WO2017159610A1 - 有機化合物、近赤外吸収色素、光電変換素子及びその光センサー、撮像素子 - Google Patents

有機化合物、近赤外吸収色素、光電変換素子及びその光センサー、撮像素子 Download PDF

Info

Publication number
WO2017159610A1
WO2017159610A1 PCT/JP2017/009952 JP2017009952W WO2017159610A1 WO 2017159610 A1 WO2017159610 A1 WO 2017159610A1 JP 2017009952 W JP2017009952 W JP 2017009952W WO 2017159610 A1 WO2017159610 A1 WO 2017159610A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
photoelectric conversion
organic
layer
Prior art date
Application number
PCT/JP2017/009952
Other languages
English (en)
French (fr)
Inventor
達也 青竹
俊文 井内
秀典 薬師寺
山本 達也
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to US16/085,387 priority Critical patent/US11333964B2/en
Priority to JP2018505912A priority patent/JP6907187B2/ja
Priority to KR1020187027460A priority patent/KR102325175B1/ko
Publication of WO2017159610A1 publication Critical patent/WO2017159610A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C8/00Diffusion transfer processes or agents therefor; Photosensitive materials for such processes
    • G03C8/24Photosensitive materials characterised by the image-receiving section
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/005Compounds containing elements of Groups 1 or 11 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/006Palladium compounds
    • C07F15/0066Palladium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • C07F15/0093Platinum compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/022Boron compounds without C-boron linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/392Additives
    • G03C7/39208Organic compounds
    • G03C7/39284Metallic complexes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/2463Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes azulene
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/247Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes
    • G11B7/2475Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes merocyanine
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/247Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes
    • G11B7/2478Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes oxonol
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • H01L27/14647Multicolour imagers having a stacked pixel-element structure, e.g. npn, npnpn or MQW elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/451Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a metal-semiconductor-metal [m-s-m] structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/191Deposition of organic active material characterised by provisions for the orientation or alignment of the layer to be deposited
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/652Cyanine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic compound having an absorption band in the near infrared region and an organic electronic device using the organic compound.
  • Near-infrared light-absorbing dyes having absorption in the near-infrared region of 700 to 2000 nm have been studied for various industrial applications.
  • optical information recording media such as CD-R (Compact Disk-Recordable); printing applications such as thermal CTP (Computer To Plate), flash toner fixing, and laser thermal recording;
  • thermal CTP Computer To Plate
  • laser thermal recording has been.
  • using its property of selectively absorbing light in a specific wavelength range it is also used in near infrared cut filters used for PDP (plasma display panel) filters, plant growth control films, etc. ing.
  • the near infrared light absorbing dye can be used as a near infrared absorbing ink by dissolving or dispersing in a solvent.
  • the printed matter using the near-infrared absorbing ink is difficult to recognize visually and can be read only with a near-infrared detector or the like, so that it is used for printing for the purpose of preventing counterfeiting, for example.
  • an infrared absorbing dye for forming an invisible image an inorganic infrared absorbing material and an organic infrared absorbing material are already known.
  • rare earth metals such as ytterbium, copper phosphate crystallized glass, and the like are known as inorganic infrared absorbing materials.
  • the inorganic infrared absorbing material does not sufficiently absorb light in the near infrared region, a large amount of infrared absorbing material is required per unit area of the invisible image. Therefore, when an invisible image is formed with an inorganic infrared absorbing material, if a visible image is further formed on the surface, the unevenness of the lower invisible image affects the visible image on the surface side.
  • the organic infrared absorbing material has sufficient absorption of light in the infrared region, so that the amount of use per unit area of the invisible image can be reduced. Therefore, the inorganic infrared absorbing material There is no inconvenience as in the case of using. Therefore, many organic infrared absorbing materials have been developed so far.
  • Patent Document 1 discloses a naphthalocyanine compound as an organic near infrared absorbing material.
  • a counterionic dye compound is generally used as a near-infrared absorbing material.
  • Patent Document 2 discloses an organic aminium compound as an example of an infrared absorbing material having light absorption in the infrared region.
  • Patent Document 3 discloses an indolenine compound as an example of an organic dye compound having light absorption in the near infrared region.
  • Patent Document 4 discloses a naphthofluorescein compound as an example of a near infrared fluorescent dye having a fluorescence wavelength in the near infrared region.
  • Patent Document 5 discloses that a dibenzopyromethene boron chelate compound has an absorption characteristic wavelength on the long wavelength side.
  • Non-Patent Document 1 reports a boron dipyrromethene compound as an example of an organic compound having a fluorescence wavelength in the near infrared region.
  • Non-Patent Document 2 reports a boron dipyrromethene compound as an example of an organic compound having an absorption wavelength in the near-infrared region, and the compound is used in a mixture state as a sensitizer for solar cells. ing.
  • Non-Patent Document 1 the light absorption maximum is 711 nm, and a near-infrared absorbing material having an absorption band in a longer wavelength region is required.
  • Non-Patent Document 2 and Patent Document 1 only disclose use as a sensitizer for organic thin-film solar cell elements, and do not disclose other uses.
  • the object of the present invention is to provide a novel organic compound having ease of processing for enabling use in an infrared light film, good atmospheric stability, and an absorption band in the infrared region. There is to do. Furthermore, an object of the present invention is to provide a near-infrared absorbing dye, an optical film, and a photoelectric conversion element (particularly an imaging element and an organic compound) having an absorption characteristic in the near-infrared region and having excellent photoelectric conversion performance. It is intended to provide use as an organic electronic device such as an optical sensor.
  • R 1 to R 18 are each independently a hydrogen atom, aryl group, heteroaryl group, alkyl group, cycloalkyl group, halogen atom, hydroxy group, alkoxy group, mercapto group, alkylthio group, nitro group, substituted amino group, amide A group, an acyl group, a carboxyl group, an acyloxy group, a cyano group, a sulfo group, a sulfamoyl group, an alkylsulfamoyl group, a carbamoyl group, or an alkylcarbamoyl group, where X is a substituted or unsubstituted methine group, a silylidine group, or
  • R 1 to R 5 or R 11 to R 14 are each independently a hydrogen atom, aryl group, heteroaryl group, alkyl group, cycloalkyl group, halogen atom, hydroxy group, alkoxy group, mercapto group, alkylthio group, nitro group.
  • R 1 to R 5 or R 11 to R 14 are each independently a hydrogen atom, aryl group, heteroaryl group, alkyl group, cycloalkyl group, halogen atom, hydroxy group, alkoxy group, mercapto group, alkylthio group, nitro group.
  • a near-infrared absorbing dye comprising the organic compound according to any one of [1] to [3], [5] An optical film using the organic compound according to any one of [1] to [3], [6] An organic electronic device using the organic compound according to any one of [1] to [3], [7] A photoelectric conversion element comprising a photoelectric conversion film containing the compound represented by the general formula (1), (R 1 to R 18 are each independently a hydrogen atom, aryl group, heteroaryl group, alkyl group, cycloalkyl group, halogen atom, hydroxy group, alkoxy group, mercapto group, alkylthio group, nitro group, substituted amino group, amide A group, an acyl group, a carboxyl group, an acyloxy group, a cyano group, a sulfo group, a sulfamoyl group, an alkylsulfamoyl group, a carbamoyl group, and an alkyl
  • An optical sensor comprising the photoelectric conversion element according to [7]
  • An imaging device comprising the photoelectric conversion device according to [7]
  • An image sensor comprising the photoelectric conversion element according to [7], [11]
  • the organic compound of the present invention has an absorption band in the near infrared region, has good processability and atmospheric stability, and is useful for near infrared absorbing dyes, optical films, photoelectric conversion elements and organic electronic devices. It is.
  • the photoelectric conversion element containing the organic compound of the present invention has absorption characteristics in the near infrared region and has excellent photoelectric conversion performance. Therefore, not only organic imaging elements but also devices such as optical sensors and infrared sensors, It can be applied to the fields of cameras, video cameras, infrared cameras, etc. using them.
  • a cross-sectional view of a thin film transistor is shown.
  • the flowchart figure of the manufacturing method of a thin-film transistor is shown.
  • Sectional drawing of a photoelectric conversion element is shown.
  • the ultraviolet visible near-infrared absorption spectrum in the thin film using a compound (1) is shown.
  • the ultraviolet-visible near-infrared absorption spectrum in a thin film using a compound (296) is shown.
  • the ultraviolet visible near-infrared absorption spectrum in the thin film using a compound (581) is shown.
  • the ultraviolet visible near-infrared absorption spectrum in the thin film using a comparative compound (A) is shown.
  • the wavelength-absorbance graph in the time change of the thin film using the compound (1) is shown.
  • the wavelength-absorbance graph in the time change of the thin film using KAYASORB CY-10 is shown.
  • the wavelength-absorbance graph in the time change of the thin film using KAYASORB IR-820 is shown.
  • the current response characteristic of the photoelectric conversion element using a compound (1) is shown.
  • the photoelectric conversion spectrum of the photoelectric conversion element using a compound (1) is shown.
  • the current response characteristic of the photoelectric conversion element using a compound (296) is shown.
  • the photoelectric conversion spectrum of the photoelectric conversion element using a compound (296) is shown.
  • the current response characteristic of the photoelectric conversion element using a compound (581) is shown.
  • the photoelectric conversion spectrum of the photoelectric conversion element using a compound (581) is shown.
  • the current response characteristic of the photoelectric conversion element using a comparative compound (A) is shown.
  • the photoelectric conversion spectrum of the photoelectric conversion element using a comparative compound (A) is shown.
  • the present invention is described in detail below.
  • the organic compound of the present invention has a structure represented by the following formula (1).
  • R 1 to R 18 are each independently a hydrogen atom, aryl group, heteroaryl group, alkyl group, cycloalkyl group, halogen atom, hydroxy group, alkoxy group, mercapto group, alkylthio group, nitro group, substituted amino group, amide A group, an acyl group, a carboxyl group, an acyloxy group, a cyano group, a sulfo group, a sulfamoyl group, an alkylsulfamoyl group, a carbamoyl group, or an alkylcarbamoyl group, where X is a substituted or unsubstituted methine group, a silylidine group, or a germiridine group. Represents a group, a stannylidine group, a nitrogen atom, a phosphorus atom, an arsenic atom, or an antimony atom.
  • Examples of the aryl group in the general formula (1) include substituted or unsubstituted benzene, naphthalene, anthracene, phenanthrene, azulene, biphenyl, and terphenyl.
  • Examples of the heteroaryl group include substituted or unsubstituted thiophene, furan, pyrrole, pyridine, indole, benzothiophene, and benzofuran.
  • alkyl group methyl group, ethyl group, propyl group, isopropyl group, normal butyl group, isobutyl group, tertiary butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group And dodecyl group.
  • cycloalkyl group include a cyclopentyl group and a cyclohexyl group.
  • halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the alkoxy group include those in which the above alkyl group is bonded to an oxygen atom, but the number, position, and number of branches of the oxygen atom are not limited.
  • Examples of the substituted amino group include those in which the hydrogen atom of the amino group is substituted with the above substituents R 1 to R 18 .
  • Examples of the acyl group include those in which an aryl group or an alkyl group is bonded to a carbonyl group.
  • Examples of the alkylsulfamoyl group include those in which a hydrogen atom of the sulfamoyl group is substituted with the above alkyl group.
  • Examples of the alkylcarbamoyl group include those in which the hydrogen atom of the carbamoyl group is substituted with the above alkyl group.
  • R 1 to R 10 are preferably a hydrogen atom, an alkoxy group, an aryl group or a heteroaryl group from the viewpoint of ease of processing, more preferably a hydrogen atom, an alkoxy group or an aryl group, and a hydrogen atom or an alkoxy having 1 to 12 carbon atoms. And particularly preferably an aryl group having 6 to 18 carbon atoms.
  • R 11 to R 18 are preferably a hydrogen atom, an aryl group, a heteroaryl group or an alkyl group, more preferably a hydrogen atom, an aryl group or an alkyl group, a hydrogen atom, an aryl group having 6 to 12 carbon atoms, or a carbon number of 1 Particularly preferred are ⁇ 12 alkyl groups.
  • the ease of processing means that an organic compound is soluble in a solvent, and the organic compound can be applied in a solution state, and the organic compound is formed into a film by a physical deposition method such as vacuum evaporation or sputtering. It is easy to do.
  • R 1 to R 18 each independently represent a substituent, and may be the same or different. From the viewpoint of ease of production, R 1 and R 10 , R 2 and R 9 , R 3 and R 8 , R 4 and R 7 , R 5 and R 6 , R 11 and R 18 , R 12 and R 17 , R It is preferable that 13 and R 16 , R 14 and R 15 each represent the same substituent.
  • R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 15 and R 16 , R 16 and R 17 , and R 17 and R 18 is bonded to each other to form a ring A structure may be formed.
  • X represents a substituted or unsubstituted methine group, silylidine group, germyridin group, stannylidine group, nitrogen atom, phosphorus atom, arsenic atom, or antimony atom. It is preferably an unsubstituted methine group or a nitrogen atom.
  • the organic compound of the present invention is represented by the following formula (2).
  • R 1 to R 5 or R 11 to R 14 are each independently a hydrogen atom, aryl group, heteroaryl group, alkyl group, cycloalkyl group, halogen atom, hydroxy group, alkoxy group, mercapto group, alkylthio group, nitro group.
  • R 1 to R 5 or R 11 to R 14 and X in the general formula (2) are the same as those of R 1 to R 18 and X in the formula (1).
  • the organic compound of the present invention has a structure represented by the following formula (3).
  • R 1 to R 5 or R 11 to R 14 are each independently a hydrogen atom, aryl group, heteroaryl group, alkyl group, cycloalkyl group, halogen atom, hydroxy group, alkoxy group, mercapto group, alkylthio group, nitro group.
  • R 1 to R 5 or R 11 to R 14 in the general formula (3) are the same as those of R 1 to R 18 in the formula (1).
  • the organic compounds represented by the general formulas (1) to (3) of the present invention can be synthesized by a known method. For example, it is obtained in the same manner as the following reaction step (Org. Lett., 2011, 4547).
  • the organic compounds represented by the above general formulas (1) to (3) can be synthesized.
  • the structural formulas of various compounds obtained in the synthesis examples can be determined by measuring MS (mass spectrometry spectrum) and NMR (nuclear magnetic resonance spectrum) as necessary.
  • the purification method of the organic compounds represented by the general formulas (1) to (3) is not particularly limited, and known methods such as recrystallization, column chromatography, and vacuum sublimation purification can be employed. Moreover, you may use these methods in combination as needed.
  • the organic compounds represented by the general formulas (1) to (3) are characterized by high industrial applicability and good atmospheric stability.
  • the organic compounds represented by the general formulas (1) to (3) are soluble, and a thin film can be produced by applying the organic compound in a solution state.
  • the organic compound processing process becomes easy, for example, the organic compound is easily processed into a device by a physical deposition method.
  • the organic compounds represented by the general formulas (1) to (3) of the present invention have an absorption band in the near infrared region.
  • the near infrared region is 700 to 2500 nm, preferably 700 to 2000 nm, and particularly preferably 700 to 1500 nm.
  • the organic compound of the present invention can be used as a material for a near-infrared absorbing dye having an absorption band in the region of 700 nm or more and 2500 nm or less, and the near-infrared absorbing ink containing the near-infrared absorbing dye can be applied by coating or the like.
  • a thin film having an absorption band in the near infrared region can be manufactured.
  • the film thickness of the thin film varies depending on the application, but is usually from 0.01 nm to 10 ⁇ m, preferably from 0.05 nm to 3 ⁇ m, more preferably from 0.1 nm to 1 ⁇ m.
  • Thin film formation methods are generally vacuum processes such as resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular layer deposition and other gas phase methods, spin coating, drop casting, dip coating, spraying and other solution methods, flexographic printing.
  • Letterpress printing methods such as resin letterpress printing, offset printing, dry offset printing, lithographic printing methods such as pad printing, intaglio printing methods such as gravure printing, stencil printing methods such as silk screen printing, photocopier printing and lithographic printing, inkjet Examples thereof include printing, microcontact printing, and a combination of these techniques.
  • the resistance heating vapor deposition method that is a vacuum process the spin coating method that is a solution process, the dip coating method, the ink jet method, screen printing, letterpress printing, and the like are preferable.
  • the organic compounds represented by the general formulas (1) to (3) can be used as materials for optical films (including near infrared cut films) and organic electronics devices.
  • the organic electronics device include a thin film transistor, a photoelectric conversion element, an organic solar cell element, an organic electronics luminescence element (hereinafter abbreviated as “organic EL element”), an organic light emitting transistor element, an organic semiconductor laser element, and the like.
  • organic EL element organic electronics luminescence element
  • organic light emitting transistor element an organic semiconductor laser element
  • the organic compounds represented by the general formulas (1) to (3) are useful as materials for photoelectric conversion elements (such as an optical sensor, an image sensor, and an imaging element). Hereinafter, these will be described in detail.
  • the organic compound of the present invention Since the organic compound of the present invention selectively absorbs light in the infrared wavelength region, it can be used as an optical film for suppressing light of this emission wavelength.
  • the optical film include an infrared shielding film, an antireflection film, an orientation film, a polarizing film, a polarizing plate protective film, a retardation film, a viewing angle widening film, a brightness enhancement film, and an electromagnetic wave shielding film. It can be used for flat panel displays (FPD) such as (LCD) and plasma display (PDP), and window glass of buildings and vehicles.
  • FPD flat panel displays
  • the infrared shielding film can be applied to a wide range of fields.
  • the infrared shielding film is attached to equipment exposed to sunlight for a long period of time such as an outdoor window of a building or an automobile window, and gives a red shielding effect. It can be used mainly for the purpose of enhancing weather resistance as a film for window pasting such as an outer shielding film, a film for agricultural greenhouse, and the like.
  • the total film thickness of the optical film of the present invention is preferably 10 ⁇ m to 300 ⁇ m, more preferably 20 ⁇ m to 250 ⁇ m, and even more preferably 100 ⁇ m to 175 ⁇ m. If it is this range, it will become an optical film excellent in transparency also in long-term use.
  • a thin film transistor has two electrodes (a source electrode and a drain electrode) in contact with a semiconductor, and a current flowing between the electrodes is controlled by a voltage applied to another electrode called a gate electrode.
  • a thin film transistor element often has a structure in which a gate electrode is insulated by an insulating film (Metal-Insulator-Semiconductor MIS structure).
  • An insulating film using a metal oxide is called a MOS structure.
  • MOS structure Metal-Insulator-Semiconductor
  • 1 represents a source electrode
  • 2 represents a semiconductor layer
  • 3 represents a drain electrode
  • 4 represents an insulator layer
  • 5 represents a gate electrode
  • 6 represents a substrate.
  • positioning of each layer and an electrode can be suitably selected according to the use of an element.
  • a to D and F are called lateral transistors because electrodes flow in a direction parallel to the substrate.
  • A is called a bottom contact bottom gate structure
  • B is called a top contact bottom gate structure.
  • C has a source and drain electrode and an insulator layer on a semiconductor, and further has a gate electrode formed thereon, which is called a top contact top gate structure.
  • D has a structure called a top & bottom contact type transistor.
  • F is a bottom contact top gate structure.
  • E is a schematic diagram of a transistor having a vertical structure, that is, a static induction transistor (SIT).
  • SIT static induction transistor
  • the current flow spreads out in a plane, so that a large amount of carriers can move at one time.
  • the source electrode and the drain electrode are arranged vertically, the distance between the electrodes can be reduced, so that the response is fast. Therefore, it can be preferably applied to uses such as flowing a large current or performing high-speed switching.
  • E in FIG. 1 does not show a substrate, in the normal case, a substrate is provided outside the source or drain electrode represented by 1 and 3 in FIG. 1E.
  • the substrate 6 needs to be able to hold each layer formed thereon without peeling off.
  • insulating materials such as resin plates, films, paper, glass, quartz, ceramics, etc .; products in which an insulating layer is formed on a conductive substrate such as metal or alloy by coating, etc .; consisting of various combinations such as resins and inorganic materials Materials; etc.
  • the resin film that can be used include polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyamide, polyimide, polycarbonate, cellulose triacetate, polyetherimide, and the like.
  • the element can have flexibility, is flexible and lightweight, and improves practicality.
  • the thickness of the substrate is usually 1 ⁇ m to 10 mm, preferably 5 ⁇ m to 5 mm.
  • a conductive material is used for the source electrode 1, the drain electrode 3, and the gate electrode 5.
  • conductive oxides such as InO 2 , ZnO 2 , SnO 2 , ITO
  • conductive polymer compounds such as polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, vinylene, polydiacetylene
  • silicon germanium And semiconductors such as gallium arsenide
  • carbon materials such as carbon black, fullerene, carbon nanotubes, and graphite
  • the conductive polymer compound or the semiconductor may be doped.
  • the dopant examples include inorganic acids such as hydrochloric acid and sulfuric acid; organic acids having an acidic functional group such as sulfonic acid; Lewis acids such as PF 5 , AsF 5 and FeCl 3 ; halogen atoms such as iodine; lithium, Metal atoms such as sodium and potassium; and the like. Boron, phosphorus, arsenic and the like are also frequently used as dopants for inorganic semiconductors such as silicon. In addition, a conductive composite material in which carbon black, metal particles, or the like is dispersed in the above dopant is also used. For the source electrode 1 and the drain electrode 3 that are in direct contact with the semiconductor, it is important to select an appropriate work function or to treat the surface in order to reduce the contact resistance.
  • the distance (channel length) between the source and drain electrodes is an important factor that determines the characteristics of the device.
  • the channel length is usually 0.1 to 300 ⁇ m, preferably 0.5 to 100 ⁇ m. If the channel length is short, the amount of current that can be extracted increases, but conversely, short channel effects such as the influence of contact resistance occur and control becomes difficult, so an appropriate channel length is required.
  • the width (channel width) between the source and drain electrodes is usually 10 to 1000 ⁇ m, preferably 100 to 5000 ⁇ m. In addition, this channel width can be made longer by making the electrode structure a comb type structure, etc., and it is necessary to make it an appropriate length depending on the required amount of current and the structure of the element. is there.
  • the structure of the source and drain electrodes may be the same or different.
  • the length of the electrode may be the same as the channel width. There is no particular limitation on the width of the electrode, but a shorter one is preferable in order to reduce the area of the element as long as the electrical characteristics can be stabilized.
  • the width of the electrode is usually 0.1 to 1000 ⁇ m, preferably 0.5 to 100 ⁇ m.
  • the thickness of the electrode is usually 0.1 to 1000 ⁇ m, preferably 1 to 500 ⁇ m, more preferably 5 to 200 ⁇ m.
  • a wiring is connected to each of the electrodes 1, 3, and 5, but the wiring is also made of substantially the same material as the electrode.
  • An insulating material is used for the insulator layer 4.
  • polymers such as polyparaxylylene, polyacrylate, polymethyl methacrylate, polystyrene, polyvinylphenol, polyamide, polyimide, polycarbonate, polyester, polyvinyl alcohol, polyvinyl acetate, polyurethane, polysulfone, epoxy resin, phenol resin, and combinations thereof Copolymers;
  • Metal oxides such as silicon dioxide, aluminum oxide, titanium oxide and tantalum oxide; Ferroelectric metal oxides such as SrTiO 3 and BaTiO 3 ; Nitrides such as silicon nitride and aluminum nitride; Sulfides and fluorides Dielectrics such as compounds; or polymers in which particles of these dielectrics are dispersed; and the like can be used.
  • the film thickness of the insulator layer 4 varies depending on the material, but is usually 0.1 nm to 100 ⁇ m, preferably 0. ⁇ m, more preferably 1 nm to 10
  • organic compounds represented by the general formulas (1) to (3) of the present invention can be used as the organic semiconductor material.
  • a thin film is formed using a composition containing an organic compound represented by the general formulas (1) to (3) of the present invention and a solvent is used for the film formation, the solvent is positively evaporated. It is preferable to use for.
  • an organic semiconductor layer is formed by a vapor deposition method, it is particularly preferable to use a single compound as the organic semiconductor rather than a mixture of organic compounds represented by the general formulas (1) to (3).
  • additives such as dopants for the purpose of improving the characteristics of the transistor as described above are not prevented from being contained.
  • the case where the semiconductor layer is formed by a solution process is not limited thereto.
  • the above additives are usually added in the range of 0.01 to 10% by weight, preferably 0.05 to 5% by weight, more preferably 0.1 to 3% by weight, when the total amount of the organic semiconductor material is 1. It is good to do.
  • the thickness of the semiconductor layer 2 is preferably as thin as possible without losing necessary functions.
  • the device characteristics do not depend on the film thickness if the film thickness exceeds a predetermined value.
  • the film thickness of the semiconductor layer for exhibiting the necessary function is usually 1 nm to 10 ⁇ m, preferably 5 nm to 5 ⁇ m, more preferably 10 nm to 3 ⁇ m.
  • other layers can be provided as necessary between the substrate layer and the insulating film layer, between the insulating film layer and the semiconductor layer, or on the outer surface of the element.
