WO2013035335A1 - スパッタリングターゲット - Google Patents

スパッタリングターゲット Download PDF

Info

Publication number
WO2013035335A1
WO2013035335A1 PCT/JP2012/005664 JP2012005664W WO2013035335A1 WO 2013035335 A1 WO2013035335 A1 WO 2013035335A1 JP 2012005664 W JP2012005664 W JP 2012005664W WO 2013035335 A1 WO2013035335 A1 WO 2013035335A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
sputtering
oxide
target
sintered body
Prior art date
Application number
PCT/JP2012/005664
Other languages
English (en)
French (fr)
Inventor
一晃 江端
重和 笘井
松崎 滋夫
勇輝 霍間
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to CN201280039725.0A priority Critical patent/CN103732790B/zh
Priority to KR1020147005942A priority patent/KR102075904B1/ko
Priority to US14/343,031 priority patent/US9767998B2/en
Publication of WO2013035335A1 publication Critical patent/WO2013035335A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/725Metal content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Definitions

  • the present invention relates to a sputtering target, a manufacturing method thereof, an oxide semiconductor thin film, a manufacturing method thereof, a thin film transistor using the same, and a display device.
  • TFTs thin film transistors
  • LCD liquid crystal display devices
  • EL electroluminescence display devices
  • FED field emission displays
  • a silicon semiconductor compound As a material for a semiconductor layer (channel layer) which is a main member of a field effect transistor, a silicon semiconductor compound is most widely used.
  • a silicon single crystal is used for a high-frequency amplifying element or an integrated circuit element that requires high-speed operation.
  • an amorphous silicon semiconductor (amorphous silicon) is used for a liquid crystal driving element or the like because of a demand for a large area.
  • an amorphous silicon thin film can be formed at a relatively low temperature, its switching speed is slower than that of a crystalline thin film, so when used as a switching element for driving a display device, it may not be able to follow the display of high-speed movies. is there.
  • amorphous silicon having a mobility of 0.5 to 1 cm 2 / Vs could be used, but when the resolution is SXGA, UXGA, QXGA or higher, 2 cm 2 / Mobility greater than Vs is required.
  • the driving frequency is increased in order to improve the image quality, higher mobility is required.
  • the crystalline silicon-based thin film has a high mobility
  • problems such as requiring a large amount of energy and the number of processes for manufacturing, and a problem that it is difficult to increase the area.
  • laser annealing using a high temperature of 800 ° C. or higher and expensive equipment is necessary.
  • a crystalline silicon-based thin film is difficult to reduce costs such as a reduction in the number of masks because the element configuration of a TFT is usually limited to a top gate configuration.
  • a thin film transistor using an oxide semiconductor film made of indium oxide, zinc oxide and gallium oxide has been studied.
  • the production of an oxide semiconductor thin film is performed by sputtering using a target (sputtering target) made of an oxide sintered body.
  • Patent Documents 1 to 3 a target made of a compound having a homologous crystal structure represented by the general formulas In 2 Ga 2 ZnO 7 and InGaZnO 4 is known (Patent Documents 1 to 3).
  • a reduction treatment at a high temperature after sintering is required to reduce the resistance of the target. It was.
  • the characteristics and deposition rate of the obtained film change greatly, abnormal discharge due to abnormal growth of InGaZnO 4 and In 2 Ga 2 ZnO 7 occurs, and generation of particles during deposition There were many problems. If abnormal discharge frequently occurs, the plasma discharge state becomes unstable, and stable film formation is not performed, which adversely affects the film characteristics.
  • Patent Document 4 discloses a sputtering target of indium oxide doped with Ga.
  • the sputtering target of Ga-doped indium oxide containing 100 atomic ppm or less of a metal having a positive tetravalent or higher value described in Patent Document 4 has a variation in target density, and the relative density of the target is 97% or higher. It was difficult to produce stably.
  • Patent Document 5 discloses an Al-doped indium oxide sputtering target. Not only is the composition range wide with an atomic ratio of Al of 0.001% to 45%, but the ratio of positive tetravalent or higher ions doped into the target is as wide as 10 to 5000 atomic ppm. It was not clear. As described above, a study on a target used when an oxide semiconductor film is formed by a sputtering method has not been sufficient.
  • JP-A-8-245220 JP 2007-73312 A International Publication No. 2009/084537 Pamphlet International Publication No. 2010/032422 Pamphlet International Publication No. 2010/070944 Pamphlet
  • An object of the present invention is to provide a sputtering target having a high density and a low resistance. Another object of the present invention is to provide a thin film transistor having high field effect mobility.
  • the following sputtering target and the like are provided.
  • 9. The method for producing an oxide semiconductor thin film according to 8, wherein the film formation is performed in an atmosphere of a mixed gas containing a rare gas and one or more gases selected from water vapor, oxygen gas, and nitrous oxide gas. 10.
  • the substrate is sequentially transferred to a position facing three or more targets arranged in parallel in the vacuum chamber at a predetermined interval, and a negative potential and a positive potential are alternately applied to each target from an AC power source.
  • the plasma is generated on the target and the film is formed on the substrate surface while switching the target to which the potential is applied between the two or more targets connected to the AC power supply and the output from at least one AC power supply.
  • 16. 16 The thin film transistor according to 15, wherein the field effect mobility is 30 cm 2 / Vs or more.
  • the thin film transistor according to 15 or 16 further comprising a protective film containing at least SiN x on the channel layer.
  • a display device comprising the thin film transistor according to any one of 15 to 17.
  • a high-density and low-resistance sputtering target can be provided.
  • a thin film transistor having high field effect mobility can be provided.
  • FIG. 2 is an X-ray diffraction chart of a sintered body obtained in Example 1.
  • FIG. 3 is an X-ray diffraction chart of a sintered body obtained in Example 2.
  • the sputtering target of the present invention includes a sintered body, and the sintered body includes Ga-doped indium oxide or Al-doped indium oxide, and a metal X exhibiting a positive tetravalent valence. , More than 100 atomic ppm and not more than 1100 atomic ppm with respect to the total of Ga and indium or the total of Al and indium.
  • the crystal structure of the sintered body is substantially a bixbite structure of indium oxide.
  • the sintered body is composed of a single phase of indium oxide having a Bigsbite structure in which Ga or Al is dissolved, and further contains a positive tetravalent metal in a range of more than 100 atomic ppm to 1100 atomic ppm.
  • the specific resistance is 5 m ⁇ cm or less, and the relative density is 97% or more. Therefore, the sputtering target of the present invention can suppress abnormal discharge during sputtering. In addition, the sputtering target of the present invention can form a high-quality oxide semiconductor thin film efficiently, inexpensively, and with energy saving.
  • the atomic ratio Ga / (Ga + In) is preferably 0.001 to 0.15.
  • Ga can be uniformly dispersed in the indium oxide crystal.
  • Ga does not dissolve in the bixbite structure of indium oxide, and another crystal structure such as GaInO 3 may be precipitated.
  • the oxide sintered body of the present invention includes another crystal structure such as GaInO 3 , abnormal sputtering is likely to occur and electrons are scattered when a target made of the oxide sintered body of the present invention is sputtered. As a result, the mobility may be reduced or crystallization of indium oxide may be hindered.
  • the impedance of the discharge system including the target fluctuates during sputtering because the target is non-uniform and there is a portion where the specific resistance is locally different.
  • the portion where the specific resistance is locally different is a crystal such as GaInO 3 , and reducing the size and number density of these crystals is effective in suppressing abnormal discharge.
  • the atomic ratio Ga / (Ga + In) is less than 0.001
  • the thin film is heated in a post-treatment step, secondary crystallization may occur, leading to an increase in carrier concentration as mobility decreases and oxygen defects increase.
  • the atomic ratio Ga / (Ga + In) of gallium metal and indium metal is preferably 0.001 to 0.15, more preferably 0.01 to 0.1, and still more preferably 0.03 to 0.15. It is 0.09, particularly preferably 0.05 to 0.08.
  • the atomic ratio Al / (Al + In) is preferably 0.0001 to 0.08.
  • Al can be uniformly dispersed in the indium oxide crystal.
  • Al does not dissolve in the bixbite structure of indium oxide, and another crystal structure such as Al 2 O 3 may be precipitated.
  • Al 3+ ions have a small ionic radius, and thus are less likely to dissolve in the bixbite structure of indium oxide. For this reason, it is necessary to suppress the Al addition amount to be smaller than the Ga addition amount.
  • the atomic ratio Al / (In + Al) is less than 0.0001
  • the thin film is formed using the target made of the oxide sintered body of the present invention, there is a possibility that microcrystals are generated in the thin film.
  • the thin film is heated in a post-treatment step, secondary crystallization may occur, leading to an increase in carrier concentration as mobility decreases and oxygen defects increase.
  • the atomic ratio Al / (Al + In) of aluminum metal and indium metal is preferably 0.0001 to 0.08, more preferably 0.001 to 0.07, and still more preferably 0.01 to 0.08.
  • the sintered body used in the present invention further contains a metal X having a positive tetravalent valence.
  • a metal X having a positive tetravalent valence By including the positive tetravalent metal X, there are an effect of improving the sintered density of the sintered body, an effect of reducing the bulk specific resistance of the sintered body, and the like.
  • the positive tetravalent metal X is preferably one or more elements selected from Sn, Zr, Ti and Si, and is usually contained as an oxide.
  • the metal X preferably contains at least Sn.
  • the content of the positive tetravalent metal X is 100 atomic ppm or less, the target density may be lowered. For this reason, the content of the positive tetravalent metal X is preferably more than 100 atomic ppm.
  • content (atomic ratio) of the positive tetravalent metal X in a sintered compact is represented by the following formula
  • equation. Content of positive tetravalent metal X X / (In + M) (M is Ga or Al.)
  • the content of the positive tetravalent metal X exceeds 1100 atomic ppm, the field effect mobility of a TFT using a thin film obtained using the target for the channel layer may be lowered.
  • the content of the positive tetravalent metal X is preferably 1100 atomic ppm or less.
  • the content of the positive tetravalent metal X is preferably more than 100 atom ppm and not more than 1100 atom ppm, more preferably more than 120 atom ppm and not more than 900 atom ppm, still more preferably more than 120 atom ppm and more than 700 atom. ppm or less, particularly preferably more than 120 atomic ppm and 600 atomic ppm or less.
  • the relative density of the target can be 97% or more and the bulk specific resistance can be 5 m ⁇ cm or less.
  • the atomic ratio of each element contained in the sintered body can be obtained by quantitative analysis of the contained elements using an inductively coupled plasma emission spectrometer (ICP-AES). Specifically, when a solution sample is atomized with a nebulizer and introduced into an argon plasma (about 6000 to 8000 ° C.), the elements in the sample are excited by absorbing thermal energy, and orbital electrons are excited from the ground state. Move to the orbit. These orbital electrons move to a lower energy level orbit in about 10 ⁇ 7 to 10 ⁇ 8 seconds. At this time, the energy difference is emitted as light to emit light.
  • ICP-AES inductively coupled plasma emission spectrometer
  • this light shows a wavelength (spectral line) unique to the element
  • the presence of the element can be confirmed by the presence or absence of the spectral line (qualitative analysis).
  • the magnitude (luminescence intensity) of each spectral line is proportional to the number of elements in the sample
  • the sample concentration can be obtained by comparing with a standard solution having a known concentration (quantitative analysis). After identifying the elements contained in the qualitative analysis, the content is obtained by quantitative analysis, and the atomic ratio of each element is obtained from the result.
  • the sintered body used in the present invention may contain other metal elements other than the above-described In, Ga, Al and positive tetravalent metal X as long as the effects of the present invention are not impaired. , Ga and the positive tetravalent metal X, or only In, Al and the positive tetravalent metal X.
  • “substantially” means that the effect as a sintered body is caused by the above In, Ga and positive tetravalent metal X, or In, Al and positive tetravalent metal X, or a range which does not impair the effect of the present invention.
  • inevitable impurities may be included.
  • 95 to 100% by weight, 98 to 100% by weight, or 99 to 100% by weight of all metal elements other than the positive tetravalent metal constituting the sputtering target may be In and Ga or Al. . Inevitable impurities may be included.
  • the crystal structure of the sintered body is substantially a bixbite structure of indium oxide.
  • the Bixbite structure can be confirmed by X-ray diffraction measurement.
  • “substantially” means that the effect of the sintered body is attributable to the bixbite structure, or 90% by volume or more, preferably 95% by volume or more, and more preferably 98% by volume or more of the crystal structure. It means indium oxide having a bixbite structure.
  • the sintered body is usually constituted by 90% by volume or more, preferably 95% by volume or more, and more preferably 98% by volume or more in a crystal structure.
  • 90% by volume or more is composed of a crystal structure
  • 90% by volume or more of the crystal structure is indium oxide having a bixbite structure.
  • the sintered body used in the present invention preferably has a relative density of 97% or more.
  • the relative density is preferably 97% or more. If the relative density is 97% or more, a stable sputtering state is maintained. Even in the case of forming a film by increasing the sputtering output on a large substrate, it is preferable that the relative density is 97% or more because blackening of the target surface and occurrence of abnormal discharge can be prevented.
  • the relative density is preferably 98% or more, more preferably 99% or more.
  • the relative density is a density calculated relative to the theoretical density calculated from the weighted average. The density calculated from the weighted average of the density of each raw material is the theoretical density, which is defined as 100%.
  • the relative density can be measured by the Archimedes method. That is, the relative density is calculated by dividing the actually measured density obtained by the Archimedes method by the theoretical density and multiplying by 100.
  • the relative density is preferably 100% or less. If it exceeds 100%, metal particles may be generated in the sintered body or lower oxides may be generated, and it is necessary to strictly adjust the oxygen supply amount during film formation.
  • the density can be adjusted by performing a post-treatment step such as a heat treatment operation under a reducing atmosphere after sintering.
  • a reducing atmosphere an atmosphere of argon, nitrogen, hydrogen, or a mixed gas atmosphere thereof is used.
  • the maximum grain size of the crystals in the sintered body used in the present invention is desirably 5 ⁇ m or less. If the crystal has a particle size of 5 ⁇ m or less, it is difficult to cause nodules.
  • the cutting speed varies depending on the direction of the crystal plane, and irregularities are generated on the target surface.
  • the size of the unevenness depends on the crystal grain size present in the sintered body. In a target made of a sintered body having a large crystal grain size, the unevenness is increased, and it is considered that nodules are generated from the convex portion.
  • the maximum grain size of these sputtering target crystals is the center point (one place) of the circle and the center point and the peripheral part on two center lines orthogonal to the center point.
  • the central point (one location) and the intermediate point (4) between the central point and the corner on the diagonal of the quadrangle is measured, and is expressed as an average value of the particle sizes of the maximum particles present in each of these five locations.
  • the particle size is measured for the major axis of the crystal grains.
  • the crystal grains can be observed with a scanning electron microscope (SEM).
  • the manufacturing method of the sputtering target of the present invention includes the following two steps. (1) Step of mixing raw material compounds and molding to form a molded body (2) Step of sintering the molded body
  • the amount of the positive tetravalent metal X used is such that the content in the sintered body is more than 100 atomic ppm and not more than 1100 atomic ppm.
  • Examples of the compound containing In and the compound containing Ga or Al include a combination of indium oxide and gallium metal or aluminum metal, or a combination of indium oxide, gallium oxide, or aluminum oxide.
  • the raw material is preferably a powder.
  • the raw material compound containing In and Ga or Al is preferably a mixed powder of indium oxide and gallium oxide or aluminum oxide.
  • a single metal is used as a raw material, for example, when a combination of indium oxide and gallium metal or aluminum metal is used as a raw material powder, metal particles of gallium or aluminum are present in the resulting sintered body, and during film formation In some cases, the metal particles on the surface of the target melt and may not be released from the target, and the composition of the obtained film and the composition of the sintered body may differ greatly.
  • the positive tetravalent metal X can be contained in the sintered body by adding an oxide containing a positive tetravalent metal such as SnO 2 , TiO 2 , ZrO 2 , or SiO 2 .
  • the average particle diameter of the raw material powder is preferably 0.1 ⁇ m to 1.2 ⁇ m, more preferably 0.1 ⁇ m to 1.0 ⁇ m or less.
  • the average particle diameter of the raw material powder can be measured with a laser diffraction type particle size distribution apparatus or the like.
  • In 2 O 3 powder having an average particle size of 0.1 ⁇ m to 1.2 ⁇ m, and Ga 2 O 3 powder having an average particle size of 0.1 ⁇ m to 1.2 ⁇ m, or an average particle size of 0.1 ⁇ m to 1.2 ⁇ m Al 2 O 3 powder and an oxide containing a positive tetravalent metal X having an average particle size of 0.1 ⁇ m to 1.2 ⁇ m are used as raw material powders, and the atomic ratio Ga / (Ga + In) is 0.001 to 0.15 or Al / (Al + In) is 0.0001 to 0.08, and the content of the positive tetravalent metal X is more than 100 atomic ppm and 1100 atomic ppm or less.
  • the method of mixing and molding the raw material compounds is not particularly limited, and can be performed using a known method.
  • an aqueous solvent is blended with a raw material powder containing a mixed powder of oxide containing indium oxide powder, gallium oxide powder or aluminum oxide powder, and positive tetravalent metal X, and the resulting slurry is mixed for 12 hours or more. Thereafter, solid-liquid separation, drying, and granulation are performed, and then this granulated product is put into a mold and molded.
  • a wet or dry ball mill, vibration mill, bead mill, or the like can be used.
  • a bead mill mixing method is most preferable because the crushing efficiency of the agglomerates is high in a short time and the additive is well dispersed.
  • the mixing time by the ball mill is preferably 15 hours or more, more preferably 19 hours or more. If the above range is preferable because the compound having a high resistivity, such as Caino 2, Al 2 O 3, or the sintered body in which the mixing time is finally obtained is insufficient hardly generated.
