WO2013035303A1 - 有機薄膜太陽電池材料 - Google Patents

有機薄膜太陽電池材料 Download PDF

Info

Publication number
WO2013035303A1
WO2013035303A1 PCT/JP2012/005593 JP2012005593W WO2013035303A1 WO 2013035303 A1 WO2013035303 A1 WO 2013035303A1 JP 2012005593 W JP2012005593 W JP 2012005593W WO 2013035303 A1 WO2013035303 A1 WO 2013035303A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
ring
carbon atoms
unsubstituted
solar cell
Prior art date
Application number
PCT/JP2012/005593
Other languages
English (en)
French (fr)
Inventor
圭一 安川
池田 秀嗣
竜志 前田
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2013035303A1 publication Critical patent/WO2013035303A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/022Boron compounds without C-boron linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/04Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups one >CH- group, e.g. cyanines, isocyanines, pseudocyanines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic thin film solar cell material, and an organic thin film solar cell and apparatus including the material.
  • An organic thin film solar cell is a device that shows an electrical output with respect to an optical input, as represented by a photodiode or an imaging device that converts an optical signal into an electrical signal, or a solar cell that converts optical energy into electrical energy, It is a device that exhibits a response opposite to that of an electroluminescence (EL) element that exhibits an optical output with respect to an electrical input.
  • EL electroluminescence
  • Organic solar cells are basically composed of an n layer for transporting electrons and a p layer for transporting holes, and is roughly classified into two types depending on the material constituting each layer.
  • a n-layer in which a sensitizing dye such as ruthenium dye is adsorbed on the surface of an inorganic semiconductor such as titania and an electrolyte solution is used as a p-layer is called a dye-sensitized solar cell (so-called Gretzell cell), and has a conversion efficiency. From the height, it has been studied vigorously since 1991. However, since the solution is used, it has a drawback such as liquid leakage when used for a long time.
  • organic thin-film solar cells consisting of organic thin films in both the n-layer and p-layer are all solid, so they have no drawbacks such as liquid leakage, are easy to manufacture, and do not use ruthenium, which is a rare metal. Attracted attention and researched energetically.
  • Organic thin-film solar cells have been studied with single-layer films using merocyanine dyes, etc., but it has been found that conversion efficiency can be improved by using p-layer / n-layer multilayer films.
  • the film became mainstream.
  • the materials used at this time were copper phthalocyanine (CuPc) for the p layer and peryleneimides (PTCBI) for the n layer.
  • a conductive polymer is used as a p material (a material used for a p layer), and a C 60 derivative is used as an n material (a material used for an n layer).
  • a C 60 derivative is used as an n material (a material used for an n layer).
  • the conversion efficiency has been improved by optimizing the cell configuration and morphology, but the material system used in the organic thin film solar cell has not made much progress since the early days, and phthalocyanines, peryleneimides still remain. Class C 60 has been used. Therefore, development of a new material system to replace them has been eagerly desired.
  • Patent Documents 1 to 3 describe compounds having a pyromethene skeleton as organic solar cell materials, but have high performance (conversion efficiency, etc.). Is not obtained.
  • An object of the present invention is to provide a material exhibiting highly efficient photoelectric conversion characteristics when used in an organic thin film solar cell, particularly in its p layer or i layer.
  • R 0 is hydrogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 ring carbon atoms, substituted or unsubstituted carbon atoms having 2 to 30 carbon atoms.
  • Rg 1 and Rg 2 are each a 5-membered heterocyclic ring having at least one substituted or unsubstituted nitrogen atom, or a 6-membered heterocyclic ring having at least one substituted or unsubstituted nitrogen atom;
  • Rg 3 and Rg 4 are each a substituted or unsubstituted aryl having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic ring having 5 to 40 ring atoms, and M is a coordination metal.
  • R 0 is hydrogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 ring carbon atoms, substituted or unsubstituted alkenyl having 2 to 30 carbon atoms, Halogen or a substituted or unsubstituted heterocyclic ring having 5 to 40 ring atoms
  • R 1 to R 12 are each hydrogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 ring carbon atoms, substituted or unsubstituted alkenyl having 2 to 30 carbon atoms, A substituted or unsubstituted arylamino having 6 to 30 ring carbon atoms, a halogen, or a substituted or unsubstituted heterocyclic ring having 5 to 40 ring atoms; Adjacent groups of R 1 to R 12 may be bonded to each other
  • R 0 is hydrogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 ring carbon atoms, substituted or unsubstituted alkenyl having 2 to 30 carbon atoms, Halogen or a substituted or unsubstituted heterocyclic ring having 5 to 40 ring atoms
  • R 13 to R 16 are each hydrogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 ring carbon atoms, substituted or unsubstituted alkenyl having 2 to 30 carbon atoms, Substituted or unsubstituted arylamino having 6 to 30 ring carbon atoms, halogen, or substituted or unsubstituted heterocyclic ring having 5 to 40 ring atoms, Adjacent groups of R 13 to R 16 may be bonded to each other to form
  • X 1 to X 6 are each O, S or C—R.
  • R is hydrogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 ring carbon atoms, substituted or unsubstituted alkenyl having 2 to 30 carbon atoms, substituted or unsubstituted It is arylamino having 6 to 30 ring carbon atoms, halogen or a substituted or unsubstituted heterocyclic ring having 5 to 40 ring atoms, and adjacent Rs may be bonded to each other to form a ring.
  • each carbon atom may form a double bond with an adjacent carbon atom.
  • R is hydrogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 ring carbon atoms, substituted or unsubstituted alkenyl having 2 to 30 carbon atoms, respectively.
  • Substituted or unsubstituted arylamino having 6 to 30 carbon atoms, halogen, or substituted or unsubstituted heterocyclic ring having 5 to 40 atoms, and adjacent Rs are bonded to each other to form a ring. Also good.
  • R 0 is hydrogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 ring carbon atoms, substituted or unsubstituted alkenyl having 2 to 30 carbon atoms, halogen, or substituted.
  • R 13 to R 16 are each hydrogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 ring carbon atoms, or substituted or unsubstituted alkenyl having 2 to 30 carbon atoms.
  • a material exhibiting highly efficient photoelectric conversion characteristics when used for an organic thin film solar cell, particularly its p layer or i layer can be obtained.
  • the organic thin film solar cell material of the present invention contains a compound represented by the following formula (A).
  • R 0 is hydrogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 ring carbon atoms, substituted or unsubstituted carbon atoms having 2 to 30 carbon atoms.
  • Rg 1 and Rg 2 are each a 5-membered heterocyclic ring having at least one substituted or unsubstituted nitrogen atom, or a 6-membered heterocyclic ring having at least one substituted or unsubstituted nitrogen atom;
  • Rg 3 and Rg 4 are each a substituted or unsubstituted aryl having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic ring having 5 to 40 ring atoms, M is a coordination metal.
  • adjacent groups may be bonded to each other to form a ring.
  • the adjacent substituents of Rg 1 and Rg 2 are not bonded to form isoindole.
  • One of the two NM bonds of the formula (A) is a coordination bond, and in this case, the compound of the present invention is a coordination compound (complex or chelate complex).
  • M is a coordination metal, preferably a boron atom, a silicon atom, an aluminum atom, a magnesium atom, an iron atom, a copper atom or a zinc atom, and more preferably a boron atom.
  • R 0 and Rg 1 to Rg 4 examples of the halogen atom for R 0 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the substituted or unsubstituted alkyl having 1 to 20 carbon atoms of R 0 preferably has 1 to 8 carbon atoms in the alkyl moiety, and the alkyl moiety may be linear, branched or cyclic, for example Methyl group, ethyl group, 1-propyl group, 2-propyl group, 1-butyl group, 2-butyl group, sec-butyl group, tert-butyl group, various pentyl groups, various hexyl groups, various octyl groups Various decyl groups, various dodecyl groups, 2-ethylhexyl group, 3,7-dimethyloctyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, 1-adamantyl group, 2-adamantyl group, norbornyl group, trifluoromethyl Group, trichloromethyl group, benzyl group, ⁇ , ⁇ -
  • an alkyl group having 1 to 20 carbon atoms is preferable from the viewpoint of availability of raw materials, and a methyl group, an ethyl group, a 1-propyl group, a 2-propyl group, a tert-butyl group, and a cyclohexyl group are preferable. Further preferred.
  • the substituent of the alkyl group include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and an aryl group such as a phenyl group, and the aryl group includes a methyl group, an ethyl group, a propyl group and the like. And may be further substituted with an alkyl group having 1 to 5 carbon atoms.
  • the substituted or unsubstituted aryl having 6 to 30 ring carbon atoms of R 0 preferably has 6 to 20 ring carbon atoms in the aryl moiety.
  • aryl groups having 6 to 30 ring carbon atoms are preferable from the viewpoint of availability of raw materials, etc., and include phenyl, 4-biphenylyl, 1-naphthyl, 2-naphthyl, and 2-anthryl groups. , 9-phenanthryl group and the like are more preferable.
  • substituent for the aryl group examples include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, an alkyl group having 1 to 5 carbon atoms such as a methyl group, an ethyl group, and a propyl group, a methoxy group, and an ethoxy group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom
  • an alkyl group having 1 to 5 carbon atoms such as a methyl group, an ethyl group, and a propyl group, a methoxy group, and an ethoxy group.
  • an alkoxy group having 1 to 5 carbon atoms such as a propoxy group, an aryl group such as a cyano group and a phenyl group, an aryl group such as a phenyl group, a heterocyclic ring such as carbazole, an arylamino group such as a diphenylamino group, and the like.
  • Examples of the substituted or unsubstituted aryl having 6 to 30 ring carbon atoms of Rg 3 and Rg 4 include divalent residues corresponding to the above substituted or unsubstituted aryl having 6 to 30 ring carbon atoms of R 0. Can be mentioned.
  • the substituted or unsubstituted alkenyl having 2 to 30 carbon atoms of R 0 preferably has 2 to 8 carbon atoms in the alkenyl moiety and may be linear, branched or cyclic, such as a vinyl group, Propenyl, butenyl, oleyl, eicosapentaenyl, docosahexaenyl, styryl, 2,2-diphenylvinyl, 1,2,2-triphenylvinyl, 2-phenyl-2-propenyl Etc.
  • an alkenyl group having 2 to 20 carbon atoms is preferable, and a vinyl group, a styryl group, and a 2,2-diphenylvinyl group are more preferable from the viewpoint of availability of raw materials.
  • substituent for the alkenyl group include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, an aryl group such as a phenyl group, a carbon group of 1 to 5 such as a methyl group, an ethyl group and a propyl group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom
  • an aryl group such as a phenyl group
  • a carbon group of 1 to 5 such as a methyl group, an ethyl group and a propyl group.
  • the substituted or unsubstituted heterocycle having 5 to 40 ring atoms of R 0 , Rg 3 and Rg 4 is preferably a heterocycle having 5 to 15 ring atoms.
  • furan, thiophene, pyridine, carbazole and the like are preferable from the viewpoint of availability of raw materials.
  • substituent of the heterocyclic ring include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, and alkyl groups having 1 to 5 carbon atoms such as methyl group, ethyl group and propyl group.
  • Examples of the 5-membered or 6-membered heterocyclic ring having at least one nitrogen atom of Rg 1 and Rg 2 include pyrrole, imidazole, pyridine and the like, and pyrrole is preferable.
  • Examples of the substituent of the 5-membered or 6-membered heterocyclic ring having at least one nitrogen atom of Rg 1 and Rg 2 include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a phenyl group, and the like. An aryl group is mentioned.
  • adjacent ones may combine to form a ring, but when the substituent of Rg 1 or Rg 2 that is pyrrole forms a ring and becomes isoindole Absent.
  • the hydrogen atom includes light hydrogen, deuterium, and tritium.
  • R 0 when R 0 is a hydrogen atom, it may be light hydrogen or deuterium.
  • R 0 may be bonded to Rg 1 or Rg 2
  • the substituent of Rg 1 may be bonded to Rg 3
  • the substituent of Rg 2 may be bonded to Rg 4 .
  • the compound represented by the formula (A) is preferably a pyromethene boron chelate compound represented by the following formula (B).
  • R 1 to R 12 are each hydrogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted ring forming carbon atoms having 6 to 6 carbon atoms; 30 aryl, substituted or unsubstituted alkenyl having 2 to 30 carbon atoms, substituted or unsubstituted arylamino having 6 to 30 carbon atoms, halogen, or substituted or unsubstituted heterocyclic ring having 5 to 40 carbon atoms
  • Adjacent groups of R 1 to R 12 may be bonded to each other to form a ring. However, the case where R 1 and R 2 and R 11 and R 12 are bonded to form isoindole is not included.
  • alkyl, aryl, alkenyl, arylamino, halogen and heterocycle are the same as above.
  • R 1 to R 16 correspond to the substituents Rg 1 to Rg 4 in the formula (A).
  • At least one of R 1 , R 2 , R 11 and R 12 is preferably aryl having 6 to 30 ring carbon atoms, and more preferably a phenyl group.
  • at least one of R 4 , R 5 , R 8 and R 9 is preferably an arylamino group having 6 to 40 ring carbon atoms, and more preferably a diphenylamino group.
  • R 3 and R 4 , or R 4 and R 5 may be linked to form a ring condensed with the benzene ring to which they are bonded (for example, a benzene ring).
  • R 8 and R 9 , or R 9 And R 10 may be linked to form a ring (benzene ring) that is condensed with a benzene ring to which these are bonded.
  • the compound represented by the formula (A) is preferably a pyromethene boron chelate compound represented by the following formula (C).
  • R 0 is the same as the above formula (A)
  • R 13 to R 16 are each hydrogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 ring carbon atoms, substituted or unsubstituted alkenyl having 2 to 30 carbon atoms, Substituted or unsubstituted arylamino having 6 to 30 ring carbon atoms, halogen, or substituted or unsubstituted heterocyclic ring having 5 to 40 ring atoms, and adjacent groups among R 13 to R 16 are bonded to each other.
  • X 1 to X 6 are each O, S or C—R.
  • R is hydrogen, substituted or unsubstituted alkyl having 1 to 20 carbon atoms, substituted or unsubstituted aryl having 6 to 30 ring carbon atoms, substituted or unsubstituted alkenyl having 2 to 30 carbon atoms, substituted or unsubstituted It is arylamino having 6 to 30 ring carbon atoms, halogen or a substituted or unsubstituted heterocyclic ring having 5 to 40 ring atoms, and adjacent Rs may be bonded to each other to form a ring. In the five-membered ring indicated by the dotted line, each carbon atom may form a double bond with an adjacent carbon atom. )
  • Formula (C) can be represented by, for example, the following formulas (C-1) to (C-3). (In the formula, R, R 0 , R 13 to R 16 are the same as in the above formula (C), and X is O or S, respectively.)
  • R 13 to R 16 is preferably aryl having 6 to 30 ring carbon atoms, and more preferably a phenyl group.
  • adjacent Rs may be linked to form a ring (for example, a benzene ring) that is fused to the 5-membered ring to which they are bonded.
  • the pyromethene boron chelate compound of the above formula (B) can be synthesized, for example, as follows.
  • the compound of formula (B1) and the compound of formula (B2) are reacted in a suitable solvent in the presence of a suitable acid catalyst to obtain a dipyrromethene compound of formula (B5).
  • a suitable acid catalyst hydrobromic acid or the like can be used.
  • a suitable solvent dichloroethane, ethanol, tetrahydrofuran or the like can be used.
  • the dipyrromethene compound of the formula (B5) is prepared by reacting the compounds of the formulas (B1), (B3) and (B4) in an appropriate solvent in the presence of an appropriate acid catalyst and adding DDQ or chloranil. But you can get it.
  • the compound of the formula (B5) is reacted with boron trifluoride to obtain the compound of the formula (B6).
  • the compound of formula (B6) is reacted with boron tribromide to synthesize the pyromethene boron chelate compound of formula (B).
  • the organic thin film solar cell of the present invention contains the above organic thin film solar cell material and exhibits high-efficiency conversion characteristics.
  • the cell structure of the organic thin film solar cell of the present invention is not particularly limited as long as it has a layer containing the organic thin film solar cell material between a pair of electrodes. Specifically, a structure having the following configuration on a stable insulating substrate can be given.
  • a buffer layer between an electrode and an organic layer may be provided as needed.
  • a structure having the following configuration can be given. (5) Lower electrode / buffer layer / p layer / n layer / upper electrode (6) Lower electrode / p layer / n layer / buffer layer / upper electrode (7) Lower electrode / buffer layer / p layer / n layer / buffer Layer / Top electrode
  • the organic thin film solar cell material of the present invention can be used for a buffer layer in addition to an active layer such as a p layer, an n layer, and an i layer.
  • the member containing the material of the present invention may contain other components.
  • the well-known member and material used with an organic thin film solar cell can be used.
  • each component will be briefly described.
  • Lower electrode, upper electrode The material of the lower electrode and the upper electrode is not particularly limited, and a known conductive material can be used.
  • a metal such as tin-doped indium oxide (ITO) or gold (Au) can be used, and as an electrode (cathode) connected to the n layer, silver (Ag), Metals such as aluminum (Al), indium (In), calcium (Ca), platinum (Pt) lithium (Li) and the like, and binary metal systems such as Mg: Ag, Mg: In, and Al: Li are used.
  • a work function smaller than that of is used.
  • an electrode exemplified material connected to the p layer can be used.
  • the solar cell In order to obtain highly efficient photoelectric conversion characteristics, it is desirable that at least one surface of the solar cell be sufficiently transparent in the sunlight spectrum.
  • the transparent electrode is formed using a known conductive material so as to ensure predetermined translucency by a method such as vapor deposition or sputtering.
  • the light transmittance of the electrode on the light receiving surface is preferably 10% or more.
  • one of the electrode portions includes a metal having a high work function, and the other includes a metal having a low work function.
  • the n layer is not particularly limited, but a compound having a function as an electron acceptor is preferable.
  • fullerene derivatives such as C 60 and C 70 , carbon nanotubes, perylene derivatives, polycyclic quinones, quinacridones, and the like, such as CN-poly (phenylene-vinylene), MEH-CN-PPV, ⁇ CN group or CF 3 group-containing polymers, their —CF 3 substituted polymers, poly (fluorene) derivatives and the like can be mentioned.
  • a material having high electron mobility is preferred.
  • a material having a small electron affinity is preferable.
  • a sufficient open-circuit voltage can be realized by combining materials having a small electron affinity as the n layer.
  • the inorganic semiconductor compound of an n-type characteristic can be mentioned.
  • doping semiconductors and compound semiconductors such as n-Si, GaAs, CdS, PbS, CdSe, InP, Nb 2 O 5 , WO 3 , Fe 2 O 3 , titanium dioxide (TiO 2 ), monoxide
  • titanium oxide such as titanium (TiO) and dititanium trioxide (Ti 2 O 3 ), and conductive oxides such as zinc oxide (ZnO) and tin oxide (SnO 2 ). You may use combining more than a seed. Preference is given to using titanium oxide, particularly preferably titanium dioxide.
  • the p layer is not particularly limited, but a compound having a function as a hole acceptor is preferable.
  • a compound having a function as a hole acceptor is preferable.
  • organic compounds N, N′-bis (3-tolyl) -N, N′-diphenylbenzidine (mTPD), N, N′-dinaphthyl-N, N′-diphenylbenzidine (NPD), 4, Amine compounds typified by 4 ′, 4 ′′ -tris (phenyl-3-tolylamino) triphenylamine (MTDATA), phthalocyanine (Pc), copper phthalocyanine (CuPc), zinc phthalocyanine (ZnPc), titanyl phthalocyanine (TiOPc) ), Phthalocyanines such as octaethylporphyrin (OEP), platinum octaethylporphyrin (PtOEP), zinc tetraphenylporphyr
  • the i layer may be formed by mixing with the p layer compound or the n layer compound, but the material of the present invention may be used alone as the i layer.
  • any of the above exemplary compounds can be used for the p layer or the n layer.