  • a protective layer is formed directly on the organic semiconductor layer or via another layer, the influence of outside air such as humidity can be reduced, and the ON / OFF ratio of the element can be increased.
  • the electrical characteristics can be stabilized.
  • the material of the protective layer is not particularly limited.
  • films made of various resins such as acrylic resin such as epoxy resin and polymethyl methacrylate, polyurethane, polyimide, polyvinyl alcohol, fluororesin, polyolefin, etc .; silicon oxide, aluminum oxide, nitriding
  • a film made of an inorganic oxide film such as silicon and a dielectric film such as a nitride film is preferably used, and a resin (polymer) having a low oxygen or moisture permeability and a low water absorption rate is particularly preferable.
  • Protective materials developed for organic EL displays can also be used.
  • the film thickness of the protective layer can be selected according to the purpose, but is usually 100 nm to 1 mm.
  • the surface treatment on the substrate or the like can control the molecular orientation at the interface between the substrate and the organic semiconductor layer to be formed thereafter, and can reduce the trap sites on the substrate and the insulator layer. Therefore, it is considered that characteristics such as carrier mobility are improved.
  • the trap site refers to a functional group such as a hydroxyl group present in an untreated substrate.
  • a functional group such as a hydroxyl group present in an untreated substrate.
  • electrons are attracted to the functional group, and as a result, carrier mobility is lowered. Therefore, reducing trap sites is often effective for improving characteristics such as carrier mobility.
  • Examples of the substrate treatment for improving the characteristics as described above include hydrophobization treatment with hexamethyldisilazane, octyltrichlorosilane, octadecyltrichlorosilane, etc .; acid treatment with hydrochloric acid, sulfuric acid, acetic acid, etc .; sodium hydroxide, hydroxide Alkaline treatment with potassium, calcium hydroxide, ammonia, etc .; ozone treatment; fluorination treatment; plasma treatment with oxygen, argon, etc .; Langmuir / Blodgett film formation process; other insulator and semiconductor thin film formation process; mechanical Treatment: electrical treatment such as corona discharge; rubbing treatment using fibers or the like, and combinations thereof.
  • a vacuum deposition method, a sputtering method, a coating method, a printing method, a sol-gel method, etc. are appropriately employed as a method of providing each layer such as a substrate layer and an insulating film layer, or an insulating film layer and an organic semiconductor layer. it can.
  • the thin film transistor is manufactured by providing various layers and electrodes necessary on the substrate 6 (see FIG. 2A).
  • the substrate those described above can be used. It is also possible to perform the above-described surface treatment or the like on this substrate.
  • the thickness of the substrate 6 is preferably thin as long as necessary functions are not hindered. Although it varies depending on the material, it is usually 1 ⁇ m to 10 mm, preferably 5 ⁇ m to 5 mm. Moreover, you may make it give the function of an electrode to a board
  • a gate electrode 5 is formed on the substrate 6 (see FIG. 2B).
  • the electrode material described above is used as the electrode material.
  • various methods can be used. For example, a vacuum deposition method, a sputtering method, a coating method, a thermal transfer method, a printing method, a sol-gel method, and the like are employed. It is preferable to perform patterning as necessary so as to obtain a desired shape during or after film formation.
  • Various methods can be used as the patterning method, and examples thereof include a photolithography method in which patterning and etching of a photoresist are combined.
  • the film thickness of the gate electrode 5 varies depending on the material, but is usually 0.1 nm to 10 ⁇ m, preferably 0.5 nm to 5 ⁇ m, more preferably 1 nm to 3 ⁇ m. Moreover, when it serves as a gate electrode and a board
  • An insulator layer 4 is formed over the gate electrode 5 (see FIG. 2 (3)).
  • the insulator material those described above are used.
  • Various methods can be used to form the insulator layer 4. For example, spin coating, spray coating, dip coating, casting, bar coating, blade coating and other coating methods, screen printing, offset printing, inkjet printing methods, vacuum deposition, molecular beam epitaxial growth, ion cluster beam method, ion plating Examples thereof include dry process methods such as a coating method, a sputtering method, an atmospheric pressure plasma method, and a CVD method.
  • a sol-gel method, alumite on aluminum, a method of forming an oxide film on a metal such as silicon dioxide on silicon, and the like are employed.
  • the insulator layer can be subjected to a predetermined surface treatment.
  • the surface treatment method the same surface treatment as that of the substrate can be used.
  • the thickness of the insulator layer 4 is preferably as thin as possible without impairing its function. Usually, the thickness is 0.1 nm to 100 ⁇ m, preferably 0.5 nm to 50 ⁇ m, more preferably 5 nm to 10 ⁇ m.
  • the organic compound represented by the general formulas (1) to (3) of the present invention is used as an organic semiconductor material, and is used for forming an organic semiconductor layer (see FIG. 2 (4)).
  • various methods can be used. Specifically, forming methods in vacuum processes such as sputtering, CVD, molecular beam epitaxial growth, and vacuum deposition; coating methods such as dip coating, die coater, roll coater, bar coater, and spin coat , Forming methods by solution process such as inkjet method, screen printing method, offset printing method, microcontact printing method, and the like.
  • a solution process such as printing or a vacuum process. And a method of forming an organic semiconductor layer.
  • the organic semiconductor material is heated in a crucible or a metal boat under vacuum, and the evaporated organic semiconductor material is applied to a substrate (substrate, insulator layer, source electrode, drain electrode, etc.).
  • a method of attaching (evaporating), that is, a vacuum evaporation method is preferably employed.
  • the degree of vacuum is usually 1.0 ⁇ 10 ⁇ 1 Pa or less, preferably 1.0 ⁇ 10 ⁇ 3 Pa or less.
  • the substrate temperature during vapor deposition is usually 0 to 200 ° C., preferably 5 to 150 ° C., more preferably 10 to 120 ° C., further preferably 15 to 100 ° C., and particularly preferably 20 to 80 ° C. ° C.
  • the vapor deposition rate is usually 0.001 to 10 nm / second, preferably 0.01 to 1 nm / second.
  • the film thickness of the organic semiconductor layer formed from the organic semiconductor material is usually 1 nm to 10 ⁇ m, preferably 5 nm to 5 ⁇ m, more preferably 10 nm to 3 ⁇ m.
  • Coating methods include casting, spin coating, dip coating, blade coating, wire bar coating, spray coating, and other coating methods, inkjet printing, screen printing, offset printing, letterpress printing, and other micro contact printing methods. And a method of combining a plurality of these techniques.
  • the Langmuir project method in which a monomolecular film of an organic semiconductor layer produced by dropping the above ink on the water surface is transferred to a substrate and laminated, and two materials in liquid crystal or melt state are used.
  • a method of sandwiching between substrates and introducing them between the substrates by capillary action can also be adopted.
  • the environment such as the temperature of the substrate and the composition at the time of film formation is also important, and the characteristics of the transistor may change depending on the temperature of the substrate and the composition. Therefore, it is preferable to carefully select the temperature of the substrate and the composition.
  • the substrate temperature is usually from 0 to 200 ° C., preferably from 10 to 120 ° C., more preferably from 15 to 100 ° C. Care must be taken because it greatly depends on the solvent in the composition to be used.
  • the film thickness of the organic semiconductor layer produced by this method is preferably thinner as long as the function is not impaired. There is a concern that the leakage current increases as the film thickness increases.
  • the film thickness of the organic semiconductor layer is usually 1 nm to 10 ⁇ m, preferably 5 nm to 5 ⁇ m, more preferably 10 nm to 3 ⁇ m.
  • the characteristics of the organic semiconductor layer thus formed can be further improved by post-processing.
  • heat treatment reduces strain in the film generated during film formation, reduces pinholes, etc., and can control the arrangement and orientation in the film.
  • the semiconductor characteristics can be improved and stabilized.
  • this heat treatment is effective for improving the characteristics.
  • This heat treatment is performed by heating the substrate after forming the organic semiconductor layer.
  • the temperature of the heat treatment is not particularly limited, but is usually from room temperature to 150 ° C., preferably 40 to 120 ° C., more preferably 45 to 100 ° C.
  • the heat treatment time at this time is not particularly limited, but is usually 10 seconds to 24 hours, preferably about 30 seconds to 3 hours.
  • the atmosphere at that time may be air, but may be an inert atmosphere such as nitrogen or argon.
  • a property change due to oxidation or reduction is induced by treatment with an oxidizing or reducing gas such as oxygen or hydrogen or an oxidizing or reducing liquid. You can also. This is often used for the purpose of increasing or decreasing the carrier density in the film, for example.
  • characteristics of the organic semiconductor layer can be changed by adding a trace amount of elements, atomic groups, molecules, and polymers to the organic semiconductor layer.
  • elements for example, oxygen, hydrogen, hydrochloric acid, sulfuric acid, sulfonic acid and other acids; Lewis acids such as PF 5 , AsF 5 and FeCl 3 ; halogen atoms such as iodine; metal atoms such as sodium and potassium; .
  • This can be achieved by bringing these gases into contact with the organic semiconductor layer, immersing them in a solution, or performing an electrochemical doping treatment.
  • dopings may be added during the synthesis of the organic semiconductor compound, even after the organic semiconductor layer is not prepared, or may be added to the ink in the process of preparing the organic semiconductor layer using the ink for preparing the organic semiconductor element. It can be added in the process step of forming a thin film.
  • a material used for doping is added to the material for forming the organic semiconductor layer at the time of vapor deposition, and co-evaporation is performed, or the organic semiconductor layer is mixed with the surrounding atmosphere when the organic semiconductor layer is formed (in an environment where the doping material is present). An organic semiconductor layer is produced), and further, ions can be accelerated in a vacuum and collide with the film for doping.
  • These doping effects include changes in electrical conductivity due to increase or decrease in carrier density, changes in carrier polarity (P-type and N-type), changes in Fermi level, and the like.
  • the protective layer 7 When the protective layer 7 is formed on the organic semiconductor layer, there is an advantage that the influence of outside air can be minimized and the electrical characteristics of the organic thin film transistor can be stabilized (see FIG. 2 (6)).
  • the materials described above are used as the material for the protective layer.
  • the protective layer 7 may have any film thickness depending on the purpose, but is usually 100 nm to 1 ⁇ m.
  • Various methods can be employed to form the protective layer.
  • the protective layer is made of a resin, for example, a method of applying a resin solution and then drying to form a resin film; applying a resin monomer or vapor deposition And then polymerizing. Cross-linking treatment may be performed after film formation.
  • the protective layer is made of an inorganic material
  • a formation method in a vacuum process such as a sputtering method or a vapor deposition method, or a formation method in a solution process such as a sol-gel method can be used.
  • a protective layer can be provided between the layers as necessary. These layers may help stabilize the electrical characteristics of the thin film transistor.
  • organic compounds represented by the general formulas (1) to (3) are used as organic semiconductor materials, they can be manufactured at a relatively low temperature process. Therefore, flexible materials such as plastic plates and plastic films that could not be used under conditions exposed to high temperatures can also be used as the substrate. As a result, it is possible to manufacture a light, flexible, and hard-to-break element, which can be used as a switching element for an active matrix of a display.
  • Thin film transistors can be used as digital elements and analog elements such as memory circuit elements, signal driver circuit elements, and signal processing circuit elements. Further, by combining these, it is possible to produce an IC card or an IC tag. Furthermore, since the characteristics of the thin film transistor can be changed by an external stimulus such as a chemical substance, the thin film transistor can also be used as an FET sensor.
  • Organic EL elements are attracting attention and can be used for applications such as solid, self-luminous large-area color display and illumination, and many developments have been made.
  • An organic EL element is an element that emits light by electric energy in which an organic thin film of one layer or a plurality of layers is formed between an electrode between an anode and a cathode.
  • a structure having two layers of a light emitting layer and a charge transport layer; a structure having three layers of an electron transport layer, a light emitting layer and a hole transport layer laminated between the counter electrodes; and three or more layers And the like, and the light emitting layer is known as a single layer.
  • the hole transport layer has a function of injecting holes from the anode, transporting holes to the light emitting layer, facilitating the injection of holes into the light emitting layer, and a function of blocking electrons.
  • the electron transport layer has a function of injecting electrons from the cathode, transporting electrons to the light emitting layer, facilitating injection of electrons into the light emitting layer, and blocking holes. Further, in the light emitting layer, excitons are generated by recombination of the injected electrons and holes, and the energy emitted in the process of radiative deactivation of the excitons is detected as light emission.
  • the preferable aspect of an organic EL element is described below.
  • the anode that can be used in the organic EL element is an electrode having a function of injecting holes into the hole injection layer, the hole transport layer, and the light emitting layer.
  • metal oxides, metals, alloys, conductive materials, and the like having a work function of 4.5 eV or more are suitable.
  • conductive metal oxides such as tin oxide (NESA), indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), gold, silver, platinum, chromium And metals such as aluminum, iron, cobalt, nickel and tungsten, inorganic conductive materials such as copper iodide and copper sulfide, conductive polymers such as polythiophene, polypyrrole and polyaniline, and carbon.
  • ITO or NESA it is preferable to use ITO or NESA.
  • the anode may be made of a plurality of materials or may be composed of two or more layers if necessary.
  • the resistance of the anode is not limited as long as it can supply a current sufficient for light emission of the element, but it is preferably low resistance from the viewpoint of power consumption of the element.
  • an ITO substrate having a sheet resistance value of 300 ⁇ / ⁇ or less functions as an element electrode, but since it is possible to supply a substrate of several ⁇ / ⁇ , it is desirable to use a low-resistance product.
  • the thickness of ITO can be arbitrarily selected according to the resistance value, but is usually 5 to 500 nm, preferably 10 to 300 nm. Examples of film forming methods such as ITO include a vapor deposition method, an electron beam method, a sputtering method, a chemical reaction method, and a coating method.
  • the cathode that can be used in the organic EL element is an electrode having a function of injecting electrons into the electron injection layer, the electron transport layer, and the light emitting layer.
  • a metal or an alloy having a small work function (approximately 4 eV or less) is suitable.
  • Specific examples include platinum, gold, silver, copper, iron, tin, zinc, aluminum, indium, chromium, lithium, sodium, potassium, calcium, and magnesium, but increase the electron injection efficiency to improve device characteristics.
  • lithium, sodium, potassium, calcium and magnesium are preferred.
  • the alloy an alloy with a metal such as aluminum or silver containing these low work function metals, or an electrode having a structure in which these are laminated can be used.
  • An inorganic salt such as lithium fluoride can be used for the electrode having a laminated structure.
  • a transparent electrode that can be formed at a low temperature may be used.
  • the film forming method include a vapor deposition method, an electron beam method, a sputtering method, a chemical reaction method, and a coating method, but are not particularly limited.
  • the resistance of the cathode is not limited as long as it can supply a current sufficient for light emission of the element, but it is preferably low resistance from the viewpoint of power consumption of the element, and preferably about several hundred to several ⁇ / ⁇ .
  • the film thickness is usually 5 to 500 nm, preferably 10 to 300 nm.
  • oxides such as titanium oxide, silicon nitride, silicon oxide, silicon nitride oxide, and germanium oxide, nitrides, or mixtures thereof, polyvinyl alcohol, vinyl chloride, hydrocarbon polymers, fluorine
  • a dehydrating agent such as barium oxide, phosphorus pentoxide, or calcium oxide.
  • the transparent substrate include a glass substrate and a polymer substrate.
  • soda lime glass, non-alkali glass, quartz, or the like is used.
  • the glass substrate may have a thickness sufficient to maintain mechanical and thermal strength, and a thickness of 0.5 mm or more is preferable.
  • the material of the glass it is better that there are few ions eluted from the glass, and alkali-free glass is preferred.
  • soda lime glass provided with a barrier coat such as SiO 2 is commercially available, it can also be used.
  • the substrate made of a polymer other than glass include polycarbonate, polypropylene, polyethersulfone, polyethylene terephthalate, and an acrylic substrate.
  • the organic thin film of the organic EL element is formed of one layer or a plurality of layers between the anode and cathode electrodes.
  • the “layer” of one or more layers forming the organic thin film is a hole transport layer, an electron transport layer, a hole transport light-emitting layer, an electron transport light-emitting layer, a hole block layer, an electron block layer, a positive layer.
  • the hole injection layer, the electron injection layer, the light emitting layer, or the following structural example 9 it means a single layer having the functions of these layers.
  • Examples of the configuration of the layer forming the organic thin film in the present invention include the following configuration examples 1) to 9), and any configuration may be used.
  • a single layer formed of a material generally called a bipolar luminescent material; or only one layer including a luminescent material and a hole transport material or an electron transport material may be provided.
  • charges, that is, holes and / or electrons can be efficiently transported and these charges can be recombined.
  • the stability of the element can be prevented from being lowered and the light emission efficiency can be improved.
  • the hole injection layer and the transport layer are formed by laminating a hole transport material alone or a mixture of two or more kinds of the materials.
  • hole transport materials include N, N′-8 diphenyl-N, N′-di (3-methylphenyl) -4,4′-diphenyl-4,4′-diamine, N, N′-dinaphthyl-N , N′-diphenyl-N, N′-diphenyl-1,1′-diamine and the like triphenylamines, bis (N-allylcarbazole) or bis (-1,1′-alkylcarbazole) s, pyrazoline derivatives, Preferred are stilbene compounds, hydrazone compounds, triazole derivatives, heterocyclic compounds typified by oxadiazole derivatives and porphyrin derivatives, polycarbonates having a monomer in the side chain, styrene derivatives, polyvinylcarbazole, polysilane, etc.
  • the hole injection layer provided between the hole transport layer and the anode for improving the hole injection property includes phthalocyanine derivatives, starburst amines such as m-MTDATA, polythiophene such as PEDOT in the polymer system, polyvinyl Those prepared with carbazole derivatives and the like can be mentioned.
  • the electron transport material As an electron transport material, it is necessary to efficiently transport electrons from the negative electrode between electrodes to which an electric field is applied.
  • the electron transport material has high electron injection efficiency, and it is preferable to transport the injected electrons efficiently.
  • the substance has a high electron affinity, a high electron mobility, excellent stability, and a substance that does not easily generate trapping impurities during manufacturing and use.
  • quinolinol derivative metal complexes represented by tris (8-quinolinolato) aluminum complexes, tropolone metal complexes, perylene derivatives, perinone derivatives, naphthalimide derivatives, naphthalic acid derivatives, oxazole derivatives, oxadiazoles Derivatives, thiazole derivatives, thiadiazole derivatives, triazole derivatives, bisstyryl derivatives, pyrazine derivatives, phenanthroline derivatives, benzoxazole derivatives, quinoxaline derivatives, and the like are exemplified, but are not particularly limited.
  • These electron transport materials are used alone, but may be laminated or mixed with different electron transport materials. Examples of the electron injection layer provided between the electron transport layer and the cathode for improving the electron injection property include metals such as cesium, lithium, and strontium, lithium fluoride, and the like.
  • the hole blocking layer is formed by laminating and mixing hole blocking substances alone or two or more kinds.
  • the hole blocking substance phenanthroline derivatives such as bathophenanthroline and bathocuproin, silole derivatives, quinolinol derivative metal complexes, oxadiazole derivatives and oxazole derivatives are preferable.
  • the hole blocking substance is not particularly limited as long as it is a compound that can prevent holes from flowing out from the cathode side to the outside of the device and thereby reducing luminous efficiency.
  • the light emitting layer means an organic thin film that emits light, and examples thereof include a hole transporting layer, an electron transporting layer, a bipolar transporting layer, and the like having strong light emitting properties.
  • the light emitting layer only needs to be formed of a light emitting material (host material, dopant material, etc.), which may be a mixture of a host material and a dopant material or a host material alone. Each of the host material and the dopant material may be one kind or a combination of a plurality of materials.
  • the dopant material may be included in the host material as a whole, or may be included partially.
  • the dopant material may be either laminated or dispersed.
  • Examples of the light emitting layer include the above-described hole transport layer and electron transport layer.
  • Materials used for the light-emitting layer include carbazole derivatives, anthracene derivatives, naphthalene derivatives, phenanthrene derivatives, phenylbutadiene derivatives, styryl derivatives, pyrene derivatives, perylene derivatives, quinoline derivatives, tetracene derivatives, perylene derivatives, quinacridone derivatives, coumarin derivatives, Examples include porphyrin derivatives and phosphorescent metal complexes (Ir complex, Pt complex, Eu complex, etc.).
  • the organic thin film formation method of the organic EL element is generally a resistance heating evaporation that is a vacuum process, electron beam evaporation, sputtering, molecular lamination method, casting that is a solution process, spin coating, dip coating, blade coating, wire bar.
  • Uses coating methods such as coating and spray coating, printing methods such as inkjet printing, screen printing, offset printing and letterpress printing, soft lithography methods such as microcontact printing, and a combination of these methods.
  • the thickness of each layer depends on the resistance value and charge mobility of each substance and cannot be limited, but is selected from 0.5 to 5000 nm. The thickness is preferably 1 to 1000 nm, more preferably 5 to 500 nm.
  • one or more thin films such as a light emitting layer, a hole transport layer, and an electron transport layer existing between the anode and the cathode are represented by the general formulas (1) to (3). ), An element that emits light efficiently even with low electrical energy can be obtained.
  • the organic compounds represented by the general formulas (1) to (3) can be suitably used as a hole transport layer, a light emitting layer, and an electron transport layer.
  • a hole transport layer a hole transport layer
  • a light emitting layer a light emitting layer
  • an electron transport layer a hole transport layer
  • it can be used in combination with the above-described electron transport material, hole transport material, light emitting material, or the like.
  • the dopant material when the organic compound represented by the general formulas (1) to (3) is used as a host material in combination with the dopant material include perylene derivatives such as bis (diisopropylphenyl) perylenetetracarboxylic imide, Perinone derivatives, 4- (dicyanomethylene) -2methyl-6- (p-dimethylaminostyryl) -4H pyran (DCM) and its analogs, metal phthalocyanine derivatives such as magnesium phthalocyanine and aluminum chlorophthalocyanine, rhodamine compounds, deazaflavin derivatives , Coumarin derivatives, oxazine compounds, squarylium compounds, violanthrone compounds, Nile Red, pyromethene derivatives such as 5-cyanopyromethene-BF4 complex, and acetylacetone and benzoylacetate as phosphorescent materials.
  • perylene derivatives such as bis (diisopropylphenyl) pery
  • ortho metal complexes such as down and phenanthroline as a ligand, Ir complexes, Ru complexes, Pt complexes, porphyrins such as Os complexes, etc.
  • ortho metal complex is not particularly limited thereto.
  • when two kinds of dopant materials are mixed it is also possible to obtain light emission with improved color purity by efficiently transferring energy from the host dye using an assist dopant such as rubrene. In any case, in order to obtain high luminance characteristics, it is preferable to dope those having a high fluorescence quantum yield.
  • the amount of dopant material used is usually used at 30% by mass or less based on the host material. Preferably it is 20 mass% or less, More preferably, it is 10 mass% or less.
  • a method for doping the host material with the dopant material in the light emitting layer it can be formed by a co-evaporation method with the host material. It is also possible to use it sandwiched between host materials. In this case, you may laminate
  • dopant layers can form each layer alone, or may be used by mixing them.
  • the dopant material may be polyvinyl chloride, polycarbonate, polystyrene, polystyrene sulfonic acid, poly (N-vinylcarbazole), poly (methyl) (meth) acrylate, polybutyl methacrylate, polyester, polysulfone, as a polymer binder.
  • Solvent-soluble resins such as polyphenylene oxide, polybutadiene, hydrocarbon resin, ketone resin, phenoxy resin, polysulfone, polyamide, ethyl cellulose, vinyl acetate, ABS resin, polyurethane resin, phenol resin, xylene resin, petroleum resin, urea resin, melamine resin
  • a curable resin such as an unsaturated polyester resin, an alkyd resin, an epoxy resin, or a silicone resin.
  • the organic EL element can be suitably used as a flat panel display. It can also be used as a flat backlight. In this case, either a light emitting colored light or a light emitting white light can be used.
  • the backlight is mainly used for the purpose of improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display board, a sign, and the like.
  • conventional backlights for liquid crystal display devices especially for personal computers where thinning is an issue, have been difficult to thin because they consist of fluorescent lamps and light guide plates. Since the conventional backlight is characterized by thinness and light weight, the above problems are solved. Similarly, it can be usefully used for illumination.
  • an organic EL display device having high luminous efficiency and a long lifetime can be obtained. Further, by combining thin film transistor elements, it becomes possible to supply an organic EL display device in which the applied voltage on / off phenomenon is electrically controlled with high accuracy at low cost.
  • organic solar cell element Next, the organic solar cell element will be described.
  • the organic compounds represented by the general formulas (1) to (3) a flexible and low-cost organic solar cell element can be easily produced. That is, the organic solar cell element is advantageous in terms of flexibility and improved life because it does not use an electrolyte solution unlike the dye-sensitized solar cell.
