WO2020162345A1 - ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、有機薄膜及び有機エレクトロニクスデバイス - Google Patents

ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、有機薄膜及び有機エレクトロニクスデバイス Download PDF

Info

Publication number
WO2020162345A1
WO2020162345A1 PCT/JP2020/003632 JP2020003632W WO2020162345A1 WO 2020162345 A1 WO2020162345 A1 WO 2020162345A1 JP 2020003632 W JP2020003632 W JP 2020003632W WO 2020162345 A1 WO2020162345 A1 WO 2020162345A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
compound
formula
aromatic
Prior art date
Application number
PCT/JP2020/003632
Other languages
English (en)
French (fr)
Inventor
俊文 井内
雄太 橋本
雄一 貞光
達也 青竹
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2020571154A priority Critical patent/JP7390320B2/ja
Priority to KR1020217027839A priority patent/KR20210124325A/ko
Priority to CN202080007651.7A priority patent/CN113286799A/zh
Publication of WO2020162345A1 publication Critical patent/WO2020162345A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/022Boron compounds without C-boron linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Definitions

  • the present invention relates to a novel dibenzopyrromethene boron chelate compound having an absorption band in the near infrared light region, a near infrared light absorbing material containing the compound, a thin film, and an organic electronic device.
  • the near-infrared light absorbing material having an absorption band in the wavelength range of 700 to 2500 nm has been conventionally considered for various industrial applications.
  • Specific applications include optical information recording media such as CD-R (Compact Disc-Recordable); thermal CTP (Computer To Plate); printing applications such as flash toner fixing and laser thermal recording; heat-blocking film, etc.
  • optical information recording media such as CD-R (Compact Disc-Recordable); thermal CTP (Computer To Plate); printing applications such as flash toner fixing and laser thermal recording; heat-blocking film, etc.
  • CD-R Compact Disc-Recordable
  • thermal CTP Computer To Plate
  • printing applications such as flash toner fixing and laser thermal recording
  • heat-blocking film etc.
  • the near infrared absorbing ink by dissolving or dispersing a dye containing a near infrared absorbing material in a solvent.
  • the printed matter using the near-infrared light absorbing ink can be read only by a near-infrared light detector or the like and is difficult to visually recognize (invisible image). Used for etc.
  • Inorganic near-infrared light absorbing materials and organic near-infrared light absorbing materials are known as such near-infrared light absorbing materials for forming invisible images.
  • examples of the inorganic near-infrared light absorbing material include rare earth metals such as ytterbium, and copper phosphate crystallized glass.
  • these inorganic near-infrared light absorbing materials do not have sufficient light-absorbing ability in the near-infrared region, and therefore a large amount of near-infrared light absorbing material is required per unit area for forming an invisible image.
  • the unevenness of the surface of the invisible image as a base may affect the surface state of the visible image.
  • organic near-infrared absorbing materials have sufficient absorption of light in the near-infrared region, so the amount of near-infrared absorbing materials used per unit area required for forming an invisible image should be adjusted to the inorganic type.
  • the amount can be reduced as compared with the near-infrared light absorbing material, and the inconvenience that occurs when an inorganic near-infrared light absorbing material is used does not occur. Therefore, many organic near-infrared light absorbing materials have been developed to date.
  • an organic electronic device does not contain a rare metal or the like as a raw material and can not only be stably supplied, but also have a flexibility not possessed by an inorganic material and can be manufactured by a wet film forming method. Recently, it has become very interesting. Specific examples of the organic electronic device include an organic EL element, an organic solar cell element, an organic photoelectric conversion element, an organic transistor element, and the like, and further, applications utilizing the characteristics of organic materials are being studied.
  • Patent Document 1 there is a study aimed at applying an existing dye such as squarylium, which is one of the infrared absorbing materials described above, to a photoelectric conversion material in the near infrared region, Organic electronic materials using squarylium have poor robustness and are not practical.
  • an existing dye such as squarylium, which is one of the infrared absorbing materials described above
  • Non-Patent Documents 1 and 2 report on a boron-dipyrromethene (hereinafter, referred to as “BODIPY”) dye that exhibits an absorption band to a fluorescence band in a red or near-infrared light region and has excellent fastness.
  • BODIPY boron-dipyrromethene
  • a simple BODIPY dye has a strong absorption band near 500 nm, and by extending the ⁇ -conjugated system and introducing an aromatic group into which an electron-donating substituent is introduced, a near-infrared light region can be obtained. It is described that it is possible to extend the absorption wavelength.
  • Patent Documents 3 to 5 describe that by compounding a compound having a BODIPY skeleton with B—O chelate, the robustness of the compound to light can be further improved and the absorption wavelength can be shifted to the long wavelength side.
  • Patent Documents 3 and 4 also describe examples in which these B—O chelated compounds are applied to organic solar cell elements and organic photoelectric conversion elements.
  • the compounds described in Patent Documents 3 and 4 cannot be said to have a sufficiently long absorption wavelength, and Patent Document 5 does not refer to the absorption wavelength or the photoelectric conversion characteristics in the near infrared region. ..
  • Patent Document 6 exemplifies a photoelectric conversion element having absorption in the near-infrared region, which uses a compound obtained by chelating a thiophene ring and B—O chelate. For use in photoelectric conversion applications, it is required to further lengthen the photoelectric conversion wavelength and increase the sensitivity of photoelectric conversion characteristics in the near infrared region.
  • the object of the present invention is to have a broad absorption in the near infrared region and an organic compound having excellent photoelectric conversion efficiency in the near infrared region, a near infrared light absorbing material containing the compound, and the near infrared light absorbing material.
  • the present inventors have studied to solve the above problems, developed a novel dibenzopyrromethene boron chelate compound that exhibits sufficient performance when used in organic electronic devices, and in addition, The present inventors have found that the existing organic electronic device functions as a near-infrared photoelectric conversion element, and completed the present invention. That is, the present invention is as follows. [1] The following formula (1)
  • R 1 to R 8 are each independently a hydrogen atom, an aliphatic hydrocarbon group, an alkoxy group, an alkylthio group, an aromatic group, a heterocyclic group, a halogen atom, a hydroxyl group, a mercapto group, a nitro group.
  • R 9 to R 12 are each independently a hydrogen atom, an aliphatic hydrocarbon group, an alkoxy group, an alkylthio group, an aromatic group, a heterocyclic group, a halogen atom, a hydroxyl group, a mercapto group, or a nitro group.
  • At least one of R 1 to R 4 is an aliphatic hydrocarbon group, an aromatic group, a heterocyclic group or a halogen atom
  • at least one of R 5 to R 8 is an aliphatic hydrocarbon group, an aromatic group.
  • R 1 and R 8 are the same, R 2 and R 7 are the same, R 3 and R 6 are the same, and R 4 and R 5 are the same [1]
  • R 9 and R 10 is an aromatic group or a heterocyclic group
  • R 11 and R 12 is an aromatic group or a heterocyclic group.
  • R 10 and R 11 are the following formula (2)
  • R 21 to R 25 are each independently a hydrogen atom, an alkoxy group, an alkylthio group, an aromatic group, a heterocyclic group, a substituted amino group, an unsubstituted amino group, or an electron-accepting substituent, or Represents an atom, and R 21 and R 22 may be bonded to each other or R 22 and R 23 may be bonded to each other to form an aromatic ring or a heterocycle, provided that at least one of R 21 to R 25 is Or an electron-accepting substituent or atom, or R 21 and R 22 are bonded to each other, or R 22 and R 23 are bonded to each other to form an electron-accepting aromatic ring or heterocycle.
  • R 21 to R 25 is a halogen atom, a formyl group, an acetyl group, an alkoxycarbonyl group, a trifluoromethyl group, a cyano group, a nitro group, a toluenesulfonyl group, a methanesulfonyl group, a trifluoromethanesulfonyl group, An electron-accepting substituent or atom selected from the group consisting of a pyridyl group, a quinolyl group, a pyrazyl group, a quinoxalyl group, a thiazolyl group, a benzothiazolyl group, an indolyl group, a benzothiadiazolyl group, a succinimidoyl group and a phthalimidoyl group.
  • the organic thin film using the novel compound of the present invention has a main absorption band in the near infrared light region. Further, a near infrared photoelectric conversion element is realized by using the compound and/or the organic thin film.
  • the compound can be used for various organic electronic devices.
  • FIG. 1 is a sectional view illustrating an embodiment of the organic photoelectric conversion element of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of the layer structure of the organic electroluminescence element.
  • the near-infrared region means a wavelength region of light in the range of 750 to 2500 nm
  • the near-infrared light absorbing material (or dye) means the absorption wavelength mainly in the near-infrared light region.
  • the near-infrared light emitting material (or dye) means a material (or dye) emitting light in the near infrared light region.
  • the compound of the present invention is represented by the following formula (1).
  • R 1 to R 8 are each independently a hydrogen atom, an aliphatic hydrocarbon group, an alkoxy group, an alkylthio group, an aromatic group, a heterocyclic group, a halogen atom, a hydroxyl group, a mercapto group, a nitro group, It represents a substituted amino group, an unsubstituted amino group, a cyano group, a sulfo group, or an acyl group.
  • at least one of R 1 to R 4 represents other than hydrogen atom
  • at least one of R 5 to R 8 represents other than hydrogen atom.
  • the aliphatic hydrocarbon group represented by R 1 to R 8 in the formula (1) may be a saturated or unsaturated linear, branched or cyclic aliphatic hydrocarbon and has 1 carbon atom. To 30 are preferred, 1 to 20 are more preferred, and 3 to 10 are even more preferred.
  • specific examples of the saturated or unsaturated linear, branched or cyclic aliphatic hydrocarbon group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group and an iso-butyl group.
  • the aliphatic hydrocarbon group represented by R 1 to R 8 in the formula (1) is preferably a linear or branched aliphatic hydrocarbon group, and a linear or branched alkyl group. Is more preferable, and n-butyl group, n-hexyl group, n-octyl group, n-decyl group, n-dodecyl group, 2-ethylhexyl group, 2-methylpropyl group or 2-butyloctyl group Is more preferable, and an n-hexyl group, an n-octyl group or a 2-methylpropyl group is particularly preferable.
  • the alkoxy group represented by R 1 to R 8 in the formula (1) is a substituent in which an oxygen atom and an alkyl group are bonded, and examples of the alkyl group in the alkoxy group include R 1 to R 8 in the formula (1).
  • the alkyl group described as a specific example in the section of the aliphatic hydrocarbon group represented by R 8 can be mentioned.
  • the alkoxy group represented by R 1 to R 8 in the formula (1) may have a substituent such as an alkoxy group.
  • the alkylthio group represented by R 1 to R 8 in the formula (1) is a substituent in which a sulfur atom and an alkyl group are bonded, and examples of the alkyl group in the alkylthio group include R 1 to R 8 in the formula (1).
  • the alkyl group described as a specific example in the section of the aliphatic hydrocarbon group represented by R 8 can be mentioned.
  • the alkylthio group represented by R 1 to R 8 in the formula (1) may have a substituent such as an alkylthio group.
  • the aromatic group represented by R 1 to R 8 in formula (1) is not particularly limited as long as it is a residue obtained by removing one hydrogen atom from the aromatic ring of an aromatic compound, and examples thereof include a phenyl group and a biphenyl group. Examples thereof include an indenyl group, a naphthyl group, an anthryl group, a fluorenyl group, a pyrenyl group, a phenanthnyl group and a mestyl group. A phenyl group or a naphthyl group is preferable, and a phenyl group is more preferable.
  • the aromatic compound which can be an aromatic group may have a substituent, and the substituent which may have is not particularly limited, but may be an alkyl group having 1 to 4 carbon atoms, a halogen atom or phenyl.
  • a group is preferable, and a methyl group, a halogen atom or a phenyl group is more preferable.
  • the heterocyclic group represented by R 1 to R 8 in the formula (1) is not particularly limited as long as it is a residue obtained by removing one hydrogen atom from the heterocycle of the heterocyclic compound, and examples thereof include a furanyl group, a thienyl group, Thienothienyl group, pyrrolyl group, imidazolyl group, N-methylimidazolyl group, thiazolyl group, oxazolyl group, pyridyl group, pyrazyl group, pyrimidyl group, quinolyl group, indolyl group, benzopyrazyl group, benzopyrimidyl group, benzothienyl group, benzothiazolyl group, pyri Dinothiazolyl group, benzimidazolyl group, pyridinoimidazolyl group, N-methylbenzimidazolyl group, pyridino-N-methylimidazolyl group, benzoxazolyl group, pyri
  • a group or a pyridinothiadiazolyl group is preferable, and a thienyl group, a thiazolyl group, a benzothiazolyl group or a benzothiadiazolyl group is more preferable.
  • the heterocyclic compound that can be a heterocyclic group may have a substituent, and the substituent that may have is not particularly limited.
  • Examples of the halogen atom represented by R 1 to R 8 in the formula (1) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a fluorine atom or a chlorine atom, and more preferably a fluorine atom.
  • the substituted amino group represented by R 1 to R 8 in formula (1) is a substituent in which one or two hydrogen atoms of the amino group are substituted with a substituent.
  • the substituent that the substituted amino group has is preferably an alkyl group or an aromatic group, and more preferably an aromatic group. Specific examples of these substituents include the alkyl group described in the section of the aliphatic hydrocarbon group represented by R 1 to R 8 in the formula (1) and the aromatic group represented by R 1 to R 8 in the formula (1). The same as the group can be mentioned.
  • the unsubstituted amino group represented by R 1 to R 8 in the formula (1) means an NH 2 group.
  • the acyl group represented by R 1 to R 8 in the formula (1) is a substituent in which a carbonyl group and an aromatic group or an alkyl group are bonded, and the alkyl group and the aromatic group in the acyl group are represented by the formula ( The same as the alkyl group described in the item of the aliphatic hydrocarbon group represented by R 1 to R 8 in 1) and the aromatic group represented by R 1 to R 8 in the formula (1) can be mentioned.
  • R 1 to R 8 in formula (1) at least one of R 1 to R 4 is an aliphatic hydrocarbon group, an aromatic group, a heterocyclic group, a halogen atom or a substituted amino group, and R 5 to R 8 At least one of R 8 is preferably an aliphatic hydrocarbon group, an aromatic group, a heterocyclic group, a halogen atom or a substituted amino group, and at least one of R 1 to R 4 is an aliphatic hydrocarbon group or an aromatic group.
  • R 5 to R 8 is an aliphatic hydrocarbon group, an aromatic group, a heterocyclic group or a halogen atom
  • R 1 to R 4 One of them is an aliphatic hydrocarbon group, an aromatic group, a heterocyclic group or a halogen atom, the remaining three are hydrogen atoms, and one of R 5 to R 8 is an aliphatic hydrocarbon group, an aromatic group.
  • the remaining three groups are a group, a heterocyclic group or a halogen atom
  • one of R 1 to R 4 is an aromatic group, a heterocyclic group or a halogen atom and the remaining three are hydrogen atoms.
  • three is a hydrogen atom and one aromatic group of R 5 to R 8, particularly preferably a heterocyclic group, or a halogen atom and the remaining three are hydrogen atoms, the R 1 to R 4 Most preferably, one of them is a halogen atom and the remaining three are hydrogen atoms, and one of R 5 to R 8 is a halogen atom and the remaining three are hydrogen atoms.
  • R 1 to R 4 is a substituent or a halogen atom
  • the remaining three are hydrogen atoms
  • one of R 5 to R 8 is a substituent or a halogen atom.
  • the substituent or the substitution position of the halogen atom is preferably R 2 and R 7 , or R 3 and R 6 .
  • a substituent means a thing other than a hydrogen atom and a halogen atom among the examples of R 1 to R 8 .
  • R 2 and R 7 are each independently an aliphatic hydrocarbon group, an aromatic group, a heterocyclic group, a halogen atom or a substituted amino group, and R 1 , R 3 to R 6, and R 8 are hydrogen atoms.
  • R 3 and R 6 are each independently an aliphatic hydrocarbon group, an aromatic group, a heterocyclic group, a halogen atom or a substituted amino group, and R 1 , R 2 , R 4 , R 5 and R 7 And R 8 is preferably a hydrogen atom, and R 2 and R 7 are each independently an aliphatic hydrocarbon group, an aromatic group, a heterocyclic group or a halogen atom, and R 1 , R 3 to R 6 and R 8 is a hydrogen atom, or R 3 and R 6 are independently an aliphatic hydrocarbon group, an aromatic group, a heterocyclic group or a halogen atom, and R 1 , R 2 , R 4 , R 5 and R 7 And R 8 is more preferably a hydrogen atom, R 2 and R 7 are each independently an aromatic group, a heterocyclic group or a halogen atom, and R 1 , R 3 to R 6 and R 8 are hydrogen atoms.
  • R 3 and R 6 are each independently an aromatic group, a heterocyclic group or a halogen atom, and R 1 , R 2 , R 4 , R 5 , R 7 and R 8 are hydrogen atoms.
  • R 2 and R 7 are each independently a halogen atom and R 1 , R 3 to R 6 and R 8 are hydrogen atoms, or R 3 and R 6 are each independently a halogen atom and R 1 , R 2 , R 4 , R 5 , R 7 and R 8 are particularly preferably hydrogen atoms.
  • R 1 to R 8 in the formula (1) R 1 and R 8 are the same, R 2 and R 7 are the same, R 3 and R 6 are the same, and It is also a preferred embodiment that R 4 and R 5 are the same.
  • R 2 and R 7 , or R 3 and R 6 are substituents or a halogen atom and the other are hydrogen atoms, both R 2 and R 7 are the same aliphatic group.
  • R 2 and R 7 are the same aromatic group, heterocyclic group or halogen atom
  • R 1 , R 3 to R 6 and R 8 are hydrogen atoms, or both R 3 and R 6 are It is more preferable that R 1 , R 2 , R 4 , R 5 , R 7 and R 8 are the same aromatic group, heterocyclic group or halogen atom, and that both R 2 and R 7 are hydrogen atoms.
  • the same halogen atom and R 1 , R 3 to R 6, and R 8 are hydrogen atoms, or both R 3 and R 6 are the same halogen atom, and R 1 , R 2 , R 4 , and R 8 It is particularly preferred that 5 , R 7 and R 8 are hydrogen atoms.
  • R 1 to R 4 in the formula (1) are independently an aliphatic hydrocarbon group, an aromatic group, a heterocyclic group, a halogen atom or a substituted amino group, and R 5 to R 4 It is also preferable that two or more of R 8 are independently an aliphatic hydrocarbon group, an aromatic group, a heterocyclic group, a halogen atom or a substituted amino group, and two or more of R 1 to R 4 are Each independently an aliphatic hydrocarbon group, an aromatic group, a heterocyclic group, or a halogen atom, and two or more of R 5 to R 8 each independently represent an aliphatic hydrocarbon group, an aromatic group, or a heterocyclic group.
  • R 1 to R 4 are independently an aromatic group, a heterocyclic group or a halogen atom, and a group of R 5 to R 8 It is further preferred that two or more are each independently an aromatic group, a heterocyclic group or a halogen atom.
  • R 1 to R 4 are independently an aliphatic hydrocarbon group, an aromatic group, a heterocyclic group, a halogen atom or a substituted amino group, and the remaining two are hydrogen atoms
  • R 5 to two are each independently an aliphatic hydrocarbon group of R 8, an aromatic group, a heterocyclic group, it a halogen atom, or a substituted amino group remaining two are hydrogen atoms
  • R 1 to Two of R 4 are each independently an aliphatic hydrocarbon group, an aromatic group, a heterocyclic group or a halogen atom, the remaining two are hydrogen atoms
  • two of R 5 to R 8 are respectively More preferably, they are independently an aliphatic hydrocarbon group, an aromatic group, a heterocyclic group or a halogen atom, and the remaining two are hydrogen atoms
  • one of R 1 to R 4 is a halogen atom and Is a halogen atom, an aromatic group or a heterocyclic group, the remaining two are hydrogen atom
  • R 9 to R 12 are each independently a hydrogen atom, an aliphatic hydrocarbon group, an alkoxy group, an alkylthio group, an aromatic group, a heterocyclic group, a halogen atom, a hydroxyl group, a mercapto group, a nitro group, It represents a substituted amino group, an unsubstituted amino group, a cyano group, a sulfo group or an acyl group.
  • the aliphatic hydrocarbon group, the alkoxy group, the alkylthio group, the aromatic group, the heterocyclic group, the halogen atom, the substituted amino group and the acyl group represented by R 9 to R 12 of the formula (1) include R of the formula (1).
  • R 9 to R 12 in the formula (1) are preferably each independently a hydrogen atom, an aromatic group, a heterocyclic group, a halogen atom or a cyano group, and each independently an aromatic group or a heterocyclic group. Is more preferable. More specifically, at least one of R 9 and R 10 is an aromatic group, a heterocyclic group, a halogen atom or a cyano group, and at least one of R 11 and R 12 is an aromatic group, a heterocyclic group, a halogen atom. Or a cyano group, at least one of R 9 and R 10 is an aromatic group or a heterocyclic group, and at least one of R 11 and R 12 is an aromatic group or a heterocyclic group.
  • R 10 and R 11 are aromatic groups or heterocyclic groups
  • R 9 and R 12 are hydrogen atoms
  • R 10 and R 11 are aromatic groups or heterocyclic groups. More preferably, More specifically, at least one of R 9 and R 10 is a substituent represented by the following formula (2), and at least one of R 11 and R 12 is a substituent represented by the following formula (2).
  • R 10 and R 11 are more preferably a substituent represented by the following formula (2), R 9 and R 12 are hydrogen atoms, and R 10 and R 11 are the same.
  • R 9 and R 12 are hydrogen atoms
  • R 10 and R 11 are the same, represented by the following formula (2).
  • a substituent is particularly preferable.
  • R 21 to R 25 are each independently a hydrogen atom, an alkoxy group, an alkylthio group, an aromatic group, a heterocyclic group, a substituted amino group, an unsubstituted amino group, an acyl group, or an electron-accepting group. It represents a substituent or an atom, and R 21 and R 22 may be bonded to each other, or R 22 and R 23 may be bonded to each other to form an aromatic ring or a heterocycle. However, at least one of R 21 to R 25 represents an electron-accepting substituent or atom, or R 21 and R 22 are bonded to each other, or R 22 and R 23 are bonded to each other to have an electron-accepting fragrance. Form a ring or heterocycle.
  • the alkoxy group represented by R 21 to R 25 of the formula (2), the alkylthio group, the aromatic group, the heterocyclic group, the substituted amino group, and the acyl group are the alkoxy groups represented by R 1 to R 8 of the formula (1),
  • the same as the alkylthio group, aromatic group, heterocyclic group, substituted amino group and acyl group can be mentioned, and the preferable ones are also the same.
  • the electron-accepting (electron-withdrawing) substituent or atom represented by at least one of R 21 to R 25 in formula (2) is not particularly limited as long as it is a substituent or atom having an electron-accepting property.
