WO2010070944A1 - 酸化インジウム系焼結体及びスパッタリングターゲット - Google Patents

酸化インジウム系焼結体及びスパッタリングターゲット Download PDF

Info

Publication number
WO2010070944A1
WO2010070944A1 PCT/JP2009/059954 JP2009059954W WO2010070944A1 WO 2010070944 A1 WO2010070944 A1 WO 2010070944A1 JP 2009059954 W JP2009059954 W JP 2009059954W WO 2010070944 A1 WO2010070944 A1 WO 2010070944A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
oxide
indium oxide
thin film
metal
Prior art date
Application number
PCT/JP2009/059954
Other languages
English (en)
French (fr)
Inventor
一吉 井上
太 宇都野
浩和 川嶋
公規 矢野
重和 笘井
雅司 笠見
恒太 寺井
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US13/139,563 priority Critical patent/US8664136B2/en
Priority to CN2009801505180A priority patent/CN102245533B/zh
Priority to JP2010542894A priority patent/JPWO2010070944A1/ja
Publication of WO2010070944A1 publication Critical patent/WO2010070944A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron

Definitions

  • the present invention relates to an indium oxide-based sintered body, in particular, a sintered body containing scandium oxide or aluminum oxide together with indium oxide, and a sputtering target using the same.
  • TFTs thin film transistors
  • This silicon-based thin film has good performance such as good stability and workability and high TFT switching speed.
  • This silicon-based thin film is generally produced by a chemical vapor deposition method (CVD) method.
  • the switching speed is relatively slow, and there is a problem that an image cannot be displayed when a high-speed moving image or the like is displayed.
  • the switching speed is relatively fast, crystallization of the silicon-based thin film requires a high temperature of 800 ° C. or higher, heating with a laser, etc. There is a problem that it requires a lot of energy and processes.
  • the silicon-based thin film has excellent performance as a voltage element, a change in characteristics over time is a problem when a current is passed.
  • Patent Document 1 proposes an oxide semiconductor PN junction device and describes a transparent semiconductor thin film made of zinc oxide and magnesium oxide as one of semiconductor films constituting the device.
  • a transparent semiconductor film made of zinc oxide and magnesium oxide is characterized by being etched with a weak acid and having a very high etching rate.
  • etching is also performed by the etching solution used for the metal thin film, when the metal thin film on the transparent semiconductor film is etched, the metal thin film may be etched at the same time. Therefore, it is unsuitable when only the metal thin film on the transparent semiconductor film is selectively etched.
  • T. T. O sintered bodies have been proposed. In this sintered body, 1 to 7 wt% of tin oxide is added, and in the crystallized film, carriers are generated from tin oxide, so that it becomes a conductive film instead of a semiconductor film.
  • Patent Document 3 describes a thin film mainly composed of indium oxide, tin oxide and yttrium oxide, but relates to a transparent conductive film and does not describe an oxide semiconductor.
  • the following sintered body, sputtering target and the like are provided.
  • An oxide of one or more metals selected from the group consisting of aluminum and scandium is dissolved in the indium oxide crystal, and an atomic ratio of indium and one or more metals selected from the group consisting of aluminum and scandium ((1 A sintered body having a total of at least one kind of metal / (total of at least one kind of metal and In) ⁇ 100) is 0.001% or more and less than 45%.
  • the sintered body according to 1, wherein the atomic ratio is 0.01 to 30 atomic%.
  • the sintered body according to 1, wherein the atomic ratio is 0.5 to 15 atomic%. 4).
  • the manufacturing method of the sintered compact of this. 12 One or more kinds of metal oxides selected from the group consisting of aluminum and scandium, indium oxide, and powders of positive tetravalent or higher metals are mixed and fired at a temperature of 1200 ° C. to 1600 ° C. for 2 to 200 hours.
  • the method for producing a sintered body according to any one of 10. 13 The method for producing a sintered body according to 11 or 12, which is fired in an oxidizing atmosphere. 14.
  • a semiconductor film comprising the metal oxide thin film according to 16.15.
  • 20. A semiconductor device comprising the thin film transistor according to any one of 20.17 to
  • the sintered body of the present invention has good film formation stability when used as a sputtering target. In addition, an excellent semiconductor film can be obtained using this sputtering target.
  • FIG. 2 is an X-ray diffraction chart of a sintered body produced in Example 1.
  • FIG. 3 is an X-ray diffraction chart of a sintered body produced in Example 2.
  • FIG. 4 is an X-ray diffraction chart of a sintered body produced in Example 3.
  • FIG. 6 is an X-ray diffraction chart of a sintered body produced in Example 4.
  • FIG. 6 is an X-ray diffraction chart of a sintered body produced in Example 5.
  • FIG. 3 is an X-ray diffraction chart of a sintered body produced in Comparative Example 1.
  • 6 is an X-ray diffraction chart of a sintered body produced in Comparative Example 2.
  • 6 is an X-ray diffraction chart of a sintered body produced in Comparative Example 3.
  • FIG. 10 is an X-ray diffraction chart of a sintered body produced in Example 9.
  • an oxide of at least one metal selected from the group consisting of aluminum and scandium (hereinafter also simply referred to as a specific positive trivalent metal) is dissolved in an indium oxide crystal.
  • an atomic ratio of one or more metals selected from the group consisting of scandium ((total of one or more metals) / (total of one or more metals and In) ⁇ 100) is 0.001% or more and less than 45% It is.
  • the atomic ratio is preferably 0.001 to 40 atomic%, more preferably 0.5 to 15 atomic%. This atomic ratio increases the mobility of the oxide semiconductor film obtained when the sintered body is used as a sputtering target, and a stable thin film transistor can be obtained using this oxide semiconductor film.
  • the content (atomic ratio) of the metal element (ion) in the sintered body can be determined by ICP (Inductively Coupled Plasma) measurement.
  • the metal oxide is in solid solution in indium oxide is a peak caused by the metal oxide (aluminum and scandium oxide) that is a raw material added to indium oxide in the X-ray diffraction measurement of the sintered body. Means the state is not observed.
  • the lattice constant of an indium oxide crystal changes linearly toward the lattice constant of indium oxide or a specific positive trivalent metal oxide structure by the addition of the specific positive trivalent metal oxide.
  • the fact that the lattice constant of the sintered body is between indium oxide and the specific positive trivalent metal oxide generally means that the specific positive trivalent metal oxide is sufficiently dissolved in indium oxide to cause abnormal discharge. It means that no amount of a single specific positive trivalent metal oxide is present in the sintered body. Therefore, the sputtering target obtained from this sintered body can perform stable sputtering and can provide an oxide semiconductor excellent in surface smoothness.
  • the specific specific trivalent metal oxide of the quantity of the grade which does not produce abnormal discharge may be contained.
  • the specific positive trivalent metal oxide is preferably completely dissolved in indium oxide.
  • the specific positive trivalent metal oxide has high reduction resistance and suppresses reduction of indium oxide. For this reason, when using the sputtering target which consists of a sintered compact of this invention, generation
  • the lattice constant of the crystalline thin film of indium oxide becomes small, so that the interatomic distance of the cation becomes small. Therefore, the mobility of the transistor using the obtained thin film is improved, and the S value and durability are improved.
  • the indium oxide crystal contained in the sintered body of the present invention preferably has a bixbite structure.
  • the bixbite structure can be confirmed by observing a peak by X-ray diffraction measurement.
  • the crystal grain size of indium oxide is less than 10 ⁇ m. If the crystal becomes too large, it may cause abnormal discharge during sputtering or cause nodules on the sputtering target.
  • the crystal grain size can be reduced by dissolving an oxide of one or more metals selected from the group consisting of aluminum and scandium in an indium oxide crystal.
  • the crystal grain size is defined as the crystal grain size (major axis) as the average value of crystals in the entire field of view when observed with a scanning electron microscope in a field of 30 ⁇ m ⁇ 30 ⁇ m. Further, when observed with the above-mentioned visual field, the average particle diameter is less than 10 ⁇ m if there are no crystals of 10 ⁇ m or more.
  • the bulk resistance of the sintered body of the present invention is preferably 1 ⁇ cm or less, and particularly preferably 0.5 ⁇ cm or less.
  • the bulk resistance of the sintered body can be reduced to 1 ⁇ cm or less by sufficiently dispersing and dissolving one or more metal oxides.
  • the lower limit of the bulk resistance of the sintered body is not particularly limited, but it is not necessary to make it lower than 0.001 ⁇ cm.
  • the density of the sintered body of the present invention is preferably 5.5 g / cm 3 or more, more preferably 5.8 g / cm 3 or more, and particularly 6.0 g / cm 3 or more. preferable.