  • the development of solar cells using organic thin film semiconductors combined with conductive polymers, fullerenes and the like has been mainstream, but power generation conversion efficiency is a problem.
  • an organic solar cell element is similar to a silicon solar cell, in which a layer for generating power (a power generation layer) is sandwiched between an anode and a cathode, and holes and electrons generated by absorbing light are received by each electrode. It functions as a solar cell.
  • the power generation layer is composed of a P-type material, an N-type material, and other materials such as a buffer layer, and an organic material used for the material is called an organic solar cell.
  • Structures include Schottky junctions, heterojunctions, bulk heterojunctions, nanostructure junctions, hybrids, etc. Each material efficiently absorbs incident light and generates charges, and the generated charges (holes and electrons) It functions as a solar cell by separating, transporting and collecting.
  • the anode and cathode in the organic solar cell element are the same as those of the organic EL element described above. Since it is necessary to take in light efficiently, it is desirable to use an electrode having transparency in the absorption wavelength region of the power generation layer. Moreover, in order to have a favorable solar cell characteristic, it is preferable that sheet resistance is 20 ohms / square or less.
  • the power generation layer is formed of one or more organic thin films containing at least the organic compounds represented by the general formulas (1) to (3).
  • An organic solar cell can have the structure shown above, but basically includes a P-type material, an N-type material, and a buffer layer.
  • a compound capable of transporting holes in the same manner as the hole injection and hole transport layer described in the section of the organic EL element examples include ⁇ -conjugated polymers such as polyaniline derivatives, carbazole and other polymers having a heterocyclic ring in the side chain.
  • pentacene derivatives, rubrene derivatives, porphyrin derivatives, phthalocyanine derivatives, indigo derivatives, quinacridone derivatives, merocyanine derivatives, cyanine derivatives, squalium derivatives, benzoquinone derivatives, and the like can be given.
  • N-type material basically, a compound capable of transporting electrons, an oligomer or a polymer having skeleton of pyridine and derivatives thereof, and a quinoline and derivative thereof are included in the skeleton in the same manner as the electron transport layer described in the section of the organic EL element.
  • Polymers such as oligomers and polymers, polymers having benzophenanthrolines and derivatives thereof, cyanopolyphenylene vinylene derivatives (CN-PPV, etc.), fluorinated phthalocyanine derivatives, perylene derivatives, naphthalene derivatives, bathocuproine derivatives, C60 and C70
  • low molecular weight materials such as fullerene derivatives such as PCBM. Each of them preferably absorbs light efficiently and generates a charge, and the material used has a high extinction coefficient.
  • the organic compounds represented by the general formulas (1) to (3) can be particularly preferably used as an N-type material.
  • the method for forming the thin film for the power generation layer of the organic solar cell may be the same as the method described in the above-mentioned section of the organic EL element.
  • the thickness of the thin film varies depending on the configuration of the solar cell, it is better to thicken it in order to absorb light sufficiently and prevent short-circuiting, but it is better to transport the generated charge because the shorter distance is better. Is suitable.
  • the thickness of the power generation layer is preferably about 10 to 5000 nm.
  • the organic compounds represented by the general formulas (1) to (3) are compounds having organic semiconductor properties, they are expected to be used as organic semiconductor laser elements. That is, if a resonator structure is incorporated in an organic semiconductor element containing an organic compound represented by the general formulas (1) to (3) and carriers are efficiently injected, the density of excited states can be sufficiently increased. It is expected that the light is amplified and leads to laser oscillation. Conventionally, only laser oscillation by optical excitation has been observed, and it is very difficult to inject high-density carriers necessary for laser oscillation by electrical excitation into an organic semiconductor element to generate a high-density excitation state. Although it has been proposed, the use of an organic semiconductor element containing an organic compound represented by the general formulas (1) to (3) is expected to cause highly efficient light emission (electroluminescence).
  • a light-emitting transistor that combines an organic transistor and an organic electroluminescent element has a structure in which the drive circuit and light-emitting part of the display are integrated, reducing the area occupied by the drive transistor circuit and increasing the aperture ratio of the display unit. Can do. That is, the number of parts can be reduced and the manufacturing process is simplified, so that a display with lower cost can be obtained.
  • electrons and holes are simultaneously injected into the organic light emitting material from the source and drain electrodes of the organic light emitting transistor, and light is emitted by recombination. The adjustment of the light emission amount is controlled by the electric field from the gate electrode.
  • the structure may be the same as that described in the section of the organic light emitting transistor, and a light emitting transistor material can be used instead of the structure of the semiconductor layer for the organic light emitting transistor.
  • the material and process to be used can be selected as appropriate depending on the characteristics of the semiconductor compound, and a configuration for extracting light to the outside is desirable.
  • a normal organic light emitting transistor it is only necessary to inject one of electrons or holes.
  • light is emitted by the combination of electrons and holes in the semiconductor layer, so that effective charge can be generated from the electrodes.
  • a structure that promotes injection, coupling, and light emission is preferable.
  • Photoelectric conversion films containing organic compounds represented by general formulas (1) to (3) can be used as photoelectric conversion elements. In particular, it can be suitably used as a material for the photoelectric conversion layer.
  • a photoelectric conversion element is an element in which a photoelectric conversion unit including a photoelectric conversion film is disposed between two opposing electrode films, which are an upper electrode and a lower electrode, and light is incident on the photoelectric conversion unit from above one electrode. It is incident.
  • the photoelectric conversion unit generates electrons and holes according to the amount of incident light, and a signal corresponding to the charge is read out by a semiconductor to indicate the amount of incident light according to the absorption wavelength of the photoelectric conversion film unit. It is an element.
  • a transistor for reading is connected to the lower electrode film.
  • the photoelectric conversion element becomes an imaging element.
  • a plurality of photoelectric conversion elements may be stacked. Good.
  • the above-described plurality of photoelectric conversion elements absorb different visible lights, a multicolor imaging element is formed, and a full color photodiode is obtained.
  • FIG. 3 shows an example of a photoelectric conversion element. 3, 11 is an insulating portion, 12 is an upper electrode, 13 is an electron blocking layer, 14 is a photoelectric conversion portion, 15 is a hole blocking layer, 16 is a lower electrode, 17 is an insulating base material, or photoelectric.
  • Each conversion element is represented.
  • the readout transistor is not shown in the drawing, it may be connected to the lower electrode, and may be formed under the lower electrode if the semiconductor is transparent. The incident light may enter from the upper part or the lower part as long as the light other than the photoelectric conversion part does not extremely disturb the absorption wavelength of the photoelectric conversion part.
  • the photoelectric conversion unit 14 is often composed of a plurality of layers such as a photoelectric conversion layer, an electron transport layer, a hole transport layer, an electron block layer, a hole block layer, a crystallization prevention layer, and an interlayer contact improvement layer.
  • a photoelectric conversion layer such as a photoelectric conversion layer, an electron transport layer, a hole transport layer, an electron block layer, a hole block layer, a crystallization prevention layer, and an interlayer contact improvement layer.
  • the present invention is not limited to this.
  • an organic semiconductor film (photoelectric conversion film) is used for the photoelectric conversion layer, but the organic semiconductor film may be a single layer or a plurality of layers.
  • a P-type organic semiconductor film, N Type organic semiconductor films or a mixed film (bulk heterostructure) thereof is used.
  • a plurality of layers it is about 2 to 10 layers, and is a structure in which any of a P-type organic semiconductor film, an N-type organic semiconductor film, or a mixed film (bulk heterostructure) is laminated.
  • a buffer layer may be inserted into the.
  • triarylamine compounds for organic semiconductor films, triarylamine compounds, benzidine compounds, pyrazoline compounds, styrylamine compounds, hydrazone compounds, triphenylmethane compounds, carbazole compounds, polysilane compounds, thiophene compounds, phthalocyanines, depending on the wavelength band to be absorbed.
  • the hole transport layer transports the generated holes from the photoelectric conversion layer to the electrode, facilitates movement of holes from the photoelectric conversion layer to the electrode, and functions to block electron transfer from the electrode.
  • the electron transport layer has a function of transporting generated electrons from the photoelectric conversion layer to the electrode, facilitating movement of electrons from the photoelectric conversion layer to the electrode, and a function of blocking movement of holes from the electrode.
  • the hole blocking layer has a function of preventing movement of holes from the electrode to the photoelectric conversion layer, preventing recombination in the photoelectric conversion layer, and reducing dark current.
  • the electron blocking layer has a function of preventing movement of electrons from the electrode to the photoelectric conversion layer, preventing recombination in the photoelectric conversion layer, and reducing dark current.
  • the hole block layer and the electron block layer preferably have high transmittance at the absorption wavelength of the photoelectric conversion layer, or are preferably used as a thin film, in order not to prevent light absorption of the photoelectric conversion film.
  • the generated electrons and holes are transported to the electrodes, and are sent as electrical signals to the readout circuit.
  • the electrode film that can be used in the photoelectric conversion element is a hole-transporting photoelectric conversion film or a hole-transporting film included in the photoelectric conversion layer, which collects holes or collects electrons or is included in the photoelectric conversion layer.
  • adjacent films such as a hole transport photoelectric conversion film and a hole transport film, or an electron transport photoelectric conversion film and an electron transport film
  • it is selected in consideration of adhesion to adjacent films such as, electron affinity, ionization potential, stability, etc., it is not particularly limited, but tin oxide (NESA), indium oxide, indium tin oxide (ITO) , Conductive metal oxides such as zinc indium oxide (IZO), gold, silver, platinum, chromium, aluminum, iron, cobalt, nickel, tungsten and other metals, copper iodide Inorganic conductive substances such as copper sulfide, polythiophene, polypyrrole, and
  • the resistance of the electrode is not limited, but is not limited as long as it does not interfere with the light reception of the element more than necessary. From the viewpoint of signal strength of the element and power consumption, the resistance is preferably low.
  • an ITO substrate having a sheet resistance value of 300 ⁇ / ⁇ or less functions as an element electrode, but since it is possible to supply a substrate of several ⁇ / ⁇ , it is desirable to use a low-resistance product.
  • the thickness of ITO can be arbitrarily selected according to the resistance value, but is usually 5 to 500 nm, preferably 10 to 300 nm. Examples of film forming methods such as ITO include a vapor deposition method, an electron beam method, a sputtering method, a chemical reaction method, and a coating method. If necessary, UV-ozone treatment, plasma treatment or the like can be performed.
  • the material for the transparent electrode film are ITO, IZO, SnO 2 , ATO (antimony-doped tin oxide), ZnO, AZO (Al-doped zinc oxide), GZO (gallium-doped zinc oxide), TiO 2 , FTO (fluorine). Doped tin oxide).
  • the light transmittance of the transparent electrode film is preferably 60% or more, more preferably 80% or more, more preferably 90% or more, at the absorption peak wavelength of the photoelectric conversion film included in the photoelectric conversion part including the transparent electrode film. More preferably, it is 95% or more.
  • the electrodes inside the stacked films need to transmit light having a wavelength other than the light detected by each photoelectric conversion film, and preferably 90%, more preferably, the absorbed light. Is preferably a material that transmits 95% or more of light.
  • the electrode film is preferably made plasma-free.
  • plasma free means that no plasma is generated during the formation of the electrode film, or the distance from the plasma generation source to the substrate is 2 cm or more, preferably 10 cm or more, more preferably 20 cm or more, and reaches the substrate. It means a state where the plasma to be reduced decreases.
  • Examples of apparatuses that do not generate plasma during the formation of an electrode film include an electron beam vapor deposition apparatus (EB vapor deposition apparatus) and a pulse laser vapor deposition apparatus.
  • EB vapor deposition apparatus electron beam vapor deposition apparatus
  • pulse laser vapor deposition apparatus a method of forming a transparent electrode film using an EB vapor deposition apparatus is referred to as an EB vapor deposition method
  • a method of forming a transparent electrode film using a pulse laser vapor deposition apparatus is referred to as a pulse laser vapor deposition method.
  • a plasma-free film formation apparatus As an apparatus capable of realizing a state in which plasma can be reduced during film formation (hereinafter referred to as a plasma-free film formation apparatus), for example, an opposed target sputtering apparatus or an arc plasma deposition method can be considered.
  • the sheet resistance may be preferably 100 to 10,000 ⁇ / ⁇ , and the film thickness can be reduced.
  • the degree of freedom is large.
  • the increase in light transmittance is very preferable because it increases the light absorption in the photoelectric conversion film and increases the photoelectric conversion ability.
  • the hole blocking layer is formed by laminating or mixing a hole blocking substance alone or two or more kinds.
  • a hole blocking substance phenanthroline derivatives such as bathophenanthroline and bathocuproin, silole derivatives, quinolinol derivative metal complexes, oxadiazole derivatives, oxazole derivatives, and the like are used.
  • the compound is not particularly limited as long as it is a compound that can prevent flowing out of the element.
  • the method for forming the hole blocking layer thin film of the photoelectric conversion element may be as described below.
  • the film thickness is small. However, since a sufficient amount of current is required for signal readout at the time of light incidence, the film thickness should be as thin as possible.
  • the power generation layer is preferably about 5 to 500 nm.
  • the organic thin film forming method of the photoelectric conversion element is generally a resistance heating vapor deposition which is a vacuum process, electron beam vapor deposition, sputtering, molecular lamination method, casting which is a solution process, spin coating, dip coating, blade coating, wire bar.
  • Uses coating methods such as coating and spray coating, printing methods such as inkjet printing, screen printing, offset printing and letterpress printing, soft lithography methods such as microcontact printing, and a combination of these methods.
  • the thickness of each layer depends on the resistance value and charge mobility of each substance and cannot be limited, but is selected from 0.5 to 5000 nm. The thickness is preferably 1 to 1000 nm, more preferably 5 to 500 nm.
  • the above-mentioned general one or more layers of thin films such as a photoelectric conversion layer, a hole transport layer, a hole block layer, an electron transport layer, and an electron block layer existing between electrodes
  • a module is a device including a plurality of photoelectric conversion elements.
  • the module has a configuration in which a plurality of photoelectric conversion elements are integrated.
  • Modules include image sensors.
  • the optical sensor includes a device such as an infrared light sensor.
  • Near-infrared light sensors are technologies that receive light in the infrared region (infrared rays) and convert it into electrical signals to extract and apply necessary information, and devices that use this technology. It has features such as being able to see an object without stimulating human vision and measuring the temperature of an object instantly from a distance without contact. By using an infrared film or an image sensor that is sensitive to the near infrared, it is possible to shoot an image that is different from an image that can be seen with the naked eye.
  • a photoelectric conversion element including an organic compound using the general formulas (1) to (3) can be used for a camera, a digital still camera, an infrared ray using a device such as an optical sensor utilizing excellent photoelectric conversion performance and near infrared absorption characteristics. It can be applied to fields such as cameras.
  • Other applications include digital video cameras, surveillance cameras for the following applications (office buildings, parking lots, financial institutions and unmanned contractors, shopping centers, convenience stores, outlet malls, department stores, pachinko halls, karaoke boxes, game centers, Hospital), various other sensors (TV door phone, personal authentication sensor, factory automation sensor, home robot, industrial robot, piping inspection system), medical sensor (endoscope, fundus camera), video conference system, It can be used for applications such as videophones, camera-equipped mobile phones, car safety driving systems (back guide monitors, collision prediction, lane keeping systems), and video game sensors.
  • applications such as videophones, camera-equipped mobile phones, car safety driving systems (back guide monitors, collision prediction, lane keeping systems), and video game sensors.
  • reaction temperature described the internal temperature in a reaction system unless there is particular notice.
  • Example 1 Synthesis of Compound (1)
  • Compound (2-7) (0.73 g, 1.11 mmol) was dissolved in dehydrated dichloromethane (80 mL) under a nitrogen atmosphere. After cooling to 0 ° C., boron tribromide dichloromethane solution (3.4 mL) was added dropwise over 2 minutes and stirred at room temperature for 3.5 hours. The reaction solution was poured into saturated aqueous sodium hydrogen carbonate and stirred for 2 hours, and then the precipitate was filtered off. The organic layer of the filtrate was washed with water and saturated brine, dried over sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure.
  • Example 3 Synthesis of Compound (581) Compound (2-9) (0.43 g, 0.62 mmol) was dissolved in dehydrated dichloromethane (50 mL) under a nitrogen atmosphere. After cooling to 0 ° C., boron tribromide dichloromethane solution (2.5 mL) was added dropwise over 2 minutes, and the mixture was stirred at room temperature for 3 hours. The reaction solution was poured into saturated aqueous sodium hydrogen carbonate and stirred for 2 hours, and then the precipitate was filtered off. The organic layer of the filtrate was washed with water and saturated brine, dried over sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure.
  • Example 5 Preparation of organic thin film (optical film) of near-infrared absorbing dye Compound (1) obtained in Example 1 was vacuum-deposited by 70 nm on a quartz substrate by resistance heating vacuum deposition, and an organic thin film test piece Was made. The obtained wavelength-absorbance graph is shown in FIG. The absorption edge of the compound (1) in the organic thin film state was observed at 927 nm.
  • Example 6 Production of a thin film (optical film) of near-infrared absorbing dye
  • the compound (296) obtained in Example 2 was vacuum-deposited by resistance heating vacuum deposition on a glass substrate to produce a thin film test piece. did.
  • the obtained wavelength-absorbance graph is shown in FIG. The absorption edge of compound 296 in the thin film state was observed at 937 nm.
  • Example 7 Production of thin film (optical film) of near-infrared absorbing dye
  • the compound (581) obtained in Example 3 was vacuum-deposited by 90 nm on a glass substrate by resistance heating vacuum deposition to produce a thin-film test piece. did.
  • the obtained wavelength-absorbance graph is shown in FIG. The absorption edge of the compound 581 in the thin film state was observed at 937 nm.
  • Comparative Example Compound A is a compound represented by the following formula.
  • Comparative Example Compound A was synthesized according to the following reaction formula (6). A specific explanation is given below.
  • Comparative Compound (A) Compound (A-5) (700 mg, 1.39 mmol) was dissolved in dehydrated dichloroethane (138 mL) and stirred at 0 ° C. under a nitrogen atmosphere. Boron tribromide (7.0 mL, 7.0 mmol) was added dropwise to this solution, and stirring was continued for 2 hours. The reaction was then heated to 40 ° C. and allowed to stir overnight. After completion of the reaction, the reaction was quenched by adding saturated aqueous sodium bicarbonate while cooling with ice. The aqueous phase was removed, the solvent was distilled off, and the solid precipitated with methanol was washed, followed by filtration to obtain a blue-green solid (515 mg, crude yield 85%). Then, the comparative compound A which is a glossy green solid was obtained through the sublimation purification.
  • APCI-MS: m / z 436 [M] + .
  • Comparative Example 1 Preparation and Evaluation of Thin Film Using Comparative Compound (A) Resistance Compound was vacuum-deposited to a thickness of 80 nm on a glass substrate previously washed with Comparative Compound A, and an absorption spectrum was measured for the obtained organic thin film. did. The obtained absorption spectrum is shown in FIG. As a result, the absorption edge of the comparative compound A in the thin film state was observed at 838 nm.
  • the absorption edge of the thin film using the dibenzopyromethene boron chelate compound of the present invention has a longer wavelength of 100 nm, and more effectively near infrared light Light absorption in the region is possible. From this, it can be confirmed that it is useful as a near-infrared absorbing dye and useful as an optical film.
  • Example 8 Preparation of a thin film (optical film) of near-infrared absorbing dye and light resistance test
  • the compound (1) obtained in Example 1 was vacuum-deposited to a thickness of 100 nm by resistance heating vacuum deposition to form a thin film.
  • a test piece was prepared. The test piece was placed on a low temperature cycle xenon weather meter XL75 manufactured by Suga Test Instruments Co., Ltd., and irradiated under conditions of irradiance of 100,000 Lux, humidity of 60% RH, and temperature of 24 ° C. After elapse of each predetermined time (0 minutes, 90 minutes, 300 minutes, and 1200 minutes), the test piece was taken out, and the change in absorbance was recorded in an ultraviolet-visible absorption spectrum. The obtained wavelength-absorbance graph is shown in FIG.
  • Example 9 Production of photoelectric conversion element and evaluation thereof Compound (1) was vacuum-deposited with 100 nm as a photoelectric conversion layer on ITO transparent conductive glass (manufactured by Geomat Co., Ltd., ITO film thickness 150 nm). A 100 nm vacuum film of aluminum was formed thereon as an electrode to produce a photoelectric conversion element. When ITO and aluminum were used as electrodes and a voltage of 2 V was applied, the current in the dark was 2.71 ⁇ 10 ⁇ 9 A / cm 2 .
  • the current was 1.54 ⁇ 10 ⁇ 6 A / cm 2 .
  • the current response characteristics of the obtained photoelectric conversion element are shown in FIG.
  • the photoelectric conversion spectrum of the obtained photoelectric conversion element is shown in FIG.
  • the maximum photoresponse sensitivity was 760 nm, and the sensitivity was halved at 877 nm.
  • Example 10 Production of photoelectric conversion element and its evaluation Compound (296) was vacuum-deposited with 100 nm as a photoelectric conversion layer on ITO transparent conductive glass (manufactured by Geomat Co., Ltd., ITO film thickness 150 nm). A 100 nm vacuum film of aluminum was formed thereon as an electrode to produce a photoelectric conversion element. When ITO and aluminum were used as electrodes and a voltage of 2 V was applied, the current in the dark was 6.89 ⁇ 10 ⁇ 9 A / cm 2 .
  • the current was 7.90 ⁇ 10 ⁇ 7 A / cm 2 .
  • the current response characteristics of the obtained photoelectric conversion element are shown in FIG.
  • the photoelectric conversion spectrum of the obtained photoelectric conversion element is shown in FIG.
  • the maximum photoresponse sensitivity was 766 nm, and the sensitivity was halved at 906 nm.
  • Example 11 Production and evaluation of photoelectric conversion element Compound (581) was vacuum-deposited with a thickness of 100 nm as a photoelectric conversion layer on ITO transparent conductive glass (manufactured by Geomat Co., Ltd., ITO film thickness 150 nm). On top of that, aluminum was vacuum-deposited with a thickness of 80 nm as an electrode to produce a photoelectric conversion element. When ITO and aluminum were used as electrodes and a voltage of 2 V was applied, the current in the dark was 8.91 ⁇ 10 ⁇ 9 A / cm 2 .
  • Comparative example 4 Preparation and evaluation of a photoelectric conversion element Comparative compound A was vapor-deposited by resistance heating as a photoelectric conversion layer on ITO transparent conductive glass (manufactured by Geomat Co., Ltd., ITO film thickness 150 nm) to a film thickness of 80 nm. A film was formed. On top of that, aluminum was resistively heated and vacuum-deposited as an electrode, and a film having a thickness of 100 nm was formed to produce a comparative photoelectric conversion element. When photocurrent response was measured when a voltage of 0.05 V was applied with ITO and aluminum being used as electrodes and irradiating with light of 775 nm and a half width of 20 nm, the current in the dark was 5.18 ⁇ .
  • FIG. 17 shows the photocurrent response characteristics of the obtained photoelectric conversion element. Further, when the photocurrent response when a voltage of 1 V was applied was measured, the current in the dark was 8.15 ⁇ 10 ⁇ 6 A / cm 2 , and the current in the bright was 1.42 ⁇ 10 6. The light / dark ratio was ⁇ 5 A / cm 2 .
  • the photoelectric conversion spectrum of the obtained photoelectric conversion element is shown in FIG. The maximum photoresponse sensitivity was 775 nm, and the sensitivity was halved at 818 nm.
  • the photoelectric conversion element using the comparative compound A shown in Comparative Example 4 the dark current leaked in the absence of light irradiation and the contrast ratio was very bad, whereas the dibenzopyromethene boron chelate compound of the present invention It can be confirmed that the photoelectric conversion element using the above has excellent photoelectric conversion characteristics since a three-digit light / dark ratio is obtained.
  • the device using Comparative Compound A shown in Comparative Example 1 has a half of the photoresponse sensitivity at 818 nm, whereas the device using the dibenzopyromethene boron chelate compound of the present invention does not halve the wavelength to 870 nm or more. Since the photoelectric conversion element of this invention shows a favorable near-infrared absorption characteristic and shows the outstanding photoelectric conversion characteristic, it can confirm that it is useful as a near-infrared sensor.
  • the organic compound of the present invention exhibits excellent photoelectric conversion characteristics as a photoelectric conversion element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Optical Filters (AREA)
  • Thin Film Transistor (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一般式(1)で表される有機化合物は、近赤外領域に吸収帯を有する新規な有機化合物であり、赤外吸収色素、光学フィルム、光電変換素子等の有機エレクトロニクスデバイスに有用である。 (R~R18は各々独立に水素原子、アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、メルカプト基、アルキルチオ基、ニトロ基、置換アミノ基、アミド基、アシル基、カルボキシル基、アシルオキシ基、シアノ基、スルホ基、スルファモイル基、アルキルスルファモイル基、カルバモイル基、又はアルキルカルバモイル基を表す。Xは置換もしくは無置換のメチン基、シリリジン基、ゲルミリジン基、スタンニリジン基、窒素原子、リン原子、ヒ素原子、又はアンチモン原子を表す。)

