WO2013036077A2 - 불소수지 함유 연성 금속 적층판 - Google Patents

불소수지 함유 연성 금속 적층판 Download PDF

Info

Publication number
WO2013036077A2
WO2013036077A2 PCT/KR2012/007234 KR2012007234W WO2013036077A2 WO 2013036077 A2 WO2013036077 A2 WO 2013036077A2 KR 2012007234 W KR2012007234 W KR 2012007234W WO 2013036077 A2 WO2013036077 A2 WO 2013036077A2
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide layer
fluororesin
dispersed
flexible metal
polyamic acid
Prior art date
Application number
PCT/KR2012/007234
Other languages
English (en)
French (fr)
Other versions
WO2013036077A3 (ko
Inventor
박영석
박순용
장세명
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120098872A external-priority patent/KR101299652B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201280052750.2A priority Critical patent/CN103958188B/zh
Priority to JP2014529622A priority patent/JP5989778B2/ja
Publication of WO2013036077A2 publication Critical patent/WO2013036077A2/ko
Publication of WO2013036077A3 publication Critical patent/WO2013036077A3/ko

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/12Polyvinylhalogenides containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2379/00Other polymers having nitrogen, with or without oxygen or carbon only, in the main chain
    • B32B2379/08Polyimides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/024Dielectric details, e.g. changing the dielectric material around a transmission line
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • Y10T428/31544Addition polymer is perhalogenated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31721Of polyimide