  • the upper limit is the density of indium oxide.
  • the density of a sintered compact can be 5.5 g / cm ⁇ 3 > or more by fully disperse
  • the density of the sintered body is low, the target surface may be blackened during sputtering, and abnormal discharge may be induced. In addition, the sputtering rate may decrease.
  • the relative density of the sintered body can be 90% or more by sufficiently dispersing and solid-solving one or more metal oxides. If the density is low, the target surface may be blackened, and abnormal discharge may be induced, or the sputtering rate may be reduced. Preferably, it is 95% or more, more preferably 97% or more. The upper limit relative density is 100% or less.
  • a preferred embodiment of the present invention is a sintered body made of indium oxide and scandium oxide, wherein the lattice constant of the crystal of indium oxide is between InScO 3 and In 2 O 3 .
  • Another preferred embodiment is a sintered body made of indium oxide and aluminum oxide and having a lattice constant of the crystal of indium oxide between InAlO 3 and In 2 O 3 .
  • the sintered body of the present invention described above preferably contains 10 to 5000 atomic ppm of metal ions having a positive tetravalent or higher valence, and more preferably contains 100 to 2000 atomic ppm.
  • the bulk resistance can be further reduced by containing a positive tetravalent or higher metal element. When it exceeds 5000 ppm, the obtained oxide semiconductor film may not exhibit normally-off semiconductor characteristics. It is preferable that positive tetravalent or higher metal oxide is also solid-solved in indium oxide, and the peak of positive tetravalent or higher metal oxide is not observed.
  • the bulk resistance of the obtained sintered body is reduced, and the sputtering target using these can perform more stable sputtering, and has a stable surface smoothness.
  • a high oxide semiconductor film can be obtained.
  • Examples of the positive tetravalent or higher metal ions include Ti, Zr, Hf, Nb, Ta, W, Ge, Sn, and Ce. Among these, any one or both of a tin ion and a cerium ion is preferable. SnO 2 has a large amount of mining, supply stability is ensured, and there is no toxicity. Further, the cerium element has an effect of reducing the bulk resistance of the sintered body by being slightly (5000 atomic ppm or less) incorporated into the indium oxide crystal at a sintering temperature of 1200 ° C. or higher. On the other hand, at a temperature at which the thin film is crystallized (for example, about 250 ° C.
  • the amount of cerium incorporated into indium oxide is reduced, and the effect of reducing resistance (the effect of generating carriers) is reduced.
  • the carrier of the obtained crystalline indium oxide film can be controlled, a normally-off oxide semiconductor can be easily obtained.
  • the sintered body according to the present invention has a low bulk resistance and can be suitably used as a target used in the sputtering method.
  • the sputtering target using this sintered body has stable sputtering, and can produce a crystalline indium oxide film stably.
  • a thin film having good semiconductor characteristics can be obtained.
  • the sintered body of the present invention can be produced, for example, by sintering a powder obtained by mixing indium oxide and scandium oxide or aluminum oxide at a temperature of 1200 ° C. to 1600 ° C. for 2 to 200 hours.
  • the raw material oxide is preferably a powder having a purity of 99.99% or more.
  • a metal element having a positive tetravalent or higher value is added, for example, a compound such as an oxide of the metal element is added.
  • the purity of this compound is also preferably 99.99% or higher.
  • the amount of impurities is preferably less than 100 atomic ppm.
  • the amount of each raw material is made to correspond to the amount of each metal element in the intended sintered body.
  • the raw material mixture is mixed and pulverized by a general mill such as a bead mill, a ball mill, a planetary mill or the like. Then, granulate and shape
  • the mixture is shaped into a suitable shape as a sputtering target or the like by molding.
  • the molding process include press molding, cold isostatic pressing, uniaxial pressing, mold molding, cast molding, injection molding, and the like.
  • molding aids such as polyvinyl alcohol, methylcellulose, polywax, and oleic acid may be used.
  • the molded body is sintered at a temperature of 1200 ° C. to 1600 ° C. for 2 to 200 hours to obtain a sintered body. If the sintering temperature is less than 1200 ° C, a high-density sintered body may not be obtained. If the sintering temperature exceeds 1600 ° C, indium oxide and scandium oxide may be thermally decomposed. The temperature is preferably 1300 ° C to 1600 ° C, more preferably 1300 ° C to 1550 ° C.
  • the sintering time is preferably 2 to 200 hours. If it is less than 2 hours, the sintering may not be completed, and a high-density sintered body may not be obtained. Moreover, when it is longer than 200 hours, the heating is too long, which may be disadvantageous economically. Preferably, it is 5 to 150 hours, more preferably 10 to 100 hours.
  • Sintering is preferably performed in an oxidizing atmosphere.
  • the oxidizing atmosphere may be in air, under an oxygen stream, or under oxygen pressure.
  • the obtained sintered body is formed into a desired shape by cutting, polishing, or the like, and bonded to a backing plate to obtain a sputtering target.
  • the metal oxide thin film of the present invention is formed using the above sputtering target. If necessary, an annealing process is performed after film formation.
  • This metal oxide thin film is a semiconductor thin film, and can be used for a channel etch type, etch stopper type, etc. thin film transistor.
  • Example 1 The following oxide powder was used as a mixed powder as a raw material.
  • the specific surface area was measured by the BET method.
  • Indium oxide powder specific surface area 6 m 2 / g
  • Scandium oxide powder specific surface area 3 m 2 / g
  • the specific surface area of the entire mixed powder was 6.0 m 2 / g.
  • the above mixed powder of 990 g of indium oxide and 10 g of scandium oxide was mixed and ground using a wet medium stirring mill. As a grinding medium, 1 mm ⁇ zirconia beads were used. During the pulverization process, while confirming the specific surface area of the mixed powder, the specific surface area was increased by 2 m 2 / g from the specific surface area of the raw material mixed powder. After pulverization, the mixed powder dried with a spray dryer was filled in a mold (100 mm ⁇ 20 mm thickness) and pressure-molded with a cold press machine. After molding, the sintered body was manufactured by sintering at 1500 ° C. for 20 hours in an oxygen atmosphere while circulating oxygen.
  • FIG. 1 shows an X-ray chart of the sintered body produced in Example 1.
  • a bixbite structure of In 2 O 3 was observed in the sintered body.
  • the lattice constant by X-ray diffraction it was 10.115 ⁇ .
  • the measured value of the lattice constant almost coincides with the theoretical value of the lattice constant (see FIG. 9), and the peak due to the raw material Sc 2 O 3 is confirmed even when the X-ray diffraction chart is expanded 10 times.
  • the above it was confirmed that scandium oxide was dissolved in the indium oxide crystal.
  • the sintered body has a high density and is suitable for a sintered body for a sputtering target. Further, the bulk resistance of the sintered body was measured by a four-probe method using a resistivity meter (manufactured by Mitsubishi Oil Chemical Co., Ltd., Loresta) and found to be 0.9 ⁇ cm. From the ICP measurement, the atomic ratio [Sc / (In + Sc)] of the metal element in the sintered body was 0.02. The crystal grain size in the sintered body was 4.8 ⁇ m. The crystal grain size was defined as an average value of crystals in all fields when observed with a scanning electron microscope in a field of 30 ⁇ m ⁇ 30 ⁇ m.
  • Table 1 shows the sintering conditions and the physical properties of the obtained sintered body.
  • Table 1 shows the sintering conditions and the physical properties of the obtained sintered body.
  • the presence or absence of nodules during sputtering was evaluated under the following conditions. Attach a 4-inch target to a sputtering device made by Shimadzu Corporation, visually observe the nodule formed on the target surface after applying 400 kW output, atmospheric gas 100% argon, and 10 kWhr electric power by DC magnetron sputtering. Confirmed with. Nodule generation was defined as a case where nodules generated in the inner and outer peripheral portions of erosion were continuously generated.
  • Table 1 the presence or absence of abnormal discharge was evaluated under the following conditions.
  • a 4 inch target is mounted on a sputtering device manufactured by Shimadzu Corporation, and the DC magnetron sputtering method is used to monitor the voltage during sputtering for 5 minutes after supplying 400 kW output, atmospheric gas at 100% argon, and 9 kWhr.
  • the voltage decreased by 10% or more, abnormal discharge was determined, and when the number of times was 10 times or more, abnormal discharge was detected, and when the voltage was less than 10 times, abnormal discharge was not detected. Normally, when abnormal discharge starts to occur, 100 or more abnormal discharges are observed.