  • the pulverization and mixing time by the bead mill varies depending on the size of the apparatus and the amount of slurry to be processed, but it is preferable to appropriately adjust the particle size distribution in the slurry to be uniform at 1 ⁇ m or less. Further, when mixing, it is preferable to add an arbitrary amount of a binder and mix them at the same time. As the binder, polyvinyl alcohol, vinyl acetate, or the like can be used.
  • granulated powder is obtained from the raw material powder slurry.
  • rapid drying granulation it is preferable to perform rapid drying granulation.
  • a spray dryer is widely used as an apparatus for rapid drying granulation.
  • the specific drying conditions are determined by various conditions such as the slurry concentration of the slurry to be dried, the temperature of hot air used for drying, the air volume, etc., and therefore, it is necessary to obtain optimum conditions in advance.
  • Uniform granulated powder can be easily obtained by rapid drying granulation. That is, it is possible to prevent the In 2 O 3 powder, the ZnO powder, and the Al 2 O 3 powder from separating due to the difference in the sedimentation speed due to the difference in specific gravity of the raw material powder. If a sintered body made from a uniform granulated powder, it is possible to prevent abnormal discharge during sputtering due to the presence such as Al 2 O 3.
  • the granulated powder is usually molded by a die press or cold isostatic press (CIP) at a pressure of, for example, 1.2 ton / cm 2 or more to obtain a molded body.
  • CIP cold isostatic press
  • the obtained molded product can be sintered at a sintering temperature of 1200 to 1650 ° C. for 10 to 50 hours to obtain a sintered body.
  • the sintering temperature is preferably 1350 to 1600 ° C, more preferably 1400 to 1600 ° C, still more preferably 1450 to 1600 ° C.
  • the sintering time is preferably 12 to 40 hours, more preferably 13 to 30 hours.
  • a sintering temperature of 1200 ° C. or more and a sintering time of 10 hours or more are preferable because GaInO 3 , Al 2 O 3, and the like can be suppressed from forming inside the target and abnormal discharge can be prevented.
  • the firing temperature is 1650 ° C. or less and the firing time is 50 hours or less, an increase in the average crystal grain size due to significant crystal grain growth can be prevented, and the generation of coarse pores can be suppressed. It is preferable because a decrease in body strength and abnormal discharge can be prevented. Further, by setting the sintering temperature to 1650 ° C. or less, transpiration of Ga can be suppressed.
  • a pressure sintering method such as hot press, oxygen pressurization, hot isostatic pressurization and the like can be employed in addition to the atmospheric pressure sintering method.
  • a normal pressure sintering method from the viewpoints of reducing manufacturing costs, possibility of mass production, and easy production of large sintered bodies.
  • the compact is sintered in an air atmosphere or an oxidizing gas atmosphere, preferably an oxidizing gas atmosphere.
  • the oxidizing gas atmosphere is preferably an oxygen gas atmosphere.
  • the oxygen gas atmosphere is preferably an atmosphere having an oxygen concentration of, for example, 10 to 100% by volume.
  • the density of the sintered body can be further increased by introducing an oxygen gas atmosphere in the temperature raising process.
  • the heating rate during sintering is from 800 ° C. to a sintering temperature (1200 to 1650 ° C.) of 0.1 to 2 ° C./min.
  • the temperature range above 800 ° C. is the range in which sintering proceeds most. If the rate of temperature rise in this temperature range is slower than 0.1 ° C./min, crystal grain growth becomes significant, and there is a possibility that densification cannot be achieved.
  • the rate of temperature rise is faster than 2 ° C./min, GaInO 3 , Al 2 O 3, etc. may be precipitated inside the target.
  • the heating rate from 800 ° C. to the sintering temperature is preferably 0.1 to 1.3 ° C./min, more preferably 0.1 to 1.1 ° C./min.
  • a reduction step may be provided as necessary.
  • the reduction method include a method using a reducing gas, vacuum firing, or reduction using an inert gas.
  • a reducing gas hydrogen, methane, carbon monoxide, a mixed gas of these gases and oxygen, or the like can be used.
  • reduction treatment by firing in an inert gas nitrogen, argon, a mixed gas of these gases and oxygen, or the like can be used.
  • the temperature during the reduction treatment is usually 100 to 800 ° C., preferably 200 to 800 ° C.
  • the reduction treatment time is usually 0.01 to 10 hours, preferably 0.05 to 5 hours.
  • the method for producing a sintered body used in the present invention is, for example, an oxide containing a positive tetravalent metal (SnO 2 , TiO 2 , ZrO 2 , SiO 2 , one or two or more kinds of oxides).
  • an oxide containing a positive tetravalent metal SnO 2 , TiO 2 , ZrO 2 , SiO 2 , one or two or more kinds of oxides.
  • Oxide consisting of combination raw material powder containing mixed powder of indium oxide powder and gallium oxide powder or aluminum oxide powder, an aqueous solvent is blended, and the resulting slurry is mixed for 12 hours or more. Drying and granulating, and then molding this granulated product in a mold, and then molding the resulting molded product in an oxygen atmosphere at a temperature rising rate from 800 ° C. to the sintering temperature of 0.1 to 2
  • a sintered body can be obtained by firing at 1200 to 1650 ° C. for 10 to 50 hours at a
  • the sputtering target of the present invention can be obtained by processing the sintered body obtained above.
  • a sputtering target material can be obtained by cutting the sintered body into a shape suitable for mounting on a sputtering apparatus, and a sputtering target can be obtained by bonding the target material to a backing plate.
  • the sintered body is ground with, for example, a surface grinder to obtain a material having a surface roughness Ra of 0.5 ⁇ m or less.
  • the sputter surface of the target material may be further mirror-finished so that the average surface roughness Ra may be 1000 angstroms or less.
  • known polishing techniques such as mechanical polishing, chemical polishing, and mechanochemical polishing (a combination of mechanical polishing and chemical polishing) can be used.
  • polishing to # 2000 or more with a fixed abrasive polisher polishing liquid: water
  • lapping with loose abrasive lapping abrasive: SiC paste, etc.
  • lapping by changing the abrasive to diamond paste can be obtained by:
  • the surface of the target material is preferably finished with a diamond grindstone of No. 200 to 10,000, and particularly preferably finished with a diamond grindstone of No. 400 to 5,000.
  • a diamond grindstone of No. 200 to 10,000 the target material can be prevented from cracking.
  • the target material has a surface roughness Ra of 0.5 ⁇ m or less and has a non-directional ground surface. It is preferable that Ra is 0.5 ⁇ m or less and a ground surface having no directionality is provided because abnormal discharge and particles can be prevented.
  • the obtained target material is cleaned. Air blow or running water washing can be used for the cleaning treatment. When removing foreign matter by air blow, it is possible to remove the foreign matter more effectively by suctioning with a dust collector from the opposite side of the nozzle.
  • ultrasonic cleaning etc. can also be performed. This ultrasonic cleaning is effective by performing multiple oscillations at a frequency of 25 to 300 KHz. For example, it is preferable to perform ultrasonic cleaning by multiplying twelve frequencies in 25 KHz increments between 25 to 300 KHz.
  • the thickness of the target material is usually 2 to 20 mm, preferably 3 to 12 mm, particularly preferably 4 to 6 mm.
  • a sputtering target can be obtained by bonding the target material obtained as described above to a backing plate. Further, a plurality of target materials may be attached to one backing plate to substantially serve as one target.
  • the method for producing an oxide thin film (oxide semiconductor thin film) of the present invention is characterized by forming a film by a sputtering method using the above sputtering target.
  • the oxide thin film manufactured by the oxide thin film manufacturing method of the present invention is composed of indium, gallium, positive tetravalent metal X and oxygen, or indium, aluminum, positive tetravalent metal X and oxygen, and usually has an atomic ratio of Ga. / (Ga + In) is 0.001 to 0.15 or the atomic ratio Al / (Al + In) is 0.0001 to 0.08.
  • Gallium oxide and aluminum oxide have the effect of reducing the lattice constant of indium oxide, and it is expected that the 5s orbital overlap between the indium in the crystal will increase and the mobility will be improved.
  • Magnesium oxide is expected to reduce the carrier concentration of the oxide thin film.
  • microcrystals may be formed immediately after the thin film is deposited. There is a risk of secondary crystallization. In a thin film obtained by secondary crystallization, not only the mobility is lowered but also oxygen defects are increased, which may cause an increase in carrier concentration.
  • An oxide thin film formed using a sputtering target having an atomic ratio Ga / (Ga + In) of greater than 0.15 or an atomic ratio of Al / (Al + In) of greater than 0.08 includes Ga 2 O 3 and Al 2 O in the thin film. 3 precipitates and causes scattering of electrons, which may reduce mobility.
  • the oxide thin film preferably has a band gap of 3.7 eV or more.
  • a spectroscopic ellipsometry method is a typical method for evaluating the band gap.
  • Spectral ellipsometry is a method in which linearly polarized light is incident on a sample, the polarization state of light reflected from the sample (generally elliptically polarized light) is examined, and fitting is performed using an optimal model for describing the physical properties of the film.
  • the refractive index n and extinction coefficient k optical constant
  • other physical property values such as crystallinity, anisotropy, electrical resistivity, and band gap can be predicted.
  • the sputtering target of the present invention has high conductivity, a DC sputtering method having a high film formation rate can be applied.
  • the sputtering target of the present invention can be applied to an RF sputtering method, an AC sputtering method, and a pulsed DC sputtering method in addition to the DC sputtering method, and can perform sputtering without abnormal discharge.
  • the oxide semiconductor thin film can also be produced by a vapor deposition method, a sputtering method, an ion plating method, a pulse laser vapor deposition method or the like using the above sintered body.
  • a mixed gas of a rare gas atom such as argon and an oxidizing gas can be used.
  • the oxidizing gas include O 2 , CO 2 , O 3 , H 2 O, and N 2 O.
  • the sputtering gas is a mixture containing a rare gas (rare gas atom) and one or more gases (molecules) selected from water vapor (water molecules), oxygen gas (oxygen molecules), and nitrous oxide gas (nitrous oxide molecules).
  • a gas is preferable, and a mixed gas containing a rare gas and at least water vapor is more preferable.
  • the carrier concentration of the oxide semiconductor thin film is usually 10 18 / cm 3 or less, preferably 10 13 to 10 18 / cm 3 , more preferably 10 14 to 10 18 / cm 3 , particularly preferably 10. 15 to 10 18 / cm 3 .
  • the carrier concentration of the oxide layer is 10 18 cm ⁇ 3 or less, leakage current hardly occurs when an element such as a thin film transistor is formed. In addition, it is difficult to be normally on, and the on-off ratio is difficult to be small, so that good transistor performance can be exhibited.
  • a carrier concentration of 10 13 cm ⁇ 3 or more is a suitable number of carriers for driving the TFT.
  • the carrier concentration of the oxide semiconductor thin film can be measured by a Hall effect measurement method.
  • the oxygen partial pressure ratio during sputtering film formation is preferably 0% or more and less than 40%.
  • a thin film produced under a condition where the oxygen partial pressure ratio is less than 40% is difficult to significantly reduce the carrier concentration.
  • the oxygen partial pressure ratio is preferably 0% to 30%, particularly preferably 0% to 10%.
  • the partial pressure ratio of water vapor contained in the sputtering gas (atmosphere) during oxide thin film deposition in the present invention is It is preferably 0 to 25%. Further, when the partial pressure ratio of water is 25% or less, the film density is difficult to decrease, and the overlap of the 5s orbitals of In is not reduced, and the mobility is difficult to decrease.
  • the partial pressure ratio of water in the atmosphere during sputtering is more preferably 0.7 to 13%, particularly preferably 1 to 6%.
  • the partial pressure ratio of the rare gas contained in the sputtering gas (atmosphere) is preferably 90% or more, more preferably 95% or more.
  • the substrate temperature when forming a film by sputtering is preferably 25 to 120 ° C., more preferably 25 to 100 ° C., and particularly preferably 25 to 90 ° C.
  • the substrate temperature at the time of film formation is 120 ° C. or lower, microcrystals are hardly generated in the film immediately after the thin film is deposited, and the carrier concentration of the thin film after the heat crystallization hardly exceeds 10 18 / cm 3 .
  • the substrate temperature during film formation is 25 ° C. or higher, the film density of the thin film is difficult to decrease, and the mobility of the TFT is difficult to decrease.
  • the oxide thin film obtained by sputtering is further annealed by holding at 150 to 500 ° C. for 15 minutes to 5 hours.
  • the annealing temperature after film formation is more preferably 200 ° C. or higher and 450 ° C. or lower, and further preferably 250 ° C. or higher and 350 ° C. or lower. By performing the annealing, semiconductor characteristics can be obtained.
  • the atmosphere during heating is not particularly limited, but from the viewpoint of carrier controllability, an air atmosphere or an oxygen circulation atmosphere is preferable.
  • a lamp annealing device In the post-treatment annealing step of the oxide thin film, a lamp annealing device, a laser annealing device, a thermal plasma device, a hot air heating device, a contact heating device, or the like can be used in the presence or absence of oxygen.
  • the distance between the target and the substrate at the time of sputtering is preferably 1 to 15 cm, more preferably 2 to 8 cm in the direction perpendicular to the film formation surface of the substrate.
  • the distance is 1 cm or more, it is preferable that the kinetic energy of the target constituent element particles reaching the substrate can be prevented from becoming too large, and good film characteristics can be obtained. In addition, in-plane distribution of film thickness and electrical characteristics can be prevented.
  • the distance between the target and the substrate is 15 cm or less because the kinetic energy of the target constituent element particles reaching the substrate can be prevented from becoming too small, and a dense film can be obtained. In addition, good semiconductor characteristics can be obtained.
  • the oxide thin film is preferably formed by sputtering in an atmosphere having a magnetic field strength of 300 to 1500 gauss.
  • a magnetic field strength of 300 gauss or more is preferable because it can prevent a decrease in plasma density and can perform sputtering without problems even in the case of a high-resistance sputtering target.
  • the pressure in the gas atmosphere is not particularly limited as long as the plasma can be stably discharged, but is preferably 0.1 to 3.0 Pa, more preferably 0.1 to 1.5 Pa. Particularly preferred is 0.1 to 1.0 Pa. It is preferable for the sputtering pressure to be 3.0 Pa or less because the mean free path of sputtered particles can be in an appropriate range, and the thin film density can be prevented from lowering. Further, it is preferable that the sputtering pressure is 0.1 Pa or more because it is possible to prevent the formation of microcrystals in the film during film formation.
  • the sputtering pressure refers to the total pressure in the system at the start of sputtering after introducing a rare gas such as argon, water vapor, oxygen gas or the like.
  • the oxide semiconductor thin film may be formed by AC sputtering as described below.
  • the substrate is sequentially transported to a position facing three or more targets arranged in parallel at a predetermined interval in the vacuum chamber, and negative and positive potentials are alternately applied to each target from an AC power source. Then, plasma is generated on the target to form a film on the substrate surface.
  • at least one of the outputs from the AC power supply is performed while switching a target to which a potential is applied between two or more targets that are branched and connected. That is, at least one of the outputs from the AC power supply is branched and connected to two or more targets, and film formation is performed while applying different potentials to adjacent targets.
  • an oxide semiconductor thin film is formed by AC sputtering
  • sputtering is performed in an atmosphere of a mixed gas containing a rare gas and one or more gases selected from water vapor, oxygen gas, and nitrous oxide gas. It is preferable to perform, and it is particularly preferable to perform sputtering in an atmosphere of a mixed gas containing water vapor.
  • the AC sputtering apparatus described in Japanese Patent Laid-Open No. 2005-290550 includes a vacuum chamber, a substrate holder disposed inside the vacuum chamber, and a sputtering source disposed at a position facing the substrate holder. .
  • FIG. 1 shows a main part of a sputtering source of an AC sputtering apparatus.
  • the sputter source has a plurality of sputter units, each of which has plate-like targets 31a to 31f. When the surfaces to be sputtered of the targets 31a to 31f are sputter surfaces, each sputter unit has the same sputter surface on the same plane. It arrange
  • Each target 31a to 31f is formed in an elongated shape having a longitudinal direction, each target has the same shape, and edge portions (side surfaces) in the longitudinal direction of the sputtering surface are arranged in parallel with a predetermined interval therebetween. Therefore, the side surfaces of the adjacent targets 31a to 31f are parallel.
  • AC power supplies 17a to 17c are arranged outside the vacuum chamber, and one of the two terminals of each AC power supply 17a to 17c is one of two adjacent electrodes (not shown). The other terminal is connected to the other electrode.
  • the electrodes are closely attached to the surface of each target opposite to the sputtering surface.
  • Two terminals of each of the AC power supplies 17a to 17c output voltages of positive and negative different polarities, and the targets 31a to 31f are attached in close contact with the electrodes, so that the two adjacent targets 31a to 31f are adjacent to each other.
  • AC voltages having different polarities are applied from the AC power sources 17a to 17c. Therefore, when one of the targets 31a to 31f adjacent to each other is placed at a positive potential, the other is placed at a negative potential.
  • Magnetic field forming means 40a to 40f are disposed on the surface of the electrode opposite to the targets 31a to 31f.
  • Each of the magnetic field forming means 40a to 40f has an elongated ring-shaped magnet whose outer periphery is substantially equal to the outer periphery of the targets 31a to 31f, and a bar-shaped magnet shorter than the length of the ring-shaped magnet.
  • Each ring-shaped magnet is arranged in parallel with the longitudinal direction of the targets 31a to 31f at the position directly behind the corresponding one of the targets 31a to 31f. As described above, since the targets 31a to 31f are arranged in parallel at a predetermined interval, the ring magnets are also arranged at the same interval as the targets 31a to 31f.
  • the AC power density when using an oxide target in AC sputtering is preferably 3 W / cm 2 or more and 20 W / cm 2 or less.
  • a power density of 3 W / cm 2 or more is preferable because the film formation rate can be within an appropriate range, and production economy can be ensured. It is preferable that it is 20 W / cm 2 or less because damage to the target can be suppressed.
  • a more preferable power density is 3 W / cm 2 to 15 W / cm 2 .
  • the frequency of AC sputtering is preferably in the range of 10 kHz to 1 MHz. If it is 10 kHz or more, the problem of noise does not occur. If it is 1 MHz or less, it is possible to prevent the plasma from spreading so much that sputtering is performed at a position other than the desired target position, and this is preferable because uniformity can be maintained.