  • Halogen atom formyl group, acetyl group, alkoxycarbonyl group, trifluoromethyl group, cyano group, nitro group, toluenesulfonyl group, methanesulfonyl group and trifluoromethanesulfonyl group, which are known by Hammett's rule, etc.
  • Examples thereof include pyridyl group, quinolyl group, pyrazyl group, quinoxalyl group, thiazolyl group, benzothiazolyl group, indolyl group, benzothiadiazolyl group, succinimidoyl group and phthalimidoyl group, which are heterocycles.
  • a halogen atom, an acetyl group, a trifluoromethyl group, a cyano group, a pyridyl group, a thiazolyl group or a benzothiazolyl group is preferable, and a halogen atom, a cyano group, a thiazolyl group or a benzothiazolyl group is more preferable.
  • R 21 and R 22 in the formula (2) may be bonded to each other, or R 22 and R 23 may be bonded to each other to form an aromatic ring or a heterocycle.
  • Specific examples of the aromatic ring or heterocyclic ring formed by R 21 and R 22 bound to each other or R 22 and R 23 bound to each other include benzene ring, naphthalene ring, furan ring, pyrrole ring, imidazole ring and thiophene.
  • Examples thereof include 5-membered or 6-membered aromatic rings or heterocycles such as a ring, a pyrazole ring, an oxazole ring, a thiazole ring, a pyridine ring, a pyrazine ring, a triazole ring, an oxadiazole ring and a thiadiazole ring.
  • those having an electron accepting property include an oxazole ring, a thiazole ring, It is a pyridine ring, a pyrazine ring, a triazole ring, an oxadiazole ring, or a thiadiazole ring, and it is more preferable to form a heterocycle containing a nitrogen atom and/or a sulfur atom.
  • the aromatic ring or heterocyclic ring formed by combining R 21 and R 22 or by combining R 22 and R 23 may have a substituent, and as the substituent which may have, Aliphatic hydrocarbon group, alkoxy group, alkylthio group, aromatic group, heterocyclic group, halogen atom, hydroxyl group, mercapto group, nitro group, substituted amino group, and unsubstituted represented by R 1 to R 8 in the formula (1)
  • the same groups as the amino group, cyano group, sulfo group and acyl group can be mentioned.
  • the compound represented by the above formula (1) can be obtained, for example, in the following reaction step with reference to the description of Tetrahedron Letters, 2010, 51, 1600.
  • the step (a) of reacting the compound (A) and the compound (B) to obtain the compound (C) includes, for example, an ammonium salt (eg ammonium acetate, ammonium chloride) in a mixed solvent of alcohol and acetic acid. Alternatively, it can be performed by adding aqueous ammonia.
  • an ammonium salt eg ammonium acetate, ammonium chloride
  • it can be performed by adding aqueous ammonia.
  • the step (a) can be carried out by the compound (A) alone.
  • the compound (C) is treated with a boron trifluoride (eg, boron trifluoride diethyl) in the presence of a tertiary amine (eg, triethylamine). It can be carried out by reacting with an ether complex or the like).
  • the step (c) of obtaining the compound represented by the formula (1) from the compound (D) can be performed by reacting the compound (D) with boron tribromide.
  • R 1 through R 12 in the compound (A) to (D) have the same meanings as R 1 to R 12 in the formula (1).
  • the method for purifying the compound represented by the formula (1) is not particularly limited, and for example, washing, recrystallization, column chromatography, vacuum sublimation and the like can be adopted, and these methods can be combined as necessary.
  • the near infrared light absorbing material of the present invention contains the compound represented by the above formula (1).
  • the content of the compound represented by formula (1) in the near-infrared light absorbing material of the present invention is such that the near-infrared light absorbing ability required in the application of the near-infrared light absorbing material is exhibited. Although not particularly limited, it is usually 50 mass% or more, preferably 80 mass% or more, more preferably 90 mass% or more, still more preferably 95 mass% or more.
  • a compound other than the compound represented by the formula (1) for example, a near-infrared light absorbing material (dye) other than the compound represented by the formula (1)
  • an additive is added to the near-infrared light absorbing material of the present invention. You may use an agent etc. together.
  • Compounds and additives that can be used in combination are not particularly limited as long as the near-infrared light absorbing ability required in the use of the near-infrared light absorbing material is exhibited.
  • the organic thin film of the present invention contains the near infrared light absorbing material of the present invention.
  • the organic thin film of the present invention can be produced by a general dry film forming method or a wet film forming method. Specifically, vacuum processes such as resistance heating evaporation, electron beam evaporation, sputtering and molecular lamination, solution processes such as casting, spin coating, dip coating, blade coating, wire bar coating, spray coating, and other coating methods, inkjet printing. Printing methods such as screen printing, offset printing, letterpress printing, and soft lithography methods such as microcontact printing.
  • an organic thin film of a general near-infrared light absorbing material In order to form an organic thin film of a general near-infrared light absorbing material, a process of applying a compound in a solution state is desired from the viewpoint of processability, but an organic electronic device such as stacking organic films is desired. In the case of, the coating solution is not suitable because it may attack the organic film of the lower layer.
  • the material is a vapor deposition material that can be used in a dry film formation method, for example, a dry film formation method such as resistance heating evaporation. Therefore, a near-infrared light absorbing material having a main absorption wavelength in the near-infrared region and capable of vapor deposition is preferable as the near-infrared photoelectric conversion material.
  • each layer cannot be limited because it depends on the resistance value and charge mobility of each substance, but is usually in the range of 0.5 to 5,000 nm, preferably in the range of 1 to 1,000 nm, More preferably, it is in the range of 5 to 500 nm.
  • the molecular weight of the compound represented by the above formula (1) is 1,500 or less when the organic thin film containing the compound represented by the formula (1) is intended to be formed into a film by a vapor deposition method and used. Is preferable, it is more preferable that it is 1,200 or less, and further preferable that it is 1,000 or less.
  • the lower limit of the molecular weight is the lowest possible molecular weight of the compound represented by the formula (1).
  • the compound represented by the formula (1) may be formed into a film by a coating method regardless of the molecular weight. By using the coating method, it is possible to form a film even with a compound having a relatively large molecular weight.
  • the molecular weight in this specification means the value calculated by the EI-GCMS method.
  • the organic electronic device of the present invention includes the organic thin film of the present invention (hereinafter, the organic thin film may be simply referred to as “thin film”).
  • the organic electronic device include an organic thin film transistor, an organic photoelectric conversion element, an organic solar cell element, an organic electroluminescence element (hereinafter, referred to as “organic EL element” or “organic light emitting element”), an organic light emitting transistor element, and an organic material. Examples thereof include semiconductor laser devices.
  • organic photoelectric conversion elements and organic EL elements which are expected to be developed for near infrared applications.
  • near-infrared light having a wavelength of more than 700 nm has high transparency to living tissue. Therefore, since it can also be used for observing in-vivo tissues, it can be applied in various modes according to its purpose in pathological elucidation, diagnosis, etc. in the medical field such as near infrared fluorescent probe. ..
  • the compound represented by the above formula (1) is a compound having a near-infrared light absorption property, it is expected to be used as an organic photoelectric conversion element.
  • the compound represented by the above formula (1) can be used in the photoelectric conversion layer in the organic photoelectric conversion device of the present invention.
  • the maximum absorption of the absorption band of the response wavelength light with respect to light is 700 to 2500 nm.
  • the organic photoelectric conversion element include a near infrared light sensor, an organic image pickup element, and a near infrared light image sensor.
  • the maximum absorption of the absorption band in the present specification means the value of the maximum absorbance in the spectrum of the absorbance measured by absorption spectrum measurement, the maximum absorption wavelength ( ⁇ max) is the longest wavelength side of the maximum absorption. It means the wavelength that gives maximum absorption.
  • the organic photoelectric conversion element is an element in which a photoelectric conversion part (film) is arranged between a pair of opposing electrode films, and light is incident on the photoelectric conversion part from above the electrode film.
  • the photoelectric conversion unit has a function of generating electrons and holes in response to the incident light, an organic photoelectric conversion element having such a photoelectric conversion unit, a signal corresponding to the charge is read by a semiconductor, It is an element showing the amount of incident light according to the absorption wavelength of the photoelectric conversion film portion.
  • a transistor for reading may be connected to the electrode film on the side where light does not enter.
  • the organic photoelectric conversion elements show incident position information in addition to the amount of incident light, and thus become an image sensor.
  • the photoelectric conversion element arranged closer to the light source does not block (transmit) the absorption wavelength of the photoelectric conversion element arranged behind it when viewed from the light source side, a plurality of photoelectric conversion elements are stacked. You may use.
  • the organic photoelectric conversion element of the present invention uses the compound represented by the above formula (1) as a constituent material of the photoelectric conversion section.
  • the photoelectric conversion unit is a photoelectric conversion layer and one or more kinds selected from the group consisting of an electron transport layer, a hole transport layer, an electron block layer, a hole block layer, a crystallization prevention layer, an interlayer contact improvement layer, and the like. It is often composed of an organic thin film layer other than the photoelectric conversion layer.
  • the compound of the above formula (1) can be used in addition to the photoelectric conversion layer, but is preferably used as a material of the organic semiconductor film of the photoelectric conversion layer.
  • the photoelectric conversion layer may be composed only of the compound represented by the above formula (1), but in addition to the compound represented by the above formula (1), a known near-infrared light absorbing material and others are included. You may stay.
  • the electrode film used in the organic photoelectric conversion element of the present invention has a hole-transporting property when the photoelectric conversion layer included in the photoelectric conversion part described later has a hole-transporting property or an organic thin film layer other than the photoelectric conversion layer has a hole-transporting property.
  • it When it is a hole transport layer, it plays a role of extracting holes from the photoelectric conversion layer or other organic thin film layers and collecting them, and the photoelectric conversion layer included in the photoelectric conversion part has an electron transport property.
  • the organic thin film layer other than the photoelectric conversion layer is an electron transporting layer having an electron transporting property, it plays a role of taking out electrons from the photoelectric conversion layer and other organic thin film layers and discharging them. is there.
  • the material that can be used as the electrode film is not particularly limited as long as it has a certain degree of conductivity, but the adhesiveness with adjacent photoelectric conversion layers and other organic thin film layers, electron affinity, ionization potential, stability, etc. It is preferable to select in consideration of.
  • Examples of materials that can be used as the electrode film include conductive metal oxides such as tin oxide (NESA), indium oxide, indium tin oxide (ITO), and zinc indium oxide (IZO); gold, silver, platinum, chromium, and aluminum.
  • Metals such as iron, cobalt, nickel and tungsten; inorganic conductive materials such as copper iodide and copper sulfide; conductive polymers such as polythiophene, polypyrrole and polyaniline; carbon and the like. If necessary, a plurality of these materials may be mixed and used, or two or more electrode films of different materials may be laminated and used.
  • the conductivity of the material used for the electrode film is not particularly limited as long as it does not hinder the light reception of the photoelectric conversion element more than necessary, but it is preferably as high as possible from the viewpoint of the signal strength of the photoelectric conversion element and the power consumption.
  • an ITO film having a sheet resistance value of 300 ⁇ / ⁇ or less will function sufficiently as an electrode film, but a commercially available substrate having an ITO film having a conductivity of about several ⁇ / ⁇ is also available. Therefore, it is desirable to use a substrate having such high conductivity.
  • the thickness of the ITO film (electrode film) can be arbitrarily selected in consideration of conductivity, but is usually 5 to 500 nm, preferably about 10 to 300 nm. Examples of methods for forming a film of ITO or the like include conventionally known vapor deposition methods, electron beam methods, sputtering methods, chemical reaction methods, coating methods, and the like. If necessary, the ITO film provided on the substrate may be subjected to UV-ozone treatment, plasma treatment, or the like.
  • the material of the transparent electrode film used on at least one of the light incident sides of the electrode film is ITO, IZO, SnO 2 , ATO (antimony-doped tin oxide), ZnO, AZO (Al-doped zinc oxide). , GZO (gallium-doped zinc oxide), TiO 2 , FTO (fluorine-doped tin oxide), and the like.
  • the transmittance of light incident through the transparent electrode film at the absorption peak wavelength of the photoelectric conversion layer is preferably 60% or more, more preferably 80% or more, and further preferably 95% or more. ..
  • the electrode films used between the respective photoelectric conversion layers are It is necessary to transmit light other than light having a wavelength to be detected, and it is preferable to use a material that transmits 90% or more of incident light for the electrode film, and use a material that transmits 95% or more of light. More preferable.
  • the electrode film is made plasma-free.
  • plasma-free means that the substrate is reached by not using plasma when forming the electrode film or by separating the distance from the plasma generation source to the substrate by 2 cm or more, preferably 10 cm or more, more preferably 20 cm or more. It means a state in which the plasma generated is reduced.
  • an electron beam vapor deposition apparatus EB vapor deposition apparatus
  • a pulse laser vapor deposition apparatus A method of forming a transparent electrode film using an EB evaporation device is called an EB evaporation method
  • a method of forming a transparent electrode film using a pulse laser evaporation device is called a pulse laser evaporation method.
  • a facing target type sputtering apparatus for example, a facing target type sputtering apparatus, an arc plasma vapor deposition apparatus, etc. can be mentioned.
  • the conductive film is thinner than the specified thickness, the resistance value will rapidly increase.
  • the sheet resistance of the conductive film in the photoelectric conversion element for an optical sensor which is one of the embodiments, is usually 100 to 10,000 ⁇ / ⁇ , and the film thickness can be set appropriately.
  • the thinner the transparent conductive film the smaller the amount of light absorbed, and generally the higher the light transmittance.
  • the light transmittance is high, the amount of light absorbed by the photoelectric conversion layer is increased and the photoelectric conversion ability is improved, which is very preferable.
  • the photoelectric conversion part included in the organic photoelectric conversion element of the present invention may be composed of only a photoelectric conversion layer or may include an organic thin film layer other than the photoelectric conversion layer.
  • An organic semiconductor film is generally used for the photoelectric conversion layer forming the photoelectric conversion part, but the organic semiconductor film may be a single layer or a plurality of layers.
  • a type organic semiconductor film or a mixed film thereof (bulk heterostructure) is used.
  • the number of layers is about 2 to 10 and a structure in which any one of a p-type organic semiconductor film, an n-type organic semiconductor film, or a mixed film thereof (bulk hetero structure) is laminated. Therefore, a buffer layer may be inserted between the layers.
  • the compound represented by the formula (1) of the present invention is used as a p-type semiconductor material, and fullerene or a derivative thereof which is a general n-type semiconductor material is used. It is preferable to use.
  • the organic thin film layer other than the photoelectric conversion layer forming the photoelectric conversion part is a layer other than the photoelectric conversion layer, for example, an electron transport layer, a hole transport layer, an electron block layer, a hole block. It is used as a layer, an anti-crystallization layer or an interlayer contact improvement layer.
  • an electron transport layer, a hole transport layer, an electron block layer and a hole block layer hereinafter also referred to as “carrier block layer”. This is preferable because an element that efficiently converts the electric signal can be obtained.
  • organic photoelectric conversion elements in the organic image sensor, it is common to aim at improving the performance by reducing the dark current for the purpose of high contrast and power saving.
  • the technique of inserting layers is preferred.
  • These carrier block layers are generally used in the field of organic electronic devices, and play a role of controlling the reverse transfer of holes or electrons in the constituent film of each device.
  • the electron transport layer plays a role of transporting electrons generated in the photoelectric conversion layer to the electrode film and blocking transfer of holes from the electrode film of the electron transport destination to the photoelectric conversion layer.
  • the hole transport layer plays a role of transporting generated holes from the photoelectric conversion layer to the electrode film and blocking transfer of electrons from the electrode film of the hole transport destination to the photoelectric conversion layer.
  • the electron blocking layer plays a role of preventing movement of electrons from the electrode film to the photoelectric conversion layer, preventing recombination in the photoelectric conversion layer, and reducing dark current.
  • the hole blocking layer functions to prevent movement of holes from the electrode film to the photoelectric conversion layer, prevent recombination in the photoelectric conversion layer, and reduce dark current.
  • FIG. 1 shows a typical element structure of the organic photoelectric conversion element of the present invention, but the present invention is not limited to this structure.
  • 1 is an insulating part
  • 2 is one electrode film (upper electrode film)
  • 3 is an electron block layer
  • 4 is a photoelectric conversion layer
  • 5 is a hole block layer
  • 6 is the other electrode film.
  • (Lower electrode film) and 7 each represent an insulating substrate or another organic photoelectric conversion element.
  • a readout transistor not shown in the drawing may be connected to the electrode film 2 or 6, and if the photoelectric conversion layer 4 is transparent, it may be provided on the side opposite to the side on which light is incident. It may be formed on the outside of the electrode film.
  • Light is incident on the organic photoelectric conversion element from any of the upper and lower sides unless the constituent elements other than the photoelectric conversion layer 4 extremely prevent light with the main absorption wavelength of the photoelectric conversion layer from entering. It can be from
  • Organic EL element Next, the organic EL element will be described. Since the compound represented by the formula (1) of the present invention has near-infrared emission characteristics, it is expected to be used for an organic EL device.
  • the structure has a structure having two layers, a light emitting layer and a charge transport layer, between a counter electrode composed of a cathode and an anode; an electron transport layer, a light emitting layer and a hole transport layer laminated between the counter electrodes.
  • a structure having three layers; those having three or more layers; and the like are known, and those having a single light emitting layer are known.
  • the hole transport layer has a function of injecting holes from the anode, transporting holes to the light emitting layer, facilitating injection of holes into the light emitting layer, and a function of blocking electrons.
  • the electron-transporting layer has a function of injecting electrons from the cathode, transporting the electrons to the light-emitting layer, facilitating injection of electrons into the light-emitting layer, and a function of blocking holes. Further, in the light emitting layer, the injected electrons and holes are recombined with each other to generate excitons, and the energy emitted in the process of deactivating the excitons is detected as light emission.
  • the preferred embodiments of the organic EL device will be described below.
  • An organic EL element is an element in which one layer or a plurality of layers of organic thin films are formed between electrodes of an anode and a cathode, and is an element that emits light by electric energy.
  • the anode that can be used in the organic EL element is an electrode having a function of injecting holes into the hole injection layer, the hole transport layer and the light emitting layer.
  • metal oxides, metals, alloys, and conductive materials having a work function of 4.5 eV or more are suitable.
  • the material suitable for the anode of the organic EL element is not particularly limited, but a conductive metal such as tin oxide (NESA), indium oxide, indium tin oxide (ITO), and zinc indium oxide (IZO).
  • Oxides metals such as gold, silver, platinum, chromium, aluminum, iron, cobalt, nickel and tungsten, inorganic conductive materials such as copper iodide and copper sulfide, conductive polymers such as polythiophene, polypyrrole and polyaniline and carbon Can be mentioned. Among them, it is preferable to use ITO or NESA.
  • the anode may use a plurality of materials if necessary, or may be composed of two or more layers made of different materials.
  • the resistance of the anode is not limited as long as it can supply a sufficient current for light emission of the element, but it is preferably low from the viewpoint of power consumption of the element.
  • an ITO substrate having a sheet resistance value of 300 ⁇ / ⁇ or less functions as an element electrode, but a substrate having a resistance of several ⁇ / ⁇ can be supplied. Therefore, it is desirable to use a low resistance product.
  • the thickness of ITO can be arbitrarily selected according to the resistance value, but it is usually 5 to 500 nm, preferably 10 to 300 nm. Examples of methods for forming a film of ITO or the like include a vapor deposition method, an electron beam method, a sputtering method, a chemical reaction method, and a coating method.