Definitions

  • the present invention relates to a fluororesin-containing flexible metal laminate. More specifically, the present invention relates to a flexible metal laminate that can be applied for flexible printed circuit boards.
  • the flexible copper foil laminate includes a polyimide layer and a copper foil layer, and may be classified into an adhesive type and a non-adhesive type depending on whether an epoxy adhesive layer exists between the polyimide layer and the copper foil layer.
  • the non-bonding flexible copper foil laminate is a polyimide directly bonded to the surface of the copper foil.
  • non-bonding flexible copper foil laminates are mainly used in accordance with the trend of miniaturization, thinning, and excellent ion migration characteristics of electronic products.
  • US Patent No. 7026032 discloses a method of lowering the dielectric constant by dispersing a fine powder of a fluorine-based polymer in a polyimide.
  • the above invention has a problem in that the adhesive force to the coverlay and the prepreg are weakened, and the adhesive force to the ACF is also weakened.
  • the CTE values shown in the embodiment of the present invention are so large that there is a limit to being used as a flexible metal laminate.
  • there is a problem that the bloso resin is exposed to the surface and there is a risk that the fluorine resin melts in the high temperature storage step and the copper foil circuit is separated from the insulator.
  • the present invention provides a low dielectric constant flexible metal laminate having low dielectric constant and excellent printing applicability.
  • a flexible metal-clad laminate according to the "one aspect of the invention, the first metal layer; A first polyimide layer; A polyimide layer in which a fluororesin formed on the first polyimide layer is dispersed; And a second polyimide layer formed on the polyimide layer in which the fluororesin is dispersed, wherein in the polyimide bag in which the fluororesin is dispersed, the content per unit volume of the fluororesin is total thickness from the surface of the polyimide layer. At a depth of 40 to 60%, than at a depth of 5 to 10%.
  • the polyimide layer in which the fluororesin is dispersed may have a content per unit volume of the smallest fluororesin at a depth of 5 to 10% of the total thickness from the surface of the polyimide layer.
  • the polyimide layer in which the fluororesin is dispersed may have a content per unit volume of the largest fluororesin at a depth of 40 to 60% of the total thickness from the surface of the polyimide layer.
  • the polyimide layer in which the fluorine resin is dispersed may increase in the content of the fluorine resin per unit volume at a depth of 5 to 15% of the 1 ⁇ 2 thickness from the surface of the polyimide layer.
  • the flexible metal laminate may further include a second metal layer formed on the second polyimide layer.
  • the ten point average roughness (Rz) of the surface of the first metal layer and the second metal layer may be 0.5 to 2.5um, respectively:
  • the thickness of the first polyimide layer and the second polyimide layer may be 1 to 10um, respectively.
  • the thickness of the polyimide layer in which the fluororesin is dispersed may be 5 to 50 ⁇ m.
  • the fluororesin is polytetrafluoroethylene (PTFE), perfluoroalkoxy (PFA), fluorinated ethylene propylene (FEP), chlorotrifluoroethylene (CTFE),
  • TFE / CTFE tetrafluoroethylene / chlorotrifluoroethylene
  • ECTFE ethylene chlorotrifluoroethylene
  • PVDF polyvinylidene fluoride
  • the fluororesin may be included in 10 to 60% by weight of the polyimide layer in which the fluororesin is dispersed.
  • the polyimide layer including the first polyimide layer, the polyimide layer in which the fluororesin is dispersed, and the second polyimide layer has a dielectric constant of 2.2 to 3.2, a dielectric loss coefficient of 0.001 to 0.007, and a thermal expansion coefficient of 15 to 35 ppm.
  • the first metal layer and the second metal layer may be thin films of one, two or more alloys selected from the group consisting of copper, iron, nickel, titanium, aluminum, silver, and gold.
  • a method of manufacturing a flexible metal laminate comprising: coating a first polyamic acid varnish on a first metal layer; remind Coating a polyamic acid varnish having a fluororesin powder dispersed on the first polyamic acid varnish; And coating and drying and curing the second polyamic acid varnish on the polyamic acid varnish having the fluororesin powder dispersed therein.
  • the method of manufacturing the flexible metal laminate may further comprise bonding a second metal layer on the second polyamic acid varnish.
  • first polyamic acid varnish and the second polyamic acid varnish may be prepared by stirring a mixture including an aromatic tetracarboxylic anhydride, an aromatic diamine, and an organic solvent.
  • the aromatic tetracarboxylic anhydride is pyromellitic dianhydride (PMDA), biphenyl-tetracarboxylic acid dianhydride (BPDA), 4,4'-Benzophenonetetracarboxylic Dianhydride (BTDA), 4,4'-Oxydiphthalic anhydride (ODPA), 4,4 At least one selected from the group consisting of '-(Hexafluoroisopropylidene) diphthalic Anhydride (6FDA), and 4,4'-(4,4'-isopropylidene-diphenoxy) bis (phthalic anhydride) (BP AD A).
  • PMDA pyromellitic dianhydride
  • BPDA biphenyl-tetracarboxylic acid dianhydride
  • BTDA 4,4'-Benzophenonetetracarboxylic Dianhydride
  • ODPA 4,4'-Oxydiphthalic anhydride
  • BP AD A 4,4 At least one
  • aromatic tetracarboxylic anhydride may be included in 0.90 to 1.10 equivalents based on the aromatic diamine.
  • the aromatic diamine is phenylenediamine (PDA), oxydianiline (ODA), o-phenylenediamine (OPD), Meta phenylene Diamine (MPD), l, 3-bis (4-aminophenoxy) benzene (TPER), 4,4 ' -bis (4-aminophenoxy) benzene (TPEQ), 2,2'-Dimethyl-4,4'-diamino biphenyl (m-TB-HG), 2,2'-Bis (Trifluoromethyl) benzidine (TFDB), l, 3'-Bis (3-aminophenoxy) benzene (APBN), 3,5-
  • DABTF Diaminobenzotrifluoride
  • BAPP 2,2-bis (4- [4-aminophenoxy] -phenyl) propane
  • the organic solvent is ⁇ , ⁇ -dimethylformamide, ⁇ , ⁇ -dimethylacetamide, ⁇ , ⁇ -diethylacetamide, ⁇ , ⁇ -dimethylmethylacetamide, ⁇ -methyl-2-py Lollidon, ⁇ -methylcaprolactam, 1,3-dimethyl- -imidazolidone, 1,2-dimethoxetane, 1,3-dioxane, 1,4-dioxane, pyridine, picoline, At least one selected from the group consisting of dimethylsulfoxide, dimethylsulfone, m-cresol, P-chlorophenol, and anisole.
  • the organic solvent may be included in 70 to 90% by weight increase based on the total weight of the polyamic acid varnish.
  • the polyamic acid varnish in which the fluororesin powder is dispersed is dispersed in an organic solvent with a polyester-based dispersant, and then a mixture containing an aromatic tetracarboxylic anhydride and an aromatic diamine is added and stirred. Can be prepared.
  • the fluororesin powder may have an average particle diameter of 0.1 to lO.Oum.
  • the drying may be performed at 100 to 200 ° C.
  • the curing may be performed for 5 to 30 minutes at 300 to 400 ° C.
  • the bonding of the second metal layer may be performed at 300 to 4001 :.
  • the first metal layer and the second metal layer may be a thin film of one or two or more alloys selected from the group consisting of copper, iron, nickel, titanium, aluminum, silver, and gold.
  • the flexible metal laminate according to the present invention has a structure in which a polyimide layer is formed on both outer sides of the polyimide layer in which the fluororesin is dispersed, thereby improving adhesion to the metal layer and at the same time improving dielectric properties.
  • the surface precipitation of can be presented billion.
  • the use of a polyester dispersant in the polyimide layer in which the fluororesin is dispersed enables uniform dispersion of the fluororesin, thereby improving heat resistance and optimizing the coefficient of thermal expansion.
  • the flexible metal laminate according to the present invention has a low dielectric constant, low dielectric loss, and low hygroscopicity, but has the effect of adding high heat resistance, chemical resistance, high bending resistance, and dimensional stability, which are characteristics of the existing polyimide insulator.
  • FIG. 1 is a cross-sectional view of a flexible metal laminate according to an embodiment of the present invention.
  • Figure 2 shows the pattern of the electrodes to form for measuring the dielectric constant and dielectric loss coefficient of the flexible metal laminate according to the present invention.
  • 3 shows a cross-sectional SEM photograph and an EDS result of the cross-section flexible copper foil laminate obtained in Example 4.
  • FIG. 1 is a cross-sectional view of a flexible metal laminate according to an embodiment of the present invention.
  • Figure 2 shows the pattern of the electrodes to form for measuring the dielectric constant and dielectric loss coefficient of the flexible metal laminate according to the present invention.
  • 3 shows a cross-sectional SEM photograph and an EDS result of the cross-section flexible copper foil laminate obtained in Example 4.
  • the present invention the first metal layer; A first polyimide layer; A polyimide layer in which a fluororesin formed on the first polyimide layer is dispersed; And a second polyimide layer formed on the polyimide layer in which the fluororesin is dispersed, wherein in the polyimide layer in which the fluororesin is dispersed, the content per unit volume of the fluororesin is a total thickness from the surface of the polyimide layer. It provides a flexible metal laminate that is larger at a depth of 40 to 60% than at a depth of 5 to 10%.
  • the present invention in another aspect, the step of coating the first polyamic acid varnish on the first metal layer; Coating a polyamic acid varnish having a fluororesin powder dispersed on the first polyamic acid varnish; And coating and drying and curing the second polyamic acid varnish on the polyamic acid varnish having the fluororesin powder dispersed therein.
  • a method of manufacturing the flexible metal laminate and the flexible metal laminate according to the embodiment of the present invention will be described in more detail.
  • 1 metal layer A first polyimide layer; A polyimide layer in which a fluororesin formed on the first polyimide layer is dispersed; And a second polyimide layer formed on the polyimide layer in which the fluororesin is dispersed, wherein in the polyimide layer in which the fluororesin is dispersed, per unit volume of the fluororesin
  • a soft metal laminate is provided in which the content is greater at a depth of about 40 to 60%, or a depth of about 45 to 55% than at a depth of about 5 to 10% of the total thickness from the surface of the polyimide layer.
  • the present invention is characterized in that the polyimide insects in contact with the metal layer are not dispersed in the fluororesin, but the fluororesin is dispersed in the polyimide layer, which is an intermediate layer. Due to this structure, the dielectric properties may be improved due to the fluorine resin, the adhesion to the metal layer may be improved due to both outer layers in which the fluorine resin is not dispersed, and the surface precipitation of the bloso resin may be suppressed. In addition, since both outer layers are made of existing polyimide, the electrical characteristics such as migration also have excellent characteristics.
  • the content per unit volume of the fluororesin is relatively smaller within about 5 to 10% of the total thickness at the surface, At a depth of 40 to 60% of the total thickness at the surface, the content per unit volume of the fluororesin becomes large.
  • the precipitation of the fluorocarbon resin on the surface of the polyimide layer can be suppressed, and the low dielectric constant can be effectively achieved by the inclusion of the fluorine resin, and the decrease in adhesion between the polyimide layers due to the surface precipitation of the fluororesin and the peeling can be suppressed.
  • the surface precipitation of a fluororesin can have the effect that the heat resistance of a polyimide layer or a flexible metal laminated board can fall.
  • the polyimide in which the fluororesin as an intermediate layer is dispersed
  • the content per unit volume of fluororesin in the layer is about 40 to 60% deeper, in a polyimide layer in which the fluororesin is dispersed, than at a depth of about 5 to 10% of the total thickness from the surface of the polyimide layer, or
  • the polyimide layer in which the fluororesin is dispersed can be made larger at a depth of about 45 to 55% and the content per unit volume of the smallest fluororesin at a depth of about 5 to 10% of the total thickness from the surface of the polyimide layer.
  • the polyimide layer in which the fluororesin is dispersed may have a total thickness of about 40 to about 40 mm from the surface of the polyimide layer. It can have a content per unit volume of the largest fluororesin at a depth of 60%, and the polyimide layer in which the fluororesin is dispersed per unit volume at a depth of about 5 to 15% of the total thickness from the surface of the polyimide layer