  • a more preferable frequency of AC sputtering is 20 kHz to 500 kHz. What is necessary is just to select suitably the conditions at the time of sputtering other than the above from what was mentioned above.
  • the above oxide thin film can be used for a thin film transistor (TFT), and can be particularly preferably used as a channel layer.
  • TFT thin film transistor
  • the thin film transistor of the present invention has the above oxide thin film as a channel layer, its element structure is not particularly limited, and various known element structures can be adopted.
  • the absolute value is preferably less than 0.3V.
  • the absolute value of the threshold voltage shift of the TFT is less than 0.3 V, it is difficult to increase the cost of the panel, for example, a compensation circuit for correcting the threshold voltage shift is required.
  • an indium oxide-based material having crystallinity is used, and the bond of In—O and In—OH is strong, and oxygen vacancies hardly occur in a vacuum process. Therefore, the shift of the threshold voltage after the DC stress test can be suppressed very small.
  • the thickness of the channel layer in the thin film transistor of the present invention is usually 10 to 300 nm, preferably 20 to 250 nm, more preferably 30 to 200 nm, still more preferably 35 to 120 nm, and particularly preferably 40 to 80 nm.
  • the thickness of the channel layer is 10 nm or more, the thickness is likely to be uniform when the film is formed in a large area, and the characteristics of the manufactured TFT are preferably uniform in the plane.
  • a film thickness of 300 nm or less is preferable because the film formation time can be within an appropriate range.
  • the channel layer in the thin film transistor of the present invention is usually used in an N-type region, but a PN junction transistor or the like in combination with various P-type semiconductors such as a P-type Si-based semiconductor, a P-type oxide semiconductor, and a P-type organic semiconductor. It can be used for various semiconductor devices.
  • the band gap of the channel material used for the TFT of the present invention is preferably 3.7 eV or more. By setting it to 3.7 eV or more, it is possible to suppress the deterioration phenomenon of the TFT with respect to the backlight of the LED.
  • the thin film transistor of the present invention preferably includes a protective film on the channel layer.
  • the protective film in the thin film transistor of the present invention preferably contains at least SiN x . Since SiN x can form a dense film as compared with SiO 2 , it has an advantage of a high TFT deterioration suppressing effect.
  • the protective film may be, for example, SiO 2 , Al 2 O 3 , Ta 2 O 5 , TiO 2 , MgO, ZrO 2 , CeO 2 , K 2 O, Li 2 O, Na 2 O, Rb 2 O, It may contain oxides such as Sc 2 O 3 , Y 2 O 3 , HfO 2 , CaHfO 3 , PbTi 3 , BaTa 2 O 6 , Sm 2 O 3 , SrTiO 3, or AlN, but substantially SiN x. It is preferable that it consists only of.
  • Consisting essentially of SiN x means that 70 wt% or more, preferably 80 wt% or more, more preferably 85 wt% or more of the thin film constituting the protective layer in the thin film transistor of the present invention is SiN x. Means.
  • the back channel side is not easily reduced by the process for producing the protective film, and SiN x can be used as the protective film.
  • the channel layer is preferably subjected to ozone treatment, oxygen plasma treatment, nitrogen dioxide plasma treatment, or nitrous oxide plasma treatment.
  • ozone treatment oxygen plasma treatment, nitrogen dioxide plasma treatment, or nitrous oxide plasma treatment.
  • Such treatment may be performed at any timing after the channel layer is formed and before the protective film is formed, but is preferably performed immediately before the protective film is formed.
  • ozone treatment oxygen plasma treatment, nitrogen dioxide plasma treatment, or nitrous oxide plasma treatment.
  • a thin film transistor usually includes a substrate, a gate electrode, a gate insulating layer, an organic semiconductor layer (channel layer), a source electrode, and a drain electrode.
  • the channel layer is as described above, and a known material can be used for the substrate.
  • the material for forming the gate insulating film in the thin film transistor of the present invention is not particularly limited, and a commonly used material can be arbitrarily selected. Specifically, for example, SiO 2, SiN x, Al 2 O 3, Ta 2 O 5, TiO 2, MgO, ZrO 2, CeO 2, K 2 O, Li 2 O, Na 2 O, Rb 2 O, Compounds such as Sc 2 O 3 , Y 2 O 3 , HfO 2 , CaHfO 3 , PbTi 3 , BaTa 2 O 6 , SrTiO 3 , Sm 2 O 3 , and AlN can be used. Among them, preferred are SiO 2, SiN x, Al 2 O 3, Y 2 O 3, HfO 2, CaHfO 3, more preferably SiO 2, SiN x, HfO 2 , Al 2 O 3.
  • the gate insulating film can be formed by, for example, a plasma CVD (Chemical Vapor Deposition) method.
  • a gate insulating film is formed by plasma CVD and a channel layer is formed on the gate insulating film, hydrogen in the gate insulating film may diffuse into the channel layer, leading to deterioration in channel layer quality and TFT reliability. is there.
  • the gate insulating film may be subjected to ozone treatment, oxygen plasma treatment, nitrogen dioxide plasma treatment or nitrous oxide plasma treatment before forming the channel layer. preferable. By performing such pretreatment, it is possible to prevent deterioration of the channel layer film quality and TFT reliability.
  • the number of oxygen in the oxide does not necessarily match the stoichiometric ratio, and may be, for example, SiO 2 or SiO x .
  • the gate insulating film may have a structure in which two or more insulating films made of different materials are stacked.
  • the gate insulating film may be crystalline, polycrystalline, or amorphous, but is preferably polycrystalline or amorphous that can be easily manufactured industrially.
  • each of the drain electrode, the source electrode, and the gate electrode in the thin film transistor of the present invention there are no particular limitations on the material for forming each of the drain electrode, the source electrode, and the gate electrode in the thin film transistor of the present invention, and a commonly used material can be arbitrarily selected.
  • transparent electrodes such as indium tin oxide (ITO), indium zinc oxide, ZnO, SnO 2 , metal electrodes such as Al, Ag, Cu, Cr, Ni, Mo, Au, Ti, Ta, or these An alloy metal electrode can be used.
  • the drain electrode, the source electrode, and the gate electrode may have a multilayer structure in which two or more different conductive layers are stacked.
  • a good conductor such as Al or Cu may be sandwiched with a metal having excellent adhesion such as Ti or Mo.
  • the thin film transistor of the present invention can be applied to various integrated circuits such as a field effect transistor, a logic circuit, a memory circuit, and a differential amplifier circuit. Further, in addition to the field effect transistor, it can be applied to an electrostatic induction transistor, a Schottky barrier transistor, a Schottky diode, and a resistance element.
  • the configuration of the thin film transistor of the present invention known configurations such as a bottom gate, a bottom contact, and a top contact can be adopted without limitation.
  • the bottom gate structure is advantageous because high performance can be obtained as compared with thin film transistors of amorphous silicon or ZnO.
  • the bottom gate configuration is preferable because it is easy to reduce the number of masks at the time of manufacturing, and it is easy to reduce the manufacturing cost for uses such as a large display.
  • the thin film transistor of the present invention can be suitably used for a display device.
  • a channel etch type bottom gate thin film transistor is particularly preferable.
  • a channel-etched bottom gate thin film transistor has a small number of photomasks at the time of a photolithography process, and can produce a display panel at a low cost.
  • a channel-etched bottom gate structure and a top contact structure thin film transistor are particularly preferable because they have good characteristics such as mobility and are easily industrialized.
  • Examples 1-14 [Production of sintered body] The following oxide powder was used as a raw material powder.
  • the average particle diameter of the oxide powder was measured with a laser diffraction particle size distribution analyzer SALD-300V (manufactured by Shimadzu Corporation), and the median diameter D50 was used as the average particle diameter.
  • Indium oxide powder average particle size 0.98 ⁇ m
  • Gallium oxide powder Average particle size 0.96 ⁇ m
  • Aluminum oxide powder Average particle size 0.96 ⁇ m
  • Tin oxide powder Average particle size 0.95 ⁇ m
  • Zirconium oxide powder Average particle size of 0.99 ⁇ m Titanium oxide: Average particle size 0.98 ⁇ m
  • Silicon oxide powder Average particle size 0.98 ⁇ m
  • the above-mentioned powder was mixed with the atomic ratio Ga / (In + Ga) or Al / (In + Al) shown in Table 1 and the positive tetravalent metal content (atomic ratio) (X / (In + M), X: positive tetravalent metal, M: Ga or Al), weighed and uniformly pulverized and mixed, and then granulated by adding a molding binder.
  • this raw material mixed powder was uniformly filled into a mold, and pressure-molded with a cold press machine at a press pressure of 140 MPa.
  • the molded body thus obtained was sintered in a sintering furnace at a heating rate (from 800 ° C. to sintering temperature), a sintering temperature and a sintering time shown in Table 1 to produce a sintered body. During the temperature increase, an oxygen atmosphere was used, and the others were in the air (atmosphere).
  • the obtained sintered body was subjected to ICP-AES analysis, and the atomic ratios shown in Table 1 were confirmed.
  • the crystal structure was examined with an X-ray diffraction measurement apparatus (XRD).
  • XRD X-ray diffraction measurement apparatus
  • FIGS The X-ray diffraction charts of the sintered bodies obtained in Examples 1 and 2 are shown in FIGS.
  • JCPDS Joint Committee of Powder Diffraction Standards
  • the measurement conditions of XRD are as follows. ⁇ Equipment: Ultimate-III manufactured by Rigaku Corporation -X-ray: Cu-K ⁇ ray (wavelength 1.5406mm, monochromatized with graphite monochromator) ⁇ 2 ⁇ - ⁇ reflection method, continuous scan (1.0 ° / min) ⁇ Sampling interval: 0.02 ° ⁇ Slit DS, SS: 2/3 °, RS: 0.6 mm
  • the measurement conditions for EPMA are as follows. Device name: JEOL Ltd. JXA-8200 Measurement conditions Acceleration voltage: 15 kV Irradiation current: 50 nA Irradiation time (per point): 50mS
  • sputtering target The surface of the sintered body obtained above was ground with a surface grinder, the side edges were cut with a diamond cutter, and bonded to a backing plate to prepare sputtering targets each having a diameter of 4 inches. In Examples 1, 3 to 5, and 9 to 12, six targets each having a width of 200 mm, a length of 1700 mm, and a thickness of 10 mm were prepared for AC sputtering film formation.
  • the presence or absence of abnormal discharge was determined by monitoring voltage fluctuation and detecting abnormal discharge. Specifically, the abnormal discharge was determined when the voltage fluctuation generated during the measurement time of 5 minutes was 10% or more of the steady voltage during the sputtering operation. In particular, when the steady-state voltage during sputtering operation varies by ⁇ 10% in 0.1 second, a micro arc, which is an abnormal discharge of the sputter discharge, has occurred, and the device yield may decrease, making it unsuitable for mass production. is there.
  • nodules For the nodules, a change in the target surface after sputtering was observed 50 times with a stereomicroscope, and a method of measuring the number average of nodules of 20 ⁇ m or more generated in a visual field of 3 mm 2 was adopted. Table 1 shows the number of nodules generated.
  • Comparative Examples 1 to 4 Other than the atomic ratio Ga / (In + Ga), Al / (In + Al), positive tetravalent metal content, heating rate (from 800 ° C. to sintering temperature), sintering temperature, and sintering time shown in Table 1, Sintered bodies and sputtering targets were produced and evaluated in the same manner as in Examples 1-14. The results are shown in Table 1.
  • GaInO 3 phase is a card JCPDSNo. 21-0334
  • Al 2 O 3 phase is a card JCPDS No. 10-173. Since the GaInO 3 phase and the Al 2 O 3 phase are high resistance phases, they are considered to cause nodules.
  • the sintered bodies of Comparative Examples 1 to 4 have a composition in which the content of the positive tetravalent metal X exceeds 100 atomic ppm and deviates from 1100 atomic ppm or less, and the temperature rising rate (from 800 ° C. to sintering temperature) exceeds 2 ° C./min. Since sintering was performed, the relative density was less than 97% and the bulk specific resistance exceeded 5 m ⁇ cm.
  • Examples 15-26 [Formation of oxide semiconductor thin film]
  • a 4-inch target having the composition shown in Table 2 prepared in Examples 1 to 7 and 10 to 14 was mounted on the magnetron sputtering apparatus, and a slide glass (# 1737 manufactured by Corning) was mounted as a substrate.
  • An amorphous film having a thickness of 50 nm was formed on the slide glass by the DC magnetron sputtering method under the following conditions.
  • Ar gas, O 2 gas, and H 2 O gas were introduced at a partial pressure ratio (%) shown in Table 2.
  • the substrate on which the amorphous film was formed was heated in the atmosphere at 300 ° C. for 60 minutes, and the amorphous film was crystallized to form an oxide semiconductor film.
  • the sputtering conditions are as follows. Substrate temperature: 25 ° C Ultimate pressure: 8.5 ⁇ 10 ⁇ 5 Pa Atmospheric gas: Ar gas, O 2 gas, H 2 O gas (see Table 2 for partial pressure) Sputtering pressure (total pressure): 0.4 Pa Input power: DC100W S (substrate)-T (target) distance: 70mm
  • substrate formed into a film on the glass substrate was set to ResiTest8300 type (made by Toyo Technica), and the Hall effect was evaluated at room temperature. ICP-AES analysis confirmed that the atomic ratio of each element contained in the oxide thin film was the same as that of the sputtering target.
  • the crystal structure was examined with an X-ray diffraction measurement apparatus. Immediately after deposition of the thin film, no diffraction peak was observed, and it was confirmed that the film was amorphous. In addition, a diffraction peak was observed after heat treatment (annealing) at 300 ° C. for 60 minutes in the atmosphere, and it was found that crystallization occurred. As a result of analyzing the chart, a bixbite structure of indium oxide was substantially observed in the thin film after crystallization.
  • the measurement conditions of XRD are as follows. Equipment: Ultimate-III manufactured by Rigaku Corporation X-ray: Cu-K ⁇ ray (wavelength 1.5406mm, monochromatized with graphite monochromator) 2 ⁇ - ⁇ reflection method, continuous scan (1.0 ° / min) Sampling interval: 0.02 ° Slit DS, SS: 2/3 °, RS: 0.6 mm
  • a conductive silicon substrate with a thermal oxide film having a thickness of 100 nm was used as the substrate.
  • the thermal oxide film functions as a gate insulating film
  • the conductive silicon portion functions as a gate electrode.
  • a sputter film was formed on the gate insulating film under the conditions shown in Table 2 to produce an amorphous thin film with a thickness of 50 nm.
  • OFPR # 800 manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • pre-baking 80 ° C., 5 minutes
  • the manufactured thin film transistor was evaluated for field effect mobility ( ⁇ ), S value, and threshold voltage (Vth). These characteristic values were measured using a semiconductor parameter analyzer (4200SCS manufactured by Keithley Instruments Co., Ltd.) at room temperature in a light-shielding environment (in a shield box). The results are shown in Table 2. The transfer characteristics of the mounted transistors were evaluated with a drain voltage (Vd) of 1 V and a gate voltage (Vg) of ⁇ 15 to 20 V. The field effect mobility ( ⁇ ) was calculated from the linear mobility and defined as the maximum value of Vg ⁇ .
  • Comparative Examples 5 and 6 Using the 4-inch target produced in Comparative Examples 1 and 3, oxide semiconductor thin films and thin film transistors were produced and evaluated in the same manner as in Examples 15 to 26 according to the sputtering conditions and heating (annealing) treatment conditions shown in Table 2. . The results are shown in Table 2. As shown in Table 2, the devices of Comparative Examples 5 and 6 have a field effect mobility of less than 30 cm 2 / Vs, which is significantly lower than those of Examples 15 to 26.
  • Example 27 In accordance with the sputtering conditions and annealing conditions shown in Table 3, oxide semiconductor thin films and thin film transistors were fabricated and evaluated in the same manner as in Examples 15 to 26. The results are shown in Table 3.
  • DC sputtering was AC sputtering.
  • the film forming apparatus shown in FIG. 1 disclosed in Japanese Patent Application Laid-Open No. 2005-290550 was used.
  • targets 31a to 31f having a width of 200 mm, a length of 1700 mm, and a thickness of 10 mm prepared in Example 1 were used as targets, and the targets 31a to 31f were parallel to the width direction of the substrate and spaced apart. It arrange
  • the width of the magnetic field forming means 40a to 40f was 200 mm, the same as the targets 31a to 31f.
  • Ar, H 2 O and O 2 as sputtering gases were introduced into the system from the gas supply system.
  • the film was formed for 10 seconds under the above conditions, and the thickness of the obtained thin film was measured to be 11 nm.
  • the film formation rate is as high as 66 nm / min and is suitable for mass production.
  • the obtained thin film was placed in an electric furnace together with a glass substrate, heat-treated in air at 300 ° C. for 60 minutes (in the atmosphere), cut into a size of 1 cm 2 , and hole measurement was performed by a 4-probe method.
  • the carrier concentration was 1.62 ⁇ 10 17 cm ⁇ 3 , and it was confirmed that the semiconductor was sufficiently semiconductorized.
  • the oxide thin film was amorphous immediately after the thin film was deposited and crystallized in air at 300 ° C. after 60 minutes.
  • a bixbite structure of indium oxide was substantially observed in the thin film after crystallization. ICP-AES analysis confirmed that the atomic ratio of each element contained in the oxide thin film was the same as that of the sputtering target.
  • Examples 28-34 Using the targets of Examples 3 to 5 and 9 to 12, according to the sputtering conditions and annealing conditions shown in Table 3, oxide semiconductor thin films and thin film transistors were fabricated and evaluated in the same manner as in Example 27. The results are shown in Table 3. As a result of Hall measurement, it was confirmed that all the thin films were made into semiconductors. Further, from XRD measurement, it was confirmed that the film was amorphous immediately after deposition of the thin film and crystallized after annealing. As a result of analyzing the chart, a bixbite structure of indium oxide was substantially observed in the thin film after crystallization.
  • Comparative Examples 7 and 8 Using the six targets having a width of 200 mm, a length of 1700 mm, and a thickness of 10 mm prepared in Comparative Examples 1 and 3, according to the sputtering conditions and heating (annealing) treatment conditions shown in Table 3, the oxide was formed in the same manner as in Example 27. Semiconductor thin films and thin film transistors were fabricated and evaluated. The results are shown in Table 3. As shown in Table 3, the devices of Comparative Examples 7 and 8 have a field effect mobility of less than 30 cm 2 / Vs, which is significantly lower than those of Examples 27 to 34.
  • Examples 35 to 46 According to the sputtering conditions and annealing conditions shown in Table 4, an oxide semiconductor thin film (substrate was a quartz substrate) and a thin film transistor were produced in the same manner as in Examples 15 to 26. Further, the same evaluation as in Examples 15 to 26 and the following evaluation were performed. The results are shown in Table 4.
  • the fluctuation of the threshold voltage was very small, and the absolute value of the threshold voltage shift before and after the stress was less than 0.3V. That is, it was found that it is hardly affected by DC stress and light irradiation stress.
  • the addition amount of the metal exhibiting positive tetravalence is more than 1100 ppm, it is considered that the metal exhibiting positive tetravalence forms impurity levels in the band gap and the reliability is deteriorated as compared with the example.
  • the thin film transistor of the present invention can be used for a display device, particularly for a large area display.

