 10 as a single battery and a plurality of the single batteries will be described.
  • the assembled battery 200 is stabilized with a preset binding force.
  • the assembled battery 200 includes a plurality of (typically 10 or more, preferably about 40 to 80, for example, 50) lithium ion secondary batteries (unit cells) 10 respectively.
  • the wide surfaces of the battery case 15 are arranged in the facing direction (stacking direction) while being inverted one by one so that the positive electrode terminals 60 and the negative electrode terminals 80 are alternately arranged.
  • a cooling plate 110 having a predetermined shape is sandwiched between the arranged cells 10.
  • the cooling plate 110 functions as a heat dissipating member for efficiently dissipating the heat generated in each unit cell 10 during use, and preferably a cooling fluid (typically air) between the unit cells 10. ) (For example, a shape in which a plurality of parallel grooves extending vertically from one side of the rectangular cooling plate to the opposite side are provided on the surface).
  • a cooling plate made of metal having good thermal conductivity or lightweight and hard polypropylene or other synthetic resin is suitable.
  • a pair of end plates (restraint plates) 120 and 120 are disposed at both ends of the unit cell 10 and the cooling plate 110 arranged as described above.
  • One or a plurality of sheet-like spacer members 150 as length adjusting means may be sandwiched between the cooling plate 110 and the end plate 120.
  • the unit cell 10, the cooling plate 110, and the spacer member 150 arranged above have a predetermined restraining pressure in the stacking direction by a tightening restraining band 130 attached so as to bridge between the end plates 120, 120. Restrained to join. More specifically, by tightening and fixing the end portion of the restraining band 130 to the end plate 120 with screws 155, the unit cells and the like are restrained so that a predetermined restraining pressure is applied in the arrangement direction.
  • Example 1 [Preparation of positive electrode]
  • the mass ratio of LiNi 1/3 Co 1/3 Mn 1/3 O 2 as the positive electrode active material, acetylene black (AB) as the conductive material, and PVDF as the binder is 90: 8: 2.
  • these materials were dispersed in NMP to prepare a paste-like composition for forming a positive electrode mixture layer.
  • the composition was applied to a positive electrode current collector (aluminum foil) having a thickness of 15 ⁇ m at a coating amount of 25 mg / cm 2 per side and dried, and then subjected to a press treatment so that the mixture density was on the positive electrode current collector.
  • a sheet-like positive electrode A on which a positive electrode mixture layer of 2.8 g / cm 3 was formed was produced.
  • a material layer forming composition was prepared.
  • the composition was applied to a negative electrode current collector (copper foil) having a thickness of 10 ⁇ m and coated at a coating amount of 20 mg / cm 2 on one side and dried, and then subjected to a press treatment so that the mixture density was 1 on the negative electrode current collector.
  • a sheet-like negative electrode A on which a 4 g / cm 3 negative electrode mixture layer was formed was produced.
  • a three-layer separator A in which a porous polypropylene layer was formed on both sides of a porous polyethylene layer was prepared.
  • the thickness of the separator A was 20 ⁇ m
  • the length in the longitudinal direction of the separator A was 1334 mm
  • the length in the width direction of the separator A was 61 mm.
  • a separator A was interposed between the prepared positive electrode A and negative electrode A and wound in an elliptical shape to produce a wound electrode body according to Example 1. Electrode terminals are joined to the ends of the positive and negative electrode current collectors of the wound electrode body, and the wound electrode body is placed in an aluminum battery case having a length of 75 mm, a width of 120 mm, a thickness of 15 mm, and a case thickness of 1 mm. Accommodated. Subsequently, the non-aqueous electrolyte solution according to Example 1 was injected into the battery case to produce an assembly according to Example 1.
  • the non-aqueous electrolyte according to Example 1 is a non-aqueous solvent having a volume ratio of EC, DMC, and EMC of 3: 4: 3, LiPF 2 (C 2 O 4 ) 2 as an additive, and copper (I) chloride.
  • a pyridine complex and LiPF 6 dissolved as a supporting salt were used.
  • the concentration of LiPF 2 (C 2 O 4 ) 2 in the non-aqueous electrolyte according to Example 1 is 0.0125 mol / L, and the concentration of the copper (I) chloride-pyridine complex is 0.12 mol / L, The concentration of LiPF 6 was 1 mol / L.
  • the assembly according to Example 1 was charged and discharged for the first time.
  • Example 2 to 40 The same procedure as in Example 1 was conducted except that the concentration of LiPF 2 (C 2 O 4 ) 2 and the concentration of the copper (I) chloride-pyridine complex in the non-aqueous electrolyte injected into the battery case were changed to those shown in Table 1. Thus, the assemblies and lithium ion secondary batteries according to Examples 2 to 40 were produced. Note that the copper (I) chloride-pyridine complex was not added to the non-aqueous electrolytes according to Examples 8, 16, 24, 32 and 40.
  • the relationship between the gas generation amount [mL] after the first charge / discharge and the gas adsorbent [mmol / g] is shown in FIG.
  • a measurement object in this example, an assembly and a lithium ion secondary battery
  • a liquid medium for example, distilled water or alcohol
  • the concentration of LiPF 2 (C 2 O 4 ) 2 in the non-aqueous electrolyte injected into the aluminum battery case has to be 0.025 mol / L or less.
  • the concentration of LiPF 2 (C 2 O 4 ) 2 in the non-aqueous electrolyte injected into the battery case is reduced to 0. Even if it was further higher than 0.025 mol / L, only a small amount of gas was present in the battery case, and it was confirmed that an increase in the internal pressure of the battery case could be suppressed.
  • Example 41 to Example 46 The concentration of the copper (I) chloride-pyridine complex in the non-aqueous electrolyte injected into the battery case was changed to 0.2 mol / L, and the concentration of LiPF 2 (C 2 O 4 ) 2 was changed to that shown in Table 2. Otherwise, in the same manner as in Example 1, lithium ion secondary batteries according to Examples 41 to 46 were produced. In addition, LiPF 2 (C 2 O 4 ) 2 was not added to the nonaqueous electrolytic solution according to Example 46.
  • each lithium ion secondary battery whose initial battery capacity was measured was adjusted to SOC 90% and then stored for 30 days under a temperature condition of 60 ° C.
  • the battery capacity after storage (battery capacity after storage) was measured by the same method as the method for measuring the initial battery capacity.
  • the following formula: ⁇ (battery capacity after storage) / (initial battery capacity) ⁇ ⁇ 100 was defined as the capacity retention rate [%] after 30 days storage.
  • the measurement results are shown in Table 2 and FIG.
  • the concentration of LiPF 2 (C 2 O 4 ) 2 contained in the non-aqueous electrolyte is 0.02 mol / L to 0.04 mol / L. It was confirmed to show a low value.
  • the concentration of LiPF 2 (C 2 O 4) 2 contained in the electrolytic solution was found to exhibit a low value in case of more than 0.02 mol.
  • the capacity retention rate was such that the concentration of LiPF 2 (C 2 O 4 ) 2 contained in the non-aqueous electrolyte was 0.02 mol / L to 0.04 mol / L. It was confirmed that the case shows a high value. From the above, it was confirmed that high battery performance was exhibited when the concentration of LiPF 2 (C 2 O 4 ) 2 contained in the non-aqueous electrolyte was 0.02 mol / L to 0.04 mol / L.
  • Example 47 [Production of lithium ion secondary battery (non-aqueous electrolyte secondary battery)] A separator A was interposed between the prepared positive electrode A and negative electrode A and wound in an elliptical shape to produce a wound electrode body according to Example 47. Electrode terminals are joined to the ends of the positive and negative electrode current collectors of the wound electrode body, and the wound electrode body is placed in an aluminum battery case having a length of 75 mm, a width of 120 mm, a thickness of 15 mm, and a case thickness of 1 mm. Accommodated.
  • the nonaqueous electrolytic solution according to Example 47 is a nonaqueous solvent having a volume ratio of EC, DMC, and EMC of 3: 4: 3, LiPF 2 (C 2 O 4 ) 2 as an additive, and copper (I) chloride.
  • a pyridine complex, LiPF 6 as a supporting salt, and biphenyl (BP) and cyclohexylbenzene (CHB) dissolved as gas generating agents were used.
  • the concentration of LiPF 2 (C 2 O 4 ) 2 in the non-aqueous electrolyte according to Example 47 is 0.025 mol / L, and the concentration of the copper (I) chloride-pyridine complex is 0.2 mol / L, The concentration of LiPF 6 was 1 mol / L. 2% by mass of biphenyl and 2% by mass of cyclohexylbenzene were added to 100% by mass of the nonaqueous electrolytic solution according to Example 47. After the injection, the assembly according to Example 47 was charged and discharged for the first time.
  • Example 48 to Example 51 Table 3 shows the concentration of copper chloride (I) -pyridine complex, the concentration of LiPF 2 (C 2 O 4 ) 2 , and the amount of gas generant added in the non-aqueous electrolyte injected into the battery case
  • a lithium ion secondary battery according to Examples 48 to 51 was produced in the same manner as Example 47 except that the lithium ion secondary battery was changed to.
  • 1 mmol of copper (I) chloride-pyridine complex was supported on 1 g of separator A. The mass of the separator A was 1.55 g.
  • the current interruption mechanism operates faster.
  • the amount of the gas generating agent added is half that of the lithium ion secondary battery according to Example 50. Nevertheless, it was confirmed that the current interruption mechanism operates when the SOC is 149%.
  • the amount of the gas generating agent added can be reduced as compared with the conventional lithium ion secondary battery.
  • the malfunction (smoke by thermal runaway) generate
  • the non-aqueous electrolyte secondary battery obtained by the manufacturing method according to the present invention realizes a reduction in battery resistance and a highly reliable battery that ensures a sufficient amount of gas generation when the pressure in the battery case increases. Therefore, it can be suitably used as a driving power source mounted on a vehicle such as an automobile. Therefore, as schematically shown in FIG. 5, the present invention provides a vehicle (as a power source) having such a nonaqueous electrolyte secondary battery 10 (typically, a battery pack 200 formed by connecting a plurality of such batteries 10 in series).
  • a vehicle typically a vehicle with a motor such as a hybrid vehicle, an electric vehicle, a fuel vehicle 100 is provided.
  • Lithium ion secondary battery non-aqueous electrolyte secondary battery
  • Current interruption mechanism 40
  • Safety valve 50
  • Winding electrode body 62
  • Positive electrode current collector 64
  • Positive electrode 66
  • Positive electrode mixture layer 70
  • Assembly 82
  • Negative electrode collector 84
  • Negative electrode 86
  • Negative electrode mixture layer 90 Separator