  • Buffer layer In general, organic thin film solar cells often have a thin total film thickness, and therefore, the upper electrode and the lower electrode are short-circuited, and the yield of cell fabrication often decreases. In such a case, it is preferable to prevent this by laminating a buffer layer.
  • the organic thin film solar cell material of the present invention can also be used for a buffer layer.
  • a compound having sufficiently high carrier mobility is preferable so that the short-circuit current does not decrease even when the film thickness is increased.
  • an aromatic cyclic acid anhydride represented by NTCDA shown below is exemplified for a low molecular compound, and poly (3,4-ethylenedioxy) thiophene: polystyrene sulfonate (PEDOT: PSS), polyaniline: camphorsulfonic acid (PANI: CSA), and other known conductive polymers.
  • PEDOT polystyrene sulfonate
  • PANI camphorsulfonic acid
  • the buffer layer may have a role of preventing excitons from diffusing to the electrodes and deactivating. Inserting a buffer layer as an exciton blocking layer in this way is effective for increasing efficiency.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side, or both can be inserted simultaneously.
  • a preferable material for the exciton blocking layer for example, a well-known material for a hole barrier layer or a material for an electron barrier layer in organic EL applications can be used.
  • a preferable material for the hole blocking layer is a compound having a sufficiently large ionization potential
  • a preferable material for the electron blocking layer is a compound having a sufficiently small electron affinity.
  • bathocuproin (BCP), bathophenanthroline (BPhen), and the like which are well-known materials for organic EL applications, can be used as the cathode-side hole barrier layer material.
  • the inorganic semiconductor compound illustrated as said n layer material for a buffer layer.
  • the p-type inorganic semiconductor compound CdTe, p-Si, SiC, GaAs, WO 3 or the like can be used.
  • Substrate preferably has mechanical and thermal strength and transparency.
  • a glass substrate and a transparent resin film.
  • Transparent resin films include polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, nylon, polyether ether ketone.
  • each layer of the organic thin film solar cell of the present invention is performed by a dry film formation method such as vacuum deposition, sputtering, plasma, ion plating, or wet film formation such as spin coating, dip coating, casting, roll coating, flow coating, and ink jet.
  • a dry film formation method such as vacuum deposition, sputtering, plasma, ion plating, or wet film formation
  • spin coating, dip coating, casting, roll coating, flow coating, and ink jet a dry film formation method such as vacuum deposition, sputtering, plasma, ion plating, or wet film formation such as spin coating, dip coating, casting, roll coating, flow coating, and ink jet.
  • wet film formation such as spin coating, dip coating, casting, roll coating, flow coating, and ink jet.
  • the film thickness of each layer is not particularly limited, but is set to an appropriate film thickness. Since it is generally known that the exciton diffusion length of an organic thin film is short, if the film thickness is too thick, the exciton is deactivated before reaching the heterointerface, resulting in low photoelectric conversion efficiency. If the film thickness is too thin, pinholes and the like are generated, so that sufficient diode characteristics cannot be obtained, resulting in a decrease in conversion efficiency.
  • the normal film thickness is suitably in the range of 1 nm to 10 ⁇ m, but more preferably in the range of 5 nm to 0.2 ⁇ m.
  • a known resistance heating method is preferable, and for forming a mixed layer, for example, a film forming method by simultaneous vapor deposition from a plurality of evaporation sources is preferable. More preferably, the substrate temperature is controlled during film formation.
  • a material for forming each layer is dissolved or dispersed in an appropriate solvent to prepare a luminescent organic solution to form a thin film
  • any solvent can be used.
  • halogenated hydrocarbon solvents such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride, tetrachloroethane, trichloroethane, chlorobenzene, dichlorobenzene, chlorotoluene, ether solvents such as dibutyl ether, tetrahydrofuran, dioxane, anisole, methanol, Alcohol solvents such as ethanol, propanol, butanol, pentanol, hexanol, cyclohexanol, methyl cellosolve, ethyl cellosolve, ethylene glycol, hydrocarbon solvents such as benzene, toluene, xylene,
  • an appropriate resin or additive may be used for improving the film formability and preventing pinholes in the film.
  • Usable resins include polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, cellulose and other insulating resins and copolymers thereof, poly-N-vinyl. Examples thereof include photoconductive resins such as carbazole and polysilane, and conductive resins such as polythiophene and polypyrrole.
  • the additive include an antioxidant, an ultraviolet absorber, and a plasticizer.
  • the organic thin film solar cell of the present invention can be used as a power source or auxiliary power source for various devices such as watches, mobile phones and mobile personal computers, and electrical appliances. Combined with a rechargeable battery with a charging function, it can be used in the dark, and the application can be expanded.
  • the reaction mixture was added to 50 ml of water and 150 ml of ethyl acetate to extract the organic layer. Further, the organic layer was washed with 30 ml of saturated saline, and the organic layer was dried with an appropriate amount of MgSO 4 . The solvent was removed using an evaporator to obtain a yellow liquid. This was purified by column chromatography (silica gel / hexane + 17% dichloromethane followed by hexane + 33% dichloromethane) to give a colorless transparent liquid (9.8 g, 83%).
  • the solvent was completely removed from the reaction mixture using an evaporator, and 250 ml of toluene, N, N-diisopropylethylamine (N, N-diisopropylethylamine) (30 ml, 170 mmol, 12 eq), boron trifluoride diethyl ether complex (Boron Trifluoride Diethyl). Ether Complex) (26 ml, 210 mmol, 15 eq) was added and stirred with heating at 80 ° C. for 8 hours.
  • the reaction mixture was diluted with 100 ml of water and filtered under reduced pressure to obtain a pink filtrate.
  • 100 ml of toluene was added to extract the organic layer.
  • the organic layer was washed with 30 ml of saturated saline, and the organic layer was dried with an appropriate amount of MgSO 4 .
  • the solvent was removed using an evaporator to obtain a purple solid. This was purified by column chromatography (silica gel / hexane + 50% dichloromethane) to give a purple solid (3.5 g, 53%).
  • the solvent was completely removed from the reaction mixture using an evaporator, and toluene (250 ml), N, N-diisopropylethylamine (N, N-Diisopropylethylamine) (30 ml, 170 mmol, 12 eq), boron trifluoride diethyl ether complex (Boron Trifluoride Diethyl Ether Complex) (26 ml, 210 mmol, 15 eq) was added, and the mixture was heated and stirred at 80 ° C. for 8 hours. The reaction mixture was diluted with 100 ml of water and filtered under reduced pressure to obtain a pink filtrate. 100 ml of toluene was added to extract the organic layer.
  • the organic layer was washed with 30 ml of saturated saline, and the organic layer was dried with an appropriate amount of MgSO 4 .
  • the solvent was removed using an evaporator to obtain a purple solid. This was purified by column chromatography (silica gel / hexane + 50% dichloromethane) to give a purple solid (4.0 g, 49%).
  • intermediate B3 (4.0 g, 6.9 mmol) was dissolved in 100 ml of dichloromethane, and slowly stirred at ⁇ 40 ° C. with 1M solution of boron tribromide (Boron Tribromide in 1M Dichloromethane). ) (69 ml, 69 mmol, 10 eq) was added, and the mixture was returned to room temperature over 4 hours and further stirred for 3 hours.
  • the reaction mixture was diluted with 50 ml of water and filtered under reduced pressure to obtain a green filtrate. The filtrate was washed with 30 ml of saturated brine, and the organic layer was dried with an appropriate amount of MgSO 4 .
  • the solvent was completely removed from the reaction mixture using an evaporator, and 250 ml of toluene, N, N-diisopropylethylamine (16.6 g, 128 mmol, 12 eq), boron trifluoride diethyl ether complex (Boron Trifluoride Diethyl Ether Complex) (20 ml, 161 mmol, 15 eq) was added, and the mixture was heated and stirred at 80 ° C. for 8 hours. The reaction mixture was diluted with 100 ml of water and filtered under reduced pressure to obtain a pink filtrate. 100 ml of toluene was added to extract the organic layer.
  • the organic layer was washed with 30 ml of saturated saline, and the organic layer was dried with an appropriate amount of MgSO 4 .
  • the solvent was removed using an evaporator to obtain a purple solid. This was purified by column chromatography (silica gel / hexane + 50% dichloromethane) to give a purple solid (1.5 g, 24%).
  • intermediate C3 (2.4 g, 2.6 mmol) was dissolved in 86 ml of dichloromethane, and slowly stirred at ⁇ 40 ° C. at 1 ° C. in 1M dichloromethane of boron tribromide (Boron Tribromide in 1M Dichloromethane) ) (26 ml, 26 mmol, 10 eq) was added, and the mixture was returned to room temperature over 4 hours and further stirred for 3 hours. The reaction mixture was diluted with 50 ml of water and filtered under reduced pressure to obtain a green filtrate.
  • the solvent was completely removed from the reaction mixture using an evaporator, and 250 ml of toluene, N, N-diisopropylethylamine (N, N-diisopropylethylamine) (12 g, 93.4 mmol, 12 eq), boron trifluoride diethyl ether complex (Boron Trifluoride Diethyl Ether Complex) (14.4 ml, 117 mmol, 15 eq) was added, and the mixture was heated and stirred at 80 ° C. for 8 hours. The reaction mixture was diluted with 100 ml of water and filtered under reduced pressure to obtain a purple filtrate. 100 ml of toluene was added to extract the organic layer.
  • the organic layer was washed with 30 ml of saturated saline, and the organic layer was dried with an appropriate amount of MgSO 4 .
  • the solvent was removed using an evaporator to obtain a purple solid. This was purified by column chromatography (silica gel / hexane + 50% dichloromethane) to give a purple solid (1.5 g, 24%).
  • intermediate D4 (1.5 g, 1.8 mmol) was dissolved in 100 ml of dichloromethane, and slowly stirred at ⁇ 40 ° C. at 1 ° C. in boron tribromide in 1M Dichloromethane. ) (18 ml, 18 mmol, 10 eq) was added, and the mixture was returned to room temperature over 4 hours and further stirred for 3 hours.
  • the reaction mixture was diluted with 50 ml of water and filtered under reduced pressure to obtain a green filtrate. The filtrate was washed with 30 ml of saturated brine, and the organic layer was dried with an appropriate amount of MgSO 4 .
  • the solid obtained above was purified by sublimation at 290 ° C./4.5 ⁇ 10 ⁇ 3 Pa to obtain 0.15 g of a brown solid.
  • the reaction mixture was added to 50 ml of water and 150 ml of ethyl acetate to extract the organic layer. Further, the organic layer was washed with 30 ml of saturated saline, and the organic layer was dried with an appropriate amount of MgSO 4 . The solvent was removed using an evaporator to obtain a yellow liquid. This was dissolved in 150 ml of THF, sodium methoxide 28% methanol solution (Sodium Methoxide 28% in Methanol) (21 ml, 109 mmol, 3 eq) was slowly added and stirred at room temperature for 6 hours. The reaction mixture was added to 100 ml of water and 100 ml of toluene, and the organic layer was extracted.
  • the organic layer was washed with 30 ml of saturated saline, and the organic layer was dried with an appropriate amount of MgSO 4 .
  • the solvent was removed using an evaporator to obtain a reddish brown liquid. This was purified by column chromatography (silica gel / hexane + 20% dichloromethane, followed by hexane + 40% dichloromethane) to obtain a colorless transparent liquid (4.9 g, 44%).
  • the reaction mixture was diluted with 100 ml of water and filtered under reduced pressure to obtain a pink filtrate.
  • 100 ml of toluene was added to extract the organic layer.
  • the organic layer was washed with 30 ml of saturated saline, and the organic layer was dried with an appropriate amount of MgSO 4 .
  • the solvent was removed using an evaporator to obtain a purple solid. This was purified by column chromatography (silica gel / hexane + 50% dichloromethane) to give a purple solid (2.2 g, 46%).
  • intermediate E1 (2.2 g, 4.4 mmol) was dissolved in 100 ml of dichloromethane, and slowly stirred at ⁇ 40 ° C. at 1 ° C. with boron tribromide in 1M dichloromethane (Boron Tribromide in 1M Dichloromethane) ) (44 ml, 44 mmol, 10 eq) was added, and the mixture was returned to room temperature over 4 hours and further stirred for 3 hours. The reaction mixture was diluted with 50 ml of water and filtered under reduced pressure to obtain a green filtrate.
  • the obtained solid was purified by sublimation at 280 ° C./1.0 ⁇ 10 ⁇ 1 Pa to obtain 0.2 g of a purple solid.
  • the reaction mixture was diluted with 100 ml of water and filtered under reduced pressure to obtain a pink filtrate.
  • 100 ml of toluene was added to extract the organic layer.
  • the organic layer was washed with 30 ml of saturated saline, and the organic layer was dried with an appropriate amount of MgSO 4 .
  • the solvent was removed using an evaporator to obtain a purple solid. This was purified by column chromatography (silica gel / hexane + 50% dichloromethane) to give a purple solid (1.7 g, 36%).
  • intermediate F1 (1.7 g, 2.9 mmol) was dissolved in 100 ml of dichloromethane, and slowly stirred at -40 ° C. with 1M solution of boron tribromide (Boron Tribromide in 1M Dichloromethane). ) (29 ml, 29 mmol, 10 eq) was added, and the mixture was returned to room temperature over 4 hours and further stirred for 3 hours.
  • the reaction mixture was diluted with 50 ml of water and filtered under reduced pressure to obtain a green filtrate. The filtrate was washed with 30 ml of saturated brine, and the organic layer was dried with an appropriate amount of MgSO 4 .
  • the obtained solid was purified by sublimation at 280 ° C./1.0 ⁇ 10 ⁇ 1 Pa to obtain 0.6 g of a purple solid.
  • intermediate G2 (6.5 g, 14.3 mmol) was dissolved in 50 ml of chloroform and 50 ml of methanol and stirred at room temperature. Further, trimethyl borate (16 ml, 143 mmol, 10 eq) was added, and the mixture was heated to reflux with stirring for 6 hours. The solvent was removed using an evaporator to obtain a green solid. This was purified by column chromatography (silica gel / hexane + 50% dichloromethane) to obtain a reddish purple solid (4.6 g, 71%). Molecular weight 462 was confirmed and identified by FD-MASS. Absorption maximum wavelength, 661 nm (thin film 100 nm)
  • the obtained solid was purified by sublimation at 280 ° C./1.0 ⁇ 10 ⁇ 1 Pa to obtain 4.2 g of a purple solid.
  • the obtained solid was purified by sublimation at 280 ° C./1.0 ⁇ 10 ⁇ 1 Pa to obtain 6.0 g of a purple solid.
  • intermediate I2 Under nitrogen atmosphere, intermediate I1 (10 g, 25 mmol), phenylboronic acid (3.7 g, 30.1 mmol), tetrakis (triphenylphosphine) palladium (0) (1.4 g, 1.3 mmol, 5% Pd) was dissolved in 42 ml of 1,2-dimethoxyethane, 2M aqueous sodium carbonate solution (8 g, 75 mmol, 3 eq./35 ml) was added, and the mixture was refluxed for 10 hours. The reaction mixture was added to 50 ml of water and 150 ml of ethyl acetate to extract the organic layer.
  • the organic layer was washed with 30 ml of saturated saline, and the organic layer was dried with an appropriate amount of MgSO 4 .
  • the solvent was removed using an evaporator to obtain a yellow liquid intermediate I2. Further, this liquid was dissolved in 150 ml of THF, and a sodium methoxide 28% methanol solution (Sodium Methoxide 28% in Methanol) (12.5 ml) was slowly added thereto, followed by stirring at room temperature for 6 hours. The reaction mixture was added to 100 ml of water and 100 ml of toluene, and the organic layer was extracted. Further, the organic layer was washed with 30 ml of saturated saline, and the organic layer was dried with an appropriate amount of MgSO 4 .
  • the molecular weight 507 was confirmed and identified by FD-MASS. Absorption maximum wavelength, 635 nm (thin film 100 nm) The obtained solid was purified by sublimation at 280 ° C./1.0 ⁇ 10 ⁇ 1 Pa to obtain 3.5 g of a purple solid.
  • Example 1 [Production of organic solar cells] A glass substrate with an ITO transparent electrode having a thickness of 25 mm ⁇ 75 mm ⁇ 0.7 mm was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes. A glass substrate with a transparent electrode line after cleaning is mounted on a substrate holder of a vacuum deposition apparatus, and a film thickness of 30 nm is formed so as to cover the transparent electrode on a surface on which a transparent electrode line as a lower electrode is first formed. Compound A (p-layer compound) was formed at 1 ⁇ / s by resistance heating vapor deposition.
  • C60 (n-layer compound) having a film thickness of 60 nm was formed on this Compound A film at 1 ⁇ / s by heat evaporation. Furthermore, 10 nm bathocuproine (BCP) was deposited at 1 cm / s as a buffer layer. Finally, metal Al was deposited as a counter electrode to a thickness of 80 nm to form an organic solar cell. The area was 0.25 cm 2 . At the time of measuring the solar cell characteristics, the above-described element was covered with an optical mask, and the solar cell characteristics in an area of 0.00225 cm 2 were measured.
  • BCP bathocuproine
  • the thus obtained organic solar cell was measured for IV characteristics under AM1.5 conditions (light intensity (Pin) 100 mW / cm 2 ).
  • Table 1 shows the open-circuit voltage (Voc), the short-circuit current density (Jsc), the fill factor (FF), and the photoelectric conversion efficiency ( ⁇ ).
  • the photoelectric conversion efficiency ( ⁇ ) was obtained by the following formula. (Where Voc is the open circuit voltage, Jsc is the short circuit current density, FF is the fill factor, and Pin is the incident light energy.) Therefore, for the same Pin, a compound having a larger Voc, Jsc and FF shows better conversion efficiency.
  • Examples 2 to 6 and Examples 12 to 16 An organic solar cell was prepared and evaluated using the method described in Example 1 except that the p-layer and n-layer compounds were changed as shown in Table 1. The results are shown in Table 1.
  • Examples 7 and 8 An organic solar cell was prepared and evaluated using the method described in Example 1 except that the p-layer and n-layer compounds were changed as shown in Table 1. However, the thickness of the p layer and 40nm, n layer was 40nm deposited at 1 ⁇ / s by resistance heating deposition C 70 is an n layer compound. Furthermore, 10 nm bathocuproine (BCP) was deposited at 1 cm / s as a buffer layer. Finally, metal Al was deposited as a counter electrode to a thickness of 80 nm to form an organic solar cell.
  • BCP bathocuproine
  • metal Al was deposited as a counter electrode to a thickness of 80 nm to form an organic solar cell.
  • Examples 9 and 10 An organic solar cell was prepared and evaluated using the method described in Example 1 except that the p-layer and n-layer compounds were changed as shown in Table 1. However, the thickness of the p layer was 10 nm, and the i layer was provided thereon. For the i layer, a p-layer compound (compound A or C) and an n-layer compound (C70) were simultaneously formed by resistance heating vapor deposition to form a mixed layer of the p layer compound and the n layer compound. The p-layer compound was formed to a thickness of 10 nm at 0.5 ⁇ / s, and the n-layer compound (C70) was formed to a thickness of 20 nm at 1 ⁇ / s.
  • n-layer compound (C70) 20 nm was formed on the i-layer by resistance heating vapor deposition at 1 ⁇ / s. Furthermore, 10 nm bathocuproine (BCP) was deposited at 1 cm / s as a buffer layer. Finally, metal Al was deposited as a counter electrode to a thickness of 80 nm to form an organic solar cell.
  • Example 11 An organic solar cell was fabricated using the method described in Example 1. However, the thickness of the p layer was 10 nm, and the p layer compound (compound A) and the n layer compound (C70) were simultaneously formed thereon by resistance heating vapor deposition to form an i layer. The p-layer compound was formed at a thickness of 5 nm at 0.25 ⁇ / s, and the n-layer compound was formed at a thickness of 20 nm at 1 ⁇ / s. Next, an n-layer compound (C60) 3 nm was formed on the i-layer by resistance heating vapor deposition at 1 ⁇ / s.
  • n-layer compound (C70) 20 nm was deposited at 1 ⁇ ⁇ / s by resistance heating vapor deposition. Furthermore, 10 nm bathocuproine (BCP) was deposited at 1 cm / s as a buffer layer. Finally, metal Al was deposited as a counter electrode to a thickness of 80 nm to form an organic solar cell.
  • Comparative Examples 1 and 2 An organic solar cell was prepared and evaluated in the same manner as in Example 1 except that Compound A was changed to Comparative Compounds A and B. The results are shown in Table 1.
  • the organic thin-film solar cell material of the present invention has improved conversion efficiency as compared with the conventional pyromethene derivative (Comparative Example compound), and it has become clear that excellent solar cell characteristics are exhibited.
  • the organic thin film solar cell material of the present invention can be used for an organic thin film solar cell, and the organic thin film solar cell of the present invention can be used as a power source for various devices such as watches, mobile phones and mobile personal computers, and electrical appliances.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