Abstract

Gaをドープした酸化インジウム、又はAlをドープした酸化インジウムを含み、正4価の原子価を示す金属を、Gaとインジウムの合計又はAlとインジウムの合計に対して100原子ppm超1100原子ppm以下含み、結晶構造が、実質的に酸化インジウムのビックスバイト構造からなる焼結体を含むスパッタリングターゲット。

Description

スパッタリングターゲット
 本発明は、スパッタリングターゲット、その製造方法、酸化物半導体薄膜、その製造方法、それを用いた薄膜トランジスタ及び表示装置に関する。
 薄膜トランジスタ(TFT)等の電界効果型トランジスタは、半導体メモリ集積回路の単位電子素子、高周波信号増幅素子、液晶駆動用素子等として広く用いられており、現在、最も多く実用されている電子デバイスである。なかでも、近年における表示装置のめざましい発展に伴い、液晶表示装置(LCD)、エレクトロルミネッセンス表示装置(EL)、フィールドエミッションディスプレイ(FED)等の各種の表示装置において、表示素子に駆動電圧を印加して表示装置を駆動させるスイッチング素子として、TFTが多用されている。
 電界効果型トランジスタの主要部材である半導体層(チャンネル層)の材料としては、シリコン半導体化合物が最も広く用いられている。一般に、高速動作が必要な高周波増幅素子や集積回路用素子等には、シリコン単結晶が用いられている。一方、液晶駆動用素子等には、大面積化の要求から非晶質性シリコン半導体(アモルファスシリコン)が用いられている。
 アモルファスシリコンの薄膜は、比較的低温で形成できるものの、結晶性の薄膜に比べてスイッチング速度が遅いため、表示装置を駆動するスイッチング素子として使用したときに、高速な動画の表示に追従できない場合がある。具体的に、解像度がVGAである液晶テレビでは、移動度が0.5~1cm/Vsのアモルファスシリコンが使用可能であったが、解像度がSXGA、UXGA、QXGAあるいはそれ以上になると2cm/Vs以上の移動度が要求される。また、画質を向上させるため駆動周波数を上げるとさらに高い移動度が必要となる。
 一方、結晶性のシリコン系薄膜は、移動度は高いものの、製造に際して多大なエネルギーと工程数を要する等の問題や、大面積化が困難という問題があった。例えば、シリコン系薄膜を結晶化する際に800℃以上の高温や、高価な設備を使用するレーザーアニールが必要である。また、結晶性のシリコン系薄膜は、通常TFTの素子構成がトップゲート構成に限定されるためマスク枚数の削減等コストダウンが困難であった。
 このような問題を解決するために、酸化インジウム、酸化亜鉛及び酸化ガリウムからなる酸化物半導体膜を使用した薄膜トランジスタが検討されている。尚、一般に、酸化物半導体薄膜の作製は酸化物焼結体からなるターゲット(スパッタリングターゲット)を用いたスパッタリングで行われる。
 例えば、一般式InGaZnO、InGaZnOで表されるホモロガス結晶構造を示す化合物からなるターゲットが知られている(特許文献1~3)。しかしながら、このターゲットでは焼結密度(相対密度)を上げるために、酸化雰囲気で焼結する必要があるが、その場合、ターゲットの抵抗を下げるため、焼結後に高温での還元処理が必要であった。また、ターゲットを長期間使用していると得られた膜の特性や成膜速度が大きく変化する、InGaZnOやInGaZnOの異常成長による異常放電が起きる、成膜時にパーティクルの発生が多い等の問題があった。異常放電が頻繁に起きると、プラズマ放電状態が不安定となり、安定した成膜が行われず、膜特性に悪影響を及ぼす。
 特許文献4には、Gaをドープした酸化インジウムのスパッタリングターゲットが公開されている。しかしながら、特許文献4に記載されている正4価以上の金属を100原子ppm以下含有したGaをドープした酸化インジウムのスパッタリングターゲットは、ターゲット密度のばらつきがあり、ターゲットの相対密度を97%以上に安定的に製造することが困難であった。
 また、特許文献5には、Alドープした酸化インジウムのスパッタリングターゲットが公開されている。Alの原子比が0.001%~45%と組成範囲が広いばかりか、ターゲットにドープする正4価以上のイオンの比率が10~5000原子ppmと広いため酸化物半導体として最適な組成領域は、明らかではなかった。
 このように、酸化物半導体膜をスパッタリング法で作製する際に使用するターゲットについての検討は十分ではなかった。
特開平8-245220号公報 特開2007-73312号公報 国際公開第2009/084537号パンフレット 国際公開第2010/032422号パンフレット 国際公開第2010/070944号パンフレット
 本発明の目的は、高密度かつ低抵抗のスパッタリングターゲットを提供することである。また、本発明の目的は、電界効果移動度の高い薄膜トランジスタを提供することである。
 本発明によれば、以下のスパッタリングターゲット等が提供される。
1.Gaをドープした酸化インジウム、又はAlをドープした酸化インジウムを含み、
 正4価の原子価を示す金属を、Gaとインジウムの合計又はAlとインジウムの合計に対して100原子ppm超1100原子ppm以下含み、
 結晶構造が、実質的に酸化インジウムのビックスバイト構造からなる焼結体を含むスパッタリングターゲット。
2.前記Gaをドープした酸化インジウムの原子比Ga/(Ga+In)が0.001~0.15である1に記載のスパッタリングターゲット。
3.前記Alをドープした酸化インジウムの原子比Al/(Al+In)が0.0001~0.08である1に記載のスパッタリングターゲット。
4.前記正4価の原子価を示す金属がSn、Zr、Ti及びSiから選択される1種又は2種以上の元素である1~3のいずれかに記載のスパッタリングターゲット。
5.前記焼結体のバルク比抵抗が5mΩcm以下である1~4のいずれかに記載のスパッタリングターゲット。
6.前記焼結体の相対密度が97%以上である1~5のいずれかに記載のスパッタリングターゲット。
7.成形体を800℃から焼結温度まで昇温速度0.1~2℃/分で昇温し、前記焼結温度で10~50時間保持して焼結することを含み、前記焼結温度が1200℃~1650℃の範囲内である1~6のいずれかに記載のスパッタリングターゲットの製造方法。
8.1~6のいずれかに記載のスパッタリングターゲットを用いて、スパッタリング法により成膜してなる酸化物半導体薄膜。
9.希ガスと、水蒸気、酸素ガス及び亜酸化窒素ガスから選ばれる1種以上のガスとを含有する混合気体の雰囲気下において成膜を行う8に記載の酸化物半導体薄膜の製造方法。
10.希ガスと、少なくとも水蒸気とを含有する混合気体の雰囲気下において成膜を行う9に記載の酸化物半導体薄膜の製造方法。
11.前記雰囲気中に含まれる水蒸気の割合が分圧比で0.1%~25%である10に記載の酸化物半導体薄膜の製造方法。
12.真空チャンバー内に所定の間隔を置いて並設された3枚以上のターゲットに対向する位置に、基板を順次搬送し、前記各ターゲットに対して交流電源から負電位及び正電位を交互に印加し、少なくとも1つの交流電源からの出力を、この交流電源に接続した2枚以上のターゲットの間で、電位を印加するターゲットの切替を行いながら、ターゲット上にプラズマを発生させて基板表面に成膜する9~11のいずれかに記載の酸化物半導体薄膜の製造方法。
13.前記交流電源の交流パワー密度を3W/cm以上20W/cm以下とする12に記載の酸化物半導体薄膜の製造方法。
14.前記交流電源の周波数が10kHz~1MHzである12又は13に記載の酸化物半導体薄膜の製造方法。
15.9~14のいずれかに記載の方法により成膜された酸化物半導体薄膜をチャネル層として有する薄膜トランジスタ。
16.電界効果移動度が30cm/Vs以上である15に記載の薄膜トランジスタ。
17.前記チャネル層上に少なくともSiNを含有する保護膜を備える15又は16に記載の薄膜トランジスタ。
18.15~17のいずれかに記載の薄膜トランジスタを備えた表示装置。
 本発明によれば、高密度かつ低抵抗のスパッタリングターゲットを提供できる。また、本発明によれば、電界効果移動度の高い薄膜トランジスタを提供できる。
本発明の一実施形態に用いるスパッタリング装置を示す図である。 実施例1で得られた焼結体のX線回折チャートである。 実施例2で得られた焼結体のX線回折チャートである。
 以下、本発明のスパッタリングターゲット等について詳細に説明するが、本発明は下記実施態様及び実施例に限定されるものではない。
I.焼結体及びスパッタリングターゲット
 本発明のスパッタリングターゲットは、焼結体を含み、焼結体はGaをドープした酸化インジウム又はAlをドープした酸化インジウムを含み、正4価の原子価を示す金属Xを、Gaとインジウムの合計又はAlとインジウムの合計に対して100原子ppm超1100原子ppm以下含む。
 また、上記焼結体の結晶構造は、実質的に酸化インジウムのビックスバイト構造からなる。
 上記焼結体は、Ga又はAlが固溶したビッグスバイト構造の酸化インジウムの単一相からなり、さらに正4価金属を100原子ppm超1100原子ppm以下含有しているため、好ましくは、バルク比抵抗が5mΩcm以下であり、相対密度が97%以上である。
 そのため、本発明のスパッタリングターゲットは、スパッタリングの際の異常放電を抑制することができる。また、本発明のスパッタリングターゲットは、高品質の酸化物半導体薄膜を、効率的に、安価に、かつ省エネルギーで成膜することができる。
 上記焼結体が、Gaをドープした酸化インジウムを含む場合、好ましくは原子比Ga/(Ga+In)が0.001~0.15である。原子比Ga/(In+Ga)を0.15以下とすることにより、Gaを酸化インジウム結晶中に均一に分散させることができる。
 原子比Ga/(Ga+In)が0.15超の場合、酸化インジウムのビックスバイト構造中にGaが固溶しなくなり、GaInO等の別の結晶構造が析出するおそれがある。本発明の酸化物焼結体がGaInO等の別の結晶構造を含むと、本発明の酸化物焼結体からなるターゲットをスパッタリングした場合に、異常放電が発生しやすくなる、及び電子が散乱して移動度が低下したり、酸化インジウムの結晶化を阻害したりする場合がある。
 上記異常放電の理由としては、ターゲットが不均一で局所的に比抵抗の異なる部分が存在することで、ターゲットを含む放電系のインピーダンスがスパッタリング中に変動してしまうことが推定される。局所的に比抵抗が異なる部分とは、GaInO等の結晶であり、これら結晶のサイズ及び数密度を小さくすることが異常放電の抑制には効果的である。
 原子比Ga/(Ga+In)が0.001未満の場合、本発明の酸化物焼結体からなるターゲットを用いて薄膜を成膜した場合に、薄膜中に微結晶が生成するおそれがある。当該薄膜を後処理工程で加熱すると、2次結晶化が起こって移動度の低下や酸素欠陥が増えるに伴ってキャリア濃度の上昇を招くおそれがある。
 以上の観点から、ガリウム金属及びインジウム金属の原子比Ga/(Ga+In)は、好ましくは0.001~0.15であり、より好ましくは0.01~0.1、さらに好ましくは0.03~0.09、特に好ましくは0.05~0.08である。
 上記焼結体が、Alをドープした酸化インジウムを含む場合、好ましくは原子比Al/(Al+In)が0.0001~0.08である。原子比Al/(In+Al)を0.08以下とすることにより、Alを酸化インジウム結晶中に均一に分散させることができる。
 原子比Al/(In+Al)が0.08超の場合、酸化インジウムのビックスバイト構造中にAlが固溶しなくなり、Al等の別の結晶構造が析出するおそれがある。Ga3+イオンと比較してAl3+イオンは、イオン半径が小さいため酸化インジウムのビックスバイト構造中に固溶しにくい。そのため、Ga添加量に比べてAl添加量は少なく抑える必要がある。
 原子比Al/(In+Al)が0.0001未満の場合、本発明の酸化物焼結体からなるターゲットを用いて薄膜を成膜した場合に、薄膜中に微結晶が生成するおそれがある。当該薄膜を後処理工程で加熱すると、2次結晶化が起こって移動度の低下や酸素欠陥が増えるに伴ってキャリア濃度の上昇を招くおそれがある。
 以上の観点から、アルミニウム金属及びインジウム金属の原子比Al/(Al+In)は、好ましくは0.0001~0.08であり、より好ましくは0.001~0.07、さらに好ましくは0.01~0.05、特に好ましくは0.01~0.03である。
 本発明に用いる焼結体には、さらに正4価の原子価を示す金属Xを含有させる。正4価の金属Xを含有させることにより、焼結体の焼結密度を向上させる効果、焼結体のバルク比抵抗を低下させる効果等がある。正4価の金属Xが、Sn、Zr、Ti及びSiから選択される1又は2以上の元素であることが好ましく、通常、酸化物として含有されている。金属Xは好ましくは少なくともSnを含有する。
 正4価金属Xの含有量が100原子ppm以下であると、ターゲット密度が低くなるおそれがある。そのため、正4価金属Xの含有量は100原子ppm超にすることが好ましい。
 尚、焼結体中の正4価金属Xの含有量(原子比)は以下の式で表される。
正4価金属Xの含有量=X/(In+M)
(MはGa又はAlである。)
 正4価金属Xの含有量が1100原子ppm超であると、そのターゲットを用いて得られた薄膜をチャネル層に用いたTFTの電界効果移動度が低くなるおそれがある。
 酸化物半導体薄膜において、正4価金属XがInのIn3+サイトを置換すると、イオン化不純物が形成されキャリアが散乱されるため移動度低下の原因となる。そのため、正4価金属Xの含有量は1100原子ppm以下にすることが好ましい。
 以上の観点から、上記正4価金属Xの含有量は、好ましくは100原子ppm超1100原子ppm以下であり、より好ましくは120原子ppm超900原子ppm以下、さらに好ましくは120原子ppm超700原子ppm以下、特に好ましくは120原子ppm超600原子ppm以下である。
 正4価金属Xの含有量を上記のように調整することで、ターゲットの相対密度が97%以上かつバルク比抵抗が5mΩcm以下にすることができる。
 焼結体に含まれる各元素の原子比は、誘導結合プラズマ発光分析装置(ICP-AES)により、含有元素を定量分析して求めることができる。
 具体的に、溶液試料をネブライザーで霧状にして、アルゴンプラズマ(約6000~8000℃)に導入すると、試料中の元素は熱エネルギーを吸収して励起され、軌道電子が基底状態から高いエネルギー準位の軌道に移る。この軌道電子は10-7~10-8秒程度で、より低いエネルギー準位の軌道に移る。この際にエネルギーの差を光として放射し発光する。この光は元素固有の波長(スペクトル線)を示すため、スペクトル線の有無により元素の存在を確認できる(定性分析)。
 また、それぞれのスペクトル線の大きさ(発光強度)は試料中の元素数に比例するため、既知濃度の標準液と比較することで試料濃度を求めることができる(定量分析)。
 定性分析で含有されている元素を特定後、定量分析で含有量を求め、その結果から各元素の原子比を求める。
 本発明に用いる焼結体は、本発明の効果を損ねない範囲において、上述したIn、Ga、Al及び正四価金属X以外の他の金属元素を含有していてもよいし、実質的にIn、Ga及び正四価金属Xのみ、又はIn、Al及び正四価金属Xのみからなっていてもよい。
 ここで、「実質的」とは、焼結体としての効果が上記In、Ga及び正四価金属X、又はIn、Al及び正四価金属Xに起因すること、又は本発明の効果を損なわない範囲でIn、Ga及び正四価金属X、又はIn、Al及び正四価金属Xの他に不可避不純物を含んでいてもよいことである。
 具体的には、スパッタリングターゲットを構成する、正四価金属以外の全ての金属元素の95~100重量%、98~100重量%、又は99~100重量%が、InとGa又はAlであってよい。不可避不純物は含んでいてもよい。
 上記焼結体の結晶構造は、実質的に酸化インジウムのビックスバイト構造からなる。上記ビックスバイト構造はX線回折測定により確認することができる。
 ここで、「実質的」とは、焼結体の効果が上記ビックスバイト構造に起因すること、又は上記結晶構造の90体積%以上、好ましくは95体積%以上、さらに好ましくは98体積%以上がビックスバイト構造を示す酸化インジウムであることを意味する。