Description

有機化合物、近赤外吸収色素、光電変換素子及びその光センサー、撮像素子
 本発明は、近赤外領域に吸収帯を有する有機化合物、及びその有機化合物を用いた有機エレクトロニクスデバイスに関する。
 700~2000nmの近赤外領域に吸収を有する近赤外光吸収色素は、従来から産業上の様々な用途への応用が検討されている。例を挙げると、CD-R(Compact Disk-Recordable)等の光情報記録媒体用途;サーマルCTP(Computer To Plate)、フラッシュトナー定着、レーザー感熱記録等の印刷用途;熱遮断フィルム等の用途に利用されている。さらには、選択的に特定波長域の光を吸収するというその特性を用いて、PDP(プラズマ・ディスプレイ・パネル)フィルター等に用いられる近赤外線カットフィルターや、植物成長調整用フィルム等にも使用されている。
 また、近赤外光吸収色素は、溶媒に溶解又は分散させることにより、近赤外吸収インクとして使用することも可能である。該近赤外吸収インクによる印字物は、目視では認識が困難であり、近赤外線検出器等でのみで読み取りが可能であることから、例えば偽造防止等を目的とした印字に使用される。
 このような不可視画像形成用の赤外吸収色素としては、無機系の赤外吸収材料と、有機系の赤外吸収材料とが既に知られている。このうち、無機系の赤外吸収材料としては、イッテルビウム等の希土類金属や、銅リン酸結晶化ガラス等が知られている。しかしながら、無機系の赤外吸収材料は、近赤外領域の光の吸収性が十分でないために、不可視画像の単位面積あたりに多量の赤外吸収材料が必要となる。そのため、無機系の赤外吸収材料によって不可視画像を形成した場合、その表面上にさらに可視画像を形成すると、下側の不可視画像の凹凸が表面側の可視画像に影響を与えてしまう。
 これに対し、有機系の赤外吸収材料は、赤外領域の光の吸収性が十分であるために、不可視画像の単位面積あたりの使用量が少なくてすむので、無機系の赤外吸収材料を使用した場合のような不都合は生じない。そのため、現在に至るまで多くの有機系赤外吸収材料の開発が進められている。
 例えば、特許文献1には、有機系の近赤外吸収材料として、ナフタロシアニン系化合物が開示されている。しかしながら、ナフタロシアニン系化合物は、製造方法の煩雑さ、及び溶解性の調整の困難さがあることから、一般的には、対イオン性色素化合物を近赤外吸収材料として用いる。
 他の有機系の近赤外吸収材料として、特許文献2には、赤外領域に光吸収性を有する赤外線吸収物質の例として、有機アミニウム化合物が開示されている。
 特許文献3には、近赤外領域に光吸収性を有する有機色素化合物の例として、インドレニン化合物が開示されている。
 特許文献4には、近赤外領域に蛍光波長を有する近赤外蛍光色素の例として、ナフトフルオレセイン化合物が開示されている。
 特許文献5には、ジベンゾピロメテンホウ素キレート化合物が長波長側の吸収特性波長を有することが開示されている。
 また、非特許文献1には、近赤外領域に蛍光波長を有する有機化合物の例として、ボロンジピロメテン化合物が報告されている。
 非特許文献2には、近赤外領域に吸収波長を有する有機化合物の例として、ボロンジピロメテン化合物が報告されており、当該化合物は、太陽電池用の増感剤として混合物の状態で用いられている。
特開2007-3944号公報 特開平7-271081号公報 特公平5-37119号公報 特開2012-219258号公報 特開2012-199541号公報
Tetrahedron 2011.67.3187-3193 Tetrahedron Letters 2010.51.12.1600-1602
 しかしながら、これら従来の赤外領域に吸収を有する有機化合物は、大気安定性が低い。また、赤外光フィルムへ加工容易性を有する、赤外領域に吸収を有する有機化合物の開発も望まれている。
 さらに、近赤外光のセンシングを目的とする場合、活性層に用いる材料は可視波長領域の吸収は必要なく、近赤外領域に強い吸収を有する有機化合物のみで作製する光電変換素子が望まれている。
 非特許文献1では光吸収極大は711nmであり、より長波長領域に吸収帯を有する近赤外吸収材料が必要である。非特許文献2や特許文献1では有機薄膜太陽電池素子用の増感剤としての利用が開示されているのみで、他の利用について開示がない。
 本発明の目的は、赤外光フィルムへの利用を可能にするための加工容易性を有し、良好な大気安定性を有し、かつ赤外領域に吸収帯を有する新規な有機化合物を提供することにある。
 さらに、本発明の目的は、近赤外領域帯に吸収特性を有し、優れた光電変換性能を有する有機化合物を用いた近赤外吸収色素、光学フィルム、及び光電変換素子(特に撮像素子及び光センサー)等の有機エレクトロニクスデバイスとしての利用を提供することにある。
 本発明者らは、上記課題を解決すべく、種々の検討を重ねた結果、ジベンゾピロメテン骨格を有する化合物に着目し、本発明を完成するに至った。
 すなわち、本発明は、
[1] 一般式(1)で表される有機化合物、
Figure JPOXMLDOC01-appb-C000006
 (R~R18は各々独立に水素原子、アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、メルカプト基、アルキルチオ基、ニトロ基、置換アミノ基、アミド基、アシル基、カルボキシル基、アシルオキシ基、シアノ基、スルホ基、スルファモイル基、アルキルスルファモイル基、カルバモイル基、又はアルキルカルバモイル基を表す。Xは置換もしくは無置換のメチン基、シリリジン基、ゲルミリジン基、スタンニリジン基、窒素原子、リン原子、ヒ素原子、又はアンチモン原子を表す。)
[2] 一般式(2)で表される有機化合物、
Figure JPOXMLDOC01-appb-C000007
 (R~R又はR11~R14は各々独立に水素原子、アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、メルカプト基、アルキルチオ基、ニトロ基、置換アミノ基、アミド基、アシル基、カルボキシル基、アシルオキシ基、シアノ基、スルホ基、スルファモイル基、アルキルスルファモイル基、カルバモイル基、又はアルキルカルバモイル基を表す。Xは置換もしくは無置換のメチン基、シリリジン基、ゲルミリジン基、スタンニリジン基、窒素原子、リン原子、ヒ素原子、又はアンチモン原子を表す。)
[3] 一般式(3)で表される有機化合物、
Figure JPOXMLDOC01-appb-C000008
 (R~R又はR11~R14は各々独立に水素原子、アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、メルカプト基、アルキルチオ基、ニトロ基、置換アミノ基、アミド基、アシル基、カルボキシル基、アシルオキシ基、シアノ基、スルホ基、スルファモイル基、アルキルスルファモイル基、カルバモイル基、又はアルキルカルバモイル基を表す。)
[4] [1]~[3]のいずれか一項に記載の有機化合物からなる近赤外吸収色素、
[5] [1]~[3]のいずれか一項に記載の有機化合物を用いた光学フィルム、
[6] [1]~[3]のいずれか一項に記載の有機化合物を用いた有機エレクトロニクスデバイス、
[7] 一般式(1)で表される化合物を含む光電変換膜を備える光電変換素子、
Figure JPOXMLDOC01-appb-C000009
 (R~R18は各々独立に水素原子、アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、メルカプト基、アルキルチオ基、ニトロ基、置換アミノ基、アミド基、アシル基、カルボキシル基、アシルオキシ基、シアノ基、スルホ基、スルファモイル基、アルキルスルファモイル基、カルバモイル基、アルキルカルバモイル基を表す。Xは置換もしくは無置換のメチン基、シリリジン基、ゲルミリジン基、スタンニリジン基、または窒素原子、リン原子、ヒ素原子、アンチモン原子を表す。)
[8] [7]に記載の光電変換素子を備える光センサー、
[9] [7]に記載の光電変換素子を備える撮像素子、
[10] [7]に記載の光電変換素子を備えるイメージ・センサー、
[11] 一般式(1)で表される化合物を含む光電変換素子用材料、
Figure JPOXMLDOC01-appb-C000010
 (R~R18は各々独立に水素原子、アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、メルカプト基、アルキルチオ基、ニトロ基、置換アミノ基、アミド基、アシル基、カルボキシル基、アシルオキシ基、シアノ基、スルホ基、スルファモイル基、アルキルスルファモイル基、カルバモイル基、又はアルキルカルバモイル基を表す。Xは置換もしくは無置換のメチン基、シリリジン基、ゲルミリジン基、スタンニリジン基、窒素原子、リン原子、ヒ素原子、又はアンチモン原子を表す。)
に関する。
 本発明の有機化合物は、近赤外領域に吸収帯を有し、良好な加工容易性、大気安定性を有し、近赤外吸収色素、光学フィルム、光電変換素子さらには有機エレクトロニクスデバイスに有用である。
 特に、本発明の有機化合物を含む光電変換素子は、近赤外領域に吸収特性を有し、優れた光電変換性能を有することから、有機撮像素子はもとより光センサー、赤外センサー等のデバイスやそれらを用いたカメラ、ビデオカメラ、赤外線カメラ等の分野へ応用することができる。
薄膜トランジスタの断面図を示す。 薄膜トランジスタの製造方法のフローチャート図を示す。 光電変換素子の断面図を示す。 化合物(1)を用いた薄膜における紫外可視近赤外吸収スペクトルを示す。 化合物(296)を用い薄膜における紫外可視近赤外吸収スペクトルを示す。 化合物(581)を用いた薄膜における紫外可視近赤外吸収スペクトルを示す。 比較化合物(A)を用いた薄膜における紫外可視近赤外吸収スペクトルを示す。 化合物(1)を用いた薄膜の時間変化における波長-吸光度グラフを示す。 KAYASORB CY-10を用いた薄膜の時間変化における波長-吸光度グラフを示す。 KAYASORB IR-820を用いた薄膜の時間変化における波長-吸光度グラフを示す。 化合物(1)を用いた光電変換素子の電流応答特性を示す。 化合物(1)を用いた光電変換素子の光電変換スペクトルを示す。 化合物(296)を用いた光電変換素子の電流応答特性を示す。 化合物(296)を用いた光電変換素子の光電変換スペクトルを示す。 化合物(581)を用いた光電変換素子の電流応答特性を示す。 化合物(581)を用いた光電変換素子の光電変換スペクトルを示す。 比較化合物(A)を用いた光電変換素子の電流応答特性を示す。 比較化合物(A)を用いた光電変換素子の光電変換スペクトルを示す。
 以下に本発明を詳細に説明する。
 本発明の有機化合物は、下記式(1)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000011
 (R~R18は各々独立に水素原子、アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、メルカプト基、アルキルチオ基、ニトロ基、置換アミノ基、アミド基、アシル基、カルボキシル基、アシルオキシ基、シアノ基、スルホ基、スルファモイル基、アルキルスルファモイル基、カルバモイル基、又はアルキルカルバモイル基を表す。Xは置換もしくは無置換のメチン基、シリリジン基、ゲルミリジン基、スタンニリジン基、窒素原子、リン原子、ヒ素原子、又はアンチモン原子を表す。)
 一般式(1)中のアリール基としては置換又は無置換のベンゼン、ナフタレン、アントラセン、フェナントレン、アズレン、ビフェニル、ターフェニルが挙げられる。ヘテロアリール基としては置換又は無置換のチオフェン、フラン、ピロール、ピリジン、インドール、ベンゾチオフェン、ベンゾフランなどが挙げられる。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、ターシャリーブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基などが挙げられる。シクロアルキル基としては、シクロペンチル基、シクロヘキシル基などが挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。アルコキシ基としては、酸素原子に上記アルキル基が結合したものが挙げられるが、酸素原子の数、位置、分岐数は問わない。
 置換アミノ基としては、アミノ基の水素原子が上記のR~R18の置換基で置換されたものが挙げられる。アシル基としては、カルボニル基にアリール基又はアルキル基が結合したものが挙げられる。アルキルスルファモイル基としては、スルファモイル基の水素原子が上記アルキル基で置換されたものが挙げられる。アルキルカルバモイル基としては、カルバモイル基の水素原子が上記アルキル基で置換されたものが挙げられる。
 R~R10は加工容易性の観点から水素原子、アルコキシ基、アリール基、ヘテロアリール基が好ましく、水素原子、アルコキシ基、アリール基がより好ましく、水素原子、炭素数が1~12のアルコキシ基、炭素数が6~18のアリール基が特に好ましい。
 R11~R18は水素原子、アリール基、ヘテロアリール基、アルキル基が好ましく、水素原子、アリール基、アルキル基がより好ましく、水素原子、炭素数が6~12のアリール基、炭素数が1~12のアルキル基が特に好ましい。本明細書において、加工容易性とは、有機化合物が溶媒に可溶であり、有機化合物を溶液状態で塗布することが可能であり、真空蒸着やスパッタなどの物理堆積法により有機化合物を成膜しやすいことをいう。
 また、R~R18は各々独立に置換基を表し、同一であっても異なってもよい。製造の容易さの観点からRとR10、RとR、RとR、RとR、RとR、R11とR18、R12とR17、R13とR16、R14とR15は、それぞれ同一の置換基を表すことが好ましい。
 また、R11とR12、R12とR13、R13とR14、R15とR16、R16とR17、及びR17とR18のうち少なくとも1つは、互いに結合して環状構造を形成してもよい。
 Xは置換もしくは無置換のメチン基、シリリジン基、ゲルミリジン基、スタンニリジン基、窒素原子、リン原子、ヒ素原子、又はアンチモン原子を表す。無置換のメチン基又は窒素原子であることが好ましい。
 本発明の有機化合物は、下記式(2)で表される。
Figure JPOXMLDOC01-appb-C000012
 (R~R又はR11~R14は各々独立に水素原子、アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、メルカプト基、アルキルチオ基、ニトロ基、置換アミノ基、アミド基、アシル基、カルボキシル基、アシルオキシ基、シアノ基、スルホ基、スルファモイル基、アルキルスルファモイル基、カルバモイル基、又はアルキルカルバモイル基を表す。Xは置換もしくは無置換のメチン基、シリリジン基、ゲルミリジン基、スタンニリジン基、窒素原子、リン原子、ヒ素原子、又はアンチモン原子を表す。)
 一般式(2)中のR~R又はR11~R14及びXの具体例及び好ましい範囲は、式(1)中のR~R18及びXと同様である。
 本発明の有機化合物は、下記式(3)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000013
 (R~R又はR11~R14は各々独立に水素原子、アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、メルカプト基、アルキルチオ基、ニトロ基、置換アミノ基、アミド基、アシル基、カルボキシル基、アシルオキシ基、シアノ基、スルホ基、スルファモイル基、アルキルスルファモイル基、カルバモイル基、又はアルキルカルバモイル基を表す。)
 一般式(3)中のR~R又はR11~R14の具体例及び好ましい範囲は、式(1)中のR~R18と同様である。
 一般式(1)~(3)で表される化合物の具体例を下記に示すが、本発明の有機化合物はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 一般式(2)で表される化合物の具体例を下記に示すが、本発明の有機化合物はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
 本発明の一般式(1)~式(3)で表される有機化合物は、公知の方法により合成することができる。例えば、下記の反応工程(Org.Lett.,2011,4547)と同様にして得られる。下記反応式(1)における、化合物(2-6)を中間体とすることで、上記一般式(1)~(3)で表される有機化合物の合成が可能となる。
 なお、合成例にて得られた各種の化合物は、必要に応じてMS(質量分析スペクトル)、NMR(核磁気共鳴スペクトル)の測定を行うことによりその構造式を決定することができる。
Figure JPOXMLDOC01-appb-C000038
 一般式(1)~(3)で表される有機化合物の精製方法は特に限定されず、再結晶、カラムクロマトグラフィー及び真空昇華精製等の公知の方法が採用できる。また、必要に応じてこれらの方法を組み合わせて用いてもよい。
 一般式(1)~(3)で表される有機化合物は工業的な利用可能性が高くかつ大気安定性が良好である特徴を有する。また、一般式(1)~(3)で表される有機化合物は可溶性であり、有機化合物を溶液状態で塗布することにより、薄膜を作製することが可能であるため、真空蒸着やスパッタなどの物理堆積法により有機化合物をデバイスへ加工しやすい等、有機化合物の加工プロセスが容易となる。
 本発明の一般式(1)~(3)で表される有機化合物は、近赤外領域に吸収帯を有する。ここで近赤外領域とは700~2500nmであり、好ましくは700~2000nmであり、特に好ましくは700~1500nmである。本発明の有機化合物は、特に700nm以上2500nm以下の領域に吸収帯を有する近赤外吸収色素の材料として用いることができ、当該近赤外吸収色素を含む近赤外吸収インクは、塗布等により近赤外領域に吸収帯を有する薄膜を作製することができる。
 該薄膜の膜厚は、その用途によって異なるが、通常0.01nm~10μmであり、好ましくは0.05nm~3μmであり、より好ましくは0.1nm~1μmである。
 薄膜の形成方法は、一般的に、真空プロセスである抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法などの気相法、スピンコート、ドロップキャスト、ディップコート、スプレーなどの溶液法、フレキソ印刷、樹脂凸版印刷などの凸版印刷法、オフセット印刷、ドライオフセット印刷、パッド印刷などの平版印刷法、グラビア印刷法などの凹版印刷法、シルクスクリーン印刷、謄写版印刷、リソグラフ印刷などの孔版印刷法、インクジェット印刷、マイクロコンタクトプリント法、さらにはこれらの手法を複数組み合わせた方法が挙げられる。
 上記の中でも、真空プロセスである抵抗加熱蒸着法や、溶液プロセスであるスピンコート法、ディップコート法、インクジェット法、スクリーン印刷、凸版印刷などが好ましい。
 また、一般式(1)~(3)で表される有機化合物を光学フィルム(近赤外カットフィルム等を含む)、有機エレクトロニクスデバイス用途の材料として用いることができる。
 有機エレクトロニクスデバイスとしては、例えば薄膜トランジスタや光電変換素子、有機太陽電池素子、有機エレクトロニクスルミネッセンス素子(以下、「有機EL素子」と略す)、有機発光トランジスタ素子、有機半導体レーザー素子などが挙げられ、特に、一般式(1)~(3)で表される有機化合物は、光電変換素子(光センサー、イメージ・センサー、撮像素子など)の材料として有用である。
 以下、これらについて詳細に説明する。
 (光学フィルム)
 本発明の有機化合物は赤外波長領域の光を選択的に吸収することから、この発光波長の光を抑えるための光学フィルムとして用いることができる。
 光学フィルムとしては、例えば赤外遮蔽フィルム、反射防止フィルム、配向フィルム、偏光フィルム、偏光板保護フィルム、位相差フィルム、視野角拡大フィルム、輝度向上フィルム、および電磁波シールドフィルム等が挙げられ、液晶ディスプレイ(LCD)やプラズマディスプレイ(PDP)等のフラットパネルディスプレイ(FPD)、建物や車両の窓ガラス等に使用することができる。中でも、赤外遮蔽フィルムは、幅広い分野に応用することができ、例えば、建物の屋外の窓や自動車窓等長期間太陽光に晒らされる設備に貼り合せ、赤外遮蔽効果を付与する赤外遮蔽フィルム等の窓貼用フィルム、農業用ビニールハウス用フィルム等として、主として耐候性を高める目的で用いることができる。
 本発明の光学フィルムの全体の膜厚は、10μm~300μmが好ましく、20μm~250μmがより好ましく、100μm~175μmがさらに好ましい。この範囲であれば、長期使用においても透明性に優れた光学フィルムとなる。
 (薄膜トランジスタ)
 次に薄膜トランジスタ素子について説明する。
 薄膜トランジスタは、半導体に接して2つの電極(ソース電極及びドレイン電極)があり、その電極間に流れる電流を、ゲート電極と呼ばれるもう一つの電極に印加する電圧で制御するものである。
 一般に、薄膜トランジスタ素子はゲート電極が絶縁膜で絶縁されている構造(Metal-Insulator-Semiconductor MIS構造)がよく用いられる。絶縁膜に金属酸化物を用いるものはMOS構造と呼ばれる。他には、ショットキー障壁を介してゲート電極が形成されている構造(すなわちMES構造)もあるが、有機半導体材料を用いた薄膜トランジスタの場合、MIS構造がよく用いられる。
 以下、図を用いて有機系の薄膜トランジスタ(素子)のいくつかの態様例を示す。図1における各態様例において、1がソース電極、2が半導体層、3がドレイン電極、4が絶縁体層、5がゲート電極、6が基板をそれぞれ表す。なお、各層や電極の配置は、素子の用途により適宜選択できる。A~D、Fは基板と並行方向に電極が流れるので、横型トランジスタと呼ばれる。Aはボトムコンタクトボトムゲート構造、Bはトップコンタクトボトムゲート構造と呼ばれる。また、Cは半導体上にソース及びドレイン電極、絶縁体層を設け、さらにその上にゲート電極を形成しており、トップコンタクトトップゲート構造と呼ばれている。Dはトップ&ボトムコンタクト型トランジスタと呼ばれる構造である。Fはボトムコンタクトトップゲート構造である。Eは縦型の構造をもつトランジスタ、すなわち静電誘導トランジスタ(SIT)の模式図である。このSITは電流の流れが平面状―に広がるので、一度に大量のキャリアが移動できる。またソース電極とドレイン電極が縦に配置されているので電極間距離を小さくできるため応答が高速である。従って、大電流を流す、高速のスイッチングを行うなどの用途に好ましく適用できる。なお図1中のEには基板を記載していないが、通常の場合、図1E中の1及び3で表されるソース又はドレイン電極の外側には基板が設けられる。
 各態様例における各構成要素につき説明する。
 基板6は、その上に形成される各層が剥離することなく保持できることが必要である。例えば、樹脂板やフィルム、紙、ガラス、石英、セラミックなどの絶縁性材料;金属や合金などの導電性基板上にコーティング等により絶縁層を形成した物;樹脂と無機材料など、各種組合せからなる材料;等が使用できる。使用できる樹脂フィルムの例としては、例えばポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリアミド、ポリイミド、ポリカーボネート、セルローストリアセテート、ポリエーテルイミドなどが挙げられる。樹脂フィルムや紙を用いると、素子に可撓性を持たせることができ、フレキシブルで、軽量となり、実用性が向上する。基板の厚さとしては、通常1μm~10mmであり、好ましくは5μm~5mmである。
 ソース電極1、ドレイン電極3、ゲート電極5には導電性を有する材料が用いられる。例えば、白金、金、銀、アルミニウム、クロム、タングステン、タンタル、ニッケル、コバルト、銅、鉄、鉛、錫、チタン、インジウム、パラジウム、モリブデン、マグネシウム、カルシウム、バリウム、リチウム、カリウム、ナトリウム等の金属及びそれらを含む合金;InO、ZnO、SnO、ITO等の導電性酸化物;ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ビニレン、ポリジアセチレン等の導電性高分子化合物;シリコン、ゲルマニウム、ガリウム砒素等の半導体;カーボンブラック、フラーレン、カーボンナノチューブ、グラファイト等の炭素材料;等が使用できる。また、導電性高分子化合物や半導体にはドーピングが行われていてもよい。その際のドーパントとしては、例えば、塩酸、硫酸などの無機酸;スルホン酸等の酸性官能基を有する有機酸;PF、AsF、FeCl等のルイス酸;ヨウ素等のハロゲン原子;リチウム、ナトリウム、カリウム等の金属原子;等が挙げられる。ホウ素、リン、砒素などはシリコンなどの無機半導体用のドーパントとしても多用されている。
 また、上記のドーパントにカーボンブラックや金属粒子などを分散した導電性の複合材料も用いられる。直接、半導体と接触するソース電極1およびドレイン電極3はコンタクト抵抗を低減するために適切な仕事関数を選択するか、表面処理などが大切になる。
 また、ソースとドレイン電極間の距離(チャネル長)が素子の特性を決める重要なファクターとなる。該チャネル長は、通常0.1~300μm、好ましくは0.5~100μmである。チャネル長が短ければ取り出せる電流量は増えるが、逆にコンタクト抵抗の影響など短チャネル効果が発生し、制御が困難となるため、適正なチャネル長が必要である。ソースとドレイン電極間の幅(チャネル幅)は通常10~1000μm、好ましくは100~5000μmとなる。またこのチャネル幅は、電極の構造をくし型構造とすることなどにより、さらに長いチャネル幅を形成することが可能で、必要な電流量や素子の構造などにより、適切な長さにする必要がある。