  • Examples 2-5 A sintered body was produced in the same manner as in Example 1, except that the ratio of scandium element to indium element in the sintered body [Sc / (In + Sc)], sintering temperature and time were changed as shown in Table 1. ,evaluated. The results are shown in Table 1. 2 to 5 show X-ray charts of the sintered bodies obtained in the respective examples. As in Example 1, the measured value of the lattice constant almost coincides with the theoretical value of the lattice constant (see FIG. 9), and the peak caused by the raw material Sc 2 O 3 is an enlarged X-ray diffraction chart. Even it was not confirmed. From the above, it was confirmed that scandium oxide was dissolved in the indium oxide crystal.
  • Example 6 To the indium oxide and scandium oxide weighed in Example 2, cerium oxide (CeO 2 ) was further added so that the Ce element would be 800 atomic ppm or 1200 atomic ppm with respect to all metal elements. A sintered body was produced in the same manner as in Example 2. Both the densities of the obtained sintered bodies were 6.5 g / cm 3 , and the bulk resistances were 0.015 ⁇ cm and 0.011 ⁇ cm, respectively. From this, it was confirmed that the bulk resistance of the sintered body can be lowered by adding a positive tetravalent metal element.
  • the solid solution state was observed by X-ray diffraction to observe a peak of a bixbite structure caused by indium oxide, confirm that the lattice constants were 10.1015 ⁇ and 10.1019 ⁇ , and were Sc 2 O 3 as a raw material. , was confirmed by a peak due to the CeO 2 is not.
  • Comparative Example 1 A sintered body was produced and evaluated in the same manner as in Example 1 except that 1000 g of only indium oxide was used without adding scandium oxide and the sintering temperature and time were changed as shown in Table 1. The results are shown in Table 1.
  • FIG. 6 shows an X-ray chart of the sintered body obtained in Comparative Example 1. As a result, it was confirmed that the crystal grain size was larger than that of the example.
  • Comparative Example 2 A sintered body was produced and evaluated in the same manner as in Example 3 except that the sintering temperature and time were changed as shown in Table 1. The results are shown in Table 1. As a result, it was confirmed that the crystal grain size was larger than that of the example. When the X-ray diffraction chart was enlarged, in addition to the solid solution peak of indium oxide / scandium oxide, a peak due to scandium oxide was observed, and it was confirmed that scandium oxide was not dissolved in the indium oxide crystal. .
  • Comparative Example 3 Indium oxide and scandium oxide were weighed as shown in Table 1, mixed and pulverized, and after casting, the sintering temperature and time were changed as shown in Table 1, and sintering was performed in the same manner as in Example 1. The body was manufactured and evaluated. The results are shown in Table 1. As a result, it was confirmed that the density of the sintered body was lower than that of the example. The lattice constant obtained from X-ray diffraction is almost the same as the theoretical line of the solid solution state of indium oxide / scandium oxide, but when the X-ray diffraction chart is enlarged, the solid solution of indium oxide / scandium oxide is obtained.
  • FIG. 9 shows the relationship between the lattice constant of In 2 O 3 bixbite and the amount of Sc 2 O 3 added in the sintered bodies produced in the examples and comparative examples.
  • the straight line indicated by the dotted line is the theoretical value of the lattice constant.
  • a channel etch type thin film transistor shown in FIG. 10 was produced by a photoresist method.
  • a conductive silicon substrate 10 with a 200 nm thick thermal oxide film (SiO 2 film) was used.
  • the thermal oxide film functions as the gate insulating film 30 and the conductive silicon portion functions as the gate electrode 20.
  • sputtering target [Sc / (In + Sc) 0.06] made of the sintered body produced in Example 2 on the gate insulating film 30, a 40 nm oxide film (precursor of the semiconductor film 40) is formed by sputtering. ) was formed. Sputtering was carried out at room temperature with a sputtering power of 100 W while evacuating until the back pressure reached 5 ⁇ 10 ⁇ 4 Pa, adjusting the pressure to 0.2 Pa while flowing argon 9.5 sccm and oxygen 0.5 sccm. It was.
  • a resist was applied to the substrate on which the oxide film was formed, and prebaked at 80 ° C. for 15 minutes to form a resist film. Thereafter, the resist film was irradiated with UV light (light intensity: 300 mJ / cm 2 ) through a mask, and then developed with 3 wt% tetramethylammonium hydroxide (TMAH). After washing with pure water, the resist film was post-baked at 130 ° C. for 15 minutes to form a resist pattern having a desired shape.
  • the oxide film was etched by treating the substrate with a resist pattern with a mixed acid of phosphoric acid, acetic acid and nitric acid, the resist was peeled off, washed with pure water, air blown and dried.
  • the substrate was heat-treated at 300 ° C. for 30 minutes in the air in a hot air heating furnace to convert the oxide film into a semiconductor, whereby the semiconductor film 40 was obtained. Thereafter, a molybdenum metal film was formed to 300 nm on the semiconductor film 40 and the gate insulating film 30.
  • a resist was applied to the molybdenum metal film and pre-baked at 80 ° C. for 15 minutes to form a resist film. Thereafter, the resist film was irradiated with UV light (light intensity: 300 mJ / cm 2 ) through a mask, and then developed with 3 wt% tetramethylammonium hydroxide (TMAH). After washing with pure water, the resist film was post-baked at 130 ° C. for 15 minutes to form a resist pattern of source / drain electrodes.
  • UV light light intensity: 300 mJ / cm 2
  • TMAH 3 wt% tetramethylammonium hydroxide
  • the substrate with a resist pattern was treated with a mixed acid of phosphoric acid / acetic acid / nitric acid to etch the molybdenum metal film, thereby forming the channel portion 60, the source electrode 50, and the drain electrode 52. Thereafter, it was washed with pure water, dried by air blowing, and a thin film transistor (the gap (L) between the source and drain electrodes of the channel portion 60 was 200 ⁇ m and the width (W) was 500 ⁇ m) was produced. At this time, it was confirmed that the semiconductor film 40 under the channel portion was not etched. The crystallized indium oxide film becomes resistant to a mixed acid of phosphoric acid / acetic acid / nitric acid and does not dissolve. Thus, a channel etch type TFT can be easily configured.
  • Example 6 The following oxide powder was used and weighed as a mixed powder as a raw material. The specific surface area was measured by the BET method.
  • Indium oxide powder specific surface area 6 m 2 / g
  • B Aluminum oxide powder: specific surface area 6 m 2 / g
  • the specific surface area of the whole mixed powder composed of (a) and (b) was 6.0 m 2 / g.
  • the above mixed powder of 995 g of indium oxide and 5 g of aluminum oxide was mixed and ground using a wet medium stirring mill. As a grinding medium, 1 mm ⁇ zirconia beads were used. During the pulverization process, while confirming the specific surface area of the mixed powder, the specific surface area was increased by 2 m 2 / g from the specific surface area of the raw material mixed powder.
  • the mixed powder obtained by drying with a spray dryer was filled into a mold (100 mm ⁇ 20 mm thickness) and pressure-molded with a cold press machine. After molding, the sintered body was manufactured by sintering at 1550 ° C. for 20 hours in an oxygen atmosphere while circulating oxygen.
  • Example 7 to 10 Comparative Examples 4 and 5
  • a sintered body was produced and evaluated in the same manner as in Example 6 except that indium oxide and aluminum oxide were mixed so as to have the mixing ratio shown in Table 2, and sintered at the sintering temperature shown in Table 2. The results are shown in Table 2.
  • An X-ray chart of Example 9 is shown in FIG.
  • Example 11 To the indium oxide and aluminum oxide weighed in Example 8, cerium oxide (CeO 2 ) was further added so that the Ce element was 800 atomic ppm or 1200 atomic ppm with respect to all the metal elements. A sintered body was produced in the same manner as in Example 8. Both the densities of the obtained sintered bodies were 6.56 g / cm 3 , and the bulk resistances were 0.017 ⁇ cm and 0.009 ⁇ cm, respectively. From this, it was confirmed that the bulk resistance of the sintered body can be lowered by adding a positive tetravalent metal element.
  • the solid solution state was observed by X-ray diffraction by observing the peak of the bixbite structure caused by indium oxide, confirming that the lattice constants were 10.101510 and 10.1019Al, and the raw material Al 2 O 3 , was confirmed by a peak due to the CeO 2 is not.
  • Evaluation example 2 Production of Thin Film Transistor A channel etch type thin film transistor shown in FIG. 10 was produced in the same manner as in Evaluation Example 1 (A) except that the sputtering target produced in Example 8 was used.
  • Field effect mobility of the thin film transistor manufactured is 49.3cm 2 / V ⁇ sec, On -Off ratio 10 7, S value was a thin film transistor showing the characteristics of a small normally-off and 0.89. The output characteristics showed a clear pinch-off.
  • the shift voltage (Vth) after applying 20V voltage to the gate electrode for 100 minutes was 0.2V.
  • the sintered body of the present invention can be used as a sputtering target for forming an indium oxide-based semiconductor film. Moreover, the obtained film

