WO2013027288A1 - 車両用走行制御装置 - Google Patents

車両用走行制御装置 Download PDF

Info

Publication number
WO2013027288A1
WO2013027288A1 PCT/JP2011/069093 JP2011069093W WO2013027288A1 WO 2013027288 A1 WO2013027288 A1 WO 2013027288A1 JP 2011069093 W JP2011069093 W JP 2011069093W WO 2013027288 A1 WO2013027288 A1 WO 2013027288A1
Authority
WO
WIPO (PCT)
Prior art keywords
free
vehicle
vehicle deceleration
control
run
Prior art date
Application number
PCT/JP2011/069093
Other languages
English (en)
French (fr)
Inventor
宮崎 光史
幸彦 出塩
敏彦 神谷
真吾 江藤
博則 浅岡
康之 加藤
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/069093 priority Critical patent/WO2013027288A1/ja
Priority to CN201180072957.1A priority patent/CN103748379B/zh
Priority to DE112011105550.1T priority patent/DE112011105550B4/de
Publication of WO2013027288A1 publication Critical patent/WO2013027288A1/ja
Priority to US14/186,892 priority patent/US9031727B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0833Vehicle conditions
    • F02N11/0837Environmental conditions thereof, e.g. traffic, weather or road conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/1809Without torque flow between driveshaft and engine, e.g. with clutch disengaged or transmission in neutral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/102Actuator
    • F16D2500/1026Hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3067Speed of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3067Speed of the engine
    • F16D2500/3068Speed change of rate of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/31Signal inputs from the vehicle
    • F16D2500/3108Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/31Signal inputs from the vehicle
    • F16D2500/3108Vehicle speed
    • F16D2500/3109Vehicle acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/314Signal inputs from the user
    • F16D2500/31406Signal inputs from the user input from pedals
    • F16D2500/3144Accelerator pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/314Signal inputs from the user
    • F16D2500/31406Signal inputs from the user input from pedals
    • F16D2500/3144Accelerator pedal position
    • F16D2500/31446Accelerator pedal position change rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/504Relating the engine
    • F16D2500/5043Engine fuel consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/508Relating driving conditions
    • F16D2500/50883Stop-and-go, i.e. repeated stopping and starting, e.g. in traffic jams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/70406Pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/915Specific drive or transmission adapted for hev
    • Y10S903/917Specific drive or transmission adapted for hev with transmission for changing gear ratio
    • Y10S903/919Stepped shift
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/947Characterized by control of braking, e.g. blending of regeneration, friction braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/951Assembly or relative location of components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/96Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor having chargeable mechanical accumulator

Definitions

  • the present invention relates to an improvement in traveling control when the vehicle is traveling inertially.
  • Patent Document 1 a clutch provided in a power transmission path functions as the power interrupting device, and the clutch control device is operated when the accelerator pedal is suddenly returned from a state where the accelerator pedal is depressed. In addition, the clutch is released to cut off power transmission between the engine and the drive wheels. By doing so, the fuel consumption rate can be improved.
  • the present invention has been made against the background of the above circumstances, and an object of the present invention is to provide a vehicular travel control device that can improve fuel efficiency and reduce a sense of incongruity caused by a driver during inertial driving. It is to provide.
  • the gist of the first invention for achieving the above object is as follows: (a) In a vehicle provided with a power interrupting device that interrupts power transmission between the engine and the drive wheels, the power interrupting device during inertial running. A vehicle running control device for executing free-run control for shutting off the power transmission and stopping the engine by (b) starting the free-run control based on the vehicle speed before starting the free-run control. A target vehicle deceleration at the time is determined, and an estimated vehicle deceleration when the free-run control is started is estimated. (C) the estimated vehicle deceleration is close to a target vehicle deceleration at the start of the free-run control. As described above, the free-run control is easily performed.
  • the free-run control if the free-run control is executed, the engine does not become a running load. Therefore, compared to the case where the power transmission between the engine and the drive wheels is not cut off during the inertia running, It is possible to improve fuel consumption. Further, when the free-run control is executed, it is considered that a vehicle deceleration close to the target vehicle deceleration at the start of the free-run control, for example, a vehicle deceleration close to a desired vehicle deceleration can be easily obtained. Therefore, even if the free-run control is executed, it is possible to reduce a sense of incongruity that occurs to the driver that the feeling of deceleration is poor.
  • the desired vehicle deceleration is a vehicle deceleration requested by the driver.
  • the reduction (deterioration) in fuel consumption means that the travel distance per unit fuel consumption is shortened or the fuel consumption rate is increased.