  • the cathode that can be used in the organic EL device is an electrode having a function of injecting electrons into the electron injection layer, the electron transport layer and the light emitting layer.
  • a metal or an alloy having a small work function (which is approximately 4 eV or less) is suitable. Specific examples thereof include platinum, gold, silver, copper, iron, tin, zinc, aluminum, indium, chromium, lithium, sodium, potassium, calcium and magnesium, which improve electron injection efficiency and improve device characteristics. Therefore, lithium, sodium, potassium, calcium or magnesium is preferable.
  • the alloy an alloy with a metal such as aluminum or silver containing these low work function metals, or an electrode having a structure in which these are laminated can be used.
  • the cathode may be a transparent electrode capable of forming a film at a low temperature.
  • the cathode film forming method include a vapor deposition method, an electron beam method, a sputtering method, a chemical reaction method, and a coating method, but are not particularly limited.
  • the resistance of the cathode is not limited as long as it can supply a sufficient current for light emission of the element, but it is preferably low from the viewpoint of the power consumption of the element, specifically, several hundreds to several ⁇ / ⁇ .
  • the thickness of the cathode is usually 5 to 500 nm, preferably 10 to 300 nm.
  • the electrode In order to extract emitted light, it is generally preferable to form the electrode on a substrate having sufficient transparency in the emission wavelength region of the device.
  • transparent substrates include glass substrates and polymer substrates.
  • soda lime glass, non-alkali glass, quartz or the like is used.
  • the substrate may have a thickness sufficient to maintain mechanical and thermal strength, and is preferably 0.5 mm or more.
  • a material of the glass a material having a small amount of ions eluted from the glass, for example, alkali-free glass is preferable.
  • commercially available soda lime glass having a barrier coat such as SiO 2 can be used.
  • the polymer substrate include polycarbonate, polypropylene, polyether sulfone, polyethylene terephthalate, and acrylic substrate.
  • the organic thin film of the organic EL element is formed of one layer or a plurality of layers between the anode and cathode electrodes.
  • the "layer” formed by the organic thin film means a hole transport layer, an electron transport layer, a hole transport light emitting layer, an electron transport light emitting layer, a hole blocking layer, an electron blocking layer, a hole injection layer, and an electron injection layer.
  • One mode of the organic EL element is shown in FIG. In FIG. 2, 1E is a substrate, 2E is an anode, 3E is a hole injection layer, 4E is a hole transport layer, 5E is a light emitting layer, 6E is an electron transport layer, and 7E is a cathode.
  • the structure of the layer forming the organic thin film in the organic EL element may be any of the following structural examples 1) to 9).
  • an electron injection layer is further provided before the electron transport layer or the electron transport light emitting layer.
  • a configuration in which the materials used in the combinations 1) to 8) are mixed, and only one layer containing the mixed material is provided.
  • a single layer formed of a material generally called a bipolar light emitting material; or a single layer containing a light emitting material and a hole transport material or an electron transport material may be provided.
  • a multilayer structure can efficiently transport charges, that is, holes and/or electrons, and recombine these charges. Further, by suppressing the quenching of charges, it is possible to prevent the stability of the device from being lowered and to improve the efficiency of light emission.
  • the hole injection layer and the hole transport layer are formed by using a hole transport material alone or by laminating a mixture of two or more kinds of the materials.
  • the hole transport material include N,N′-diphenyl-N,N′-di(3-methylphenyl)-4,4′′-diphenyl-1,1′-diamine, N,N′-dinaphthyl-N , N'-diphenyl-4,4'-diphenyl-1,1'-diamine and other triphenylamines; bis(N-allylcarbazole) or bis(N-alkylcarbazole)s; pyrazoline derivatives, stilbene compounds, Heterocyclic compounds represented by hydrazone compounds, triazole derivatives, oxadiazole derivatives and porphyrin derivatives; in the polymer system, polycarbonate or styrene derivative having the above monomer in the side chain, polyvinylcarbazole, polysilane and the like can be
  • the hole injection layer provided between the hole transport layer and the anode for improving the hole injection property is a phthalocyanine derivative, m-MTDATA(4,4′,4′′-tris[phenyl(m-tolyl ) Amino]triphenylamine) and other starburst amines, and in a polymer system, those made of polythiophene such as PEDOT (poly(3,4-ethylenedioxythiophene)) and polyvinylcarbazole derivatives.
  • the electron transport layer is formed by using an electron transport material alone or by laminating a mixture of two or more kinds of the materials.
  • an electron transport material it is necessary to efficiently transport electrons from the negative electrode between electrodes to which an electric field is applied.
  • the electron transport material has a high electron injection efficiency, and it is preferable that the injected electrons are efficiently transported.
  • the electron transport material is required to be a substance having a high electron affinity, a high electron mobility, excellent stability, and an impurity which becomes a trap and is unlikely to be generated during production and use.
  • quinolinol derivative metal complex represented by tris(8-quinolinolato)aluminum complex, tropolone metal complex, perylene derivative, perinone derivative, naphthalimide derivative, naphthalic acid derivative, oxazole derivative, oxadiazole
  • examples thereof include derivatives, thiazole derivatives, thiadiazole derivatives, triazole derivatives, bisstyryl derivatives, pyrazine derivatives, phenanthroline derivatives, benzoxazole derivatives, and quinoxaline derivatives, but are not particularly limited.
  • These electron transport materials may be used alone, but may be used by being laminated or mixed with different electron transport materials.
  • Examples of the electron injection layer provided between the electron transport layer and the cathode for improving the electron injection property include metals such as cesium, lithium, and strontium, and lithium fluoride.
  • the hole blocking layer is formed by stacking the hole blocking substances individually or in a mixture of two or more kinds.
  • the hole blocking substance is preferably a phenanthroline derivative such as bathophenanthroline or bathocuproine, a silole derivative, a quinolinol derivative metal complex, an oxadiazole derivative or an oxazole derivative.
  • the hole blocking substance is not particularly limited as long as it is a compound that can prevent the holes from flowing out of the device from the cathode side to lower the luminous efficiency.
  • the light emitting layer means an organic thin film that emits light, and can be said to be, for example, a hole transporting layer, an electron transporting layer, or a bipolar transporting layer having a strong light emitting property.
  • the light emitting layer may be formed of a light emitting material (host material, dopant material, etc.), which may be a mixture of a host material and a dopant material, or a single host material. Each of the host material and the dopant material may be one kind or a combination of a plurality of materials.
  • the dopant material may be contained in the whole host material, partially contained, or either.
  • the dopant material may be laminated, dispersed, or any of them.
  • Examples of the light emitting layer include the hole transport layer and the electron transport layer described above.
  • As the material used for the light emitting layer a carbazole derivative, anthracene derivative, naphthalene derivative, phenanthrene derivative, phenylbutadiene derivative, styryl derivative, pyrene derivative, perylene derivative, quinoline derivative, tetracene derivative, perylene derivative, quinacridone derivative, coumarin derivative, Examples thereof include porphyrin derivatives and phosphorescent metal complexes (Ir complex, Pt complex, Eu complex, etc.).
  • a method for forming an organic thin film of an organic EL element is a vacuum process such as resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, solution process such as casting, spin coating, dip coating, blade coating, and wire bar.
  • Coating methods such as coating and spray coating, printing methods such as inkjet printing, screen printing, offset printing, letterpress printing, soft lithography methods such as microcontact printing method, etc., and a combination of these methods is adopted. You can.
  • the thickness of each layer is not limited because it depends on the resistance value and charge mobility of each substance, but is selected from 0.5 to 5,000 nm. It is preferably 1 to 1,000 nm, more preferably 5 to 500 nm.
  • one or a plurality of thin films such as a light emitting layer, a hole transporting layer and an electron transporting layer, which are present between the anode and cathode electrodes, are represented by the above formula (1).
  • a device that efficiently emits light even with low electric energy can be obtained.
  • the compound represented by the above formula (1) can be suitably used as a hole transport layer, a light emitting layer, and an electron transport layer.
  • they can be used in combination with the above-mentioned electron transporting material, hole transporting material, light emitting material or the like, or can be used in combination.
  • the dopant material include perylene derivatives such as bis(diisopropylphenyl)perylenetetracarboxylic acid imide, perinone derivatives, 4- (Dicyanomethylene)-2methyl-6-(p-dimethylaminostyryl)-4Hpyran (DCM) and its analogs, metal phthalocyanine derivatives such as magnesium phthalocyanine and aluminum chlorophthalocyanine, rhodamine compounds, deazaflavin derivatives, coumarin derivatives, oxazine Compounds, squarylium compounds, violanthrone compounds, Nile red, pyrromethene derivatives such as 5-cyanopyrromethene-BF 4 complex, and Eu complexes having acetylacetone or benzoylacetone and phenanthroline as a phosphorescent material, Li complex, Ru complex, A porphyrin such
  • the concentration quenching phenomenon will occur, so normally use an amount of 30% by mass or less based on the host material. It is preferably 20% by mass or less, and more preferably 10% by mass or less.
  • the host material can be formed by a co-evaporation method, but it may be mixed with the host material in advance and then evaporated simultaneously. It is also possible to use it by sandwiching it between the host materials. In this case, the host material may be laminated as a single layer or two or more dopant layers.
  • dopant layers may be formed by using the dopant material alone or may be formed by mixing the dopant materials.
  • the dopant material may be polyvinyl chloride, polycarbonate, polystyrene, polystyrene sulfonic acid, poly(N-vinylcarbazole), poly(methyl)(meth)acrylate, polybutyl methacrylate, polyester, polysulfone as a polymer binder, Solvent-soluble resin such as polyphenylene oxide, polybutadiene, hydrocarbon resin, ketone resin, phenoxy resin, polysulfone, polyamide, ethyl cellulose, vinyl acetate, ABS resin (acrylonitrile-butadiene-styrene copolymer resin), polyurethane resin, phenol resin, It is also possible to dissolve or disperse it in a curable resin such as xylene resin, petroleum resin, urea resin, melamine resin, unsaturated polyester resin, alkyd resin, epoxy
  • the organic EL element can be suitably used as a flat panel display. It can also be used as a flat backlight, and in this case, any of those emitting colored light and those emitting white light can be used.
  • the backlight is mainly used for improving the visibility of a display device that does not emit light by itself, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display board, a sign, and the like.
  • a liquid crystal display device, in particular, a conventional backlight for personal computer applications which has been a problem to be thinned, is difficult to be thinned because it includes a fluorescent lamp and a light guide plate. Since the backlight using the element is characterized by being thin and lightweight, the above problems are solved. Similarly, it can be usefully used for lighting.
  • Organic semiconductor laser device Since the compound represented by the above formula (1) is a compound having near-infrared emission characteristics, it is expected to be used as an organic semiconductor laser device. That is, if the organic semiconductor laser device containing the compound represented by the above formula (1) is combined with a resonator structure and carriers are efficiently injected to sufficiently increase the density of the excited state, the light is amplified. It is expected that laser oscillation will occur. Conventionally, it has been said that it is very difficult to generate a high-density excited state required for laser oscillation by electric excitation in an organic semiconductor laser device because only laser oscillation by optical excitation is observed. However, it is expected that highly efficient light emission (electroluminescence) may occur by using the organic semiconductor element containing the compound represented by the above formula (1).
  • the irradiation of the incident light was carried out by PVL-3300 (manufactured by Asahi Bunko Co., Ltd.) with a light source having an irradiation light intensity of 130 ⁇ W and a half width of 20 nm in the range of 350 nm to 1100 nm.
  • Example 1 a compound represented by the following formula (2-1) was prepared by using methyl 3-methoxy-2-thienothiophenecarboxylate as a raw material and by a method similar to the previously reported method (eg, Tetrahedron Letters, 2008, 49, 3716-3721).
  • the compound of the present invention represented by the following formula (1-1) was synthesized according to the following synthetic flow using the compound as a starting material.
  • Step 1 Synthesis of Intermediate Compound Represented by Formula (2-2)
  • -Thienothienyl)methanone 32 mmol
  • ethanol 350 mL
  • acetic acid 75 mL
  • ammonium acetate 200 mmol
  • ammonium chloride 35 mmol
  • Step 2 Synthesis of Intermediate Compound Represented by Formula (2-3)
  • the compound represented by Formula (2-2) (8.4 mmol) obtained in Step 1, toluene (350 mL) and After adding triethylamine (84 mmol) and heating at 80 degreeC, the boron trifluoride diethyl ether complex (84 mmol) was dripped and it heated up to 100 degreeC and stirred overnight.
  • the reaction solution was air-cooled and neutralized with a saturated aqueous sodium hydrogen carbonate solution, and the resulting solid was collected by filtration to obtain an intermediate compound represented by the formula (2-3) (3.0 mmol, yield). Rate: 36%).
  • Step 3 Synthesis of Compound 1 of the Present Invention Represented by Formula (1-1)
  • the intermediate compound (1.8 mmol) represented by formula (2-3) obtained in Step 2 and dichloromethane are added. (60 mL) was added and the mixture was stirred, boron tribromide (9 mL) was added dropwise, and the mixture was stirred at room temperature for 5 hours. A precipitate formed by adding saturated aqueous sodium hydrogen carbonate was collected by filtration and repeatedly washed with water and methanol to obtain a black compound 1 of the present invention represented by the formula (1-1) (1.6 mmol, Yield: 89%).
  • Example 3 (Step 5) Synthesis of Compound 3 of the Present Invention Represented by Formula (1-3) Instead of the compound represented by Formula (2-1), (1-acetyl-4-fluorophenyl)(5-
  • the compound 3 of the present invention represented by the formula (1-3) was obtained according to steps 1 to 3 of Example 1 except that (benzobisthiadiazole)-3-methoxy-2-thienothienyl)methanone was used. (Yield: 55%).
  • Comparative Example 1 Synthesis of Comparative Compound 1 A comparative compound 1 represented by the following formula (3-1) was obtained according to the method described in Patent Document 2. The ⁇ max of the chloroform solution of this compound was 790 nm.
  • Comparative example 2 Synthesis of Comparative Compound 2 According to the method described in Patent Document 6, Comparative Compound 2 represented by the following formula (3-2) was obtained. The ⁇ max of the chloroform solution of this compound was 769 nm.
  • Example 5 Preparation of Organic Thin Film 1 of the Present Invention and Measurement of Absorption Spectrum
  • the compound 1 of the present invention represented by the formula (1-1) obtained in Example 1 was deposited on a glass substrate under vacuum by a resistance heating method to obtain The organic thin film 1 of the invention was obtained.
  • ⁇ max of the absorption spectrum was 870 nm.
  • Example 6 Preparation of Organic Thin Film 2 of the Present Invention and Absorption Spectrum Measurement
  • the formula (1-2 obtained in Example 2 was used.
  • the organic thin film 2 of the present invention was obtained according to Example 5 except that the compound 2 of the present invention represented by the formula (4) was used.
  • ⁇ max of the absorption spectrum was 905 nm.
  • Example 7 Preparation of Organic Thin Film 3 of the Present Invention and Measurement of Absorption Spectrum
  • the formula (1-3 obtained in Example 3 was used.
  • the organic thin film 3 of the present invention was obtained in the same manner as in Example 5 except that the compound 3 of the present invention represented by the formula (4) was used.
  • ⁇ max of the absorption spectrum was 960 nm.
  • Example 8 Preparation of Organic Thin Film 4 of the Present Invention and Absorption Spectrum Measurement
  • the formula (1-4 obtained in Example 4 was used.
  • the organic thin film 3 of the present invention was obtained in the same manner as in Example 5 except that the compound 3 of the present invention represented by the formula (4) was used.
  • ⁇ max of the absorption spectrum was 984 nm.
  • Comparative Example 3 Preparation of Comparative Organic Thin Film 1 and Measurement of Absorption Spectrum Instead of the compound 1 of the present invention represented by the formula (1-1) obtained in Example 1, the formula (3-1) obtained in Comparative Example 1 was obtained. Comparative organic thin film 1 was obtained according to Example 5 except that comparative compound 1 represented by As a result of measuring an absorption spectrum of the obtained organic thin film 1 for comparison on the glass substrate, ⁇ max of the absorption spectrum was 760 nm.
  • Comparative Example 4 Preparation of Comparative Organic Thin Film 2 and Absorption Spectrum Measurement Instead of the compound 1 of the present invention represented by the formula (1-1) obtained in Example 1, the formula (3-2) obtained in Comparative Example 2 was obtained. Comparative organic thin film 2 was obtained according to Example 5 except that comparative compound 2 represented by As a result of measuring the absorption spectrum of the obtained organic thin film 2 for comparison on the glass substrate, ⁇ max of the absorption spectrum was 810 nm.
  • Example 9 Preparation and Evaluation of Organic Photoelectric Conversion Element 1 Containing Organic Thin Film of the Present Invention
  • an ITO transparent conductive glass manufactured by Geomatec, ITO film thickness 150 nm
  • the represented compound 1 of the present invention was vacuum-deposited by resistance heating to form an organic thin film having a thickness of 100 nm.
  • aluminum was vacuum-deposited on the obtained organic thin film by resistance heating vacuum deposition to form an electrode having a thickness of 100 nm, thereby producing an organic photoelectric conversion element 1 of the present invention.
  • the maximum photocurrent wavelength was 906 nm as a result of measuring the photocurrent response when a voltage of 1 V was applied in the state where light was irradiated from 350 nm to 1100 nm using ITO and aluminum as electrodes.
  • Example 10 Preparation and Evaluation of Organic Photoelectric Conversion Element 2 Containing Organic Thin Film of the Present Invention
  • ITO transparent conductive glass manufactured by Geomatec, ITO film thickness 150 nm
  • the represented compound 2 of the present invention was vacuum-deposited by resistance heating to form an organic thin film having a thickness of 100 nm.
  • aluminum was vacuum-deposited on the obtained organic thin film by resistance heating vacuum deposition to form an electrode having a thickness of 100 nm, thereby producing an organic photoelectric conversion element 2 of the present invention.
  • the maximum photocurrent wavelength was 981 nm as a result of measuring the photocurrent response when a voltage of 1 V was applied in a state where light irradiation of 350 nm to 1100 nm was performed using ITO and aluminum as electrodes.
  • Example 11 Preparation and Evaluation of Organic Photoelectric Conversion Element 3 Containing Organic Thin Film of the Present Invention
  • an ITO transparent conductive glass manufactured by Geomatec Co., Ltd., ITO film thickness 150 nm
  • the represented compound 3 of the present invention was vacuum-deposited by resistance heating to form an organic thin film having a thickness of 100 nm.
  • aluminum was vacuum-deposited on the obtained organic thin film by resistance heating vacuum deposition to form an electrode having a thickness of 100 nm, thereby producing an organic photoelectric conversion element 3 of the present invention.
  • the maximum photocurrent wavelength was 990 nm as a result of measuring the photocurrent response when a voltage of 1 V was applied in a state where light irradiation of 350 nm to 1100 nm was performed using ITO and aluminum as electrodes.
  • Comparative Example 5 Preparation and Evaluation of Comparative Organic Photoelectric Conversion Device 1 Comprising Organic Thin Film for Comparison Comparative compound 1 represented by formula (3-1) was used instead of compound 1 represented by formula (1-1)
  • a comparative organic photoelectric conversion element 1 was prepared in the same manner as in Example 9 except that the photocurrent response was measured.
  • the maximum photocurrent wavelength was 772 nm as a result of measuring the photocurrent response when a voltage of 1 V was applied in the state where light was irradiated from 350 nm to 1100 nm using ITO and aluminum as electrodes.
  • Comparative Example 6 Preparation and Evaluation of Comparative Organic Photoelectric Conversion Device 2 Comprising Organic Thin Film for Comparison Comparative compound 2 represented by formula (3-2) was used instead of compound 1 represented by formula (1-1)
  • a comparative organic photoelectric conversion element 2 was prepared in the same manner as in Example 9 except that the photocurrent response was measured.
  • the maximum photocurrent wavelength was 824 nm as a result of measuring the photocurrent response when a voltage of 1 V was applied in a state where light irradiation of 350 nm to 1100 nm was performed using ITO and aluminum as electrodes.
  • the organic photoelectric conversion element of the example containing the organic thin film of the compound of the present invention shows the maximum photocurrent wavelength on the longer wavelength side than the organic photoelectric conversion element for comparative examples, and emits near infrared light of 900 nm or more. Obviously it can be absorbed. Further, the organic photoelectric conversion element including the organic thin film of the present invention shows a high contrast ratio for light in the near infrared region, and the compound of the present invention is effective as a material for an image sensor or an optical sensor. all right. It was found that it has a high contrast ratio even in the near-infrared region and is effective as a material for an image sensor.
  • the compound of the present invention having a main absorption band in the near-infrared region is easy to synthesize and has both the absorption property in the near-infrared region and the vaporizable property, so that the organic electronics operating in the near-infrared region Very useful as a device material.
  • FIG. 1 Insulating Part 2 Upper Electrode Film 3 Electron Block Layer 4 Photoelectric Conversion Layer 5 Hole Block Layer 6 Lower Electrode Film 7 Insulating Substrate or Other Photoelectric Conversion Element