 ソース及びドレイン電極のそれぞれの構造(形)について説明する。ソースとドレイン電極の構造はそれぞれ同じであっても、異なっていてもよい。
 ボトムコンタクト構造の場合は、一般的にはリソグラフィー法を用いて各電極を作製し、また各電極は直方体に形成するのが好ましい。半導体上に電極のあるトップコンタクト構造の場合はシャドウマスクなどを用いて蒸着することができ、インクジェットなどの手法を用いて電極パターンを直接印刷形成することもできる。電極の長さは前記のチャネル幅と同じでよい。電極の幅には特に規定は無いが、電気的特性を安定化できる範囲で、素子の面積を小さくするためには短い方が好ましい。電極の幅は、通常0.1~1000μmであり、好ましくは0.5~100μmである。電極の厚さは、通常0.1~1000μmであり、好ましくは1~500μmであり、より好ましくは5~200μmである。各電極1、3及び5には配線が連結されているが、配線も電極とほぼ同様の材料により作製される。
 絶縁体層4としては絶縁性を有する材料が用いられる。例えば、ポリパラキシリレン、ポリアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリビニルフェノール、ポリアミド、ポリイミド、ポリカーボネート、ポリエステル、ポリビニルアルコール、ポリ酢酸ビニル、ポリウレタン、ポリスルホン、エポキシ樹脂、フェノール樹脂等のポリマー及びこれらを組み合わせた共重合体;二酸化珪素、酸化アルミニウム、酸化チタン、酸化タンタル等の金属酸化物;SrTiO、BaTiOなどの強誘電性金属酸化物;窒化珪素、窒化アルミニウムなどの窒化物;硫化物、フッ化物などの誘電体;あるいは、これら誘電体の粒子を分散させたポリマー;等が使用しうる。絶縁体層4の膜厚は、材料によって異なるが、通常0.1nm~100μm、好ましくは0.μm、より好ましくは1nm~10μmである。
 半導体層2の材料として、本発明の一般式(1)~(3)で表される有機化合物を有機半導体材料として用いることができる。本発明の一般式(1)~(3)で表される有機化合物を含む組成物を用いて薄膜を形成し、成膜に溶剤を使用している場合は積極的に溶剤を蒸発させたのちに使用することが好ましい。後述するが蒸着方法で、有機半導体層を形成する場合は一般式(1)~(3)で表される有機化合物の混合物よりも、単一の化合物を有機半導体として用いることが特に好ましい。しかし、上記のようにトランジスタの特性を改善する目的等のための、ドーパント等の添加剤については、これを含有することを妨げない。溶液プロセスで半導体層を形成する場合はこれに限らない。
 上記の添加剤は、有機半導体材料の総量を1とした場合、通常0.01~10重量%、好ましくは0.05~5重量%、より好ましくは0.1~3重量%の範囲で添加するのがよい。
 また半導体層についても複数の層を形成していてもよいが、単層構造であることがより好ましい。半導体層2の膜厚は、必要な機能を失わない範囲で、薄いほど好ましい。図1A、B及びDに示すような横型の薄膜トランジスタにおいては、所定以上の膜厚があれば素子の特性は膜厚に依存しない一方、膜厚が厚くなると漏れ電流が増加してくることが多いためである。必要な機能を示すための半導体層の膜厚は、通常、1nm~10μm、好ましくは5nm~5μm、より好ましくは10 nm~3μmである。
 薄膜トランジスタには、例えば基板層と絶縁膜層や絶縁膜層と半導体層の間や素子の外面に必要に応じて他の層を設けることができる。例えば、有機半導体層上に直接、又は他の層を介して、保護層を形成すると、湿度などの外気の影響を小さくすることができ、また、素子のON/OFF比を上げることができるなど、電気的特性を安定化できる利点もある。
 保護層の材料としては特に限定されないが、例えば、エポキシ樹脂、ポリメチルメタクリレート等のアクリル樹脂、ポリウレタン、ポリイミド、ポリビニルアルコール、フッ素樹脂、ポリオレフィン等の各種樹脂からなる膜;酸化珪素、酸化アルミニウム、窒化珪素等の無機酸化膜、及び窒化膜等の誘電体からなる膜、等が好ましく用いられ、特に、酸素や水分の透過率や吸水率の小さな樹脂(ポリマー)が好ましい。有機ELディスプレイ用に開発されている保護材料も使用が可能である。保護層の膜厚は、その目的に応じて任意の膜厚を選択できるが、通常100nm~1mmである。
 また有機半導体層が積層される基板又は絶縁体層上などに予め表面処理を行うことにより、薄膜トランジスタ素子としての特性を向上させることが可能である。例えば基板表面の親水性/疎水性の度合いを調整することにより、その上に成膜される膜の膜質を改良しうる。特に、有機半導体材料は分子の配向など膜の状態によって特性が大きく変わることがある。そのため、基板などへの表面処理によって、基板などとその後に成膜される有機半導体層との界面部分の分子配向が制御されること、また基板や絶縁体層上のトラップ部位が低減されることにより、キャリア移動度等の特性が改良されるものと考えられる。トラップ部位とは、未処理の基板に存在する例えば水酸基のような官能基を指し、このような官能基が存在すると、電子が該官能基に引き寄せられ、この結果としてキャリア移動度が低下する。従って、トラップ部位を低減することもキャリア移動度等の特性改良には有効な場合が多い。
 上記のような特性改良のための基板処理としては、例えば、ヘキサメチルジシラザン、オクチルトリクロロシラン、オクタデシルトリクロロシラン等による疎水化処理;塩酸や硫酸、酢酸等による酸処理;水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア等によるアルカリ処理;オゾン処理;フッ素化処理;酸素やアルゴン等のプラズマ処理;ラングミュア・ブロジェット膜の形成処理;その他の絶縁体や半導体の薄膜の形成処理;機械的処理;コロナ放電などの電気的処理;また、繊維等を利用したラビング処理等、およびその組み合わせが挙げられる。これらの態様において、例えば基板層と絶縁膜層や、絶縁膜層と有機半導体層等の各層を設ける方法としては、例えば真空蒸着法、スパッタ法、塗布法、印刷法、ゾルゲル法等が適宜採用できる。
 次に、薄膜トランジスタ素子の製造方法について、図1の態様例Bに示すトップコンタクトボトムゲート型薄膜トランジスタを例として、図2に基づき以下に説明する。この製造方法は前記した他の態様の薄膜トランジスタ等にも同様に適用しうるものである。
 (薄膜トランジスタの基板及び基板処理について)
 薄膜トランジスタは、基板6上に必要な各種の層や電極を設けることで作製される(図2(1)参照)。基板としては上記で説明したものが使用できる。この基板上に前述の表面処理などを行うことも可能である。基板6の厚みは、必要な機能を妨げない範囲で薄い方が好ましい。材料によっても異なるが、通常1μm~10mmであり、好ましくは5μm~5mmである。また、必要により基板に電極の機能を持たせるようにしてもよい。
 (ゲート電極の形成について)
 基板6上にゲート電極5を形成する(図2(2)を参照)。電極材料としては上記で説明したものが用いられる。電極膜を成膜する方法としては、各種の方法を用いることができ、例えば真空蒸着法、スパッタ法、塗布法、熱転写法、印刷法、ゾルゲル法等が採用される。成膜時又は成膜後、所望の形状になるよう必要に応じてパターニングを行うのが好ましい。パターニングの方法としても各種の方法を用いうるが、例えばフォトレジストのパターニングとエッチングを組み合わせたフォトリソグラフィー法等が挙げられる。また、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィーの手法、及びこれら手法を複数組み合わせた手法を利用し、パターニングすることも可能である。ゲート電極5の膜厚は、材料によっても異なるが、通常0.1nm~10μmであり、好ましくは0.5nm~5μmであり、より好ましくは1nm~3μmである。また、ゲート電極と基板を兼ねる場合は上記の膜厚より大きくてもよい。
 (絶縁体層の形成について)
 ゲート電極5上に絶縁体層4を形成する(図2(3)参照)。絶縁体材料としては上記で説明したもの等が用いられる。絶縁体層4を形成するにあたっては各種の方法を用いうる。例えばスピンコーティング、スプレーコーティング、ディップコーティング、キャスト、バーコート、ブレードコーティングなどの塗布法、スクリーン印刷、オフセット印刷、インクジェット等の印刷法、真空蒸着法、分子線エピタキシャル成長法、イオンクラスタービーム法、イオンプレーティング法、スパッタリング法、大気圧プラズマ法、CVD法などのドライプロセス法が挙げられる。その他、ゾルゲル法やアルミニウム上のアルマイト、シリコン上の二酸化シリコンのように金属上に酸化物膜を形成する方法等が採用される。なお、絶縁体層と半導体層が接する部分においては、両層の界面で半導体を構成する分子、例えば一般式(1)~(3)で表される有機化合物の分子を良好に配向させるために、絶縁体層に所定の表面処理を行うこともできる。表面処理の手法は、基板の表面処理と同様のものを用いうる。絶縁体層4の膜厚は、その機能を損なわない範囲で薄い方が好ましい。通常0.1nm~100μmであり、好ましくは0.5nm~50μmであり、より好ましくは5nm~10μmである。
 (有機半導体層の形成について)
 本発明の一般式(1)~(3)で表される有機化合物を有機半導体材料として使用し、有機半導体層を形成に使用される(図2(4)参照)。有機半導体層を成膜するにあたっては、各種の方法を用いることができる。具体的にはスパッタリング法、CVD法、分子線エピタキシャル成長法、真空蒸着法等の真空プロセスでの形成方法;ディップコート法、ダイコーター法、ロールコーター法、バーコーター法、スピンコート法等の塗布法、インクジェット法、スクリーン印刷法、オフセット印刷法、マイクロコンタクト印刷法などの溶液プロセスでの形成方法;が挙げられる。
 なお、本発明の一般式(1)~(3)で表される有機化合物を有機半導体材料として使用し、有機半導体層を形成する場合には、印刷などの溶液プロセスや真空プロセスによって成膜し、有機半導体層を形成する方法が挙げられる。
 まず有機半導体材料を真空プロセスによって成膜し有機半導体層を得る方法について説明する。真空プロセスによる成膜方法としては、前記の有機半導体材料をルツボや金属のボート中で真空下、加熱し、蒸発した有機半導体材料を基板(基板、絶縁体層、ソース電極及びドレイン電極など)に付着(蒸着)させる方法、すなわち真空蒸着法が好ましく採用される。この際、真空度は、通常1.0 ×10-1Pa以下、好ましくは1.0×10-3Pa以下である。また、蒸着時の基板温度によって有機半導体層の特性ひいては薄膜トランジスタの特性が変化する場合があるので、注意深く基板温度を選択するのが好ましい。蒸着時の基板温度は通常、0~200℃であり、好ましくは5~150℃であり、より好ましくは10~120℃であり、さらに好ましくは15~100℃であり、特に好ましくは20~80℃である。
 また、蒸着速度は、通常0.001~10nm/秒であり、好ましくは0.01~1nm/秒である。有機半導体材料から形成される有機半導体層の膜厚は、通常1nm~10μm、好ましくは5nm~5μm、より好ましくは10nm~3μmである。
 なお、有機半導体層を形成するための有機半導体材料を加熱、蒸発させ基板に付着させる蒸着方法に代えて、その他の手法を用いてもよい。
 次いで溶液プロセスによって成膜し有機半導体層を得る方法について説明する。本発明の一般式(1)~(3)で表される有機化合物を溶剤等に溶解し、さらに必要であれば添加剤などを添加した組成物を、基板(絶縁体層、ソース電極及びドレイン電極の露出部)に塗布する。塗布の方法としては、キャスティング、スピンコーティング、ディップコーティング、ブレードコーティング、ワイヤバーコーティング、スプレーコーティング等のコーティング法や、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィーの手法等、さらにはこれらの手法を複数組み合わせた方法が挙げられる。
 さらに、塗布方法に類似した方法として水面上に上記のインクを滴下することにより作製した有機半導体層の単分子膜を基板に移し積層するラングミュアプロジェクト法、液晶や融液状態の材料を2枚の基板で挟んで毛管現象で基板間に導入する方法等も採用できる。
 製膜時における基板や組成物の温度などの環境も重要で、基板や組成物の温度によってトランジスタの特性が変化する場合があるので、注意深く基板及び組成物の温度を選択するのが好ましい。基板温度は通常、0~200℃であり、好ましくは10~120℃であり、より好ましくは15~100℃である。用いる組成物中の溶剤などに大きく依存するため、注意が必要である。
 この方法により作製される有機半導体層の膜厚は、機能を損なわない範囲で、薄い方が好ましい。膜厚が厚くなると漏れ電流が大きくなる懸念がある。有機半導体層の膜厚は、通常1nm~10μm、好ましくは5nm~5μm、より好ましくは10nm~3μmである。
 このように形成された有機半導体層(図2(4)参照)は、後処理によりさらに特性を改良することが可能である。例えば、熱処理により、成膜時に生じた膜中の歪みが緩和されること、ピンホール等が低減されること、膜中の配列・配向が制御できると考えられていること等の理由により、有機半導体特性の向上や安定化を図ることができる。本発明の薄膜トランジスタの作製時には、この熱処理を行うことが特性の向上の為には効果的である。本熱処理は有機半導体層を形成した後に基板を加熱することによって行う。熱処理の温度は特に制限は無いが、通常、室温から150 ℃で、好ましくは40~120℃、さらに好ましくは45~100 ℃である。この時の熱処理時間については特に制限は無いが、通常10秒から24時間、好ましくは30秒~3時間程度である。その時の雰囲気は大気中でもよいが、窒素やアルゴンなどの不活性雰囲気下でもよい。
 また、その他の有機半導体層の後処理方法として、酸素や水素等の酸化性あるいは還元性の気体や、酸化性あるいは還元性の液体などと処理することにより、酸化あるいは還元による特性変化を誘起することもできる。これは例えば膜中のキャリア密度の増加あるいは減少の目的で利用することが多い。
 また、ドーピングと呼ばれる手法において、微量の元素、原子団、分子、高分子を有機半導体層に加えることにより、有機半導体層特性を変化させることができる。例えば、酸素、水素、塩酸、硫酸、スルホン酸等の酸;PF、AsF、FeCl等のルイス酸;ヨウ素等のハロゲン原子;ナトリウム、カリウム等の金属原子;等をドーピングすることができる。これは、有機半導体層に対して、これらのガスを接触させたり、溶液に浸したり、電気化学的なドーピング処理をすることにより達成できる。これらのドーピングは有機半導体層の作製後でなくても、有機半導体化合物の合成時に添加したり、有機半導体素子作製用のインクを用いて有機半導体層を作製するプロセスでは、そのインクに添加したり、薄膜を形成する工程段階などで添加することができる。また蒸着時に有機半導体層を形成する材料に、ドーピングに用いる材料を添加して共蒸着したり、有機半導体層を作製する時の周囲の雰囲気に混合したり(ドーピング材料を存在させた環境下で有機半導体層を作製する)、さらにはイオンを真空中で加速して膜に衝突させてドーピングすることも可能である。
 これらのドーピングの効果は、キャリア密度の増加あるいは減少による電気伝導度の変化、キャリアの極性の変化(P型、N型)、フェルミ準位の変化等が挙げられる。
 (保護層について)
 有機半導体層上に保護層7を形成すると、外気の影響を最小限にでき、また、有機薄膜トランジスタの電気的特性を安定化できるという利点がある(図2(6)参照)。保護層の材料としては前記のものが使用される。保護層7の膜厚は、その目的に応じて任意の膜厚を採用できるが、通常100nm~1μmである。
 保護層を成膜するにあたっては各種の方法を採用しうるが、保護層が樹脂からなる場合は、例えば、樹脂溶液を塗布後、乾燥させて樹脂膜とする方法;樹脂モノマーを塗布、あるいは蒸着したのち重合する方法;などが挙げられる。成膜後に架橋処理を行ってもよい。保護層が無機物からなる場合は、例えば、スパッタリング法、蒸着法等の真空プロセスでの形成方法や、ゾルゲル法等の溶液プロセスでの形成方法も用いることができる。
 薄膜トランジスタにおいては有機半導体層上の他、各層の間にも必要に応じて保護層を設けることができる。それらの層は薄膜トランジスタの電気的特性の安定化に役立つ場合がある。
 一般式(1)~(3)で表される有機化合物を有機半導体材料として用いているため比較的低温プロセスでの製造が可能である。従って、高温に曝される条件下では使用できなかったプラスチック板、プラスチックフィルム等のフレキシブルな材質も基板として用いることができる。その結果、軽量で柔軟性に優れた壊れにくい素子の製造が可能になり、ディスプレイのアクティブマトリクスのスイッチング素子等として利用することができる。
 薄膜トランジスタは、メモリー回路素子、信号ドライバー回路素子、信号処理回路素子などのデジタル素子やアナログ素子としても利用できる。さらにこれらを組み合わせることによりICカードやICタグの作製が可能となる。さらに、薄膜トランジスタは化学物質等の外部刺激によりその特性に変化を起こすことができるので、FETセンサーとしての利用も可能である。
 (有機EL素子)
 次に有機EL素子について説明する。
 有機EL素子は固体で自己発光型の大面積カラー表示や照明などの用途に利用できることが注目され、数多くの開発がなされている。有機EL素子は、陽極と陰極との電極間に1層又は複数層の有機薄膜が形成された、電気エネルギーにより発光する素子であり、構成としては、陰極と陽極からなる対向電極の間に、発光層及び電荷輸送層の2層を有する構造のもの;対向電極の間に積層された電子輸送層、発光層及び正孔輸送層の3層を有する構造のもの;及び3層以上の層を有するもの;等が知られており、また発光層が単層であるもの等が知られている。
 ここで正孔輸送層は、正孔を陽極から注入させ、発光層への正孔を輸送し、発光層へ正孔の注入を容易にする機能と電子をブロックする機能とを有する。また、電子輸送層は、電子を陰極から注入させ発光層へ電子を輸送し、発光層へ電子の注入を容易にする機能と正孔をブロックする機能を有する。さらに発光層においてはそれぞれ注入された電子と正孔が再結合することにより励起子が生じ、その励起子が放射失活する過程で放射されるエネルギーが発光として検出される。以下に有機EL素子の好ましい態様を記載する。
 有機EL素子において使用されうる陽極は、正孔を、正孔注入層、正孔輸送層、発光層に注入する機能を有する電極である。一般的に仕事関数が4.5eV以上の金属酸化物や金属、合金、導電性材料などが適している。具体的には、特に限定されるものでないが、酸化錫(NESA)、酸化インジウム、酸化錫インジウム(ITO)、酸化亜鉛インジウム(IZO)などの導電性金属酸化物、金、銀、白金、クロム、アルミニウム、鉄、コバルト、ニッケル、タングステンなどの金属、ヨウ化銅、硫化銅などの無機導電性物質、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーや炭素が挙げられる。それらの中でも、ITOやNESAを用いることが好ましい。
 陽極は、必要であれば、複数の材料を用いても、また2層以上で構成されていてもよい。陽極の抵抗は素子の発光に十分な電流が供給できるものであれば限定されないが、素子の消費電力の観点からは低抵抗であることが好ましい。例えばシート抵抗値が300Ω/□以下のITO基板であれば素子電極として機能するが、数Ω/□程度の基板の供給も可能になっていることから、低抵抗品を使用することが望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶことができるが、通常5~500nm、好ましくは10~300nmの間で用いられる。ITOなどの膜形成方法としては、蒸着法、電子線ビーム法、スパッタリング法、化学反応法、塗布法などが挙げられる。
 有機EL素子において使用されうる陰極は、電子を電子注入層、電子輸送層、発光層に注入する機能を有する電極である。一般的に仕事関数の小さい(おおよそ4eV以下である)金属や合金が適している。具体的には、白金、金、銀、銅、鉄、錫、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、カルシウム、マグネシウムが挙げられるが、電子注入効率を上げて素子特性を向上させるためにはリチウム、ナトリウム、カリウム、カルシウム、マグネシウムが好ましい。合金としては、これら低仕事関数の金属を含むアルミニウムもしくは銀等の金属との合金、又はこれらを積層した構造の電極等が使用できる。積層構造の電極にはフッ化リチウムのような無機塩の使用も可能である。また、陽極側でなく陰極側へ発光を取り出す場合は、低温で製膜可能な透明電極としてもよい。膜形成方法としては、蒸着法、電子線ビーム法、スパッタリング法、化学反応法、塗布法などが挙げられるが、特に制限されるものではない。陰極の抵抗は素子の発光に十分な電流が供給できるものであれば限定されないが、素子の消費電力の観点からは低抵抗であることが好ましく、数100~数Ω/□程度が好ましい。膜厚は通常5~500nm、好ましくは10~300nmの範囲で用いられる。
 さらに封止、保護のために、酸化チタン、窒化ケイ素、酸化珪素、窒化酸化ケイ素、酸化ゲルマニウムなどの酸化物、窒化物、又はそれらの混合物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子、フッ素系高分子などで陰極を保護し、酸化バリウム、五酸化リン、酸化カルシウム等の脱水剤と共に封止することができる。
 また発光を取り出すために、一般的には素子の発光波長領域で十分に透明性を有する基板上に電極を作製することが好ましい。透明の基板としてはガラス基板やポリマー基板が挙げられる。ガラス基板はソーダライムガラス、無アルカリガラス、石英などが用いられ、機械的・熱的強度を保つのに十分な厚みがあればよく、0.5mm以上の厚みが好ましい。ガラスの材質については、ガラスからの溶出イオンが少ない方がよく、無アルカリガラスの方が好ましい。このようなものとして、SiOなどのバリアコートを施したソーダライムガラスが市販されているのでこれを使用することもできる。またガラス以外のポリマーでできた基板としては、ポリカーボネート、ポリプロピレン、ポリエーテルサルホン、ポリエチレンテレフタレート、アクリル基板などが挙げられる。
 有機EL素子の有機薄膜は、陽極と陰極の電極間に、1層又は複数の層で形成されている。その有機薄膜に上記一般式(1)~(3)で表される有機化合物を含有させることにより、電気エネルギーにより発光する素子が得られる。
 有機薄膜を形成する1層又は複数の層の「層」とは、正孔輸送層、電子輸送層、正孔輸送性発光層、電子輸送性発光層、正孔阻止層、電子阻止層、正孔注入層、電子注入層、発光層、又は下記構成例9)に示すように、これらの層が有する機能を併せ持つ単一の層を意味する。本発明における有機薄膜を形成する層の構成としては、以下の構成例1)から9)が挙げられ、いずれの構成であってもよい。
 (構成例)
 1)正孔輸送層/電子輸送性発光層。
 2)正孔輸送層/発光層/電子輸送層。
 3)正孔輸送性発光層/電子輸送層。
 4)正孔輸送層/発光層/正孔阻止層。
 5)正孔輸送層/発光層/正孔阻止層/電子輸送層。
 6)正孔輸送性発光層/正孔阻止層/電子輸送層。
 7)前記1)から6)の組み合わせのそれぞれにおいて、正孔輸送層もしくは正孔輸送性発光層の前に正孔注入層をさらにもう一層付与した構成。
 8)前記1)から7)の組み合わせのそれぞれにおいて、電子輸送層もしくは電子輸送性発光層の前に電子注入層をさらにもう一層付与した構成。
 9)前記1)から8)の組み合わせにおいて使用する材料をそれぞれ混合し、この混合した材料を含有する一層のみを有する構成。
 なお、前記9)は、一般にバイポーラー性の発光材料と言われる材料で形成される単一の層;又は、発光材料と正孔輸送材料又は電子輸送材料を含む層を一層設けるだけでもよい。一般的に多層構造とすることで、効率良く電荷、すなわち正孔及び/又は電子を輸送し、これらの電荷を再結合させることができる。また電荷のクエンチングなどが抑えられることにより、素子の安定性の低下を防ぎ、発光の効率を向上させることができる。
 正孔注入層及び輸送層は、正孔輸送材料を単独で、又は二種類以上の該材料の混合物を積層することにより形成される。正孔輸送材料としては、N,N’-8ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-4,4’-ジアミン、N,N’-ジナフチル-N,N’-ジフェニル-N,N’-ジフェニル-1,1’-ジアミンなどのトリフェニルアミン類、ビス(N-アリルカルバゾール)又はビス(-1,1’-アルキルカルバゾール)類、ピラゾリン誘導体、スチルベン系化合物、ヒドラゾン系化合物、トリアゾール誘導体、オキサジアゾール誘導体やポルフィリン誘導体に代表される複素環化合物、ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリビニルカルバゾール、ポリシランなどが好ましく使用できる。素子作製に必要な薄膜を形成し、電極から正孔が注入できて、さらに正孔を輸送できる物質であれば特に限定されるものではない。正孔注入性を向上するための、正孔輸送層と陽極の間に設ける正孔注入層としては、フタロシアニン誘導体、m-MTDATA等のスターバーストアミン類、高分子系ではPEDOT等のポリチオフェン、ポリビニルカルバゾール誘導体等で作製されたものが挙げられる。