  • the gist of the second invention is the vehicle travel control apparatus according to the first invention, wherein a difference between the estimated vehicle deceleration and a target vehicle deceleration at the start of the free-run control is determined in advance.
  • the free-run control is executed when the deceleration difference determination value is smaller.
  • the free run control is executed when the estimated vehicle deceleration is close to the target vehicle deceleration at the start of the free run control. It can be easily determined using the speed difference determination value.
  • a gist of the third invention is the vehicle travel control device according to the first invention or the second invention, wherein (a) the estimated vehicle reduction is based on a gradient of a travel path on which the vehicle travels. A speed is estimated, and (b) a target vehicle deceleration at the start of the free-run control is determined based on a gradient of the travel path. In this way, since the vehicle deceleration during inertial traveling changes according to the gradient of the traveling road, whether the free-run control is executed as compared with the case where the gradient of the traveling road is not taken into account. It is possible to appropriately judge whether or not.
  • the gist of the fourth invention is the vehicle travel control apparatus according to the third invention, wherein the target vehicle deceleration at the start of the free-run control is smaller as the descending slope of the travel path is larger. It is characterized by.
  • the greater the descending slope of the travel path the easier the vehicle is accelerated by the slope, so the driver does not expect a large vehicle deceleration. Therefore, according to the fourth aspect of the invention, it is possible to determine the target vehicle deceleration at the start of the free-run control in accordance with the feeling of deceleration that the driver expects on the downhill traveling road. is there.
  • a fifth aspect of the present invention is the vehicle travel control apparatus according to the third aspect or the fourth aspect of the present invention, wherein when the travel path is an upward slope, the travel path is an upward slope.
  • the free-run control is easily performed.
  • the vehicle decelerates due to the uphill in addition to wheel rolling resistance and air resistance. It is difficult for the driver to feel uncomfortable that the feeling is poor. Therefore, according to the fifth aspect of the present invention, fuel efficiency is improved by positively executing the free run control while suppressing the uncomfortable feeling caused by the free run control on an uphill traveling road. Is possible.
  • the subject matter of a sixth invention is the vehicle travel control device according to the first invention or the second invention, wherein the target vehicle deceleration at the start of the free-run control is the vehicle running control during inertial running.
  • a determination is made as to whether or not to execute the free-run control, assuming that the vehicle deceleration is before the start of the free-run control. In this way, by detecting the vehicle deceleration before the start of the free-run control, the target vehicle deceleration for determining whether or not to execute the free-run control can be obtained. It can be determined whether or not to execute the free-run control.
  • the vehicle travel control apparatus according to any one of the first to sixth aspects, wherein: (a) the vehicle includes an electric motor that generates a vehicle braking force. (B) When the free run control is started, the vehicle braking force of the electric motor is controlled so that the actual vehicle deceleration approaches the target vehicle deceleration during the free run control. And In this way, when the free-run control is started, it is possible to reduce the sense of discomfort by giving the driver a feeling of deceleration with the vehicle braking force of the electric motor.
  • the vehicle includes an electric motor coupled to the drive wheels;
  • the torque of the motor is made zero.
  • FIG. 3 is a diagram showing a relationship between a target vehicle deceleration at the start of free run and a vehicle speed V on a flat ground in the control of the electronic control unit of FIG. 2.
  • FIG. 3 is a diagram illustrating a relationship between a target vehicle deceleration at the start of free run at a certain vehicle speed and a gradient of a travel path in the control of the electronic control unit of FIG. 2.
  • FIG. 5 is a flowchart of a second embodiment for explaining a main part of a control operation of the electronic control device of FIG. 2, that is, a control operation for executing free-run control. It is a functional block diagram of Example 2 for demonstrating the principal part of the control function with which the electronic control apparatus of FIG. 1 was equipped.
  • FIG. 9 is a flowchart of a second embodiment for explaining a main part of the control operation of the electronic control device of FIG. 7, that is, a control operation for executing vehicle deceleration control during coasting.
  • FIG. 2 is a schematic skeleton diagram of a hybrid vehicle to which the present invention is applied, different from the hybrid vehicle of FIG. 1.
  • FIG. 1 is a diagram conceptually showing the structure of a drive system relating to a hybrid vehicle 8 (hereinafter also simply referred to as “vehicle 8”) according to an embodiment of the present invention.
  • a hybrid vehicle 8 shown in FIG. 1 includes a vehicle drive device 10 (hereinafter referred to as “drive device 10”), a differential gear device 21, a pair of left and right axles 22, a pair of left and right drive wheels 24, and a hydraulic control circuit. 34, an inverter 56, and an electronic control unit 58.