  • the content of fluorocarbon resin may increase with depth.
  • the flexible metal laminate may further include a second metal layer formed on the second polyimide layer.
  • the above-mentioned flexible metal laminate is a single-sided flexible metal laminate having one metal layer, and in the case of further comprising a second metal layer formed on the second polyimide layer, it becomes a double-sided flexible metal laminate.
  • the average roughness (Rz) of the ten-point the first metal layer and second metal layer in one embodiment of the present invention may be from about 0.5 to '2.5um, or about 1 to 2 um, respectively. This is because if the average roughness (Rz) is less than about 0.5um, there is a problem that the adhesion with the polyimide layer is lowered, and if the average roughness (Rz) is greater than about 2.5um, the surface roughness increases and the transmission loss increases in the high frequency region. to be.
  • the thicknesses of the first polyimide layer and the second polyimide layer are each about
  • the thickness of the first polyimide layer and the second polyimide layer is less than about l.Oum, there is a problem of low adhesion to the metal layer.
  • the thickness is greater than about l.Oum, the polyimide layer in which the fluororesin is dispersed Since the thickness becomes relatively thin, there is a problem that it is difficult to achieve the low dielectric constant of the entire polyimide layer.
  • the thickness of the polyimide layer in which the fluororesin is dispersed may be about 5 to 50 um, or about 10 to 45 um, or about 15 to 40 um. If the thickness of the polyimide layer in which the fluororesin is dispersed is less than about 5 n, since the thickness of the polyimide layer having a low dielectric constant becomes relatively thin, there is a problem that it is difficult to achieve low dielectric constant of the entire polyimide layer, and the thickness is weak. If more than 50um there is a problem that it is difficult to proceed with the curing process in the manufacturing process.
  • the fluororesin is polytetrafluoroethylene (PTFE), perfluoroalkoxy (PFA), fluorinated ethylene propylene (FEP), chlorotrifluoroethylene (CTFE), tetrafluoroethylene / At least one selected from the group consisting of chlorotrifluoroethylene (TFE / CTFE), ethylene chlorotrifluoroethylene (ECTFE), and polyvinylidene fluoride (PVDF).
  • the fluororesin may be included in about 10 to 60% by weight, or about 20 to 50% by weight of the polyimide layer in which the fluororesin is dispersed. If the fluorine resin is used at less than about 10% by weight, the desired level of low dielectric constant cannot be obtained. If the fluorine resin is used at more than about 60% by weight, the film is easily torn or broken.
  • the polyimide layer including the first polyimide layer, the polyimide layer in which the bloso resin is dispersed, and the second polyimide layer has a dielectric constant of 2.2 to 3.2, or 2.5 to 2.9, dielectric loss factor of 0.001 to 0.007,
  • the thermal expansion coefficient may be 15 to 35 ppm.
  • the first metal layer and the second metal layer may be a thin film of one, two or more alloys selected from the group consisting of copper, iron, nickel, titanium, aluminum, silver, and gold.
  • the metal layer may be a copper thin film, that is, a copper foil layer having excellent electrical conductivity and low cost.
  • coating the first polyamic acid varnish on the first metal layer Coating a polyamic acid varnish having a fluororesin powder dispersed on the first polyamic acid varnish; And coating and drying and curing the second polyamic acid varnish on the polyamic acid varnish having the fluororesin powder dispersed therein.
  • the present invention does not use polyimide directly, but forms a polyimide through curing after coating using a polyamic acid varnish.
  • the present invention uses two kinds of polyamic acid varnish.
  • the first polyamic acid varnish and the second polyamic acid varnish are pure polyamic acid varnishes, and serve to improve adhesion to the metal layer. To be coated.
  • the polyamic acid varnish in which the fluororesin powder is dispersed is a polyester-based dispersant in which the fluororesin powder is dispersed in an organic solvent.
  • a mixture containing aromatic tetracarboxylic anhydride, and aromatic diamine can be prepared by adding and stirring.
  • the first and second polyimide layer and fluorine through drying and curing A flexible metal laminate of one side including a polyimide layer in which resin is dispersed may be formed. Therefore, in the drying or curing process, it is possible to effectively suppress surface precipitation of the fluororesin powder by heat on both surfaces of the polyamic acid varnish in which the first and second polyamic acid varnishes are dispersed. Specifically, by laminating in the three-layer structure as described above, the fluorine resin of the intermediate layer can be suppressed from flowing out to the surface by the difference in surface energy by the polyimide layers on both sides.
  • the fluororesin powder can be more uniformly dispersed in the polyamic acid varnish, so that surface precipitation of the fluororesin powder can be more effectively suppressed.
  • one side of the flexible metal lamella can be obtained in which the content per unit volume of the fluororesin is greater at the core of the polyimide layer, for example, at a depth of 40 to 60% of the total thickness at the surface.
  • the manufacturing method of the flexible metal laminate will be described in detail.
  • the method of manufacturing a flexible metal laminate may further comprise bonding the second metal layer on the second polyamic acid varnish.
  • the above-mentioned manufacturing method of the flexible metal laminate is a method of manufacturing a single-sided flexible metal laminate having one metal layer, and in the case of further comprising a second metal worm formed on the second polyimide layer, a double-sided flexible metal laminate may be manufactured. It can be.
  • the first polyamic acid varnish and the second polyamic acid varnish may be formed by reacting aromatic tetracarboxylic anhydride and aromatic diamine under an organic solvent.
  • the aromatic Tetracarboxylic anhydride and aromatic diamine are subsequently cured to form a polyimide layer.
  • the aromatic tetracarboxylic anhydride is pyromellitic dian ydride (PMDA), biphenyl-tetracarboxylic acid dian ydride (BPDA), 4,4'- Benzophenonetetracarboxylic Dianhydride (BTDA), 4,4'-Oxydiphthalic anhydride (ODPA), 4 , 4 '-(Hexafluoroisopropylidene) diphthalic Anhydride (6FDA), and 4,4'-(4,4'-isopropylidene-diphenoxy) bis (phthalic anhydride) (BPADA).
  • PMDA pyromellitic dian ydride
  • BPDA biphenyl-tetracarboxylic acid dian ydride
  • BTDA 4,4'- Benzophenonetetracarboxylic Dianhydride
  • ODPA 4,4'-Oxydiphthalic anhydride
  • 6FDA 4,
  • the aromatic tetracarboxylic anhydride may be included in about 0.90 to 1.10 equivalents based on the aromatic diamine. It may also be included in an amount of about 0.95 to 1.05 equivalents, more preferably about 0.96 to 1.00 equivalents.
  • the aromatic diamine is phenylenediamine (PDA), oxydianiline (ODA), o-phenylenediamine (OPD), Meta phenylene Diamine (MPD), l, 3-bis (4-aminophenoxy) benzene (TPER), 4,4 ' -bis (4-aminophenoxy) benzene (TPEQ), 2,2'-Dimethyl-4,4'-diamino biphenyl (m-TB-HG), 2,2'-Bis (Trifluoromethyl) benzidine (TFDB), 1, 3'-Bis (3-aminophenoxy) benzene (APBN), 3,5-
  • DABTF Diaminobenzotrifluoride
  • BAPP 2,2-bis ( 4- [4-aminophenoxy] -phenyl) propane
  • the organic solvent is not particularly limited, ⁇ , ⁇ - dimethylformamide, ⁇ , ⁇ -dimethylacetamide, ⁇ , ⁇ -dimethylacetamide, ⁇ , ⁇ -dimethylmethoxyacetamide Amide, ⁇ -methyl-2-pyridone, ⁇ -methylcaprolactam, 1,3-dimethyl-2-imidazolidone, 1,2-dimethoxyethane, 1,3-dioxane , 1, At least one selected from the group consisting of 4-dioxane, pyridine, picoline, dimethylsulfoxide, dimethylsulfone, m-cresol, P-chlorophenol, and anisole.
  • the organic solvent may be included in about 70 to 90% by weight, or about 75 to 85% by weight based on the total weight of the polyamic acid varnish.
  • the polyamic acid varnish in which the fluororesin powder is dispersed is dispersed in an organic solvent with a polyester-based dispersant, and then aromatic It can be prepared by adding and stirring tetracarboxylic anhydride, and a mixture comprising aromatic diamine.
  • a polyester dispersant in the polyimide layer in which the fluororesin is dispersed enables uniform dispersion of the fluororesin, thereby improving heat resistance and optimizing the coefficient of thermal expansion.
  • the fluorine resin powder may have an average particle diameter of about 0.1 to lO.Oum.
  • the average particle diameter of the fluororesin powder may be about 0.1 to 7.0um, more preferably about 0.1 to 5.0um. If the average particle size is less than about O.lum, the surface area of the fluororesin powder is increased, so that the dispersibility is not good. If the average particle diameter is greater than about 10um, the fluororesin powders are agglomerated on the outer surface of the polyimide layer. Because.
  • the drying may be performed at about 100 to 200 ° C, curing may be performed at about 300 to 40 CTC for about 5 to 30 minutes.
  • the polyamic acid may be modified into a polyimide to produce a flexible metal laminate.
  • a polyamic acid varnish was prepared in the same manner as in Example 1 except that 38 g of PTFE powder (average particle diameter: 0.1 to 2 ⁇ m) was added thereto.
  • Example 3 Preparation of Polyamic Acid Varnishes
  • Example 3 After coating the polyamic acid varnish prepared in Example 3 to copper foil and dried for 5 minutes at 120 ° C., the polyamic acid varnish dispersed in the fluorine resin prepared in Example 1 on a dry polyamic acid varnish 120 It was dried for 10 minutes at ° C. Next, the polyamic acid varnish prepared in Example 3 was coated on the polyamic acid varnish dispersed between the fluororesin and then dried at 120 ° C. for 10 minutes. Thereafter, the temperature was started at room temperature in nitrogen Aubon, and cured at 350 ° C. for 30 minutes to prepare a cross-sectional soft metal laminate.
  • FIG. 4 is an enlarged cross-sectional SEM photograph of the laminate of FIG. 3.
  • Example 5 Fabrication of Double-Sided Flexible Metal Laminates (1)
  • the polyamic acid varnish prepared in Example 3 was coated on copper foil and dried at 120 ° C. for 5 minutes, and the polyamic acid varnish prepared in Comparative Example 2 was then dried at 120 ° C. for 10 minutes.
  • the polyamic acid varnish prepared in Example 3 was coated on the polyamic acid varnish prepared in Comparative Example 1 and then dried at 120 ° C for 10 minutes. After that, the temperature was started at room temperature in nitrogen Aubon and cured at 350 ° C. for 30 minutes. Next, using a roll laminator, a new copper foil was bonded to the polyamic acid varnish at the top at 350 ° C.
  • the dielectric constant, dielectric loss factor, water absorption, CTE, heat resistance, and peel strength of the metal laminates prepared according to Examples 4, 5, 6, and Comparative Examples 3, 4 were measured according to the following methods, respectively. (1) Measurement of dielectric constant and dielectric loss coefficient
  • the flexible metal laminate was formed with a pattern having a main electrode (a) diameter of 3 cm, a ground electrode (b) and a negative electrode (c) having a diameter of 4 cm, and a distance of 1 mm between the main electrode and the ground electrode.
  • the specimens were cut into 5 X 5 cm, and the 1 MHz dielectric constant and dielectric loss were measured using L, C and R measuring instruments (Hewlett-Packard Co., HP4194A). If the cross section is a flexible metal-clad laminate (c) the silver paste was measured to make a 15 to 30 minutes at 0 ° C curing sub-electrode (c) was coated.
  • the peeling strength of the copper foil was measured using the tensile strength meter (UTM).
  • the endurance time was measured after placing a sample cut to a size of 5 X 5 cm in a bath of 288 ° C.
  • the flexible metal laminates prepared according to Examples 4, 5, and 6 were found to have superior dielectric constant and dielectric loss coefficient than Comparative Examples 3 and 4.
  • the flexible metal laminates prepared according to Examples 4, 5, and 6 can be uniformly dispersed in the fluorine resin by using a polyester-based dispersant in the polyimide layer in which the fluorine resin is dispersed, so that the heat resistance is excellent, and the coefficient of thermal expansion (CTE ) Is optimized.
  • the flexible metal laminate tube according to the present invention has a structure in which polyimide layers are formed on both outer sides of the polyimide layer in which the fluororesin powder is dispersed, thereby providing adhesion to the copper foil layer.
  • the dielectric properties can be improved, and the hygroscopic property has low hygroscopic properties and high heat resistance, chemical resistance, high bending resistance, and dimensional stability of the existing polyimide insulator.