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thin Film Transistor (AREA)

Abstract

 酸化インジウム結晶に、アルミニウム及びスカンジウムからなる群から選ばれる1種以上の金属の酸化物が固溶し、インジウムと、アルミニウム及びスカンジウムからなる群から選ばれる1種以上の金属の原子比((1種以上の金属の合計)/(1種以上の金属とInの合計)×100)が0.001%以上45%未満である焼結体。

Description

酸化インジウム系焼結体及びスパッタリングターゲット
 本発明は、酸化インジウム系焼結体、特に酸化インジウムと共に、酸化スカンジウム又は酸化アルミニウムを含む焼結体、及びこれを用いたスパッタリングターゲットに関する。
 近年、表示装置の発展は目覚ましく、液晶表示装置やEL表示装置等、種々の表示装置がパソコンやワ-プロ等のOA機器へ活発に導入されている。これらの表示装置は、いずれも表示素子を透明導電膜で挟み込んだサンドイッチ構造を有している。
 それら表示装置を駆動させるスイッチング素子、例えば、薄膜トランジスタ(TFT)では、現在、シリコン系の半導体膜を使用したものが主流を占めている。それは、シリコン系薄膜は安定性及び加工性が良く、また、TFTのスイッチング速度が速い等、良好な性能を有するためである。このシリコン系薄膜は、一般に化学蒸気析出法(CVD)法により作製されている。
 しかしながら、シリコン系薄膜が非晶質である場合、スイッチング速度が比較的遅く、高速な動画等を表示する場合は画像を表示できないという難点を有している。一方、結晶質のシリコン系薄膜の場合には、スイッチング速度は比較的速いものの、シリコン系薄膜の結晶化には800℃以上の高温や、レーザーによる加熱等が必要であり、製造に対して多大なエネルギーと工程を要するという問題がある。また、シリコン系の薄膜は、電圧素子としての性能は優れているものの、電流を流した場合、その特性の経時変化が問題となっている。
 このような状況下、シリコン系薄膜の代わりとして酸化物半導体膜が研究されている。例えば、特許文献1には酸化物半導体PN接合デバイスが提案され、デバイスを構成する半導体膜の1つとして、酸化亜鉛と酸化マグネシウムからなる透明半導体薄膜が記載されている。
 酸化亜鉛と酸化マグネシウムからなる透明半導体膜は、弱酸でエッチングされ、そのエッチング速度が非常に速いという特徴がある。しかしながら、金属薄膜に使用されるエッチング液によってもエッチングされるため、透明半導体膜上の金属薄膜をエッチングする場合に、金属薄膜と同時にエッチングされることがあった。そのため、透明半導体膜上の金属薄膜だけを選択的にエッチングする場合には不適であった。
 特許文献2には主成分として酸化インジウム(In)、酸化錫(SnO)及び酸化スカンジウム(Sc)を、重量比で(In+Sc):SnO=99~94:1~7、In:Sc=99.8~60:0.2~40となる様に含有するI.T.O焼結体が提案されている。この焼結体は、酸化スズが1~7重量%添加されており、結晶化膜においては、酸化スズからのキャリヤー発生があるので、半導体膜ではなく導電膜となる。
 特許文献3には、酸化インジウム、酸化スズ及び酸化イットリウムを主成分とする薄膜の記載があるが、透明導電膜に関するものであり、酸化物半導体に関する記載はない。
 本発明の目的は、酸化インジウム系の酸化物半導体膜を、安定して成膜できる焼結体(スパッタリングターゲット)を提供することである。
 また、優れた結晶質酸化物半導体膜を製造するためのスパッタリングターゲットを提供することである。
特開2004-119525号公報 特開2000-143334号公報 特開2000-169219号公報
 本発明によれば、以下の焼結体、スパッタリングターゲット等が提供される。
1.酸化インジウム結晶に、アルミニウム及びスカンジウムからなる群から選ばれる1種以上の金属の酸化物が固溶し、インジウムと、アルミニウム及びスカンジウムからなる群から選ばれる1種以上の金属の原子比((1種以上の金属の合計)/(1種以上の金属とInの合計)×100)が0.001%以上45%未満である焼結体。
2.前記原子比が0.01~30原子%である1に記載の焼結体。
3.前記原子比が0.5~15原子%である1に記載の焼結体。
4.前記酸化インジウム結晶がビックスバイト構造である1~3のいずれかに記載の焼結体。
5.前記酸化インジウムの結晶粒径が10μm未満である1~4のいずれかに記載の焼結体。
6.酸化インジウム及び酸化スカンジウムからなり、前記酸化インジウムの結晶の格子定数がInScOとInの間にある1~5のいずれかに記載の焼結体。
7.酸化インジウム及び酸化アルミニウムからなり、前記酸化インジウムの結晶の格子定数がInAlOとInの間にある1~5のいずれかに記載の焼結体。
8.さらに正4価以上の金属イオンを10~5000原子ppm含有する1~7のいずれかに記載の焼結体。
9.前記正4価以上の金属イオンを100~2000原子ppm含有する8に記載の焼結体。
10.前記正4価以上の金属イオンが、スズイオン又はセリウムイオンのいずれか一方又は両方である8又は9に記載の焼結体。
11.アルミニウム及びスカンジウムからなる群から選ばれる1種以上の金属の酸化物及び酸化インジウムの粉末を混合し、1200℃~1600℃の温度にて、2~200時間焼成する1~7のいずれかに記載の焼結体の製造方法。
12.アルミニウム及びスカンジウムからなる群から選ばれる1種以上の金属の酸化物、酸化インジウム並びに正四価以上の金属の粉末を混合し、1200℃~1600℃の温度にて、2~200時間焼成する8~10のいずれかに記載の焼結体の製造方法。
13.酸化雰囲気中で焼成する11又は12に記載の焼結体の製造方法。
14.1~10のいずれかに記載の焼結体を用いて作製されるスパッタリングターゲット。
15.14に記載のスパッタリングターゲットを用いて成膜される金属酸化物薄膜。
16.15に記載の金属酸化物薄膜からなる半導体膜。
17.16に記載の半導体膜を用いる薄膜トランジスタ。
18.チャンネルエッチ型である17に記載の薄膜トランジスタ。
19.エッチストッパー型である17に記載の薄膜トランジスタ。
20.17~19のいずれかに記載の薄膜トランジスタを備える半導体素子。
 本発明の焼結体は、スパッタリングターゲットとして使用した際の成膜安定性が良好である。また、このスパッタリングターゲットを用いて優れた半導体膜が得られる。
実施例1で製造した焼結体のX線回折チャートである。 実施例2で製造した焼結体のX線回折チャートである。 実施例3で製造した焼結体のX線回折チャートである。 実施例4で製造した焼結体のX線回折チャートである。 実施例5で製造した焼結体のX線回折チャートである。 比較例1で製造した焼結体のX線回折チャートである。 比較例2で製造した焼結体のX線回折チャートである。 比較例3で製造した焼結体のX線回折チャートである。 酸化スカンジウム添加量による焼結体の格子定数の変化を示す図である。 評価例1で作製した薄膜トランジスタの概略断面図である。 実施例9で製造した焼結体のX線回折チャートである。
 本発明の焼結体は、酸化インジウム結晶に、アルミニウム及びスカンジウムからなる群から選ばれる1種以上の金属(以下、単に特定正三価金属ともいう)の酸化物が固溶し、インジウムと、アルミニウム及びスカンジウムからなる群から選ばれる1種以上の金属の原子比((1種以上の金属の合計)/(1種以上の金属とInの合計)×100)が0.001%以上45%未満である。原子比は好ましくは0.001~40原子%であり、より好ましくは0.5~15原子%である。この原子比により、焼結体をスパッタリングターゲットとして使用した際に得られる酸化物半導体膜の移動度が大きくなり、この酸化物半導体膜を用いて安定した薄膜トランジスタが得られる。
 焼結体中の金属元素(イオン)の含有量(原子比)は、ICP(Inductively Coupled Plasma)測定により求めることができる。
 「酸化インジウムに金属酸化物が固溶している」とは、焼結体のX線回折測定において、酸化インジウムに添加する原料である金属酸化物(アルミニウム及びスカンジウムの酸化物)に起因するピークが観測されない状態を意味する。
 一般に、酸化インジウムの結晶の格子定数は、特定正三価金属酸化物の添加により、酸化インジウムもしくは特定正三価金属酸化物構造の格子定数に向けて直線的に変化する。
 焼結体の格子定数が、酸化インジウムと特定正三価金属酸化物の間にあるということは、一般に、特定正三価金属酸化物が酸化インジウムに十分に固溶されていて、異状放電を生じさせる量の単独の特定正三価金属酸化物が焼結体中に存在しないことを意味する。従って、この焼結体から得られるスパッタリングターゲットは、安定したスパッタリングを行うことができ、かつ、表面平滑性に優れた酸化物半導体を与えることができる。尚、異状放電を生じさせない程度の量の単独の特定正三価金属酸化物は含まれていてもよい。
 本発明では、特定正三価金属酸化物は酸化インジウムに好ましくは完全固溶している。これにより、焼結体をスパッタリングターゲットとして使用した際に、より安定した成膜が可能となる。
 特定正三価金属酸化物は、耐還元性が大きく、酸化インジウムの還元を抑える。このため、本発明の焼結体からなるスパッタリングターゲットを用いるとき、ノジュールの発生が抑制される。
 また、特定正三価金属酸化物は、酸素との結合力が高い。従って、本発明の焼結体からなるスパッタリングターゲットを用いて得られる結晶質薄膜内の酸素欠損が抑制され、薄膜が半導体化しやすい。
 さらに、特定正三価金属酸化物は、それ自体が耐酸性・耐アルカリ性であるため、得られる薄膜の耐酸性・耐アルカリ性が向上する。
 特定正三価金属酸化物を添加すると、酸化インジウムの結晶質薄膜の格子定数は小さくなるため、陽イオンの原子間距離が小さくなる。従って、得られる薄膜を用いたトランジスタの移動度が向上し、S値及び耐久性が向上する。
 本発明の焼結体に含まれる酸化インジウム結晶は好ましくはビックスバイト構造である。ビックスバイト構造は、X線回折測定によりピークを観察することにより確認できる。