  • the drive device 10 functions as a driving power source for driving and is an engine 12 such as a known gasoline engine or diesel engine, and engine output control for performing engine output control such as starting or stopping of the engine 12 or throttle control.
  • the apparatus 14 includes an electric motor MG that is an electric motor for driving that functions as a driving power source for driving, an engine intermittent clutch K0, a torque converter 16, and an automatic transmission 18.
  • the vehicle 8 has a power generated by one or both of the engine 12 and the electric motor MG, the torque converter 16, the automatic transmission 18, the differential gear device 21, and a pair of left and right axles. 22 is configured to be transmitted to a pair of left and right drive wheels 24 via each. Therefore, the vehicle 8 can selectively travel between the engine travel that travels with the power of the engine 12 and the EV travel (motor travel) that stops the engine 12 and travels exclusively with the power of the electric motor MG. it can. In the engine running, the electric motor MG may generate assist torque depending on the running state.
  • the electric motor MG is connected to the drive wheels 24, and is, for example, a three-phase synchronous motor, and functions as a motor (motor) that generates power and a generator (generator) that generates reaction force.
  • a motor generator For example, the electric motor MG generates a vehicle braking force by regenerative operation.
  • the power transmission path between the engine 12 and the electric motor MG is provided with an engine intermittent clutch K0 which is a generally known wet multi-plate hydraulic friction engagement device.
  • the engine interrupting clutch K0 functions as a power interrupting device that operates with the hydraulic pressure supplied from the hydraulic control circuit 34 and selectively interrupts power transmission between the engine 12 and the drive wheels 24.
  • an engine output shaft 26 (for example, a crankshaft), which is an output member of the engine 12, is connected to the rotor 30 of the electric motor MG so as not to rotate relative to the engine 30 by engaging the engine intermittent clutch K0.
  • the clutch K0 is disengaged from the rotor 30 of the electric motor MG.
  • the engine output shaft 26 is selectively connected to the rotor 30 of the electric motor MG via the engine intermittent clutch K0. Therefore, the engine intermittent clutch K0 is engaged during the engine travel and is released during the motor travel. Further, the rotor 30 of the electric motor MG is connected to a pump impeller 16p, which is an input member of the torque converter 16, so as not to be relatively rotatable.
  • the automatic transmission 18 constitutes a part of a power transmission path between the torque converter 16 and the drive wheel 24, and transmits the power of the engine 12 or the electric motor MG to the drive wheel 24.
  • the automatic transmission 18 is a stepped automatic transmission that performs clutch-to-clutch shift by changing the engagement elements in accordance with a preset relationship (shift diagram).
  • the automatic transmission 18 is an automatic transmission mechanism in which any one of a plurality of predetermined shift speeds (speed ratios) is alternatively established, and in order to perform such a shift, A planetary gear unit and a plurality of clutches or brakes operated by hydraulic pressure from the hydraulic control circuit 34 are provided.
  • the torque converter 16 is a fluid transmission device interposed between the electric motor MG and the automatic transmission 18.
  • the torque converter 16 includes a pump impeller 16p that is an input side rotating element, a turbine impeller 16t that is an output side rotating element, and a stator impeller 16s.
  • the torque converter 16 transmits the power input to the pump impeller 16p to the turbine impeller 16t via a fluid (hydraulic oil).
  • the stator impeller 16s is connected to a transmission case 36, which is a non-rotating member, via a one-way clutch.
  • the torque converter 16 includes a lock-up clutch LU that selectively connects the pump impeller 16p and the turbine impeller 16t directly to each other between the pump impeller 16p and the turbine impeller 16t.
  • the lockup clutch LU is controlled by the hydraulic pressure from the hydraulic control circuit 34.
  • the engine speed Ne is increased by the engagement of the engine intermittent clutch K0, and the engine 12 is started.
  • the electronic control unit 58 causes the electric vehicle MG to regenerate the traveling vehicle 8.
  • Electric motor regeneration control for supplying the regenerative energy obtained by braking to the power storage device 57 is performed. Specifically, in the motor regeneration control, the power transmission between the engine 12 and the drive wheel 24 is interrupted by releasing the engine intermittent clutch K0, the engine 12 is stopped, and the electric motor MG is driven by the inertial energy of the vehicle 8. Regenerative operation is performed. Then, the inertia energy is regenerated as electric power and charged from the electric motor MG to the power storage device 57.