 尚、上記焼結体は、通常90体積%以上、好ましくは95体積%以上、さらに好ましくは98%体積以上が結晶構造で構成される。好ましくは、上記焼結体は、90体積%以上が結晶構造で構成され、当該結晶構造の90体積%以上がビックスバイト構造を示す酸化インジウムである。
 本発明に用いる焼結体は、好ましくは相対密度が97%以上である。特に大型基板(1Gサイズ以上)にスパッタ出力を上げて酸化物半導体を成膜する場合は、相対密度が97%以上であることが好ましい。
 相対密度が97%以上であれば、安定したスパッタリング状態が保たれる。大型基板でスパッタ出力を上げて成膜する場合でも、相対密度が97%以上であれば、ターゲット表面の黒化や異常放電の発生を防ぐことができるため好ましい。相対密度は好ましくは98%以上、より好ましくは99%以上である。
 相対密度とは、加重平均より算出した理論密度に対して相対的に算出した密度である。各原料の密度の加重平均より算出した密度が理論密度であり、これを100%とする。
 相対密度はアルキメデス法により測定できる。即ち、相対密度は、アルキメデス法により求めた実測密度を理論密度で除し、100を掛けて算出する。
 相対密度は、好ましくは100%以下である。100%を超える場合、金属粒子が焼結体に発生したり、低級酸化物が生成する場合があり、成膜時の酸素供給量を厳密に調整する必要が生じる。
 また、焼結後に、還元性雰囲気下での熱処理操作等の後処理工程等を行って密度を調整することもできる。還元性雰囲気は、アルゴン、窒素、水素等の雰囲気や、それらの混合気体雰囲気が用いられる。
 本発明に用いる焼結体中の結晶の最大粒径は5μm以下であることが望ましい。結晶が粒径5μm以下であるとノジュールの原因になり難い。
 スパッタによってターゲット表面が削られる場合、その削られる速度が結晶面の方向によって異なり、ターゲット表面に凹凸が発生する。この凹凸の大きさは焼結体中に存在する結晶粒径に依存している。大きい結晶粒径を有する焼結体からなるターゲットでは、その凹凸が大きくなり、その凸部分よりノジュールが発生すると考えられる。
 これらのスパッタリングターゲットの結晶の最大粒径は、スパッタリングターゲットの形状が円形の場合、円の中心点(1箇所)と、その中心点で直交する2本の中心線上の中心点と周縁部との中間点(4箇所)の合計5箇所において、また、スパッタリングターゲットの形状が四角形の場合には、その中心点(1箇所)と、四角形の対角線上の中心点と角部との中間点(4箇所)の合計5箇所において100μm四方の枠内で観察される最大の粒子についてその最大径を測定し、これらの5箇所の枠内のそれぞれに存在する最大粒子の粒径の平均値で表す。粒径は、結晶粒の長径について測定する。結晶粒は走査型電子顕微鏡(SEM)により観察することができる。
 本発明のスパッタリングターゲットの製造方法は以下の2工程を含む。
(1)原料化合物を混合し、成形して成形体とする工程
(2)上記成形体を焼結する工程
 以下、各工程について説明する。
(1)原料化合物を混合し、成形して成形体とする工程
 原料化合物は特に制限されず、Inを含む化合物、Ga又はAlを含む化合物、及び正4価金属Xを含む化合物である。
 焼結体が原子比Ga/(Ga+In)=0.001~0.15、又はAl/(Al+In)=0.0001~0.08を満たすことができるように使用量を調整すると好ましい。
 正4価金属Xの使用量は、焼結体における含有量が100原子ppm超1100原子ppm以下となるようにする。
 Inを含む化合物、及びGa又はAlを含む化合物としては、例えば、酸化インジウム、及びガリウム金属もしくはアルミニウム金属の組み合わせ、又は酸化インジウム、酸化ガリウムもしくは酸化アルミニウムの組み合わせ等が挙げられる。
 尚、原料は粉末であることが好ましい。
 In、及びGa又はAlを含む原料化合物は、酸化インジウム、及び酸化ガリウム又は酸化アルミニウムの混合粉末であることが好ましい。
 原料に単体金属を用いた場合、例えば、酸化インジウム、及びガリウム金属又はアルミニウム金属の組み合わせを原料粉末として用いた場合、得られる焼結体中にガリウムやアルミニウムの金属粒が存在し、成膜中にターゲット表面の金属粒が溶融してターゲットから放出されないことがあり、得られる膜の組成と焼結体の組成が大きく異なってしまう場合がある。
 正4価金属Xは、例えば、SnO,TiO,ZrO,SiO等の正4価金属を含んだ酸化物を添加することで、焼結体に含有させることができる。
 原料粉末の平均粒径は、好ましくは0.1μm~1.2μmであり、より好ましくは0.1μm~1.0μm以下である。原料粉末の平均粒径はレーザー回折式粒度分布装置等で測定することができる。
 例えば、平均粒径が0.1μm~1.2μmのIn粉末、及び平均粒径が0.1μm~1.2μmのGa粉末又は平均粒径が0.1μm~1.2μmのAl粉末、さらに平均粒径が0.1μm~1.2μmの正4価金属Xを含んだ酸化物を原料粉末とし、これらを、原子比Ga/(Ga+In)が0.001~0.15又はAl/(Al+In)が0.0001~0.08、正4価金属Xの含有量が100原子ppm超1100原子ppm以下となる割合で調合する。
 原料化合物の混合、成形方法は特に限定されず、公知の方法を用いて行うことができる。例えば、酸化インジウム粉、及び酸化ガリウム粉又は酸化アルミニウム粉、正4価金属Xを含んだ酸化物の混合粉を含む原料粉末に、水系溶媒を配合し、得られたスラリーを12時間以上混合した後、固液分離・乾燥・造粒し、引き続き、この造粒物を型枠に入れて成形する。
 混合については、湿式又は乾式によるボールミル、振動ミル、ビーズミル等を用いることができる。均一で微細な結晶粒及び空孔を得るには、短時間で凝集体の解砕効率が高く、添加物の分散状態も良好となるビーズミル混合法が最も好ましい。
 ボールミルによる混合時間は、好ましくは15時間以上、より好ましくは19時間以上とする。上記範囲であれば、混合時間が不足して最終的に得られる焼結体中にCaInOやAl等の高抵抗の化合物が生成し難くなるため好ましい。
 ビーズミルによる粉砕、混合時間は、装置の大きさ、処理するスラリー量によって異なるが、スラリー中の粒度分布がすべて1μm以下と均一になるように適宜調整することが好ましい。
 また、混合する際にはバインダーを任意量だけ添加し、同時に混合を行うと好ましい。バインダーには、ポリビニルアルコール、酢酸ビニル等を用いることができる。
 次に、原料粉末スラリーから造粒粉を得る。造粒に際しては、急速乾燥造粒を行うことが好ましい。急速乾燥造粒するための装置としては、スプレードライヤが広く用いられている。具体的な乾燥条件は、乾燥するスラリーのスラリー濃度、乾燥に用いる熱風温度、風量等の諸条件により決定されるため、実施に際しては、予め最適条件を求めておくことが必要となる。
 急速乾燥造粒であると均一な造粒粉が得られ易い。即ち、原料粉末の比重差による沈降速度の差によって、In粉末、ZnO粉末及びAl粉末が分離することを防ぐことができる。均一な造粒粉から作成した焼結体であれば、Al等の存在によるスパッタリング時の異常放電を防ぐことができる。
 造粒粉に対して、通常、金型プレス又は冷間静水圧プレス(CIP)により、例えば1.2ton/cm以上の圧力で成形を施して成形体を得る。
(2)成形体を焼結する工程
 得られた成形物を1200~1650℃の焼結温度で10~50時間焼結して焼結体を得ることができる。
 焼結温度は好ましくは1350~1600℃、より好ましくは1400~1600℃、さらに好ましくは1450~1600℃である。焼結時間は好ましくは12~40時間、より好ましくは13~30時間である。
 焼結温度が1200℃以上、焼結時間が10時間以上であると、GaInOやAl等がターゲット内部に形成することを抑制でき、異常放電を防ぐことができるため好ましい。一方、焼成温度が1650℃以下、焼成時間が50時間以下であると、著しい結晶粒成長による平均結晶粒径の増大を防ぐことができ、また、粗大空孔の発生を抑制できるため、焼結体強度の低下や異常放電を防ぐことができるため好ましい。
 また、焼結温度を1650℃以下とすることにより、Gaの蒸散を抑えることもできる。   
 本発明で用いる焼結方法としては、常圧焼結法の他、ホットプレス、酸素加圧、熱間等方圧加圧等の加圧焼結法も採用することができる。ただし、製造コストの低減、大量生産の可能性、容易に大型の焼結体を製造できるといった観点から、常圧焼結法を採用することが好ましい。
 常圧焼結法では、成形体を大気雰囲気、又は酸化ガス雰囲気、好ましくは酸化ガス雰囲気にて焼結する。酸化ガス雰囲気とは、好ましくは酸素ガス雰囲気である。酸素ガス雰囲気は、酸素濃度が、例えば10~100体積%の雰囲気であることが好ましい。上記焼結体の製造方法においては、昇温過程にて酸素ガス雰囲気を導入することで、焼結体密度をより高くすることができる。
 さらに、焼結に際しての昇温速度は、800℃から焼結温度(1200~1650℃)までを0.1~2℃/分とすることが好ましい。
 Gaドープ酸化インジウムターゲット、又はAlドープ酸化インジウムターゲットにおいて800℃から上の温度範囲は、焼結が最も進行する範囲である。この温度範囲での昇温速度が0.1℃/分より遅くなると、結晶粒成長が著しくなって、高密度化を達成することができないおそれがある。一方、昇温速度が2℃/分より速くなると、GaInOやAl等がターゲット内部に析出するおそれがある。
 800℃から焼結温度における昇温速度は、好ましくは0.1~1.3℃/分、より好ましくは0.1~1.1℃/分である。
 上記焼成工程で得られた焼結体のバルク比抵抗をターゲット全体で均一化するために、必要に応じて還元工程を設けてもよい。
 還元方法としては、例えば、還元性ガスによる方法や真空焼成又は不活性ガスによる還元等が挙げられる。
 還元性ガスによる還元処理の場合、水素、メタン、一酸化炭素、又はこれらのガスと酸素との混合ガス等を用いることができる。
 不活性ガス中での焼成による還元処理の場合、窒素、アルゴン、又はこれらのガスと酸素との混合ガス等を用いることができる。
 還元処理時の温度は、通常100~800℃、好ましくは200~800℃である。また、還元処理の時間は、通常0.01~10時間、好ましくは0.05~5時間である。
 以上をまとめると、本発明に用いる焼結体の製造方法は、例えば、正4価金属を含んだ酸化物(SnO、TiO,ZrO,SiOの群の1種もしくは2種以上の組み合わせからなる酸化物)と酸化インジウム粉と酸化ガリウム粉又は酸化アルミニウム粉との混合粉を含む原料粉末に、水系溶媒を配合し、得られたスラリーを12時間以上混合した後、固液分離・乾燥・造粒し、引き続き、この造粒物を型枠に入れて成形し、その後、得られた成形物を酸素雰囲気中、800℃から焼結温度までの昇温速度を0.1~2℃/分とし、1200~1650℃で10~50時間焼成することで焼結体を得ることができる。
 上記で得られた焼結体を加工することにより本発明のスパッタリングターゲットとすることができる。具体的には、焼結体をスパッタリング装置への装着に適した形状に切削加工することでスパッタリングターゲット素材とし、該ターゲット素材をバッキングプレートに接着することでスパッタリングターゲットとすることができる。
 焼結体をターゲット素材とするには、焼結体を、例えば平面研削盤で研削して表面粗さRaが0.5μm以下の素材とする。ここで、さらにターゲット素材のスパッタ面に鏡面加工を施して、平均表面粗さRaが1000オングストローム以下としてもよい。
 鏡面加工(研磨)は、機械的な研磨、化学研磨、メカノケミカル研磨(機械的な研磨と化学研磨の併用)等の、公知の研磨技術を用いることができる。例えば、固定砥粒ポリッシャー(ポリッシュ液:水)で#2000以上にポリッシングしたり、又は遊離砥粒ラップ(研磨材:SiCペースト等)にてラッピング後、研磨材をダイヤモンドペーストに換えてラッピングすることによって得ることができる。このような研磨方法には特に制限はない。
 ターゲット素材の表面は200~10,000番のダイヤモンド砥石により仕上げを行うことが好ましく、400~5,000番のダイヤモンド砥石により仕上げを行うことが特に好ましい。200~10,000番のダイヤモンド砥石を使用することで、ターゲット素材の割れを防ぐことができる。
 ターゲット素材の表面粗さRaが0.5μm以下であり、方向性のない研削面を備えていることが好ましい。Raが0.5μm以下であり、方向性のない研削面を備えていれば、異常放電やパーティクルを防ぐことができるため好ましい。
 次に、得られたターゲット素材を清浄処理する。清浄処理にはエアーブロー又は流水洗浄等を使用できる。エアーブローで異物を除去する際には、ノズルの向い側から集塵機で吸気を行なうとより有効に除去できる。
 尚、以上のエアーブローや流水洗浄では限界があるので、さらに超音波洗浄等を行なうこともできる。この超音波洗浄は周波数25~300KHzの間で多重発振させて行なう方法が有効である。例えば周波数25~300KHzの間で、25KHz刻みに12種類の周波数を多重発振させて超音波洗浄を行なうのが好ましい。
 ターゲット素材の厚みは通常2~20mm、好ましくは3~12mm、特に好ましくは4~6mmである。
 上記のようにして得られたターゲット素材をバッキングプレートへボンディングすることによって、スパッタリングターゲットを得ることができる。また、複数のターゲット素材を1つのバッキングプレートに取り付け、実質1つのターゲットとしてもよい。
II.酸化物薄膜
 本発明の酸化物薄膜(酸化物半導体薄膜)の製造方法は、上記のスパッタリングターゲットを用いて、スパッタリング法により成膜することを特徴とする。
 本発明の酸化物薄膜の製造方法によって製造された酸化物薄膜は、インジウム、ガリウム、正4価金属X及び酸素、又はインジウム、アルミニウム、正4価金属X及び酸素からなり、通常、原子比Ga/(Ga+In)が0.001~0.15又は原子比Al/(Al+In)が0.0001~0.08である。
 酸化ガリウムや酸化アルミニウムは、酸化インジウムの格子定数を小さくする効果があり、結晶中のインジウム同士の5s軌道の重なりが大きくなり、移動度が向上することが期待される。酸化マグネシウムは、酸化物薄膜のキャリア濃度を低下させる効果が期待される。
 酸化物薄膜の原子比Ga/(Ga+In)が0.001未満又は原子比Al/(Al+In)が0.0001未満であると、薄膜堆積直後に微結晶が生成することがあり、後処理加熱工程で2次結晶化するおそれがある。2次結晶化した薄膜では、移動度が低下するばかりか酸素欠陥が増え、キャリア濃度の上昇を招くおそれがある。
 原子比Ga/(Ga+In)が0.15超又は原子比Al/(Al+In)が0.08超のスパッタリングターゲットを用いて成膜した酸化物薄膜は、薄膜中にGaやAlが析出し、電子の散乱原因となり移動度が低下するおそれがある。
 上記の酸化物薄膜は、好ましくはバンドギャップが3.7eV以上である。
 バンドギャップを評価する代表的な手法として、分光エリプソメトリー法が挙げられる。分光エリプソメトリー法とは、直線偏光の光を試料に入射させ、試料を反射した光の偏光状態(一般には楕円偏光)を調べ、膜の物性を記述するのに最適なモデルでフィッティングすることによって、薄膜の屈折率nと消衰係数k(光学定数)や、膜厚、表面粗さ・界面の粗さ等を測定する方法である。また、結晶度や異方性、電気抵抗率やバンドギャップ等の他の物性値を予測することができる。
 本発明のスパッタリングターゲットは高い導電性を有することから、成膜速度の速いDCスパッタリング法を適用することができる。
 本発明のスパッタリングターゲットは、上記DCスパッタリング法に加えて、RFスパッタリング法、ACスパッタリング法、パルスDCスパッタリング法にも適用することができ、異常放電のないスパッタリングが可能である。
 酸化物半導体薄膜は、上記焼結体を用いて、蒸着法、スパッタリング法、イオンプレーティング法、パルスレーザー蒸着法等により作製することもできる。
 スパッタリングガス(雰囲気)としては、アルゴン等の希ガス原子と酸化性ガスの混合ガスを用いることができる。酸化性ガスとはO、CO、O、HO、NO等が挙げられる。スパッタリングガスは、希ガス(希ガス原子)と、水蒸気(水分子)、酸素ガス(酸素分子)及び亜酸化窒素ガス(亜酸化窒素分子)から選ばれる一種以上のガス(分子)を含有する混合気体が好ましく、希ガスと、少なくとも水蒸気を含有する混合気体であることがより好ましい。