 好ましくは酸化インジウムの結晶粒径は10μm未満である。結晶が大きくなりすぎるとスパッタリング中に異常放電の原因になったり、スパッタリングターゲット上のノジュールの発生原因になったりする。アルミニウム及びスカンジウムからなる群から選ばれる1種以上の金属の酸化物を酸化インジウム結晶に固溶させることにより結晶粒径を小さくできる。
 結晶粒径は、30μm×30μmの視野で走査型電子顕微鏡にて観察した場合の全視野での結晶の平均値を結晶粒径(長径)とする。また、上記視野で観察した場合に、10μm以上の結晶が存在しなければ、平均粒径は10μm未満になる。
 本発明の焼結体のバルク抵抗は、1Ωcm以下であることが好ましく、特に、0.5Ωcm以下であることが好ましい。本発明では、1種以上の金属酸化物を十分に分散、固溶させることにより、焼結体のバルク抵抗を1Ωcm以下にすることができる。一方、分散、固溶が不十分な場合には、スパッタリング中に異常放電が生じる場合がある。尚、焼結体のバルク抵抗の下限は特に限定されないが、0.001Ωcm未満にする必要はない。
 本発明の焼結体の密度は、5.5g/cm以上であることが好ましく、5.8g/cm以上であることがより好ましく、特に、6.0g/cm以上であることが好ましい。尚、上限は、酸化インジウムの密度である。本発明では、1種以上の金属酸化物を十分に分散、固溶させることにより、焼結体の密度を5.5g/cm以上とすることができる。一方、焼結体の密度が低いと、スパッタリング中にターゲット表面が黒化したりし、異常放電を誘発する場合がある。また、スパッタ速度が低下する場合がある。
 また、1種以上の金属酸化物を十分に分散・固溶させることにより、焼結体の相対密度を90%以上とすることができる。密度が低いと、ターゲット表面が黒化したりし、異常放電を誘発する場合があったり、スパッタ速度が低下したりする場合がある。好ましくは、95%以上、より好ましくは97%以上である。上限の相対密度は、100%以下である。
 本発明の好適な態様は、酸化インジウム及び酸化スカンジウムからなり、酸化インジウムの結晶の格子定数がInScOとInの間にある焼結体である。
 また、他の好適な態様は、酸化インジウム及び酸化アルミニウムからなり、酸化インジウムの結晶の格子定数がInAlOとInの間にある焼結体である。
 上記の本発明の焼結体は、正4価以上の金属イオンを10~5000原子ppm含有することが好ましく、特に、100~2000原子ppm含有することが好ましい。正4価以上の金属元素を含有することにより、バルク抵抗をさらに低減できる。5000ppm超の場合、得られる酸化物半導体膜がノーマリーオフの半導体特性を示さなくなる場合がある。正4価以上の金属酸化物も酸化インジウムに固溶し、正4価以上の金属酸化物のピークが観察されないことが好ましい。正4価の金属酸化物を添加することにより、得られる焼結体のバルク抵抗が低下し、これらを用いたスパッタリングターゲットは、より安定したスパッタリングを行うことができ、安定して表面平滑性の高い酸化物半導体膜が得られる。
 正4価以上の金属イオンとしては、Ti、Zr、Hf、Nb、Ta、W、Ge、Sn又はCeが挙げられる。このなかでも、スズイオン又はセリウムイオンのいずれか一方又は両方が好ましい。SnOは、採掘量も多く、供給安定性も確保されており、また、毒性も無い。また、セリウム元素は、焼結体の焼結温度である1200℃以上において、わずかながら(5000原子ppm以下)酸化インジウム結晶に取り込まれることにより、焼結体のバルク抵抗を下げる効果がある。一方、薄膜を結晶化させる程度の温度(例えば、250℃から450℃程度)では、酸化インジウムに取り込まれるセリウム量が減少し、抵抗を下げる効果(キャリヤーを発生する効果)が小さくなる。このように、得られる結晶性酸化インジウム膜のキャリヤーを制御できるため、ノーマリーオフの酸化物半導体が容易に得られる。
 本発明による焼結体は、バルク抵抗が低く、スパッタリング法に使用するターゲットとして好適に使用できる。この焼結体を用いたスパッタリングターゲットは、スパッタが安定しており、結晶質酸化インジウム膜を安定して製造できる。また、良好な半導体特性を有する薄膜が得られる。
 本発明の焼結体は、例えば、酸化インジウムと、酸化スカンジウム又は酸化アルミニウムを混合した粉体を1200℃~1600℃の温度にて、2~200時間焼結することで製造できる。
 原料である酸化物は、純度99.99%以上の粉体が好ましい。尚、正4価以上の金属元素を添加する場合、例えば、同金属元素の酸化物等の化合物を添加する。この化合物の純度も99.99%以上であることが好ましい。各原料の純度が99.99%以上であると、不純物量が100原子ppm未満となり好ましい。
 各原料の配合量は目的とする焼結体の各金属元素の配合量に対応させる。
 上記原料の混合物を、ビーズミル、ボールミル、遊星ミル等の一般的なミルにより混合、粉砕する。その後、造粒し成形する。成形により、混合物をスパッタリングターゲット等として好適な形状にする。
 成形処理としては、例えば、プレス成形、冷間静水圧、一軸加圧、金型成形、鋳込み成形、射出成形等が挙げられる。尚、成形処理に際しては、ポリビニルアルコールやメチルセルロース、ポリワックス、オレイン酸等の成形助剤を用いてもよい。
 成形体を1200℃~1600℃の温度にて、2~200時間焼結して焼結体を得る。
 焼結温度が1200℃未満では、高密度の焼結体が得られない場合があり、1600℃を超えると、酸化インジウム、酸化スカンジウムが熱分解する場合がある。好ましくは1300℃~1600℃、より好ましくは1300℃~1550℃である。
 焼結時間は、2~200時間がよい。2時間未満では、焼結が完了しない場合があり、高密度の焼結体が得られなかったりする場合がある。また、200時間より長いと加熱が長すぎ、経済的に不利となる場合がある。好ましくは、5~150時間、より好ましくは10~100時間である。
 焼結は好ましくは酸化雰囲気で行う。酸化雰囲気としては、空気中、酸素気流下又は酸素加圧下でよい。
 得られた焼結体を、切削加工、研磨加工等により、所望の形状とし、バッキングプレートに接合することで、スパッタリングターゲットが得られる。
 本発明の金属酸化物薄膜は、上記のスパッタリングターゲットを用いて成膜する。必要に応じて成膜後にアニール処理を行う。この金属酸化物薄膜は、半導体薄膜であり、チャンネルエッチ型、エッチストッパー型等の薄膜トランジスタに使用できる。
[実施例]
 続いて、本発明を実施例により比較例と対比しながら説明する。尚、本実施例は好適な例を示すものであり、これらに本発明が制限されるものではない。従って、本発明の技術思想に基づく変形又は他の実施例は本発明に包含されるものである。
実施例1
 原料である混合粉体として、下記の酸化物粉を使用した。尚、比表面積はBET法で測定した。
(a)酸化インジウム粉:比表面積6m/g
(b)酸化スカンジウム粉:比表面積3m/g
 尚、混合粉体全体の比表面積は6.0m/gであった。
 上記の酸化インジウム990gと酸化スカンジウム10gの混合粉体を、湿式媒体撹拌ミルを使用して混合粉砕した。粉砕媒体として1mmφのジルコニアビーズを使用した。粉砕処理中、混合粉体の比表面積を確認しながら、比表面積を原料混合粉の比表面積より2m/g増加させた。
 粉砕後、スプレードライヤーで乾燥させた混合粉を金型(100mmφ20mm厚)に充填し、コールドプレス機にて加圧成形した。
 成形後、酸素を流通させながら酸素雰囲気中、1500℃で20時間焼結して、焼結体を製造した。
 図1に実施例1で製造した焼結体のX線チャートを示す。分析した結果、焼結体中には、Inのビックスバイト構造が観察された。X線回折より格子定数を求めた結果、10.115Åであった。
 また、格子定数の測定値が格子定数の理論値とほぼ一致し(図9参照)、かつ原料であるScに起因するピークは、X線回折チャートを10倍に拡大しても確認されなかった。以上から、酸化スカンジウムは酸化インジウム結晶に固溶していることが確認できた。
 所定の大きさに切り出した焼結体の重量と外形寸法から、密度を算出した結果、6.7g/cmであった。焼結体の密度は高く、スパッタリングターゲット用焼結体に好適である。
 また、焼結体のバルク抵抗を、抵抗率計(三菱油化製、ロレスタ)を使用し四探針法により測定したところ、0.9Ωcmであった。
 ICP測定により、焼結体中の金属元素の原子比[Sc/(In+Sc)]は、0.02であった。
 焼結体内の結晶粒径は、4.8μmであった。尚、結晶粒径は、30μm×30μmの視野で走査型電子顕微鏡にて観察した場合の全視野での結晶の平均値を結晶粒径とした。
 焼結条件及び得られた焼結体の物性等を表1に示す。
 表1中、スパッタ時のノジュール発生の有無は、以下の条件にて評価した。
 島津製作所製スパッタ装置に、4インチターゲットを装着し、DCマグネトロンスパッタ法にて、400Wの出力、雰囲気ガスをアルゴン100%にて、10kWhrの電力を投入したあとの、ターゲット表面にできるノジュールを目視で確認した。エロージョンの内周部及び外周部に発生するノジュールが、連続して発生している場合をノジュール発生とした。
 また、表1中、異常放電の有無は以下の条件により評価した。
 島津製作所製スパッタ装置に、4インチターゲットを装着し、DCマグネトロンスパッタ法にて、400Wの出力、雰囲気ガスをアルゴン100%にて、9kWhrの電力投入後、5分間、スパッタ中の電圧をモニターし、電圧が10%以上低下した場合を異常放電とし、その回数が10回以上の場合を異常放電ありとし、10回未満の場合を異常放電なしとした。通常、異常放電が発生し始めると100回以上の異常放電が観察される。
Figure JPOXMLDOC01-appb-T000001
実施例2~5
 焼結体中のスカンジウム元素とインジウム元素の比[Sc/(In+Sc)]、焼結温度及び時間を表1に示すように変更した他は、実施例1と同様にして焼結体を製造し、評価した。結果を表1に示す。図2~5に各実施例で得られた焼結体のX線チャートを示す。