  • the lockup clutch LU is engaged.
  • the electronic control unit 58 uses the engine intermittent clutch K0 instead of the motor regeneration control depending on the traveling state of the vehicle 8 in order to improve the fuel consumption.
  • free-run control for stopping the engine 12 is executed.
  • the free-run control does not aim to perform vehicle braking in order to regenerate electric power, so the motor MG does not perform vehicle braking, and the torque Tmg (hereinafter referred to as motor torque Tmg) of the motor MG is made zero. Is preferred. That is, it is preferable that the electric motor MG is idled. In this way, the vehicle 8 is caused to run idle by executing the above-described free-run control.
  • the motor torque Tmg may be slightly generated so as to generate a running resistance in a pseudo manner during the execution of the free run control.
  • the vehicle 8 has a control system as illustrated in FIG.
  • the electronic control device 58 shown in FIG. 1 includes a function as a vehicular travel control device that performs control related to the travel of the vehicle 8, and includes a so-called microcomputer.
  • the electronic control unit 58 is supplied with various input signals detected by each sensor provided in the hybrid vehicle 8. For example, a signal indicating the accelerator opening degree Acc, which is the depression amount of the accelerator pedal 71 detected by the accelerator opening sensor 60, and a rotation speed (motor rotation speed) Nmg of the motor MG detected by the motor rotation speed sensor 62 are represented.
  • Signal a signal representing the rotational speed (engine rotational speed) Ne of the engine 12 detected by the engine rotational speed sensor 64, a rotational speed of the turbine impeller 16t of the torque converter 16 detected by the turbine rotational speed sensor 66 (turbine A signal representing the vehicle speed V detected by the vehicle speed sensor 68, a signal representing the throttle opening ⁇ th of the engine 12 detected by the throttle opening sensor 70, and the signal obtained from the power storage device 57 A signal representing the remaining charge (charged state) SOC of the power storage device 57, the acceleration sensor 72 A signal representing the vehicle acceleration in the front-rear direction of the vehicle 8 detected by the electronic control unit 58 is input to the electronic control unit 58.
  • the motor rotation speed Nmg detected by the motor rotation speed sensor 62 is the input rotation speed of the torque converter 16, and corresponds to the rotation speed (pump rotation speed) Np of the pump impeller 16p in the torque converter 16.
  • the turbine rotational speed Nt detected by the turbine rotational speed sensor 66 is the output rotational speed of the torque converter 16, and the rotational speed Natin of the transmission input shaft 19 in the automatic transmission 18, that is, the transmission input rotational speed.
  • the rotational speed Natout of the output shaft 20 (hereinafter referred to as the transmission output shaft 20) of the automatic transmission 18, that is, the transmission output rotational speed Natout corresponds to the vehicle speed V.
  • the vehicle acceleration and the vehicle deceleration are both changes in the vehicle speed V per unit time and can take either positive or negative values.
  • the vehicle acceleration takes the acceleration direction as the positive direction
  • the deceleration direction is the positive direction.
  • various output signals are supplied from the electronic control device 58 to each device provided in the hybrid vehicle 8.
  • the vehicle 8 includes a navigation system 80 (hereinafter referred to as a navigation 80) as shown in FIG.
  • the navigation 80 includes a storage medium 82 such as a CD-ROM, DVD-ROM, or HDD (hard disk drive), and has a function of executing known navigation control using road map information stored in the storage medium 82.
  • a storage medium 82 such as a CD-ROM, DVD-ROM, or HDD (hard disk drive)
  • HDD hard disk drive
  • FIG. 2 is a functional block diagram for explaining the main part of the control function provided in the electronic control unit 58.
  • the electronic control unit 58 includes an inertia travel determination unit 90 as an inertia travel determination unit, a vehicle deceleration estimation unit 92 as a vehicle deceleration estimation unit, and a target as a target vehicle deceleration determination unit.
  • the vehicle deceleration determination means 94, the vehicle deceleration determination means 96 as a vehicle deceleration determination part, and the free run control execution means 98 as a free run control execution part are provided.
  • the inertia traveling determination means 90 determines whether or not the vehicle 8 is inertial traveling.
  • the inertia traveling means that the vehicle 8 travels in a state where both the vehicle braking operation and the acceleration operation by the driver are released, the engine intermittent clutch K0 is engaged, and the vehicle 8 is applied with a so-called engine brake. Accordingly, the inertial running determination means 90 is such that when the vehicle braking operation and the acceleration operation are both released, the engine intermittent clutch K0 is engaged, and the vehicle 8 is traveling, the vehicle 8 is inertially traveling. Judge that it is inside.