 酸化物半導体薄膜のキャリア濃度は、通常1018/cm以下であり、好ましくは1013~1018/cmであり、さらに好ましくは1014~1018/cmであり、特に好ましくは1015~1018/cmである。
 酸化物層のキャリア濃度が1018cm-3以下であると、薄膜トランジスタ等の素子を構成した際に、漏れ電流が発生し難い。また、ノーマリーオンになり難く、on-off比も小さなり難く、良好なトランジスタ性能が発揮できる。さらに、キャリア濃度が1013cm-3以上はTFTが駆動するのに好適なキャリア数である。
 酸化物半導体薄膜のキャリア濃度は、ホール効果測定方法により測定することが出来る。
 スパッタリング成膜時の酸素分圧比は0%以上40%未満とすることが好ましい。酸素分圧比が40%未満の条件で作製した薄膜は、大幅にキャリア濃度が低減し難い。
 好ましくは、酸素分圧比は0%~30%、特に好ましくは0%~10%である。
 本発明における酸化物薄膜堆積時のスパッタガス(雰囲気)に含まれる水蒸気の分圧比、即ち、[HO]/([HO]+[希ガス]+[その他のガス])は、0~25%であることが好ましい。
 また、水の分圧比が25%以下であると、膜密度が低下し難く、Inの5s軌道の重なりが小さくならず移動度が低下し難い。スパッタリング時の雰囲気中の水の分圧比は0.7~13%がより好ましく、1~6%が特に好ましい。
 スパッタガス(雰囲気)に含まれる希ガスの分圧比は、好ましくは90%以上、より好ましくは95%以上である。
 スパッタリングにより成膜する際の基板温度は、25~120℃であることが好ましく、さらに好ましくは25~100℃、特に好ましくは25~90℃である。成膜時の基板温度が120℃以下であると薄膜堆積直後の膜中に微結晶が生成し難く、加熱結晶化後の薄膜のキャリア濃度が1018/cmを超え難い。また、成膜時の基板温度が25℃以上であると薄膜の膜密度が低下し難く、TFTの移動度が低下し難い。
 スパッタリングによって得られた酸化物薄膜を、さらに150~500℃に15分~5時間保持してアニール処理を施すことが好ましい。成膜後のアニール処理温度は200℃以上450℃以下であることがより好ましく、250℃以上350℃以下であることがさらに好ましい。上記アニールを施すことにより、半導体特性が得られる。
 また、加熱時の雰囲気は、特に限定されるわけではないが、キャリア制御性の観点から、大気雰囲気、酸素流通雰囲気が好ましい。
 酸化物薄膜の後処理アニール工程においては、酸素の存在下又は不存在下でランプアニール装置、レーザーアニール装置、熱プラズマ装置、熱風加熱装置、接触加熱装置等を用いることができる。
 スパッタリング時におけるターゲットと基板との間の距離は、基板の成膜面に対して垂直方向に好ましくは1~15cmであり、さらに好ましくは2~8cmである。この距離が1cm以上であると、基板に到達するターゲット構成元素の粒子の運動エネルギーが大きくなりすぎることを防止でき、良好な膜特性を得ることができるため好ましい。また、膜厚及び電気特性の面内分布等を防ぐことができる。一方、ターゲットと基板との間隔が15cm以下であると、基板に到達するターゲット構成元素の粒子の運動エネルギーが小さくなりすぎることを防止でき、緻密な膜を得ることができるため好ましい。また、良好な半導体特性を得ることができる。
 酸化物薄膜の成膜は、磁場強度が300~1500ガウスの雰囲気下でスパッタリングすることが望ましい。磁場強度が300ガウス以上であると、プラズマ密度の低下を防ぐことができ、高抵抗のスパッタリングターゲットの場合でも問題なくスパッタリングを行うことができるため好ましい。一方、1500ガウス以下であると、膜厚及び膜中の電気特性の制御性の悪化を抑制することができるため好ましい。
 気体雰囲気の圧力(スパッタ圧力)は、プラズマが安定して放電できる範囲であれば特に限定されないが、好ましくは0.1~3.0Paであり、さらに好ましくは0.1~1.5Paであり、特に好ましくは0.1~1.0Paである。スパッタ圧力が3.0Pa以下であると、スパッタ粒子の平均自由工程を適切な範囲とすることができ、薄膜密度が低下を防ぐことができるため好ましい。また、スパッタ圧力が0.1Pa以上であると、成膜時に膜中に微結晶が生成することを防ぐことができるため好ましい。尚、スパッタ圧力とは、アルゴン等の希ガス、水蒸気、酸素ガス等を導入した後のスパッタ開始時の系内の全圧をいう。
 また、酸化物半導体薄膜の成膜を、次のような交流スパッタリングで行ってもよい。
 真空チャンバー内に所定の間隔を置いて並設された3枚以上のターゲットに対向する位置に、基板を順次搬送し、各ターゲットに対して交流電源から負電位及び正電位を交互に印加して、ターゲット上にプラズマを発生させて基板表面上に成膜する。
 このとき、交流電源からの出力の少なくとも1つを、分岐して接続された2枚以上のターゲットの間で、電位を印加するターゲットの切替を行いながら行う。即ち、上記交流電源からの出力の少なくとも1つを分岐して2枚以上のターゲットに接続し、隣り合うターゲットに異なる電位を印加しながら成膜を行う。
 尚、交流スパッタリングによって酸化物半導体薄膜を成膜する場合も、例えば、希ガスと、水蒸気、酸素ガス及び亜酸化窒素ガスから選ばれる一以上のガスとを含有する混合気体の雰囲気下においてスパッタリングを行うことが好ましく、水蒸気を含有する混合気体の雰囲気下においてスパッタリングを行うことが特に好ましい。
 ACスパッタリングで成膜した場合、工業的に大面積均一性に優れた酸化物層が得られると共に、ターゲットの利用効率の向上が期待できる。
 また、1辺が1mを超える大面積基板にスパッタ成膜する場合には、たとえば特開2005-290550号公報記載のような大面積生産用のACスパッタ装置を使用することが好ましい。
 特開2005-290550号公報記載のACスパッタ装置は、具体的には、真空槽と、真空槽内部に配置された基板ホルダと、この基板ホルダと対向する位置に配置されたスパッタ源とを有する。図1にACスパッタ装置のスパッタ源の要部を示す。スパッタ源は、複数のスパッタ部を有し、板状のターゲット31a~31fをそれぞれ有し、各ターゲット31a~31fのスパッタされる面をスパッタ面とすると、各スパッタ部はスパッタ面が同じ平面上に位置するように配置される。各ターゲット31a~31fは長手方向を有する細長に形成され、各ターゲットは同一形状であり、スパッタ面の長手方向の縁部分(側面)が互いに所定間隔を空けて平行に配置される。従って、隣接するターゲット31a~31fの側面は平行になる。
 真空槽の外部には、交流電源17a~17cが配置されており、各交流電源17a~17cの二つの端子のうち、一方の端子は隣接する二つの電極(図示せず)のうちの一方の電極に接続され、他方の端子は他方の電極に接続されている。電極は、各ターゲットのスパッタ面と反対側の面に、密着して取り付けられている。各交流電源17a~17cの2つの端子は正負の異なる極性の電圧を出力するようになっており、ターゲット31a~31fは電極に密着して取り付けられているので、隣接する2つのターゲット31a~31fには互いに異なる極性の交流電圧が交流電源17a~17cから印加される。従って、互いに隣接するターゲット31a~31fのうち、一方が正電位に置かれる時には他方が負電位に置かれた状態になる。
 電極のターゲット31a~31fとは反対側の面には磁界形成手段40a~40fが配置されている。各磁界形成手段40a~40fは、外周がターゲット31a~31fの外周と略等しい大きさの細長のリング状磁石と、リング状磁石の長さよりも短い棒状磁石とをそれぞれ有している。
 各リング状磁石は、対応する1個のターゲット31a~31fの真裏位置で、ターゲット31a~31fの長手方向に対して平行に配置されている。上述したように、ターゲット31a~31fは所定間隔を空けて平行配置されているので、リング状磁石もターゲット31a~31fと同じ間隔を空けて配置されている。
 ACスパッタで、酸化物ターゲットを用いる場合の交流パワー密度は、3W/cm以上20W/cm以下が好ましい。パワー密度が3W/cm以上であると、成膜速度を適切な範囲とすることができ、生産経済性を担保できるため好ましい。20W/cm以下であると、ターゲットの破損を抑制することができ好ましい。より好ましいパワー密度は3W/cm~15W/cmである。
 ACスパッタの周波数は10kHz~1MHzの範囲が好ましい。10kHz以上であると、騒音の問題が生じない。1MHz以下であると、プラズマが広がりすぎて所望のターゲット位置以外でスパッタが行われることを防ぐことができ、均一性を保てるため好ましい。より好ましいACスパッタの周波数は20kHz~500kHzである。
 上記以外のスパッタリング時の条件等は、上述したものから適宜選択すればよい。
III.薄膜トランジスタ及び表示装置
 上記の酸化物薄膜は、薄膜トランジスタ(TFT)に使用でき、特にチャネル層として好適に使用できる。
 本発明の薄膜トランジスタは、上記の酸化物薄膜をチャネル層として有していれば、その素子構成は特に限定されず、公知の各種の素子構成を採用することができる。
 本発明の薄膜トランジスタは、信頼性評価として、Vg(ゲート電圧)=15V、Vd(ドレイン電圧)=15VのDCストレス(ストレス温度80℃下)を10000秒印加した前後における、TFTの閾値電圧シフトの絶対値が0.3V未満であることが好ましい。
 TFTの閾値電圧シフトの絶対値が0.3V未満であると、閾値電圧シフトを補正するための補償回路が必要になる等、パネルのコストアップを招き難い。
 本発明の薄膜トランジスタのチャネル層には、結晶性を示す酸化インジウム系材料が用いられており、In-O,In-OHの結合が強く、真空プロセスに対して酸素欠損が生じにくい。そのため、DCストレス試験後の閾値電圧のシフトを非常に小さく抑えることができる。
 本発明の薄膜トランジスタにおけるチャネル層の膜厚は、通常10~300nm、好ましくは20~250nm、より好ましくは30~200nm、さらに好ましくは35~120nm、特に好ましくは40~80nmである。チャネル層の膜厚が10nm以上であると、大面積に成膜した際に膜厚が均一になり易く、作製したTFTの特性を面内で均一とすることができ好ましい。一方、膜厚が300nm以下であると、成膜時間を適切な範囲とすることができるため好ましい。
 本発明の薄膜トランジスタにおけるチャネル層は、通常、N型領域で用いられるが、P型Si系半導体、P型酸化物半導体、P型有機半導体等の種々のP型半導体と組合せてPN接合型トランジスタ等の各種の半導体デバイスに利用することができる。
 本発明のTFTに用いるチャネル材料のバンドギャップは3.7eV以上が好ましい。3.7eV以上とすることで、LEDのバックライトに対してTFTの劣化現象を抑制することができる。
 本発明の薄膜トランジスタは、上記チャネル層上に保護膜を備えることが好ましい。本発明の薄膜トランジスタにおける保護膜は、少なくともSiNを含有することが好ましい。SiNはSiOと比較して緻密な膜を形成できるため、TFTの劣化抑制効果が高いという利点を有する。
 保護膜は、SiNの他に例えばSiO,Al,Ta,TiO,MgO,ZrO,CeO,KO,LiO,NaO,RbO,Sc,Y,HfO,CaHfO,PbTi,BaTa,Sm,SrTiO又はAlN等の酸化物等を含むことができるが、実質的にSiNのみからなることが好ましい。ここで、「実質的にSiNのみからなる」とは、本発明の薄膜トランジスタにおける保護層を構成する薄膜の70wt%以上、好ましくは80wt%以上、さらに好ましくは85wt%以上がSiNであることを意味する。
 本発明のGaドープ酸化インジウム薄膜、及びAlドープ酸化インジウム薄膜は結晶化しているため、保護膜を作製するプロセスによりバックチャネル側が還元されにくく、保護膜としてSiNを用いることができる。
 保護膜を形成する前に、チャネル層に対し、オゾン処理、酸素プラズマ処理、二酸化窒素プラズマ処理もしくは亜酸化窒素プラズマ処理を施すことが好ましい。このような処理は、チャネル層を形成した後、保護膜を形成する前であれば、どのタイミングで行ってもよいが、保護膜を形成する直前に行うことが望ましい。このような前処理を行うことによって、チャネル層における酸素欠陥の発生を抑制することができる。
 また、TFT駆動中に酸化物半導体膜中の水素が拡散すると、閾値電圧のシフトが起こりTFTの信頼性が低下するおそれがある。チャネル層に対し、オゾン処理、酸素プラズマ処理もしくは亜酸化窒素プラズマ処理を施すことにより、結晶構造中においてIn-OHの結合が安定化され酸化物半導体膜中の水素の拡散を抑制することができる。
 薄膜トランジスタは、通常、基板、ゲート電極、ゲート絶縁層、有機半導体層(チャネル層)、ソース電極及びドレイン電極を備える。チャネル層については上述した通りであり、基板については公知の材料を用いることができる。
 本発明の薄膜トランジスタにおけるゲート絶縁膜を形成する材料にも特に制限はなく、一般に用いられている材料を任意に選択できる。具体的には、例えば、SiO,SiN,Al,Ta,TiO,MgO,ZrO,CeO,KO,LiO,NaO,RbO,Sc,Y,HfO,CaHfO,PbTi,BaTa,SrTiO,Sm,AlN等の化合物を用いることができる。これらのなかでも、好ましくはSiO,SiN,Al,Y,HfO,CaHfOであり、より好ましくはSiO,SiN,HfO,Alである。
 ゲート絶縁膜は、例えばプラズマCVD(ChemicalVaporDeposition;化学気相成長)法により形成することができる。
 プラズマCVD法によりゲート絶縁膜を形成し、その上にチャネル層を成膜した場合、ゲート絶縁膜中の水素がチャネル層に拡散し、チャネル層の膜質低下やTFTの信頼性低下を招くおそれがある。チャネル層の膜質低下やTFTの信頼性低下を防ぐために、チャネル層を成膜する前にゲート絶縁膜に対してオゾン処理、酸素プラズマ処理、二酸化窒素プラズマ処理もしくは亜酸化窒素プラズマ処理を施すことが好ましい。このような前処理を行うことによって、チャネル層の膜質の低下やTFTの信頼性低下を防ぐことができる。
 尚、上記の酸化物の酸素数は、必ずしも化学量論比と一致していなくともよく、例えば、SiOでもSiOでもよい。
 ゲート絶縁膜は、異なる材料からなる2層以上の絶縁膜を積層した構造でもよい。また、ゲート絶縁膜は、結晶質、多結晶質、非晶質のいずれであってもよいが、工業的に製造しやすい多結晶質又は非晶質であることが好ましい。
 本発明の薄膜トランジスタにおけるドレイン電極、ソース電極及びゲート電極の各電極を形成する材料に特に制限はなく、一般に用いられている材料を任意に選択することができる。例えば、インジウム錫酸化物(ITO),インジウム亜鉛酸化物,ZnO,SnO等の透明電極や、Al,Ag,Cu,Cr,Ni,Mo,Au,Ti,Ta等の金属電極、又はこれらを含む合金の金属電極を用いることができる。
 ドレイン電極、ソース電極及びゲート電極の各電極は、異なる2層以上の導電層を積層した多層構造とすることもできる。特にソース・ドレイン電極は低抵抗配線への要求が強いため、AlやCu等の良導体をTiやMo等の密着性に優れた金属でサンドイッチして使用してもよい。
 本発明の薄膜トランジスタは、電界効果型トランジスタ、論理回路、メモリ回路、差動増幅回路等各種の集積回路にも適用できる。さらに、電界効果型トランジスタ以外にも静電誘起型トランジスタ、ショットキー障壁型トランジスタ、ショットキーダイオード、抵抗素子にも適応できる。
 本発明の薄膜トランジスタの構成は、ボトムゲート、ボトムコンタクト、トップコンタクト等公知の構成を制限なく採用することができる。
 特にボトムゲート構成が、アモルファスシリコンやZnOの薄膜トランジスタに比べ高い性能が得られるので有利である。ボトムゲート構成は、製造時のマスク枚数を削減しやすく、大型ディスプレイ等の用途の製造コストを低減しやすいため好ましい。
 本発明の薄膜トランジスタは、表示装置に好適に用いることができる。
 大面積のディスプレイ用としては、チャンネルエッチ型のボトムゲート構成の薄膜トランジスタが特に好ましい。チャンネルエッチ型のボトムゲート構成の薄膜トランジスタは、フォトリソ工程時のフォトマスクの数が少なく低コストでディスプレイ用パネルを製造できる。中でも、チャンネルエッチ型のボトムゲート構成及びトップコンタクト構成の薄膜トランジスタが移動度等の特性が良好で工業化しやすいため特に好ましい。
実施例1~14
[焼結体の製造]