下記式(A)で表される化合物を含む有機薄膜太陽電池材料。式(A)中、Rは水素、置換もしくは無置換の炭素数1~20のアルキル等であり、Rg及びRgは、それぞれ置換もしくは無置換の、窒素原子を少なくとも1つ有する五員複素環又は窒素原子を少なくとも1つ有する六員複素環であり、Rg及びRgは、それぞれ置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の環形成原子数5~40の複素環であり、Mは配位金属である。R及びRg~Rgの置換基のうち、隣接する基は互いに結合して環を形成してもよい。ただし、Rg又はRgの隣接する置換基が結合してイソインドールを形成する場合はない。

Description

有機薄膜太陽電池材料
 本発明は、有機薄膜太陽電池用材料、それを含む有機薄膜太陽電池及び装置に関する。
 有機薄膜太陽電池は、光信号を電気信号に変換するフォトダイオードや撮像素子、光エネルギーを電気エネルギーに変換する太陽電池に代表されるように、光入力に対して電気出力を示す装置であり、電気入力に対して光出力を示すエレクトロルミネッセンス(EL)素子とは逆の応答を示す装置である。
 太陽電池は、化石燃料の枯渇問題や地球温暖化問題を背景に、クリーンエネルギー源として近年大変注目されてきており、研究開発が盛んに行なわれるようになってきた。
 従来実用化されてきたのは、単結晶Si、多結晶Si、アモルファスSi等に代表されるシリコン系太陽電池であるが、高価であることや原料Siの不足問題等が表面化するにつれて、次世代太陽電池への要求が高まりつつある。
 このような背景の中で、有機太陽電池は安価で毒性が低く、原材料不足の懸念もないことから、シリコン系太陽電池に次ぐ次世代の太陽電池として大変注目を集めている。
 有機太陽電池は、基本的には電子を輸送するn層と正孔を輸送するp層からなっており、各層を構成する材料によって大きく2種類に分類される。
 n層としてチタニア等の無機半導体表面にルテニウム色素等の増感色素を単分子吸着させ、p層として電解質溶液を用いたものは、色素増感太陽電池(所謂グレッツエルセル)と呼ばれ、変換効率の高さから1991年以降精力的に研究されてきた。しかしながら、溶液を用いるため長時間の使用に際して液漏れする等の欠点を有していた。
 そこでこのような欠点を克服するため、電解質溶液を固体化して全固体型の色素増感太陽電池を模索する研究も最近なされているが、多孔質チタニアの細孔に有機物をしみ込ませる技術は難易度が高く、再現性よく高変換効率が発現できるセルは完成していないのが現状である。
 一方、n層、p層ともに有機薄膜からなる有機薄膜太陽電池は、全固体型のため液漏れ等の欠点がなく、作製が容易であり、稀少金属であるルテニウム等を用いないこと等から最近注目を集め、精力的に研究がなされている。
 有機薄膜太陽電池は、メロシアニン色素等を用いた単層膜で研究が進められてきたが、p層/n層の多層膜にすることで変換効率が向上することが見出され、それ以降多層膜が主流になった。このとき用いられた材料はp層として銅フタロシアニン(CuPc)、n層としてペリレンイミド類(PTCBI)であった。
 その後、p層とn層の間にi層(p材料とn材料の混合層)を挿入することにより、変換効率が向上することが見出された。しかしこのとき用いられた材料は、依然としてフタロシアニン類とペリレンイミド類であった。またその後、p/i/n層を何層も積層するというスタックセル構成によりさらに変換効率が向上することが見出されたが、このときの材料系はフタロシアニン類とフラーレンC60であった。
 一方、高分子を用いた有機薄膜太陽電池では、p材料(p層に用いられる材料)として導電性高分子を用い、n材料(n層に用いられる材料)としてC60誘導体を用いてそれらを混合し、熱処理することによりp層とn層のミクロ層分離を誘起してヘテロ界面を増やし、変換効率を向上させるという、所謂バルクヘテロ構造の研究が主に行なわれてきた。ここで用いられてきた材料系はおもに、p材料としてP3HTと呼ばれる可溶性ポリチオフェン誘導体、n材料としてPCBMと呼ばれる可溶性C60誘導体であった。
 このように、有機薄膜太陽電池では、セル構成及びモルフォロジーの最適化により変換効率の向上がもたらされてきたが、そこで用いられる材料系は初期の頃からあまり進展がなく、依然としてフタロシアニン類、ペリレンイミド類、C60類が用いられてきた。従って、それらに代わる新たな材料系の開発が熱望されていた。
 新たな材料系として、ピロメテン骨格を有する材料の開発が行われており、特許文献1~3には有機太陽電池材料としてピロメテン骨格を有する化合物が記載されているが、高い性能(変換効率等)は得られていない。
特開2008-109097号公報 特開2010-184880号公報 国際公開第2010/133208号パンフレット
 本発明の目的は、有機薄膜太陽電池、特にそのp層又はi層に用いたときに高効率の光電変換特性を示す材料を提供することである。
 本発明によれば、以下の有機薄膜太陽電池材料等が提供される。
1.下記式(A)で表される化合物を含む有機薄膜太陽電池材料。
Figure JPOXMLDOC01-appb-C000001
(式(A)中、Rは水素、置換もしくは無置換の炭素数1~20のアルキル,置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の炭素数2~30のアルケニル、ハロゲン又は置換もしくは無置換の環形成原子数5~40の複素環であり、
 Rg及びRgは、それぞれ置換もしくは無置換の窒素原子を少なくとも1つ有する五員複素環、又は置換もしくは無置換の窒素原子を少なくとも1つ有する六員複素環であり、
 Rg及びRgは、それぞれ置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の環形成原子数5~40の複素環であり、Mは配位金属である。
 R及びRg~Rgの置換基のうち、隣接する基は互いに結合して環を形成してもよい。ただし、Rg及びRgの隣接する置換基が結合してイソインドールを形成する場合はない。)
2.Mがホウ素、ケイ素、アルミニウム、マグネシウム、鉄、銅、又は亜鉛である1に記載の有機薄膜太陽電池材料。
3.前記式(A)で表される化合物が下記式(B)で表される1又は2に記載の有機薄膜太陽電池材料。
Figure JPOXMLDOC01-appb-C000002
(式中、Rは水素、置換もしくは無置換の炭素数1~20のアルキル、置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の炭素数2~30のアルケニル、ハロゲン又は置換もしくは無置換の環形成原子数5~40の複素環であり、
 R~R12はそれぞれ水素、置換もしくは無置換の炭素数1~20のアルキル、置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の炭素数2~30のアルケニル、置換もしくは無置換の環形成炭素数6~30のアリールアミノ、ハロゲン、又は置換もしくは無置換の環形成原子数5~40の複素環であり、
 R~R12のうち隣接する基は互いに結合して環を形成してもよい。但し、RとR及びR11とR12がそれぞれ結合して、イソインドールを形成する場合を含まない。)
4.R、R、R11及びR12のうち少なくとも1つが環形成炭素数6~30のアリールである3に記載の有機薄膜太陽電池材料。
5.R及びR、又はR及びRが結合して、これらが結合するベンゼン環に縮合する環を形成する3又は4に記載の有機薄膜太陽電池材料。
6.R及びR、又はR及びR10が結合して、これらが結合するベンゼン環に縮合する環を形成する3~5のいずれかに記載の有機薄膜太陽電池材料。
7.前記式(A)で表される化合物が下記式(C)で表される1又は2に記載の有機薄膜太陽電池材料。
Figure JPOXMLDOC01-appb-C000003
(式中、Rは水素、置換もしくは無置換の炭素数1~20のアルキル,置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の炭素数2~30のアルケニル、ハロゲン又は置換もしくは無置換の環形成原子数5~40の複素環であり、
 R13~R16はそれぞれ水素、置換もしくは無置換の炭素数1~20のアルキル、置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の炭素数2~30のアルケニル、置換もしくは無置換の環形成炭素数6~30のアリールアミノ、ハロゲン又は置換もしくは無置換の環形成原子数5~40の複素環であり、
 R13~R16のうち隣接する基は互いに結合して環を形成してもよい。但し、R13とR14及びR15とR16がそれぞれ結合して、イソインドールを形成する場合を含まない。
 X~XはそれぞれO、S又はC-Rである。Rは水素、置換もしくは無置換の炭素数1~20のアルキル、置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の炭素数2~30のアルケニル、置換もしくは無置換の環形成炭素数6~30のアリールアミノ、ハロゲン又は置換もしくは無置換の環形成原子数5~40の複素環であり、隣接するRは互いに結合して環を形成してもよい。点線で示した五員環において、各炭素原子は隣接する炭素原子と二重結合を形成してもよい。)
8.前記式(C)が下記式(C-1)~(C-3)のいずれかで表される7に記載の有機薄膜太陽電池材料。
Figure JPOXMLDOC01-appb-C000004
(式中、Rは、それぞれ水素、置換もしくは無置換の炭素数1~20のアルキル、置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の炭素数2~30のアルケニル、置換もしくは無置換の環形成炭素数6~30のアリールアミノ、ハロゲン又は置換もしくは無置換の環形成原子数5~40の複素環であり、隣接するRは互いに結合して環を形成してもよい。
 Rは、水素、置換もしくは無置換の炭素数1~20のアルキル,置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の炭素数2~30のアルケニル、ハロゲン又は置換もしくは無置換の環形成原子数5~40の複素環であり、
 R13~R16は、それぞれ水素、置換もしくは無置換の炭素数1~20のアルキル、置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の炭素数2~30のアルケニル、置換もしくは無置換の環形成炭素数6~30のアリールアミノ、ハロゲン又は置換もしくは無置換の環形成原子数5~40の複素環であり、R13~R16のうち隣接する基は互いに結合して環を形成してもよい。
 XはそれぞれO又はSである。)
9.前記式(C-1)又は(C-3)において、隣接するRが結合して、Rが結合する5員環に縮合する環を形成する8に記載の有機薄膜太陽電池材料。
10.R13~R16のうち少なくとも1つが環形成炭素数6~30のアリールである7~9のいずれかに記載の有機薄膜太陽電池材料。
11.1~10のいずれかに記載の有機薄膜太陽電池材料を活性層に用いる有機薄膜太陽電池。
12.前記活性層がp層又はi層である11に記載の有機薄膜太陽電池。
13.11又は12に記載の有機薄膜太陽電池を具備する装置。
 本発明によれば、有機薄膜太陽電池、特にそのp層又はi層に用いたときに高効率の光電変換特性を示す材料が得られる。
 本発明の有機薄膜太陽電池材料は下記式(A)で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000005
(式(A)中、Rは水素、置換もしくは無置換の炭素数1~20のアルキル,置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の炭素数2~30のアルケニル、ハロゲン又は置換もしくは無置換の環形成原子数5~40の複素環であり、
 Rg及びRgは、それぞれ置換もしくは無置換の窒素原子を少なくとも1つ有する五員複素環、又は置換もしくは無置換の窒素原子を少なくとも1つ有する六員複素環であり、
 Rg及びRgは、それぞれ置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の環形成原子数5~40の複素環であり、
 Mは配位金属である。
 R及びRg~Rgの置換基のうち、隣接する基は互いに結合して環を形成してもよい。ただし、Rg及びRgの隣接する置換基が結合してイソインドールを形成する場合はない。)
 式(A)の2つのN-M結合のうち、いずれか一方が配位結合であり、この場合、本発明の化合物は配位化合物(錯体又はキレート錯体)である。
 Mは、配位金属であり、好ましくはホウ素原子、ケイ素原子、アルミニウム原子、マグネシウム原子、鉄原子、銅原子又は亜鉛原子であり、ホウ素原子がより好ましい。
 以下、R、Rg~Rgの各基について説明する。
 Rのハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 Rの置換又は無置換の炭素数1~20のアルキルは、好ましくはアルキル部分の炭素数が1~8であり、アルキル部分は直鎖、分岐鎖又は環状のいずれであってもよく、例えばメチル基、エチル基、1-プロピル基、2-プロピル基、1-ブチル基、2-ブチル基、sec-ブチル基、tert-ブチル基、種々のペンチル基、種々のヘキシル基、種々のオクチル基、種々のデシル基、種々のドデシル基、2-エチルヘキシル基、3、7-ジメチルオクチル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基、ノルボルニル基、トリフルオロメチル基、トリクロロメチル基、ベンジル基、α、α-ジメチルベンジル基、2-フェニルエチル基、1-フェニルエチル基等が挙げられる。これらのうち、原料の入手しやすさ等の観点から、炭素数1~20のアルキル基が好ましく、メチル基、エチル基、1-プロピル基、2-プロピル基、tert-ブチル基、シクロヘキシル基が更に好ましい。
 上記アルキル基の置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、フェニル基等のアリール基が挙げられ、当該アリール基はメチル基、エチル基、プロピル基等の炭素数1~5のアルキル基でさらに置換されていてもよい。
 Rの置換又は無置換の環形成炭素数6~30のアリールは、好ましくはアリール部分の環形成炭素数が6~20であり、例えば、フェニル基、2-トリル基、4-トリル基、4-トリフルオロメチルフェニル基、4-メトキシフェニル基、4-シアノフェニル基、2-ビフェニリル基、3-ビフェニリル基、4-ビフェニリル基、ターフェニリル基、3、5-ジフェニルフェニル基、3、4-ジフェニルフェニル基、ペンタフェニルフェニル基、4-(2、2-ジフェニルビニル)フェニル基、4-(1、2、2-トリフェニルビニル)フェニル基、フルオレニル基、1-ナフチル基、2-ナフチル基、2-(1、4-ジフェニル)ナフチル基、9-アントリル基、2-アントリル基、2-(1、4-ジフェニル)アントリル基)、2-(9、10-ジフェニル)アントリル基、9-フェナントリル基、1-ピレニル基、クリセニル基、ナフタセニル基、コロニル基等が挙げられる。これらのうち、原料の入手しやすさ等の観点から、環形成炭素数6~30のアリール基が好ましく、フェニル基、4-ビフェニリル基、1-ナフチル基、2-ナフチル基、2-アントリル基、9-フェナントリル基等が更に好ましい。
 上記アリール基の置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、メチル基、エチル基、プロピル基等の炭素数1~5のアルキル基、メトキシ基、エトキシ基、プロポキシ基等の炭素数1~5のアルコキシ基、シアノ基、フェニル基等のアリール基、フェニル基等のアリール基、カルバゾール等の複素環、ジフェニルアミノ基等のアリールアミノ基等が挙げられる。
 Rg及びRgの置換又は無置換の環形成炭素数6~30のアリールとしては、上記Rの置換又は無置換の環形成炭素数6~30のアリールに対応する2価の残基が挙げられる。
 Rの置換又は無置換の炭素数2~30のアルケニルは、好ましくはアルケニル部分の炭素数が2~8であり、直鎖、分岐鎖又は環状のいずれであってもよく、例えばビニル基、プロペニル基、ブテニル基、オレイル基、エイコサペンタエニル基、ドコサヘキサエニル基、スチリル基、2、2-ジフェニルビニル基、1、2、2-トリフェニルビニル基、2-フェニル-2-プロペニル基等が挙げられる。これらのうち、原料の入手しやすさ等の観点から、炭素数2~20のアルケニル基が好ましく、ビニル基、スチリル基、2、2-ジフェニルビニル基が更に好ましい。
 上記のアルケニル基の置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、フェニル基等のアリール基、メチル基、エチル基、プロピル基等の炭素数1~5のアルキル基が挙げられる。
 R、Rg及びRgの置換又は無置換の環形成原子数5~40の複素環は、好ましくは複素環の環形成原子数5~15であり、例えば、フラン、チオフェン、ピロール、イミダゾール、ベンズイミダゾール、ピラゾール、ベンズピラゾール、トリアゾール、オキサジアゾール、ピリジン、ピラジン、トリアジン、キノリン、ベンゾフラン、ジベンゾフラン、ベンゾチオフェン、ジベンゾチオフェン及びカルバゾールに対応する1価又は2価の残基が挙げられる。これらのうち、原料の入手しやすさ等の観点から、フラン、チオフェン、ピリジン、カルバゾール等が好ましい。
 上記複素環の置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子やメチル基、エチル基、プロピル基等の炭素数1~5のアルキル基が挙げられる。
 Rg及びRgの窒素原子を少なくとも1つ有する五員複素環又は六員複素環としては、ピロール、イミダゾール、ピリジン等が挙げられ、好ましくはピロールである。
 Rg及びRgの窒素原子を少なくとも1つ有する五員複素環又は六員複素環の置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、フェニル基等のアリール基が挙げられる。
 Rg及びRgの置換基のうち、隣接するものは結合して環を形成してもよいが、ピロールであるRg又はRgの置換基が環を形成してイソインドールとなる場合はない。
 尚、本発明において、水素原子には、軽水素、重水素、三重水素が含まれる。例えば、Rが水素原子である場合、軽水素又は重水素であってもよい。
 また、RはRg又はRgに結合してもよく、Rgの置換基はRgと結合してもよく、Rgの置換基はRgと結合してもよい。
 式(A)で表される化合物は、好ましくは下記式(B)で表されるピロメテンホウ素キレート化合物である。
Figure JPOXMLDOC01-appb-C000006
(式中、Rは上記式(A)と同じであり、R~R12はそれぞれ水素、置換もしくは無置換の炭素数1~20のアルキル、置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の炭素数2~30のアルケニル、置換もしくは無置換の環形成炭素数6~30のアリールアミノ、ハロゲン又は置換もしくは無置換の環形成原子数5~40の複素環であり、
 R~R12のうち隣接する基は互いに結合して環を形成してもよい。但し、RとR及びR11とR12がそれぞれ結合して、イソインドールを形成する場合を含まない。)
 式(B)において、アルキル、アリール、アルケニル、アリールアミノ、ハロゲン及び複素環は、上記と同じである。