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Light Receiving Elements (AREA)
  • Photovoltaic Devices (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

近赤外領域に広く吸収を持ち、近赤外領域での光電変換効率に優れた有機化合物、該化合物を含有する近赤外光吸収材料、該近赤外光吸収材料を含む有機薄膜及び該有機薄膜を含む有機エレクトロデバイス並びに有機光電変換素子を提供すること。本明細書では、下記式(1)(式(1)中、R1乃至R12は、それぞれ独立に水素原子、脂肪族炭化水素基、アルコキシ基、アルキルチオ基、芳香族基、複素環基、ハロゲン原子、水酸基、メルカプト基、ニトロ基、置換アミノ基、非置換アミノ基、シアノ基、スルホ基、又はアシル基を表す。但し、R1乃至R4の少なくとも一つは水素原子以外を表し、かつR5乃至R8の少なくとも一つは水素原子以外を表す。)で表される化合物が提供される。

Description

ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、有機薄膜及び有機エレクトロニクスデバイス
 本発明は、近赤外光領域に吸収帯を有する新規なジベンゾピロメテンホウ素キレート化合物、並びに該化合物を含む近赤外光吸収材料、薄膜及び有機エレクトロニクスデバイスに関する。
 700乃至2500nmの波長領域に吸収帯を有する近赤外光吸収材料は、従来から産業上の様々な用途への利用が検討されてきた。その具体的な用途としては、CD-R(Compact Disc-Recordable)等の光情報記録媒体;サーマルCTP(Computer To Plate)、フラッシュトナー定着、レーザー感熱記録等の印刷用途;熱遮断フィルム等が挙げられる。また、選択的に特定波長領域の光を吸収するという特性を生かして、PDP(Plasma Display Panel)等に用いられる近赤外光カットフィルターや、植物成長調整用フィルム等にも使用されている。更には、近赤外光吸収材料を含む色素を溶媒に溶解又は分散させることにより、近赤外光吸収インクとして使用することも可能である。該近赤外光吸収インクによる印字物は、近赤外光検出器等でのみ読み取りが可能であって目視での認識が困難(不可視画像)なことから、例えば偽造防止等を目的とした印字等に使用される。
 このような不可視画像形成用の近赤外光吸収材料としては、無機系近赤外光吸収材料と有機系近赤外光吸収材料が知られている。このうち、無機系近赤外光吸収材料としては、イッテルビウム等の希土類金属や、銅リン酸結晶化ガラス等が挙げられる。しかしながら、これら無機系近赤外光吸収材料は近赤外領域の光吸収能が十分でないため、不可視画像の形成のために近赤外光吸収材料が単位面積あたり多量に必要となる。しかも形成した不可視画像の上にさらに可視画像を形成すると、下地となる不可視画像表面の凹凸が可視画像の表面状態に影響を及ぼす場合がある。
 それに対し、有機系近赤外光吸収材料は近赤外領域の光の吸収性が十分であるため、不可視画像の形成のために必要な単位面積あたりの近赤外線吸収材料の使用量を無機系近赤外光吸収材料よりも減らすことが可能であり、無機系近赤外光吸収材料を使用した場合のような不都合は生じない。そのため、現在に至るまで多くの有機系近赤外光吸収材料の開発が進められている。
 ところで、有機エレクトロニクスデバイスは、原材料に希少金属などを含まず、安定した供給が可能であるのみならず、無機材料には無い屈曲性を有する点や湿式成膜法による製造が可能な点から、近年非常に興味が持たれている。有機エレクトロニクスデバイスの具体例としては有機EL素子、有機太陽電池素子、有機光電変換素子及び有機トランジスタ素子等が挙げられ、さらに、有機材料の特色を活かした用途が検討されている。
 これらの有機エレクトロニクスデバイスのうち、有機太陽電池素子及び有機光電変換素子についてはこれまで主に可視光領域での吸光特性に関する研究がなされている。そして、現在はバルクヘテロジャンクション構造による光電変換効率の向上と暗電流値抑制の両立について検討が行われている。また更なる性能の向上に加えて、セキュリティ用途及び生体イメージング用途等への新たな用途展開のために、近赤外領域での吸収特性が注目され始めている。しかしながら、近赤外領域の光吸収色素の有機太陽電池素子及び有機光電変換素子への応用展開は未だ始まったばかりであり、その報告数は多くない。例えば特許文献1では、先に述べた赤外線吸収材料の一つであるスクアリリウム等の既存の色素を、近赤外領域での光電変換材料に適用することを目的とした検討がなされているが、スクアリリウムを用いた有機エレクトロニクス材料は堅牢性に乏しく実用的ではない。
 非特許文献1及び2では、赤色又は近赤外光領域に吸収帯から蛍光帯を示し、堅牢性の優れた色素としてボロンジピロメテン(boron-dipyrromethene、以下「BODIPY」と称す。)色素に関する報告がなされている。
 また特許文献2には、単純なBODIPY色素は500nm付近に強い吸収帯を有するとともに、π共役系の拡張や、電子供与性置換基を導入した芳香族基の導入により、近赤外光領域まで吸収波長を伸ばすことが可能であることが記載されている。
 更に特許文献3乃至5には、BODIPY骨格を有する化合物をB-Oキレート化することにより、化合物の光に対する堅牢性が更に向上すると共に、吸収波長を長波長側にシフトさせることができることが記載されており、特に、特許文献3及び4には、これらB-Oキレート化した化合物を有機太陽電池素子及び有機光電変換素子に応用した例も記載されている。しかしながら、特許文献3及び4に記載の化合物は吸収波長の長波長化が充分とは言えず、また、特許文献5では吸収波長や近赤外領域での光電変換特性については何ら言及されていない。
 特許文献6には、チオフェン環とB-Oキレート化した化合物を用いた近赤外領域に吸収を有する光電変換素子が例示されているが、900nmを超える光に対する明暗比は低く、近赤外光電変換用途に使用するためには更なる光電変換波長の長波長化、近赤外領域における光電変換特性の高感度化が求められている。
特開2017-137264号公報 特開1999-255774号公報 特開2012-199541号公報 特開2016-166284号公報 国際公開第2013/035303号 国際公開第2018/079653号
Chem.Soc.Rev.,2014,43,4778-4823 Chem.Rev.,2007,107,4891-4932
 本発明の目的は、近赤外領域に広く吸収を持ち、近赤外領域での光電変換効率に優れた有機化合物、該化合物を含有する近赤外光吸収材料、該近赤外光吸収材料を含む有機薄膜及び該有機薄膜を含む有機エレクトロデバイス並びに有機光電変換素子を提供することにある。
 本発明者らは前記諸課題を解決するべく考究し、有機エレクトロニクスデバイスへ用いた際に十分な性能を発揮するような、新規のジベンゾピロメテンホウ素キレート化合物を開発し、加えて、これを用いた有機エレクトロニクスデバイスが、近赤外光電変換素子として機能することを見出し、本発明を完成するに至った。即ち、本発明は下記の通りである。
 [1]下記式(1)
Figure JPOXMLDOC01-appb-C000003
(式(1)中、R乃至Rは、それぞれ独立に水素原子、脂肪族炭化水素基、アルコキシ基、アルキルチオ基、芳香族基、複素環基、ハロゲン原子、水酸基、メルカプト基、ニトロ基、置換アミノ基、非置換アミノ基、シアノ基、スルホ基、又はアシル基を表す。但し、R乃至Rの少なくとも一つは水素原子以外を表し、かつR乃至Rの少なくとも一つは水素原子以外を表す。R乃至R12は、それぞれ独立に水素原子、脂肪族炭化水素基、アルコキシ基、アルキルチオ基、芳香族基、複素環基、ハロゲン原子、水酸基、メルカプト基、ニトロ基、置換アミノ基、非置換アミノ基、シアノ基、スルホ基又はアシル基を表す。)で表される化合物、
 [2]R乃至Rの少なくとも一つが脂肪族炭化水素基、芳香族基、複素環基又はハロゲン原子であって、かつR乃至Rの少なくとも一つが脂肪族炭化水素基、芳香族基、複素環基又はハロゲン原子である前項[1]に記載の化合物、
 [3]R乃至Rの少なくとも一つがハロゲン原子であって、かつR乃至Rの少なくとも一つがハロゲン原子である前項[2]に記載の化合物、
 [4]R乃至Rの少なくとも一つが芳香族基又は複素環基であって、かつR乃至Rの少なくとも一つが芳香族基又は複素環基である前項[2]に記載の化合物、
 [5]RとRが同一であって、RとRが同一であって、RとRが同一であって、かつRとRが同一である前項[1]乃至[4]のいずれか一項に記載の化合物、
 [6]R及びR10の少なくとも一つが芳香族基又は複素環基であって、かつR11及びR12の少なくとも一つが芳香族基又は複素環基である前項[1]乃至[5]のいずれか一項に記載の化合物、
 [7]R及びR12が水素原子であって、かつR10及びR11が芳香族基又は複素環基である前項[6]に記載の化合物、
 [8]R10及びR11が下記式(2)
Figure JPOXMLDOC01-appb-C000004
(式(2)中、R21乃至R25は、それぞれ独立に水素原子、アルコキシ基、アルキルチオ基、芳香族基、複素環基、置換アミノ基、非置換アミノ基又は電子受容性の置換基若しくは原子を表し、R21とR22が結合して、又はR22とR23が結合して、芳香族環又は複素環を形成してもよい。但し、R21乃至R25の少なくとも一つは電子受容性の置換基若しくは原子を表すか、又はR21とR22が結合して、若しくはR22とR23が結合して電子受容性の芳香環若しくは複素環を形成する。)で表される置換基である前項[1]乃至[7]のいずれか一項に記載の化合物、
 [9]R21乃至R25の少なくとも一つが、ハロゲン原子、ホルミル基、アセチル基、アルコキシカルボニル基、トリフルオロメチル基、シアノ基、ニトロ基、トルエンスルホニル基、メタンスルホニル基、トリフルオロメタンスルホニル基、ピリジル基、キノリル基、ピラジル基、キノキサリル基、チアゾリル基、ベンゾチアゾリル基、インドリル基、ベンゾチアジアゾリル基、スクシンイミドイル基及びフタルイミドイル基からなる群より選択される電子受容性の置換基又は原子である前項[8]に記載の化合物、
 [10]R21とR22が結合して、又はR22とR23が結合して、窒素原子及び/又は硫黄原子を含む複素環を形成している前項[8]に記載の化合物、
 [11]前項[1]乃至[10]いずれか一項に記載の化合物を含む近赤外光吸収材料、
 [12]前項[11]に記載の近赤外光吸収材料を含む有機薄膜、
 [13]前項[12]に記載の有機薄膜を含む有機エレクトロニクスデバイス、及び
 [14]前項[12]に記載の有機薄膜を含む有機光電変換素子。
 本発明の新規な化合物を用いた有機薄膜は近赤外光領域に主たる吸収帯を有するものである。また、該化合物及び/又は該有機薄膜を用いることにより、近赤外光電変換素子が実現する。該化合物は、各種有機エレクトロニクスデバイスへの利用が可能である。
図1は、本発明の有機光電変換素子の実施態様を例示した断面図を示す。 図2は、有機エレクトロルミネッセンス素子の層構成例を示す概略断面図を示す。
 以下、本発明の内容について詳細に説明する。ここに記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づくものであるが、本発明はそれらの実施態様や具体例に限定されない。なお、本明細書において、近赤外領域とは750乃至2500nmの範囲内にある光の波長領域を意味し、近赤外光吸収材料(又は色素)とは近赤外光領域に主たる吸収波長をもつ材料(又は色素)を、近赤外発光材料(又は色素)とは近赤外光領域において発光する材料(又は色素)をそれぞれ意味する。
 本発明の化合物は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000005
 式(1)中、R乃至Rは、それぞれ独立に水素原子、脂肪族炭化水素基、アルコキシ基、アルキルチオ基、芳香族基、複素環基、ハロゲン原子、水酸基、メルカプト基、ニトロ基、置換アミノ基、非置換アミノ基、シアノ基、スルホ基、又はアシル基を表す。但し、R乃至Rの少なくとも一つは水素原子以外を表し、かつR乃至Rの少なくとも一つは水素原子以外を表す。
 式(1)中のR乃至Rが表す脂肪族炭化水素基は、飽和又は不飽和の直鎖状、分岐鎖状又は環状の脂肪族炭化水素であることができ、その炭素数は1乃至30が好ましく、1乃至20がより好ましく、3乃至10がさらに好ましい。ここで、飽和又は不飽和の直鎖状、分岐鎖状又は環状の脂肪族炭化水素基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、アリル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-セチル基、n-ヘプタデシル基、n-ブテニル基、2-エチルへキシル基、3-エチルヘプチル基、4-エチルオクチル基、2-ブチルオクチル基、3-ブチルノニル基、4-ブチルデシル基、2-ヘキシルデシル基、3-オクチルウンデシル基、4-オクチルドデシル基、2-オクチルドデシル基、2-デシルテトラデシル基、シクロプロピル基、シクロブチル基、シクロペンチル基及びシクロヘキシル基等が挙げられる。
 式(1)中のR乃至Rが表す脂肪族炭化水素基としては、直鎖状又は分岐鎖状の脂肪族炭化水素基であることが好ましく、直鎖状又は分岐鎖状のアルキル基であることがより好ましく、n-ブチル基、n-ヘキシル基、n-オクチル基、n-デシル基、n-ドデシル基、2-エチルへキシル基、2-メチルプロピル基又は2-ブチルオクチル基であることが更に好ましく、n-ヘキシル基、n-オクチル基又は2-メチルプロピル基であることが特に好ましい。
 式(1)中のR乃至Rが表すアルコキシ基とは、酸素原子とアルキル基が結合した置換基であり、アルコキシ基中のアルキル基としては、例えば式(1)中のR乃至Rが表す脂肪族炭化水素基の項に具体例として記載したアルキル基が挙げられる。式(1)中のR乃至Rが表すアルコキシ基は、例えばアルコキシ基等の置換基を有していてもよい。
 式(1)中のR乃至Rが表すアルキルチオ基とは、硫黄原子とアルキル基が結合した置換基であり、アルキルチオ基中のアルキル基としては、例えば式(1)中のR乃至Rが表す脂肪族炭化水素基の項に具体例として記載したアルキル基が挙げられる。式(1)中のR乃至Rが表すアルキルチオ基は、例えばアルキルチオ基等の置換基を有していてもよい。
 式(1)中のR乃至Rが表す芳香族基とは、芳香族化合物の芳香環から水素原子を一つ除いた残基であれば特に限定されず、例えばフェニル基、ビフェニル基、インデニル基、ナフチル基、アントリル基、フルオレニル基、ピレニル基、フェナンスニル基及びメスチル基等が挙げられ、フェニル基又はナフチル基が好ましく、フェニル基がより好ましい。尚、芳香族基と成り得る芳香族化合物は置換基を有していてもよく、該有していてもよい置換基は特に限定されないが、炭素数1乃至4のアルキル基、ハロゲン原子又はフェニル基が好ましく、メチル基、ハロゲン原子又はフェニル基がより好ましい。
 式(1)中のR乃至Rが表す複素環基とは、複素環化合物の複素環から水素原子を一つ除いた残基であれば特に限定されず、例えばフラニル基、チエニル基、チエノチエニル基、ピロリル基、イミダゾリル基、N-メチルイミダゾリル基、チアゾリル基、オキサゾリル基、ピリジル基、ピラジル基、ピリミジル基、キノリル基、インドリル基、ベンゾピラジル基、ベンゾピリミジル基、ベンゾチエニル基、ベンゾチアゾリル基、ピリジノチアゾリル基、ベンゾイミダゾリル基、ピリジノイミダゾリル基、N-メチルベンゾイミダゾリル基、ピリジノ-N-メチルイミダゾリル基、ベンゾオキサゾリル基、ピリジノオキサゾリル基、ベンゾチアジアゾリル基、ピリジノチアジアゾリル基、ベンゾオキサジアゾリル基、ピリジノオキサジアゾリル基、カルバゾリル基、フェノキサジニル基及びフェノチアジニル基等が挙げられ、チエニル基、チエノチエニル基、チアゾリル基、ピリジル基、ベンゾチアゾリル基、ベンゾチアジアゾリル基又はピリジノチアジアゾリル基が好ましく、チエニル基、チアゾリル基、ベンゾチアゾリル基又はベンゾチアジアゾリル基がより好ましい。尚、複素環基と成り得る複素環化合物は置換基を有していてもよく、該有していても良い置換基は特に限定されない。
 式(1)中のR乃至Rが表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられ、フッ素原子又は塩素原子が好ましく、フッ素原子がより好ましい。
 式(1)中のR乃至Rが表す置換アミノ基は、アミノ基の水素原子の一つ又は二つが、置換基で置換された置換基である。置換アミノ基の有する置換基としては、アルキル基又は芳香族基が好ましく、芳香族基がより好ましい。これら置換基の具体例としては、式(1)中のR乃至Rが表す脂肪族炭化水素基の項に記載したアルキル基及び式(1)中のR乃至Rが表す芳香族基と同じものが挙げられる。
 式(1)中のR乃至Rが表す非置換アミノ基とはNH基を意味する。
 式(1)中のR乃至Rが表すアシル基とは、カルボニル基と芳香族基又はアルキル基が結合した置換基であり、アシル基中のアルキル基及び芳香族基としては、式(1)中のR乃至Rが表す脂肪族炭化水素基の項に記載したアルキル基、及び式(1)中のR乃至Rが表す芳香族基と同じものが挙げられる。
 式(1)におけるR乃至Rとしては、R乃至Rの少なくとも一つが脂肪族炭化水素基、芳香族基、複素環基、ハロゲン原子又は置換アミノ基であって、かつR乃至Rの少なくとも一つが脂肪族炭化水素基、芳香族基、複素環基、ハロゲン原子又は置換アミノ基であることが好ましく、R乃至Rの少なくとも一つが脂肪族炭化水素基、芳香族基、複素環基又はハロゲン原子であって、かつR乃至Rの少なくとも一つが脂肪族炭化水素基、芳香族基、複素環基又はハロゲン原子であることがより好ましく、R乃至Rのうちの一つが脂肪族炭化水素基、芳香族基、複素環基又はハロゲン原子であって残りの三つが水素原子であり、かつR乃至Rのうちの一つが脂肪族炭化水素基、芳香族基、複素環基又はハロゲン原子であって残りの三つが水素原子であることが更に好ましく、R乃至Rのうちの一つが芳香族基、複素環基又はハロゲン原子であって残りの三つが水素原子であり、かつR乃至Rのうちの一つが芳香族基、複素環基又はハロゲン原子であって残りの三つが水素原子であることが特に好ましく、R乃至Rのうちの一つがハロゲン原子であって残りの三つが水素原子であり、かつR乃至Rのうちの一つがハロゲン原子であって残りの三つが水素原子であることが最も好ましい。