Abstract

본 발명은 연성 인쇄회로 기판용으로 적용할 수 있는 저유전율을 가지는 연성 금속 적층판에 관한 것이다 본 발명의 일 측면에 따른 연성 금속 적층판은, 제1금속층; 제1폴리이미드층; 상기 제1폴리이미드층 상에 형성된 불소수지가 분산된 폴리이미드층; 및 상기 불소수지가 분산된 폴리이미드층 상에 형성된 제2폴리이미드층을 포함하고, 상기 불소수지가 분산된 폴리이미드층에서, 상기 불소수지의 단위 부피당 함량은 상기 폴리이미드층의 표면으로부터 전체 두께의 5 내지 10%의 깊이에서보다, 40 내지 60%의 깊이에서 더 크게 되는 연성 금속 적층판을 제공할 수 있다.

Description

【명세서】
【발명의 명칭】
불소수지 함유 연성 금속 적층판
【기술분야】
본 발명은 불소수지 함유 연성 금속 적층판에 관한 것이다. 보다 구체적으로, 본 발명은 연성 인쇄회로 기판용으로 적용할 수 있는 연성 금속 적층판에 관한 것이다.
【배경기술】
연성 금속 적층판은 주로 연성 인쇄회로 기판의 기재로 사용되고, 그 외에 면 발열체 전자파 실드 재료, 플랫 케이블, 포장 재료 등에 사용된다. 이러한 연성 금속 적층판 중 연성 동박 적층판은 폴리이미드충과 동박층으로 구성되는데, 폴리이미드층과 동박층 사이에 에폭시 접착제층이 존재하는가에 따라 접착형과 비접착형으로 나뉠 수 있다. 여기에서 비접착형 연성 동박 적층판은 동박 표면에 폴리이미드를 직접 접착시킨 것으로, 최근 전자제품이 소형화, 박형화되고, 우수한 이온 마이그레이션 특성을 요구하는 추세에 따라 비접착형 연성 동박 적층판이 주로 사용되고 있다.
또한, 전자기기의 소형화, 고속화 및 다양한 기능들이 결합하는 추세에 맞춰 전자기기 내부 또는 외부와의 신호 전달 속도가 향상되어야 하는 요구가 있어왔다. 이에 따라 기존의 절연체보다 유전율과 유전손실계수가 더 낮은 절연체를 이용한 인쇄회로 기판의 개발이 요구되고 있다. 최근 이러한 경향을 반영하여 연성 인쇄회로 기판에서도 종래의 폴리이미드보다 유전율이 낮고 흡습에 의한 영향이 적은 절연체인 액정폴리머 (LCP, Liquid Crystalline Polymer)를 사용하려는 시도가 있어왔다. 그러나, LCP는 유전율 (Dk=2.9)이 폴리이미드의 유전율 (Dk=3.2)보다 매우 우수하지는 않고, 내열성이 너무 낮으며, 기존 폴리아미드를 이용했던 PCB 제조공정과의 호환성이 떨어진다는 문제가 있었다. 따라서, LCP 보다는 기존에 사용되던 폴리이미드의 유전율을 낮추려는 연구가 진행되고 있었다.
예를 들어, 미국특허등록 4816516호에서는, 폴리이미드와 불소계 고분자를 흔합하여 몰드.성형품을 만드는 기술내용이 나타나있다. 그러나, 상기 발명은 몰드 성형품으로 개발된 것으로 열팽창을이 크고,
Tg (유리전이온도)가 낮은 조성의 폴리이미드를 직접 사용하였다는 점에서 한계가 있었다. 또한, 인쇄회로 기판에 사용하기 위해서는 얇은 박막 형태로의 제조가 필요하나, 상기 발명에서는 박막 형태의 금속 적층판에 대한 내용은 개시되지 아니하였다.
또한, 미국특허등록 7026032호에서는 폴리이미드에 불소계 고분자의 미세분말을 폴리이미드에 분산시켜 유전율을 낮추는 방법이 나타나있다. 그러나, 상기 발명은 커버레이와의 접착력이나 프리프레그와의 접착력이 약해지고, ACF와의 접착력도 약해진다는 문제가 있다. 또한, 상기 발명의 실시예에서 나타난 CTE 값들은 너무 크기 때문에 연성 금속 적층판으로 사용되기에는 한계가 있다. 또한, 블소 수지가 표면에 노출되어 있어 고온의 수납공정에서 불소 수지가 녹아서 동박 회로가 절연체로부터 박리될 위험성이 있다는 문제가 있었다.
【발명의 내용】
【해결하려는 과제】
본 발명은 낮은 유전율을 나타내면서도 인쇄희로 기판의 적용성이 우수한 저유전율 연성 금속 적층판을 제공하는 것이다.
【과제의 해결 수단】
본 발명의 '일 측면에 따른 연성 금속 적층판은, 제 1 금속층; 제 1 폴리이미드층; 상기 제 1 폴리이미드층 상에 형성된 불소수지가 분산된 폴리이미드층; 및 상기 불소수지가 분산된 폴리이미드층 상에 형성된 제 2 폴리이미드층 을 포함하고, 상기 불소수지가 분산된 폴리이미드충에서, 상기 불소수지의 단위 부피당 함량은 상기 폴리이미드층의 표면으로부터 전체 두께의 5 내지 10%의 깊이에서보다, 40 내지 60%의 깊이에서 더 크게 될 수 있다.
상기에서, 불소수지가 분산된 폴리이미드층은 상기 폴리이미드층의 표면으로부터 전체 두께의 5 내지 10%의 깊이에서 가장 작은 불소수지의 단위 부피당 함량을 가질 수 있다. 그리고, 상기 불소수지가 분산된 폴리이미드층은 상기 폴리이미드층의 표면으로부터 전체 두께의 40 내지 60%의 깊이에서 가장 큰 불소수지의 단위 부피당 함량을 가질 수 있다.
또한, 상기 불소수지가 분산된 폴리이미드층은 상기 폴리이미드층의 표면으로부터 ½체 두께의 5 내지 15%의 깊이에서 단위부피당 불소수지의 함량이 깊이에 따라 점증할 수 있다.
상기에서, 연성 금속 적층판은 제 2 폴리이미드층 상에 형성된 제 2금속층을 더 포함할 수 있다.
상기에서, 상기 제 1 금속층 및 제 2 금속층 표면의 십점 평균조도 (Rz)는 각각 0.5 내지 2.5um일 수 있다:
또한, 상기 제 1 폴리이미드층 및 제 2폴리이미드층의 두께는 각각 1 내지 10um 일 수 있다.
그리고, 상기 불소수지가 분산된 폴리이미드층의 두께는 5 내지 50um 일 수 있다.
또한, 상기 불소수지는 폴리테트라플루오로에틸렌 (PTFE), 퍼플루오로알콕시 (PFA), 플루오리네이티드 에틸렌 프로필렌 (FEP), 클로로트리플루오로에틸렌 (CTFE),
테트라플루오로에틸렌 /클로로트리플루오로에틸렌 (TFE/CTFE), 에틸렌 클로로트리플루오로에틸렌 (ECTFE), 및 폴리플루오린화비닐리덴 (PVDF)로 구성되는 군으로부터 선택된 하나 이상일 수 있다.
아울러, 상기 불소수지는 상기 불소수지가 분산된 폴리이미드층 중 10 내지 60중량 %로 포함될 수 있다.
또한, 상기 제 1 폴리이미드층, 불소수지가 분산된 폴리이미드층, 및 제 2 폴리이미드층을 포함하는 폴리이미드층은 1MHz 에서 유전율 2.2 내지 3.2, 유전손실계수 0.001 내지 0.007, 열팽창 계수 15 내지 35ppm일 수 있다. 그리고, 상기 제 1 금속층 및 제 2 금속층은 구리, 철, 니켈, 티타늄, 알루미늄, 은, 및 금으로 구성되는 군으로부터 선택되는 1 종, 또는 2 종 이상의 합금의 박막일 수 있다.
본 발명의 다른 측면에 따른 연성 금속 적층판의 제조방법은, 제 1 금속층 상에 제 1 폴리아믹산 바니시를 코팅하는 단계; 상기 제 1 폴리아믹산 바니시 상에 불소수지 분말이 분산된 폴리아믹산 바니시를 코팅 하는 단계; 및 상기 불소수지 분말이 분산된 폴리아믹산 바니시 상에 제 2 폴리아믹산 바니시를 코팅 후 건조 및 경화하는 단계를 포함한다.
상기에서 , 상기 연성 금속 적층판의 제조방법은 제 2 폴리 아믹산 바니 시 상에 제 2 금속층을 접합시키는 단계를 더 포함할 수 있다.
또한, 상기 계 1 폴리아믹산 바니시 및 제 2 폴리아믹산 바니시는 방향족 테트라카르복실산 무수물, 방향족 디 아민, 및 유기용매를 포함하는 흔합물을 교반하여 제조될 수 있다.
여기서, 상기 방향족 테트라카르복실산 무수물은 pyromellitic dianhydride (PMDA), biphenyl-tetracarboxylic acid dianhydride (BPDA), 4,4'- Benzophenonetetracarboxylic Dianhydride (BTDA), 4,4'-Oxydiphthalic anhydride (ODPA), 4,4'-(Hexafluoroisopropylidene)diphthalic Anhydride (6FDA), 및 4,4'-(4,4'- isopropylidene-diphenoxy)bis(phthalic anhydride) (BP AD A)로 구성 되는 군으로부터 선택되는 하나 이상일 수 있다.
여 기서, 상기 방향족 테트라카르복실산 무수물은 상기 방향족 디아민에 대하여 0.90 내지 1.10 당량으로 포함될 수 있다.
여기서, 상기 방향족 디 아민은 phenylenediamine(PDA), oxydianiline (ODA), o-phenylenediamine (OPD), Meta phenylene Diamine (MPD), l,3-bis(4- aminophenoxy)benzene (TPER), 4,4'-bis(4-aminophenoxy)benzene (TPEQ), 2,2'- Dimethyl-4,4'-diamino biphenyl (m-TB-HG), 2,2'-Bis(Trifluoromethyl) benzidine (TFDB), l,3'-Bis(3-aminophenoxy)benzene (APBN), 3,5-
Diaminobenzotrifluoride(DABTF), 및 2,2-bis(4-[4-aminophenoxy]- phenyl)propane(BAPP) 로 구성되는 군으로부터 선택되는 하나 이상일 수 있다.
여기서 , 상기 유기용매는 Ν,Ν-디 메틸포름아미드, Ν,Ν- 디메틸아세트아미드, Ν,Ν-디에틸아세트아미드, Ν,Ν-디 메틸메록시아세트아미드, Ν-메틸 -2-피를리돈, Ν-메틸카프로락탐, 1,3-디 메틸 - -이 미다졸리돈, 1,2- 디메특시에탄, 1,3-디옥세인, 1,4-디옥세인, 피리딘, 피콜린, 다메틸설폭사이드, 디 메틸설폰, m-크레졸, P-클로로페놀, 및 애니솔로 구성되는 군으로부터 선택되는 하나 이상일 수 있다. 여기서 , 상기 유기용매는 상기 폴리아믹산 바니시 전체 중량 기준으로 70 내지 90 증량 %로 포함될 수 있다.
그리고, 상기 불소수지 분말이 분산된 폴리아믹산 바니시는 폴리에스테르계 분산제로 유기용매에 불소수지 분말을 분산시 킨 후, 방향족 테트라카르복실산 무수물, 및 방향족 디아민을 포함하는 흔합물을 첨가 및 교반하여 제조될 수 있다.
또한, 상기 불소수지 분말은 평균 입경 이 0.1 내지 lO.Oum 일 수 있다. 또한, 상기 건조는 100 내지 200 °C 에서 수행될 수 있다.
그리고, 상기 경화는 300 내지 400°C에서 5 분 내지 30 분 동안 수행될 수 있다.
또한, 상기 제 2 금속층의 접합은 300 내지 4001:에서 수행될 수 있다. 그리고, 상기 제 1 금속층 및 제 2 금속층은 구리, 철, 니 켈, 티타늄, 알루미늄, 은, 및 금으로 구성되는 군으로부터 선택되는 1 종, 또는 2 종 이상의 합금의 박막일 수 있다.
【발명의 효과】
본 발명 에 따른 연성 금속 적층판은 불소수지가 분산된 폴리 이미드층의 양 외곽에 폴리 이미드층이 형성되는 구조를 가짐으로써 , 금속층과의 접 착력을 높임과 동시에 유전특성 이 향상될 수 있고, 불소수지의 표면 석출을 억 제시 킬 수 있다.
또한, 불소수지가 분산된 폴리 이미드층에서 폴리에스테르계 분산제 사용으로 불소수지의 균일한 분산이 가능해 내열성 향상, 및 열팽창 계수 최 적화가 가능한 효과가 있다.
아울러 , 본 발명에 따른 연성 금속 적층판은 저유전율, 저유전손실, 및 저흡습성을 가지면서도 기존 폴리 이 미드 절연체의 특성 인 고내열성 , 내화학성 , 고굴곡성, 및 치수 안정성을 가자는 효과가 있다.
【도면의 간단한 설명】
도 1 은, 본 발명 의 일 구현예에 따른 연성 금속 적층판의 단면도이다. 도 2 는, 본 발명에 따른 연성 금속 적층판의 유전상수 및 유전손실계수 측정을 위해 형성하는 전극들의 패턴 모양을 나타낸 것이다. 도 3 은, 실시예 4 에서 얻어진 단면 연성 동박 적층판의 단면 SEM사진 및 EDS 결과를 나타낸 것이다.
도 4는, 도 3의 적층판 단면 SEM사진을 확대하여 나타낸 것이다. 【발명을 실시하기 위한 구체적인 내용】