 原料粉体として下記の酸化物粉末を使用した。尚、酸化物粉末の平均粒径はレーザー回折式粒度分布測定装置SALD-300V(島津製作所製)で測定し、平均粒径はメジアン径D50を採用した。
酸化インジウム粉:平均粒径0.98μm
酸化ガリウム粉:平均粒径0.96μm
酸化アルミニウム粉:平均粒径0.96μm
酸化スズ粉:平均粒径0.95μm
酸化ジルコニウム粉:平均粒径0.99μm
酸化チタン:平均粒径0.98μm
酸化シリコン粉:平均粒径0.98μm
 上記の粉体を、表1に示す原子比Ga/(In+Ga)又はAl/(In+Al)、及び正4価金属の含有量(原子比)(X/(In+M)、X:正4価金属、M:Ga又はAl)となるように秤量し、均一に微粉砕混合後、成形用バインダーを加えて造粒した。次に、この原料混合粉を金型へ均一に充填し、コールドプレス機にてプレス圧140MPaで加圧成形した。
 このようにして得た成形体を、表1に示す昇温速度(800℃から焼結温度)、焼結温度及び焼結時間で、焼結炉で焼結して焼結体を製造した。昇温中は酸素雰囲気、その他は大気中(雰囲気)とし、降温速度は15℃/分とした。
[焼結体の分析]
 得られた焼結体の相対密度をアルキメデス法により測定し、相対密度97%以上であることを確認した。
 また、得られた焼結体のバルク比抵抗(導電性)を抵抗率計(三菱化学(株)製、ロレスタ)を使用して四探針法(JISR1637)に基づき測定した。結果を表1に示す。表1に示すように実施例1~14の焼結体のバルク比抵抗は、5mΩcm以下であった。
 得られた焼結体についてICP-AES分析を行い、表1に示す原子比であることを確認した。
 また、X線回折測定装置(XRD)により結晶構造を調べた。実施例1、2で得られた焼結体のX線回折チャートを図2、3に示す。チャートを分析した結果、実施例1、2の焼結体には酸化インジウムのビックスバイト構造が観測され、結晶構造が実質的に酸化インジウムのビックスバイト構造であることが分かった。
 結晶構造はJCPDS(Joint Committee of Powder Diffraction Standards)カードで確認することができる。酸化インジウムのビックスバイト構造は、JCPDSカードNo.06-0416である。
 XRDの結果から、実施例3~14に関しても酸化インジウムのビックスバイト構造が観測され、結晶構造が実質的に酸化インジウムのビックスバイト構造であることが分かった。実施例1~14の焼結体には、ノジュールの原因となるGaInOやAlは観測されなかった。
 XRDの測定条件は以下の通りである。
・装置:(株)リガク製Ultima-III
・X線:Cu-Kα線(波長1.5406Å、グラファイトモノクロメータにて単色化)
・2θ-θ反射法、連続スキャン(1.0°/分)
・サンプリング間隔:0.02°
・スリットDS、SS:2/3°、RS:0.6mm
 実施例1~14の焼結体について、電子線マイクロアナライザ(EPMA)測定により得られた焼結体のGaやAlの分散を調べたところ、5μm以上のGaやAlの集合体は観測されなかった。実施例1~14の焼結体は分散性、均一性が極めて優れていることが分かった。
 EPMAの測定条件は以下の通りである。
装置名:日本電子株式会社
JXA-8200
測定条件
加速電圧:15kV
照射電流:50nA
照射時間(1点当りの):50mS
[スパッタリングターゲットの製造]
 上記で得られた焼結体の表面を平面研削盤で研削し、側辺をダイヤモンドカッターで切断し、バッキングプレートに貼り合わせ、それぞれ直径4インチのスパッタリングターゲットを作製した。また、実施例1、3~5、9~12については、それぞれ幅200mm、長さ1700mm、厚さ10mmの6枚のターゲットをACスパッタリング成膜用に作製した。
[異常放電の有無の確認]
 得られた直径4インチのスパッタリングターゲットをDCスパッタリング装置に装着し、雰囲気としてアルゴンガスにHOガスを分圧比で2%添加した混合ガスを使用し、スパッタ圧0.4Pa、基板温度を室温とし、DC出力400Wにて、10kWh連続スパッタを行った。スパッタ中の電圧変動をデータロガーに蓄積し、異常放電の有無を確認した。結果を表1に示す。
 尚、異常放電の有無は、電圧変動をモニターして異常放電を検出することにより行った。具体的には、5分間の測定時間中に発生する電圧変動がスパッタ運転中の定常電圧の10%以上あった場合を異常放電とした。特にスパッタ運転中の定常電圧が0.1秒間に±10%変動する場合は、スパッタ放電の異常放電であるマイクロアークが発生しており、素子の歩留まりが低下し、量産化に適さないおそれがある。
[ノジュール発生の有無の確認]
 得られた直径4インチのスパッタリングターゲットを用いて、雰囲気としてアルゴンガスに水素ガスを分圧比で3%添加した混合ガスを使用し、40時間連続してスパッタリングを行い、ノジュールの発生の有無を確認した。
 その結果、実施例1~14のスパッタリングターゲット表面において、ノジュールは観測されなかった。
 尚、スパッタ条件は、スパッタ圧0.4Pa、DC出力100W、基板温度は室温とした。水素ガスは、ノジュールの発生を促進するために雰囲気ガスに添加した。
 ノジュールは、スパッタリング後のターゲット表面の変化を実体顕微鏡により50倍に拡大して観察し、視野3mm中に発生した20μm以上のノジュールについて数平均を計測する方法を採用した。発生したノジュール数を表1に示す。
比較例1~4
 表1に示す原子比Ga/(In+Ga)、Al/(In+Al)、正4価金属含有量、昇温速度(800℃から焼結温度)、焼結温度、焼結時間とした他は、実施例1~14と同様に焼結体及びスパッタリングターゲットを製造し、評価した。結果を表1に示す。
 比較例1~4のスパッタリングターゲットにおいて、スパッタ時に異常放電が発生し、ターゲット表面にはノジュールが観測された。また、比較例1、2のターゲットにはGaInO相、比較例3,4のターゲットにはAl相が観測された。GaInO相はカードJCPDSNo.21-0334、Al相はカードJCPDSNo.10-173で確認することができる。
 GaInO相やAl相は高抵抗相であるため、ノジュールの原因となると考えられる。
 比較例1~4の焼結体は、正4価金属Xの含有量を100原子ppm超1100原子ppm以下から外れる組成とし、昇温速度(800℃から焼結温度)2℃/分超で焼結を行ったため、相対密度97%未満、バルク比抵抗5mΩcm超となった。
Figure JPOXMLDOC01-appb-T000001
実施例15~26
[酸化物半導体薄膜の成膜]
 マグネトロンスパッタリング装置に、実施例1~7、10~14で作製した表2に示す組成の4インチターゲットを装着し、基板としてスライドガラス(コーニング社製♯1737)をそれぞれ装着した。DCマグネトロンスパッタリング法により、下記の条件でスライドガラス上に膜厚50nmの非晶質膜を成膜した。
 成膜時には、表2に示す分圧比(%)でArガス、Oガス、及びHOガスを導入した。非晶質膜を形成した基板を大気中、300℃で60分加熱し、非晶質膜をそれぞれ結晶化して酸化物半導体膜を形成した。
 スパッタ条件は以下の通りである。
基板温度:25℃
到達圧力:8.5×10-5Pa
雰囲気ガス:Arガス、Oガス、HOガス(分圧は表2を参照)
スパッタ圧力(全圧):0.4Pa
投入電力:DC100W
S(基板)-T(ターゲット)距離:70mm
[酸化物半導体薄膜の評価]
 ガラス基板上に成膜した基板をResiTest8300型(東陽テクニカ社製)にセットし、室温でホール効果を評価した。また、ICP-AES分析により、酸化物薄膜に含まれる各元素の原子比がスパッタリングターゲットと同じであることを確認した。
 また、X線回折測定装置により結晶構造を調べた。薄膜堆積直後は回折ピークが観測されず非晶質であることを確認した。また、大気下で300℃×60分加熱処理(アニール)後に回折ピークが観測され、結晶化していることが分かった。
 チャートを分析した結果、結晶化後の薄膜では実質的に酸化インジウムのビックスバイト構造が観測された。
 XRDの測定条件は以下の通りである。
装置:(株)リガク製Ultima-III
X線:Cu-Kα線(波長1.5406Å、グラファイトモノクロメータにて単色化)
2θ-θ反射法、連続スキャン(1.0°/分)
サンプリング間隔:0.02°
スリットDS、SS:2/3°、RS:0.6mm
[薄膜トランジスタの製造]
 基板として、膜厚100nmの熱酸化膜付きの導電性シリコン基板を使用した。熱酸化膜がゲート絶縁膜として機能し、導電性シリコン部がゲート電極として機能する。
 ゲート絶縁膜上に表2に示す条件でスパッタ成膜し、膜厚50nmの非晶質薄膜を作製した。レジストとしてOFPR♯800(東京応化工業株式会社製)を使用し、塗布、プレベーク(80℃、5分)、露光した。現像後、ポストベーク(120℃、5分)し、シュウ酸にてエッチングし、所望の形状にパターニングした。その後熱風加熱炉内にて300℃で60分加熱処理(アニール処理)を行い、薄膜を結晶化させた。
 その後、Mo(200nm)をスパッタ成膜により成膜した。チャンネルエッチによりソース/ドレイン電極を所望の形状にパターニングした。その後、プラズマCVD法(PECVD)にてSiNを成膜して保護膜とした。フッ酸を用いてコンタクトホールを開口し、薄膜トランジスタを作製した。
 作製した薄膜トランジスタについて、電界効果移動度(μ)、S値及び閾値電圧(Vth)を評価した。これらの特性値は、半導体パラメーターアナライザー(ケースレーインスツルメンツ株式会社製4200SCS)を用い、室温、遮光環境下(シールドボックス内)で測定した。結果を表2に示す。
 また、盛装したトランジスタについて、ドレイン電圧(Vd)を1V及びゲート電圧(Vg)を-15~20Vとして伝達特性を評価した。尚、電界効果移動度(μ)は、線形移動度から算出し、Vg-μの最大値で定義した。
比較例5、6
 比較例1、3で作製した4インチターゲットを用いて、表2に示すスパッタ条件及び加熱(アニーリング)処理条件に従い実施例15~26と同様にして酸化物半導体薄膜及び薄膜トランジスタを作製し、評価した。結果を表2に示す。
 表2に示すように、比較例5、6の素子は電界効果移動度が30cm/Vs未満であり、実施例15~26と比べて大幅に低いことが分かる。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
実施例27
 表3に示すスパッタ条件、アニール条件に従い、実施例15~26と同様にして酸化物半導体薄膜及び薄膜トランジスタを作製し、評価した。結果を表3に示す。この実施例ではDCスパッタリングをACスパッタリングとした。
 ACスパッタリングは、特開2005-290550号公報に開示された、図1に示す成膜装置を用いた。
 具体的には、ターゲットとして実施例1で作製した幅200mm、長さ1700mm、厚さ10mmの6枚のターゲット31a~31fを用い、各ターゲット31a~31fを基板の幅方向に平行に、間隔が2mmになるように配置した。磁界形成手段40a~40fの幅はターゲット31a~31fと同じ200mmであった。
 ガス供給系からスパッタガスであるAr、HO及びOをそれぞれ系内に導入した。スパッタリング条件は、成膜雰囲気0.5Pa、交流電源パワー3W/cm(=10.2kW/3400cm)、周波数10kHzとした。
 以上の条件で10秒成膜し、得られた薄膜の膜厚を測定すると11nmであった。成膜速度は66nm/分と高速であり、量産に適している。
 得られた薄膜をガラス基板とともに電気炉に入れ、空気中300℃、60分(大気雰囲気下)の条件で熱処理後、1cmのサイズに切出し、4探針法によるホール測定を行った。その結果、キャリア濃度が1.62×1017cm-3であり、十分半導体化していることが確認できた。
 XRD測定から、酸化物薄膜は薄膜堆積直後は非晶質であり、空気中300℃、60分後に結晶化していることを確認した。チャートを分析した結果、結晶化後の薄膜では、実質的に酸化インジウムのビックスバイト構造が観測された。
 また、ICP-AES分析により、酸化物薄膜に含まれる各元素の原子比がスパッタリングターゲットと同じであることを確認した。
実施例28~34
 実施例3~5、9~12のターゲットを用い、表3に示すスパッタ条件及びアニール条件に従い、実施例27と同様にして酸化物半導体薄膜及び薄膜トランジスタを作製し、評価した。結果を表3に示す。
 ホール測定の結果、いずれの薄膜も半導体化していることを確認した。
 また、XRD測定から薄膜堆積直後は非晶質であり、アニール処理後に結晶化していることを確認した。チャートを分析した結果、結晶化後の薄膜では、実質的に酸化インジウムのビックスバイト構造が観測された。
比較例7、8
 比較例1、3で作製した幅200mm、長さ1700mm、厚さ10mmの6枚のターゲットを用い、表3に示すスパッタ条件及び加熱(アニーリング)処理条件に従い、実施例27と同様にして酸化物半導体薄膜及び薄膜トランジスタを作製し、評価した。結果を表3に示す。
 表3に示すように、比較例7、8の素子は電界効果移動度が30cm/Vs未満であり、実施例27~34と比べて大幅に低いことが分かる。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
実施例35~46
 表4に示すスパッタ条件、アニール条件に従い、実施例15~26と同様にして酸化物半導体薄膜(基板は石英基板とした)及び薄膜トランジスタを作製した。
 また、実施例15~26と同様の評価及び下記の評価を行った。結果を表4に示す。
[酸化物半導体薄膜のバンドギャップの評価]
 石英基板上に成膜した酸化物半導体薄膜について、分光エリプソメトリーによりバンドギャップを評価した。具体的に、屈折率及び消衰係数から吸収係数を算出し、直接遷移型を仮定し、吸収係数の2乗とエネルギーのグラフからバンドギャップを求めた。実施例35~46の酸化物半導体薄膜において、バンドギャップが3.7eV以上であることを確認した。
 また、ICP-AES分析により、酸化物薄膜に含まれる各元素の原子比がスパッタリングターゲットと同じであることを確認した。
[薄膜トランジスタの評価]
 信頼性評価用として作製した薄膜トランジスタに対して、DCバイアスストレス試験を行った。尚、この信頼性評価用の薄膜トランジスタも、表4に示すスパッタ条件、アニール条件に従い、実施例15~26と同様にして作製したものである。
 具体的に、Vg=15V、Vd=15VのDCストレス(ストレス温度80℃下)を10000秒印加した前後、及びVg=-20VのDCストレス(光照射下(λ=400nm)かつストレス温度80℃下)を10000秒印加した前後において、TFTトランスファ特性(閾値電圧)を測定した。その変化量を表4に示す。
 光照射として、モノクロメーター式分光光源(CMS100:朝日分光株式会社製)を利用して、λ=400nm、強度200μW/cmの光を照射した。
 実施例35~46の薄膜トランジスタは、閾値電圧の変動が非常に小さく、ストレス前後における閾値電圧シフトの絶対値が0.3V未満であった。即ち、DCストレスや光照射ストレスに対して影響を受けにくいことが分かった。
比較例9、10
 表4に示すスパッタ条件及びアニール条件に従い、実施例35~46と同様にして酸化物半導体薄膜(基板は石英基板とした)及び薄膜トランジスタを作製し、評価した。結果を表4に示す。
 表4に示すように、比較例9、10の薄膜トランジスタは電界効果移動度が30cm/Vs未満であり、実施例35~46と比べて大幅に低いことが分かる。また、比較例9、10の薄膜トランジスタは、ストレス(Vg=15V、Vd=15VのDCストレス)前後における閾値電圧シフトの絶対値が0.3V以上であった。正4価を示す金属の添加量が1100ppm超であるため、バンドギャップ内に正4価を示す金属が不純物準位を形成し、実施例と比べて信頼性が悪化したと考えられる。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 本発明の薄膜トランジスタは、表示装置、特に大面積のディスプレイ用として用いることができる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献及び本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。