 尚、実施例1と同様、格子定数の測定値が格子定数の理論値とほぼ一致し(図9参照)、かつ原料であるScに起因するピークは、X線回折チャートを拡大しても確認されなかった。以上から、酸化スカンジウムは酸化インジウム結晶に固溶していることが確認できた。
実施例6
 実施例2で秤量した酸化インジウム及び酸化スカンジウムに、更に、酸化セリウム(CeO)を、Ce元素が全金属元素に対して、800原子ppm、又は1200原子ppmとなるように添加し、実施例2と同様にして焼結体を製造した。得られた焼結体の密度は、両方とも、6.5g/cmであり、バルク抵抗は、それぞれ、0.015Ωcm、0.011Ωcmであった。これより、正4価の金属元素を添加することにより、焼結体のバルク抵抗を下げることができることが確認できた。また、固溶状態は、X線回折より、酸化インジウムに起因するビックスバイト構造のピークを観察し、格子定数が10.1015Å、10.1019Åであることを確認し、原料であるSc、CeOに起因するピークが無いことにより確認した。
比較例1
 酸化スカンジウムを配合せず、酸化インジウムのみ1000gを使用し、焼結温度及び時間を表1に示すように変更した他は、実施例1と同様にして焼結体を製造し、評価した。結果を表1に示す。また、図6に比較例1で得られた焼結体のX線チャートを示す。
 この結果、実施例と比べて結晶粒径が大きいことが確認できた。
比較例2
 焼結温度及び時間を表1に示すように変更した他は、実施例3と同様にして焼結体を製造し、評価した。結果を表1に示す。
 この結果、実施例と比べて実施例と比べて結晶粒径が大きいことが確認できた。X線回折チャートを拡大してみると、酸化インジウム・酸化スカンジウムの固溶体のピーク以外に、酸化スカンジウムに起因するピークが観察され、酸化スカンジウムは酸化インジウム結晶に固溶していないことが確認できた。
比較例3
 酸化インジウム、酸化スカンジウムを表1に示したように秤量し、混合・粉砕、造流後に、焼結温度及び時間を表1に示すように変更した他は、実施例1と同様にして焼結体を製造し、評価した。結果を表1に示す。
 この結果、実施例と比べて焼結体の密度が低いことが確認できた。また、X線回折から求めた格子定数は、酸化インジウム・酸化スカンジウムの固溶状態の理論線にほぼ一致しているものの、X線回折チャートを拡大してみると、酸化インジウム・酸化スカンジウムの固溶体のピーク以外に、酸化スカンジウムに起因するピークが観察され、酸化スカンジウムは酸化インジウム結晶に固溶していないことが確認できた。また、密度が低く、また、結晶粒径も大きいことから、焼結体の強度が低く、ターゲットへの加工は行わなかった。
 実施例及び比較例で作製した焼結体におけるInのビックスバイトの格子定数とScの添加量の関係を図9に示す。図中、点線で示す直線は格子定数の理論値である。X線回折パターンにて原料であるScに起因するピークが消失している場合、実測した格子定数が、理論値と一致するかほぼ等しいことがわかる。そのため、酸化スカンジウムは固溶状態にあると判断できる。
評価例1
(A)薄膜トランジスタの作製
 図10に示すチャンネルエッチ型の薄膜トランジスタをフォトレジスト法にて作製した。
 200nm厚みの熱酸化膜(SiO膜)付きの導電性シリコン基板10を使用した。熱酸化膜がゲート絶縁膜30として機能し、導電性シリコン部がゲート電極20として機能する。
 ゲート絶縁膜30上に、実施例2で製造した焼結体からなるスパッタリングターゲット[Sc/(In+Sc)=0.06]を用いて、スパッタリング法で40nmの酸化物膜(半導体膜40の前駆体)を成膜した。スパッタリングは、背圧が5×10-4Paとなるまで真空排気したあと、アルゴン9.5sccm、酸素0.5sccmを流しながら、圧力を0.2Paに調整し、スパッタパワー100Wにて室温で行った。
 酸化物膜を形成した基板にレジストを塗布し、80℃で15分間プレベークしてレジスト膜を形成した。その後、マスクを通してUV光(光強度:300mJ/cm)をレジスト膜に照射し、その後、3wt%のテトラメチルアンモニウムハイドロオキサイド(TMAH)にて現像した。純水で洗浄後、レジスト膜を130℃で15分ポストベークし、所望の形状のレジストパターンを形成した。
 レジストパターン付き基板を、燐酸・酢酸・硝酸の混合酸で処理することで、酸化物膜をエッチングし、レジストを剥離し、純水で洗浄しエアーブローして乾燥させた。
 酸化物膜のエッチング工程後、基板を熱風加熱炉内で空気中、300℃で30分間熱処理して酸化物膜を半導体化し、半導体膜40を得た。
 その後、半導体膜40及びゲート絶縁膜30上に、モリブデン金属膜を300nm成膜した。
 モリブデン金属膜にレジストを塗布し、80℃で15分間プレベークしてレジスト膜を形成した。その後、マスクを通してUV光(光強度:300mJ/cm)をレジスト膜に照射し、その後、3wt%のテトラメチルアンモニウムハイドロオキサイド(TMAH)にて現像した。純水で洗浄後、レジスト膜を130℃で15分ポストベークし、ソース・ドレイン電極のレジストパターンを形成した。
 レジストパターン付き基板を、燐酸・酢酸・硝酸の混合酸で処理することで、モリブデン金属膜をエッチングし、チャンネル部60、及びソース電極50及びドレイン電極52を形成した。その後、純水で洗浄しエアーブローして乾燥させ、薄膜トランジスタ(チャンネル部60のソース・ドレイン電極間間隙(L)が200μm、幅(W)が500μm)を作製した。このとき、チャンネル部下部の半導体膜40はエッチングされていないことを確認した。結晶化した酸化インジウム膜は、燐酸・酢酸・硝酸の混合酸に対して耐性を有するようになり、溶解しなくなる。これにより、容易に、チャンネルエッチ型のTFTを構成できるようになる。
 この薄膜トランジスタの電界効果移動度は17.3cm/V・sec、On-Off比は10であり、S値が0.9と小さなノーマリーオフの特性を示す薄膜トランジスタであった。また、出力特性は明瞭なピンチオフを示した。ゲート電極に20V電圧を100分間印加した後のシフト電圧(Vth)は、0.2Vであった。
(B)半導体膜の評価
 石英ガラス基板上に、上記(A)のスパッタリングと同じ条件にて酸化スカンジウムを含む酸化インジウム膜を形成した。その後、熱風加熱炉内で、空気中、300℃で30分間熱処理した。得られた半導体膜のX線回折(XRD)を測定したところ、酸化インジウムに起因する構造のみのピークを示すX線回折パターンが得られた。これにより、半導体膜が結晶質であることが確認できた。この結晶質半導体膜の格子定数は、酸化インジウム単独の薄膜の場合より、小さな値を示すことから、大きな移動度が達成できていると考える。
 また、ホール測定により求めたキャリヤー濃度は、5.7×10+16/cmであった。
実施例6
 原料である混合粉体として、下記の酸化物粉を使用、秤量した。尚、比表面積はBET法で測定した。
(a)酸化インジウム粉:比表面積6m/g
(b)酸化アルミニウム粉:比表面積6m/g
 (a)(b)からなる混合粉体全体の比表面積は6.0m/gであった。
 上記の酸化インジウム995gと酸化アルミニウム5gの混合粉体を、湿式媒体撹拌ミルを使用して混合粉砕した。粉砕媒体として1mmφのジルコニアビーズを使用した。粉砕処理中、混合粉体の比表面積を確認しながら、比表面積を原料混合粉の比表面積より2m/g増加させた。
 粉砕後、スプレードライヤーで乾燥させて得た混合粉を金型(100mmφ20mm厚)に充填し、コールドプレス機にて加圧成形した。成形後、酸素を流通させながら酸素雰囲気中、1550℃で20時間焼結して、焼結体を製造した。
 X線回折により得られたチャートを分析した結果、焼結体中には、Inのビックスバイト構造が観察された。原料である酸化アルミニウムに起因するピークは確認されなかった。格子定数は10.11587であった。
 実施例1と同様にして、密度、バルク抵抗、結晶粒径、ノジュールの有無、異常放電の有無を測定した。結果を表2に示す。
実施例7~10、比較例4,5
 表2に示す配合比となるように酸化インジウムと酸化アルミニウムを混合し、表2に示す焼結温度で焼結した他は実施例6と同様にして焼結体を製造し、評価した。結果を表2に示す。
 実施例9のX線チャートを図11に示す。
Figure JPOXMLDOC01-appb-T000002
実施例11
 実施例8で秤量した酸化インジウム及び酸化アルミニウムに、更に、酸化セリウム(CeO)を、Ce元素が全金属元素に対して、800原子ppm、又は1200原子ppmとなるように添加し、実施例8と同様にして焼結体を製造した。得られた焼結体の密度は、両方とも、6.56g/cmであり、バルク抵抗は、それぞれ、0.017Ωcm、0.009Ωcmであった。これより、正4価の金属元素を添加することにより、焼結体のバルク抵抗を下げることができることが確認できた。また、固溶状態は、X線回折より、酸化インジウムに起因するビックスバイト構造のピークを観察し、格子定数が10.1015Å、10.1019Åであることを確認し、原料であるAl、CeOに起因するピークが無いことにより確認した。
評価例2
(A)薄膜トランジスタの作製
 実施例8を製造したスパッタリングターゲットを用いた他は、評価例1(A)と同様にして、図10に示すチャンネルエッチ型の薄膜トランジスタを作製した。
 製造した薄膜トランジスタの電界効果移動度は49.3cm/V・sec、On-Off比は10であり、S値が0.89と小さなノーマリーオフの特性を示す薄膜トランジスタであった。また、出力特性は明瞭なピンチオフを示した。ゲート電極に20V電圧を100分間印加した後のシフト電圧(Vth)は、0.2Vであった。
(B)半導体膜の評価
 実施例8を製造したスパッタリングターゲットを用いた他は、評価例1(B)と同様にして、半導体膜を形成し熱処理した。得られた半導体膜のX線回折(XRD)測定をしたところ、酸化インジウムに起因する構造のみのピークをしめすX線解説パターンが得られた。これにより、半導体膜が結晶質であることが確認できた。また、ホール測定により求めたキャリヤー濃度は、5.7×10+16/cmであった。
 本発明の焼結体は、酸化インジウム系の半導体膜を形成するためのスパッタリングターゲットとして使用できる。また、本発明のスパッタリングターゲットを用いた得られた膜はトランジスタに使用できる。