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明の非水電解液二次電池10は、正極活物質を含む正極64および負極活物質を含む負極84を有する電極体50と、非水電解液と、上記電極体と上記非水電解液とを収容する電池ケース15と、を備え、上記非水電解液は、少なくとも一酸化炭素および二酸化炭素を吸着可能な塩化銅(I)を構成要素とする錯体を含み、上記負極活物質の表面には、リンおよびホウ素の少なくとも一方を含む被膜が形成されている。

Description

非水電解液二次電池及びその製造方法
 本発明は非水電解液二次電池とその製造方法に関する。
 本出願は、2013年1月23日に出願された日本国特許出願2013-010394号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
 リチウムイオン二次電池その他の非水電解液二次電池は、車両搭載用電源あるいはパソコンや携帯端末等の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、車両搭載用高出力電源として好ましい。
 ところで、リチウムイオン二次電池等の非水電解液二次電池では、充電の際に非水電解液の一部が分解され、負極活物質(例えば天然黒鉛粒子)の表面にその分解物からなる被膜、即ちSEI(Solid Electrolyte Interface)膜が形成され得る。SEI膜は負極活物質を保護する役割を果たすが、非水電解液中の電荷担体(例えばリチウムイオン)を消費して形成される。即ち、電荷担体がSEI膜中に固定されることによって、電荷担体はもはや電池容量に寄与できなくなる。このため、SEI膜の量が多いと容量維持率を低下(サイクル特性の低下)させる要因となる。
 かかる問題に対応すべく、SEI膜に代えて負極活物質の表面に予め安定的な被膜を形成するために、非水電解液中に各種の添加剤を含有させることが行われている。添加剤の分解によって形成された被膜を備える非水電解液二次電池では、反応抵抗が低減されると共に電池寿命が向上することが知られている。例えば特許文献1には、オキサラト錯体をアニオンとする化合物(以下、「オキサラト錯体化合物」とする。)を含有する二次電池用非水電解液が記載されている。
日本国特許出願公開2010-198858号公報 日本国特許出願公開2012-59489号公報
 ところで、添加剤としてオキサラト錯体化合物を含有する非水電解液二次電池では、初期充放電時にオキサラト錯体化合物を分解させることによって、負極活物質の表面に安定的な被膜を形成させることができる。ここで、非水電解液に含まれるオキサラト錯体化合物の濃度が高いほど、負極活物質の表面に好ましい態様の被膜が形成される傾向にある。しかし、被膜が形成される際にはオキサラト錯体化合物の還元分解に基づいて主として一酸化炭素(CO)と二酸化炭素(CO)とが発生する。このため、非水電解液に含まれるオキサラト錯体化合物の濃度が高くなるほど、電池ケース内にはオキサラト錯体化合物の還元分解に基づくCOとCOとが多く存在する。この結果、電池ケースの内圧が上昇し得る。電池ケースの内圧が大きくなりすぎると、非水電解液二次電池内の容積が増大してしまい、電池ケースが厚み方向に拡大する虞がある。このように、電池ケースが厚み方向に拡大してしまうと、非水電解液二次電池(単電池)を複数個拘束して所定の形状の組電池を構築することが困難となる。
 本発明は、上述した従来の課題を解決すべく創出されたものであり、その目的は、電池ケースの内圧の上昇を抑制することによって該電池ケースの所定の形状(即ち所定の厚み)が保持されると共に、負極活物質の表面に好ましい態様の被膜を備える非水電解液二次電池およびその製造方法を提供することである。
 上記目的を実現すべく、本発明により、正極活物質を含む正極および負極活物質を含む負極を有する電極体と、非水電解液と、上記電極体および上記非水電解液を収容する電池ケースと、を備える非水電解液二次電池を製造する方法が提供される。即ちここで開示される非水電解液二次電池の製造方法は、正極活物質を含む正極及び負極活物質を含む負極を準備すること、上記準備した正極及び負極を用いて電極体を作製すること、上記電極体を電池ケース内に収容し、リンおよびホウ素の少なくとも一方を構成元素として含有するオキサラト錯体化合物と、少なくとも一酸化炭素(分子)および二酸化炭素(分子)を吸着可能な塩化銅(I)を構成要素とする錯体(以下、「塩化銅(I)錯体」とする。)と、を含む非水電解液を上記電池ケース内に注入して組立体を作製すること、上記組立体に対して所定の充電電圧まで初期充電を行うこと、を包含する。
 なお、本明細書において「非水電解液二次電池」とは、非水電解液(典型的には、非水溶媒(有機溶媒)中に支持塩(支持電解質)を含む電解液)を備えた電池をいう。
 また、本明細書において「二次電池」とは、繰り返し充放電可能な電池一般をいい、リチウムイオン二次電池等のいわゆる化学電池ならびに電気二重層キャパシタ等の物理電池を包含する用語である。
 本発明によって提供される非水電解液二次電池の製造方法によると、組立体に対して所定の充電処理を施すことにより、非水電解液に含まれているリンおよびホウ素の少なくとも一方を構成元素として含有するオキサラト錯体化合物は分解されて、該オキサラト錯体化合物に基づく被膜が負極活物質の表面に形成される。かかる被膜を備える非水電解液二次電池は優れた電池特性(低い反応抵抗や高い容量維持率)を示す。また、上記充電処理のとき、オキサラト錯体化合物の分解により主としてCOおよびCOが発生し、COおよびCOが電池ケース内に拡散していく。しかし、本発明では、非水電解液中には、塩化銅(I)錯体が含まれているため、COおよびCOは塩化銅(I)錯体に吸収(吸着)される。これにより、電池ケースの内圧の上昇を抑制することができる。このため、ガスの発生に伴う電池ケースの形状(特に厚み方向の形状)の変形が防止され、予め設定している拘束力で組電池を安定して構築することが可能な非水電解液二次電池を製造することができる。また、かかる製造方法によると、オキサラト錯体化合物の分解に基づくガス(典型的にはCOやCO)を電池ケースから抜く工程が不要となる。好ましくは、上記塩化銅(I)を構成要素とする錯体として、塩化銅(I)‐ピリジン錯体を用いる。塩化銅(I)‐ピリジン錯体は、COおよびCOの吸収(吸着)に特に優れている。
 なお、特許文献2には、電極群を収容する収納部のコーナー部の内面にガス吸着剤が配置されたラミネート電池(リチウムイオン電池)が記載されているが、ガス吸着剤は電極群の外部に配置されたものであって、上述した本発明の構成とは異なるものである。
 ここで開示される製造方法の好適な一態様では、上記非水電解液は、所定の電池電圧を超えた際に分解してガスを発生し得るガス発生剤をさらに含み、上記電池ケースは、上記ガスの発生に伴って上記電池ケース内の圧力が上昇した際に作動する電流遮断機構を備える。
 非水電解液二次電池の電池電圧が所定の電池電圧を超えたときには、ガス発生剤が分解されガスが発生する。発生したガスによって電池ケース内の内圧が高まる。電池ケース内の内圧が所定の値より大きくなると電流遮断機構が作動される。このとき、非水電解液中の塩化銅(I)錯体(例えば塩化銅(I)‐ピリジン錯体)に吸着(吸収)されているCOやCOは、塩化銅(I)錯体から電池ケース内に放出されることとなる。このため、非水電解液二次電池の電池電圧が所定の電池電圧を超えたときに、電池ケース内に存在し得るガス量は増加する。この結果、電流遮断機構を迅速に作動させることができる。以上より、電池電圧が所定の電池電圧を超えたときにおいて、十分なガス量の発生が確保された信頼性の高い非水電解液二次電池を製造することができる。また、電池電圧が所定の電池電圧を超えたときには、塩化銅(I)錯体に吸着されているCOやCOが電池ケース内に放出され電池ケース内の内圧を増加させることができる。このため、非水電解液中のガス発生剤の添加量を減らすことができる。
 ここで開示される製造方法の好適な他の一態様では、上記非水電解液中の上記錯体の濃度は、上記オキサラト錯体化合物1mol/L当たり少なくとも16mol/Lである。
 かかる構成によると、塩化銅(I)錯体は、オキサラト錯体化合物の還元分解によって発生するCOやCOをより効果的に吸着することができる。
 ここで開示される製造方法の好適な他の一態様では、上記非水電解液中の前記オキサラト錯体化合物の濃度は、0.02mol/L~0.04mol/Lである。
 かかる構成によると、反応抵抗が低減されると共に、容量維持率に優れる非水電解液二次電池を作製することができる。
 ここで開示される製造方法の好適な他の一態様では、上記オキサラト錯体化合物として、LiPF(Cを用いる。かかる構成によると、負極活物質の表面に好ましい態様の被膜を形成することができる。
 また、本発明によると、上記目的を実現する他の側面として、非水電解液二次電池が提供される。即ちここで開示される非水電解液二次電池は、正極活物質を含む正極および負極活物質を含む負極を有する電極体と、非水電解液と、上記電極体と上記非水電解液とを収容する電池ケースと、を備えている。上記非水電解液は、少なくとも一酸化炭素および二酸化炭素を吸着(吸収)可能な塩化銅(I)を構成要素とする錯体を含んでいる。上記負極活物質の表面には、リンおよびホウ素の少なくとも一方を含む被膜が形成されている。
 本発明によって提供される非水電解液二次電池では、負極活物質の表面には、リンおよびホウ素の少なくとも一方を含む被膜が形成されており、非水電解液は、塩化銅(I)錯体を含んでいる。
 かかる構成によると、負極活物質の表面にリンおよびホウ素の少なくとも一方を含む被膜が形成される際に発生するCOやCOは、非水電解液中の塩化銅(I)錯体に吸着される。これにより、電池ケースの内圧の上昇は抑制されている。このため、ガスの発生に伴う電池ケースの形状(特に厚み方向の形状)の変形は防止されており、予め設定している拘束力で組電池を安定して構築することができる非水電解液二次電池となり得る。また、負極活物質の表面には、リンおよびホウ素の少なくとも一方を含む被膜が好ましい態様で形成されているため、かかる非水電解液二次電池は優れた電池特性を示す。好ましくは、上記塩化銅(I)を構成要素とする錯体は、塩化銅(I)‐ピリジン錯体である。塩化銅(I)‐ピリジン錯体は、COおよびCOの吸収(吸着)に特に優れている。
 ここで開示される非水電解液二次電池の好適な一態様では、上記非水電解液は、所定の電池電圧を超えた際に分解してガスを発生し得るガス発生剤をさらに含み、上記電池ケースは、上記ガスの発生に伴って上記電池ケース内の圧力が上昇した際に作動する電流遮断機構を備える。好ましくは、上記塩化銅(I)錯体にはCOおよび/またはCOが吸着されている。
 かかる構成によると、非水電解液二次電池の電池電圧が所定の電池電圧を超えたときには、ガス発生剤が分解されてガスが発生する。発生したガスによって電池ケース内の内圧が高まる。電池ケース内の内圧が所定の値より大きくなると電流遮断機構が作動される。非水電解液中の塩化銅(I)錯体にCOやCOが吸着されているときには、塩化銅(I)錯体から電池ケース内に放出されることとなる。このため、非水電解液二次電池の電池電圧が所定の電池電圧を超えたときに電池ケース内に存在し得るガス量は増加する。このため、電流遮断機構を迅速に作動させることができる。以上より、電池電圧が所定の電池電圧を超えたときにおいて十分なガス量の発生が確保された信頼性の高い非水電解液二次電池となり得る。
 また、本発明は、他の側面として、ここで開示される非水電解液二次電池を構築するための構造物、即ち正極および負極を有する電極体と、非水電解液と、上記電極体と上記非水電解液とを収容する電池ケースと、を備える初期充電前の非水電解液二次電池組立体を提供する。かかる組立体において、上記非水電解液は、リンおよびホウ素の少なくとも一方を構成元素として含有するオキサラト錯体化合物と、少なくとも一酸化炭素および二酸化炭素を吸着可能な塩化銅(I)を構成要素とする錯体と、を含む。