 尚、R~R16は式(A)のRg~Rgの置換基に対応する。
 式(B)において、R、R、R11及びR12のうち少なくとも1つが環形成炭素数6~30のアリールであると好ましく、フェニル基であるとより好ましい。また、R、R、R及びRのうち少なくとも1つが環形成炭素数6~40のアリールアミノ基であると好ましく、ジフェニルアミノ基であるとより好ましい。
 また、R及びR、又はR及びRが連結して、これらが結合するベンゼン環に縮合する環(例えばベンゼン環)を形成してもよく、R及びR、又はR及びR10が連結して、これらが結合するベンゼン環に縮合する環(ベンゼン環)を形成してもよい。
 式(A)で表される化合物は、好ましくは下記式(C)で表されるピロメテンホウ素キレート化合物である。
Figure JPOXMLDOC01-appb-C000007
(式中、Rは上記式(A)と同じであり、
 R13~R16はそれぞれ水素、置換もしくは無置換の炭素数1~20のアルキル、置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の炭素数2~30のアルケニル、置換もしくは無置換の環形成炭素数6~30のアリールアミノ、ハロゲン又は置換もしくは無置換の環形成原子数5~40の複素環であり、R13~R16のうち隣接する基は互いに結合して環を形成してもよい。但し、R13とR14及びR15とR16がそれぞれ結合して、イソインドールを形成する場合を含まない。
 X~XはそれぞれO、S又はC-Rである。Rは水素、置換もしくは無置換の炭素数1~20のアルキル、置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の炭素数2~30のアルケニル、置換もしくは無置換の環形成炭素数6~30のアリールアミノ、ハロゲン又は置換もしくは無置換の環形成原子数5~40の複素環であり、隣接するRは互いに結合して環を形成してもよい。点線で示した五員環において、各炭素原子は隣接する炭素原子と二重結合を形成してもよい。)
 式(C)は、例えば下記式(C-1)~(C-3)で表わすことができる。
Figure JPOXMLDOC01-appb-C000008
(式中、R、R、R13~R16は上記式(C)と同じであり、XはそれぞれO又はSである。)
 式(C)において、R13~R16のうち少なくとも1つが環形成炭素数6~30のアリールであると好ましく、フェニル基であるとより好ましい。
 式(C-1)又は(C-3)において、隣接するRが連結して、これらが結合する5員環に縮合する環(例えばベンゼン環)を形成してもよい。
 本発明の有機薄膜太陽電池材料に用いる化合物の具体例を以下に例示する。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 本発明の化合物の製造方法の一例を以下に示す。
 上記式(B)のピロメテンホウ素キレート化合物は、例えば以下のようにして合成できる。
 式(B1)の化合物と式(B2)の化合物を適当な酸触媒の存在下、適当な溶媒中で反応させて、式(B5)のジピロメテン系化合物を得る。
 適当な酸触媒としては臭化水素酸等を用いることができる。適当な溶媒としては、ジクロロエタン、エタノール、テトラヒドロフラン等を用いることができる。
 また、式(B5)のジピロメテン系化合物は、式(B1)、(B3)及び(B4)の化合物を適当な酸触媒の存在下、適当な溶媒中で反応させて、DDQやクロラニルを加えることでも得られる。
 次いで、式(B5)の化合物を、三フッ化ホウ素類と反応させて式(B6)の化合物を得る。最後に、式(B6)の化合物を三臭化ホウ素と反応させ、式(B)のピロメテンホウ素キレート化合物を合成する。
Figure JPOXMLDOC01-appb-C000014
 本発明の有機薄膜太陽電池は上記有機薄膜太陽電池材料を含み、高効率の変換特性を示す。
 本発明の有機薄膜太陽電池のセル構造は、一対の電極の間に上記有機薄膜太陽電池材料を含有する層を有する構造であれば特に限定されるものでない。具体的には、安定な絶縁性基板上に下記の構成を有する構造が挙げられる。
(1)下部電極/有機化合物層/上部電極
(2)下部電極/p層/n層/上部電極
(3)下部電極/p層/i層(又はp材料とn材料の混合層)/n層/上部電極
(4)下部電極/i層/上部電極
 上記(2)、(3)の構成において、p層とn層を置換してもよい。
 また、必要に応じて電極と有機層の間にバッファー層を設けてもよい。例えば、上記構成(1)にバッファー層を設けた場合、下記構成を有する構造が挙げられる。
(5)下部電極/バッファー層/p層/n層/上部電極
(6)下部電極/p層/n層/バッファー層/上部電極
(7)下部電極/バッファー層/p層/n層/バッファー層/上部電極
 本発明の有機薄膜太陽電池用材料は、p層、n層、i層といった活性層の他、バッファー層にも使用できる。
 本発明の有機薄膜太陽電池では、本発明の材料を含有する部材は、他の成分を併せて含んでいてもよい。本発明の材料を含まない部材や混合材料については、有機薄膜太陽電池で使用される公知の部材や材料を使用することができる。以下、各構成部材について簡単に説明する。
1.下部電極、上部電極
 下部電極、上部電極の材料は特に制限はなく、公知の導電性材料を使用できる。例えば、p層と接続する電極(陽極)としては、錫ドープ酸化インジウム(ITO)や金(Au)等の金属が使用でき、n層と接続する電極(陰極)としては、銀(Ag)、アルミニウム(Al)、インジウム(In)、カルシウム(Ca)、白金(Pt)リチウム(Li)等の金属やMg:Ag、Mg:InやAl:Li等の二成分金属系が用いられ、上記陽極に比べ仕事関数は小さいものが用いられる。またn層を構成する材料の電子準位次第では、上記p層と接続する電極例示材料が使用できる。
 尚、高効率の光電変換特性を得るためには、太陽電池の少なくとも一方の面は太陽光スペクトルにおいて充分透明にすることが望ましい。透明電極は、公知の導電性材料を使用して、蒸着やスパッタリング等の方法で所定の透光性が確保するように形成する。受光面の電極の光透過率は10%以上とすることが望ましい。一対の電極構成の好ましい構成では、電極部の一方が仕事関数の大きな金属を含み、他方は仕事関数の小さな金属を含む。
2.有機化合物層
 本発明の材料を有機化合物層に使用するとき、具体的には、下部電極/本発明の材料の単独層/上部電極や、下部電極/本発明の材料と、後述するn層材料又はp層材料の混合層/上部電極等の構成が挙げられる。
3.p層、n層、i層
 本発明の材料をp層に用いるときは、n層は特に限定されないが、電子受容体としての機能を有する化合物が好ましい。例えば有機化合物であれば、C60、C70等のフラーレン誘導体、カーボンナノチューブ、ペリレン誘導体、多環キノン、キナクリドン等、高分子系ではCN-ポリ(フェニレン-ビニレン)、MEH-CN-PPV、-CN基又はCF基含有ポリマー、それらの-CF置換ポリマー、ポリ(フルオレン)誘導体等を挙げることができる。電子の移動度が高い材料が好ましい。さらに、好ましくは、電子親和力が小さい材料が好ましい。このように電子親和力の小さい材料をn層として組み合わせることで充分な開放端電圧を実現することができる。また、無機化合物であれば、n型特性の無機半導体化合物を挙げることができる。具体的には、n-Si、GaAs、CdS、PbS、CdSe、InP、Nb、WO、Fe等のドーピング半導体及び化合物半導体、また、二酸化チタン(TiO)、一酸化チタン(TiO)、三酸化二チタン(Ti)等の酸化チタン、酸化亜鉛(ZnO)、酸化スズ(SnO)等の導電性酸化物が挙げられ、これらのうちの1種又は2種以上を組み合わせて用いてもよい。好ましくは、酸化チタン、特に好ましくは、二酸化チタンを用いる。
 本発明の材料をn層に用いるときは、p層は特に限定されないが、正孔受容体としての機能を有する化合物が好ましい。例えば有機化合物であれば、N、N’-ビス(3-トリル)-N、N’-ジフェニルベンジジン(mTPD)、N、N’-ジナフチル-N、N’-ジフェニルベンジジン(NPD)、4、4’、4’’-トリス(フェニル-3-トリルアミノ)トリフェニルアミン(MTDATA)等に代表されるアミン化合物、フタロシアニン(Pc)、銅フタロシアニン(CuPc)、亜鉛フタロシアニン(ZnPc)、チタニルフタロシアニン(TiOPc)等のフタロシアニン類、オクタエチルポルフィリン(OEP)、白金オクタエチルポルフィリン(PtOEP)、亜鉛テトラフェニルポルフィリン(ZnTPP)等に代表されるポルフィリン類、高分子化合物であれば、ポリヘキシルチオフェン(P3HT)、メトキシエチルヘキシロキシフェニレンビニレン(MEHPPV)等の主鎖型共役高分子類、ポリビニルカルバゾール等に代表される側鎖型高分子類等が挙げられる。
 本発明の材料をi層に用いるときは、上記p層化合物もしくはn層化合物と混合してi層を形成してもよいが、本発明の材料を単独でi層として用いることもできる。その場合のp層もしくはn層は、上記例示化合物のいずれも用いることができる。
4.バッファー層
 一般に、有機薄膜太陽電池は総膜厚が薄いことが多く、そのため上部電極と下部電極が短絡し、セル作製の歩留まりが低下することが多い。このような場合には、バッファー層を積層することによってこれを防止することが好ましい。
 本発明の有機薄膜太陽電池用材料はバッファー層に用いることもできる。
 バッファー層に好ましい他の化合物としては、膜厚を厚くしても短絡電流が低下しないようにキャリア移動度が充分に高い化合物が好ましい。例えば、低分子化合物であれば下記に示すNTCDAに代表される芳香族環状酸無水物等が挙げられ、高分子化合物であればポリ(3、4-エチレンジオキシ)チオフェン:ポリスチレンスルホネート(PEDOT:PSS)、ポリアニリン:カンファースルホン酸(PANI:CSA)等に代表される公知の導電性高分子等が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 また、バッファー層には、励起子が電極まで拡散して失活してしまうのを防止する役割を持たせることも可能である。このように励起子阻止層としてバッファー層を挿入することは、高効率化のために有効である。励起子阻止層は陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。この場合、励起子阻止層として好ましい材料としては、例えば有機EL用途で公知な正孔障壁層用材料又は電子障壁層用材料等が挙げられる。正孔障壁層として好ましい材料は、イオン化ポテンシャルが充分に大きい化合物であり、電子障壁層として好ましい材料は、電子親和力が充分に小さい化合物である。具体的には有機EL用途で公知な材料であるバソクプロイン(BCP)、バソフェナントロリン(BPhen)等が陰極側の正孔障壁層材料として挙げられる。
Figure JPOXMLDOC01-appb-C000016
 さらに、バッファー層には、上記n層材料として例示した無機半導体化合物を用いてもよい。また、p型無機半導体化合物としてはCdTe、p-Si、SiC、GaAs、WO等を用いることができる。
5.基板
 基板は、機械的、熱的強度を有し、透明性を有するものが好ましい。例えば、ガラス基板及び透明性樹脂フィルムがある。透明性樹脂フィルムとしては、ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、ポリプロピレン、ポリスチレン、ポリメチルメタアクリレート、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、ナイロン、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルフォン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ポリビニルフルオライド、テトラフルオロエチレン-エチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリクロロトリフルオロエチレン、ポリビニリデンフルオライド、ポリエステル、ポリカーボネート、ポリウレタン、ポリイミド、ポリエーテルイミド、ポリイミド、ポリプロピレン等が挙げられる。
 本発明の有機薄膜太陽電池の各層の形成は、真空蒸着、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法やスピンコーティング、ディップコート、キャスティング、ロールコート、フローコーティング、インクジェット等の湿式成膜法を適用することができる。
 各層の膜厚は特に限定されないが、適切な膜厚に設定する。一般に有機薄膜の励起子拡散長は短いことが知られているため、膜厚が厚すぎると励起子がヘテロ界面に到達する前に失活してしまうため光電変換効率が低くなる。膜厚が薄すぎるとピンホール等が発生してしまうため、充分なダイオード特性が得られないため、変換効率が低下する。通常の膜厚は1nmから10μmの範囲が適しているが、5nmから0.2μmの範囲がさらに好ましい。
 乾式成膜法の場合、公知の抵抗加熱法が好ましく、混合層の形成には、例えば、複数の蒸発源からの同時蒸着による成膜方法が好ましい。さらに好ましくは、成膜時に基板温度を制御する。
 湿式成膜法の場合、各層を形成する材料を、適切な溶媒に溶解又は分散させて発光性有機溶液を調製し、薄膜を形成するが、任意の溶媒を使用できる。例えば、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素、テトラクロロエタン、トリクロロエタン、クロロベンゼン、ジクロロベンゼン、クロロトルエン等のハロゲン系炭化水素系溶媒や、ジブチルエーテル、テトラヒドロフラン、ジオキサン、アニソール等のエーテル系溶媒、メタノールやエタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、メチルセロソルブ、エチルセロソルブ、エチレングリコール等のアルコール系溶媒、ベンゼン、トルエン、キシレン、エチルベンゼン、ヘキサン、オクタン、デカン、テトラリン等の炭化水素系溶媒、酢酸エチル、酢酸ブチル、酢酸アミル等のエステル系溶媒等が挙げられる。なかでも、炭化水素系溶媒又はエーテル系溶媒が好ましい。また、これらの溶媒は単独で使用しても複数混合して用いてもよい。尚、使用可能な溶媒は、これらに限定されるものではない。
 本発明においては、有機薄膜太陽電池のいずれの有機薄膜層においても、成膜性向上、膜のピンホール防止等のため適切な樹脂や添加剤を使用してもよい。使用の可能な樹脂としては、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリウレタン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース等の絶縁性樹脂及びそれらの共重合体、ポリ-N-ビニルカルバゾール、ポリシラン等の光導電性樹脂、ポリチオフェン、ポリピロール等の導電性樹脂を挙げられる。
 また、添加剤としては、酸化防止剤、紫外線吸収剤、可塑剤等が挙げられる。
 本発明の有機薄膜太陽電池は時計、携帯電話及びモバイルパソコン等の各種装置、電化製品等の電源又は補助電源として使用できる。充電機能のある二次電池と組み合わせ、暗所においても使用可能とし、適用用途を拡げることも可能である。
合成例1
[化合物Aの合成]
Figure JPOXMLDOC01-appb-C000017
中間体A1の合成
 窒素雰囲気下、1-BOC-ピロール-2-ボロン酸(1-BOC-pyrrole-2-boronicAcid)(10g、47mmol、1.1eq.)、o-ブロモアニソール(o-Bromoanisole)(8.1g、43mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(1.0g、0.87mmol、2%Pd)を1、2-ジメトキシエタン140mlに溶かし、2M炭酸ナトリウム水溶液(15g、142mmol、3eq./70ml)を加えて10時間還流した。尚、Bocはtert-ブトキシカルボニル基である。
 反応混合物を水50ml、酢酸エチル150mlに加えて有機層を抽出した。さらに飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し、黄色の液体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+17%ジクロロメタン、続いてヘキサン+33%ジクロロメタン)で精製して無色透明液体(9.8g、83%)を得た。
 H-NMRの測定結果を以下に示す。
H-NMR(400MHz、CDCl、TMS)δ7.00-7.04(3H、m)、7.11(1H、d、J=3Hz)、7.15(4H、d、J=7Hz)、7.24-7.28(4H、m)、7.35(1H、d、J=8Hz)、7.40-7.50(2H、m)、7.55(1H、d、J=8Hz)、7.69(2H、d、J=8Hz)、8.20(4H、d、J=8Hz).
中間体A2の合成
 窒素雰囲気下、中間体A1(9.8g、36mmol)をTHF150mlに溶解させ、ナトリウムメトキシドの28%メタノール溶液(Sodium Methoxide 28% in Methanol)(21ml、109mmol、3eq)をゆっくり加えて室温で6時間撹拌した。反応混合物を水100ml、トルエン100mlに加えて有機層を抽出した。さらに飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し、赤茶色の液体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+20%ジクロロメタン、続いてヘキサン+40%ジクロロメタン)で精製して無色透明液体(4.9g、79%)を得た。
中間体A3の合成
 窒素雰囲気下、中間体A2(4.9g、28mmol、2eq)及びベンズアルデヒド(1.5g、14mmol)をジクロロメタン600mlに溶かし、トリフルオロ酢酸(3滴)を加えて室温で2時間撹拌した。この反応混合物に2、3-ジクロロ-5、6-ジシアノ-p-ベンゾキノン(2、3-dichloro-5、6-dicyano-p-benzoquinone)(3.2g、14mmol)を加えて室温で2時間撹拌した。エバポレーターを用いてこの反応混合物から溶媒を完全に除去し、トルエン250ml、N、N-ジイソプロピルエチルアミン(N、N-Diisopropylethylamine)(30ml、170mmol、12eq)、三フッ化ホウ素ジエチルエーテル錯体(Boron Trifluoride Diethyl Ether Complex)(26ml、210mmol、15eq)を加えて8時間80℃で加熱撹拌した。
 反応混合物を水100mlで希釈し、減圧ろ過してピンク色のろ液を得た。トルエン100mlを加えて有機層を抽出した。さらに飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し紫色の固体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+50%ジクロロメタン)で精製して紫色固体(3.5g、53%)を得た。
化合物Aの合成
 窒素雰囲気下、中間体A3(3.5g、7.3mmol)をジクロロメタン100mlに溶解させ、撹拌しながら-40℃でゆっくりと三臭化ホウ素の1Mジクロロメタン溶液(Boron Tribromide in 1M Dichloromethane)(73ml、73mmol、10eq)を加え、4時間かけて室温に戻しさらに3時間撹拌した。反応混合物を水50mlで希釈し、これを減圧ろ過し緑色のろ液を得た。このろ液に飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し緑色の固体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+50%ジクロロメタン)で精製して赤紫色固体(1.4g、45%)を得た。