 また、上記したR乃至Rのうちの一つが置換基又はハロゲン原子であって残りの三つが水素原子であり、かつR乃至Rのうちの一つが置換基又はハロゲン原子であって残りの三つが水素原子である態様の場合の置換基又はハロゲン原子の置換位置は、R及びR、又はR及びRが好ましい。なお、置換基とは、R乃至Rとして挙げられたうち、水素原子及びハロゲン原子以外のものをいう。 より詳しくは、R及びRがそれぞれ独立に脂肪族炭化水素基、芳香族基、複素環基、ハロゲン原子又は置換アミノ基であってR、R乃至R及びRが水素原子であるか、R及びRがそれぞれ独立に脂肪族炭化水素基、芳香族基、複素環基、ハロゲン原子又は置換アミノ基であってR、R、R、R、R及びRが水素原子であることが好ましく、R及びRがそれぞれ独立に脂肪族炭化水素基、芳香族基、複素環基又はハロゲン原子であってR、R乃至R及びRが水素原子であるか、R及びRがそれぞれ独立に脂肪族炭化水素基、芳香族基、複素環基又はハロゲン原子であってR、R、R、R、R及びRが水素原子であることがより好ましく、R及びRがそれぞれ独立に芳香族基、複素環基又はハロゲン原子であってR、R乃至R及びRが水素原子であるか、R及びRがそれぞれ独立に芳香族基、複素環基又はハロゲン原子であってR、R、R、R、R及びRが水素原子であることが更に好ましく、R及びRがそれぞれ独立にハロゲン原子であってR、R乃至R及びRが水素原子であるか、R及びRがそれぞれ独立にハロゲン原子であってR、R、R、R、R及びRが水素原子であることが特に好ましい。
 更には、式(1)におけるR乃至Rとしては、RとRが同一であって、RとRが同一であって、RとRが同一であって、かつRとRが同一であることも好ましい態様である。
 例えば、上記したR及びR、又はR及びRが置換基又はハロゲン原子であってそれ以外が水素原子である態様の場合には、R及びRの両者が同一の脂肪族炭化水素基、芳香族基、複素環基、ハロゲン原子又は置換アミノ基であってR、R乃至R及びRが水素原子であるか、R及びRの両者が同一の脂肪族炭化水素基、芳香族基、複素環基、ハロゲン原子又は置換アミノ基であってR、R、R、R、R及びRが水素原子であることが好ましく、R及びRの両者が同一の脂肪族炭化水素基、芳香族基、複素環基又はハロゲン原子であってR、R乃至R及びRが水素原子であるか、R及びRの両者が同一の脂肪族炭化水素基、芳香族基、複素環基又はハロゲン原子であってR、R、R、R、R及びRが水素原子であることがより好ましく、R及びRの両者が同一の芳香族基、複素環基又はハロゲン原子であってR、R乃至R及びRが水素原子であるか、R及びRの両者が同一の芳香族基、複素環基又はハロゲン原子であってR、R、R、R、R及びRが水素原子であることが更に好ましく、R及びRの両者が同一のハロゲン原子であってR、R乃至R及びRが水素原子であるか、R及びRの両者が同一のハロゲン原子であってR、R、R、R、R及びRが水素原子であることが特に好ましい。
 また、式(1)におけるR乃至Rのうちの二つ以上がそれぞれ独立に脂肪族炭化水素基、芳香族基、複素環基、ハロゲン原子又は置換アミノ基であって、かつR乃至Rのうちの二つ以上がそれぞれ独立に脂肪族炭化水素基、芳香族基、複素環基、ハロゲン原子又は置換アミノ基であることも好ましく、R乃至Rのうちの二つ以上がそれぞれ独立に脂肪族炭化水素基、芳香族基、複素環基又はハロゲン原子であって、かつR乃至Rのうちの二つ以上がそれぞれ独立に脂肪族炭化水素基、芳香族基、複素環基又はハロゲン原子であることがより好ましく、R乃至Rのうちの二つ以上がそれぞれ独立に芳香族基、複素環基又はハロゲン原子であって、かつR乃至Rのうちの二つ以上がそれぞれ独立に芳香族基、複素環基又はハロゲン原子であることが更に好ましい。
 更には、R乃至Rのうちの二つがそれぞれ独立に脂肪族炭化水素基、芳香族基、複素環基、ハロゲン原子又は置換アミノ基であって残りの二つが水素原子であり、かつR乃至Rのうちの二つがそれぞれ独立に脂肪族炭化水素基、芳香族基、複素環基、ハロゲン原子又は置換アミノ基であって残りの二つが水素原子であることが好ましく、R乃至Rのうちの二つがそれぞれ独立に脂肪族炭化水素基、芳香族基、複素環基又はハロゲン原子であって残りの二つが水素原子であり、かつR乃至Rのうちの二つがそれぞれ独立に脂肪族炭化水素基、芳香族基、複素環基又はハロゲン原子であって残りの二つが水素原子であることがより好ましく、R乃至Rのうちの一つがハロゲン原子であって別の一つがハロゲン原子、芳香族基又は複素環基であって残りの二つが水素原子であり、かつR乃至Rのうちの一つがハロゲン原子であって別の一つがハロゲン原子、芳香族基又は複素環基であって残りの二つが水素原子であることが更に好ましい。
 式(1)中、R乃至R12は、それぞれ独立に水素原子、脂肪族炭化水素基、アルコキシ基、アルキルチオ基、芳香族基、複素環基、ハロゲン原子、水酸基、メルカプト基、ニトロ基、置換アミノ基、非置換アミノ基、シアノ基、スルホ基又はアシル基を表す。
 式(1)のR乃至R12が表す脂肪族炭化水素基、アルコキシ基、アルキルチオ基、芳香族基、複素環基、ハロゲン原子、置換アミノ基及びアシル基としては、式(1)のR乃至Rが表す脂肪族炭化水素基、アルコキシ基、アルキルチオ基、芳香族基、複素環基、ハロゲン原子、置換アミノ基及びアシル基と同じものが挙げられ、好ましいものも同様である。
 式(1)におけるR乃至R12としては、それぞれ独立に水素原子、芳香族基、複素環基、ハロゲン原子又はシアノ基であることが好ましく、それぞれ独立に芳香族基又は複素環基であることがより好ましい。
 より詳しくは、R及びR10の少なくとも一つが芳香族基、複素環基、ハロゲン原子又はシアノ基であって、かつR11及びR12の少なくとも一つが芳香族基、複素環基、ハロゲン原子又はシアノ基であることが好ましく、R及びR10の少なくとも一つが芳香族基又は複素環基であって、かつR11及びR12の少なくとも一つが芳香族基又は複素環基であることがより好ましく、R10及びR11が芳香族基又は複素環基であることが更に好ましく、R及びR12が水素原子であって、かつR10及びR11が芳香族基又は複素環基であることが更に好ましい。
 更に詳しくは、R及びR10の少なくとも一つが下記式(2)で表される置換基であって、かつR11及びR12の少なくとも一つが下記式(2)で表される置換基であることが好ましく、R10及びR11が下記式(2)で表される置換基であることがより好ましく、R及びR12が水素原子であって、かつR10及びR11が同一の又は異なる下記式(2)で表される置換基であることが更に好ましく、R及びR12が水素原子であって、かつR10及びR11が同一の下記式(2)で表される置換基であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000006
 式(2)中、R21乃至R25は、それぞれ独立に水素原子、アルコキシ基、アルキルチオ基、芳香族基、複素環基、置換アミノ基、非置換アミノ基、アシル基、又は電子受容性の置換基若しくは原子を表し、R21とR22が結合して、又はR22とR23が結合して、芳香族環又は複素環を形成してもよい。但し、R21乃至R25の少なくとも一つは電子受容性の置換基若しくは原子を表すか、又はR21とR22が結合して、若しくはR22とR23が結合して電子受容性の芳香環若しくは複素環を形成する。
 式(2)のR21乃至R25が表すアルコキシ基、アルキルチオ基、芳香族基、複素環基、置換アミノ基及びアシル基としては、式(1)のR乃至Rが表すアルコキシ基、アルキルチオ基、芳香族基、複素環基、置換アミノ基及びアシル基と同じものが挙げられ、好ましいものも同様である。
 式(2)中のR21乃至R25の少なくとも一つが表す電子受容性(電子求引性)の置換基又は原子は、電子受容性を有する置換基又は原子でありさえすれば特に限定されないが、たとえばHammett則などで知られるハロゲン原子、ホルミル基、アセチル基、アルコキシカルボニル基、トリフルオロメチル基、シアノ基、ニトロ基、トルエンスルホニル基、メタンスルホニル基及びトリフルオロメタンスルホニル基等や、電子欠損のヘテロ環であるピリジル基、キノリル基、ピラジル基、キノキサリル基、チアゾリル基、ベンゾチアゾリル基、インドリル基、ベンゾチアジアゾリル基、スクシンイミドイル基及びフタルイミドイル基等が挙げられる。これらのうち、ハロゲン原子、アセチル基、トリフルオロメチル基、シアノ基、ピリジル基、チアゾリル基又はベンゾチアゾリル基が好ましく、ハロゲン原子、シアノ基、チアゾリル基又はベンゾチアゾリル基がより好ましい。
 式(2)中のR21とR22が結合して、又はR22とR23が結合して、芳香族環又は複素環を形成してもよい。
 R21とR22が結合して、又はR22とR23が結合して形成する芳香族環又は複素環の具体例としては、ベンゼン環、ナフタレン環、フラン環、ピロール環、イミダゾール環、チオフェン環、ピラゾール環、オキサゾール環、チアゾール環、ピリジン環、ピラジン環、トリアゾール環、オキサジアゾール環、チアジアゾール環等の五員環又は六員環の芳香族環または複素環が挙げられる。
 上記したR21とR22が結合して、又はR22とR23が結合して形成する芳香族環又は複素環の具体例のうち、電子受容性を有するものは、オキサゾール環、チアゾール環、ピリジン環、ピラジン環、トリアゾール環、オキサジアゾール環、チアジアゾール環であり、窒素原子及び/又は硫黄原子を含む複素環を形成することがより好ましい。
 R21とR22が結合して、又はR22とR23が結合して形成する芳香族環又は複素環は置換基を有してもよく、該有していてもよい置換基としては、式(1)中のR乃至Rが表す脂肪族炭化水素基、アルコキシ基、アルキルチオ基、芳香族基、複素環基、ハロゲン原子、水酸基、メルカプト基、ニトロ基、置換アミノ基、非置換アミノ基、シアノ基、スルホ基及びアシル基と同様のものが挙げられる。
 上記式(1)で表される化合物は、Tetrahedron Letters,2010,51,1600の記載を参照して、例えば下記の反応工程で得られる。
Figure JPOXMLDOC01-appb-C000007
 上記反応工程において、化合物(A)及び化合物(B)を反応させて化合物(C)を得る工程(a)は、例えばアルコールおよび酢酸の混合溶媒中、アンモニウム塩(例えば酢酸アンモニウム、塩化アンモニウムなど)又はアンモニア水を加えることにより行うことができる。尚、化合物(A)と化合物(B)の構造が同一の場合は、工程(a)は化合物(A)単独で行うことも出来る。次いで化合物(C)から化合物(D)を得る工程(b)は、例えば化合物(C)を第三級アミン(例えばトリエチルアミンなど)の存在下で三フッ化ホウ素類(例えば、三フッ化ホウ素ジエチルエーテル錯体など)と反応させることによって行うことができる。最後に化合物(D)から式(1)で表される化合物を得る工程(c)は、例えば、化合物(D)を三臭化ホウ素と反応させることによって行うことができる。
 尚、化合物(A)乃至(D)中のR乃至R12は、式(1)中のR乃至R12と同じ意味を表す。
 式(1)で表される化合物の精製方法は特に限定されず、例えば洗浄、再結晶、カラムクロマトグラフィー、真空昇華等が採用でき、必要に応じてこれらの方法を組み合わせることができる。
 式(1)で表される化合物の具体例として、No.1乃至No.24で表される化合物を以下に示すが、本発明はこれらに限定されない。なお、具体例として示した構造式は共鳴構造の一つを表したものにすぎず、図示した共鳴構造に限定されない。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 本発明の近赤外光吸収材料は、上記式(1)で表される化合物を含有する。
 本発明の近赤外光吸収材料中の式(1)で表される化合物の含有量は、近赤外光吸収材料を用いる用途において必要とされる近赤外光の吸収能力が発現する限り特に限定されないが、通常は50質量%以上であり、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましい。
 本発明の近赤外光吸収材料には、式(1)で表される化合物以外の化合物(例えば式(1)で表される化合物以外の近赤外光吸収材料(色素)等)や添加剤等を併用してもよい。併用し得る化合物や添加剤等は、近赤外光吸収材料を用いる用途において必要とされる近赤外光の吸収能力が発現する限り特に限定されない。
〔有機薄膜〕
 本発明の有機薄膜は、本発明の近赤外光吸収材料を含有する。
 本発明の有機薄膜は、一般的な乾式成膜法や湿式成膜法により作製することができる。具体的には真空プロセスである抵抗加熱蒸着、電子ビーム蒸着、スパッタリング及び分子積層法、溶液プロセスであるキャスティング、スピンコーティング、ディップコーティング、ブレードコーティング、ワイヤバーコーティング、スプレーコーティング等のコーティング法、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィーの手法等が挙げられる。
 一般的な近赤外光吸収材料の有機薄膜の形成は、加工の容易性という観点から化合物を溶液状態で塗布するようなプロセスが望まれているが、有機膜を積層するような有機エレクトロニクスデバイスの場合、塗布溶液が下層の有機膜を侵す恐れがあることから不向きである。
 この様な積層構造を実現するためには、乾式成膜法、例えば抵抗加熱蒸着等の乾式成膜法に用いることができる蒸着可能な材料であることが適切である。したがって、近赤外領域に主たる吸収波長を有し、且つ蒸着可能な近赤外光吸収材料が近赤外光電変換材料として好ましい。
 各層の成膜には上記の手法を複数組み合わせた方法を採用してもよい。各層の厚みは、それぞれの物質の抵抗値・電荷移動度にもよるので限定することはできないが、通常は0.5乃至5,000nmの範囲であり、好ましくは1乃至1,000nmの範囲、より好ましくは5乃至500nmの範囲である。
 上記式(1)で表される化合物の分子量は、例えば式(1)で表される化合物を含む有機薄膜を蒸着法により製膜して利用することを意図する場合には、1,500以下であることが好ましく、1,200以下であることがより好ましく、1,000以下であることがさらに好ましい。分子量の下限値は、式(1)で表される化合物がとり得る最低分子量の値である。
 なお、式(1)で表される化合物は、分子量にかかわらず塗布法で成膜してもよい。塗布法を用いれば、分子量が比較的大きな化合物であっても成膜することが可能である。
 尚、本明細書における分子量は、EI-GCMS法で算出した値を意味する。
〔有機エレクトロニクスデバイス〕
 本発明の有機エレクトロニクスデバイスは本発明の有機薄膜(以下、有機薄膜を単に「薄膜」と言う場合もある)を含む。有機エレクトロニクスデバイスとしては、例えば、有機薄膜トランジスタ、有機光電変換素子、有機太陽電池素子、有機エレクトロルミネッセンス素子(以下、「有機EL素子」又は「有機発光素子」と表す。)、有機発光トランジスタ素子、有機半導体レーザー素子などが挙げられる。本発明では、特に近赤外用途の展開が期待される有機光電変換素子、有機EL素子に着目する。ここでは本発明の実施形態の一つである近赤外光吸収材料を用いた有機光電変換素子、近赤外発光特性を利用した有機EL素子、有機半導体レーザー素子について説明する。
 なお、ここでは詳細に説明しないが、700nmを超える近赤外光は、生体組織に対する透過性が高い。従って、生体内組織の観測のための利用も可能であるため、近赤外蛍光プローブ等、医療分野での病理解明、診断等において、その目的に応じて様々な態様での適用が可能である。
〔有機光電変換素子〕
 上記式(1)で表される化合物は近赤外光吸収特性を有する化合物であることから、有機光電変換素子としての利用が期待される。特に、上記式(1)で表される化合物は、本発明の有機光電変換素子に於ける光電変換層に用いることができる。当該素子に於いては、光に対する応答波長光の吸収帯の極大吸収が700乃至2500nmであることが好ましい。ここで、有機光電変換素子としては近赤外光センサ、有機撮像素子、近赤外光イメージセンサ等が挙げられる。
 尚、本明細書における吸収帯の極大吸収とは、吸収スペクトル測定で測定した吸光度のスペクトルにおける極大の吸光度の値を意味し、極大吸収波長(λmax)は極大吸収の中で最も長波長側の極大吸収となる波長を意味する。
 有機光電変換素子は、対向する一対の電極膜間に光電変換部(膜)を配置した素子であって、電極膜の上方から光が光電変換部に入射されるものである。光電変換部は前記の入射光に応じて電子と正孔を発生する機能を有し、このような光電変換部を備える有機光電変換素子は、半導体により前記電荷に応じた信号が読み出され、光電変換膜部の吸収波長に応じた入射光量を示す素子である。光が入射しない側の電極膜には読み出しのためのトランジスタが接続される場合もある。有機光電変換素子は、アレイ状に多数配置されている場合、入射光量に加え入射位置情報をも示すため、撮像素子となる。また、より光源近くに配置された光電変換素子が、光源側から見てその背後に配置された光電変換素子の吸収波長を遮蔽しない(透過する)場合は、複数の光電変換素子を積層して用いてもよい。
 本発明の有機光電変換素子は、上記式(1)で表される化合物を上記光電変換部の構成材料として用いたものである。
 光電変換部は、光電変換層と、電子輸送層、正孔輸送層、電子ブロック層、正孔ブロック層、結晶化防止層及び層間接触改良層等から成る群より選択される一種又は複数種の光電変換層以外の有機薄膜層とから成ることが多い。上記式(1)の化合物は光電変換層以外にも用いることもできるが、光電変換層の有機半導体膜の材料として用いることが好ましい。光電変換層は上記式(1)で表される化合物のみで構成されていてもよいが、上記式(1)で表される化合物以外に、公知の近赤外光吸収材料やその他を含んでいてもよい。
 本発明の有機光電変換素子に用いられる電極膜は、後述する光電変換部に含まれる光電変換層が、正孔輸送性を有する場合や光電変換層以外の有機薄膜層が正孔輸送性を有する正孔輸送層である場合は、該光電変換層やその他の有機薄膜層から正孔を取り出してこれを捕集する役割を果たし、又光電変換部に含まれる光電変換層が電子輸送性を有する場合や、光電変換層以外の有機薄膜層が電子輸送性を有する電子輸送層である場合は、該光電変換層やその他の有機薄膜層から電子を取り出して、これを吐出する役割を果たすものである。よって、電極膜として用い得る材料は、ある程度の導電性を有するものであれば特に限定されないが、隣接する光電変換層やその他の有機薄膜層との密着性や電子親和力、イオン化ポテンシャル、安定性等を考慮して選択することが好ましい。電極膜として用い得る材料としては、例えば、酸化錫(NESA)、酸化インジウム、酸化錫インジウム(ITO)及び酸化亜鉛インジウム(IZO)等の導電性金属酸化物;金、銀、白金、クロム、アルミニウム、鉄、コバルト、ニッケル及びタングステン等の金属;ヨウ化銅及び硫化銅等の無機導電性物質;ポリチオフェン、ポリピロール及びポリアニリン等の導電性ポリマー;炭素等が挙げられる。これらの材料は、必要により複数を混合して用いてもよいし、異なる材料の電極膜を2層以上積層して用いてもよい。電極膜に用いる材料の導電性も、光電変換素子の受光を必要以上に妨げなければ特に限定されないが、光電変換素子の信号強度や、消費電力の観点から出来るだけ高いことが好ましい。例えばシート抵抗値が300Ω/□以下の導電性を有するITO膜であれば、電極膜として充分機能するが、数Ω/□程度の導電性を有するITO膜を備えた基板の市販品も入手可能となっていることから、この様な高い導電性を有する基板を使用することが望ましい。ITO膜(電極膜)の厚さは導電性を考慮して任意に選択することができるが、通常5乃至500nm、好ましくは10乃至300nm程度である。ITOなどの膜を形成する方法としては、従来公知の蒸着法、電子線ビーム法、スパッタリング法、化学反応法及び塗布法等が挙げられる。基板上に設けられたITO膜には必要に応じUV-オゾン処理やプラズマ処理等を施してもよい。