 かかる組立体では、非水電解液中に塩化銅(I)錯体が含まれている。このため、該組立体に対して所定の充電電圧まで初期充電を行うと、オキサラト錯体化合物の還元分解によって発生するガス(典型的にはCOやCO)は、塩化銅(I)錯体に吸着される。これにより、電池ケースの内圧の上昇が抑制された非水電解液二次電池であって、オキサラト錯体化合物の還元分解に基づいて負極活物質の表面に好ましい態様の被膜が形成された非水電解液二次電池を得ることができる。好ましくは、上記塩化銅(I)を構成要素とする錯体は、塩化銅(I)‐ピリジン錯体である。塩化銅(I)‐ピリジン錯体は、COおよびCOの吸収(吸着)に特に優れている。
 ここで開示される組立体の好適な一態様では、上記非水電解液は、所定の電池電圧を超えた際に分解してガスを発生し得るガス発生剤をさらに含み、上記電池ケースは、上記ガスの発生に伴って上記電池ケース内の圧力が上昇した際に作動する電流遮断機構を備える。
 かかる構成によると、該組立体に対して所定の充電電圧まで初期充電を行うと、オキサラト錯体化合物の還元分解によって発生するCOやCOは、塩化銅(I)錯体(例えば塩化銅(I)‐ピリジン錯体)に吸着される。これにより、電池ケースの内圧の上昇が抑制された非水電解液二次電池が得られる。さらに、得られた非水電解液二次電池の電池電圧が所定の電池電圧を超えたときには、ガス発生剤が分解されてガスが発生する。発生したガスによって電池ケース内の内圧が高まる。電池ケース内の内圧が所定の値より大きくなると電流遮断機構が作動される。このとき、塩化銅(I)錯体に吸着されているCOやCOは、塩化銅(I)錯体から電池ケース内に放出されることとなる。このため、非水電解液二次電池の電池電圧が所定の電池電圧を超えたときに電池ケース内に存在し得るガス量は増加し、電流遮断機構を迅速に作動させることができる。
 ここで開示される組立体の好適な他の一態様では、上記非水電解液中の上記錯体の濃度は、上記オキサラト錯体化合物1mol/L当たり少なくとも16mol/Lである。
 かかる構成によると、非水電解液中に塩化銅(I)錯体が多く存在する。このため、初期充電を行った際に発生するCOやCOは、塩化銅(I)錯体にほぼ吸着されることとなる。
 ここで開示される組立体の好適な他の一態様では、上記非水電解液中の上記オキサラト錯体化合物の濃度は、0.02mol/L~0.04mol/Lである。
 かかる組立体に対して初期充電を行うと、反応抵抗が低減されると共に、容量維持率に優れる非水電解液二次電池を得ることができる。
 ここで開示される組立体の好適な他の一態様では、上記オキサラト錯体化合物は、LiPF(Cである
 かかる組立体に対して初期充電を行うと、負極活物質の表面に好ましい態様の被膜が形成された非水電解液二次電池を得ることができる。
 上述のように、ここで開示されるいずれかの非水電解液二次電池或いはここで開示されるいずれかの製造方法により得られた非水電解液二次電池(例えばリチウムイオン二次電池)では、負極活物質の表面に好ましい態様の被膜が形成されているため電池性能に優れると共に、電池ケースの内圧の上昇が抑制されることによって、該電池ケースの所定の形状が保持された非水電解液二次電池となり得る。このため、ここで開示されるいずれかの非水電解液二次電池或いはここで開示されるいずれかの製造方法により得られた非水電解液二次電池は、複数個(例えば40~80個)の電池が所定の拘束力によって接続された(典型的には直列に接続された)組電池として用いることができる。また、車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)の駆動電源として用いることができる。
図1は、本発明の一実施形態に係る非水電解液二次電池の外形を模式的に示す斜視図である。 図2は、図1中のII‐II線に沿う断面図である。 図3は、本発明の一実施形態に係る非水電解液二次電池の製造方法を説明するためのフローチャートである。 図4は、本発明の一実施形態に係る非水電解液二次電池を複数組み合わせた組電池を模式的に示す斜視図である。 図5は、本発明に係る非水電解液二次電池を備えた車両(自動車)を模式的に示す側面図である。 図6は、塩化銅(I)‐ピリジン錯体濃度とガス発生量との関係を示すグラフである。 図7は、LiPF(C濃度と反応抵抗との関係を示すグラフである。 図8は、LiPF(C濃度と容量維持率との関係を示すグラフである。 図9は、過充電時の電池ケース内圧の変化を示すグラフである。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事項は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。以下、リチウムイオン二次電池である場合を典型例としてより詳しく説明する場合があるが、本発明の適用対象をかかる電池に限定する意図ではない。
 ここで開示される非水電解液二次電池を製造する方法の好適な実施形態の一つとして、リチウムイオン二次電池を製造する方法を例にして詳細に説明するが、本発明の適用対象をかかる種類の二次電池に限定することを意図したものではない。例えば、他の金属イオン(例えばマグネシウムイオン)を電荷担体とする非水電解液二次電池にも適用することができる。
 ここで開示されるリチウムイオン二次電池(非水電解液二次電池)の製造方法は、図3に示すように、正負極準備工程(S10)と、電極体作製工程(S20)と、組立体作製工程(S30)と、初期充電工程(S40)と、を包含する。
≪正負極準備工程(S10)≫
 まず、正負極準備工程(S10)について説明する。本実施形態においては、正負極準備工程として、正極活物質を含む正極及び負極活物質を含む負極を準備する。好適な一実施形態においては、上記正極と上記負極との間に配置されるセパレータをさらに準備することを包含する。
 ここで開示されるリチウムイオン二次電池の負極は、負極集電体と、該負極集電体の表面上に形成された少なくとも負極活物質を含む負極合材層と、を備えている。負極合材層は、負極活物質の他に、結着剤、増粘剤等の任意成分を必要に応じて含有し得る。
 上記負極集電体としては、従来のリチウムイオン二次電池の負極に用いられている集電体と同様、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、銅やニッケル或いはそれらを主体とする合金を用いることができる。負極集電体の形状は、リチウムイオン二次電池の形状等に応じて異なり得るため、特に制限はなく、箔状、シート状、棒状、板状等の種々の形態であり得る。
 上記負極活物質としては、従来からリチウムイオン二次電池に用いられる材料の一種または二種以上を特に限定なく使用することができる。例えば、少なくとも一部にグラファイト構造(層状構造)を含む粒子状(或いは球状、鱗片状)の炭素材料、リチウム遷移金属複合酸化物((例えば、LiTi12等のリチウムチタン複合酸化物)、リチウム遷移金属複合窒化物等が挙げられる。炭素材料としては、例えば、天然黒鉛、人造黒鉛(人工黒鉛)、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)等が挙げられる。負極活物質の平均粒径は、例えば凡そ1μm~50μm(通常は5μm~30μm)の範囲内である。なお、平均粒径とは、市販されている種々のレーザー回折・散乱法に基づく粒度分布測定装置に基づいて測定した粒度分布から導き出せるメジアン径(D50:50%体積平均粒子径)をいう。また、上記負極活物質の表面を非晶質炭素膜で被覆してもよい。例えば、負極活物質にピッチを混ぜて焼くことによって、少なくとも一部が非晶質炭素膜で被覆された負極活物質を得ることができる。
 上記結着剤としては、一般的なリチウムイオン二次電池の負極に使用される結着剤と同様のものを適宜採用することができる。例えば、負極合材層を形成するために水系のペースト状の組成物を用いる場合には、水溶性のポリマー材料または水分散性のポリマー材料を好ましく採用し得る。水分散性のポリマーとしては、スチレンブタジエンゴム(SBR)等のゴム類;ポリエチレンオキサイド(PEO)、酢酸ビニル共重合体等が例示される。好ましくはスチレンブタジエンゴムが用いられる。
 「水系のペースト状組成物」とは、負極活物質の分散媒として水または水を主体とする混合溶媒を用いた組成物を指す概念である。かかる混合溶媒を構成する水以外の溶媒としては、水と均一に混合し得る有機溶媒(低級アルコール、低級ケトン等)の一種または二種以上を適宜選択して用いることができる。
 上記増粘剤としては、例えば、水溶性又は水分散性のポリマーを採用し得る。水溶性のポリマーとしては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)等のセルロース系ポリマー;ポリビニルアルコール(PVA);等が挙げられる。また、上記結着剤として挙げられる材料と同様のものを適宜採用することができる。
 ここで開示される負極は、例えば概ね以下の手順で好適に製造することができる。上述した負極活物質と、他の任意の成分(結着剤、増粘剤等)とを適当な溶媒(例えば水)に分散させてなるペースト状の負極合材層形成用組成物を調製する。調製した組成物を負極集電体に塗布し、乾燥させた後、圧縮(プレス)することによって、負極集電体と該負極集電体上に形成された負極合材層とを備える負極を作製することができる。
 ここで開示されるリチウムイオン二次電池の正極は、正極集電体と、該正極集電体の表面上に形成された少なくとも正極活物質を含む正極合材層と、を備えている。正極合材層は、正極活物質の他に、導電材、結着剤(バインダ)等の任意の成分を必要に応じて含有し得る。
 上記正極集電体としては、従来のリチウムイオン二次電池の正極に用いられている正極集電体と同様、アルミニウム又はアルミニウムを主体とするアルミニウム合金が用いられる。正極集電体の形状は、負極集電体の形状と同様であり得る。
 上記正極活物質としては、リチウムイオンを吸蔵及び放出可能な材料であって、リチウム元素と一種または二種以上の遷移金属元素を含むリチウム含有化合物(例えばリチウム遷移金属複合酸化物)が挙げられる。例えば、リチウムニッケル複合酸化物(例えばLiNiO)、リチウムコバルト複合酸化物(例えばLiCoO)、リチウムマンガン複合酸化物(例えばLiMn)、或いは、リチウムニッケルコバルトマンガン複合酸化物(例えばLiNi1/3Co1/3Mn1/3)のような三元系リチウム含有複合酸化物が挙げられる。
 また、一般式がLiMPO或いはLiMVO或いはLiMSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種以上の元素)等で表記されるようなポリアニオン系化合物(例えばLiFePO、LiMnPO、LiFeVO、LiMnVO、LiFeSiO、LiMnSiO、LiCoSiO)を上記正極活物質として用いてもよい。
 上記導電材としては、従来この種のリチウムイオン二次電池で用いられているものであればよく、特定の導電材に限定されない。例えば、カーボン粉末やカーボンファイバー等のカーボン材料を用いることができる。カーボン粉末としては、種々のカーボンブラック(例えば、アセチレンブラック、ファーネスブラック、ケッチェンブラック等)、グラファイト粉末等のカーボン粉末を用いることができる。なかでも好ましいカーボン粉末としてアセチレンブラック(AB)が挙げられる。このような導電材は、一種を単独で、または二種以上を適宜組み合わせて用いることができる。
 上記結着剤(バインダ)としては、一般的なリチウムイオン二次電池の正極に使用される結着剤と同様のものを適宜採用することができる。例えば、上記正極合材層を形成する組成物として溶剤系のペースト状組成物(ペースト状組成物には、スラリー状組成物及びインク状組成物が包含される。)を用いる場合には、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)等の、有機溶媒(非水溶媒)に溶解するポリマー材料を用いることができる。あるいは、水系のペースト状組成物を用いる場合には、水溶性(水に溶解する)のポリマー材料又は水分散性(水に分散する)のポリマー材料を好ましく採用し得る。例えば、ポリテトラフルオロエチレン(PTFE)、カルボキシメチルセルロース(CMC)、スチレンブタジエンゴム(SBR)等が挙げられる。なお、上記で例示したポリマー材料は、結着剤として用いられる他に、上記組成物の増粘剤その他の添加剤として使用されることもあり得る。
 ここで、「溶剤系のペースト状組成物」とは、正極活物質の分散媒が主として有機溶媒(非水溶媒)である組成物を指す概念である。有機溶媒としては、例えば、N‐メチル‐2‐ピロリドン(NMP)等を用いることができる。