  • the electric motor regeneration control may be executed during the inertia traveling, it does not matter whether the electric motor regeneration control is executed.
  • the case where the vehicle braking operation is released is, for example, a case where the brake is off when the foot brake is not depressed.
  • the case where the acceleration operation is released is, for example, a case where the accelerator is off when the accelerator pedal 71 is not depressed.
  • the driver may maintain a slight accelerator opening Acc in order to weaken the so-called engine brake. In this way, a slight accelerator opening is required in order to weaken the engine brake (driving load of the drive system).
  • the case where the speed Acc is maintained and the vehicle speed V gradually decreases due to running resistance is also included when the acceleration operation is released.
  • the vehicle deceleration estimating means 92 when the inertial running determination means 90 determines that the vehicle 8 is inertially running, when the freerun control is started before the freerun control is started.
  • Estimated vehicle deceleration GFrd (hereinafter referred to as free-run estimated vehicle deceleration GFrd).
  • the free-run estimated vehicle deceleration GFrd is an estimated vehicle deceleration immediately after the start of the free-run control.
  • the free-run estimated vehicle deceleration GFrd has a vehicle deceleration direction as a positive direction, and its unit is, for example, m / s 2 .
  • the vehicle 8 after the start of the free run control is decelerated by the running resistance, and the running resistance is the sum of the air resistance, the gradient resistance, and the rolling resistance of the wheels (the driving wheel 24 and the driven wheel).
  • the estimated vehicle deceleration GFrd can be calculated based on the gradient of the travel path and the vehicle speed V if the gradient of the travel path on which the vehicle 8 travels and the vehicle speed V are known.
  • the relationship between the free-run estimated vehicle deceleration GFrd, the gradient of the travel path, and the vehicle speed V is experimentally obtained and set in advance as shown in FIG. Calculates the free-run estimated vehicle deceleration GFrd from the preset relationship shown in FIG.
  • the estimated vehicle deceleration GFrd at the time of free run is estimated.
  • the higher the vehicle speed V the greater the air resistance and rolling resistance, so the estimated vehicle deceleration GFrd during free run increases.
  • the gradient resistance decreases, so that the free-run estimated vehicle deceleration GFrd decreases.
  • the gradient of the travel path may be obtained from the road map information used by the navigation 80 or may be detected by sensors included in the vehicle 8.
  • the target vehicle deceleration determining means 94 when the inertia traveling determination means 90 determines that the vehicle 8 is inertial traveling, before the free run control is started, A vehicle deceleration Grdt (hereinafter referred to as a free-run start target vehicle deceleration Grdt) is determined.
  • a free-run start target vehicle deceleration Grdt hereinafter referred to as a free-run start target vehicle deceleration Grdt
  • the driver expects the vehicle 8 to decelerate due to the engine brake and the running resistance while the vehicle 8 is coasting, and the target vehicle deceleration Grdt at the start of the free run is expected by the driver during the coasting. It is experimentally determined in advance so that the vehicle deceleration at which a feeling of deceleration can be obtained.
  • the target vehicle deceleration Grdt at the start of free run is experimentally determined in accordance with the vehicle deceleration expected by the driver during inertial driving, the request requested by the driver at the start of the free run control. It can be said that this is vehicle deceleration.
  • FIG. 5 shows the target vehicle deceleration Grdt at the start of free run at a certain vehicle speed V. This represents the relationship with the gradient of the travel path.
  • the higher the vehicle speed V the smaller the free-run start target vehicle deceleration Grdt.
  • the target vehicle deceleration determination means 94 is based on the predetermined relationship shown in FIGS. 4 and 5 based on the vehicle speed V and the gradient of the travel path before the free run control is started.
  • the target vehicle deceleration Grdt at the start of the free run is determined.
  • the vehicle speed V and the gradient of the travel path on which the target vehicle deceleration Grdt at the start of free run is determined are determined based on the vehicle speed V and the vehicle speed V on which the vehicle deceleration estimation unit 92 estimates the estimated vehicle deceleration GFrd at the time of free run. It is preferably the same as the gradient of the travel path.
  • the target vehicle deceleration determining means 94 when the travel path on which the vehicle 8 travels is an uphill, is not related to the predetermined relationship shown in FIGS.
  • the target vehicle deceleration Grdt is determined to be the same value as the free-run estimated vehicle deceleration GFrd estimated by the vehicle deceleration estimating means 92.