 電極膜のうち、少なくとも光が入射する側の何れか一方に用いられる透明電極膜の材料としては、ITO、IZO、SnO、ATO(アンチモンドープ酸化スズ)、ZnO、AZO(Alドープ酸化亜鉛)、GZO(ガリウムドープ酸化亜鉛)、TiO、FTO(フッ素ドープ酸化スズ)等が挙げられる。光電変換層の吸収ピーク波長における透明電極膜を介して入射した光の透過率は、60%以上であることが好ましく、80%以上であることがより好ましく、95%以上であることが更に好ましい。
 検出する波長の異なる光電変換層を複数積層する場合、それぞれの光電変換層の間に用いられる電極膜(これは上記した一対の電極膜以外の電極膜である)は、それぞれの光電変換層が検出する波長を有する光以外の光を透過させる必要があり、該電極膜には入射光の90%以上を透過する材料を用いることが好ましく、95%以上の光を透過する材料を用いることがより好ましい。
 電極膜はプラズマフリーで作製することが好ましい。プラズマフリーでこれらの電極膜を作製することにより、電極膜が設けられる基板にプラズマが与える影響が低減され、光電変換素子の光電変換特性を良好にすることができる。ここで、プラズマフリーとは、電極膜の成膜時にプラズマを用いないか、又はプラズマ発生源から基板までの距離を2cm以上、好ましくは10cm以上、更に好ましくは20cm以上離すことにより、基板に到達するプラズマが減ぜられるような状態を意味する。
 プラズマを用いずに電極膜を形成できる装置としては、例えば、電子線蒸着装置(EB蒸着装置)やパルスレーザー蒸着装置等が挙げられる。EB蒸着装置を用いて透明電極膜の成膜を行う方法をEB蒸着法と称し、パルスレーザー蒸着装置を用いて透明電極膜の成膜を行う方法をパルスレーザー蒸着法と称する。
 成膜時のプラズマを減ずることが出来る装置としては、例えば、対向ターゲット式スパッタ装置やアークプラズマ蒸着装置等が挙げられる。
 透明導電膜を電極膜(例えば第一の導電膜)とした場合、DCショート、あるいはリーク電流の増大が生じる場合がある。この原因の一つは、光電変換層に発生する微細なクラックがTCO(Transparent Conductive Oxide)などの緻密な膜によって被覆され、第一の導電膜とは反対側の電極膜(第二の導電膜)との間の導通が増すためと考えられる。そのため、Alなど膜質が比較して劣る材料を電極に用いた場合、リーク電流の増大は生じにくい。電極膜の膜厚を、光電変換層の膜厚(クラックの深さ)に応じて制御することにより、リーク電流の増大を抑制することができる。
 通常、導電膜を所定の厚さより薄くすると、急激な抵抗値の増加が起こる。本実施形態の1つである光センサ用光電変換素子における導電膜のシート抵抗は、通常100乃至10,000Ω/□であり、膜厚を適宜設定することができる。又、透明導電膜が薄いほど吸収する光の量が少なくなり、一般に光透過率が高くなる。光透過率が高くなると、光電変換層で吸収される光が増加して光電変換能が向上するため非常に好ましい。
 本発明の有機光電変換素子が有する光電変換部は、光電変換層のみからなる場合もあれば、光電変換層以外の有機薄膜層を含む場合もある。光電変換部を構成する光電変換層には一般的に有機半導体膜が用いられるが、その有機半導体膜は一層若しくは複数の層であってもよく、一層の場合は、p型有機半導体膜、n型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)が用いられる。一方、複数の層である場合は、層の数は、2乃至10程度であり、p型有機半導体膜、n型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)の何れかを積層した構造であり、層間にバッファ層が挿入されていてもよい。なお、上記の混合膜により光電変換層を形成する場合、本発明の式(1)で表される化合物をp型半導体材料として用い、n型半導体材料としては一般的なフラーレンや、その誘導体を用いることが好ましい。
 本発明の有機光電変換素子において、光電変換部を構成する光電変換層以外の有機薄膜層は、光電変換層以外の層、例えば、電子輸送層、正孔輸送層、電子ブロック層、正孔ブロック層、結晶化防止層又は層間接触改良層等として用いられる。特に電子輸送層、正孔輸送層、電子ブロック層及び正孔ブロック層(以下「キャリアブロック層」とも表す。)から成る群より選択される一種以上の薄膜層として用いることにより、弱い光エネルギーでも効率よく電気信号に変換する素子が得られるため好ましい。
 加えて、有機光電変換素子の中でも有機撮像素子では、高コントラスト化や省電力化を目的として、暗電流の低減により性能の向上を目指す手法が一般的であることから、層構造内にキャリアブロック層を挿入する手法が好ましい。これらのキャリアブロック層は、有機エレクトロニクスデバイス分野では一般に用いられており、其々のデバイスの構成膜中において正孔若しくは電子の逆移動を制御する役割を果たす。
 電子輸送層は、光電変換層で発生した電子を電極膜へ輸送すると共に、電子輸送先の電極膜から光電変換層に正孔が移動するのをブロックする役割を果たす。正孔輸送層は、発生した正孔を光電変換層から電極膜へ輸送すると共に、正孔輸送先の電極膜から光電変換層に電子が移動するのをブロックする役割を果たす。電子ブロック層は、電極膜から光電変換層への電子の移動を妨げ、光電変換層内での再結合を防ぎ、暗電流を低減する役割を果たす。正孔ブロック層は、電極膜から光電変換層への正孔の移動を妨げ、光電変換層内での再結合を防ぎ、暗電流を低減する役割を果たす。
 図1に本発明の有機光電変換素子の代表的な素子構造を示すが、本発明はこの構造に限定されるものではない。図1の態様例においては、1が絶縁部、2が一方の電極膜(上部電極膜)、3が電子ブロック層、4が光電変換層、5が正孔ブロック層、6が他方の電極膜(下部電極膜)、7が絶縁基材又は他の有機光電変換素子をそれぞれ表す。図中には記載していない読み出し用のトランジスタは、2又は6の電極膜と接続されていればよく、更には光電変換層4が透明であれば、光が入射する側とは反対側の電極膜の外側に成膜されていてもよい。有機光電変換素子への光の入射は、光電変換層4を除く構成要素が、光電変換層の主たる吸収波長の光を入射することを極度に阻害することがなければ、上部若しくは下部からの何れからでもよい。
〔有機EL素子〕
 次に有機EL素子について説明する。
 本発明の式(1)で表される化合物は近赤外発光特性を有することから、有機EL素子への利用が期待される。
 有機EL素子は固体で自己発光型の大面積カラー表示や照明などの用途に利用できることが注目され、数多くの開発がなされている。その構成は、陰極と陽極からなる対向電極の間に、発光層及び電荷輸送層の2層を有する構造のもの;対向電極の間に積層された電子輸送層、発光層及び正孔輸送層の3層を有する構造のもの;及び3層以上の層を有するもの;等が知られており、また発光層が単層であるもの等が知られている。
 ここで正孔輸送層は、正孔を陽極から注入させ、発光層へ正孔を輸送し、発光層への正孔の注入を容易にする機能と電子をブロックする機能とを有する。また、電子輸送層は、電子を陰極から注入させ、発光層へ電子を輸送し、発光層への電子の注入を容易にする機能と正孔をブロックする機能とを有する。さらに発光層においてはそれぞれ注入された電子と正孔が再結合することにより励起子が生じ、その励起子が放射失活する過程で放射されるエネルギーが発光として検出される。以下に有機EL素子の好ましい態様を記載する。
 有機EL素子は、陽極と陰極との電極間に1層又は複数層の有機薄膜が形成された素子で、電気エネルギーにより発光する素子である。
 有機EL素子において使用されうる陽極は、正孔を正孔注入層、正孔輸送層及び発光層に注入する機能を有する電極である。一般的に仕事関数が4.5eV以上の金属酸化物や金属、合金、導電性材料などが適している。具体的には、有機EL素子の陽極に適した材料は特に限定されるものでないが、酸化錫(NESA)、酸化インジウム、酸化錫インジウム(ITO)、酸化亜鉛インジウム(IZO)などの導電性金属酸化物、金、銀、白金、クロム、アルミニウム、鉄、コバルト、ニッケル、タングステンなどの金属、ヨウ化銅、硫化銅などの無機導電性物質、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーや炭素が挙げられる。それらの中でも、ITOやNESAを用いることが好ましい。
 陽極は、必要であれば複数の材料を用いても、また異なる材料からなる2層以上で構成されていてもよい。陽極の抵抗は素子の発光に十分な電流を供給できさえすれば限定されないが、素子の消費電力の観点からは低いことが好ましい。例えばシート抵抗値が300Ω/□以下のITO基板であれば素子電極として機能するが、数Ω/□程度の基板の供給も可能になっていることから、低抵抗品を使用することが望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常5乃至500nm、好ましくは10乃至300nmの間で用いられる。ITOなどの膜形成方法としては、蒸着法、電子線ビーム法、スパッタリング法、化学反応法、塗布法などが挙げられる。
 有機EL素子において使用されうる陰極は、電子を電子注入層、電子輸送層及び発光層に注入する機能を有する電極である。一般的に仕事関数の小さい(おおよそ4eV以下である)金属や合金が適している。具体的には、白金、金、銀、銅、鉄、錫、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、カルシウム及びマグネシウムが挙げられるが、電子注入効率を上げて素子特性を向上させるためにはリチウム、ナトリウム、カリウム、カルシウム又はマグネシウムが好ましい。合金としては、これら低仕事関数の金属を含むアルミニウムもしくは銀等の金属との合金、又はこれらを積層した構造の電極等が使用できる。積層構造の電極にはフッ化リチウムのような無機塩の使用も可能である。また、陽極側でなく陰極側へ発光を取り出す場合は、陰極は、低温で製膜可能な透明電極としてもよい。陰極膜形成方法としては、蒸着法、電子線ビーム法、スパッタリング法、化学反応法、塗布法などが挙げられるが、特に制限されるものではない。陰極の抵抗は素子の発光に十分な電流が供給できるものであれば限定されないが、素子の消費電力の観点からは低いことが好ましく、具体的には数100乃至数Ω/□程度が好ましい。陰極の膜厚は通常5乃至500nm、好ましくは10乃至300nmの範囲で用いられる。
 酸化チタン、窒化ケイ素、酸化珪素、窒化酸化ケイ素、酸化ゲルマニウムなどの酸化物、窒化物、又はそれらの混合物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子、フッ素系高分子などで陰極を保護し、酸化バリウム、五酸化リン、酸化カルシウム等の脱水剤と共に封止することができる。
 また発光を取り出すために、一般的には素子の発光波長領域で十分な透明性を有する基板上に電極を作製することが好ましい。透明な基板としてはガラス基板やポリマー基板が挙げられる。ガラス基板にはソーダライムガラス、無アルカリガラス、石英などが用いられる。基板は機械的・熱的強度を保つのに十分な厚さがあればよく、0.5mm以上が好ましい。ガラスの材質については、ガラスからの溶出イオンが少ないもの、例えば無アルカリガラスが好ましい。このようなものとして、SiOなどのバリアコートを施した市販のソーダライムガラスを使用することもできる。またポリマー基板としては、ポリカーボネート、ポリプロピレン、ポリエーテルサルホン、ポリエチレンテレフタレート、アクリル基板などが挙げられる。
 有機EL素子の有機薄膜は、陽極と陰極の電極間に、1層又は複数の層で形成されている。その有機薄膜に上記式(1)で表される化合物を含有させることにより、電気エネルギーにより発光する素子が得られる。
 有機薄膜により形成される「層」とは、正孔輸送層、電子輸送層、正孔輸送性発光層、電子輸送性発光層、正孔阻止層、電子阻止層、正孔注入層、電子注入層、発光層、又は下記構成例9)に示すように、これらの層が有する機能を併せ持つ単一の層を意味する。有機EL素子の一態様を図2に示す。図2において、1Eは基板、2Eは陽極、3Eは正孔注入層、4Eは正孔輸送層、5Eは発光層、6Eは電子輸送層、7Eは陰極を示す。このような態様に加えて、有機EL素子において有機薄膜を形成する層の構成は、以下の構成例1)から9)のいずれであってもよい。
構成例
1)正孔輸送層/電子輸送性発光層。
2)正孔輸送層/発光層/電子輸送層。
3)正孔輸送性発光層/電子輸送層。
4)正孔輸送層/発光層/正孔阻止層。
5)正孔輸送層/発光層/正孔阻止層/電子輸送層。
6)正孔輸送性発光層/正孔阻止層/電子輸送層。
7)前記1)から6)の組み合わせのそれぞれにおいて、正孔輸送層もしくは正孔輸送性発光層の前に正孔注入層を更にもう一層付与した構成。
8)前記1)から3)、5)から7)の組み合わせのそれぞれにおいて、電子輸送層もしくは電子輸送性発光層の前に電子注入層を更にもう一層付与した構成。
9)前記1)から8)の組み合わせにおいて使用する材料をそれぞれ混合し、この混合した材料を含有する一層のみを有する構成。
 なお、前記9)は、一般にバイポーラー性の発光材料と言われる材料で形成される単一の層;又は、発光材料と正孔輸送材料又は電子輸送材料を含む層を一層設けるだけでもよい。一般的に多層構造とすることで、効率良く電荷、すなわち正孔及び/又は電子を輸送し、これらの電荷を再結合させることができる。また電荷のクエンチングなどが抑えられることにより、素子の安定性の低下を防ぎ、発光の効率を向上させることができる。
 正孔注入層及び正孔輸送層は、正孔輸送材料を単独で、又は二種類以上の該材料の混合物を積層することにより形成される。正孔輸送材料としては、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’’-ジフェニル-1,1’-ジアミン、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミンなどのトリフェニルアミン類;ビス(N-アリルカルバゾール)又はビス(N-アルキルカルバゾール)類;ピラゾリン誘導体、スチルベン系化合物、ヒドラゾン系化合物、トリアゾール誘導体、オキサジアゾール誘導体やポルフィリン誘導体に代表される複素環化合物;ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリビニルカルバゾール、ポリシランなどが好ましく使用できるが、素子作製に必要な薄膜を形成し、電極から正孔が注入できて、さらに正孔を輸送できる物質であれば特に限定されるものではない。正孔注入性を向上するための、正孔輸送層と陽極の間に設ける正孔注入層としては、フタロシアニン誘導体、m-MTDATA(4,4’,4’’-トリス[フェニル(m-トリル)アミノ]トリフェニルアミン)等のスターバーストアミン類、高分子系ではPEDOT(ポリ(3,4-エチレンジオキシチオフェン))等のポリチオフェン、ポリビニルカルバゾール誘導体等で作製されたものが挙げられる。
 電子輸送層は、電子輸送材料を単独で、又は二種類以上の該材料の混合物を積層することにより形成される。電子輸送材料としては、電界を与えられた電極間において負極からの電子を効率良く輸送することが必要である。電子輸送材料は、電子注入効率が高く、注入された電子を効率良く輸送することが好ましい。そのためには、電子輸送材料は、電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時及び使用時に発生しにくい物質であることが要求される。このような条件を満たす物質として、トリス(8-キノリノラト)アルミニウム錯体に代表されるキノリノール誘導体金属錯体、トロポロン金属錯体、ペリレン誘導体、ペリノン誘導体、ナフタルイミド誘導体、ナフタル酸誘導体、オキサゾール誘導体、オキサジアゾール誘導体、チアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ビススチリル誘導体、ピラジン誘導体、フェナントロリン誘導体、ベンゾオキサゾール誘導体、キノキサリン誘導体などが挙げられるが特に限定されるものではない。これらの電子輸送材料は単独でも用いられるが、異なる電子輸送材料と積層又は混合して使用しても構わない。電子注入性を向上するための、電子輸送層と陰極の間に設ける電子注入層としては、セシウム、リチウム、ストロンチウムなどの金属やフッ化リチウムなどが挙げられる。
 正孔阻止層は、正孔阻止性物質を単独で又は二種類以上を混合して積層することにより形成される。正孔阻止性物質としては、バソフェナントロリン、バソキュプロイン等のフェナントロリン誘導体、シロール誘導体、キノリノール誘導体金属錯体、オキサジアゾール誘導体、オキサゾール誘導体などが好ましい。正孔阻止性物質は、正孔が陰極側から素子外部に流れ出てしまい発光効率が低下するのを阻止することができる化合物であれば特に限定されるものではない。
 発光層とは、発光する有機薄膜の意味であり、例えば強い発光性を有する正孔輸送層、電子輸送層又はバイポーラー輸送層であると言うことができる。発光層は、発光材料(ホスト材料、ドーパント材料など)により形成されていればよく、これはホスト材料とドーパント材料との混合物であっても、ホスト材料単独であっても、いずれでもよい。ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の材料の組み合わせであってもよい。
 ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれであってもよい。ドーパント材料は積層されていても、分散されていても、いずれであってもよい。発光層として例えば前述の正孔輸送層や電子輸送層が挙げられる。発光層に使用される材料としては、カルバゾール誘導体、アントラセン誘導体、ナフタレン誘導体、フェナントレン誘導体、フェニルブタジエン誘導体、スチリル誘導体、ピレン誘導体、ペリレン誘導体、キノリン誘導体、テトラセン誘導体、ペリレン誘導体、キナクリドン誘導体、クマリン誘導体、ポルフィリン誘導体や燐光性金属錯体(Ir錯体、Pt錯体、Eu錯体など)などが挙げられる。
 有機EL素子の有機薄膜の形成方法は、一般的に、真空プロセスである抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、溶液プロセスであるキャスティング、スピンコーティング、ディップコーティング、ブレードコーティング、ワイヤバーコーティング、スプレーコーティング等のコーティング法や、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィーの手法等、さらにはこれらの手法を複数組み合わせた方法を採用しうる。各層の厚みは、それぞれの物質の抵抗値・電荷移動度にもよるので限定されるものではないが、0.5乃至5,000nmの間から選ばれる。好ましくは1乃至1,000nm、より好ましくは5乃至500nmである。