 ここで開示される正極は、例えば概ね以下の手順で好適に製造することができる。上述した正極活物質、導電材、および有機溶媒に対して可溶性である結着剤等を有機溶媒に分散させてなるペースト状の正極合材層形成用組成物を調製する。調製した組成物を正極集電体に塗布し、乾燥させた後、圧縮(プレス)することによって、正極集電体と該正極集電体上に形成された正極合材層とを備える正極を作製することができる。
 ここで開示されるセパレータは、従来公知のものを特に制限なく使用することができる。例えば、樹脂からなる多孔性シート(微多孔質樹脂シート)を好ましく用いることができる。ポリエチレン(PE)、ポリプロピレン(PP)等の多孔質ポリオレフィン系樹脂シートが好ましい。例えば、PE単層のシート、PP単層のシート、PE層とPP層とが積層された二層構造(PE/PP構造)のシート、PE層の両側にPP層が積層された三層構造(PP/PE/PP構造)のシート等を好適に使用し得る。
 ≪電極体作製工程(S20)≫
 次に、電極体作製工程(S20)について説明する。電極体作製工程では、上記準備した正極及び負極を用いて電極体を作製する。典型的には、上記準備した正極、負極及びセパレータを用いて電極体を作製する。
 ここで開示されるリチウムイオン二次電池の電極体(例えば積層型の電極体或いは捲回型の電極体)は、正極と、負極と、正極及び負極の間に介在されたセパレータとを備えている。ここでは、シート状に形成された上記正極と、シート状に形成された上記負極と、上記セパレータを備える捲回型の電極体(捲回電極体)を例にして説明するが、かかる形態に限定することを意図したものではない。
 図2は、本実施形態に係る捲回電極体50である。図2に示すように、捲回電極体50は、シート状の正極64とシート状の負極84とを計二枚の長尺なセパレータ90を介在して積層させた状態で長手方向に捲回して、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって作製された扁平形状の捲回電極体50である。
 上記積層の際には、正極64の正極合材層非形成部分(即ち正極合材層66が形成されずに正極集電体62が露出した部分)63と、負極84の負極合材層非形成部分(即ち負極合材層86が形成されずに負極集電体82が露出した部分)83と、がセパレータ90の幅方向の両側からそれぞれはみ出すように、正極64と負極84とを幅方向にややずらして重ね合わせる。その結果、捲回電極体50の捲回方向に対する横方向において、正極64および負極84の電極合材層非形成部分63,83がそれぞれ捲回コア部分(すなわち正極64の正極合材層66と負極84の負極合材層86と二枚のセパレータ90とが密に捲回された部分)から外方にはみ出ている。かかる正極合材層非形成部分63に正極集電板61を介して正極端子60(例えばアルミニウム製)を接合して、上記扁平形状に形成された捲回電極体50の正極64と正極端子60とを電気的に接続する。同様に負極合材層非形成部分83に負極集電板81を介して負極端子80(例えばニッケル製)を接合して、負極84と負極端子80とを電気的に接続する。なお、正負極端子60,80と正負極集電体62,82とは、例えば、超音波溶接、抵抗溶接等によりそれぞれ接合することができる。
≪組立体作製工程(S30)≫
 次に、組立体作製工程(S30)について説明する。本実施形態においては、上記作製された捲回電極体50を電池ケース15内に収容し、所定の非水電解液を電池ケース15内に注入して組立体(非水電解液二次電池組立体)70を作製する。
 図1及び図2に示すように、本実施形態の電池ケース15は、金属製(例えばアルミニウム製。また、樹脂製又はラミネートフィルム製も好適である。)の電池ケースであって、上端が開放された有底の扁平な箱型形状(典型的には直方体形状)のケース本体(外装ケース)30と、該ケース本体30の開口部20を塞ぐ蓋体25とを備えている。電池ケース15の上面(すなわち蓋体25)には、上記捲回電極体50の正極64と電気的に接続する正極端子60および該捲回電極体50の負極84と電気的に接続する負極端子80が設けられている。また、蓋体25には、捲回電極体50が収容されたケース本体30(電池ケース15)内に後述する非水電解液を注入するための注入口45が形成されている。注入口45は、非水電解液が注入された後に封止栓48によって封止される。さらに、蓋体25には、従来のリチウムイオン二次電池のケースと同様に、電池異常の際に電池ケース15内部で発生したガスを電池ケース15の外部に排出するための安全弁40が設けられている。捲回電極体50の捲回軸が横倒しとなる姿勢(すなわち、捲回電極体50の捲回軸の法線方向に上記開口部20が形成されている。)で捲回電極体50をケース本体30内に収容する。その後ケース本体30の開口部20を蓋体25によって封止することで組立体70を作製する。蓋体25とケース本体30とは溶接等によって接合する。
 本実施形態に係る電池ケース15の内部には、電池ケース15内の圧力が上昇した際に作動する電流遮断機構(CID)31が設けられている。電流遮断機構31は、電池ケース15の内圧が上昇した場合に少なくとも一方の電極端子から電極体50に至る導電経路(例えば、充電経路)を切断するように構成されていればよく、特定の形状に限定されない。図2に示す実施形態では、電流遮断機構31は蓋体25に固定した正極端子60と電極体50との間に設けられ、電池ケース15の内圧が上昇した場合に正極端子60から電極体50に至る導電経路を切断するように構成されている。
 より具体的には、上記電流遮断機構31は例えば第一部材32と第二部材34とを含み得る。そして、電池ケース15の内圧が上昇した場合に第一部材32および第二部材34の少なくとも一方が変形して他方から離隔することにより上記導電経路を切断するように構成されている。図2に示す実施形態では、第一部材32は変形金属板であり、第二部材34は上記変形金属板32に接合された接続金属板である。変形金属板(第一部材)32は、中央部分が下方へ湾曲したアーチ形状を有し、その周縁部分が集電リード端子35を介して正極端子60の下面と接続されている。また、変形金属板32の湾曲部分33の先端が接続金属板34の上面と接合されている。接続金属板34の下面(裏面)には正極集電板61が接合され、かかる正極集電板61が電極体50の正極64(正極集電体62)に接続されている。このようにして、正極端子60から電極体50に至る導電経路が形成されている。
 また、電流遮断機構31は、プラスチック等により形成された絶縁ケース38を備えている。該絶縁ケース38は変形金属板32を囲むように設けられ、変形金属板32の上面を気密に密閉している。この気密に密閉された湾曲部分33の上面には電池ケース15の内圧が作用しない。また、絶縁ケース38は変形金属板32の湾曲部分33を嵌入する開口部を有しており、該開口部から湾曲部分33の下面を電池ケース15の内部に露出している。この電池ケース15の内部に露出した湾曲部分33の下面には電池ケース15の内圧が作用する。かかる構成の電流遮断機構31において、電池ケース15の内圧が高まると該内圧が変形金属板32の湾曲部分33の下面に作用し、下方へ湾曲した湾曲部分33が上方へ押し上げられる。この湾曲部分33の上方への押し上げは電池ケース15の内圧が上昇するに従い増大する。そして、電池ケース15の内圧が設定圧力を超えると湾曲部分33が上下反転し上方へ湾曲するように変形する。かかる湾曲部分33の変形によって、変形金属板32と接続金属板34との接合点36が切断される。このことにより、正極端子60から電極体50に至る導電経路が切断され、過充電電流が遮断されるようになっている。
 なお、電流遮断機構31は正極端子60側に限らず、負極端子80側に設けてもよい。また、電流遮断機構31は、上述した変形金属板32の変形を伴う機械的な切断に限定されず、例えば、電池ケース50の内圧をセンサで検知し、該センサで検知した内圧が設定圧力を超えると充電電流を遮断するような外部回路を電流遮断機構として設けることもできる。
 ここで開示される非水電解液は、添加剤としてリンおよびホウ素の少なくとも一方を構成元素として含有するオキサラト錯体化合物(以下、「BP‐オキサラト化合物」とする。)と、少なくとも一酸化炭素および二酸化炭素を吸着可能な塩化銅(I)を構成要素とする錯体(例えば塩化銅(I)‐ピリジン錯体)と、非水溶媒(有機溶媒)を少なくとも含んでいる。典型的には、これらに加えて、非水溶媒に溶解してリチウムイオンを供給し得るリチウム化合物(支持塩)をさらに含む非水電解液が用いられる。ここで開示される非水電解液は、好ましくは、所定の電池電圧を超えた際に分解してガスを発生し得るガス発生剤をさらに含む。
 ここで開示されるBP‐オキサラト化合物は、少なくとも一つのシュウ酸イオン(C 2-)がリン(P)またはホウ素(B)に配位した構造部分を有するオキサラト錯体である。上記BP‐オキサラト化合物としては、公知の方法により作製したもの、あるいは市販品の購入等により入手したものを特に限定せず一種または二種以上用いることができる。好ましいBP-オキサラト化合物として、下記式(I)で表されるリン含有オキサラト錯体化合物が例示される。また、好ましいBP-オキサラト化合物として、下記式(II)で表されるホウ素含有オキサラト錯体化合物が例示される。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 ここで、式(I)、(II)中のAは、無機カチオンおよび有機カチオンのいずれでもよい。無機カチオンの具体例としては、Li、Na、K等のアルカリ金属のカチオン;Be、Mg、Ca等のアルカリ土類金属のカチオン;その他、Ag、Zn、Cu、Co、Fe、Ni、Mn、Ti、Pb、Cr、V、Ru、Y、ランタノイド、アクチノイド等の金属のカチオン;プロトン;等が挙げられる。有機カチオンの具体例としては、テトラブチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラメチルアンモニウムイオン等のテトラアルキルアンモニウイオン;トリエチルメチルアンモニウムイオン、トリエチルアンモニウムイオン等のトリアルキルアンモニウムイオン;その他、ピリジニウムイオン、イミダゾリウムイオン、テトラエチルホスホニウムイオン、テトラメチルホスホニウムイオン、テトラフェニルホスホニウムイオン、トリフェニルスルホニウムイオン、トリエチルスルホニウムイオン;等が挙げられる。好ましいカチオンの例として、リチウムイオン、テトラアルキルアンモニウムイオンおよびプロトンが挙げられる。
 BP-オキサラト化合物としては、式(I)で表される化合物が好ましく用いられる。なかでも、式(I)で表されるLiPF(Cが好ましく用いられる。また、式(II)で表されるリチウムビス(オキサラト)ボレート(LiB(C)が好ましく用いられる。
 非水電解液中のBP-オキサラト化合物(例えばLiPF(C)の濃度は、例えば、0.01mol/L以上0.1mol/L以下である。好ましくは、0.02mol/L以上0.06mol/L以下である。さらに好ましくは、0.02mol/L以上0.04mol/L以下である。BP-オキサラト化合物の濃度が上記範囲にある場合、本願発明の効果をより発揮することができ、より高い電池性能を実現し得る。
 ここで開示される塩化銅(I)を構成要素とする錯体(塩化銅(I)錯体)は、少なくとも一酸化炭素(分子)および二酸化炭素(分子)を吸着(吸収)可能な錯体である。例えば、塩化銅(I)‐ピリジン錯体、塩化銅(I)‐N、N、N’、N’‐テトラメチル‐1、2‐エタンジアミン錯体、塩化銅(I)‐メチルピリジン錯体等が挙げられる。塩化銅(I)‐ピリジン錯体が好ましく用いられる。塩化銅(I)‐ピリジン錯体は、常温(例えば20℃~30℃)において一酸化炭素(CO)や二酸化炭素(CO)等のガスを吸収(吸着)することができ、70℃以上になると吸収(吸着)したガスを放出することができる。非水電解液中の塩化銅(I)錯体(例えば塩化銅(I)‐ピリジン錯体)の濃度は、例えば、0.01mol/L以上1mol/Lである。好ましくは、0.1mol/L以上0.8mol/L以下である。塩化銅(I)錯体の濃度が上記範囲にある場合、BP-オキサラト化合物の分解に基づいて発生するCOやCOを十分に吸収(吸着)することができる。また、非水電解液中の塩化銅(I)錯体の濃度は、オキサラト錯体化合物1mol/L当たり少なくとも16mol/Lであることが好ましい。これにより、BP-オキサラト化合物の分解に基づいて発生するほぼすべてのCOやCOは、塩化銅(I)錯体に吸収(吸着)されることとなる。