 電子輸送材料としては、電界を与えられた電極間において負極からの電子を効率良く輸送することが必要である。電子輸送材料は、電子注入効率が高く、注入された電子を効率良く輸送することが好ましい。そのためには電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時及び使用時に発生しにくい物質であることが要求される。このような条件を満たす物質として、トリス(8-キノリノラト)アルミニウム錯体に代表されるキノリノール誘導体金属錯体、トロポロン金属錯体、ペリレン誘導体、ペリノン誘導体、ナフタルイミド誘導体、ナフタル酸誘導体、オキサゾール誘導体、オキサジアゾール誘導体、チアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ビススチリル誘導体、ピラジン誘導体、フェナントロリン誘導体、ベンゾオキサゾール誘導体、キノキサリン誘導体などが挙げられるが特に限定されるものではない。これらの電子輸送材料は単独でも用いられるが、異なる電子輸送材料と積層又は混合して使用しても構わない。電子注入性を向上するための、電子輸送層と陰極の間に設ける電子注入層としては、セシウム、リチウム、ストロンチウムなどの金属やフッ化リチウムなどが挙げられる。
 正孔阻止層は正孔阻止性物質単独又は二種類以上の物質を積層、混合することにより形成される。正孔阻止性物質としては、バソフェナントロリン、バソキュプロイン等のフェナントロリン誘導体、シロール誘導体、キノリノール誘導体金属錯体、オキサジアゾール誘導体、オキサゾール誘導体などが好ましい。正孔阻止性物質は、正孔が陰極側から素子外部に流れ出てしまい発光効率が低下するのを阻止することができる化合物であれば特に限定されるものではない。
 発光層とは、発光する有機薄膜の意味であり、例えば強い発光性を有する正孔輸送層、電子輸送層又はバイポーラー輸送層等が挙げられる。発光層は、発光材料(ホスト材料、ドーパント材料など)により形成されていればよく、これはホスト材料とドーパント材料との混合物であっても、ホスト材料単独であっても、いずれでもよい。ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の材料の組み合わせであってもよい。
 ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれであってもよい。ドーパント材料は積層されていても、分散されていても、いずれであってもよい。発光層として例えば前述の正孔輸送層や電子輸送層が挙げられる。発光層に使用される材料としては、カルバゾール誘導体、アントラセン誘導体、ナフタレン誘導体、フェナントレン誘導体、フェニルブタジエン誘導体、スチリル誘導体、ピレン誘導体、ペリレン誘導体、キノリン誘導体、テトラセン誘導体、ペリレン誘導体、キナクリドン誘導体、クマリン誘導体、ポルフィリン誘導体や燐光性金属錯体(Ir錯体、Pt錯体、Eu錯体など)などが挙げられる。
 有機EL素子の有機薄膜の形成方法は、一般的に、真空プロセスである抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、溶液プロセスであるキャスティング、スピンコーティング、ディップコーティング、ブレードコーティング、ワイヤバーコーティング、スプレーコーティング等のコーティング法や、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィーの手法等、さらにはこれらの手法を複数組み合わせた方法を採用しうる。各層の厚みは、それぞれの物質の抵抗値・電荷移動度にもよるので限定することはできないが、0.5~5000nmの間から選ばれる。好ましくは1~1000nm、より好ましくは5~500nmである。
 有機EL素子を構成する有機薄膜のうち、陽極と陰極の電極間に存在する、発光層、正孔輸送層、電子輸送層などの薄膜の1層又は複数層に一般式(1)~(3)で表される有機化合物を含有させることにより、低電気エネルギーでも効率良く発光する素子が得られる。
 一般式(1)~(3)で表される有機化合物は正孔輸送層や発光層、電子輸送層として好適に用いることができる。例えば前述した電子輸送材料又は正孔輸送材料、発光材料などと組み合わせて使用することや混合して使用することができる。
 一般式(1)~(3)で表される有機化合物をドーパント材料と組み合わせたホスト材料として用いるときの、ドーパント材料の具体例としてはビス(ジイソプロピルフェニル)ペリレンテトラカルボン酸イミドなどのペリレン誘導体、ペリノン誘導体、4-(ジシアノメチレン)-2メチル-6-(p-ジメチルアミノスチリル)-4Hピラン(DCM)やその類縁体、マグネシウムフタロシアニン、アルミニウムクロロフタロシアニンなどの金属フタロシアニン誘導体、ローダミン化合物、デアザフラビン誘導体、クマリン誘導体、オキサジン化合物、スクアリリウム化合物、ビオラントロン化合物、ナイルレッド、5-シアノピロメテン-BF4錯体等のピロメテン誘導体、さらに燐光材料としてアセチルアセトンやベンゾイルアセトンとフェナントロリンなどを配位子とするEu錯体や、Ir錯体、Ru錯体、Pt錯体、Os錯体などのポルフィリン、オルトメタル金属錯体などを用いることができるが特にこれらに限定されるものではない。また2種類のドーパント材料を混合する場合は、ルブレンのようなアシストドーパントを用いてホスト色素からのエネルギーを効率良く移動して色純度の向上した発光を得ることも可能である。いずれの場合も高輝度特性を得るためには、蛍光量子収率が高いものをドーピングすることが好ましい。
 用いるドーパント材料の量は、多すぎると濃度消光現象が起きるため、通常ホスト材料に対して30質量%以下で用いる。好ましくは20質量%以下であり、さらに好ましくは10質量%以下である。発光層におけるドーパント材料をホスト材料にドーピングする方法としては、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。また、ホスト材料にサンドイッチ状に挟んで使用することも可能である。この場合、一層又は二層以上のドーパント層として、ホスト材料と積層してもよい。
 これらのドーパント層は単独で各層を形成することもできるし、それらを混合して使用してもよい。また、ドーパント材料を、高分子結着剤としてポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリスチレンスルホン酸、ポリ(N-ビニルカルバゾール)、ポリ(メチル)(メタ)アクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルフォン、ポリフェニレンオキサイド、ポリブタジエン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリサルフォン、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂、ポリウレタン樹脂などの溶剤可溶性樹脂や、フェノール樹脂、キシレン樹脂、石油樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコーン樹脂などの硬化性樹脂に溶解又は分散させて用いることも可能である。
 有機EL素子はフラットパネルディスプレイとして好適に使用することができる。またフラットバックライトとしても用いることができ、この場合、有色光を発するものでも白色光を発するものでもいずれでも使用できる。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ機器、自動車パネル、表示板、標識などに使用される。特に、液晶表示装置、中でも薄型化が課題となっている、パソコン用途のための従来のバックライトは、蛍光灯や導光板からなっているため薄型化が困難であったが、発光素子を用いたバックライトは、薄型、軽量が特徴であるため上記問題点は解消される。同様に照明にも有用に用いることができる。
 本発明の一般式(1)~(3)で表される有機化合物を用いると、発光効率が高く、寿命が長い有機EL表示装置を得ることができる。さらに薄膜トランジスタ素子を組み合わせることで印加電圧のオンオフ現象を電気的に高精度に制御した有機EL表示装置を低コストで供給することが可能となる。
 (有機太陽電池素子)
 次に有機太陽電池素子について説明する。
 一般式(1)~(3)で表される有機化合物を用いて、フレキシブルで低コストの、有機太陽電池素子を簡便に作製することができる。すなわち、有機太陽電池素子は、色素増感太陽電池の様に電解液を用いないため、柔軟性や寿命向上の点で有利であることが特長である。従来は導電性ポリマーやフラーレンなどを組み合わせた有機薄膜半導体を用いる太陽電池の開発が主流であったが、発電変換効率が問題となっている。
 一般に有機太陽電池素子の構成はシリコン系の太陽電池と同様に、発電を行う層(発電層)を陽極と陰極ではさみ、光を吸収することで発生した正孔と電子を、各電極で受け取ることで太陽電池として機能する。その発電層はP型の材料とN型の材料、及びバッファ層などのその他の材料で構成されおり、その材料に有機材料が用いられているものを有機太陽電池という。
 構造としては、ショットキー接合、ヘテロ接合、バルクヘテロ接合、ナノ構造接合、ハイブリッドなどが挙げられ、各材料が効率的に入射光を吸収し、電荷を発生させ、発生した電荷(正孔と電子)を分離・輸送・収集することで太陽電池として機能する。
 次に有機太陽電池素子における構成要素について説明する。
 有機太陽電池素子における陽極及び陰極としては、先に述べた有機EL素子と同様である。光を効率的に取り込む必要があるため、発電層の吸収波長領域で透明性を有する電極とすることが望ましい。また良好な太陽電池特性を有するためにはシート抵抗が20Ω/□以下であることが好ましい。
 発電層は、少なくとも、一般式(1)~(3)で表される有機化合物を含有する有機薄膜の1層又は複数層から形成されている。有機太陽電池は先に示した構造をとることが可能であるが、基本的にP型の材料とN型の材料、及びバッファ層で構成されている。
 P型の材料としては、基本的に有機EL素子の項で述べた正孔注入及び正孔輸送層と同様に正孔を輸送できる化合物や、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体、ポリアニリン誘導体等のπ共役型ポリマー、カルバゾールやその他複素環を側鎖にもつポリマーが挙げられる。また、ペンタセン誘導体、ルブレン誘導体、ポルフィリン誘導体、フタロシアニン誘導体、インジゴ誘導体、キナクリドン誘導体、メロシアニン誘導体、シアニン誘導体、スクアリウム誘導体、ベンゾキノン誘導体なども挙げられる。
 N型の材料としては、基本的に有機EL素子の項で述べた電子輸送層と同様に電子を輸送できる化合物やピリジン及びその誘導体を骨格にもつオリゴマーやポリマー、キノリン及びその誘導体を骨格にもつオリゴマーやポリマー、ベンゾフェナンスロリン類及びその誘導体を持つポリマー、シアノポリフェニレンビニレン誘導体(CN-PPVなど)などの高分子材料や、フッ素化フタロシアニン誘導体、ペリレン誘導体、ナフタレン誘導体、バソキュプロイン誘導体、C60やC70、PCBMなどのフラーレン誘導体などの低分子材料が挙げられる。それぞれ光を効率的に吸収し、電荷を発生させることが好ましく、使用する材料の吸光係数が高い物が好ましい。
 一般式(1)~(3)で表される有機化合物は特にN型の材料として好適に用いることができる。有機太陽電池の発電層用の薄膜の形成方法は先述の有機EL素子の項で述べた方法と同様でよい。薄膜の膜厚などは太陽電池の構成によっても異なるが、光を十分に吸収するため、及び短絡を防ぐためには厚いほうがよいが、発生した電荷を輸送する距離は短い方がよいために薄い方が適している。一般的には発電層として10~5000nm程度が好ましい。
 (有機半導体レーザー素子について)
 一般式(1)~(3)で表される有機化合物は有機半導体特性を有する化合物であることから、有機半導体レーザー素子としての利用が期待される。すなわち、一般式(1)~(3)で表される有機化合物を含有する有機半導体素子に共振器構造を組み込み、効率的にキャリアを注入して励起状態の密度を十分に高めることが出来れば、光が増幅されレーザー発振に至ることが期待される。従来、光励起によるレーザー発振が観測されるのみで、電気励起によるレーザー発振に必要とされる、高密度のキャリアを有機半導体素子に注入し、高密度の励起状態を発生させるのは非常に困難と提唱されているが、一般式(1)~(3)で表される有機化合物を含有する有機半導体素子を用いることで、高効率な発光(電界発光)が起こる可能性が期待される。
 (有機発光トランジスタ)
 次に有機発光トランジスタを説明する。一般式(1)~(3)で表される有機化合物は有機発光トランジスタにも用いることができる。有機トランジスタと有機エレクトロルミネッセンス素子を融合した発光トランジスタは、ディスプレイにおける駆動回路と発光部分が一体化した構造を持ち、駆動トランジスタ回路の占有面積を低減することができ、表示部の開口率を上げることができる。つまり部品点数の低減が可能で作製プロセスが単純になることで、さらにコストの安いディスプレイが得られることになる。原理的には、有機発光トランジスタのソース、及びドレイン電極から、それぞれ電子・正孔を有機発光材料中に同時に注入し、再結合させることにより発光させる。発光量の調整はゲート電極からの電界によって制御することになる。
 その構造は有機発光トランジスタの項で述べたものと同様でよく、有機発光トランジスタ用半導体層の構成に代わり発光トランジスタ材料を用いることができる。半導体化合物の特性により適宜使用する材料やプロセスを選択することができ、光を外部に取り出す為の構成が望ましい。通常の有機発光トランジスタでは電子又は正孔の片方だけを注入するのみでよいが、発光トランジスタの場合は、半導体層中での電子と正孔の結合により発光するため、電極から効果的な電荷の注入・結合・発光を促す構造であることが好ましい。
 (光電変換素子)
 次に光電変換素子について説明する。
 一般式(1)~(3)で表される有機化合物を含む光電変換膜を光電変換素子として用いることができる。特に光電変換層の材料として好適に用いることができる。
 光電変換素子とは、上部電極と下部電極である、対向する二つの電極膜間に、光電変換膜を含む光電変換部を配置した素子であって、一方の電極上方から光が光電変換部に入射されるものである。該光電変換部は前記の入射光量に応じて電子と正孔を発生するものであり、半導体により前記電荷に応じた信号が読み出され、光電変換膜部の吸収波長に応じた入射光量を示す素子である。下部の電極膜には読み出しのためのトランジスタが接続される場合もある。
 該光電変換素子は、アレイ上に多数配置されていた場合は、入射光量に加え、入射位置情報を示すため、撮像素子となる。また、光の入射に関して、後部に存在する電極を含んだ光電変換素子が、より前部に存在する光電変換素子によって、吸収波長が阻害されない場合は、複数の光電変換素子が積層していてもよい。さらには、前述の複数の光電変換素子がそれぞれ異なる可視光を吸収する場合は多色の撮像素子となり、フルカラーフォトダイオードとなる。
 図3に光電変換素子の態様例を示す。
 図3の各態様例において、11が絶縁部、12が上部電極、13が電子ブロック層、14が光電変換部、15が正孔ブロック層、16が下部電極、17が絶縁基材、もしくは光電変換素子をそれぞれ表す。図中には読み出しのトランジスタを記載していないが、下部電極に接続されていればよく、さらには、半導体が透明であれば下部電極の下に成膜されていてもよい。入射光は光電変換部以外が光電変換部の吸収波長を極度に阻害しないものであれば、上部から入射してもよいし、下部から入射してもよい。
 ここで、光電変換部14は、光電変換層、電子輸送層、正孔輸送層、電子ブロック層、正孔ブロック層、結晶化防止層、層間接触改良層など複数の層からなることが多いが、これに限定されるものではない。
 光電変換層には一般的に有機半導体膜(光電変換膜)が用いられるが、その有機半導体膜は一層、もしくは複数の層であってもよく、一層の場合は、P型有機半導体膜、N型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)が用いられる。一方、複数の層である場合は、2~10層程度であり、P型有機半導体膜、N型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)のいずれかを積層した構造であり、層間にバッファ層が挿入されていてもよい。
 有機半導体膜には、吸収する波長帯に応じ、必要に応じ、トリアリールアミン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、トリフェニルメタン化合物、カルバゾール化合物、ポリシラン化合物、チオフェン化合物、フタロシアニン化合物、シアニン化合物、メロシアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、カルバゾール誘導体、ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、フェニルブタジエン誘導体、スチリル誘導体、キノリン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体、キナクリドン誘導体、クマリン誘導体、ポルフィリン誘導体や燐光性金属錯体(Ir錯体、Pt錯体、Eu錯体など)等を用いることができる。
 ここで正孔輸送層は、発生した正孔を光電変換層から電極へ輸送し、光電変換層から電極への正孔の移動を容易にする機能と、電極からの電子移動をブロックする機能とを有する。また、電子輸送層は、発生した電子を光電変換層から電極へ輸送し、光電変換層から電極への電子の移動を容易にする機能と、電極からの正孔の移動をブロックする機能を有する。
 また、正孔ブロック層は、電極から光電変換層への正孔の移動を妨げ、光電変換層内での再結合を防ぎ、暗電流を低減する機能を有する。電子ブロック層は、電極から光電変換層への電子の移動を妨げ、光電変換層内での再結合を防ぎ、暗電流を低減する機能を有する。また、正孔ブロック層、および電子ブロック層は、光電変換膜の光吸収を妨げないために、光電変換層の吸収波長での透過率が高いことが好ましく、もしくは薄膜で用いることが好ましい。
 さらに光電変換層においては、入射光を受光することによって、それぞれ発生した電子と正孔を、電極へ輸送することで、電気信号として読み出し回路へ送るものである。
 光電変換素子において使用されうる電極膜は、光電変換層に含まれる正孔輸送性の光電変換膜または正孔輸送膜から正孔を取り出してこれを捕集する、もしくは光電変換層に含まれる電子輸送性の光電変換膜または電子輸送膜から電子を取り出してこれを吐き出すため、正孔輸送性光電変換膜、正孔輸送膜などの隣接する膜、もしくは、電子輸送性光電変換膜、電子輸送膜などの隣接する膜との密着性や電子親和力、イオン化ポテンシャル、安定性等を考慮して選ばれるため、特に限定されるものでないが、酸化錫(NESA)、酸化インジウム、酸化錫インジウム(ITO)、酸化亜鉛インジウム(IZO)などの導電性金属酸化物、金、銀、白金、クロム、アルミニウム、鉄、コバルト、ニッケル、タングステンなどの金属、ヨウ化銅、硫化銅などの無機導電性物質、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーや炭素が挙げられる。また、必要であれば、複数の材料を用いても、また2層以上で構成されていてもよい。電極の抵抗も限定されないが、素子の受光を必要以上に妨げないものであれば限定されないが、素子の信号強度や、消費電力の観点からは低抵抗であることが好ましい。例えばシート抵抗値が300Ω/□以下のITO基板であれば素子電極として機能するが、数Ω/□程度の基板の供給も可能になっていることから、低抵抗品を使用することが望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶことができるが、通常5~500nm、好ましくは10~300nmの間で用いられる。ITOなどの膜形成方法としては、蒸着法、電子線ビーム法、スパッタリング法、化学反応法、塗布法などが挙げられる。必要に応じUV-オゾン処理、プラズマ処理などを施すことができる。
 透明電極膜の材料として特に好ましいのは、ITO、IZO、SnO、ATO(アンチモンドープ酸化スズ)、ZnO、AZO(Alドープ酸化亜鉛)、GZO(ガリウムドープ酸化亜鉛)、TiO、FTO(フッ素ドープ酸化スズ)のいずれかの材料である。
 透明電極膜の光透過率は、その透明電極膜を含む光電変換部に含まれる光電変換膜の吸収ピーク波長において、60%以上が好ましく、より好ましくは80%以上で、より好ましくは90%以上、より好ましくは95%以上である。
 また、光電変換層を複数積層する場合、積層膜内部の電極はそれぞれの光電変換膜が検出する光以外の波長の光を透過させる必要があり、吸収光に対し、好ましくは90%、さらに好ましくは95%以上の光を透過する材料を用いることが好ましい。
 電極膜はプラズマフリーで作製することが好ましい。プラズマフリーで電極膜を作製することで、プラズマが基板に与える影響を少なくすることができ、光電変換特性を良好にすることができる。ここで、プラズマフリーとは、電極膜の成膜中にプラズマが発生しないか、またはプラズマ発生源から基体までの距離が2cm以上、好ましくは10cm以上、さらに好ましくは20cm以上であり、基体に到達するプラズマが減ずるような状態を意味する。
 電極膜の成膜中にプラズマが発生しない装置としては、例えば、電子線蒸着装置(EB蒸着装置)やパルスレーザー蒸着装置がある。以下では、EB蒸着装置を用いて透明電極膜の成膜を行う方法をEB蒸着法と言い、パルスレーザー蒸着装置を用いて透明電極膜の成膜を行う方法をパルスレーザー蒸着法と言う。
 成膜中プラズマを減ずることができるような状態を実現できる装置(以下、プラズマフリーである成膜装置という)については、例えば、対向ターゲット式スパッタ装置やアークプラズマ蒸着法などが考えられる。
 TCOなどの透明導電膜を電極膜とした場合、DCショート、あるいはリーク電流増大が生じる場合がある。この原因の一つは、光電変換膜に導入される微細なクラックがTCOなどの緻密な膜によって被覆され、反対側の電極膜との間の導通が増すためと考えられる。そのため、Alなど膜質が比較して劣る電極の場合、リーク電流の増大は生じにくい。電極膜の膜厚を、光電変換膜の膜厚(クラックの深さ)に対して制御することにより、リーク電流の増大を大きく抑制できる。
 通常、導電性膜をある範囲より薄くすると、急激な抵抗値の増加をもたらすが、本実施形態の固体撮像素子では、シート抵抗は、好ましくは100~10000Ω/□でよく、薄膜化できる膜厚の範囲の自由度は大きい。また、透明導電性薄膜は厚みが薄いほど吸収する光の量は少なくなり、一般に光透過率が増す。光透過率の増加は、光電変換膜での光吸収を増大させ、光電変換能を増大させるため、非常に好ましい。
 正孔ブロック層は正孔阻止性物質単独又は二種類以上の物質を積層、又は混合することにより形成される。正孔阻止性物質としては、バソフェナントロリン、バソキュプロイン等のフェナントロリン誘導体、シロール誘導体、キノリノール誘導体金属錯体、オキサジアゾール誘導体、オキサゾール誘導体などが用いられるが、正孔阻止性物質は、正孔が電極から素子外部に流れ出てしまうのを阻止することができる化合物であれば特に限定されるものではない。光電変換素子の正孔ブロック層薄膜の形成方法は後述のとおりでよい。リーク電流を防止する目的には膜厚は薄い方がよいが、光入射時の信号読み出しには、十分な電流量が必要なため、膜厚はなるべく薄い方がよい。一般的には発電層として5~500nm程度が好ましい。
 光電変換素子の有機薄膜の形成方法は、一般的に、真空プロセスである抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、溶液プロセスであるキャスティング、スピンコーティング、ディップコーティング、ブレードコーティング、ワイヤバーコーティング、スプレーコーティング等のコーティング法や、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィーの手法等、さらにはこれらの手法を複数組み合わせた方法を採用しうる。各層の厚みは、それぞれの物質の抵抗値・電荷移動度にもよるので限定することはできないが、0.5~5000nmの間から選ばれる。好ましくは1~1000nm、より好ましくは5~500nmである。
 光電変換素子を構成する有機薄膜のうち、電極間に存在する、光電変換層、正孔輸送層、正孔ブロック層、電子輸送層、電子ブロック層などの薄膜の1層又は複数層に上記一般式(1)~(3)で表される有機化合物を含有させることにより、弱い光エネルギーでも効率よく電気信号に変換する素子が得られる。
 (光センサー、イメージ・センサー)
 電極間に電圧を印加した状態、あるいは無印加の状態で、透明または半透明の電極側から光を入射させることにより、光電流が流れ、これにより光電変換素子を光センサーとして用いることができる。また、該光センサーを複数集積してモジュール化することにより、複数の光電変換素子を含むイメージ・センサーとして用いることができる。モジュールとは、複数の光電変換素子を含むデバイスである。モジュールは、複数の光電変換素子を集積した構成を有している。モジュールにはイメージ・センサーなどが含まれる。ここで、光センサーには赤外光センサー等のデバイスを含む。