HPLC、100%(UV254nm:面積%)
吸収極大波長、632nm(ジクロロメタン)
 得られた固体1.4gを280℃/1.0×10-1Paで昇華精製することにより紫色固体である化合物A1.0gを得た。
HPLC、100%(UV254nm:面積%)
合成例2
[化合物Bの合成]
Figure JPOXMLDOC01-appb-C000018
中間体B1の合成
 窒素雰囲気下、1-BOC-ピロール-2-ボロン酸(1-BOC-pyrrole-2-boronicAcid)(8.5g、40.5mmol、1.2eq.)、2-ブロモ-3-メトキシナフタレン(2-Bromo-3-methoxynaphthalene)(8.0g、33.7mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(1.2g、1.01mmol、3%Pd)を1、2-ジメトキシエタン112mlに溶かし、2M炭酸ナトリウム水溶液(15g、142mmol/70ml)を加えて10時間還流した。
 反応混合物を水50ml、酢酸エチル150mlを加えて有機層を抽出した。さらに飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し黄色の液体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+17%ジクロロメタン、続いてヘキサン+33%ジクロロメタン)で精製して無色透明液体(8.7g、80%)を得た。
中間体B2の合成
 窒素雰囲気下、中間体B1(8.7g、27mmol)をTHF120mlに溶解させ、ゆっくりとナトリウムメトキシドの28%メタノール溶液(Sodium Methoxide 28% in Methanol)(15.8ml、109mmol、3eq)を加え室温で6時間撹拌した。反応混合物に水100ml、トルエン100mlを加えて有機層を抽出した。さらに飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し赤茶色の液体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+20%ジクロロメタン、続いてヘキサン+40%ジクロロメタン)で精製し白色固体(5.9g、97%)を得た。
中間体B3の合成
 窒素雰囲気下、中間体B2(4.9g、28mmol、2eq)及びベンズアルデヒド(1.5g、14mmol)をジクロロメタン600mlに溶かし、トリフルオロ酢酸(3滴)を加えて室温で2時間撹拌した。この反応混合物に2、3-ジクロロ-5、6-ジシアノ-p-ベンゾキノン(2、3-dichloro-5、6-dicyano-p-benzoquinone)(3.2g、14mmol)を加えて室温で2時間撹拌した。この反応混合物をエバポレーターを用いて溶媒を完全に除去し、トルエン(250ml)、N、N-ジイソプロピルエチルアミン(N、N-Diisopropylethylamine)(30ml、170mmol、12eq)、三フッ化ホウ素ジエチルエーテル錯体(Boron Trifluoride Diethyl Ether Complex)(26ml、210mmol、15eq)を加えて8時間80℃で加熱撹拌した。反応混合物を水100mlで希釈し、減圧ろ過しピンク色のろ液を得た。トルエン100mlを加えて有機層を抽出した。さらに飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し紫色の固体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+50%ジクロロメタン)で精製して紫色固体(4.0g、49%)を得た。
化合物Bの合成
 窒素雰囲気下、中間体B3(4.0g、6.9mmol)、ジクロロメタン100mlに溶解させ、撹拌しながら-40℃でゆっくりと三臭化ホウ素の1Mジクロロメタン溶液(Boron Tribromide in 1M Dichloromethane)(69ml、69mmol、10eq)を加え、4時間かけて室温に戻しさらに3時間撹拌した。反応混合物を水50mlで希釈し、これを減圧ろ過し緑色のろ液を得た。このろ液に飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し緑色の固体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+50%ジクロロメタン)で精製して赤紫色固体(2.2g、62%)を得た。
HPLC、99.0%(UV254nm:面積%)
吸収極大波長、667nm(薄膜100nm)
 上記で得られた固体を300℃/5.3x10-3Paで昇華精製することにより赤紫固体2.1gを得た。
HPLC、99.0%(UV254nm:面積%)
合成例3
[化合物Cの合成]
Figure JPOXMLDOC01-appb-C000019
中間体C1の合成
 窒素雰囲気下、1-BOC-ピロール-2-ボロン酸(1-BOC-pyrrole-2-boronicAcid)(10g、47mmol、1.1eq.)、1-ブロモ-2-メトキシナフタレン(1-Bromo-2-methoxynaphthalene)(8.1g、43mmol)、ビス(トリ-tert-ブチルホスフィン)パラジウム(0)(Bis(tri-tert-butylphosphine)palladium(0))(1.0g、0.87mmol、2%Pd)を1、2-ジメトキシエタン140mlに溶かし、りん酸三カリウム(KPO)(15g、142mmol、2eq.)を加えて10時間還流した。
 反応混合物に水50ml、酢酸エチル150mlを加えて有機層を抽出した。さらに飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し黄色の液体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+17%ジクロロメタン、続いてヘキサン+33%ジクロロメタン)で精製して無色透明液体(9.2g、61%)を得た。
中間体C2の合成
 窒素雰囲気下、中間体C1(9.2g、28.4mmol)をTHF150mlに溶解させ、ゆっくりとナトリウムメトキシドの28%メタノール溶液(Sodium Methoxide 28% in Methanol)(15ml、85mmol、3eq)を加え室温で6時間撹拌した。反応混合物に水100ml、トルエン100mlを加えて有機層を抽出した。さらに飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し赤茶色の液体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+20%ジクロロメタン、続いてヘキサン+40%ジクロロメタン)で精製して無色透明液体(5.0g、75%)を得た。
中間体C3の合成
 窒素雰囲気下、中間体C2(5.0g、21mmol、2eq)、ベンズアルデヒド(1.1g、11mmol)、をジクロロメタン600mlに溶かし、トリフルオロ酢酸(3滴)を加えて室温で2時間撹拌した。この反応混合物に2、3-ジクロロ-5、6-ジシアノ-p-ベンゾキノン(2、3-dichloro-5、6-dicyano-p-benzoquinone)(2.5g、11mmol)を加えて室温で2時間撹拌した。この反応混合物をエバポレーターを用いて溶媒を完全に除去し、トルエン250ml、N、N-ジイソプロピルエチルアミン(N、N-Diisopropylethylamine)(16.6g、128mmol、12eq)、三フッ化ホウ素ジエチルエーテル錯体(Boron Trifluoride Diethyl Ether Complex)(20ml、161mmol、15eq)を加えて8時間80℃で加熱撹拌した。反応混合物を水100mlで希釈し、減圧ろ過しピンク色のろ液を得た。トルエン100mlを加えて有機層を抽出した。さらに飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し紫色の固体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+50%ジクロロメタン)で精製して紫色固体(1.5g、24%)を得た。
化合物Cの合成
 窒素雰囲気下、中間体C3(2.4g、2.6mmol)、ジクロロメタン86mlに溶解させ、撹拌しながら-40℃でゆっくりと三臭化ホウ素の1Mジクロロメタン溶液(Boron Tribromide in 1M Dichloromethane)(26ml、26mmol、10eq)を加え、4時間かけて室温に戻しさらに3時間撹拌した。反応混合物を水50mlで希釈し、これを減圧ろ過し緑色のろ液を得た。このろ液に飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し緑色の固体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+50%ジクロロメタン)で精製して赤紫色固体(0.6g、45%)を得た。
吸収極大波長、705nm(薄膜100nm)
 上記で得られた固体を290℃/4.5x10-3Paで昇華精製することにより赤紫固体0.4gを得た。
HPLC、99.0%(UV254nm:面積%)
合成例4
[化合物Dの合成]
Figure JPOXMLDOC01-appb-C000020
中間体D1の合成
 窒素雰囲気下、ジフェニルアミン(Diphenylamine)(12g、71.1mmol、1.05eq.)、ナトリウムtert-ブトキシド(Sodiumtert-Butoxide)(9.75g、101.6mmol、1.5eq.),5-ブロモ-2-クロロアニソール(5-Bromo-2-chloroanisole)(15g、67.7mmol、1.0eq.)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Tris(dibenzylideneacetone)dipalladium(0)(0.93g、1.02mmol、2%Pd),トリ-tert-ブチルホスフィン(Tri-tert-butylphosphine)(3.06mmol、0.045eq.)をトルエン,170mlに溶かして7時間室温で撹拌した。反応混合物に水50ml、酢酸エチル150mlを加えて有機層を抽出した。さらに飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し黄色の液体を得た。これをカラムクロマトグラフィ(ヘキサン)で精製して無色透明液体(21g、100%)を得た。
中間体D2の合成
 窒素雰囲気下、中間体D1、1-BOC-ピロール-2-ボロン酸(1-BOC-pyrrole-2-boronicAcid)(7.7g、36.5mmol、1.1eq.)、1-ブロモ-2-メトキシナフタレン(1-Bromo-2-methoxynaphthalene)(10.3g、33.2mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Tris(dibenzylideneacetone)dipalladium(0)(0.91g、1.00mmol、2%Pd),トリ-tert-ブチルホスフィン(Tri-tert-butylphosphine)(4.0mmol、0.12eq.)を1、2-ジメトキシエタン110mlに溶かし、りん酸三カリウム(KPO)(28g、133mmol、4eq.)を加えて10時間還流した。反応混合物に水50ml、酢酸エチル150mlを加えて有機層を抽出した。さらに飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し黄色の液体を得た。これをカラムクロマトグラフィ(ヘキサン:酢酸エチル 10:1)で精製して無色固体(9.5g、65%)を得た。
中間体D3の合成
 窒素雰囲気下、中間体D2(9.5g、22mmol)をTHF150mlに溶解させ、ゆっくりとSodium Methoxide 28% in Methanol(13ml、66mmol、3eq)を加え室温で6時間撹拌した。反応混合物に水100ml、酢酸エチル100mlを加えて有機層を抽出した。さらに飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し赤茶色の液体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+20%ジクロロメタン、続いてヘキサン+40%ジクロロメタン)で精製して無色透明液体(5.5g、76%)を得た。
中間体D4の合成
 窒素雰囲気下、中間体D3(5.5g、16mmol、2eq)、ベンズアルデヒド(0.83g、7.81mmol)をジクロロメタン311mlに溶かし、トリフルオロ酢酸(3滴)を加えて室温で2時間撹拌した。この反応混合物にクロラニル(Tetrachloro-p-benzoquinone)(2.0g、7.8mmol)を加えて室温で2時間撹拌した。この反応混合物をエバポレーターを用いて溶媒を完全に除去し、トルエン250ml、N、N-ジイソプロピルエチルアミン(N、N-Diisopropylethylamine)(12g、93.4mmol、12eq)、三フッ化ホウ素ジエチルエーテル錯体(Boron Trifluoride Diethyl Ether Complex)(14.4ml、117mmol、15eq)を加えて8時間80℃で加熱撹拌した。反応混合物を水100mlで希釈し、減圧ろ過し紫色のろ液を得た。トルエン100mlを加えて有機層を抽出した。さらに飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し紫色の固体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+50%ジクロロメタン)で精製して紫色固体(1.5g、24%)を得た。
化合物Dの合成
 窒素雰囲気下、中間体D4(1.5g、1.8mmol)をジクロロメタン100mlに溶解させ、撹拌しながら-40℃でゆっくりと三臭化ホウ素の1Mジクロロメタン溶液(Boron Tribromide in 1M Dichloromethane)(18ml、18mmol、10eq)を加え、4時間かけて室温に戻しさらに3時間撹拌した。反応混合物を水50mlで希釈し、これを減圧ろ過し緑色のろ液を得た。このろ液に飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し緑色の固体を得た。これをカラムクロマトグラフィ(シリカゲル/ジクロロメタン)で精製して赤茶色固体(0.26g、19%)を得た。
吸収極大波長、738nm(薄膜100nm)
 上記で得られた固体を290℃/4.5x10-3Paで昇華精製することにより茶色固体0.15gを得た。
合成例5
[化合物Eの合成]
Figure JPOXMLDOC01-appb-C000021
中間体A2の合成
 窒素雰囲気下、1-BOC-ピロール-2-ボロン酸(1-BOC-pyrrole-2-boronicAcid)(10g、47mmol、1.1eq.)、o-ブロモアニソール(o-Bromoanisole)(8.1g、43mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(1.0g、0.87mmol、2%Pd)を1、2-ジメトキシエタン140mlに溶かし、2M炭酸ナトリウム水溶液(15g、142mmol、3eq./70ml)を加えて10時間還流した。反応混合物を水50ml、酢酸エチル150mlに加えて有機層を抽出した。さらに飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し、黄色の液体を得た。これにTHF150mlに溶解させ、ナトリウムメトキシドの28%メタノール溶液(Sodium Methoxide 28% in Methanol)(21ml、109mmol、3eq)をゆっくり加えて室温で6時間撹拌した。反応混合物を水100ml、トルエン100mlに加えて有機層を抽出した。さらに飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し、赤茶色の液体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+20%ジクロロメタン、続いてヘキサン+40%ジクロロメタン)で精製して無色透明液体(4.9g、44%)を得た。
中間体E1の合成
 窒素雰囲気下、中間体A2(4.9g、28mmol、2eq)及び5-メチルチオフェン-2-カルボキシアルデヒド(5-Methylthiophene-2-carboxaldehyde)(1.2g、9.5mmol)をジクロロメタン380mlに溶かし、トリフルオロ酢酸(3滴)を加えて室温で2時間撹拌した。この反応混合物に2、3-ジクロロ-5、6-ジシアノ-p-ベンゾキノン(2、3-dichloro-5、6-dicyano-p-benzoquinone)(2.2g、9.5mmol)を加えて室温で2時間撹拌した。エバポレーターを用いてこの反応混合物から溶媒を完全に除去し、トルエン160ml、N、N-ジイソプロピルエチルアミン(N、N-Diisopropylethylamine)(15g、114mmol、12eq)、三フッ化ホウ素ジエチルエーテル錯体(Boron Trifluoride Diethyl Ether Complex)(18ml、143mmol、15eq)を加えて8時間80℃で加熱撹拌した。
 反応混合物を水100mlで希釈し、減圧ろ過してピンク色のろ液を得た。トルエン100mlを加えて有機層を抽出した。さらに飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し紫色の固体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+50%ジクロロメタン)で精製して紫色固体(2.2g、46%)を得た。
化合物Eの合成
 窒素雰囲気下、中間体E1(2.2g、4.4mmol)をジクロロメタン100mlに溶解させ、撹拌しながら-40℃でゆっくりと三臭化ホウ素の1Mジクロロメタン溶液(Boron Tribromide in 1M Dichloromethane)(44ml、44mmol、10eq)を加え、4時間かけて室温に戻しさらに3時間撹拌した。反応混合物を水50mlで希釈し、これを減圧ろ過し緑色のろ液を得た。このろ液に飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し緑色の固体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+50%ジクロロメタン)で精製して赤紫色固体(0.21g、11%)を得た。
HPLC、100%(UV254nm:面積%)
吸収極大波長、662nm(ジクロロメタン)
 得られた固体を280℃/1.0×10-1Paで昇華精製することにより紫色固体0.2gを得た。
HPLC、96.5%(UV254nm:面積%)
合成例6
[化合物Fの合成]
Figure JPOXMLDOC01-appb-C000022
中間体F1の合成