 上記非水溶媒(有機溶媒)としては、カーボネート類、エステル類、エーテル類、ニトリル類、スルホン類、ラクトン類等の非プロトン性溶媒を用いることができる。例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等のカーボネート類が例示される。かかる有機溶媒は、一種のみを単独で、または二種以上を組み合わせて用いることができる。
 また、上記支持塩(リチウム化合物)としては、例えば、LiPF、LiClO、LiAsF、Li(CFSON、LiBF、LiCFSO等のリチウム塩が例示される。かかる支持塩は、一種のみを単独で、または二種以上を組み合わせて用いることができる。特にLiPFが好ましい。支持塩の濃度は特に制限されないが、極端に低すぎると非水電解液に含まれる電荷担体(典型的にはリチウムイオン)の量が不足し、イオン伝導性が低下する傾向がある。またかかる濃度が極端に高すぎると、室温以下の温度域(例えば0℃~30℃)において非水電解液の粘度が高くなり、イオン伝導性が低下する傾向がある。このため、該支持塩の濃度は例えば、0.1mol/L以上(例えば0.8mol/L以上)であって、2mol/L以下(例えば1.5mol/L以下)とすることが好ましい。
 上記ガス発生剤としては、所定の電池電圧を超えた際に分解してガスを発生し得る化合物(即ち、酸化電位がリチウムイオン二次電池(密閉型非水電解質二次電池)の作動電圧以上であって、該電池が過充電状態となった場合に分解してガスを発生するような化合物)であれば、同様の用途で用いられているもののなかから一種または二種以上を特に限定することなく使用することができる。具体的には、ビフェニル化合物、アルキルビフェニル化合物、シクロアルキルベンゼン化合物、アルキルベンゼン化合物、有機リン化合物、フッ素原子置換芳香族化合物、カーボネート化合物、環状カルバメート化合物、脂環式炭化水素等の芳香族化合物が挙げられる。より具体的な化合物(および該化合物の有する酸化電位(vs.Li/Li))としては、ビフェニル(4.5V)、シクロヘキシルベンゼン(4.6V)、1-フルオロ-2-シクロヘキシルベンゼン(4.8V)、1-フルオロ-3-シクロヘキシルベンゼン(4.8V)等が例示される。なかでもシクロヘキシルベンゼンやビフェニルを好ましく用いることができる。
 ガス発生剤の添加量は特に限定されないが、極端に少なすぎる場合は過充電時におけるガス発生量が少なくなり、電流遮断機構が正常に作動しない虞がある。また信頼性を重視するあまり過剰量を添加すると電池性能が低下する虞がある。従って、非水電解液100質量%に対するガス発生剤の添加量は、0.1質量%以上(典型的には0.5質量%以上、例えば1質量%以上)であって、10質量%以下(典型的には5質量%以下、例えば4質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下)とすることが好ましい。ガス発生剤の添加量を上記範囲とすることで、高い信頼性と優れた電池性能とを両立させることができる。なお、ガス発生剤としてシクロヘキシルベンゼン(CHB)およびビフェニル(BP)を用いる場合には、シクロヘキシルベンゼンの非水電解液に対する添加量[質量%]をAとし、ビフェニルの非水電解液に対する添加量[質量%]をBとしたときの比であるA/Bが1~4(例えばA/Bは3)であることが好ましい。A/Bが上記範囲にある場合には、電池ケース内の圧力上昇時にはシクロヘキシルベンゼンおよびビフェニルの分解に基づくガスが良好に発生するため、電流遮断機構を迅速に作動させることができる。
 本実施形態に係る組立体70は、図2に示すように、正極64および負極84を含む積層若しくは捲回された電極体(捲回電極体)50と、非水電解液とを備える初期充電前の非水電解液二次電池組立体70である。非水電解液は、リンおよびホウ素の少なくとも一方を構成元素として含有するオキサラト錯体化合物と、少なくとも一酸化炭素および二酸化炭素を吸着可能な塩化銅(I)を構成要素とする錯体と、所定の電池電圧を超えた際に分解してガスを発生し得るガス発生剤と、を少なくとも含んでいる。
≪初期充電工程(S40)≫
 次に、初期充電工程(S40)について説明する。本実施形態においては、組立体70に対して所定の充電電圧まで初期充電を行うことによって、BP-オキサラト化合物由来の被膜を負極合材層86中の負極活物質の表面に形成する。
 本工程では、例えば、組立体70に対して凡そ0.1C~2Cの充電レートで電池使用時の上限電圧(例えば3.7V~4.1V)まで充電を行う。この初回充電中に、BP‐オキサラト化合物が分解され、BP‐オキサラト化合物由来の被膜が負極合材層86中の負極活物質の表面に形成される。BP‐オキサラト化合物の分解により電池ケース15内にはCOやCOが発生するが、非水電解液中には塩化銅(I)錯体が含まれているため、発生したCOやCOは塩化銅(I)錯体に吸収(吸着)される。これにより、電池ケース15の内圧の上昇を抑制することができる。この結果、COやCOの発生に伴う電池ケース15の形状(特に厚み方向の形状)の変形は防止される。従って、充放電工程の後に電池ケース15内で発生したガスを抜く必要がない。組立体70に対して上記充電を行った後に、凡そ0.1C~2Cの放電レートで所定の電圧(例えば3V~3.2V)まで放電を行う。また、上記充放電を複数回(例えば3回)繰り返すことが好ましい。このように組立体70に対して充放電処理を行うことによって該組立体70は使用可能な電池、即ちリチウムイオン二次電池(非水電解液二次電池)10となる(図1及び図2参照)。なお、「1C」とは正極の理論容量より予測した電池容量(Ah)を1時間で充電できる電流量を意味する。
 次に、ここで開示される製造方法によって製造されたリチウムイオン二次電池(非水電解液二次電池)10について説明する。
 本実施形態に係るリチウムイオン二次電池10は、図2に示すように、正極64および負極84とセパレータ90を含む積層若しくは捲回された電極体(ここでは捲回電極体)50と、非水電解液と、電極体50と非水電解液とを収容する電池ケース15とを備えている。非水電解液中には、少なくとも一酸化炭素および二酸化炭素を吸着可能な塩化銅(I)を構成要素とする錯体(例えば塩化銅(I)‐ピリジン錯体)と、上記充放電工程において分解されなかったBP‐オキサラト化合物が残存し得る。正極64は、正極集電体62と、該正極集電体62の表面上に形成された少なくとも正極活物質を含む正極合材層66と、を備えている。負極84は、負極集電体82と、該負極集電体82の表面上に形成された少なくとも負極活物質を含む負極合材層86と、を備えている。
 本実施形態に係るリチウムイオン二次電池10は、上記初期充電工程S40において、BP‐オキサラト化合物の還元分解によって生じたCOやCOを吸収(吸着)した塩化銅(I)錯体を非水電解液中に含んでいる。このため、電池ケース15の内圧の上昇は抑制されており、電池ケース15の形状(特に厚み方向の形状)の変形は防止されている。また、負極活物質の表面には、リンおよびホウ素の少なくとも一方を含む被膜が好ましい態様で形成されているため、かかるリチウムイオン二次電池10は優れた電池特性を示す。なお、被膜に含まれるリン(P)又はホウ素(B)の量は、被膜をICP(高周波誘導結合プラズマ)発光分析、イオンクロマトグラフィ等により分析することによって把握することができる。さらに、リチウムイオン二次電池10の電池電圧が所定の電池電圧を超えたときには、非水電解液中のガス発生剤が分解され、生じたガスによって電池ケース15内の内圧が高まることによって電流遮断機構31が作動される。このとき、非水電解液中の塩化銅(I)錯体に吸着されているCOやCOは塩化銅(I)錯体から電池ケース15内に放出されることとなる。このため、リチウムイオン二次電池10の電池電圧が所定の電池電圧を超えたときに電池ケース15内に存在し得るガス量は増加し、電流遮断機構31を迅速に作動させることができる。
 次に、上記リチウムイオン二次電池10を単電池とし、該単電池を複数備えてなる組電池(典型的には複数の単電池が直列に接続されてなる組電池)200の一例を説明する。本実施形態に係る単電池10では、ガスの発生に伴う電池ケース15の形状(特に厚み方向の形状)の変形が防止されているため、予め設定している拘束力で組電池200を安定して構築することができる。
 図4に示すように、この組電池200は、複数個(典型的には10個以上、好ましくは40~80個程度、例えば50個)のリチウムイオン二次電池(単電池)10を、それぞれの正極端子60および負極端子80が交互に配置されるように一つずつ反転させつつ、電池ケース15の幅広な面が対向する方向(積層方向)に配列されている。当該配列された単電池10間には、所定形状の冷却板110が挟み込まれている。この冷却板110は、使用時に各単電池10内で発生する熱を効率よく放散させるための放熱部材として機能するものであって、好ましくは単電池10間に冷却用流体(典型的には空気)を導入可能な形状(例えば、長方形状の冷却板の一辺から垂直に延びて対向する辺に至る複数の平行な溝が表面に設けられた形状)を有する。熱伝導性の良い金属製もしくは軽量で硬質なポリプロピレンその他の合成樹脂製の冷却板が好適である。
 上記配列させた単電池10および冷却板110の両端には、一対のエンドプレート(拘束板)120,120が配置されている。また、上記冷却板110とエンドプレート120との間には、長さ調整手段としてのシート状スペーサ部材150を一枚又は複数枚挟み込んでいてもよい。上記配列された単電池10、冷却板110およびスペーサ部材150は、両エンドプレート120,120の間を架橋するように取り付けられた締め付け用の拘束バンド130によって、該積層方向に所定の拘束圧が加わるように拘束されている。より詳しくは、拘束バンド130の端部をビス155によりエンドプレート120に締付且つ固定することによって、上記単電池等は、その配列方向に所定の拘束圧が加わるように拘束されている。これにより、各単電池10の電池ケース15の内部に収容されている捲回電極体50にも拘束圧がかかる。本実施形態の単電池10では、電池ケース15の形状の変形が防止されているため、各単電池10には実質的に同一の拘束圧が加わっている。そして、隣接する単電池10間において、一方の正極端子60と他方の負極端子80とが、接続部材(バスバー)140によって電気的に接続されている。このように各単電池10を直列に接続することにより、所望する電圧の組電池200が構築されている。
 以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。
[試験例1]
<例1>
[正極の準備]
 正極活物質としてのLiNi1/3Co1/3Mn1/3と、導電材としてのアセチレンブラック(AB)と、結着剤としてのPVDFとの質量比が90:8:2となるように秤量し、これら材料をNMPに分散させてペースト状の正極合材層形成用組成物を調製した。該組成物を厚さ15μmの正極集電体(アルミニウム箔)上に片面当たり塗布量25mg/cmで塗布して乾燥させた後、プレス処理を行って正極集電体上に合材密度が2.8g/cmの正極合材層が形成されたシート状の正極Aを作製した。
[負極の準備]
 天然黒鉛と、結着剤としてのSBRと、増粘材としてのCMCとの質量比が98:1:1となるように秤量し、これら材料をイオン交換水に分散させてペースト状の負極合材層形成用組成物を調製した。該組成物を厚さ10μmの負極集電体(銅箔)上に片面当たり塗布量20mg/cm塗布して乾燥させた後、プレス処理を行って負極集電体上に合材密度が1.4g/cm負極合材層が形成されたシート状の負極Aを作製した。
[セパレータの準備]
 多孔質ポリエチレン層の両面に多孔質ポリプロピレン層が形成された三層構造のセパレータAを準備した。セパレータAの厚みは20μm、セパレータAの長手方向の長さは1334mm、セパレータAの幅方向の長さは61mmであった。
[リチウムイオン二次電池(非水電解液二次電池)の作製]