 近赤外光センサーは、赤外領域の光(赤外線)を受光し電気信号に変換して、必要な情報を取り出して応用する技術、またその技術を利用した機器をいう。人間の視覚を刺激しないで物を見られる、対象物の温度を遠くから非接触で瞬時に測定できるなどの特徴を持つ。近赤外に感光する赤外線フィルムやイメージ・センサーなどを用いることで、肉眼で見える像とは異なる映像を撮影することができる。
 (光電変換素子の用途)
 一般式(1)~(3)を用いた有機化合物を含む光電変換素子は、優れた光電変換性能や近赤外吸収特性を利用した光センサー等のデバイスを用いてカメラ、デジタルスチルカメラ、赤外線カメラ等の分野に応用することができる。
 その他の用途として、デジタルビデオカメラ、下記用途などでの監視カメラ(オフィスビル、駐車場、金融機関・無人契約機、ショッピングセンター、コンビニエンスストア、アウトレットモール、百貨店、パチンコホール、カラオケボックス、ゲームセンター、病院)、その他各種のセンサー(テレビドアホン、個人認証用センサー、ファクトリーオートメーション用センサー、家庭用ロボット、産業用ロボット、配管検査システム)、医療用センサー(内視鏡、眼底カメラ)、テレビ会議システム、テレビ電話、カメラつきケータイ、自動車安全走行システム(バックガイドモニタ、衝突予測、車線維持システム)、テレビゲーム用センサーなどの用途に用いることができる。
 以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。実施例中、部は特に指定しない限り質量部を、%は質量%を表す。また反応温度は、特に断りのない限り反応系内の内温を記載した。
 合成例中の化合物2-1乃至2-6は、既知の文献に従って合成した(Org.Lett.,2011,4547等を参照)。合成例にて得られた各種の化合物は、必要に応じてMS(質量分析スペクトル)、NMR(核磁気共鳴スペクトル)の測定を行うことによりその構造式を決定した。
 また、実施例中の電流電圧の印加測定は、特に指定しない限り、半導体パラメータアナライザ4200-SCS(ケースレーインスツルメンツ社)を用いて行った。入射光の照射は、特に指定しない限り、PVL-3300(朝日分光社)を用いた。
[化合物(1)の合成]
 化合物(1)は、下記の反応式(2)により合成した。具体的な説明を下記する。
Figure JPOXMLDOC01-appb-C000039
 (合成例1) 化合物(2-3)の合成
 2-ブロモ-4-メトキシアセトフェノン(化合物(2-1),(25.1g,117mmol))、2-メトキシベンゾイルヒドラジン(化合物(2-2),(17.4g,105mmol))をエタノール(115mL)に溶解させ、85 ℃で45時間攪拌させた。反応終了後、析出した白色固体を濾別、エタノールで洗浄することで目的物を得た。(収量:37.4g,収率:95%)
 (合成例2) 化合物(2-4)の合成
 化合物(2-3)(17.2g,47.5mmol)をテトラヒドロフラン(750mL)に懸濁させた。四酢酸鉛(25.0g)をゆっくりと加えた後、室温で16時間攪拌させた。沈殿物を濾別し、ろ液を減圧濃縮した後に、メタノールを加えることで生じた黄白色の固体を濾過することにより目的物を得た。(収量:14.9g,収率:95%)
 (合成例3) 化合物(2-5)の合成
 化合物(2-4)(14.5g,39.9mmol)をメタノール(200mL)と酢酸(460mL)に懸濁させた。懸濁液を0℃まで冷却後、アンモニア水溶液(200mL)を1時間かけて滴下した。滴下終了後、反応溶液を40℃で5日間攪拌させた。紫色の沈殿物を濾別、水およびメタノールで洗浄した後に真空下80℃で乾燥した。得られた粗成体をカラムクロマトグラフィー(順相シリカゲル,クロロホルム/ヘキサン)で精製し化合物(2-5)を得た。(収量:5.37g,収率:44%)
 (合成例4) 化合物(2-6)の合成
 化合物(2-5)(2.15g,3.50mmol)をトルエン(130mL)に溶解し、トリエチルアミン(1.4mL,10mmol)を加え80℃まで加熱したのち、三フッ化ホウ素ジエチルエーテル(4.2mL,34mmol)を滴下した。反応溶液を100℃で2時間攪拌させたのち、反応溶液を水へ加え、酢酸エチルによる抽出をした。有機層を水および飽和食塩水で洗浄し、硫酸ナトリウムで乾燥、ろ過してろ液を減圧濃縮した。得られた粗成体をカラムクロマトグラフィー(順相シリカゲル,クロロホルム/ヘキサン)で精製し、化合物(2-6)を得た。(収量:2.02g,収率87%)
 (合成例5) 化合物(2-7)の合成
 化合物(2-6)(1.01g,1.53mmol)、フェニルボロン酸(1.05g,8.61mmol)、炭酸カリウム(1.03g)をトルエン(150mL)と水(30mL)との混合溶液に懸濁させた。窒素ガスで20分間バブリングした後、Pd(PPh(0.177g,0.153mmol)を加え9時間加熱還流させた。反応液を空冷した後、酢酸エチルで抽出し、有機層を水と飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥、ろ過後、ろ液を減圧濃縮した。得られた粗成体をカラムクロマトグラフィー(順相シリカゲル,酢酸エチル/ヘキサン)で精製し化合物(2-7)を得た。(収量:0.776g,収率:74%)
 HNMR(400MHz,CDCl,meso体およびdl体の混合物)δ(ppm):7.98(d,2H,J=7.2Hz),7.86(d,1H,J=1.6Hz),7.72‐7.68(m,3H),7.59‐7.57(m,5H),7.53(d,2H,J=4.4Hz),7.46‐7.40(m,6H),7.33(t,2H,J=7.6Hz),7.09(dt,1H,J=7.6and0.4Hz),7.06‐6.99(m,3H),3.79(s,3H),3.71(s,3H).
 (実施例1) 化合物(1)の合成
 窒素雰囲気下、化合物(2-7)(0.73g,1.11mmol)を脱水ジクロロメタン(80 mL)に溶解させた。0℃まで冷却した後に、三臭化ホウ素ジクロロメタン溶液(3.4mL)を2分間かけて滴下し、室温で3.5時間攪拌した。反応液を飽和重曹水に注ぎ、2時間攪拌した後に沈殿物をろ別した。そのろ液の有機層を水と飽和食塩水で洗浄し、硫酸ナトリウムで乾燥、ろ過後、ろ液を減圧濃縮した。得られた粗成体を真空昇華(1.2×10-2Pa,450℃)で精製し化合物(1)を得た。(収量:0.42g,収率:64%)得られた化合物のEI-MSの測定結果を以下に示す。
 DI-MS m/z =588[M].
[化合物(296)の合成]
 化合物(296)は、下記の反応式(3)により合成した。具体的な説明を下記する。
Figure JPOXMLDOC01-appb-C000040
 (合成例6) 化合物(2-8)の合成
 化合物(2-6)(0.90g,1.36mmol)、ビフェニルボロン酸(1.48g,7.47mmol)、炭酸カリウム(0.93g)をトルエン(133mL)と水(27mL)との混合溶液に懸濁させた。窒素ガスで20分間バブリングした後、Pd(PPh(0.168g)を加え7時間加熱還流させた。反応液を空冷した後、酢酸エチルで抽出し、有機層を水と飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥、ろ過後、ろ液を減圧濃縮した。得られた粗成体をメタノールで洗浄し化合物(2-8)を得た。(収量:0.777g,収率:70%)
 DI-MS m/z =808[M].
 (実施例2) 化合物(296)の合成
 窒素雰囲気下、化合物(2-8)(0.70g,0.86mmol)を脱水ジクロロメタン(70mL)に溶解させた。0℃まで冷却した後に、三臭化ホウ素ジクロロメタン溶液(3.4mL)を2分間かけて滴下し、室温で15時間攪拌した。反応液を飽和重曹水に注ぎ、2時間攪拌した後に沈殿物をろ別した。そのろ液の有機層を水と飽和食塩水で洗浄し、硫酸ナトリウムで乾燥、ろ過後、ろ液を減圧濃縮した。得られた粗成体を真空昇華で精製し化合物(296)を得た。(収量:0.21g,収率:33%)得られた化合物のEI-MSの測定結果を以下に示す。
 EI-MS m/z =740[M].
[化合物(581)の合成]
 化合物(581)は、下記の反応式(4)により合成した。具体的な説明を下記する。
Figure JPOXMLDOC01-appb-C000041
 (合成例7) 化合物(2-9)の合成
 化合物(2-6)(1.08g,1.63mmol)、4-フッ化フェニルボロン酸(1.02g,7.29mmol)、炭酸カリウム(1.03g)をトルエン(150mL)と水(30mL)との混合溶液に懸濁させた。窒素ガスで20分間バブリングした後、Pd(PPh(0.186g)を加え6時間加熱還流させた。反応液を空冷した後、酢酸エチルで抽出し、有機層を水と飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥、ろ過後、ろ液を減圧濃縮した。得られた粗成体をカラムクロマトグラフィー(順相シリカゲル,クロロホルム/ヘキサン=4:1)で精製し化合物(2-9)を得た。(収量:0.461g,収率:41%)
 DI-MS m/z =692[M].
 (実施例3) 化合物(581)の合成
 窒素雰囲気下、化合物(2-9)(0.43g,0.62mmol)を脱水ジクロロメタン(50mL)に溶解させた。0℃まで冷却した後に、三臭化ホウ素ジクロロメタン溶液(2.5mL)を2分間かけて滴下し、室温で3時間攪拌した。反応液を飽和重曹水に注ぎ、2時間攪拌した後に沈殿物をろ別した。ろ液の有機層を水と飽和食塩水で洗浄し、硫酸ナトリウムで乾燥、ろ過後、ろ液を減圧濃縮した。得られた粗成体を真空昇華で精製し化合物(581)を得た。(収量:0.27g,収率:70%)得られた化合物のDI-MSの測定結果を以下に示す。
 DI-MS m/z =624[M].
[化合物(315)の合成]
 化合物(315)は、下記の反応式(5)により合成した。具体的な説明を下記する。
Figure JPOXMLDOC01-appb-C000042
 (合成例8) 化合物(2-10)の合成
 化合物(2-6)(0.97g,1.46mmol)、4-(3-ピリジル)フェニルボロン酸(1.02g,5.15mmol)、炭酸カリウム(1.01g)をトルエン(150mL)と水(30mL)との混合溶液に懸濁させた。窒素ガスで20分間バブリングした後、Pd(PPh(0.188g)を加え11時間加熱還流させた。反応液を空冷した後、沈殿物をろ別した。ろ液をクロロホルムで抽出し、有機層を水と飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥、ろ液を減圧濃縮した。粗成体をクロロホルムに溶解し、背ライトろ過を行うことで化合物(2-10)を得た。(収量:0.50g,収率:42%)
 DI-MS m/z =810[M].
 (実施例4) 化合物(315)の合成
 窒素雰囲気下、化合物(2-10)(0.56g,0.75mmol)を脱水ジクロロメタン(56mL)に溶解させた。0℃まで冷却した後に、三臭化ホウ素ジクロロメタン溶液(2.7mL)を2分間かけて滴下し、室温で3時間攪拌した。反応液を飽和重曹水に注ぎ、2時間攪拌した後に沈殿物をろ別した。ろ液の有機層を水と飽和食塩水で洗浄し、硫酸ナトリウムで乾燥、ろ過後、ろ液を減圧濃縮した。(収量:0.36g,収率:64%)得られた化合物のDI-MSの測定結果を以下に示す。
 DI-MS m/z =742[M].
 (実施例5) 近赤外吸収色素の有機薄膜(光学フィルム)の作製
 石英基板上に、実施例1で得た化合物(1)を抵抗加熱真空蒸着により70nm真空成膜し、有機薄膜試験片を作製した。得られた波長-吸光度グラフを図4に示す。化合物(1)の有機薄膜状態における吸収端は927nmに観測された。
 (実施例6) 近赤外吸収色素の薄膜(光学フィルム)の作製
 ガラス基板上に、実施例2で得た化合物(296)を抵抗加熱真空蒸着により80nm真空成膜し、薄膜試験片を作製した。得られた波長-吸光度グラフを図5に示す。化合物296の薄膜状態における吸収端は937nmに観測された。
 (実施例7) 近赤外吸収色素の薄膜(光学フィルム)の作製
 ガラス基板上に、実施例3で得た化合物(581)を抵抗加熱真空蒸着により90nm真空成膜し、薄膜試験片を作製した。得られた波長-吸光度グラフを図6に示す。化合物581の薄膜状態における吸収端は937nmに観測された。
[比較化合物Aの合成]
 比較例化合物Aは、下記の式で表される化合物である。
Figure JPOXMLDOC01-appb-C000043
 比較例化合物Aを、下記の反応式(6)により合成した。具体的な説明を下記する。
Figure JPOXMLDOC01-appb-C000044
 化合物(A-2)の合成
 窒素雰囲気下、化合物(A-1)5.01g,30.1mmol)、2-ヒドロキシアセトフェノン(4.5mL,37.4mmol)を脱水エタノール(80mL)に溶解させ一晩還流させた。反応終了後、濾過により析出した白色固体である化合物(A-2)を得た(5.80g,収率68%)。
HNMR(500MHz,CDCl):δ(ppm)12.9(s,1H),11.0(s,1H),8.36(dd,1H,J=7.80,1.80Hz),7.53(ddd,1H,J=8.34,7.26,1.79Hz),7.47(dd,1H,J=7.97,1.58Hz),7.29(td,1H,J=7.70,1.50Hz),7.17(td,1H,J=7.56,0.88Hz,H),7.05(dd,1H,J=8.33,1.13Hz),7.05(dd,1H,J=8.23,1.35Hz),6.87(td,1H,J=7.59,1.23Hz),4.10(s,3H),2.39(s,3H).FAB-MS:m/z=285[M+H]
 化合物(A-3)の合成
 テトラヒドロフラン(190mL)に化合物(A-2)(3.01g,10.6mmol)を溶解させた。氷冷しながらこの溶液に、四酢酸鉛(5.72g,12.9mmol)を少量ずつ加え、室温で2時間撹拌させた。反応終了後、シリカゲルを敷いた桐山濾過により析出した固体を除き、溶媒を留去したのち、ジクロロメタンと蒸留水で分液処理をおこなった。有機相を乾燥させ、溶媒を留去し淡黄色固体である化合物(A-3)を得た(2.61g,収率97%)。
HNMR(500MHz,CDCl):δ(ppm)7.65-7.68(m,2H),7.47-7.54(m,3H),7.37(dd,1H,J=6.98,1.78Hz),7.03(td,1H,J=7.58,0.95Hz),6.94(d,1H,J=8.25Hz),3.64(s,3H),2.49(s,3H).
 FAB-MS:m/z=255[M+H]
 化合物(A-4)の合成
 化合物(A-3)(1.00g,3.95mmol)をエタノール(55mL)、酢酸(11mL)に溶解させ、溶液を65°Cに加熱後、塩化アンモニウム(216mg,4.03mmol)、酢酸アンモニウム(1.95g,25.4mmol)を加えた。80°Cで一晩撹拌後、飽和重曹水でクエンチし、ジクロロメタンと飽和食塩水で分液処理をおこなった。有機相を硫酸ナトリウムで乾燥させ、溶媒を留去し、カラムクロマトグラフィー(順相シリカゲル,ジクロロメタン:ヘキサン=1:1)により精製をおこない、光沢のある深緑色の固体である化合物(A-4)を得た(458mg,収率51%)。
 HNMR(500MHz,CDCl):δ(ppm)7.94(dd,2H,J=7.48,1.53Hz),7.93(d,2H,J=7.95Hz),7.84(d,2H,J=8.15Hz),7.61(s,1H),7.38(td,2H,J=7.82,1.35Hz),7.35(t,2H,J=7.43Hz),7.24(t,2H,J=7.58Hz),7.11(td,2H,J=7.32,0.70Hz),7.04(d,2H,J=8.25Hz),3.77(s,6H).
 FAB-MS:m/z=456[M]
 化合物(A-5)の合成
 窒素雰囲気下、化合物(A-4)(1.01g,2.21mmol)を脱水トルエン(88mL)に溶解させ、トリエチルアミン(0.8mL,5.77mmol)を加えて撹拌させた。80℃に加熱したのち、三フッ化ホウ素ジエチルエーテル錯体(2.5mL,20.3mmol)を滴下し、100℃で3時間撹拌させた。蒸留水を加えてクエンチし、ジクロロメタンと蒸留水で分液処理をおこなった。有機相を硫酸ナトリウムで乾燥後、溶媒を留去した。得られた固体をメタノールで洗浄し、濾過により青紫色固体である化合物(A-5)を得た(1.10g,収率99%)。
 HNMR(500MHz,DMSO-d):δ(ppm)8.65(s,1H),8.16(d,1H,J=8.20Hz),8.15(d,1H,J=8.20Hz),7.54(t,2H,J=7.37Hz),7.48(td,2H,J=7.91,1.63Hz),7.45(d,1H,J=7.60Hz),7.38(d,1H,J=7.15Hz),7.29(d,1H,J=8.10Hz),7.26(d,1H,J=6.85Hz)7.28(t,1H,J=8.15Hz),7.25(t,1H,J=7.43Hz),7.20(d,1H,J=8.25Hz),7.17(d,1H,J=8.25Hz),7.07(td,1H,J=7.50,0.75Hz),7.01(td,1H,J=7.49,0.72Hz),3.72(s,6H),3.66(s,6H).
FAB-MS:m/z=504[M]
 比較化合物(A)の合成
 窒素雰囲気下、化合物(A-5)(700mg,1.39mmol)を脱水ジクロロエタン(138mL)に溶解させ、0℃で撹拌させた。この溶液に三臭化ホウ素(7.0mL,7.0mmol)を滴下後、2時間撹拌を続けた。その後反応液を40℃に加熱し、一晩撹拌させた。反応終了後、氷冷しながら飽和重曹水を加えてクエンチした。水相を除いて溶媒を留去し、メタノールで析出した固体を洗浄後、濾過により青緑色固体を得た(515mg,粗収率85%)。その後、昇華精製を経て光沢のある緑色固体である比較化合物Aを得た。
APCI-MS:m/z=436[M]
 (比較例1) 比較化合物(A)を用いた薄膜の作製と評価
 比較化合物Aを予め洗浄したガラス基板に80nmの膜厚に抵抗加熱真空蒸着し、得られた有機薄膜について、吸収スペクトルを測定した。得られた吸収スペクトルを図7に示す。結果、比較化合物Aの薄膜状態における吸収端は838nmに観測された。
 比較例1で得られた比較化合物(A)と比較して、本発明のジベンゾピロメテンホウ素キレート化合物を用いた薄膜の吸収端は100nmの長波長化しており、より効果的に近赤外光領域の光吸収が可能である。このことから、近赤外吸収色素として有用であり、光学フィルムとして有用であることが確認できる。
 (実施例8) 近赤外吸収色素の薄膜(光学フィルム)の作製と耐光性試験
 ガラス基板上に、実施例1で得た化合物(1)を抵抗加熱真空蒸着により100nm真空成膜し、薄膜試験片を作製した。試験片をスガ試験機株式会社制、低温サイクルキセノンウェザーメーターXL75に設置し、放射照度10万Lux、湿度60%RH、温度24℃の条件下で照射を行った。所定の各時間(0分、90分、300分、及び1200分)経過後、試験片を取り出し、紫外可視吸収スペクトルにて、吸光度の変化を記録した。得られた波長-吸光度グラフを図8に示す。
 (比較例2) 近赤外吸収色素の薄膜の作製と耐光性試験
 ガラス基板上に、日本化薬製の赤外吸収シアニン色素KAYASORB CY-10の0.2重量%アセトン溶液を、2000rpmにてスピンコート成膜し、100℃30分乾燥処理を行い、薄膜試験片を作製した。試験片をスガ試験機株式会社制、低温サイクルキセノンウェザーメーターXL75に設置し、放射照度10万Lux、湿度60%RH、温度24℃の条件下で照射を行った。所定の各時間(0分、30分、60分、及び90分)経過後、試験片を取り出し、紫外可視吸収スペクトルにて、吸光度の変化を記録した。得られた波長-吸光度グラフを図9に示す。
 (比較例3) 近赤外吸収薄膜の作製と耐光性試験
 ガラス基板上に、日本化薬製の赤外吸収シアニン色素KAYASORB IR-820の0.2重量%アセトン溶液を、2000rpmにてスピンコート成膜し、100℃30分乾燥処理を行い、薄膜試験片を作製した。試験片をスガ試験機株式会社制、低温サイクルキセノンウェザーメーターXL75に設置し、放射照度10万Lux、湿度60%RH、温度24℃の条件下で照射を行った。所定の各時間(0分、90分、300分、及び1200分)経過後、試験片を取り出し、紫外可視吸収スペクトルにて、吸光度の変化を記録した。得られた波長-吸光度グラフを図10に示す。
 図8~図10から明らかなように、類似構造の有機化合物を用いた比較例に比べて、非常に良好な耐光性を示したことから、大気安定性、耐光性の優れた近赤外吸収色素であることが確認できる。
 (実施例9) 光電変換素子の作製およびその評価
 ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に光電変換層として、化合物(1)を100nm真空成膜した。その上に電極として、アルミニウムを100nm真空成膜し、光電変換素子を作製した。ITOとアルミニウムを電極として、2Vの電圧を印加した際の、暗所での電流は2.71×10-9A/cmであった。透明導電ガラス側に2Vの電圧を印加し、照射光波長800nm,半値幅20nmで光照射を行った場合の電流は1.54×10-6A/cmであった。得られた光電変換素子の電流応答特性を図11に示す。得られた光電変換素子の光電変換スペクトルを図12に示す。光応答感度は760nmが最大であり、877nmで感度が半減した。
 (実施例10) 光電変換素子の作製およびその評価
 ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に光電変換層として、化合物(296)を100nm真空成膜した。その上に電極として、アルミニウムを100nm真空成膜し、光電変換素子を作製した。ITOとアルミニウムを電極として、2Vの電圧を印加した際の、暗所での電流は6.89×10-9A/cmであった。透明導電ガラス側に2Vの電圧を印加し、照射光波長800nm,半値幅20nmで光照射を行った場合の電流は7.90×10-7A/cmであった。得られた光電変換素子の電流応答特性を図13に示す。得られた光電変換素子の光電変換スペクトルを図14に示す。光応答感度は766nmが最大であり、906nmで感度が半減した。
 (実施例11) 光電変換素子の作製およびその評価
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に光電変換層として、化合物(581)を100nm真空成膜した。その上に電極として、アルミニウムを80nm真空成膜し、光電変換素子を作製した。ITOとアルミニウムを電極として、2Vの電圧を印加した際の、暗所での電流は8.91×10-9A/cmであった。透明導電ガラス側に2Vの電圧を印加し、照射光波長800nm,半値幅20nmで光照射を行った場合の電流は1.89×10-6A/cmであった。得られた光電変換素子の電流応答特性を図15に示す。得られた光電変換素子の光電変換スペクトルを図16に示す。光応答感度は778nmが最大であり、896nmで感度が半減した。
 (比較例4) 光電変換素子の作製およびその評価
 ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に光電変換層として、比較化合物Aを抵抗加熱真空蒸着し、80nmの膜厚に成膜した。その上に電極として、アルミニウムを抵抗加熱真空蒸着し、100nmの膜厚に成膜し、比較用の光電変換素子を作製した。ITOとアルミニウムを電極として、775nm、半値幅20nmの光照射を行った状態で、0.05Vの電圧を印加した際の光電流応答性を測定したところ、暗所での電流は5.18×10-8A/cmであり、明所での電流は9.47×10-7A/cmであり、その明暗比は18であった。得られた光電変換素子の光電流応答特性を図17に示す。また、1Vの電圧を印加した際の光電流応答性を測定したところ、暗所での電流は8.15×10-6A/cmであり、明所での電流は1.42×10-5A/cmであり、その明暗比は1.7であった。得られた光電変換素子の光電変換スペクトルを図18に示す。光応答感度は775nmが最大であり、818nmで感度が半減した。
 比較例4に示した比較化合物Aを用いた光電変換素子は、光照射がない状態での暗電流の漏れが激しく、明暗比が非常に悪いのに対し、本発明のジベンゾピロメテンホウ素キレート化合物を用いた光電変換素子は、3桁の明暗比が得られていることから光電変換特性に優れていることが確認できる。また、比較例1に示した比較化合物Aを用いた素子は818nmで光応答感度が半減するのに対し、本発明のジベンゾピロメテンホウ素キレート化合物を用いた素子では870nm以上の波長まで半減しない。
 本発明の光電変換素子は、良好な近赤外吸収特性を示し、かつ優れた光電変換特性を示すことから近赤外センサーとして有用であると確認できる。
 本発明の有機化合物は光電変換素子としても優れた光電変換特性を示すことが確認できる。
 1 ソース電極
 2 半導体層
 3 ドレイン電極
 4 絶縁体層
 5 ゲート電極
 6 基板
 11 絶縁部
 12 上部電極
 13 電子ブロック層もしくは正孔輸送層
 14 光電変換部
 15 正孔ブロック層もしくは電子輸送層
 16 下部電極
 17 絶縁基材、もしくは他の光電変換素子
 