 有機EL素子を構成する有機薄膜のうち、陽極と陰極の電極間に存在する、発光層、正孔輸送層、電子輸送層などの薄膜の1層又は複数層に上記式(1)で表される化合物を含有させることにより、低電気エネルギーでも効率良く発光する素子が得られる。
 上記式(1)で表される化合物は正孔輸送層や発光層、電子輸送層として好適に用いることができる。例えば前述した電子輸送材料又は正孔輸送材料、発光材料などと組み合わせて使用することや混合して使用することができる。
 上記式(1)で表される化合物をドーパント材料と組み合わせたホスト材料として用いる場合のドーパント材料の具体例としては、ビス(ジイソプロピルフェニル)ペリレンテトラカルボン酸イミドなどのペリレン誘導体、ペリノン誘導体、4-(ジシアノメチレン)-2メチル-6-(p-ジメチルアミノスチリル)-4Hピラン(DCM)やその類縁体、マグネシウムフタロシアニン、アルミニウムクロロフタロシアニンなどの金属フタロシアニン誘導体、ローダミン化合物、デアザフラビン誘導体、クマリン誘導体、オキサジン化合物、スクアリリウム化合物、ビオラントロン化合物、ナイルレッド、5-シアノピロメテン-BF錯体等のピロメテン誘導体、さらに燐光材料としてアセチルアセトンやベンゾイルアセトンとフェナントロリンなどを配位子とするEu錯体や、Ir錯体、Ru錯体、Pt錯体、Os錯体などのポルフィリン、オルトメタル金属錯体などを用いることができるが特にこれらに限定されるものではない。また2種類のドーパント材料を混合する場合は、ルブレンのようなアシストドーパントを用いてホスト色素からのエネルギーを効率良く移動して色純度の向上した発光を得ることも可能である。いずれの場合も高輝度特性を得るためには、蛍光量子収率が高いものをドーピングすることが好ましい。
 ドーパント材料の使用量が多すぎると濃度消光現象が起きるため、通常はホスト材料に対して30質量%以下となる量を用いる。好ましくは20質量%以下であり、更に好ましくは10質量%以下である。発光層におけるドーパント材料をホスト材料にドーピングする方法としては、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。また、ホスト材料にサンドイッチ状に挟んで使用することも可能である。この場合、一層又は二層以上のドーパント層として、ホスト材料と積層してもよい。
 これらのドーパント層は、ドーパント材料単独で形成することもできるし、ドーパント材料を混合して形成してもよい。また、ドーパント材料を、高分子結着剤としてポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリスチレンスルホン酸、ポリ(N-ビニルカルバゾール)、ポリ(メチル)(メタ)アクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルフォン、ポリフェニレンオキサイド、ポリブタジエン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリサルフォン、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂(アクリロニトリル-ブタジエン-スチレン共重合体樹脂)、ポリウレタン樹脂などの溶剤可溶性樹脂や、フェノール樹脂、キシレン樹脂、石油樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコーン樹脂などの硬化性樹脂に溶解又は分散させて用いることも可能である。
 有機EL素子はフラットパネルディスプレイとして好適に使用することができる。またフラットバックライトとしても用いることができ、この場合、有色光を発するものでも白色光を発するものでもいずれでも使用できる。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ機器、自動車パネル、表示板、標識などに使用される。特に、液晶表示装置、中でも薄型化が課題となっている、パソコン用途のための従来のバックライトは、蛍光灯や導光板からなっているため薄型化が困難であったが、本発明の発光素子を用いたバックライトは、薄型、軽量が特徴であるため上記問題点は解消される。同様に照明にも有用に用いることができる。
 本発明の上記式(1)で表される化合物を用いると、発光効率が高く、寿命が長い有機EL表示装置を得る事が出来る。さらに薄膜トランジスタ素子を組み合わせることで印加電圧のオンオフ現象を電気的に高精度に制御した有機EL表示装置を低コストで供給することが可能となる。
[有機半導体レーザー素子]
 上記式(1)で表される化合物は近赤外発光特性を有する化合物であることから、有機半導体レーザー素子としての利用が期待される。すなわち、上記式(1)で表される化合物を含有する有機半導体レーザー素子と共振器構造を組み合わせ、効率的にキャリアを注入して励起状態の密度を十分に高めることが出来れば、光が増幅されレーザー発振に至る事が期待される。従来、有機半導体レーザー素子は、光励起によるレーザー発振が観測されるのみであり、電気励起によるレーザー発振に必要とされる高密度の励起状態を発生させるのは非常に困難と言われてきた。しかし、上記式(1)で表される化合物を含有する有機半導体素子を用いることで、高効率な発光(電界発光)が起こる可能性が期待される。
 以下に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの例に限定されるものではない。合成例に記載の化合物は、必要に応じて質量分析スペクトル(MS)、核磁気共鳴スペクトル(NMR)により構造を決定した。実施例におけるH-NMRスペクトルの測定はJNM-ECS400(日本電子株式会社)により、MSスペクトルの測定はISQTM 7000 シングル四重極GC-MSシステム(サーモフィッシャーサイエンティフィック)により、それぞれ測定した。吸収スペクトルの測定は紫外可視分光光度計UV-1700(株式会社島津製作所)により測定した。実施例・比較例中の有機光電変換素子の電流電圧の印可測定は、半導体パラメータアナライザ4200-SCS(ケースレーインスツルメント社製)を用いて行った。入射光の照射はPVL-3300(朝日分光社製)により、照射光強度130μW、半値幅20nmの光源で350nm乃至1100nmの範囲で測定を行った。
[実施例1]
 実施例1では、3-メトキシ-2-チエノチオフェンカルボン酸メチルを原料として既報(例えばTetrahedron Letters,2008,49,3716-3721)と同様の方法によって合成した下記式(2-1)で表される化合物を出発原料として、下記の合成フローに準じて下記式(1-1)で表される本発明の化合物を合成した。
Figure JPOXMLDOC01-appb-C000012
(工程1)式(2-2)で表される中間体化合物の合成
 フラスコ内で、上記式(2-1)で表される(1-アセチル-4-フルオロフェニル)(3-メトキシ-2-チエノチエニル)メタノン(32mmol)をエタノール(350mL)及び酢酸(75mL)に溶解し、65℃に加熱して酢酸アンモニウム(200mmol)及び塩化アンモニウム(35mmol)を加え、90℃に昇温して3時間撹拌した。反応液を空冷して飽和炭酸水素ナトリウム水溶液で中和したのち、生じた固体を濾過により回収することにより、式(2-2)で表される中間体化合物を得た(8.4mmol、収率:53%)。
 式(2-2)で表される中間体化合物の質量分析スペクトルの測定結果は以下の通りであった。
 EI-MS(m/z):616[M]
(工程2)式(2-3)で表される中間体化合物の合成
 フラスコに、工程1で得られた式(2-2)で表される化合物(8.4mmol)、トルエン(350mL)及びトリエチルアミン(84mmol)を加えて80℃に加熱後、三フッ化ホウ素ジエチルエーテル錯体(84mmol)を滴下して100℃まで昇温して一晩撹拌した。反応液を空冷して飽和炭酸水素ナトリウム水溶液で中和したのち、生じた固体を濾過により回収することにより、式(2-3)で表される中間体化合物を得た(3.0mmol、収率:36%)。
 式(2-3)で表される中間体化合物の核磁気共鳴スペクトル(NMR)の測定結果は以下の通りであった。
 1H-NMR(400MHz,CDCl) δ(ppm)=7.86(q,2H),7.67(s,1H),7.43(d,2H),7.33(dd,2H),7.24-7.22(m,2H),7.21(d,2H),3.96(s,6H)
(工程3)式(1-1)で表される本発明の化合物1の合成
 フラスコに、工程2で得られた式(2-3)で表される中間体化合物(1.8mmol)及びジクロロメタン(60mL)を加えて攪拌し、三臭化ホウ素(9mL)を滴下した後に室温で5時間攪拌した。飽和重曹水を加えて生じた沈殿をろ過により回収し、水とメタノールで繰り返し洗浄することにより、黒色の式(1-1)で表される本発明の化合物1を得た(1.6mmol、収率:89%)。
 式(1-1)で表される化合物1の質量分析スペクトル及び吸収スペクトルの測定結果は以下の通りであった。
 EI-MS(m/z):596[M]
 λmax=845nm(クロロホルム)
Figure JPOXMLDOC01-appb-C000013
[実施例2]
(工程4)下記式(1-2)で表される本発明の化合物2の合成
 式(2-1)で表される化合物のかわりに、(1-アセチル-4-フルオロフェニル)(5-(4-シアノフェニル)-3-メトキシ-2-チエノチエニル)メタノンを用いたこと以外は実施例1の工程1乃至3に準じて、式(1-2)で表される本発明の化合物2を得た(収率:89%)。
 式(1-2)で表される本発明の化合物2の質量分析スペクトル及び吸収スペクトルの測定結果は以下の通りであった。
 EI-MS(m/z):798[M]
 λmax=890nm(クロロホルム)
Figure JPOXMLDOC01-appb-C000014
[実施例3]
(工程5)下記式(1-3)で表される本発明の化合物3の合成
 式(2-1)で表される化合物のかわりに、(1-アセチル-4-フルオロフェニル)(5-(ベンゾビスチアジアゾール)-3-メトキシ-2-チエノチエニル)メタノンを用いたこと以外は実施例1の工程1乃至3に準じて、式(1-3)で表される本発明の化合物3を得た(収率:55%)。
 式(1-3)で表される本発明の化合物3の質量分析スペクトル及び吸収スペクトルの測定結果は以下の通りであった。
 EI-MS(m/z):864[M]
 λmax=900nm(クロロホルム)
Figure JPOXMLDOC01-appb-C000015
[実施例4]
(工程6)下記式(1-4)で表される本発明の化合物4の合成
 式(2-1)で表される化合物のかわりに、(1-アセチル-3-フェニル)―4-フルオロフェニル)(5-(ベンゾビスチアジアゾール)-3-メトキシ-2-チエノチエニル)メタノンを用いたこと以外は実施例1の工程1乃至3に準じて、式(1-4)で表される本発明の化合物4を得た(収率:30%)。
 式(1-4)で表される本発明の化合物4の質量分析スペクトル及び吸収スペクトルの測定結果は以下の通りであった。
 EI-MS(m/z):1016[M]
 λmax=913nm(クロロホルム)
Figure JPOXMLDOC01-appb-C000016
[比較例1]
比較用化合物1の合成
 特許文献2に記載の方法に準じて、下記式(3-1)で表される比較用化合物1を得た。この化合物のクロロホルム溶液のλmaxは790nmであった。
Figure JPOXMLDOC01-appb-C000017
[比較例2]
比較用化合物2の合成
 特許文献6に記載の方法に準じて、下記式(3-2)で表される比較用化合物2を得た。この化合物のクロロホルム溶液のλmaxは769nmであった。
Figure JPOXMLDOC01-appb-C000018
 実施例1、実施例2、実施例3、実施例4で得られた本発明の化合物1~4(式(1-1)、(1-2)、(1-3)、(1-4)で表される化合物)は比較用化合物1、2(式(3-1)及び(3-2)で表される化合物)よりも長波長領域に溶液中の極大吸収波長を有しており、900nm付近の近赤外光を効率よく吸収できることは明らかである。
[実施例5]
本発明の有機薄膜1の作製及び吸収スペクトル測定
 ガラス基板上に実施例1で得られた式(1-1)で表される本発明の化合物1を真空下、抵抗加熱法により蒸着して本発明の有機薄膜1を得た。得られたガラス基板上の有機薄膜1の吸収スペクトルを測定した結果、吸収スペクトルのλmaxは870nmであった。
[実施例6]
本発明の有機薄膜2の作製及び吸収スペクトル測定
 実施例1で得られた式(1-1)で表される本発明の化合物1の代りに、実施例2で得られた式(1-2)で表される本発明の化合物2を用いた以外は実施例5に準じて、本発明の有機薄膜2を得た。得られたガラス基板上の有機薄膜2の吸収スペクトルを測定した結果、吸収スペクトルのλmaxは905nmであった。
[実施例7]
本発明の有機薄膜3の作製及び吸収スペクトル測定
 実施例1で得られた式(1-1)で表される本発明の化合物1の代りに、実施例3で得られた式(1-3)で表される本発明の化合物3を用いた以外は実施例5に準じて、本発明の有機薄膜3を得た。得られたガラス基板上の有機薄膜3の吸収スペクトルを測定した結果、吸収スペクトルのλmaxは960nmであった。
[実施例8]
本発明の有機薄膜4の作製及び吸収スペクトル測定
 実施例1で得られた式(1-1)で表される本発明の化合物1の代りに、実施例4で得られた式(1-4)で表される本発明の化合物3を用いた以外は実施例5に準じて、本発明の有機薄膜3を得た。得られたガラス基板上の有機薄膜3の吸収スペクトルを測定した結果、吸収スペクトルのλmaxは984nmであった。
[比較例3]
比較用有機薄膜1の作製及び吸収スペクトル測定
 実施例1で得られた式(1-1)で表される本発明の化合物1の代りに、比較例1で得られた式(3-1)で表される比較用化合物1を用いた以外は実施例5に準じて、比較用有機薄膜1を得た。得られたガラス基板上の比較用の有機薄膜1の吸収スペクトルを測定した結果、吸収スペクトルのλmaxは760nmであった。
[比較例4]
比較用有機薄膜2の作製及び吸収スペクトル測定
 実施例1で得られた式(1-1)で表される本発明の化合物1の代りに、比較例2で得られた式(3-2)で表される比較用化合物2を用いた以外は実施例5に準じて、比較用有機薄膜2を得た。得られたガラス基板上の比較用の有機薄膜2の吸収スペクトルを測定した結果、吸収スペクトルのλmaxは810nmであった。
 実施例5、6、7、8及び比較例3、4の結果より、本発明の化合物を含む実施例の有機薄膜は、比較例の有機薄膜よりも長波長側にλmaxを持ち、薄膜においてもより効率的に900nm付近の近赤外光を吸収できることは明らかである。
[実施例9]
本発明の有機薄膜を含む有機光電変換素子1の作製と評価
 予め洗浄したITO透明導電硝子(ジオマテック社製、ITO膜厚150nm)上に、実施例1で得られた式(1-1)で表される本発明の化合物1を抵抗加熱真空蒸着して厚さ100nmの有機薄膜を形成した。次いで、得られた有機薄膜上に、アルミニウムを抵抗加熱真空蒸着して厚さ100nmの電極を成膜することにより、本発明の有機光電変換素子1を作製した。ITOとアルミニウムを電極として、350nmから1100nmの光照射を行った状態で電圧1Vを印加した際の光電流応答性を測定した結果、最大光電流波長は906nmであった。
[実施例10]
本発明の有機薄膜を含む有機光電変換素子2の作製と評価
 予め洗浄したITO透明導電硝子(ジオマテック社製、ITO膜厚150nm)上に、実施例2で得られた式(1-2)で表される本発明の化合物2を抵抗加熱真空蒸着して厚さ100nmの有機薄膜を形成した。次いで、得られた有機薄膜上に、アルミニウムを抵抗加熱真空蒸着して厚さ100nmの電極を成膜することにより、本発明の有機光電変換素子2を作製した。ITOとアルミニウムを電極として、350nmから1100nmの光照射を行った状態で電圧1Vを印加した際の光電流応答性を測定した結果、最大光電流波長は981nmであった。
[実施例11]
本発明の有機薄膜を含む有機光電変換素子3の作製と評価
 予め洗浄したITO透明導電硝子(ジオマテック社製、ITO膜厚150nm)上に、実施例3で得られた式(1-3)で表される本発明の化合物3を抵抗加熱真空蒸着して厚さ100nmの有機薄膜を形成した。次いで、得られた有機薄膜上に、アルミニウムを抵抗加熱真空蒸着して厚さ100nmの電極を成膜することにより、本発明の有機光電変換素子3を作製した。ITOとアルミニウムを電極として、350nmから1100nmの光照射を行った状態で電圧1Vを印加した際の光電流応答性を測定した結果、最大光電流波長は990nmであった。
[比較例5]
比較用有機薄膜を含む比較用有機光電変換素子1の作製と評価
 式(1-1)で表される化合物1の代わりに式(3-1)で表される比較用化合物1を用いたこと以外は実施例9に準じて比較用有機光電変化素子1を作製し、光電流応答性を測定した。ITOとアルミニウムを電極として、350nmから1100nmの光照射を行った状態で電圧1Vを印加した際の光電流応答性を測定した結果、最大光電流波長は772nmであった。
[比較例6]
比較用有機薄膜を含む比較用有機光電変換素子2の作製と評価
 式(1-1)で表される化合物1の代わりに式(3-2)で表される比較用化合物2を用いたこと以外は実施例9に準じて比較用有機光電変化素子2を作製し、光電流応答性を測定した。ITOとアルミニウムを電極として、350nmから1100nmの光照射を行った状態で電圧1Vを印加した際の光電流応答性を測定した結果、最大光電流波長は824nmであった。
本発明の有機薄膜を含む有機光電変換素子の明暗比率の評価
 実施例9乃至11で得られた本発明の有機光電変換素子1、2、3を用いて、実施例9乃至11と同じ条件の光照射及び印可電圧で光電流値(A/cm)と暗電流値(A/cm)を測定し、900nm及び1000nmにおける明暗比を算出し、結果を表1に示した。
比較用有機薄膜を含む有機光電変換素子の明暗比率の評価
 比較例5乃至6で得られた比較用有機光電変換素子1、2を用いて、比較例5乃至6と同じ条件の光照射及び印可電圧で光電流値(A/cm)と暗電流値(A/cm)を測定し、900nm及び1000nmにおける明暗比を算出し、結果を表1に示した。
Figure JPOXMLDOC01-appb-T000019
 上記結果より、本発明の化合物の有機薄膜を含む実施例の有機光電変換素子は、比較例用有機光電変換素子よりも長波長側に最大光電流波長を示し、900nm以上の近赤外光を吸収できることは明らかである。また、本発明の有機薄膜を含む有機光電変換素子は近赤外付近の光に対して高い明暗比を示しており、本発明の化合物は撮像素子や光センサー用の材料として有効であることがわかった。
 