 上記準備した正極Aと負極Aとの間にセパレータAを介在させて楕円状に捲回して例1に係る捲回電極体を作製した。この捲回電極体の正負の電極集電体の端部にそれぞれ電極端子を接合し、縦75mm、幅120mm、厚さ15mm、ケースの厚み1mmのアルミ製電池ケース内に該捲回電極体を収容した。次いで、上記電池ケース内に例1に係る非水電解液を注入して例1に係る組立体を作製した。例1に係る非水電解液は、ECとDMCとEMCとの体積比が3:4:3の非水溶媒に、添加剤としてLiPF(Cと、塩化銅(I)‐ピリジン錯体と、支持塩としてLiPFとを溶解させたものを使用した。例1に係る非水電解液中のLiPF(Cの濃度は0.0125mol/Lであり、塩化銅(I)‐ピリジン錯体の濃度は、0.12mol/Lであり、LiPFの濃度は1mol/Lであった。注入後に、例1に係る組立体に対して初回充放電を行った。即ち、25℃の温度条件下、1C(4A)の充電レートで4.1Vまで定電流定電圧で充電を行い10分間の休止の後、1C(4A)の放電レートで3Vまで定電流で放電を行い10分間の休止をした。このようにして、負極活物質の表面にLiPF(C由来の被膜が形成された負極を備える、例1に係るリチウムイオン二次電池を作製した。
<例2~例40>
 電池ケース内に注入する非水電解液中のLiPF(Cの濃度および塩化銅(I)‐ピリジン錯体の濃度を表1に示すものに変更した他は例1と同様にして、例2~例40に係る組立体およびリチウムイオン二次電池を作製した。なお、例8、16、24、32および40に係る非水電解液には、塩化銅(I)‐ピリジン錯体を添加しなかった。
Figure JPOXMLDOC01-appb-T000003
[ガス発生量の測定]
 上記作製した例1~例40に係る組立体について、アルキメデス法にて各組立体の体積を測定した。その後、初回充放電後の例1~例40に係るリチウムイオン二次電池について、アルキメデス法にて電池の体積を測定した。そして、初回充放電後の各例に係るリチウムイオン二次電池の体積A[mL]から、各例に係る組立体の体積B[mL]をそれぞれ差し引いて、初回充放電後におけるガス発生量(A-B)[mL]を算出した。測定結果を表1に示す。また、初回充放電後におけるガス発生量[mL]とガス吸着剤[mmol/g]との関係を図6に示す。なお、アルキメデス法とは、測定対象物(本例では、組立体とリチウムイオン二次電池)を、媒液(例えば、蒸留水やアルコール等)に浸漬し、測定対象物が受ける浮力を測定することにより、該測定対象物の体積を求める手法である。
 表1および図6に示すように、非水電解液中に塩化銅(I)‐ピリジン錯体を添加することによって、ガス発生量が減少していることが確認された。すなわち、非水電解液中に塩化銅(I)‐ピリジン錯体を添加することによって、電池ケースの内圧の上昇が抑制されていることが確認された。これは、LiPF(Cの分解に基づいて発生したCOやCOが塩化銅(I)‐ピリジン錯体に吸着(吸収)されたからである。
 また、上記アルミ製電池ケースを備える電池では、ガス発生量が2.2mLを超えると、電池ケースの形状(特に厚み方向の形状)が変形してしまい、該電池を複数個使用して予め設定した拘束力で組電池を構築することは困難であった。このため、該アルミ製電池ケース内に注入する非水電解液中のLiPF(Cの濃度は0.025mol/L以下である必要があった。しかしながら、非水電解液中にCa[N(SOCF]を添加することによって、電池ケース内に注入する非水電解液中のLiPF(Cの濃度を0.025mol/Lよりもさらに高くしても電池ケース内には少量のガスしか存在せず、電池ケースの内圧の上昇を抑えることができることが確認された。
[試験例2]
<例41~例46>
 電池ケース内に注入する非水電解液中の塩化銅(I)‐ピリジン錯体の濃度を0.2mol/Lとし、LiPF(Cの濃度を表2に示すものに変更した他は例1と同様にして、例41~例46に係るリチウムイオン二次電池を作製した。なお、例46に係る非水電解液には、LiPF(Cを添加しなかった。
Figure JPOXMLDOC01-appb-T000004
[初期反応抵抗測定]
 上記のように作製した例41~例46に係るリチウムイオン二次電池に対して、25℃の温度条件下において適当なコンディショニング処理(0.1Cの充電レートで4.1Vまで定電流定電圧で充電する操作と、0.1Cの放電レートで3.0Vまで定電流定電圧放電させる操作を3回繰り返す初期充放電処理)を行った後、SOC40%の充電状態に調整した。そして、例29~例34のリチウムイオン二次電池に対して-30℃の温度条件下、周波数0.001Hz~100000Hzにて交流インピーダンス測定を行い、得られたCole-Coleプロットの0.01Hz~30Hzにおける円弧(半円)の直径を測定し、その値を初期反応抵抗[Ω]とした。得られた抵抗値を表2および図7に示す。
[保存後反応抵抗測定]
 上記初期反応抵抗を測定した後の例41~例46に係るリチウムイオン二次電池について、SOC90%に調整した後、60℃の温度条件下で30日間保存した。保存後の例41~例46に係るリチウムイオン二次電池をSOC40%に調整した後、-30℃の温度条件下、周波数0.001Hz~100000Hzにて交流インピーダンス測定を行い、得られたCole-Coleプロットの0.01Hz~30Hzにおける円弧(半円)の直径を測定し、その値を保存後反応抵抗[Ω]とした。得られた抵抗値を表2および図7に示す。
[容量維持率測定]
 上記例41~例46に係るリチウムイオン二次電池について、60℃の温度条件下で30日間保存した後の容量維持率[%]を測定した。まず、25℃の温度条件下、上記例41~例46に係るリチウムイオン二次電池を1Cの充電レートで4.1Vまで定電流定電圧を3時間行い、10分間休止した。次に、1/3Cの放電レートで3Vまで定電流放電を6時間行い、10分間休止した。更に、1/3Cの放電レートで3Vまで定電流定電圧放電を4時間行い、10分間休止した。このときに得られる容量を初期電池容量とした。次に、初期電池容量を測定した各リチウムイオン二次電池について、SOC90%に調整した後、60℃の温度条件下で30日間保存した。保存後の例41~例46に係るリチウムイオン二次電池について、上記初期電池容量を測定した方法と同様の方法で、保存後の電池容量(保存後電池容量)を測定した。ここで、次式:{(保存後電池容量)/(初期電池容量)}×100;を、30日保存後の容量維持率[%]とした。測定結果を表2および図8に示す。
 表2および図7に示すように、初期反応抵抗については、非水電解液中に含まれるLiPF(Cの濃度が0.02mol/L~0.04mol/Lの場合に低い値を示すことが確認された。また、保存後反応抵抗については、非水電解液中に含まれるLiPF(Cの濃度が0.02mol以上の場合に低い値を示すことが確認された。また、表2および図8に示すように、容量維持率については、非水電解液中に含まれるLiPF(Cの濃度が0.02mol/L~0.04mol/Lの場合に高い値を示すことが確認された。以上より、非水電解液中に含まれるLiPF(Cの濃度が0.02mol/L~0.04mol/Lのときに、高い電池性能を示すことが確認された。
[試験例3]
<例47>
[リチウムイオン二次電池(非水電解液二次電池)の作製]
 上記準備した正極Aと負極Aとの間にセパレータAを介在させて楕円状に捲回して例47に係る捲回電極体を作製した。この捲回電極体の正負の電極集電体の端部にそれぞれ電極端子を接合し、縦75mm、幅120mm、厚さ15mm、ケースの厚み1mmのアルミ製電池ケース内に該捲回電極体を収容した。電池ケースの開口部付近に、該電池ケースの内圧が7.7×10Paを超えたときに作動する圧力作動型の電流遮断機構を設置したものを用いた。次いで、上記電池ケース内に例47に係る非水電解液を注入して例47に係る組立体を作製した。例47に係る非水電解液は、ECとDMCとEMCとの体積比が3:4:3の非水溶媒に、添加剤としてLiPF(Cと、塩化銅(I)‐ピリジン錯体と、支持塩としてLiPFと、ガス発生剤としてビフェニル(BP)とシクロヘキシルベンゼン(CHB)を溶解させたものを使用した。例47に係る非水電解液中のLiPF(Cの濃度は0.025mol/Lであり、塩化銅(I)‐ピリジン錯体の濃度は、0.2mol/Lであり、LiPFの濃度は1mol/Lであった。例47に係る非水電解液100質量%に対して、ビフェニルを2質量%、シクロヘキシルベンゼンを2質量%添加した。注入後に、例47に係る組立体に対して初回充放電を行った。即ち、25℃の温度条件下、1C(4A)の充電レートで4.1Vまで定電流定電圧で充電を行い10分間の休止の後、1C(4A)の放電レートで3Vまで定電流で放電を行い10分間の休止をした。このようにして、負極活物質の表面にLiPF(C由来の被膜が形成された負極を備える、例47に係るリチウムイオン二次電池を作製した。
<例48~例51>
 電池ケース内に注入する非水電解液中の塩化銅(I)‐ピリジン錯体の濃度と、LiPF(Cの濃度と、ガス発生剤の添加量とを表3に示すものに変更した他は例47と同様にして、例48~例51に係るリチウムイオン二次電池を作製した。なお、例49に係るリチウムイオン二次電池については、1gのセパレータAに対して1mmolの塩化銅(I)‐ピリジン錯体を担持させた。セパレータAの質量は1.55gであった。
Figure JPOXMLDOC01-appb-T000005
[過充電試験]
 上記作製した例47~例51に係るリチウムイオン二次電池に適当なコンディショニング処理(例えば、正極理論容量の1/10Cの充電レートで3時間の定電流(CC)充電を行い、さらに1/3Cの充電レートで4.1Vまで定電流で充電する操作と、1/3Cの放電レートで3.0Vまで定電流放電させる操作とを2~3回繰り返す初期充放電処理)を行った後、SOC100%の充電状態に調整した。上記調整後の各リチウムイオン二次電池に対して、25℃の温度条件下において、1Cの充電レートでSOC200%を上限としてSOC160%まで定電流充電を行い(即ち、充電が完了した後のリチウムイオン二次電池に強制的に充電電流を流し続ける試験である。)各電池の電流遮断機構(CID)が作動したときのSOCを確認した。その結果を表3および図9に示す。なお、例51に係るリチウムイオン二次電池では、電流遮断機構が作動する前に不具合(熱暴走による発煙)が発生した。
 表3および図9に示すように、例50に係る塩化銅(I)‐ピリジン錯体を含まないリチウムイオン二次電池では、SOCが155%以上にならなければ電流遮断機構が作動しないことが確認された。一方、例47に係る非水電解液中に塩化銅(I)‐ピリジン錯体を含むリチウムイオン二次電池では、SOCが137%ときに電流遮断機構が作動し、SOCが140%以下での電流遮断機構の作動を実現することができた。例47と例49に係るリチウムイオン二次電池によると、塩化銅(I)‐ピリジン錯体をセパレータに担持させるよりも非水電解液中に添加した場合に、電流遮断機構がより早く作動することが確認された。また、例48に係る非水電解液中に塩化銅(I)‐ピリジン錯体を含むリチウムイオン二次電池では、ガス発生剤の添加量が例50に係るリチウムイオン二次電池と比較して半分であるにもかかわらず、SOCが149%ときに電流遮断機構が作動することが確認された。すなわち、非水電解液中に塩化銅(I)‐ピリジン錯体を含むリチウムイオン二次電池では、従来のリチウムイオン二次電池と比較して、ガス発生剤の添加量を減少させることができる。なお、例51に係るリチウムイオン二次電池では、電流遮断機構が作動する前に不具合(熱暴走による発煙)が発生した。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
 本発明に係る製造方法によって得られる非水電解液二次電池は、電池抵抗の低減を実現すると共に、電池ケース内の圧力上昇時において十分なガス量の発生が確保された信頼性の高いものであることから、特に自動車等の車両に搭載される駆動用電源として好適に使用し得る。従って本発明は、図5に模式的に示すように、かかる非水電解液二次電池10(典型的には当該電池10を複数個直列接続してなる組電池200)を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料自動車のような電動機を備える自動車)100を提供する。
10 リチウムイオン二次電池(非水電解液二次電池)
31 電流遮断機構
40 安全弁
50 捲回電極体
62 正極集電体
64 正極
66 正極合材層
70 組立体
82 負極集電体
84 負極
86 負極合材層
90 セパレータ