 窒素雰囲気下、中間体A2(3.0g、17mmol、2eq)及び9-アントラセンカルボキシアルデヒド(9-Anthracenecarboxaldehyde)(1.9g、8.7mmol)をジクロロメタン290mlに溶かし、トリフルオロ酢酸(3滴)を加えて室温で2時間撹拌した。この反応混合物に2、3-ジクロロ-5、6-ジシアノ-p-ベンゾキノン(2、3-dichloro-5、6-dicyano-p-benzoquinone)(2.2g、9.5mmol)を加えて室温で2時間撹拌した。エバポレーターを用いてこの反応混合物から溶媒を完全に除去し、トルエン145ml、N、N-ジイソプロピルエチルアミン(N、N-Diisopropylethylamine)(13g、104mmol、12eq)、三フッ化ホウ素ジエチルエーテル錯体(Boron Trifluoride Diethyl Ether Complex)(16ml、130mmol、15eq)を加えて8時間80℃で加熱撹拌した。
 反応混合物を水100mlで希釈し、減圧ろ過してピンク色のろ液を得た。トルエン100mlを加えて有機層を抽出した。さらに飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し紫色の固体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+50%ジクロロメタン)で精製して紫色固体(1.7g、36%)を得た。
化合物Fの合成
 窒素雰囲気下、中間体F1(1.7g、2.9mmol)をジクロロメタン100mlに溶解させ、撹拌しながら-40℃でゆっくりと三臭化ホウ素の1Mジクロロメタン溶液(Boron Tribromide in 1M Dichloromethane)(29ml、29mmol、10eq)を加え、4時間かけて室温に戻しさらに3時間撹拌した。反応混合物を水50mlで希釈し、これを減圧ろ過し緑色のろ液を得た。このろ液に飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し緑色の固体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+50%ジクロロメタン)で精製して赤紫色固体(0.65g、45%)を得た。
吸収極大波長、689nm(薄膜100nm)
 得られた固体を280℃/1.0×10-1Paで昇華精製することにより紫色固体0.6gを得た。
合成例6
[化合物Gの合成]
Figure JPOXMLDOC01-appb-C000023
中間体G1の合成
 窒素雰囲気下、中間体A2(10.0g、58.1mmol、2eq)及び2-ナフタレンカルボキシアルデヒド(2-Naphthaldehyde)(3.93ml、29mmol)をジクロロメタン1000mlに溶かし、トリフルオロ酢酸(3滴)を加えて室温で2時間撹拌した。この反応混合物に2、3-ジクロロ-5、6-ジシアノ-p-ベンゾキノン(2、3-dichloro-5、6-dicyano-p-benzoquinone)(6.6g、29mmol)を加えて室温で2時間撹拌した。エバポレーターを用いてこの反応混合物から溶媒を完全に除去し、紫色紛体の中間体G1(8.1g、Y:58%)を得た。
中間体G2の合成
 窒素雰囲気下、中間体G1(8.1g、16.8mmol)をジクロロメタン300mlに溶解させ、撹拌しながら-40℃でゆっくりと三臭化ホウ素の1Mジクロロメタン溶液(Boron Tribromide in 1M Dichloromethane)(168ml、168mmol、10eq)を加え、4時間かけて室温に戻しさらに3時間撹拌した。反応混合物を水50mlで希釈し、2Mの炭酸ナトリウム水溶液200mlと飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し紫色固体の中間体G2(6.5g、Y:85%)を得た。
化合物Gの合成
 窒素雰囲気下、中間体G2(6.5g、14.3mmol)をクロロホルム50mlとメタノール50mlに溶解させ、室温で撹拌した。さらにトリメトキシボラン(Trimethyl Borate)(16ml、143mmol、10eq)を加え、6時間加熱撹拌還流を行った。エバポレーターを用いて溶媒を除去し緑色の固体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+50%ジクロロメタン)で精製して赤紫色固体(4.6g、71%)を得た。FD-MASSにより分子量462を確認し同定した。
吸収極大波長、661nm(薄膜100nm)
 得られた固体を280℃/1.0×10-1Paで昇華精製することにより紫色固体4.2gを得た。
合成例7
[化合物Hの合成]
Figure JPOXMLDOC01-appb-C000024
中間体H1の合成
 窒素雰囲気下、中間体A2(10.0g、58.1mmol、2eq)及び1-ナフタレンカルボキシアルデヒド(1-Naphthaldehyde)(3.93ml、29mmol)をジクロロメタン1000mlに溶かし、トリフルオロ酢酸(3滴)を加えて室温で2時間撹拌した。この反応混合物に2、3-ジクロロ-5、6-ジシアノ-p-ベンゾキノン(2、3-dichloro-5、6-dicyano-p-benzoquinone)(6.6g、29mmol)を加えて室温で2時間撹拌した。エバポレーターを用いてこの反応混合物から溶媒を完全に除去し、紫色紛体の中間体H1(11.8g、Y:85%)を得た。
中間体H2の合成
 窒素雰囲気下、中間体H1(11.8g、24.7mmol)をジクロロメタン300mlに溶解させ、撹拌しながら-40℃でゆっくりと三臭化ホウ素の1Mジクロロメタン溶液(Boron Tribromide in 1M Dichloromethane)(247ml、247mmol、10eq)を加え、4時間かけて室温に戻しさらに3時間撹拌した。反応混合物を水50mlで希釈し、2Mの炭酸ナトリウム水溶液200mlと飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し紫色固体の中間体H2(10.7g、Y:95%)を得た。
化合物Hの合成
 窒素雰囲気下、中間体H2(10.7g、23.5mmol)をクロロホルム50mlとメタノール50mlに溶解させ、室温で撹拌した。さらにトリメトキシボラン(Trimethyl Borate)(16ml、143mmol、10eq)を加え、6時間加熱撹拌還流を行った。エバポレーターを用いて溶媒を除去し緑色の固体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+50%ジクロロメタン)で精製して赤紫色固体(6.9g、64%)を得た。FD-MASSにより分子量462を確認し同定した。
吸収極大波長、655nm(薄膜100nm)
 得られた固体を280℃/1.0×10-1Paで昇華精製することにより紫色固体6.0gを得た。
合成例8
[化合物Iの合成]
Figure JPOXMLDOC01-appb-C000025
中間体I1の合成
 窒素雰囲気下、N-Boc-propargylamine(30g、195mmol),2-Methoxybenzoyl Chloride(50g,293mmol)、Dichlorobis(triphenylphosphane)palladium(II)(1.4g、2mmol、1%Pd),Copper(I) iodide(1.1g,5.85mmol)、をTHF390mlに溶かし、Triethylamine(24g、244mmol)を加えて室温で6時間撹拌した。
 次に反応混合物にSodium iodide(45g、300mmol)、p-Toluenesulfonicacid(23g、120mmol)、tert-Butanolを60ml、を加えて室温で6時間撹拌した。固形物をろ別し、ろ液をエバポレーターにて溶媒を除去し茶色の液体を得た。さらに飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+17%ジクロロメタン、続いてヘキサン+33%ジクロロメタン)で精製して無色透明液体(70g、90%)を得た。
中間体I2の合成
 窒素雰囲気下、中間体I1(10g、25mmol)、フェニルボロン酸(3.7g、30.1mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(1.4g、1.3mmol、5%Pd)を1、2-ジメトキシエタン42mlに溶かし、2M炭酸ナトリウム水溶液(8g、75mmol、3eq./35ml)を加えて10時間還流した。
 反応混合物を水50ml、酢酸エチル150mlに加えて有機層を抽出した。さらに飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し、黄色の液体の中間体I2を得た。さらにこの液体にTHF150mlに溶解させ、ナトリウムメトキシドの28%メタノール溶液(Sodium Methoxide 28% in Methanol)(12.5ml)をゆっくり加えて室温で6時間撹拌した。反応混合物を水100ml、トルエン100mlに加えて有機層を抽出した。さらに飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し、黄色の固体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+20%ジクロロメタン、続いてヘキサン+40%ジクロロメタン)で精製して黄色固体の中間体I2(4.0g、65%)を得た。
中間体I3の合成
 0℃、窒素雰囲気下でDMF(0.6ml,7.7mmol)にPhosphoryl Chloride(0.70ml、7.7mmol)をゆっくりと加え撹拌する。10分後1,2ジクロロエタン、10mlと中間体I2を加え2時間加熱撹拌還流を行った。その後、反応溶液に飽和酢酸ナトリウム水溶液20mlを加え有機層を抽出した。さらに飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し、黄色の固体を得た。これをカラムクロマトグラフィ(ジクロロメタン)で精製して黄色固体の中間体I3(1.8g、80%)を得た。
中間体I4の合成
 窒素雰囲気下で中間体I2(1.6g、6.4mmol)、中間体I3(1.8g、6.4mmol)、メタノール64mlを注ぎ、48%Hydrogen Bromide(1.3ml)をゆっくりと滴下する。その後、65℃で4時間撹拌した。反応終了後、反応溶液に飽和炭酸水素ナトリウム水溶液30mlを入れ、沈殿物をろ過し青色紛体の中間体I4(3.1g、95%)を得た。
中間体I5の合成及び化合物Iの合成
 窒素雰囲気下で中間体I4(3.0g、5.9mmol)、Toluene98ml、N、N-ジイソプロピルエチルアミン(N、N-Diisopropylethylamine)(9.1g、70.7mmol、12eq)、三フッ化ホウ素ジエチルエーテル錯体(Boron Trifluoride Diethyl Ether Complex)(11ml、88.4mmol、15eq)を加えて8時間80℃で加熱撹拌した。
 反応混合溶液を撹拌しながら-40℃でゆっくりと三臭化ホウ素の1Mジクロロメタン溶液(Boron Tribromide in 1M Dichloromethane)(59ml、59mmol、10eq)を加え、4時間かけて室温に戻しさらに3時間撹拌した。反応混合物を水50mlで希釈し、これを減圧ろ過し緑色のろ液を得た。このろ液に飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し緑色の固体を得た。これをカラムクロマトグラフィ(シリカゲル/ヘキサン+50%ジクロロメタン)で精製して赤紫色固体(0.57g、20%)を得た。FD-MASSにより分子量488を確認し同定した。
吸収極大波長、668nm(ジクロロメタン)
 得られた固体0.57gを280℃/1.0×10-1Paで昇華精製することにより紫色固体0.50gを得た。
HPLC、98.8%(UV254nm:面積%)
合成例9
[化合物J及び化合物Kの合成]
Figure JPOXMLDOC01-appb-C000026
中間体J1の合成
 窒素雰囲気下、中間体A2(20g、116mmol、2eq)及びベンズアルデヒド(6.1g、58mmol)をジクロロメタン1000mlに溶かし、トリフルオロ酢酸(3滴)を加えて室温で2時間撹拌した。この反応混合物に2、3-ジクロロ-5、6-ジシアノ-p-ベンゾキノン(2、3-dichloro-5、6-dicyano-p-benzoquinone)(13g、58mmol)を加えて室温で2時間撹拌した。エバポレーターを用いてこの反応混合物から溶媒を完全に除去し、紫色紛体の中間体J1(18.1g、Y:72%)を得た。
中間体J2の合成
 窒素雰囲気下、中間体J1(18.1g、41.8mmol)をジクロロメタン300mlに溶解させ、撹拌しながら-40℃でゆっくりと三臭化ホウ素の1Mジクロロメタン溶液(Boron Tribromide in 1M Dichloromethane)(418ml、418mmol、10eq)を加え、4時間かけて室温に戻しさらに3時間撹拌した。反応混合物を水50mlで希釈し、2Mの炭酸ナトリウム水溶液200mlと飽和食塩水30mlで有機層を洗い、適量のMgSOで有機層を乾燥した。エバポレーターを用いて溶媒を除去し紫色固体の中間体J2(16.9g、Y:100%)を得た。
化合物Jの合成
 窒素雰囲気下、中間体J2(5.0g、12.4mmol)をクロロホルム50mlとメタノール50mlに溶解させ、室温で撹拌した。さらにアルミニウムイソプロポキシド(Aluminum Isopropoxide)(5.1g、24.8mmol、2eq)を加え、6時間加熱撹拌還流を行った。エバポレーターを用いて溶媒を除去し青色の固体を得た。これをメタノール20mlで洗浄して青色固体(4.6g、98%)を得た。FD-MASSにより分子量428を確認し同定した。
吸収極大波長、618nm(薄膜100nm)
 得られた固体を280℃/1.0×10-1Paで昇華精製することにより青色固体4.8gを得た。
化合物Kの合成
 窒素雰囲気下、中間体J2(5.0g、12.4mmol)をトリエチルアミン5ml、THF50mlに溶解させ、室温で撹拌した。さらにフェニルトリクロロシラン(Phenyltrichlorosilane)(26.2g、124mmol、10eq)を加え、5時間室温で撹拌を行った。反応終了後メタノール20mlをゆっくりと注ぎエバポレーターを用いて溶媒を除去し緑色の個体を得た。これをカラムクロマトグラフィ(ジクロロメタン)で精製して赤紫色固体(3.9g、62%)を得た。FD-MASSにより分子量507を確認し同定した。
吸収極大波長、635nm(薄膜100nm)
 得られた固体を280℃/1.0×10-1Paで昇華精製することにより紫色固体3.5gを得た。
実施例1
[有機太陽電池の作製]
 25mm×75mm×0.7mm厚のITO透明電極付きガラス基板をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間実施した。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず下部電極である透明電極ラインが形成されている側の面上に、前記透明電極を覆うようにして膜厚30nmの化合物A(p層化合物)を抵抗加熱蒸着により、1Å/sで成膜した。
 続けて、この化合物A膜上に膜厚60nmのC60(n層化合物)を加熱蒸着により1Å/sで成膜した。さらに、バッファー層として10nmのバソクプロイン(BCP)を1Å/sで成膜した。最後に対向電極として金属Alを膜厚80nm蒸着させ、有機太陽電池を形成した。面積は0.25cmであった。太陽電池特性の測定時は上記の素子に光学マスクを被せて面積0.00225cmの範囲の太陽電池特性を測定した。
 このように作製した有機太陽電池をAM1.5条件下(光強度(Pin)100mW/cm)でI-V特性を測定した。開放端電圧(Voc)、短絡電流密度(Jsc)、曲線因子(FF)、光電変換効率(η)を表1に示す。
 光電変換効率(η)は次式によって求めた。
Figure JPOXMLDOC01-appb-M000001
(式中、Vocは開放端電圧、Jscは短絡電流密度、FFは曲線因子、Pinは入射光エネルギーである。)
 従って、同じPinに対して、Voc、Jsc及びFFがいずれも大きな化合物ほど優れた変換効率を示す。
Figure JPOXMLDOC01-appb-C000027
実施例2~6及び実施例12~16
 p層及びn層化合物を表1のように変更した他は、実施例1で記載した方法を用い有機太陽電池を作製し、評価した。結果を表1に示す。
実施例7、8
 p層及びn層化合物を表1のように変更した他は、実施例1で記載した方法を用い有機太陽電池を作製し、評価した。ただし,p層の膜厚を40nmとし、n層は、n層化合物であるC70を抵抗加熱蒸着により1Å/sで40nm成膜した。さらに、バッファー層として10nmのバソクプロイン(BCP)を1Å/sで成膜した。最後に対向電極として金属Alを膜厚80nm蒸着させ、有機太陽電池を形成した。
Figure JPOXMLDOC01-appb-C000028
実施例9,10
 p層及びn層化合物を表1のように変更した他は、実施例1で記載した方法を用い有機太陽電池を作製し、評価した。ただし,p層の膜厚を10nmとし,その上にi層を設けた。i層は、抵抗加熱蒸着によりp層化合物(化合物A又はC)とn層化合物(C70)を抵抗加熱蒸着により同時に成膜し、p層化合物とn層化合物の混合層とした。尚、p層化合物は0.5Å/sで10nm成膜し,n層化合物(C70)は1Å/sで20nm成膜した。次に、i層上にn層化合物(C70)20nmを抵抗加熱蒸着により1Å/sで成膜した。
 さらに、バッファー層として10nmのバソクプロイン(BCP)を1Å/sで成膜した。最後に対向電極として金属Alを膜厚80nm蒸着させ、有機太陽電池を形成した。
実施例11
 実施例1で記載した方法を用い有機太陽電池を作製した。ただし,p層の膜厚を10nmとし,その上にp層化合物(化合物A)とn層化合物(C70)を抵抗加熱蒸着により同時に成膜してi層とした。尚、p層化合物は0.25Å/sで5nm成膜し、n層化合物は1Å/sで20nm成膜した。次に、i層の上にn層化合物(C60)3nmを抵抗加熱蒸着により1Å/sで成膜した。この上に,2番目のn層化合物(C70)20nmを抵抗加熱蒸着により1Å/sで成膜した。
 さらに、バッファー層として10nmのバソクプロイン(BCP)を1Å/sで成膜した。最後に対向電極として金属Alを膜厚80nm蒸着させ、有機太陽電池を形成した。
比較例1、2
 化合物Aを比較化合物A、Bへ変更した他は、実施例1と同様に有機太陽電池を作製し、評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、本発明の有機薄膜太陽電池材料は従来のピロメテン誘導体(比較例化合物)に比べ変換効率が向上しており、優れた太陽電池特性を示すことが明らかになった。
 本発明の有機薄膜太陽電池材料は有機薄膜太陽電池に使用でき、本発明の有機薄膜太陽電池は、時計、携帯電話及びモバイルパソコン等の各種装置、電化製品の電源として使用できる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献及び本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。
 