Claims (20)

  1.  酸化インジウム結晶に、アルミニウム及びスカンジウムからなる群から選ばれる1種以上の金属の酸化物が固溶し、インジウムと、アルミニウム及びスカンジウムからなる群から選ばれる1種以上の金属の原子比((1種以上の金属の合計)/(1種以上の金属とInの合計)×100)が0.001%以上45%未満である焼結体。
  2.  前記原子比が0.01~30原子%である請求項1に記載の焼結体。
  3.  前記原子比が0.5~15原子%である請求項1に記載の焼結体。
  4.  前記酸化インジウム結晶がビックスバイト構造である請求項1~3のいずれかに記載の焼結体。
  5.  前記酸化インジウムの結晶粒径が10μm未満である請求項1~4のいずれかに記載の焼結体。
  6.  酸化インジウム及び酸化スカンジウムからなり、前記酸化インジウムの結晶の格子定数がInScOとInの間にある請求項1~5のいずれかに記載の焼結体。
  7.  酸化インジウム及び酸化アルミニウムからなり、前記酸化インジウムの結晶の格子定数がInAlOとInの間にある請求項1~5のいずれかに記載の焼結体。
  8.  さらに正4価以上の金属イオンを10~5000原子ppm含有する請求項1~7のいずれかに記載の焼結体。
  9.  前記正4価以上の金属イオンを100~2000原子ppm含有する請求項8に記載の焼結体。
  10.  前記正4価以上の金属イオンが、スズイオン又はセリウムイオンのいずれか一方又は両方である請求項8又は9に記載の焼結体。
  11.  アルミニウム及びスカンジウムからなる群から選ばれる1種以上の金属の酸化物及び酸化インジウムの粉末を混合し、1200℃~1600℃の温度にて、2~200時間焼成する請求項1~7のいずれかに記載の焼結体の製造方法。
  12.  アルミニウム及びスカンジウムからなる群から選ばれる1種以上の金属の酸化物、酸化インジウム並びに正四価以上の金属の粉末を混合し、1200℃~1600℃の温度にて、2~200時間焼成する請求項8~10のいずれかに記載の焼結体の製造方法。
  13.  酸化雰囲気中で焼成する請求項11又は12に記載の焼結体の製造方法。
  14.  請求項1~10のいずれかに記載の焼結体を用いて作製されるスパッタリングターゲット。
  15.  請求項14に記載のスパッタリングターゲットを用いて成膜される金属酸化物薄膜。
  16.  請求項15に記載の金属酸化物薄膜からなる半導体膜。
  17.  請求項16に記載の半導体膜を用いる薄膜トランジスタ。
  18.  チャンネルエッチ型である請求項17に記載の薄膜トランジスタ。
  19.  エッチストッパー型である請求項17に記載の薄膜トランジスタ。
  20.  請求項17~19のいずれかに記載の薄膜トランジスタを備える半導体素子。
PCT/JP2009/059954 2008-12-15 2009-06-01 酸化インジウム系焼結体及びスパッタリングターゲット WO2010070944A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/139,563 US8664136B2 (en) 2008-12-15 2009-06-01 Indium oxide sintered compact and sputtering target
CN2009801505180A CN102245533B (zh) 2008-12-15 2009-06-01 氧化铟系烧结体及溅射靶
JP2010542894A JPWO2010070944A1 (ja) 2008-12-15 2009-06-01 酸化インジウム系焼結体及びスパッタリングターゲット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-318293 2008-12-15
JP2008318293 2008-12-15