Claims (15)

  1.  非水電解液二次電池であって、
     正極活物質を含む正極および負極活物質を含む負極を有する電極体と、非水電解液と、前記電極体と前記非水電解液とを収容する電池ケースと、を備えており、
     前記非水電解液は、少なくとも一酸化炭素および二酸化炭素を吸着可能な塩化銅(I)を構成要素とする錯体を含み、
     前記負極活物質の表面には、リンおよびホウ素の少なくとも一方を含む被膜が形成されている、非水電解液二次電池。
  2.  前記塩化銅(I)を構成要素とする錯体は、塩化銅(I)‐ピリジン錯体である、請求項1に記載の非水電解液二次電池。
  3.  前記非水電解液は、所定の電池電圧を超えた際に分解してガスを発生し得るガス発生剤をさらに含み、
     前記電池ケースは、前記ガスの発生に伴って前記電池ケース内の圧力が上昇した際に作動する電流遮断機構を備える、請求項1又は2に記載の非水電解液二次電池。
  4.  正極活物質を含む正極および負極活物質を含む負極を有する電極体と、非水電解液と、前記電極体および前記非水電解液を収容する電池ケースと、を備える非水電解液二次電池の製造方法であって、
     正極活物質を含む正極及び負極活物質を含む負極を準備すること、
     前記準備した正極及び負極を用いて電極体を作製すること、
     前記電極体を電池ケース内に収容し、リンおよびホウ素の少なくとも一方を構成元素として含有するオキサラト錯体化合物と、少なくとも一酸化炭素および二酸化炭素を吸着可能な塩化銅(I)を構成要素とする錯体と、を含む非水電解液を前記電池ケース内に注入して組立体を作製すること、
     前記組立体に対して所定の充電電圧まで初期充電を行うこと、
    を包含する、非水電解液二次電池の製造方法。
  5.  前記塩化銅(I)を構成要素とする錯体として、塩化銅(I)‐ピリジン錯体を用いる、請求項4に記載の製造方法。
  6.  前記非水電解液は、所定の電池電圧を超えた際に分解してガスを発生し得るガス発生剤をさらに含み、
     前記電池ケースは、前記ガスの発生に伴って前記電池ケース内の圧力が上昇した際に作動する電流遮断機構を備える、請求項4又は5に記載の製造方法。
  7.  前記非水電解液中の前記錯体の濃度は、前記オキサラト錯体化合物1mol/L当たり少なくとも16mol/Lである、請求項4から6のいずれか一項に記載の製造方法。
  8.  前記非水電解液中の前記オキサラト錯体化合物の濃度は、0.02mol/L~0.04mol/Lである、請求項4から7のいずれか一項に記載の製造方法。
  9.  前記オキサラト錯体化合物として、LiPF(Cを用いる、請求項4から8のいずれか一項に記載の製造方法。
  10.  正極および負極を有する電極体と、非水電解液と、前記電極体と前記非水電解液とを収容する電池ケースと、を備える初期充電前の非水電解液二次電池組立体であって、
     前記非水電解液は、リンおよびホウ素の少なくとも一方を構成元素として含有するオキサラト錯体化合物と、少なくとも一酸化炭素および二酸化炭素を吸着可能な塩化銅(I)を構成要素とする錯体と、を含む、非水電解液二次電池組立体。
  11.  前記塩化銅(I)を構成要素とする錯体は、塩化銅(I)‐ピリジン錯体である、請求項10に記載の非水電解液二次電池組立体。
  12.  前記非水電解液は、所定の電池電圧を超えた際に分解してガスを発生し得るガス発生剤をさらに含み、
     前記電池ケースは、前記ガスの発生に伴って前記電池ケース内の圧力が上昇した際に作動する電流遮断機構を備える、請求項10又は11に記載の非水電解液二次電池組立体。
  13.  前記非水電解液中の前記濃度は、前記オキサラト錯体化合物1mol/L当たり少なくとも16mol/Lである、請求項10から12のいずれか一項に記載の非水電解液二次電池組立体。
  14.  前記非水電解液中の前記オキサラト錯体化合物の濃度は、0.02mol/L~0.04mol/Lである、請求項10から13のいずれか一項に記載の非水電解液二次電池組立体。
  15.  前記オキサラト錯体化合物は、LiPF(Cである、請求項10から14のいずれか一項に記載の非水電解液二次電池組立体。
PCT/JP2013/080684 2013-01-23 2013-11-13 非水電解液二次電池及びその製造方法 WO2014115403A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380070823.5A CN104919640B (zh) 2013-01-23 2013-11-13 非水电解液二次电池及其制造方法
US14/761,487 US10177408B2 (en) 2013-01-23 2013-11-13 Non-aqueous electrolyte secondary battery and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-010394 2013-01-23
JP2013010394A JP5725381B2 (ja) 2013-01-23 2013-01-23 非水電解液二次電池及びその製造方法