Claims (13)

  1.  下記式(A)で表される化合物を含む有機薄膜太陽電池材料。
    Figure JPOXMLDOC01-appb-C000030
    (式(A)中、Rは水素、置換もしくは無置換の炭素数1~20のアルキル,置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の炭素数2~30のアルケニル、ハロゲン又は置換もしくは無置換の環形成原子数5~40の複素環であり、
     Rg及びRgは、それぞれ置換もしくは無置換の窒素原子を少なくとも1つ有する五員複素環、又は置換もしくは無置換の窒素原子を少なくとも1つ有する六員複素環であり、
     Rg及びRgは、それぞれ置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の環形成原子数5~40の複素環であり、Mは配位金属である。
     R及びRg~Rgの置換基のうち、隣接する基は互いに結合して環を形成してもよい。ただし、Rg及びRgの隣接する置換基が結合してイソインドールを形成する場合はない。)
  2.  Mがホウ素、ケイ素、アルミニウム、マグネシウム、鉄、銅、又は亜鉛である請求項1に記載の有機薄膜太陽電池材料。
  3.  前記式(A)で表される化合物が下記式(B)で表される請求項1又は2に記載の有機薄膜太陽電池材料。
    Figure JPOXMLDOC01-appb-C000031
    (式中、Rは水素、置換もしくは無置換の炭素数1~20のアルキル、置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の炭素数2~30のアルケニル、ハロゲン又は置換もしくは無置換の環形成原子数5~40の複素環であり、
     R~R12はそれぞれ水素、置換もしくは無置換の炭素数1~20のアルキル、置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の炭素数2~30のアルケニル、置換もしくは無置換の環形成炭素数6~30のアリールアミノ、ハロゲン、又は置換もしくは無置換の環形成原子数5~40の複素環であり、
     R~R12のうち隣接する基は互いに結合して環を形成してもよい。但し、RとR及びR11とR12がそれぞれ結合して、イソインドールを形成する場合を含まない。)
  4.  R、R、R11及びR12のうち少なくとも1つが環形成炭素数6~30のアリールである請求項3に記載の有機薄膜太陽電池材料。
  5.  R及びR、又はR及びRが結合して、これらが結合するベンゼン環に縮合する環を形成する請求項3又は4に記載の有機薄膜太陽電池材料。
  6.  R及びR、又はR及びR10が結合して、これらが結合するベンゼン環に縮合する環を形成する請求項3~5のいずれかに記載の有機薄膜太陽電池材料。
  7.  前記式(A)で表される化合物が下記式(C)で表される請求項1又は2に記載の有機薄膜太陽電池材料。
    Figure JPOXMLDOC01-appb-C000032
    (式中、Rは水素、置換もしくは無置換の炭素数1~20のアルキル,置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の炭素数2~30のアルケニル、ハロゲン又は置換もしくは無置換の環形成原子数5~40の複素環であり、
     R13~R16はそれぞれ水素、置換もしくは無置換の炭素数1~20のアルキル、置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の炭素数2~30のアルケニル、置換もしくは無置換の環形成炭素数6~30のアリールアミノ、ハロゲン又は置換もしくは無置換の環形成原子数5~40の複素環であり、
     R13~R16のうち隣接する基は互いに結合して環を形成してもよい。但し、R13とR14及びR15とR16がそれぞれ結合して、イソインドールを形成する場合を含まない。
     X~XはそれぞれO、S又はC-Rである。Rは水素、置換もしくは無置換の炭素数1~20のアルキル、置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の炭素数2~30のアルケニル、置換もしくは無置換の環形成炭素数6~30のアリールアミノ、ハロゲン又は置換もしくは無置換の環形成原子数5~40の複素環であり、隣接するRは互いに結合して環を形成してもよい。点線で示した五員環において、各炭素原子は隣接する炭素原子と二重結合を形成してもよい。)
  8.  前記式(C)が下記式(C-1)~(C-3)のいずれかで表される請求項7に記載の有機薄膜太陽電池材料。
    Figure JPOXMLDOC01-appb-C000033
    (式中、Rは、それぞれ水素、置換もしくは無置換の炭素数1~20のアルキル、置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の炭素数2~30のアルケニル、置換もしくは無置換の環形成炭素数6~30のアリールアミノ、ハロゲン又は置換もしくは無置換の環形成原子数5~40の複素環であり、隣接するRは互いに結合して環を形成してもよい。
     Rは、水素、置換もしくは無置換の炭素数1~20のアルキル,置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の炭素数2~30のアルケニル、ハロゲン又は置換もしくは無置換の環形成原子数5~40の複素環であり、
     R13~R16は、それぞれ水素、置換もしくは無置換の炭素数1~20のアルキル、置換もしくは無置換の環形成炭素数6~30のアリール、置換もしくは無置換の炭素数2~30のアルケニル、置換もしくは無置換の環形成炭素数6~30のアリールアミノ、ハロゲン又は置換もしくは無置換の環形成原子数5~40の複素環であり、R13~R16のうち隣接する基は互いに結合して環を形成してもよい。
     XはそれぞれO又はSである。)
  9.  前記式(C-1)又は(C-3)において、隣接するRが結合して、Rが結合する5員環に縮合する環を形成する請求項8に記載の有機薄膜太陽電池材料。
  10.  R13~R16のうち少なくとも1つが環形成炭素数6~30のアリールである請求項7~9のいずれかに記載の有機薄膜太陽電池材料。
  11.  請求項1~10のいずれかに記載の有機薄膜太陽電池材料を活性層に用いる有機薄膜太陽電池。
  12.  前記活性層がp層又はi層である請求項11に記載の有機薄膜太陽電池。
  13.  請求項11又は12に記載の有機薄膜太陽電池を具備する装置。
PCT/JP2012/005593 2011-09-09 2012-09-04 有機薄膜太陽電池材料 WO2013035303A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011197703 2011-09-09
JP2011-197703 2011-09-09