  • the determination of the vehicle deceleration determining means 96 described later is affirmed, and when the running road is not an uphill slope, that is, downhill or flat. This is because the free-run control is easier to execute.
  • the traveling road has an upward slope may be a case where the slope of the traveling road is larger than zero with the upward direction as a positive direction. This is a case where the slope is an ascending slope that is equal to or higher than a predetermined slope where resistance can be felt.
  • the vehicle deceleration judgment unit 96 calculates the free-run estimated vehicle deceleration GFrd estimated by the vehicle deceleration estimation unit 92 and the free-run start target vehicle deceleration Grdt determined by the target vehicle deceleration determination unit 94.
  • a deceleration obtained by obtaining an absolute value of a vehicle deceleration difference DGrd ( GFrd ⁇ Grdt), which is a difference DGrd between the estimated vehicle deceleration GFrd during free run and the target vehicle deceleration Grdt at the start of free run. It is determined whether or not the difference determination value DG1rd is smaller.
  • Whether or not the absolute value of the vehicle deceleration difference DGrd is smaller than the deceleration difference determination value DG1rd is a condition for starting execution of the free-run control. That is, the vehicle deceleration determination means 96 is under an execution start condition that the free-run control is more easily performed as the free-run estimated vehicle deceleration GFrd is closer to the free-run start target vehicle deceleration Grdt. It can be said that it is determined whether to execute the free-run control.
  • the estimated vehicle deceleration GFrd at the time of free run is This means that the free run control is executed when the absolute value of the vehicle deceleration difference DGrd is smaller than the deceleration difference judgment value DG1rd. It can be said that the closer the estimated vehicle deceleration GFrd is to the target vehicle deceleration Grdt at the start of free run, the easier the free run control is performed.
  • the deceleration difference determination value DG1rd is experimentally determined in advance so that the driver does not feel that the feeling of deceleration is poor when the free-run control is executed and the free-run control is easily executed. ing.
  • the free-run control execution means 98 cuts off the power transmission between the engine 12 and the drive wheels 24 and stops the engine 12 by the engine intermittent clutch K0 during the coasting according to the determination of the vehicle deceleration determination means 96.
  • the free run control is executed. In the free-run control, the engine intermittent clutch K0 is released and the engine 12 is stopped. In this embodiment, the motor MG is idled during the execution of the free run control.
  • the free-run control execution means 98 determines that the free-run control execution means 98 determines that the absolute value of the vehicle deceleration difference DGrd is smaller than the deceleration difference determination value DG1rd. Execute control.
  • the free run control is not executed.
  • the motor regeneration control may be executed without executing the free run control.
  • the free run control execution means 98 starts executing the free run control
  • an acceleration operation acceleration on
  • the free run control is executed. finish.
  • the target vehicle deceleration determination means 94 determines the target vehicle deceleration at the start of free run from the predetermined relationship shown in FIGS. 4 and 5 before the free run control is started.
  • Grdt is determined, the vehicle deceleration is detected by the acceleration sensor 72 before, for example, the free-run control during the inertial running is started (immediately before) without following FIG. 4 and FIG.
  • the target vehicle deceleration Grdt at the start of the run may be the vehicle deceleration before the start of free-run control during inertial traveling.
  • the vehicle deceleration at that time is considered to be the vehicle deceleration expected by the driver, for example, the drive system acts as a driving load. is there.
  • the target vehicle deceleration determining means 94 determines the target vehicle deceleration Grdt at the start of free run
  • the vehicle deceleration determining means 96 determines that the target vehicle deceleration Grdt at the start of free run is the above inertial running. It is determined whether or not to execute the free-run control on the assumption that the vehicle deceleration before the start of the free-run control.
  • FIG. 6 is a flowchart for explaining a main part of the control operation of the electronic control unit 58, that is, a control operation for executing the free-run control. Executed. For example, the control operation shown in FIG. 6 is started when the free-run control is not yet executed. The control operation shown in FIG. 6 is executed alone or in parallel with other control operations.
  • step SA1 in FIG. 6 it is determined whether or not the vehicle 8 is coasting. If the determination of SA1 is affirmative, that is, if the vehicle 8 is coasting, the process proceeds to SA2. On the other hand, if the determination of SA1 is negative, the process proceeds to SA6. SA1 corresponds to the inertia running determination means 90.
  • the vehicle speed V and the gradient of the travel path are detected and acquired. Then, assuming that the free-run control is executed, the estimated vehicle deceleration GFrd when the free-run control is started, that is, the estimated vehicle deceleration GFrd at the time of free-run is calculated as the vehicle speed V and the travel path. And the slope of the. After SA2, the process proceeds to SA3.