Claims (18)

  1.  Gaをドープした酸化インジウム、又はAlをドープした酸化インジウムを含み、
     正4価の原子価を示す金属を、Gaとインジウムの合計又はAlとインジウムの合計に対して100原子ppm超1100原子ppm以下含み、
     結晶構造が、実質的に酸化インジウムのビックスバイト構造からなる焼結体を含むスパッタリングターゲット。
  2.  前記Gaをドープした酸化インジウムの原子比Ga/(Ga+In)が0.001~0.15である請求項1に記載のスパッタリングターゲット。
  3.  前記Alをドープした酸化インジウムの原子比Al/(Al+In)が0.0001~0.08である請求項1に記載のスパッタリングターゲット。
  4.  前記正4価の原子価を示す金属がSn、Zr、Ti及びSiから選択される1種又は2種以上の元素である請求項1~3のいずれかに記載のスパッタリングターゲット。
  5.  前記焼結体のバルク比抵抗が5mΩcm以下である請求項1~4のいずれかに記載のスパッタリングターゲット。
  6.  前記焼結体の相対密度が97%以上である請求項1~5のいずれかに記載のスパッタリングターゲット。
  7.  成形体を800℃から焼結温度まで昇温速度0.1~2℃/分で昇温し、前記焼結温度で10~50時間保持して焼結することを含み、前記焼結温度が1200℃~1650℃の範囲内である請求項1~6のいずれかに記載のスパッタリングターゲットの製造方法。
  8.  請求項1~6のいずれかに記載のスパッタリングターゲットを用いて、スパッタリング法により成膜してなる酸化物半導体薄膜。
  9.  希ガスと、水蒸気、酸素ガス及び亜酸化窒素ガスから選ばれる1種以上のガスとを含有する混合気体の雰囲気下において成膜を行う請求項8に記載の酸化物半導体薄膜の製造方法。
  10.  希ガスと、少なくとも水蒸気とを含有する混合気体の雰囲気下において成膜を行う請求項9に記載の酸化物半導体薄膜の製造方法。
  11.  前記雰囲気中に含まれる水蒸気の割合が分圧比で0.1%~25%である請求項10に記載の酸化物半導体薄膜の製造方法。
  12.  真空チャンバー内に所定の間隔を置いて並設された3枚以上のターゲットに対向する位置に、基板を順次搬送し、前記各ターゲットに対して交流電源から負電位及び正電位を交互に印加し、少なくとも1つの交流電源からの出力を、この交流電源に接続した2枚以上のターゲットの間で、電位を印加するターゲットの切替を行いながら、ターゲット上にプラズマを発生させて基板表面に成膜する請求項9~11のいずれかに記載の酸化物半導体薄膜の製造方法。
  13.  前記交流電源の交流パワー密度を3W/cm以上20W/cm以下とする請求項12に記載の酸化物半導体薄膜の製造方法。
  14.  前記交流電源の周波数が10kHz~1MHzである請求項12又は13に記載の酸化物半導体薄膜の製造方法。
  15.  請求項9~14のいずれかに記載の方法により成膜された酸化物半導体薄膜をチャネル層として有する薄膜トランジスタ。
  16.  電界効果移動度が30cm/Vs以上である請求項15に記載の薄膜トランジスタ。
  17.  前記チャネル層上に少なくともSiNを含有する保護膜を備える請求項15又は16に記載の薄膜トランジスタ。
  18.  請求項15~17のいずれかに記載の薄膜トランジスタを備えた表示装置。
PCT/JP2012/005664 2011-09-06 2012-09-06 スパッタリングターゲット WO2013035335A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280039725.0A CN103732790B (zh) 2011-09-06 2012-09-06 溅射靶
KR1020147005942A KR102075904B1 (ko) 2011-09-06 2012-09-06 스퍼터링 타겟
US14/343,031 US9767998B2 (en) 2011-09-06 2012-09-06 Sputtering target

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-193917 2011-09-06
JP2011193917 2011-09-06
JP2012172373A JP5301021B2 (ja) 2011-09-06 2012-08-02 スパッタリングターゲット
JP2012-172373 2012-08-02

Publications (1)

Publication Number Publication Date
WO2013035335A1 true WO2013035335A1 (ja) 2013-03-14

Family

ID=47831804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005664 WO2013035335A1 (ja) 2011-09-06 2012-09-06 スパッタリングターゲット

Country Status (6)

Country Link
US (1) US9767998B2 (ja)
JP (1) JP5301021B2 (ja)
KR (1) KR102075904B1 (ja)
CN (1) CN103732790B (ja)
TW (1) TWI567045B (ja)
WO (1) WO2013035335A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015153265A3 (en) * 2014-04-01 2015-11-26 Intermolecular, Inc. Caac igzo deposited at room temperature
CN105393360A (zh) * 2013-07-16 2016-03-09 住友金属矿山株式会社 氧化物半导体薄膜和薄膜晶体管
CN114057470A (zh) * 2020-07-31 2022-02-18 广州市尤特新材料有限公司 掺杂钼的氧化铟靶材制备方法和掺杂钼的氧化铟靶材
CN114524664A (zh) * 2022-02-25 2022-05-24 洛阳晶联光电材料有限责任公司 一种太阳能电池用陶瓷靶材及其制备方法
WO2023189014A1 (ja) * 2022-04-01 2023-10-05 出光興産株式会社 半導体膜、及び半導体膜の製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6269814B2 (ja) * 2014-03-14 2018-01-31 住友金属鉱山株式会社 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
JP2016201458A (ja) * 2015-04-09 2016-12-01 出光興産株式会社 微結晶質酸化物半導体薄膜及びそれを用いた薄膜トランジスタ
CN106282940B (zh) * 2015-05-27 2018-11-27 宁波江丰电子材料股份有限公司 避免边缘长瘤的靶材结构
CN107924822B (zh) * 2015-07-30 2022-10-28 出光兴产株式会社 晶体氧化物半导体薄膜、晶体氧化物半导体薄膜的制造方法以及薄膜晶体管
CN109641757B (zh) * 2016-08-31 2022-02-25 出光兴产株式会社 石榴石型化合物、含有该化合物的烧结体以及溅射靶
JP6581057B2 (ja) * 2016-09-14 2019-09-25 株式会社東芝 半導体装置、半導体記憶装置及び固体撮像装置
KR102382130B1 (ko) * 2017-02-01 2022-04-01 이데미쓰 고산 가부시키가이샤 산화물 반도체막, 박막 트랜지스터, 산화물 소결체, 및 스퍼터링 타깃
JP7082947B2 (ja) 2017-02-01 2022-06-09 出光興産株式会社 非晶質酸化物半導体膜、酸化物焼結体、薄膜トランジスタ、スパッタリングターゲット、電子機器及び非晶質酸化物半導体膜の製造方法
JP7075934B2 (ja) * 2017-08-01 2022-05-26 出光興産株式会社 スパッタリングターゲット、酸化物半導体薄膜、薄膜トランジスタおよび電子機器
KR102375637B1 (ko) * 2017-08-08 2022-03-17 미쓰이금속광업주식회사 산화물 소결체 및 스퍼터링 타깃
TWI777078B (zh) * 2018-08-01 2022-09-11 日本商出光興產股份有限公司 結晶構造化合物、氧化物燒結體、濺鍍靶材、結晶質氧化物薄膜、非晶質氧化物薄膜、薄膜電晶體、及電子機器
JP7158316B2 (ja) 2019-03-05 2022-10-21 Jx金属株式会社 スパッタリングターゲット及びその製造方法
JP6982597B2 (ja) * 2019-06-26 2021-12-17 株式会社アルバック スパッタリング装置
CN115863175A (zh) * 2022-12-30 2023-03-28 西湖大学 氧化物半导体薄膜及其制备方法、薄膜晶体管、显示器件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077358A (ja) * 1998-08-27 2000-03-14 Asahi Glass Co Ltd 透明導電膜、スパッタリングターゲットおよび透明導電膜付き基体
WO2003008661A1 (fr) * 2001-07-17 2003-01-30 Idemitsu Kosan Co., Ltd. Cible de pulverisation et film conducteur transparent
JP2003105532A (ja) * 2001-06-26 2003-04-09 Mitsui Mining & Smelting Co Ltd 高抵抗透明導電膜用スパッタリングターゲット及び高抵抗透明導電膜の製造方法
JP2003342068A (ja) * 2002-05-27 2003-12-03 Sumitomo Metal Mining Co Ltd 酸化物焼結体
JP2004149883A (ja) * 2002-10-31 2004-05-27 Mitsui Mining & Smelting Co Ltd 高抵抗透明導電膜用スパッタリングターゲット及び高抵抗透明導電膜の製造方法
WO2008114588A1 (ja) * 2007-03-20 2008-09-25 Idemitsu Kosan Co., Ltd. スパッタリングターゲット、酸化物半導体膜及び半導体デバイス
WO2010032431A1 (ja) * 2008-09-17 2010-03-25 出光興産株式会社 結晶質酸化インジウム半導体膜を有する薄膜トランジスタ
WO2010070944A1 (ja) * 2008-12-15 2010-06-24 出光興産株式会社 酸化インジウム系焼結体及びスパッタリングターゲット

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3947575B2 (ja) 1994-06-10 2007-07-25 Hoya株式会社 導電性酸化物およびそれを用いた電極
KR100744017B1 (ko) * 2001-06-26 2007-07-30 미츠이 긴조쿠 고교 가부시키가이샤 고저항 투명 도전막용 스퍼터링 타겟 및 고저항 투명도전막의 제조방법
JP4917725B2 (ja) * 2001-09-26 2012-04-18 東ソー株式会社 透明導電膜およびその製造方法並びにその用途
JP4780972B2 (ja) * 2004-03-11 2011-09-28 株式会社アルバック スパッタリング装置
US8524123B2 (en) 2005-09-01 2013-09-03 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive film and transparent electrode
JP4947942B2 (ja) * 2005-09-20 2012-06-06 出光興産株式会社 スパッタリングターゲット
JP5058469B2 (ja) 2005-09-06 2012-10-24 キヤノン株式会社 スパッタリングターゲットおよび該ターゲットを用いた薄膜の形成方法
WO2008050618A1 (fr) * 2006-10-24 2008-05-02 Ulvac, Inc. Procédé de fabrication d'un film mince et dispositif de fabrication d'un film mince
JP5522889B2 (ja) * 2007-05-11 2014-06-18 出光興産株式会社 In−Ga−Zn−Sn系酸化物焼結体、及び物理成膜用ターゲット
CN103030381B (zh) * 2007-07-06 2015-05-27 住友金属矿山株式会社 氧化物烧结体及其制造方法、靶、使用该靶得到的透明导电膜以及透明导电性基材
US8628645B2 (en) * 2007-09-04 2014-01-14 Front Edge Technology, Inc. Manufacturing method for thin film battery
KR101516034B1 (ko) 2007-12-25 2015-05-04 이데미쓰 고산 가부시키가이샤 산화물 반도체 전계효과형 트랜지스터 및 그의 제조 방법
WO2009084537A1 (ja) 2007-12-27 2009-07-09 Nippon Mining & Metals Co., Ltd. a-IGZO酸化物薄膜の製造方法
JP5348132B2 (ja) * 2008-04-16 2013-11-20 住友金属鉱山株式会社 薄膜トランジスタ型基板、薄膜トランジスタ型液晶表示装置および薄膜トランジスタ型基板の製造方法
US8795554B2 (en) 2008-06-27 2014-08-05 Idemitsu Kosan Co., Ltd. Sputtering target for oxide semiconductor, comprising InGaO3(ZnO) crystal phase and process for producing the sputtering target
US8647537B2 (en) 2008-09-19 2014-02-11 Idemitsu Kosan Co., Ltd. Oxide sintered body and sputtering target
JP4875135B2 (ja) * 2009-11-18 2012-02-15 出光興産株式会社 In−Ga−Zn−O系スパッタリングターゲット
JP5087605B2 (ja) * 2009-12-07 2012-12-05 出光興産株式会社 酸化インジウム−酸化亜鉛−酸化マグネシウム系スパッタリングターゲット及び透明導電膜
JP5437825B2 (ja) * 2010-01-15 2014-03-12 出光興産株式会社 In−Ga−O系酸化物焼結体、ターゲット、酸化物半導体薄膜及びこれらの製造方法
JP2011174134A (ja) * 2010-02-24 2011-09-08 Idemitsu Kosan Co Ltd In−Ga−Sn系酸化物焼結体、ターゲット、酸化物半導体膜、及び半導体素子

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077358A (ja) * 1998-08-27 2000-03-14 Asahi Glass Co Ltd 透明導電膜、スパッタリングターゲットおよび透明導電膜付き基体
JP2003105532A (ja) * 2001-06-26 2003-04-09 Mitsui Mining & Smelting Co Ltd 高抵抗透明導電膜用スパッタリングターゲット及び高抵抗透明導電膜の製造方法
WO2003008661A1 (fr) * 2001-07-17 2003-01-30 Idemitsu Kosan Co., Ltd. Cible de pulverisation et film conducteur transparent
JP2003342068A (ja) * 2002-05-27 2003-12-03 Sumitomo Metal Mining Co Ltd 酸化物焼結体
JP2004149883A (ja) * 2002-10-31 2004-05-27 Mitsui Mining & Smelting Co Ltd 高抵抗透明導電膜用スパッタリングターゲット及び高抵抗透明導電膜の製造方法
WO2008114588A1 (ja) * 2007-03-20 2008-09-25 Idemitsu Kosan Co., Ltd. スパッタリングターゲット、酸化物半導体膜及び半導体デバイス
WO2010032431A1 (ja) * 2008-09-17 2010-03-25 出光興産株式会社 結晶質酸化インジウム半導体膜を有する薄膜トランジスタ
WO2010070944A1 (ja) * 2008-12-15 2010-06-24 出光興産株式会社 酸化インジウム系焼結体及びスパッタリングターゲット

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105393360A (zh) * 2013-07-16 2016-03-09 住友金属矿山株式会社 氧化物半导体薄膜和薄膜晶体管
WO2015153265A3 (en) * 2014-04-01 2015-11-26 Intermolecular, Inc. Caac igzo deposited at room temperature
CN114057470A (zh) * 2020-07-31 2022-02-18 广州市尤特新材料有限公司 掺杂钼的氧化铟靶材制备方法和掺杂钼的氧化铟靶材
CN114524664A (zh) * 2022-02-25 2022-05-24 洛阳晶联光电材料有限责任公司 一种太阳能电池用陶瓷靶材及其制备方法
WO2023189014A1 (ja) * 2022-04-01 2023-10-05 出光興産株式会社 半導体膜、及び半導体膜の製造方法

Also Published As

Publication number Publication date
CN103732790B (zh) 2017-05-31
US20140252354A1 (en) 2014-09-11
KR20140057318A (ko) 2014-05-12
JP5301021B2 (ja) 2013-09-25
JP2013067855A (ja) 2013-04-18
KR102075904B1 (ko) 2020-02-11
TW201315705A (zh) 2013-04-16
CN103732790A (zh) 2014-04-16
US9767998B2 (en) 2017-09-19
TWI567045B (zh) 2017-01-21

Similar Documents

Publication Publication Date Title
JP5301021B2 (ja) スパッタリングターゲット
WO2014073210A1 (ja) スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
JP6622855B2 (ja) スパッタリングターゲット、酸化物半導体薄膜及び当該酸化物半導体薄膜を備える薄膜トランジスタ
JP5965338B2 (ja) スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
JP5990167B2 (ja) スパッタリングターゲット及びその製造方法、並びに、そのターゲットを用いた酸化物薄膜、薄膜トランジスタ及び表示装置の製造方法
JP6284710B2 (ja) スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
JP2014214359A (ja) スパッタリングターゲット、酸化物半導体薄膜及び当該酸化物半導体薄膜を備える薄膜トランジスタ
JP2014218706A (ja) スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
JP6059513B2 (ja) スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
JP5762204B2 (ja) スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
JP6353369B2 (ja) スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
JP2013127118A (ja) スパッタリングターゲット
WO2014112369A1 (ja) スパッタリングターゲット、酸化物半導体薄膜及びこれらの製造方法
JP6141332B2 (ja) スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
JP6188712B2 (ja) スパッタリングターゲット
JP6006055B2 (ja) スパッタリングターゲット
JP6470352B2 (ja) 酸化物半導体薄膜
JP6052967B2 (ja) スパッタリングターゲット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830093

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147005942

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14343031

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12830093

Country of ref document: EP

Kind code of ref document: A1