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 본 발명은, 제 1 금속층; 제 1 폴리이미드층; 상기 제 1 폴리이미드층 상에 형성된 불소수지가 분산된 폴리이미드층; 및 상기 불소수지가 분산된 폴리이미드층 상에 형성된 제 2 폴리이미드층올 포함하고, 상기 불소수자가 분산된 폴리이미드층에서, 상기 불소수지의 단위 부피당 함량은 상기 폴리이미드층의 표면으로부터 전체 두께의 5 내지 10%의 깊이에서보다, 40 내지 60%의 깊이에서 더 크게 되는 연성 금속 적층판을 제공한다.
또한 본 발명은, 제 1금속층 상에 제 1폴리아믹산 바니시를 코팅하는 단계; 상기 제 1폴리아믹산 바니시 상에 불소수지 분말이 분산된 폴리아믹산 바니시를 코팅하는 단계; 및 상기 불소수지 분말이 분산된 폴리아믹산 바니시 상에 제 2 폴리아믹산 바니시를 코팅 후 건조 및 경화하는 단계를 포함하는 연성 금속 적층판의 제조방법을 제공한다. 이하, 발명의 구현예에 따른 연성 금속 적층판과 연성 금속 적층판의 제조방법에 대하여 보다 상세하게 설명한다.
발명의 일 구현예에 따르면, 1 금속층; 제 1 폴리이미드층; 상기 제 1 폴리이미드층 상에 형성된 불소수지가 분산된 폴리이미드층; 및 상기 불소수지가 분산된 폴리이미드층 상에 형성된 제 2폴리이미드층을 포함하고, 상기 불소수지가 분산된 폴리이미드층에서, 상기 불소수지의 단위 부피당 함량은 상기 폴리이미드층의 표면으로부터 전체 두께의 약 5 내지 10%의 깊이에서보다, 약 40 내지 60%의 깊이, 또는 약 45 내지 55%의 깊이에서 더 크게 되는 연성 금속 적층판이 제공된다.
본 발명은 상기와 같이 금속층과 접촉하는 폴리이미드충들은 불소수지가 분산되어 있지 아니하고, 중간층인 폴리이미드층에 불소수지가 분산되어 있는 구조를 특징으로 한다. 이러한 구조로 인하여 불소수지로 인해 유전특성이 향상될 수 있고, 불소수지가 분산되어 있지 아니한 양 외곽층으로 인해 금속층과의 접착력이 향상될 수 있으며, 블소수지의 표면 석출을 억제할 수 있다. 또한, 양 외곽층이 기존의 폴리이미드로 이루어져 있기 때문에, 마이그레이션 등의 전기적 특성도 우수한 특징을 가지게 된다. 구체적으로, 불소수지의 단위 부피당 함량이 표면에서 보다 커지는 종래 기술과는 달리, 표면에서 전체 두께의 약 5 내지 10% 이내에서는 상대적으로 불소 수지의 단위 부피당 함량이 작아지며, 중심부, 예를 들어, 표면에서 전체 두께의 40 내지 60% 깊이에서는 불소 수지의 단위 부피당 함량이 커지게 된다.
따라서, 불소수지가 폴리이미드층 표면으로 석출되는 것을 억제하여, 불소 수지의 함유에 따른 저유전율 달성이 효과적으로 가능하고, 불소수지의 표면 석출에 따른 폴리이미드 층간의 접착력 저하나 박리를 억제할 수 있다. 또한, 불소수지의 표면 석출에 의해, 폴리이미드층 또는 연성 금속 적층판의 내열^이 저하되는 것을 억제할 수 있다는 효과를 가질 수 있다.
상기와 같이, 양측에 폴리이미드층이 형성되어 있어 불소수지의 표면 측으로의 유출을 방지하고 폴리에스테르 분산제 사용으로 블소수지의 균일한 분산이 가능하다는 구조적 특성 때문에, 중간층인 불소수지가 분산된 폴리이미드층에서 불소수지의 단위 부피당 함량은, 상기 불소수지가 분산된 폴리이미드층에서, 상기 폴리이미드층의 표면으로부터 전체 두께의 약 5 내지 10%의 깊이에서보다, 약 40 내지 60%의 깊이, 또는 약 45 내지 55%의 깊이에서 더 크게 될 수 있고, 불소수지가 분산된 폴리이미드층은 상기 폴리이미드층의 표면으로부터 전체 두께의 약 5 내지 10%의 깊이에서 가장 작은 불소수지의 단위 부피당 함량을 가질 수 있으며, 불소수지가 분산된 폴리이미드층은 상기 폴리이미드층의 표면으로부터 전체 두께의 약 40 내지 60%의 깊이에서 가장 큰 불소수지의 단위 부피당 함량을 가질 수 있고, 또한, 상기 불소수지가 분산된 폴리이미드층은 상기 폴리이미드층의 표면으로부터 전체 두께의 약 5 내지 15%의 깊이에서 단위부피당 불소수지의 함량이 깊이에 따라 점증할 수 있다.
한편, 본 발명의 일 구현예에 따르면 상기 연성 금속 적층판은 제 2 폴리이미드층 상에 형성된 제 2 금속층을 더 포함할 수 있다. 상기에서 언급한 연성 금속 적층판은 금속층이 한 층인 단면 연성 금속 적층판이고, 제 2 폴리이미드층 상에 형성된 제 2 금속층을 더 포함하는 경우에는 양면 연성 금속 적층판이 된다.
본 발명의 일 구현예에서 제 1 금속층 및 제 2 금속층 표면의 십점 평균조도 (Rz)는 각각 약 0.5 내지 '2.5um, 또는 약 1 내지 2 um 일 수 있다. 이는 평균조도 (Rz)가 약 0.5um 미만인 경우는 폴리이미드층과의 접착력이 낮아지는 문제가 있고, 약 2.5um 를 초과하는 경우는 표면 거칠기가 증가하여 고주파 영역에서 전송손실이 커지는 문제점이 있기 때문이다.
또한, 상기 제 1폴리이미드층 및 제 2폴리이미드층의 두께는 각각 약
1.0 내지 lOum, 또는 약 2.0 내지 9 um 일 수 있다. 제 1 폴리이미드층 및 제 2 폴리이미드층의 두께가 약 l.Oum 미만인 경우는 금속층과의 접착력이 낮아지는 문제가 있고, 두께가 약 lO.Oum 이상인 경우는 불소수지가 분산된 폴리이미드층의 두께가 상대적으로 얇아지는 것이기 째문에 전체 폴리이미드층의 저유전율을 달성하기 어렵다는 문제점이 있다.
그리고, 상기 불소수지가 분산된 폴리이미드층의 두께는 약 5 내지 50um, 또는 약 10 내지 45 um, 또는 약 15 내지 40 um 일 수 있다. 불소수지가 분산된 폴리이미드층의 두께가 약 5 n 미만인 경우에는 유전율이 낮은 폴리이미드층의 두께가 상대적으로 얇아지는 것이기 때문에 전체 폴리이미드층의 저유전율을 달성하기 어렵다는 문제점이 있고, 두께가 약 50um 초과일 경우는 제조공정에서 경화 공정을 진행하기가 어려워지는 문제가 있다.
또한, 상기 불소수지는 폴리테트라플루오로에틸렌 (PTFE), 퍼플루오로알콕시 (PFA), 플루오리네이티드 에틸렌 프로필렌 (FEP), 클로로트리플루오로에틸렌 (CTFE), 테트라플루오로에틸렌 / 클로로트리플루오로에틸렌 (TFE/CTFE), 에틸렌 클로로트리플루오로에틸렌 (ECTFE), 및 폴리플루오린화비닐리덴 (PVDF)으로 구성되는 군으로부터 선택된 하나 이상일 수 있다.
아울러, 상기 불소수지는 상기 불소수지가 분산된 폴리이미드층 중 약 10 내지 60 중량%, 또는 약 20 내지 50 중량。/。로 포함될 수 있다. 불소수지를 약 10 중량 % 미만으로 사용하면 원하는 수준의 저유전율을 얻을 수 없고, 약 60 증량% 초과로 사용하면 필름이 잘 찢어지거나 부서지는 문제가 있기 때문이다.
또한, 상기 제 1 폴리이미드층, 블소수지가 분산된 폴리이미드층, 및 제 2 폴리이미드층을 포함하는 폴리이미드층은 1MHz 에서 유전율 2.2 내지 3.2, 또는 2.5 내지 2.9, 유전손실계수 0.001 내지 0.007, 열팽창 계수 15 내지 35ppm일 수 있다.
그리고, 상기 제 1 금속층 및 제 2 금속층은 구리, 철, 니켈, 티타늄, 알루미늄, 은, 및 금으로 구성되는 군으로부터 선택되는 1 종, 또는 2 종 이상의 합금의 박막일 수 있다. 바람직하게는 상기 금속층은 전기전도도가 우수하고, 가격이 저렴한 구리 박막, 즉 동박층 일 수 있다.
또한, 발명의 일 구현예에 따르면, 제 1 금속층 상에 제 1 폴리아믹산 바니시를 코팅하는 단계; 상기 제 1폴리아믹산 바니시 상에 불소수지 분말이 분산된 폴리아믹산 바니시를 코팅하는 단계; 및 상기 불소수지 분말이 분산된 폴리아믹산 바니시 상에 제 2 폴리아믹산 바니시를 코팅 후 건조 및 경화하는 단계를 포함하는 연성 금속 적층판의 제조방법이 제공된다.
상기와 같이 본 발명은 폴리이미드를 직접 사용하지 아니하고, 폴리아믹산 바니시를 사용하여 코팅 후 경화를 통해 폴리이미드를 형성하게 된다. 또한, 본 발명에서는 폴리아믹산 바니시 두 종류를 사용한다. 제 1 폴리아믹산 바니시 및 계 2 폴리아믹산 바니시는 순수 폴리아믹산 바니시로서 금속층과 접착력을 향상시키는 역할을 하며, 불소수지 분말이 분산된 폴리아믹산 바니시는 제 1 폴리아믹산 바니시 및 제 2 폴리아믹산 바니시 중간에 코팅되는 것이다.
이러한 제조 방법에서, 상기 불소수지 분말이 분산된 폴리아믹산 바니시는 폴리에스테르계 분산제로 유기용매에 불소수지 분말을 분산시킨 후, 방향족 테트라카르복실산 무수물, 및 방향족 디아민을 포함하는 흔합물을 첨가 및 교반하여 제조될 수 있다.
이러한 다른 측면에 따른 제조 방법에서는, 불소수지 분말이 분산된 폴리아믹산 바니시 양 면에 제 1 및 제 2 폴리아믹산 바니시를 코팅한 후, 건조 및 경화를 통해 제 1 및 제 2 폴리이미드층과, 불소수지가 분산된 폴리이미드층을 포함하는 일 측면의 연성 금속 적층판을 형성할 수 있다. 따라서, 상기 건조나 경화 과정에서, 제 1 및 제 2 폴리아믹산 바니시가 불소수지 분말이 분산된 폴리아믹산 바니시의 양면에서 불소 수지 분말이 열에 의해 표면 석출되는 것을 효과적으로 억제할 수 있다. 구체적으로, 상기와 같은 3 층 구성으로 적층됨으로써 양측의 폴리이미드층에 의해 중간층의 불소수지가 표면에너지 차이에 의해 표면으로 유출되는 것을 억제할 수 있다.
또한, 선택적으로 폴리에스테르계 분산제를 사용하여, 상기 폴리아믹산 바니시 내에 불소수지 분말을 보다 균일하게 분산시킬 수 있으므로, 상기 불소 수지 분말의 표면 석출을 더욱 효과적으로 억제할 수 있다.
그 결과, 불소 수지의 단위 부피당 함량이 폴리이미드층의 증심부, 예를 들어, 표면에서 전체 두께의 40 내지 60% 깊이에서 보다 크게 되는 일 측면의 연성 금속 적충판이 얻어질수 있다. 이하, 연성 금속 적층판의 제조방법을 상세히 설명한다.
상기에서, 연성 금속 적층판의 제조방법은 제 2 폴리아믹산 바니시 상에 제 2 금속층을 접합시키는 단계를 더 포함할 수 있다. 상기에서 언급한 연성 금속 적층판의 제조방법은 금속층이 한 충인 단면 연성 금속 적층판을 제조하는 방법이고, 제 2 폴리이미드층 상에 형성된 제 2 금속충을 더 포함하는 경우에는 양면 연성 금속 적층판을 제조할 수 있는 것이다.
본 발명의 일 구현예에서, 상기 제 1 폴리아믹산 바니시 및 제 2 폴리아믹산 바니시는 방향족 테트라카르복실산 무수물, 및 방향족 디아민을 유기용매 하에서 반웅시켜 형성될 수 있다. 상기 방향족 테트라카르복실산 무수물과 방향족 디아민은 후에 경화를 거 쳐 폴리 이미드층을 형성하게 된다.
여기서, 상기 방향족 테트라카르복실산 무수물은 pyromellitic dian ydride (PMDA), biphenyl-tetracarboxylic acid dian ydride (BPDA), 4,4'- Benzophenonetetracarboxylic Dianhydride (BTDA), 4,4'-Oxydiphthalic anhydride (ODPA), 4,4'-(Hexafluoroisopropylidene)diphthalic Anhydride (6FDA), 및 4,4'-(4,4'- isopropylidene-diphenoxy)bis(phthalic anhydride) (BPADA)로 구성되는 군으로부터 선택되는 하나 이상일 수 있다.
여기서, 상기 방향족 테트라카르복실산 무수물은 상기 방향족 디아민에 대하여 약 0.90 내지 1.10 당량으로 포함될 수 있다. 또한, 바람직하게는 약 0.95 내지 1.05 당량, 더욱 바람직하게는 약 0.96 내지 1.00 당량으로 포함될 수 있다.
여 기서, 상기 방향족 디아민은 phenylenediamine(PDA), oxydianiline (ODA), o-phenylenediamine (OPD), Meta phenylene Diamine (MPD), l,3-bis(4- aminophenoxy)benzene (TPER), 4,4'-bis(4-aminophenoxy)benzene (TPEQ), 2,2'- Dimethyl-4,4'-diamino biphenyl (m-TB-HG), 2,2'-Bis(Trifluoromethyl) benzidine (TFDB), 1,3' -Bis(3 -aminophenoxy)benzene (APBN), 3,5-