Publications (1)

Publication Number Publication Date
WO2014115403A1 true WO2014115403A1 (ja) 2014-07-31

Family

ID=51227207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080684 WO2014115403A1 (ja) 2013-01-23 2013-11-13 非水電解液二次電池及びその製造方法

Country Status (4)

Country Link
US (1) US10177408B2 (ja)
JP (1) JP5725381B2 (ja)
CN (1) CN104919640B (ja)
WO (1) WO2014115403A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3343687A4 (en) * 2015-08-28 2019-09-04 Mitsui Chemicals, Inc. WATER-FREE ELECTROLYTE SOLUTION FOR BATTERIES AND LITHIUM CENTRIC BATTERY

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4006935A4 (en) * 2019-08-20 2022-10-12 GS Yuasa International Ltd. METHOD FOR PRODUCING AN ELECTRICITY STORAGE ELEMENT AND ELECTRICITY STORAGE ELEMENT
US11411260B2 (en) * 2019-10-23 2022-08-09 Ford Global Technologies, Llc Lithium-ion cell containing solid adsorbent and method of producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047416A (ja) * 2002-05-23 2004-02-12 Sanyo Electric Co Ltd 非水電解質電池
JP2010198858A (ja) * 2009-02-24 2010-09-09 Toyota Central R&D Labs Inc リチウムイオン二次電池
JP2011527495A (ja) * 2008-07-11 2011-10-27 コミサリア ア レネルジ アトミ−ク エ オエネルジー アルテルナティヴ 陰イオン界面活性剤を含むイオン性液状電解質およびそれらを含む蓄電池のような電気化学的デバイス
JP2012059489A (ja) * 2010-09-08 2012-03-22 Panasonic Corp ラミネート電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW370471B (en) * 1996-02-29 1999-09-21 Mitsubishi Gas Chemical Co Novel adsorbent for carbon monoxide and method
US6767671B2 (en) * 2000-07-14 2004-07-27 Mitsubishi Chemical Corporation Non-aqueous electrolytic solution and secondary battery containing same
JP2009543293A (ja) * 2006-06-27 2009-12-03 ボストン−パワー,インコーポレイテッド リチウムイオンセル用一体型電流遮断デバイス
KR100793011B1 (ko) * 2007-02-16 2008-01-08 에스케이에너지 주식회사 리튬이차전지의 제조방법
JP2008262859A (ja) * 2007-04-13 2008-10-30 Toyota Central R&D Labs Inc 非水電解液及びリチウムイオン二次電池
CN100585937C (zh) * 2007-10-12 2010-01-27 广州市鹏辉电池有限公司 非水溶剂电解液及其电池
JP5573313B2 (ja) * 2010-04-06 2014-08-20 セントラル硝子株式会社 非水電解液電池用電解液及びこれを用いる非水電解液電池
JP5988134B2 (ja) * 2011-05-11 2016-09-07 株式会社Gsユアサ 蓄電素子
JP5796417B2 (ja) * 2011-08-31 2015-10-21 セントラル硝子株式会社 非水電解液電池用電解液及び非水電解液電池
US8889046B2 (en) * 2011-12-06 2014-11-18 International Business Machines Corporation Visual indication of improperly processed plastic parts
CN103208652B (zh) * 2012-01-16 2017-03-01 株式会社杰士汤浅国际 蓄电元件、蓄电元件的制造方法及非水电解液

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047416A (ja) * 2002-05-23 2004-02-12 Sanyo Electric Co Ltd 非水電解質電池
JP2011527495A (ja) * 2008-07-11 2011-10-27 コミサリア ア レネルジ アトミ−ク エ オエネルジー アルテルナティヴ 陰イオン界面活性剤を含むイオン性液状電解質およびそれらを含む蓄電池のような電気化学的デバイス
JP2010198858A (ja) * 2009-02-24 2010-09-09 Toyota Central R&D Labs Inc リチウムイオン二次電池
JP2012059489A (ja) * 2010-09-08 2012-03-22 Panasonic Corp ラミネート電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3343687A4 (en) * 2015-08-28 2019-09-04 Mitsui Chemicals, Inc. WATER-FREE ELECTROLYTE SOLUTION FOR BATTERIES AND LITHIUM CENTRIC BATTERY

Also Published As

Publication number Publication date
CN104919640A (zh) 2015-09-16
US20170005368A1 (en) 2017-01-05
CN104919640B (zh) 2017-03-29
JP2014143062A (ja) 2014-08-07
JP5725381B2 (ja) 2015-05-27
US10177408B2 (en) 2019-01-08

Similar Documents

Publication Publication Date Title
JP5674057B2 (ja) リチウムイオン二次電池用負極活物質
JP5668993B2 (ja) 密閉型非水電解質二次電池及びその製造方法
JP5822089B2 (ja) 密閉型リチウム二次電池
JP5854279B2 (ja) 非水電解液二次電池の製造方法
JP5818116B2 (ja) 密閉型リチウム二次電池とその製造方法
JP6024990B2 (ja) 非水電解液二次電池の製造方法
KR20150139780A (ko) 비수 전해액 이차 전지 및 당해 전지의 제조 방법
CN105359308A (zh) 非水电解质二次电池
WO2014027532A1 (ja) リチウム二次電池およびその製造方法
KR101846767B1 (ko) 비수 전해질 2차 전지
JP2013247009A (ja) 非水電解液二次電池の製造方法
WO2016056181A1 (en) Nonaqueous electrolyte secondary battery
JP2012238461A (ja) 二次電池及びその製造方法
JP5725381B2 (ja) 非水電解液二次電池及びその製造方法
JP6120065B2 (ja) 非水電解液二次電池及びその製造方法
JP5975291B2 (ja) 非水電解液二次電池の製造方法
JP5904368B2 (ja) 非水電解液二次電池及びその製造方法
JP2014130729A (ja) 非水電解液二次電池の製造方法
JP2017130317A (ja) 捲回電極体を有する非水電解液二次電池
JP2019145276A (ja) 二次電池
JP6120068B2 (ja) 非水電解液二次電池の製造方法
JP2019021584A (ja) 非水電解液二次電池
JP6731155B2 (ja) 非水電解質二次電池
JP2018097980A (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873090

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14761487

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13873090

Country of ref document: EP

Kind code of ref document: A1