  • the vehicle speed V and the gradient of the travel path are acquired and the like, and the target vehicle deceleration Grdt at the start of the free run is determined as the vehicle speed V and the travel. Based on the slope of the road, it is determined from the predetermined relationship shown in FIGS.
  • the target vehicle deceleration Grdt at the start of the free run may be immediately calculated based on the vehicle speed V and the gradient of the travel path, or based on the vehicle speed V, a predetermined relationship shown in FIG.
  • the value on the flat ground is calculated first, and the value on the flat ground may be calculated after being corrected according to the predetermined relationship shown in FIG. 5 based on the gradient of the traveling road.
  • the target vehicle deceleration Grdt at the start of the free run is equal to SA2 regardless of the predetermined relationship shown in FIGS. It is determined to be the same value as the estimated vehicle deceleration GFrd at the time of free run.
  • the target vehicle deceleration Grdt at the start of free run does not follow the above-described FIG. 4 and FIG. 5, for example, assuming that the free run control is executed,
  • the vehicle deceleration detected before (just before) the start of control may be used.
  • the gradient of the traveling road may or may not be removed from the above-mentioned upward gradient.
  • SA4 corresponding to the vehicle deceleration determination means 96, the difference DGrd between the free-run estimated vehicle deceleration GFrd estimated in SA2 and the free-run start target vehicle deceleration Grdt determined in SA3.
  • a vehicle deceleration difference DGrd is calculated, and it is determined whether or not the absolute value of the vehicle deceleration difference DGrd is smaller than the deceleration difference determination value DG1rd. If the determination at SA4 is affirmative, that is, if the absolute value of the vehicle deceleration difference DGrd is smaller than the deceleration difference determination value DG1rd, the process proceeds to SA5. On the other hand, if the determination at SA4 is negative, the operation proceeds to SA6.
  • SA5 the free run control is executed.
  • SA6 the free run control is not executed.
  • SA5 and SA6 correspond to the free-run control execution means 98.
  • the free-run start target vehicle deceleration Grdt is determined based on the vehicle speed V before the free-run control is started, and the free-run estimated vehicle deceleration GFrd. Is estimated.
  • the free-run control is executed in this way, when the free-run control is executed, a vehicle deceleration close to the free-run start target vehicle deceleration Grdt, for example, a request requested by the driver Since it is considered that a vehicle deceleration close to the vehicle deceleration is easily obtained, even if the free-run control is executed, it is possible to reduce a sense of incongruity that occurs to the driver that the feeling of deceleration is poor.
  • the engine 12 does not become a traveling load, so that the fuel consumption of the vehicle 8 is improved as compared with the case where the power transmission between the engine 12 and the drive wheels 24 is not interrupted during the inertia traveling. It is possible. That is, it is possible to improve fuel efficiency by executing the free run control while suppressing deterioration of drivability during inertial running.
  • the estimated vehicle deceleration GFrd at the time of free run is estimated before the free run control is started, it is determined whether or not to execute the free run control. It is avoided that the free-run control is immediately stopped because the vehicle deceleration to be performed is inappropriate. Therefore, frequent engine start can be reduced, and energy loss due to engine start can be suppressed.
  • the free-run control execution means 98 is determined when the vehicle deceleration determination means 96 determines that the absolute value of the vehicle deceleration difference DGrd is smaller than the deceleration difference determination value DG1rd.
  • the free run control is executed. Accordingly, the fact that the free run control is executed when the estimated vehicle deceleration GFrd at the time of free run is close to the target vehicle deceleration Grdt at the start of free run can be easily performed using the deceleration difference judgment value DG1rd. It is possible to realize.
  • the vehicle deceleration estimating means 92 estimates the estimated vehicle deceleration GFrd during the free run based on the gradient of the travel path on which the vehicle 8 travels.
  • the target vehicle deceleration determining means 94 determines the free-run start target vehicle deceleration Grdt based on the gradient of the travel path.
  • the vehicle deceleration during inertial traveling changes according to the gradient of the travel path. Therefore, it is possible to appropriately determine whether or not to execute the free-run control as compared with a case where the gradient of the travel path is not taken into consideration.
  • the free-run start target vehicle deceleration Grdt decreases as the descending slope of the travel path increases.
  • the greater the descending slope of the travel path the easier the vehicle 8 is accelerated by the slope, so the driver does not expect a large vehicle deceleration. Therefore, it is possible to determine the free-run start target vehicle deceleration Grdt in accordance with the feeling of deceleration that the driver expects on a downhill traveling road.