Diaminobenzotrifluoride(DABTF), 및 2,2-bis(4-[4-aminophenoxy]- phenyl)propane(BAPP) 로 구성되는 군으로부터 선택되는 하나 이상일 수 있다.
여기서, 상기 유기용매는 특별히 제한되지는 아니하나, Ν,Ν- 디 메틸포름아미드, Ν,Ν-디 메틸아세트아미드, Ν,Ν-디 에 틸아세트아미드, Ν,Ν- 디 메틸메록시아세트아미드, Ν-메틸 -2-피를리돈, Ν-메틸카프로락탐, 1,3-디 메틸- 2-이 미다졸리돈, 1,2-디 메록시 에탄, 1,3-디옥세인, 1,4-디옥세인, 피 리딘, 피콜린, 디메틸설폭사이드, 다메틸설폰, m-크레졸, P-클로로페놀, 및 애니솔로 구성 되는 군으로부터 선택되는 하나 이상일 수 있다.
또한, 상기 유기용매는 상기 폴리아믹산 바니시 전체 중량 기준으로 약 70 내지 90 중량 %, 또는 약 75 내지 85 중량%로 포함될 수 있다.
그리고, 상기 불소수지 분말이 분산된 폴리아믹산 바니시는 폴리에스테르계 분산제로 유기용매에 불소수지 분말을 분산시 킨 후, 방향족 테트라카르복실산 무수물, 및 방향족 디아민을 포함하는 흔합물을 첨가 및 교반하여 제조될 수 있다. 불소수지가 분산된 폴리이미드층에서 폴리에스테르계 분산제 사용으로 불소수지의 균일한 분산이 가능해 내열성 향상, 및 열팽창 계수 최적화가 가능한 효과가 있다.
그리고, 상기 불소수지 분말은 평균 입경이 약 0.1 내지 lO.Oum 일 수 있다. 또한, 상기 불소수지 분말의 평균 입경은 바람직하게는 약 0.1 내지 7.0um, 더욱 바람직하게는 약 0.1 내지 5.0um 일 수 있다. 이는 평균 입경이 약 O.lum 미만인 경우는 불소수지 분말의 표면적이 커져서 분산성이 좋지 아니한 문제가 있고, 약 10um를 초과하는 경우는 폴리이미드층 외관에 서로 뭉친 불소수지 분말들이 나타나게 되는 문제점이 있기 때문이다.
또한, 상기 건조는 약 100 내지 200 °C 에서 수행될 수 있으며, 경화는 약 300 내지 40CTC에서 약 5 분 내지 30 분 동안 수행될 수 있다. 상기와 같은 경화에 의해 폴리아믹산이 폴리이미드로 변성되어 연성 금속 적층판이 제조될 수 있다.
또한, 상기 제 2 금속층의 접합은 고온 라미네이션 방법에 의해 수행될 수 있으며, 약 300 내지 400°C에서 수행될 수 있다. 이하, 본 발명의 바람직한 실시예를 첨부도면을 참조하여 상세히 설명하기로 한다. 다만, 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다 할 것이다 실시예 1 : 불소수지 분말이 분산된 폴리아믹산바니시의 제조 (1) 1L PE bottle 에 질소 충전 후, DMAc 300g, PTFE 분말 (평균 입경 0.1 내지 2um) 57g, 폴리에스테르계 분산제인 polycaprolactone diol (Mn=2000) 5.7g 및 볼 밀 200g 을 넣고, 고속 볼 밀 기기에서 교반하면서 PTFE 를 분산시켰다. 분산 후, PTFE 가 분산된 용액에 6FDA 4.49g, PMDA 19.86g, 및 TFDB 32.41g 을 넣고 50°C에서 10 시간 동안 교반하며 반응시켜, 점도 약 15000cps의 폴리아믹산 바니시를 수득하였다. 실시예 2: 불소수지 분말이 분산된 폴리아믹산바니시의 제조 (2)
PTFE 분말 (평균 입경 0.1 내지 2um)을 38g 을 넣는 것을 제외하고는 실시예 1과 동일하게 폴리아믹산 바니시를 제조하였다. 실시예 3: 폴리아믹산바니시의 제조
500mL 의 등근 바닥 플라스크에 DMAc 를 200g 넣은 후, PMDA 12.07g, BAPP 23.18g 올 넣고 50°C에서 10 시간 동안 질소를 홀려주면서 교반기를 사용하여 교반하면서 반응시켜, 점도 3,000cps 정도의 폴리아믹산 용액을 얻었다. 실시예 4: 단면 연성 금속적층판제조
실시예 3 에서 제조된 폴리아믹산 바니시를 동박에 코팅한 후 120°C에서 5 분간 건조하고, 건조한 폴리아믹산 바니시 상에, 실시예 1 에서 제조된 불소수지가 분산된 폴리아믹산 바니시를 코팅한 후 120°C에서 10 분간 건조하였다. 다음으로 실시예 3 에서 제조된 폴리아믹산 바니시를 상기 불소수지간 분산된 폴리아믹산 바니시 상에 코팅한 후 120°C에서 10 분간 건조하였다. 그 후, 질소 오본에서 상온에서부터 승온을 시작하여 350°C에서 30분 동안 경화하여 단면 연성 금속 적층판을 제조하였다.
상기에서 얻어진 단면 연성 동박 적층판의 단면 SEM 사진 및 EDS 결과를 도 3 에 나타내었다. 또한, 도 4는 도 3 의 적층판 단면 SEM사진을 확대하여 나타낸 것이다. 실시예 5: 양면 연성 금속 적층판제조 (1)
실시예 3 에서 제조된 폴리아믹산 바니시를 동박에 코팅한 후 120°C에서 5 분간 건조하고, 건조한 폴리아믹산 바니시 상에, 실시예 1 에서 제조된 불소수지가 분산된 폴리아믹산 바니시를 코팅한 후 120°C에서 10 분간 건조하였다. 다음으로 실시예 3 에서 제조된 폴리아믹산 바니시를 상기 불소수지가 분산된 폴리아믹산 바니시 상에 코팅한 후 120°C에서 10 분간 건조하였다. 그 후, 질소 오븐에서 상온에서부터 승온을 시작하여 350°C에서 30 분 동안 경화하였다. 그 다음으로, 롤 라미네이터를 이용하여 350°C에서 최상부에 있는 폴리아믹산 바니시에 새로운 동박을 접합시켰다. 실시예 6: 양면 연성 금속 적층판 제조
실시예 3 에서 제조된 폴리아믹산 바니시를 동박에 코팅한 후
120°C에서 5 분간 건조하고, 건조한 폴리아믹산 바니시 상에, 실시예 2 에서 제조된 불소수지가 분산된 폴리아믹산 바니시를 코팅한 후 120°C에서 10 분간 건조하였다. 다음으로 실시예 3 에서 제조된 폴리아믹산 바니시를 상기 불소수지가 분산된 폴리아믹산 바니시 상에 코팅한 후 120°C에서 10 분간 건조하였다. 그 후, 질소 오븐에서 상온에서부터 승온을 시작하여 350°C에서 30 분 동안 경화하였다. 그 다음으로, 를 라미네이터를 이용하여 350°C에서 최상부에 있는 폴리아믹산 바니시에 새로운 동박을 접합시켰다. 비교예 1 : 폴리아믹산 바니시의 제조 (1)
500mL 의 둥근 바닥 플라스크에 DMAc 300g, 6FDA 4.49g, PMDA 19.86g, TFDB 32.41g 을 투입한 다음, 50°C에서 10 시간 동안 질소를 홀려주면서 교반하며 반웅시켜, 점도 약 lOOOOcps 의 폴리아믹산 바니시를 수득하였다. 비교예 2: 폴리아믹산 바니시의 제조 (2)
500mL 의 둥근 바닥 플라스크에 DMAc 300g, BPDA 31.16g, PDA 11.56g 을 투입한 다음, 50°C에서 10 시간 동안 질소를 홀려주면서 교반하며 반웅시켜, 점도 약 14000cps의 폴리아믹산 바니시를 수득하였다. 비교예 3: 양면 연성 금속 적층판 제조 α)
ᅳ 실시예 3 에서 제조된 폴리아믹산 바니시를 동박에 코팅한 후 120°C에서 5 분간 건조하고, 비교예 1 에서 제조된 폴리아믹산 바니시를 코팅한 후 120°C에서 10 분간 건조하였다. 다음으로 실시예 3 에서 제조된 폴리아믹산 바니시를 상기 비교예 1 에서 제조된 폴리아믹산 바니시 상에 코팅 한 후 120°C에서 10 분간 건조하였다. 그 후, 질소 오븐에서 상온에서부터 승온을 시 작하여 350°C에서 30 분 동안 경화하였다. 그 다음으로, 를 라미 네이터를 이용하여 350°C에서 최상부에 있는 폴리 아믹산 바니시 에 새로운 동박을 접 합시 켰다. 비교예 4 : 양면 연성 금속 적층판 제조 (2)
실시 예 3 에서 제조된 폴리아믹산 바니시를 동박에 코팅 한 후 120°C에서 5 분간 건조하고, 비교예 2 에서 제조된 폴리아믹산 바니시를 코팅 한 후 120°C에서 10 분간 건조하였다. 다음으로 실시 예 3 에서 제조된 폴리아믹산 바니시를 상기 비교예 1 에서 제조된 폴리 아믹산 바니시 상에 코팅 한 후 120°C에서 10 분간 건조하였다. 그 후, 질소 오본에서 상온에서부터 승온을 시작하여 350°C에서 30 분 동안 경화하였다. 그 다음으로, 롤 라미네 이 터를 이용하여 350°C에서 최상부에 있는 폴리 아믹산 바니시에 새로운 동박을 접합시 켰다. 상기 실시 예 4, 5, 6, 및 비교예 3, 4 에 따라 제조된 금속 적층판의 유전상수, 유전손실계수, 흡수율, CTE, 내열성, 및 peel strength 를 하기 방법에 따라 각각 측정하였다. (1) 유전상수,유전손실계수의 측정
연성 금속 적층판을, 도 2 와 같이 주전극 (a) 지름 3cm, 접지 전극 (b) 및 부전극 (c) 지름 4cm, 주전극과 접지 전극 간격 1mm 로 패턴을 형성한 후, 패턴을 제외 한 나머지 동박 부분을 에 칭으로 제거하고, 시편을 5 X 5cm 로 절단한 후, L, C, R 측정기 (휴렛패커드사, HP4194A)를 이용하여 1MHz 유전상수와 유전손실을 각각 측정하였다. 단면 연성 금속 적층판의 경우는 (c)에 silver paste 를 도포 후 150°C에서 30 분간 경화하여 부전극 (c)를 만들어 측정하였다.
(2) 흡수율 측정 연성 금속 적층판의 동박을 에 칭하여 완전히 제거 한 후, 동박이 제거된 폴리 이미드 필름을 5 X 5cm 크기로 자른 후, 105 오븐에서 1 시 간 동안 건조하였다. 건조된 필름의 질량을 측정 후, 23 °C 증류수에 24 시간 동안 침지시 켰다. 24 시간 후에 폴리 이미드 필름 표면에 묻은 수분을 제거 한 후, 폴리 이미드 필름의 질량을 측정 하여 건조된 필름 대비 증가된 질량을 백분율로 계산하였다.
(3) CTE 측정
TMA 기 기를 이용하여 100 내지 200 °C 온도 구간에서 치수 변화를 측정하였다.
(4) 동박 peel strength 측정
연성 금속 적층판 표면에서 폭 1cm 의 동박을 벗겨 낸 후, 인장 강도 측정기 (UTM)을 사용하여 동박의 박리 강도를 측정하였다.
(5) 내열성 측정
288 °C의 납조에 5 X 5cm 크기로 절단한 샘플을 올린 후 견디는 시 간을 측정하였다.
측정결과는 하기 표 1 과. 같았다.
[표 1]
Figure imgf000018_0001
Figure imgf000019_0001
상기와 같이 실시예 4, 5, 및 6 에 따라 제조된 연성 금속 적층판은 유전상수 및 유전손실계수가 비교예 3 및 4 에 비하여 우수함을 알 수 있었다. 그리고, 실시예 4, 5, 및 6 에 따라 제조된 연성 금속 적층판은 불소수지가 분산된 폴리이미드층에서 폴리에스테르계 분산제 사용으로 불소수지의 균일한 분산이 가능해 내열성이 우수하고, 열팽창 계수 (CTE)가 최적화 되었음을 알 수 있었다.
아울러, 도 3 및 도 4 에 나타난 바와 같이, 상기 실시예 4 에서 제조된 연성 동박 적층판의 폴리이미드층에는 불소수지가 외부 표면에 비하여 수지 내부에 보다 많이 분포하고, 연성 동박 적층판의 폴리이미드층 표면으로부터 일정 깊이까지는 불소 수지 함량이 계속 증가하다가 일정 깊이 이상의 내부에서는 불소 수지의 함량이 거의 비슷하게 유지된다는 점이 확인되었다.
또한, 흡수율, 및 CTE 등의 수치를 보면, 본 발명에 따른 연성 금속 적층관은 불소수지 분말이 분산된 폴리이미드층의 양 외곽에 폴리이미드층이 형성되는 구조를 가짐으로써, 동박층과의 접착력을 높임과 동시에 유전특성이 향상될 수 있을 뿐 아니라, 저흡습성을 가지면서도 기존 폴리이미드 절연체의 특성인 고내열성, 내화학성, 고굴곡성, 및 치수 안정성을 가진다는 점을 알 수 있었다. 이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims

【특허청구범위】
【청구항 1】
제 1금속층;
제 1폴리이미드층;
상기 제 1폴리이미드층 상에 형성된 불소수지가 분산된 폴리이미드층; 상기 불소수지가 분산된 폴리이미드층 상에 형성된 제 2폴리이미드층; 을 포함하고,
상기 불소수지가 분산된 폴리이미드층에서, 상기 볼소수지의 단위 부피당 함량은 상기 폴리이미드층의 표면으로부터 전체 두께의 5 내지 10%의 깊이에서보다, 40 내지 60%의 깊이에서 더 크게 되는 연성 금속 적층판.
【청구항 2】
제 1 항에 있어서, 상기 불소수지가 분산된 폴리이미드층은 상기 폴리이미드층의 표면으로부터 전체 두께의 5 내지 10%의 깊이에서 가장 작은 불소수지의 단위 부피당 함량을 갖는 연성 금속 적층판.
【청구항 3】
제 1 항에 있어서, 상기 불소수지가 분산된 폴리이마드층은 상기 폴리이미드층의 표면으로부터 전체 두께의 40 내지 60%의 깊이에서 가장 큰 불소수지의 단위 부피당 함량을 갖는 연성 금속 적층판.
【청구항 4】
제 1 항에 있어서, 상기 불소수지가 분산된 폴리이미드층은 상기 폴리이미드층의 표면으로부터 전체 두께의 5 내지 15%의 깊이에서 단위부피당 불소수지의 함량이 깊이에 따라 점증하는 연성 금속 적층판.
【청구항 5】 제 1 항에 있어서, 상기 제 2폴리이미드층 상에 형성된 제 2금속층을 더 포함하는 연성 금속 적층판.
【청구항 6】
제 1 항 내지 제 5 항 중 어느 한 항에 있어서, 상기 제 1 금속층 및 제 2 금속층 표면의 십점 평균조도 (Rz)는 각각 0.5 내지 2.5um 인 연성 금속 적층판.
【청구항 7】
제 1항 내지 제 5항 중 어느 한 항에 있어서, 상기 제 1폴리이미드층 및 제 2폴리이미드층의 두께는 각각 1 내지 10um 인 연성 금속 적층판.
【청구항 8】
제 1항 내지 제 5항 중 어느 한 항에 있어서, 상기 불소수지가 분산된 폴리이미드층의 두께는 5 내지 50um 인 연성 금속 적층판.
【청구항 9】
제 1 항 내지 제 5 항 중 어느 한 항에 있어서, 상기 불소수지는 폴리테트라플루오로에틸렌 (PTFE), 퍼플루오로알쿡시 (PFA), 플루오리네이티드 에틸렌 프로필렌 (FEP), 클로로트리플루오로에틸렌 (CTFE), 테트라플루오로에틸렌 /클로로트리플루오로에틸렌 (TFE/CTFE), 에틸렌 클로로트리플루오로에틸렌 (ECTFE), 및 폴리플루오린화비닐리덴 (PVDF)로 구성되는 군으로부터 선택된 하나 이상인 연성 금속 적층판.
[청구항 10】
제 1 항 내지 제 5 항 중 어느 한 항에 있어서, 상기 불소수지는 상기 불소수지가 분산된 폴리이미드층 중 10 내지 60 중량%로 포함되는 연성 금속 적층판.
【청구항 11】 제 1 항 내지 제 5 항 중 어느 한 항에 있어서, 상기 제 1 폴리 이미드충, 불소수지가 분산된 폴리 이 미드층, 및 제 2 폴리 이미드층을 포함하는 폴리 이 미드층은 1MHz 에서 유전율 2.2 내지 3.2, 유전손실계수 0.001 내지 0.007, 열팽창 계수 15 내지 35ppm 인 연성 금속 적층판.
【청구항 12】
제 1 항 내지 제 5 항 중 어느 한 항에 있어서, 상기 제 1 금속층 및 제 2 금속층은 구리 , 철, 니켈, 티타늄, 알루미늄, 은, 및 금으로 구성되는 군으로부터 선택되는 1 종, 또는 2 종 이상의 합금의 박막인 연성 금속 적층판.
[청구항 13】
제 1 금속층 상에 제 1 폴리아믹산 바니시를 코팅하는 단계;
상기 제 1 폴리아믹산 바니시 상에 불소수지 분말이 분산된 폴리 아믹산 바니시를 코팅하는 단계; 및
상기 불소수지 분말이 분산된 폴리 아믹산 바니시 상에 제 2 폴리아믹산 바니시를 코팅 후 건조 및 경화하는 단계;
를 포함하는 연성 금속 적층판의 제조방법 .
【청구항 14】
제 13 항에 있어서, 상기 제 2 폴리아믹산 바니시 상에 제 2 금속층을 접 합시 키는 단계를 더 포함하는 연성 금속 적층판의 제조방법 .
【청구항 15】
제 13 항 또는 제 14 항에 있어서, 상기 제 1 폴리 아믹산 바니시 및 제 2 폴리아믹산 바니시는 방향족 테트라카르복실산 무수물, 및 방향족 디 아민을 유기용매 하에서 반응시 켜 형성되는 연성 금속 적층판의 제조방법 .
【청구항 16】 제 15 항에 있어서 , 상기 방향족 테트라카르복실산 무수물은 pyromellitic dianhydride (PMDA), biphenyl-tetracarboxylic acid dianhydride (BPDA), 4,4'-Benzophenonetetracarboxylic Dianhydride (BTDA), 4,4'-Oxydiphthalic anhydride (ODPA), 4,4'-(Hexafluoroisopropylidene)diphthalic Anhydride (6FDA), 및 4,4'-(4,4'- isopropylidene-diphenoxy)bis(phthalic anhydride) (BP AD A)로 구성되는 군으로부터 선택되는 하나 이상인 연성 금속 적층판의 제조방법 .
[청구항 17】
제 15 항에 있어서 , 상기 방향족 테트라카르복실산 무수물은 상기 방향족 디 아민에 대하여 0.90 내지 1.10 당량으로 포함되는 연성 금속 적층판의 제조방법 .
【청구항 18】
제 15 항에 있어서 , 상기 방향족 디아민은 phenylenediamine(PDA), oxydianiline (ODA), o-phenylenediamine (OPD), Meta phenylene Diamine (MPD), 1 ,3-bis(4-aminophenoxy)benzene (TPER), 4,4'-bis(4-aminophenoxy)benzene (TPEQ), 2,2'-Dimethyl-4,4'-diamino biphenyl (m-TB-HG), 2,2'-Bis(Trifluoromethyl) benzidine (TFDB), 1 ,3 '-Bis(3-aminophenoxy)benzene (APBN), 3,5-
Diaminobenzotrifluoride(DABTF), 및 2,2-bis(4-[4-aminophenoxy]- phenyl)propane(BAPP) 로 구성 되는 군으로부터 선택되는 하나 이상인 연성 금속 적층판의 제조방법 .
【청구항 19】
제 15 항에 있어서 , 상기 유기용매는 Ν,Ν-디 메틸포름아미드, Ν,Ν- 디 메틸아세트아미드, Ν,Ν-디에 틸아세트아미드, Ν,Ν-디 메틸메톡시 아세트아미드, Ν-메틸 -2-피를리돈, Ν-메틸카프로락탐, 1,3-디 메틸 -2-이미다졸리돈, 1,2- 디 메특시에 탄, 1,3-디옥세인, 1,4-디옥세인, 피 리 딘, 피콜린, 디메틸설폭사이드, 디 메틸설폰, m-크레졸, P-클로로페놀, 및 애니솔로 구성되는 군으로부터 선택되는 하나 이상인 연성 금속 적층판의 제조방법 .
【청구항 20】
제 15 항에 있어서, 상기 유기용매는 상기 폴리아믹산 바니시 전체 중량 기준으로 70 내지 90중량 %로 포함되는 연성 금속 적충판의 제조방법.
【청구항 21】
제 13 항 또는 제 14 항에 있어서, 상기 불소수지 분말이 분산된 폴리아믹산 바니시는 폴리에스테르계 분산제로 유기용매에 불소수지 분말을 분산시킨 후, 방향족 테트라카르복실산 무수물, 및 방향족 디아민을 포함하는 흔합물을 첨가 및 교반하여 제조되는 연성 금속 적층판의 제조방법.
【청구항 22】
제 13 항 또는 계 14 항에 있어서, 상기 불소수지 분말은 평균 입경이
0.1 내지 laOum인 연성 금속 적층판.
【청구항 23]
제 13 항 또는 제 14 항에 있어서, 상기 건조는 100 내지 200°C 에서 수행되는 연성 금속 적층판의 제조방법.
【청구항 24】
제 13 항 또는 제 14 항에 있어서, 상기 경화는 300 내지 400°C에서 5분 내지 30분 동안 수행되는 연성 금속 적층판의 제조방법.
【청구항 25】
제 14 항에 있어서, 상기 제 2 금속층의 접합은 300 내지 400°C에서 수행되는 연성 금속 적층판의 제조방법.
【청구항 26】 제 13 항 또는 제 14 항에 있어서 , 상기 제 1 금속층 및 제 2 금속층은 구리, 철, 니 켈, 티타늄, 알루미늄, 은, 및 금으로 구성되는 군으로부터 선택되는 1 종, 또는 2 종 이상의 합금의 박막인 연성 금속 적층판.
PCT/KR2012/007234 2011-09-07 2012-09-07 불소수지 함유 연성 금속 적층판 WO2013036077A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280052750.2A CN103958188B (zh) 2011-09-07 2012-09-07 含有氟化聚合物的挠性金属层压板
JP2014529622A JP5989778B2 (ja) 2011-09-07 2012-09-07 フッ素樹脂含有軟性金属積層板