Publications (1)

Publication Number Publication Date
WO2013035303A1 true WO2013035303A1 (ja) 2013-03-14

Family

ID=47831775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005593 WO2013035303A1 (ja) 2011-09-09 2012-09-04 有機薄膜太陽電池材料

Country Status (2)

Country Link
JP (1) JPWO2013035303A1 (ja)
WO (1) WO2013035303A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016047801A (ja) * 2014-08-27 2016-04-07 公立大学法人首都大学東京 色素増感太陽電池用増感剤としてのトリフェニルアミン結合型ジベンゾピロメテン系色素
WO2017159610A1 (ja) * 2016-03-18 2017-09-21 日本化薬株式会社 有機化合物、近赤外吸収色素、光電変換素子及びその光センサー、撮像素子
JP2017183150A (ja) * 2016-03-31 2017-10-05 住友化学株式会社 酸素還元用電極、空気電池および金属錯体
WO2018079653A1 (ja) * 2016-10-28 2018-05-03 日本化薬株式会社 ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、薄膜及び有機エレクトロニクスデバイス
JP2018123093A (ja) * 2017-02-01 2018-08-09 公立大学法人首都大学東京 ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収色素、光電変換素子、近赤外光センサー及び撮像素子
WO2019031456A1 (ja) 2017-08-10 2019-02-14 日本化薬株式会社 ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、薄膜及び有機エレクトロニクスデバイス
JP2019077673A (ja) * 2017-10-20 2019-05-23 日本化薬株式会社 ジベンゾピロメテンホウ素キレート化合物およびその利用
WO2019155911A1 (ja) 2018-02-06 2019-08-15 富士フイルム株式会社 色変換組成物、これに用いる化合物、及び発光装置
WO2019230963A1 (ja) 2018-06-01 2019-12-05 富士フイルム株式会社 蛍光性化合物及びこれを用いた蛍光標識生体物質
WO2020162345A1 (ja) * 2019-02-05 2020-08-13 日本化薬株式会社 ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、有機薄膜及び有機エレクトロニクスデバイス
WO2022181439A1 (ja) * 2021-02-25 2022-09-01 日本化薬株式会社 ホウ素キレート化合物、近赤外光吸収材料、薄膜、光電変換素子、及び撮像素子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109097A (ja) * 2006-09-28 2008-05-08 Toray Ind Inc 光起電力素子用材料および光起電力素子
JP2010184880A (ja) * 2009-02-10 2010-08-26 Mitsubishi Chemicals Corp ジベンゾピロメテンホウ素キレート化合物及びその製造方法、並びにこれを用いた太陽電池、光重合性組成物、光記憶媒体、発光素子、光学フィルター、及び医療診断用蛍光色素
JP2010225838A (ja) * 2009-03-24 2010-10-07 Toray Ind Inc 光起電力素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109097A (ja) * 2006-09-28 2008-05-08 Toray Ind Inc 光起電力素子用材料および光起電力素子
JP2010184880A (ja) * 2009-02-10 2010-08-26 Mitsubishi Chemicals Corp ジベンゾピロメテンホウ素キレート化合物及びその製造方法、並びにこれを用いた太陽電池、光重合性組成物、光記憶媒体、発光素子、光学フィルター、及び医療診断用蛍光色素
JP2010225838A (ja) * 2009-03-24 2010-10-07 Toray Ind Inc 光起電力素子

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016047801A (ja) * 2014-08-27 2016-04-07 公立大学法人首都大学東京 色素増感太陽電池用増感剤としてのトリフェニルアミン結合型ジベンゾピロメテン系色素
WO2017159610A1 (ja) * 2016-03-18 2017-09-21 日本化薬株式会社 有機化合物、近赤外吸収色素、光電変換素子及びその光センサー、撮像素子
JPWO2017159610A1 (ja) * 2016-03-18 2019-01-24 日本化薬株式会社 有機化合物、近赤外吸収色素、光電変換素子及びその光センサー、撮像素子
US11333964B2 (en) 2016-03-18 2022-05-17 Nippon Kayaku Kabushiki Kaisha Organic compound, near infrared absorbing dye, photoelectric conversion element, light sensor thereof, and imaging element
JP2017183150A (ja) * 2016-03-31 2017-10-05 住友化学株式会社 酸素還元用電極、空気電池および金属錯体
JPWO2018079653A1 (ja) * 2016-10-28 2019-09-19 日本化薬株式会社 ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、薄膜及び有機エレクトロニクスデバイス
WO2018079653A1 (ja) * 2016-10-28 2018-05-03 日本化薬株式会社 ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、薄膜及び有機エレクトロニクスデバイス
KR102386678B1 (ko) * 2016-10-28 2022-04-13 닛뽄 가야쿠 가부시키가이샤 디벤조피로메텐붕소킬레이트 화합물, 근적외광 흡수 재료, 박막 및 유기 일렉트로닉스 디바이스
KR20190077303A (ko) 2016-10-28 2019-07-03 닛뽄 가야쿠 가부시키가이샤 디벤조피로메텐붕소킬레이트 화합물, 근적외광 흡수 재료, 박막 및 유기 일렉트로닉스 디바이스
US10829503B2 (en) 2016-10-28 2020-11-10 Nippon Kayaku Kabushiki Kaisha Dibenzopyrromethene boron chelate compound, near-infrared light absorbing material, thin film and organic electronics device
JP2018123093A (ja) * 2017-02-01 2018-08-09 公立大学法人首都大学東京 ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収色素、光電変換素子、近赤外光センサー及び撮像素子
TWI774816B (zh) * 2017-08-10 2022-08-21 日商日本化藥股份有限公司 二苯并吡咯甲川硼螯合化合物、近紅外光吸收材料、薄膜及有機電子裝置
KR20200035051A (ko) 2017-08-10 2020-04-01 닛뽄 가야쿠 가부시키가이샤 디벤조피로메텐 붕소 킬레이트 화합물, 근적외광 흡수 재료, 박막 및 유기 일렉트로닉스 디바이스
JPWO2019031456A1 (ja) * 2017-08-10 2020-07-16 日本化薬株式会社 ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、薄膜及び有機エレクトロニクスデバイス
JP7073382B2 (ja) 2017-08-10 2022-05-23 日本化薬株式会社 ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、薄膜及び有機エレクトロニクスデバイス
US10749116B1 (en) 2017-08-10 2020-08-18 Nippon Kayaku Kabushiki Kaisha Dibenzopyrromethene boron chelate compound, near-infrared light-absorbing material, thin-film, and organic electronic device
KR102555170B1 (ko) 2017-08-10 2023-07-12 닛뽄 가야쿠 가부시키가이샤 디벤조피로메텐 붕소 킬레이트 화합물, 근적외광 흡수 재료, 유기 박막, 유기 일렉트로닉스 디바이스 및 유기 광전 변환 소자
WO2019031456A1 (ja) 2017-08-10 2019-02-14 日本化薬株式会社 ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、薄膜及び有機エレクトロニクスデバイス
JP2019077673A (ja) * 2017-10-20 2019-05-23 日本化薬株式会社 ジベンゾピロメテンホウ素キレート化合物およびその利用
JP7033039B2 (ja) 2017-10-20 2022-03-09 日本化薬株式会社 ジベンゾピロメテンホウ素キレート化合物およびその利用
EP3750970A4 (en) * 2018-02-06 2020-12-16 FUJIFILM Corporation COLOR CONVERSION COMPOSITION, COMPOUND USED FOR IT, AND LIGHT EMITTING DEVICE
JPWO2019155911A1 (ja) * 2018-02-06 2020-12-03 富士フイルム株式会社 色変換組成物、これに用いる化合物、及び発光装置
US11434420B2 (en) 2018-02-06 2022-09-06 Fujifilm Corporation Color conversion composition, compound used for same, and light emitting device
WO2019155911A1 (ja) 2018-02-06 2019-08-15 富士フイルム株式会社 色変換組成物、これに用いる化合物、及び発光装置
WO2019230963A1 (ja) 2018-06-01 2019-12-05 富士フイルム株式会社 蛍光性化合物及びこれを用いた蛍光標識生体物質
JPWO2020162345A1 (ja) * 2019-02-05 2021-12-09 日本化薬株式会社 ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、有機薄膜及び有機エレクトロニクスデバイス
WO2020162345A1 (ja) * 2019-02-05 2020-08-13 日本化薬株式会社 ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、有機薄膜及び有機エレクトロニクスデバイス
JP7390320B2 (ja) 2019-02-05 2023-12-01 日本化薬株式会社 ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、有機薄膜及び有機エレクトロニクスデバイス
WO2022181439A1 (ja) * 2021-02-25 2022-09-01 日本化薬株式会社 ホウ素キレート化合物、近赤外光吸収材料、薄膜、光電変換素子、及び撮像素子

Also Published As

Publication number Publication date
JPWO2013035303A1 (ja) 2015-03-23

Similar Documents

Publication Publication Date Title
JP5851268B2 (ja) 有機薄膜太陽電池素子用材料、及びそれを用いた有機薄膜太陽電池
JP5417039B2 (ja) インドール誘導体及びそれを用いた有機薄膜太陽電池
WO2013035303A1 (ja) 有機薄膜太陽電池材料
JP2010073987A (ja) 有機薄膜太陽電池用材料
JP5452881B2 (ja) 有機薄膜太陽電池用材料及びそれを用いた有機薄膜太陽電池
JP5398397B2 (ja) 有機薄膜太陽電池用材料及びそれを用いた有機薄膜太陽電池
WO2010013520A1 (ja) インデノピレン化合物、並びにそれを用いた有機薄膜太陽電池用材料および有機薄膜太陽電池
JP5363164B2 (ja) ベンゾフルオランテン化合物及びそれを用いた有機薄膜太陽電池
JP2009132674A (ja) アセナフトフルオランテン化合物からなる光電変換素子用材料及びそれを用いた光電変換素子
JP2011111392A (ja) アセナフトチオフェン化合物及びそれを用いた有機薄膜太陽電池材料
JP5693825B2 (ja) フタルイミド系化合物、ナフタルイミド系化合物、無水ナフタル酸系化合物、これら含む電子輸送材料、及び有機薄膜太陽電池
JP2008166558A (ja) 光電変換素子用材料及びそれを用いた光電変換素子
US20120298203A1 (en) Dibenzofluoranthene compound and organic thin-film solar cell using same
JP5340065B2 (ja) 有機薄膜太陽電池用材料及びそれを用いた有機薄膜太陽電池
JP5657298B2 (ja) フェナントロリン化合物、該化合物よりなる電子輸送材料、及び該化合物を含んでなる有機薄膜太陽電池
JP2008166561A (ja) 光電変換素子用材料及びそれを用いた光電変換素子
WO2012014460A1 (ja) インデノペリレン化合物、インデノペリレン誘導体を含有してなる有機薄膜太陽電池用材料、及びそれを用いた有機薄膜太陽電池
JP5525895B2 (ja) 有機薄膜太陽電池材料及びそれを用いた有機薄膜太陽電池
JP5658937B2 (ja) インデノペリレン化合物及びそれを用いた有機薄膜太陽電池
JP2014065685A (ja) アザジピロメテン化合物を含む有機薄膜太陽電池材料
JP5427500B2 (ja) 有機薄膜太陽電池用材料及びそれを用いた有機薄膜太陽電池
JP2012033606A (ja) 光電変換素子
JP2012028687A (ja) インデノペリレン誘導体を含有してなる有機薄膜太陽電池用材料、及びそれを用いた有機薄膜太陽電池
JP2014077042A (ja) ジベンゾピロメテン化合物を含む有機薄膜太陽電池材料
JP5560132B2 (ja) 有機薄膜太陽電池用材料及びそれを用いた有機薄膜太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532437

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12829736

Country of ref document: EP

Kind code of ref document: A1