Claims (11)

  1.  一般式(1)で表される有機化合物。
    Figure JPOXMLDOC01-appb-C000001
     (R~R18は各々独立に水素原子、アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、メルカプト基、アルキルチオ基、ニトロ基、置換アミノ基、アミド基、アシル基、カルボキシル基、アシルオキシ基、シアノ基、スルホ基、スルファモイル基、アルキルスルファモイル基、カルバモイル基、又はアルキルカルバモイル基を表す。Xは置換もしくは無置換のメチン基、シリリジン基、ゲルミリジン基、スタンニリジン基、窒素原子、リン原子、ヒ素原子、又はアンチモン原子を表す。)
  2.  一般式(2)で表される有機化合物。
    Figure JPOXMLDOC01-appb-C000002
     (R~R又はR11~R14は各々独立に水素原子、アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、メルカプト基、アルキルチオ基、ニトロ基、置換アミノ基、アミド基、アシル基、カルボキシル基、アシルオキシ基、シアノ基、スルホ基、スルファモイル基、アルキルスルファモイル基、カルバモイル基、又はアルキルカルバモイル基を表す。Xは置換もしくは無置換のメチン基、シリリジン基、ゲルミリジン基、スタンニリジン基、窒素原子、リン原子、ヒ素原子、又はアンチモン原子を表す。)
  3.  一般式(3)で表される有機化合物。
    Figure JPOXMLDOC01-appb-C000003
     (R~R又はR11~R14は各々独立に水素原子、アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、メルカプト基、アルキルチオ基、ニトロ基、置換アミノ基、アミド基、アシル基、カルボキシル基、アシルオキシ基、シアノ基、スルホ基、スルファモイル基、アルキルスルファモイル基、カルバモイル基、又はアルキルカルバモイル基を表す。)
  4.  請求項1~請求項3のいずれか一項に記載の有機化合物を含む近赤外吸収色素。
  5.  請求項1~請求項3のいずれか一項に記載の有機化合物を用いた光学フィルム。
  6.  請求項1~請求項3のいずれか一項に記載の有機化合物を用いた有機エレクトロニクスデバイス。
  7.  一般式(1)で表される化合物を含む光電変換膜を備える光電変換素子。
    Figure JPOXMLDOC01-appb-C000004
     (R~R18は各々独立に水素原子、アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、メルカプト基、アルキルチオ基、ニトロ基、置換アミノ基、アミド基、アシル基、カルボキシル基、アシルオキシ基、シアノ基、スルホ基、スルファモイル基、アルキルスルファモイル基、カルバモイル基、アルキルカルバモイル基を表す。Xは置換もしくは無置換のメチン基、シリリジン基、ゲルミリジン基、スタンニリジン基、または窒素原子、リン原子、ヒ素原子、アンチモン原子を表す。)
  8.  請求項7に記載の光電変換素子を備える光センサー。
  9.  請求項7に記載の光電変換素子を備える撮像素子。
  10.  請求項7に記載の光電変換素子を備えるイメージ・センサー。
  11.  一般式(1)で表される化合物を含む光電変換素子用材料。
    Figure JPOXMLDOC01-appb-C000005
     (R~R18は各々独立に水素原子、アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、メルカプト基、アルキルチオ基、ニトロ基、置換アミノ基、アミド基、アシル基、カルボキシル基、アシルオキシ基、シアノ基、スルホ基、スルファモイル基、アルキルスルファモイル基、カルバモイル基、又はアルキルカルバモイル基を表す。Xは置換もしくは無置換のメチン基、シリリジン基、ゲルミリジン基、スタンニリジン基、窒素原子、リン原子、ヒ素原子、又はアンチモン原子を表す。)
     
PCT/JP2017/009952 2016-03-18 2017-03-13 有機化合物、近赤外吸収色素、光電変換素子及びその光センサー、撮像素子 WO2017159610A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/085,387 US11333964B2 (en) 2016-03-18 2017-03-13 Organic compound, near infrared absorbing dye, photoelectric conversion element, light sensor thereof, and imaging element
JP2018505912A JP6907187B2 (ja) 2016-03-18 2017-03-13 有機化合物、近赤外吸収色素、光電変換素子及びその光センサー、撮像素子
KR1020187027460A KR102325175B1 (ko) 2016-03-18 2017-03-13 유기 화합물, 근적외 흡수 색소, 광전 변환 소자 및 그 광 센서, 촬상 소자

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-054621 2016-03-18
JP2016054622 2016-03-18
JP2016054621 2016-03-18
JP2016-054622 2016-03-18

Publications (1)

Publication Number Publication Date
WO2017159610A1 true WO2017159610A1 (ja) 2017-09-21

Family

ID=59851281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009952 WO2017159610A1 (ja) 2016-03-18 2017-03-13 有機化合物、近赤外吸収色素、光電変換素子及びその光センサー、撮像素子

Country Status (4)

Country Link
US (1) US11333964B2 (ja)
JP (1) JP6907187B2 (ja)
KR (1) KR102325175B1 (ja)
WO (1) WO2017159610A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123093A (ja) * 2017-02-01 2018-08-09 公立大学法人首都大学東京 ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収色素、光電変換素子、近赤外光センサー及び撮像素子
WO2019155911A1 (ja) * 2018-02-06 2019-08-15 富士フイルム株式会社 色変換組成物、これに用いる化合物、及び発光装置
JP2021012906A (ja) * 2019-07-04 2021-02-04 三菱ケミカル株式会社 光電変換素子、及び該光電変換素子を含む光センサー並びに撮像素子
JPWO2020162345A1 (ja) * 2019-02-05 2021-12-09 日本化薬株式会社 ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、有機薄膜及び有機エレクトロニクスデバイス

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021509487A (ja) * 2018-01-05 2021-03-25 スリーエム イノベイティブ プロパティズ カンパニー 迷光吸収フィルム
KR102297249B1 (ko) * 2018-09-12 2021-09-03 주식회사 엘지화학 승화 정제 장치 및 승화 정제 방법
CN113838984B (zh) * 2021-08-27 2023-07-25 电子科技大学 基于香豆素7的全聚合物太阳能电池活性层形貌调节方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501121A (ja) * 1972-11-20 1975-01-08
JP2007271745A (ja) * 2006-03-30 2007-10-18 Fujifilm Corp 近赤外吸収色素含有硬化性組成物
JP2009031713A (ja) * 2006-09-27 2009-02-12 Fujifilm Corp ジピロメテン系ホウ素錯体化合物及びその互換異性体、感光性着色硬化性組成物、カラーフィルタ、及びその製造方法
JP2012199541A (ja) * 2011-03-10 2012-10-18 Mitsubishi Chemicals Corp 有機薄膜太陽電池素子、太陽電池及び太陽電池モジュール
JP2012527748A (ja) * 2009-05-19 2012-11-08 へリアテック ゲーエムベーハー 半導体部品
WO2013035303A1 (ja) * 2011-09-09 2013-03-14 出光興産株式会社 有機薄膜太陽電池材料
JP2013205820A (ja) * 2012-03-29 2013-10-07 Fujifilm Corp 着色硬化性組成物、カラーフィルタ、カラーフィルタの製造方法、液晶表示装置、有機el表示装置、及び固体撮像素子
WO2014136710A1 (ja) * 2013-03-05 2014-09-12 公立大学法人首都大学東京 新規化合物及びそれを用いた光電変換素子
WO2015022977A1 (ja) * 2013-08-13 2015-02-19 Dic株式会社 樹脂組成物及び成形体
JP2015530761A (ja) * 2012-10-05 2015-10-15 ユニバーシティ オブ サザン カリフォルニア 有機光起電力におけるアクセプタおよびドナーのエネルギー感光化

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4066653A (en) 1975-04-03 1978-01-03 Sterling Drug Inc. 1-imino-3-(4-imino-5-thiazolidinylidene)isoindolines
US3993658A (en) 1972-11-20 1976-11-23 Sterling Drug Inc. Thiazolidinylidene-isoindolines
JPH0537119A (ja) 1991-07-31 1993-02-12 Sanyo Electric Co Ltd 混成集積回路装置
JPH07271081A (ja) 1994-03-31 1995-10-20 Toppan Printing Co Ltd 電子写真用トナー
JP4517956B2 (ja) 2005-06-24 2010-08-04 富士ゼロックス株式会社 画像形成方法
US8197994B2 (en) 2006-09-27 2012-06-12 Fujifilm Corporation Compound or its tautomer, metal complex compound, colored photosensitive curing composition, color filter, and production
US8367282B2 (en) 2006-09-27 2013-02-05 Fujifilm Corporation Compound or its tautomer, metal complex compound, colored photosensitive curing composition, color filter, and production
JP5514800B2 (ja) * 2009-02-27 2014-06-04 出光興産株式会社 ピロメテンホウ素錯体化合物及びそれを用いた有機電界発光素子
JP2012219258A (ja) 2011-04-14 2012-11-12 Kyoto Prefectural Public Univ Corp 近赤外蛍光色素、画像診断材料及び画像診断方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501121A (ja) * 1972-11-20 1975-01-08
JP2007271745A (ja) * 2006-03-30 2007-10-18 Fujifilm Corp 近赤外吸収色素含有硬化性組成物
JP2009031713A (ja) * 2006-09-27 2009-02-12 Fujifilm Corp ジピロメテン系ホウ素錯体化合物及びその互換異性体、感光性着色硬化性組成物、カラーフィルタ、及びその製造方法
JP2012527748A (ja) * 2009-05-19 2012-11-08 へリアテック ゲーエムベーハー 半導体部品
JP2012199541A (ja) * 2011-03-10 2012-10-18 Mitsubishi Chemicals Corp 有機薄膜太陽電池素子、太陽電池及び太陽電池モジュール
WO2013035303A1 (ja) * 2011-09-09 2013-03-14 出光興産株式会社 有機薄膜太陽電池材料
JP2013205820A (ja) * 2012-03-29 2013-10-07 Fujifilm Corp 着色硬化性組成物、カラーフィルタ、カラーフィルタの製造方法、液晶表示装置、有機el表示装置、及び固体撮像素子
JP2015530761A (ja) * 2012-10-05 2015-10-15 ユニバーシティ オブ サザン カリフォルニア 有機光起電力におけるアクセプタおよびドナーのエネルギー感光化
WO2014136710A1 (ja) * 2013-03-05 2014-09-12 公立大学法人首都大学東京 新規化合物及びそれを用いた光電変換素子
WO2015022977A1 (ja) * 2013-08-13 2015-02-19 Dic株式会社 樹脂組成物及び成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VALENTINA F. ET AL.: "Synthesis of N,N-difluoroboryl complexes of 3,3'- diarylazadiisoindolylmethenes", TETRAHEDRON LETTERS, vol. 49, no. 42, 27 August 2008 (2008-08-27), pages 6152 - 6154, XP024528704 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123093A (ja) * 2017-02-01 2018-08-09 公立大学法人首都大学東京 ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収色素、光電変換素子、近赤外光センサー及び撮像素子
WO2019155911A1 (ja) * 2018-02-06 2019-08-15 富士フイルム株式会社 色変換組成物、これに用いる化合物、及び発光装置
JPWO2019155911A1 (ja) * 2018-02-06 2020-12-03 富士フイルム株式会社 色変換組成物、これに用いる化合物、及び発光装置
US11434420B2 (en) 2018-02-06 2022-09-06 Fujifilm Corporation Color conversion composition, compound used for same, and light emitting device
JPWO2020162345A1 (ja) * 2019-02-05 2021-12-09 日本化薬株式会社 ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、有機薄膜及び有機エレクトロニクスデバイス
JP7390320B2 (ja) 2019-02-05 2023-12-01 日本化薬株式会社 ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、有機薄膜及び有機エレクトロニクスデバイス
JP2021012906A (ja) * 2019-07-04 2021-02-04 三菱ケミカル株式会社 光電変換素子、及び該光電変換素子を含む光センサー並びに撮像素子

Also Published As

Publication number Publication date
JP6907187B2 (ja) 2021-07-21
US11333964B2 (en) 2022-05-17
KR102325175B1 (ko) 2021-11-10
JPWO2017159610A1 (ja) 2019-01-24
US20190086790A1 (en) 2019-03-21
KR20180126486A (ko) 2018-11-27

Similar Documents

Publication Publication Date Title
JP6907187B2 (ja) 有機化合物、近赤外吸収色素、光電変換素子及びその光センサー、撮像素子
JP6465350B2 (ja) 新規な有機化合物およびその利用
JP6208133B2 (ja) 複素環化合物及びその利用
CN109476681B (zh) 二苯并吡咯亚甲基硼螯合化合物、近红外线吸收材料、薄膜及有机电子器件
EP3666777B1 (en) Dibenzopyrromethene boron chelate compound, near-infrared light-absorbing material, thin-film, and organic electronic device
JP6436590B2 (ja) 新規な有機多環芳香族化合物、およびその利用
JP6478278B2 (ja) 有機多環芳香族化合物、およびその利用
WO2013031468A1 (ja) 複素環式化合物及びその利用
JP2018123093A (ja) ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収色素、光電変換素子、近赤外光センサー及び撮像素子
JP7390320B2 (ja) ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、有機薄膜及び有機エレクトロニクスデバイス
JP2021015963A (ja) 光電変換素子用材料及びその用途
JP2018076241A (ja) 縮合多環化合物及びその利用
JP7033039B2 (ja) ジベンゾピロメテンホウ素キレート化合物およびその利用
JP6478279B2 (ja) 有機多環芳香族化合物、およびその利用
JP6478277B2 (ja) 有機多環芳香族化合物、およびその利用
JP6592863B2 (ja) 有機化合物及びその用途
JP7357880B2 (ja) 新規環状化合物およびその用途
JP2017132697A (ja) 有機化合物及びその利用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018505912

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187027460

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766610

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766610

Country of ref document: EP

Kind code of ref document: A1