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20110090825 2011-09-07
KR10-2011-0090825 2011-09-07
KR1020120098872A KR101299652B1 (ko) 2011-09-07 2012-09-06 불소수지 함유 연성 금속 적층판
KR10-2012-0098872 2012-09-06

Publications (2)

Publication Number Publication Date
WO2013036077A2 true WO2013036077A2 (ko) 2013-03-14
WO2013036077A3 WO2013036077A3 (ko) 2013-05-10

Family

ID=47830080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007234 WO2013036077A2 (ko) 2011-09-07 2012-09-07 불소수지 함유 연성 금속 적층판

Country Status (2)

Country Link
US (1) US9462688B2 (ko)
WO (1) WO2013036077A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104704027A (zh) * 2013-09-30 2015-06-10 株式会社Lg化学 挠性金属层压板及其制备方法
JP2015110332A (ja) * 2013-12-05 2015-06-18 達邁科技股▲分▼有限公司 誘電率の低い多層ポリイミドフィルム、それを含む積層構造およびその製造
CN106062049A (zh) * 2013-12-18 2016-10-26 韩国爱思开希可隆Pi股份有限公司 聚酰亚胺薄膜及其制备方法
CN111995782A (zh) * 2020-09-01 2020-11-27 无锡高拓新材料股份有限公司 一种高频下低介电常数聚酰亚胺杂化薄膜及其制备方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101301425B1 (ko) * 2011-10-25 2013-08-28 삼성전기주식회사 멀티 무선 충전 장치 및 그 제조 방법
TWI495562B (zh) * 2012-07-11 2015-08-11 Lg Chemical Ltd 可撓性金屬層合物
US9178361B2 (en) 2012-09-27 2015-11-03 ConvenientPower, Ltd. Methods and systems for detecting foreign objects in a wireless charging system
WO2016017801A1 (ja) 2014-08-01 2016-02-04 旭硝子株式会社 樹脂パウダー、その製造方法、複合体、成形体、セラミックス成形体の製造方法、金属積層板、プリント基板及びプリプレグ
TWI545148B (zh) * 2014-08-29 2016-08-11 達邁科技股份有限公司 低介電聚醯亞胺膜及其製成方法
WO2016057179A1 (en) * 2014-10-06 2016-04-14 Applied Materials, Inc. Fluoro polymer contact layer to carbon nanotube chuck
KR101797723B1 (ko) * 2014-12-08 2017-11-14 셍기 테크놀로지 코. 엘티디. 접착용 수지 조성물, 접착용 필름 및 연성 금속 적층체
CN107926110B (zh) * 2015-08-21 2021-04-30 康宁股份有限公司 具有低介电性质的玻璃基材组装件
KR101993647B1 (ko) 2016-07-26 2019-09-30 주식회사 엘지화학 폴리이미드 전구체 용액 및 이의 제조방법
US10468342B2 (en) * 2018-02-02 2019-11-05 Compass Technology Company, Ltd. Formation of fine pitch traces using ultra-thin PAA modified fully additive process
CN111876085B (zh) * 2020-07-10 2022-09-27 东莞东阳光科研发有限公司 复合粘结片、柔性金属层压板及其制备方法
TW202206286A (zh) 2020-07-28 2022-02-16 美商聖高拜塑膠製品公司 介電基板及其形成方法
EP4265073A1 (en) 2020-12-16 2023-10-25 Saint-Gobain Performance Plastics Corporation Dielectric substrate and method of forming the same
KR102306950B1 (ko) * 2021-02-05 2021-09-29 최유경 폴리이미드 필름, 이의 제조방법 및 이를 포함하는 연성인쇄회로기판
CN112839502B (zh) * 2021-02-07 2022-09-30 深圳市华科创智技术有限公司 一种电磁屏蔽层

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726128U (ja) * 1993-10-14 1995-05-16 鐘淵化学工業株式会社 銅張り積層板用積層フィルム及び銅張り積層板
JP2501331B2 (ja) * 1987-03-14 1996-05-29 松下電工株式会社 積層板
KR20050106538A (ko) * 2004-05-04 2005-11-10 주식회사 엘지화학 2층 동장 적층판의 제조방법
KR100767208B1 (ko) * 2005-12-05 2007-10-17 주식회사 코오롱 폴리이미드 수지 및 연성 금속박 적층체
KR100993063B1 (ko) * 2008-03-31 2010-11-08 엘에스엠트론 주식회사 연성회로 동장적층판

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567490A (en) 1979-06-28 1981-01-26 Hitachi Chemical Co Ltd Flexible printed circuit board
JPS6153131U (ko) 1984-09-10 1986-04-10
JPH083041B2 (ja) 1986-06-30 1996-01-17 三井東圧化学株式会社 ポリイミド樹脂組成物
JPH0433394A (ja) 1990-05-30 1992-02-04 Fujitsu Ltd プリント配線板用ポリイミドコーティング材
US6294251B1 (en) 1998-01-13 2001-09-25 Lintec Corporation Colored film
CN1123602C (zh) 2000-03-13 2003-10-08 中国科学院化学研究所 一种耐高温耐磨耗聚酰亚胺密封材料及其制备方法和用途
US6759164B2 (en) 2000-11-29 2004-07-06 Wilson Greatbatch Ltd. Use of heat-treated electrodes containing a polyamic acid-PVDF binder mixture
US6629348B2 (en) 2001-05-01 2003-10-07 Oak-Mitsui, Inc. Substrate adhesion enhancement to film
JP4409289B2 (ja) 2001-09-18 2010-02-03 インテグリス・インコーポレーテッド 溶出分の少ない高強度耐薬品性層状膜
KR100502177B1 (ko) 2003-03-26 2005-07-20 주식회사 엘지화학 양면 금속 적층판 및 그의 제조방법
JP4373433B2 (ja) * 2003-03-26 2009-11-25 エルジー・ケム・リミテッド 両面金属積層板及びその製造方法
US7026032B2 (en) 2003-11-05 2006-04-11 E. I. Du Pont De Nemours And Company Polyimide based compositions useful as electronic substrates, derived in part from (micro-powder) fluoropolymer, and methods and compositions relating thereto
PL1614731T3 (pl) 2004-07-05 2009-02-27 3M Innovative Properties Co Pierwsza powłoka z PTFE do przedmiotów metalowych
US20070066741A1 (en) * 2005-09-16 2007-03-22 Donovan Michael S High glass transition temperature thermoplastic articles
KR101289371B1 (ko) 2005-10-25 2013-07-29 히타치가세이가부시끼가이샤 가요성 적층판, 그의 제조 방법, 및 가요성 인쇄 배선판
WO2010131442A1 (ja) 2009-05-12 2010-11-18 株式会社カネカ ポリアミド酸溶液の製造方法及びポリイミドフィルム
JP5733778B2 (ja) 2009-06-11 2015-06-10 日本化薬株式会社 プライマー層用ポリイミド樹脂及びそれを用いた積層板
JP2011051203A (ja) 2009-09-01 2011-03-17 Toyobo Co Ltd 多層ポリイミドフィルムおよびプリント配線板
US20120107689A1 (en) * 2010-06-30 2012-05-03 Daikin Industries Building Binder composition for electrode
KR101277996B1 (ko) * 2010-06-30 2013-06-27 다이킨 고교 가부시키가이샤 전극용 바인더 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2501331B2 (ja) * 1987-03-14 1996-05-29 松下電工株式会社 積層板
JPH0726128U (ja) * 1993-10-14 1995-05-16 鐘淵化学工業株式会社 銅張り積層板用積層フィルム及び銅張り積層板
KR20050106538A (ko) * 2004-05-04 2005-11-10 주식회사 엘지화학 2층 동장 적층판의 제조방법
KR100767208B1 (ko) * 2005-12-05 2007-10-17 주식회사 코오롱 폴리이미드 수지 및 연성 금속박 적층체
KR100993063B1 (ko) * 2008-03-31 2010-11-08 엘에스엠트론 주식회사 연성회로 동장적층판

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104704027A (zh) * 2013-09-30 2015-06-10 株式会社Lg化学 挠性金属层压板及其制备方法
JP2015110332A (ja) * 2013-12-05 2015-06-18 達邁科技股▲分▼有限公司 誘電率の低い多層ポリイミドフィルム、それを含む積層構造およびその製造
US9850401B2 (en) 2013-12-05 2017-12-26 Taimide Technology Incorporation Multilayered polyimide film having a low dielectric constant, laminate structure including the same and manufacture thereof
CN106062049A (zh) * 2013-12-18 2016-10-26 韩国爱思开希可隆Pi股份有限公司 聚酰亚胺薄膜及其制备方法
CN106062049B (zh) * 2013-12-18 2019-05-03 韩国爱思开希可隆Pi股份有限公司 聚酰亚胺薄膜及其制备方法
CN111995782A (zh) * 2020-09-01 2020-11-27 无锡高拓新材料股份有限公司 一种高频下低介电常数聚酰亚胺杂化薄膜及其制备方法

Also Published As

Publication number Publication date
US20130065018A1 (en) 2013-03-14
US9462688B2 (en) 2016-10-04
WO2013036077A3 (ko) 2013-05-10

Similar Documents

Publication Publication Date Title
KR101299652B1 (ko) 불소수지 함유 연성 금속 적층판
WO2013036077A2 (ko) 불소수지 함유 연성 금속 적층판
TWI780040B (zh) 聚醯亞胺樹脂前驅物
TWI495562B (zh) 可撓性金屬層合物
JP6517399B2 (ja) ポリイミド樹脂前駆体
TWI682019B (zh) 多層接著膜及撓性貼金屬箔積層板
KR102239605B1 (ko) 양면 연성 금속 적층판 및 그 제조방법
KR101740803B1 (ko) 폴리이미드 수지를 포함한 금속 적층판 및 그 제조 방법
JP6488170B2 (ja) 回路基板
KR20150069318A (ko) 저유전율 및 열가소성을 갖는 폴리이미드 수지 및 이를 이용한 연성 금속 적층판
JP7122162B2 (ja) 熱可塑性ポリイミドフィルム、多層ポリイミドフィルム、およびフレキシブル金属張積層板
KR20160059286A (ko) 연성 금속 적층체
JP5468913B2 (ja) レジスト付き多層ポリイミドフィルム及びその製造方法
JP6412012B2 (ja) 多層フレキシブル金属張積層体及びその製造方法
JP2022101484A (ja) ポリイミドフィルム、金属張積層板、その製造方法及び回路基板
JP6936639B2 (ja) 積層体、フレキシブル金属張積層板、およびフレキシブルプリント回路基板
CN111559135A (zh) 聚酰亚胺叠层、其制备方法及包含其的覆铜板
JP2020146970A (ja) 積層体及び積層体の製造方法
JP7163840B2 (ja) 積層体、プリント基板の製造方法、プリント基板及びアンテナ
KR20160088844A (ko) 저유전율을 갖는 폴리이미드 내열성 접착제 및 이를 이용한 연성 동박적층판
JP2005329641A (ja) フレキシブルプリント配線板用基板及びその製造方法
JP2022150086A (ja) 樹脂フィルム、その製造方法、金属張積層板及び回路基板
JP2023042337A (ja) シリカフィラー含有ポリイミドフィルム、多層ポリイミドフィルム、フレキシブル金属張積層体ならびに、フレキシブルプリント基板
JP2019091934A (ja) 回路基板
JP2020015236A (ja) 両面金属張積層板及び回路基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830112

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2014529622

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830112

Country of ref document: EP

Kind code of ref document: A2