Publications (1)

Publication Number Publication Date
WO2010070944A1 true WO2010070944A1 (ja) 2010-06-24

Family

ID=42268622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059954 WO2010070944A1 (ja) 2008-12-15 2009-06-01 酸化インジウム系焼結体及びスパッタリングターゲット

Country Status (6)

Country Link
US (1) US8664136B2 (ja)
JP (1) JPWO2010070944A1 (ja)
KR (1) KR101565196B1 (ja)
CN (2) CN103204674A (ja)
TW (1) TWI436959B (ja)
WO (1) WO2010070944A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148614A1 (ja) * 2010-05-27 2011-12-01 出光興産株式会社 酸化物焼結体、それからなるターゲット及び酸化物半導体薄膜
WO2013035335A1 (ja) * 2011-09-06 2013-03-14 出光興産株式会社 スパッタリングターゲット
JP2016210679A (ja) * 2013-12-27 2016-12-15 出光興産株式会社 酸化物焼結体、その製造方法及びスパッタリングターゲット
TWI568703B (zh) * 2011-08-22 2017-02-01 Idemitsu Kosan Co In-Ga-Sn-based oxide sintered body
US10636914B2 (en) 2015-07-30 2020-04-28 Idemitsu Kosan Co., Ltd. Crystalline oxide semiconductor thin film, method for producing crystalline oxide semiconductor thin film, and thin film transistor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013147738A (ja) * 2011-12-22 2013-08-01 Kobe Steel Ltd Taを含有する酸化アルミニウム薄膜
US9577109B2 (en) * 2012-09-18 2017-02-21 Lg Chem, Ltd. Transparent conducting film and preparation method thereof
CN105655389B (zh) * 2016-01-15 2018-05-11 京东方科技集团股份有限公司 有源层、薄膜晶体管、阵列基板、显示装置及制备方法
CN114163216A (zh) * 2021-12-15 2022-03-11 先导薄膜材料(广东)有限公司 一种氧化铟钛镱粉体及其制备方法与应用
CN115537746B (zh) * 2022-10-25 2024-04-19 洛阳丰联科绑定技术有限公司 一种铝钪合金靶材及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288216A (ja) * 1985-10-15 1987-04-22 住友電気工業株式会社 透明導電膜の製造方法
JP2000169220A (ja) * 1998-12-09 2000-06-20 Jiomatetsuku Kk 金属酸化物焼結体およびその用途

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962071A (en) * 1989-05-01 1990-10-09 Tektronix, Inc. Method of fabricating a sintered body of indium tin oxide
JP3781398B2 (ja) 1998-11-09 2006-05-31 キャノンオプトロン株式会社 I.t.o焼結体、その製造方法及びi.t.o薄膜
JP2000169219A (ja) 1998-12-09 2000-06-20 Jiomatetsuku Kk 金属酸化物焼結体およびその用途
US6940565B2 (en) * 2000-08-26 2005-09-06 Lg.Philips Lcd Co., Ltd. Liquid crystal display device and fabricating method thereof
JP4604440B2 (ja) * 2002-02-22 2011-01-05 日本電気株式会社 チャネルエッチ型薄膜トランジスタ
KR100505536B1 (ko) * 2002-03-27 2005-08-04 스미토모 긴조쿠 고잔 가부시키가이샤 투명한 도전성 박막, 그것의 제조방법, 그것의 제조를위한 소결 타겟, 디스플레이 패널용의 투명한 전기전도성기재, 및 유기 전기루미네선스 디바이스
JP4164563B2 (ja) 2002-09-24 2008-10-15 独立行政法人科学技術振興機構 酸化物半導体pn接合デバイス及びその製造方法
TWI478347B (zh) 2007-02-09 2015-03-21 Idemitsu Kosan Co A thin film transistor, a thin film transistor substrate, and an image display device, and an image display device, and a semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288216A (ja) * 1985-10-15 1987-04-22 住友電気工業株式会社 透明導電膜の製造方法
JP2000169220A (ja) * 1998-12-09 2000-06-20 Jiomatetsuku Kk 金属酸化物焼結体およびその用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Japan Society for the Promotion of Science Tomei Sankabutsu Hikari - Denshi Zairyo Dai 166 Iinkai", TOMEI DODEN MAKU NO GIJUTSU, 25 April 2000 (2000-04-25), pages 197 *
SYED B. QADRI ET AL.: "Synthesis of bulk In203- Sc203 and their transparent conducting oxide films", JOURNAL OF APPLIED PHYSICS, vol. 92, no. 1, 1 July 2002 (2002-07-01), pages 227 - 229 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9153438B2 (en) 2010-05-27 2015-10-06 Idemitsu Kosan Co., Ltd. Sintered oxide body, target comprising the same, and oxide semiconductor thin film
JP2011249570A (ja) * 2010-05-27 2011-12-08 Idemitsu Kosan Co Ltd 酸化物焼結体、それからなるターゲット及び酸化物半導体薄膜
WO2011148614A1 (ja) * 2010-05-27 2011-12-01 出光興産株式会社 酸化物焼結体、それからなるターゲット及び酸化物半導体薄膜
TWI568703B (zh) * 2011-08-22 2017-02-01 Idemitsu Kosan Co In-Ga-Sn-based oxide sintered body
TWI567045B (zh) * 2011-09-06 2017-01-21 Idemitsu Kosan Co Sputtering target
KR20140057318A (ko) 2011-09-06 2014-05-12 이데미쓰 고산 가부시키가이샤 스퍼터링 타겟
CN103732790A (zh) * 2011-09-06 2014-04-16 出光兴产株式会社 溅射靶
JP2013067855A (ja) * 2011-09-06 2013-04-18 Idemitsu Kosan Co Ltd スパッタリングターゲット
WO2013035335A1 (ja) * 2011-09-06 2013-03-14 出光興産株式会社 スパッタリングターゲット
CN103732790B (zh) * 2011-09-06 2017-05-31 出光兴产株式会社 溅射靶
US9767998B2 (en) 2011-09-06 2017-09-19 Idemitsu Kosan Co., Ltd. Sputtering target
KR102075904B1 (ko) * 2011-09-06 2020-02-11 이데미쓰 고산 가부시키가이샤 스퍼터링 타겟
JP2016210679A (ja) * 2013-12-27 2016-12-15 出光興産株式会社 酸化物焼結体、その製造方法及びスパッタリングターゲット
JP2018158880A (ja) * 2013-12-27 2018-10-11 出光興産株式会社 酸化物焼結体、その製造方法及びスパッタリングターゲット
TWI665173B (zh) * 2013-12-27 2019-07-11 Idemitsu Kosan Co., Ltd. 氧化物燒結體、其製造方法及濺鍍靶
US10636914B2 (en) 2015-07-30 2020-04-28 Idemitsu Kosan Co., Ltd. Crystalline oxide semiconductor thin film, method for producing crystalline oxide semiconductor thin film, and thin film transistor

Also Published As

Publication number Publication date
CN103204674A (zh) 2013-07-17
TWI436959B (zh) 2014-05-11
CN102245533B (zh) 2013-11-06
US20110243835A1 (en) 2011-10-06
JPWO2010070944A1 (ja) 2012-05-24
TW201022176A (en) 2010-06-16
KR101565196B1 (ko) 2015-11-02
CN102245533A (zh) 2011-11-16
KR20110104496A (ko) 2011-09-22
US8664136B2 (en) 2014-03-04

Similar Documents

Publication Publication Date Title
WO2010070944A1 (ja) 酸化インジウム系焼結体及びスパッタリングターゲット
JP5244997B2 (ja) 酸化物焼結体及びスパッタリングターゲット
JP4933756B2 (ja) スパッタリングターゲット
JP6006202B2 (ja) In2O3−SnO2−ZnO系スパッタリングターゲット
US20120068130A1 (en) Sputtering Target, Transparent Conductive Film, and Their Manufacturing Method
WO2012153522A1 (ja) In2O3-ZnO系スパッタリングターゲット
JP2010045263A (ja) 酸化物半導体、スパッタリングターゲット、及び薄膜トランジスタ
KR102012853B1 (ko) 스퍼터링 타겟
WO2010032432A1 (ja) 酸化イットリウムを含有する焼結体及びスパッタリングターゲット
WO2016136479A1 (ja) 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
TWI622568B (zh) 氧化物燒結體及濺鍍用靶
JP2012031521A (ja) スパッタリングターゲット及び透明導電膜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980150518.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010542894

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13139563

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117013692

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09833251

Country of ref document: EP

Kind code of ref document: A1