近赤外付近でも高い明暗比であり、撮像素子の材料として有効であることがわかった。
 近赤外光領域に主たる吸収帯を有する本発明の化合物は合成が容易であり、かつ近赤外領域における吸収特性と蒸着可能な特性を兼ね備えているため、近赤外領域において動作する有機エレクトロニクスデバイス材料として非常に有用である。
(図1)
1 絶縁部
2 上部電極膜
3 電子ブロック層
4 光電変換層
5 正孔ブロック層
6 下部電極膜
7 絶縁基材若しくは他光電変換素子
(図2)
1E 基板
2E 陽極
3E 正孔注入層
4E 正孔輸送層
5E 発光層
6E 電子輸送層
7E 陰極
 

 

Claims (14)

  1. 下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R乃至Rは、それぞれ独立に水素原子、脂肪族炭化水素基、アルコキシ基、アルキルチオ基、芳香族基、複素環基、ハロゲン原子、水酸基、メルカプト基、ニトロ基、置換アミノ基、非置換アミノ基、シアノ基、スルホ基、又はアシル基を表す。但し、R乃至Rの少なくとも一つは水素原子以外を表し、かつR乃至Rの少なくとも一つは水素原子以外を表す。R乃至R12は、それぞれ独立に水素原子、脂肪族炭化水素基、アルコキシ基、アルキルチオ基、芳香族基、複素環基、ハロゲン原子、水酸基、メルカプト基、ニトロ基、置換アミノ基、非置換アミノ基、シアノ基、スルホ基又はアシル基を表す。)で表される化合物。
  2. 乃至Rの少なくとも一つが脂肪族炭化水素基、芳香族基、複素環基又はハロゲン原子であって、かつR乃至Rの少なくとも一つが脂肪族炭化水素基、芳香族基、複素環基又はハロゲン原子である請求項1に記載の化合物。
  3. 乃至Rの少なくとも一つがハロゲン原子であって、かつR乃至Rの少なくとも一つがハロゲン原子である請求項2に記載の化合物。
  4. 乃至Rの少なくとも一つが芳香族基又は複素環基であって、かつR乃至Rの少なくとも一つが芳香族基又は複素環基である請求項2に記載の化合物。
  5. とRが同一であって、RとRが同一であって、RとRが同一であって、かつRとRが同一である請求項1乃至4のいずれか一項に記載の化合物。
  6. 及びR10の少なくとも一つが芳香族基又は複素環基であって、かつR11及びR12の少なくとも一つが芳香族基又は複素環基である請求項1乃至5のいずれか一項に記載の化合物。
  7. 及びR12が水素原子であって、かつR10及びR11が芳香族基又は複素環基である請求項6に記載の化合物。
  8. 10及びR11が下記式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、R21乃至R25は、それぞれ独立に水素原子、アルコキシ基、アルキルチオ基、芳香族基、複素環基、置換アミノ基、非置換アミノ基又は電子受容性の置換基若しくは原子を表し、R21とR22が結合して、又はR22とR23が結合して、芳香族環又は複素環を形成してもよい。但し、R21乃至R25の少なくとも一つは電子受容性の置換基若しくは原子を表すか、又はR21とR22が結合して、若しくはR22とR23が結合して電子受容性の芳香環若しくは複素環を形成する。)で表される置換基である請求項1乃至7のいずれか一項に記載の化合物。
  9. 21乃至R25の少なくとも一つが、ハロゲン原子、ホルミル基、アセチル基、アルコキシカルボニル基、トリフルオロメチル基、シアノ基、ニトロ基、トルエンスルホニル基、メタンスルホニル基、トリフルオロメタンスルホニル基、ピリジル基、キノリル基、ピラジル基、キノキサリル基、チアゾリル基、ベンゾチアゾリル基、インドリル基、ベンゾチアジアゾリル基、スクシンイミドイル基及びフタルイミドイル基からなる群より選択される電子受容性の置換基又は原子である請求項8に記載の化合物。
  10. 21とR22が結合して、又はR22とR23が結合して、窒素原子及び/又は硫黄原子を含む複素環を形成している請求項8に記載の化合物。
  11. 請求項1乃至10のいずれか一項に記載の化合物を含む近赤外光吸収材料。
  12. 請求項11に記載の近赤外光吸収材料を含む有機薄膜。
  13. 請求項12に記載の有機薄膜を含む有機エレクトロニクスデバイス。
  14. 請求項12に記載の有機薄膜を含む有機光電変換素子。
     
     
     

     
PCT/JP2020/003632 2019-02-05 2020-01-31 ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、有機薄膜及び有機エレクトロニクスデバイス WO2020162345A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020571154A JP7390320B2 (ja) 2019-02-05 2020-01-31 ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、有機薄膜及び有機エレクトロニクスデバイス
KR1020217027839A KR20210124325A (ko) 2019-02-05 2020-01-31 디벤조피로메텐 붕소 킬레이트 화합물, 근적외광 흡수 재료, 유기 박막 및 유기 일렉트로닉스 디바이스
CN202080007651.7A CN113286799A (zh) 2019-02-05 2020-01-31 二苯并吡咯甲川硼螯合物、近红外光吸收材料、有机薄膜及有机电子装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019018554 2019-02-05
JP2019-018554 2019-02-05

Publications (1)

Publication Number Publication Date
WO2020162345A1 true WO2020162345A1 (ja) 2020-08-13

Family

ID=71947961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003632 WO2020162345A1 (ja) 2019-02-05 2020-01-31 ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、有機薄膜及び有機エレクトロニクスデバイス

Country Status (5)

Country Link
JP (1) JP7390320B2 (ja)
KR (1) KR20210124325A (ja)
CN (1) CN113286799A (ja)
TW (1) TW202039516A (ja)
WO (1) WO2020162345A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181439A1 (ja) * 2021-02-25 2022-09-01 日本化薬株式会社 ホウ素キレート化合物、近赤外光吸収材料、薄膜、光電変換素子、及び撮像素子
CN115093433A (zh) * 2022-05-30 2022-09-23 华南理工大学 一种亲水性有机近红外吸收染料及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035303A1 (ja) * 2011-09-09 2013-03-14 出光興産株式会社 有機薄膜太陽電池材料
JP2017137264A (ja) * 2016-02-04 2017-08-10 日本化薬株式会社 有機化合物、赤外光吸収材料及びその利用
WO2018079653A1 (ja) * 2016-10-28 2018-05-03 日本化薬株式会社 ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、薄膜及び有機エレクトロニクスデバイス

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056559A1 (ja) 2014-10-07 2016-04-14 出光興産株式会社 有機エレクトロルミネッセンス素子、および電子機器
JP6465350B2 (ja) 2015-03-09 2019-02-06 公立大学法人首都大学東京 新規な有機化合物およびその利用
KR102325175B1 (ko) 2016-03-18 2021-11-10 닛뽄 가야쿠 가부시키가이샤 유기 화합물, 근적외 흡수 색소, 광전 변환 소자 및 그 광 센서, 촬상 소자
JP2018076241A (ja) * 2016-11-08 2018-05-17 日本化薬株式会社 縮合多環化合物及びその利用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035303A1 (ja) * 2011-09-09 2013-03-14 出光興産株式会社 有機薄膜太陽電池材料
JP2017137264A (ja) * 2016-02-04 2017-08-10 日本化薬株式会社 有機化合物、赤外光吸収材料及びその利用
WO2018079653A1 (ja) * 2016-10-28 2018-05-03 日本化薬株式会社 ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、薄膜及び有機エレクトロニクスデバイス

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181439A1 (ja) * 2021-02-25 2022-09-01 日本化薬株式会社 ホウ素キレート化合物、近赤外光吸収材料、薄膜、光電変換素子、及び撮像素子
JP7523390B2 (ja) 2021-02-25 2024-07-26 日本化薬株式会社 ホウ素キレート化合物、近赤外光吸収材料、薄膜、光電変換素子、及び撮像素子
CN115093433A (zh) * 2022-05-30 2022-09-23 华南理工大学 一种亲水性有机近红外吸收染料及其制备方法与应用

Also Published As

Publication number Publication date
JPWO2020162345A1 (ja) 2021-12-09
TW202039516A (zh) 2020-11-01
JP7390320B2 (ja) 2023-12-01
KR20210124325A (ko) 2021-10-14
CN113286799A (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
JP5808857B2 (ja) 新規な化合物及びこれを用いた有機電子素子
EP2799515B1 (en) Compound for organic optoelectric device, organic light-emitting diode including same, and display device including organic light-emitting diode
JP6174819B2 (ja) 複素環化合物及びこれを用いた有機発光素子
JP6844934B2 (ja) ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、薄膜及び有機エレクトロニクスデバイス
EP3666777B1 (en) Dibenzopyrromethene boron chelate compound, near-infrared light-absorbing material, thin-film, and organic electronic device
JPWO2017159610A1 (ja) 有機化合物、近赤外吸収色素、光電変換素子及びその光センサー、撮像素子
WO2020162345A1 (ja) ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、有機薄膜及び有機エレクトロニクスデバイス
JP2021015963A (ja) 光電変換素子用材料及びその用途
JP2018076241A (ja) 縮合多環化合物及びその利用
JP7033039B2 (ja) ジベンゾピロメテンホウ素キレート化合物およびその利用
JP7177001B2 (ja) ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収色素、光電変換素子、近赤外光センサー及び撮像素子
JP7177002B2 (ja) ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収色素、光電変換素子、近赤外光センサー及び撮像素子
JP7357880B2 (ja) 新規環状化合物およびその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20753162

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571154

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217027839

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20753162

Country of ref document: EP

Kind code of ref document: A1