  • the target vehicle deceleration determination means 94 does not depend on the predetermined relationship shown in FIG. 4 and FIG. 5 when the travel path on which the vehicle 8 travels is an uphill.
  • the free-run start target vehicle deceleration Grdt is determined to be the same value as the free-run estimated vehicle deceleration GFrd estimated by the vehicle deceleration estimation means 92.
  • the vehicle deceleration difference DGrd becomes zero, and it is determined that the absolute value of the vehicle deceleration difference DGrd is smaller than the deceleration difference determination value DG1rd.
  • the free-run control is easily performed as compared with the case where the travel path is not an uphill slope.
  • the vehicle 8 decelerates due to the uphill in addition to the rolling resistance and air resistance of the wheels. It is difficult for the driver to feel uncomfortable that the feeling of deceleration is poor. Therefore, it is possible to improve fuel efficiency by positively executing the free run control while suppressing the uncomfortable feeling caused by the free run control on an uphill traveling road.
  • the vehicle deceleration determination means 96 assumes that the target vehicle deceleration Grdt at the start of free run is the vehicle deceleration before the start of free run control during the inertia running, and the free run It may be determined whether or not to execute control. If so, the free-run start target vehicle deceleration Grdt for determining whether to execute the free-run control is detected by detecting the vehicle deceleration before the free-run control is started. Therefore, it is possible to determine whether or not to execute the free-run control in a simple and appropriate manner.
  • FIG. 7 is a functional block diagram for explaining the main part of the control function provided in the electronic control unit 160.
  • the electronic control device 160 includes a free run determination unit 164 as a free run determination unit, a target vehicle deceleration determination unit 166 as a target vehicle deceleration determination unit, and an electric motor as a motor torque control unit. Torque control means 168.
  • the free run determination means 164 in FIG. 7 determines whether or not the free run control is started. For example, when the free run control execution means 98 of the first embodiment starts the free run control, it is determined that the free run control is started. Further, it may be determined from the operating state of the engine 12, the operating state of the engine intermittent clutch K0, the motor torque Tmg, and the like.
  • the target vehicle deceleration determining means 166 detects the vehicle speed V from the vehicle speed sensor 68 when the free-run determining means 164 determines that the free-run control is started, and travels the vehicle position from the road map information. Get the slope of the road. Then, based on the vehicle speed V and the gradient of the travel path, a predetermined motor deceleration target vehicle deceleration that is a vehicle deceleration target value for determining the motor torque Tmg corresponding to the vehicle braking force of the motor MG. Determine Grdmgt.
  • the target vehicle deceleration Grdmgt for electric motor control is the target at the start of the free run in that it is experimentally determined in advance so as to obtain a vehicle deceleration that provides a deceleration feeling expected by the driver during inertial driving. This is the same as the vehicle deceleration Grdt, except that the vehicle speed V that is the basis for the determination and the acquisition timing of the gradient of the travel path are after the start of the free-run control.
  • the target vehicle deceleration Grdmgt for motor control is the target vehicle deceleration during the free-run control.
  • the target vehicle deceleration determining means 166 is the same as the above-described target vehicle deceleration for motor control, in the same manner as the target vehicle deceleration determining means 94 of the first embodiment determines the free vehicle start target vehicle deceleration Grdt. Determine Grdmgt.
  • the target vehicle deceleration determination means 166 first replaces the vertical axis in FIG. 4 with the motor control target vehicle deceleration Grdmgt, and from the predetermined relationship of FIG. The vehicle deceleration Grdmgt is determined based on the vehicle speed V. Then, the target vehicle deceleration determining means 166 replaces the vertical axis with the motor control target vehicle deceleration Grdmgt in FIG.
  • the motor control target vehicle deceleration Grdmgt obtained from FIG. 4 is corrected so that the motor control target vehicle deceleration Grdmgt becomes smaller as the descending slope becomes larger.
  • the target vehicle deceleration Grdmgt for motor control on the down slope is always higher than the target vehicle deceleration Grdmgt for motor control on the flat ground. Get smaller.
  • the target vehicle deceleration determining means 166 detects the current actual vehicle deceleration by the acceleration sensor 72 when the gradient of the travel path is an upward gradient, and the motor control target vehicle deceleration Grdmgt. Is determined to be the same value as the detected actual vehicle deceleration.
  • the motor torque control means 168 described later is configured so that the motor control target vehicle deceleration Grdmgt is the actual vehicle deceleration in the vehicle deceleration control described later.
  • the motor torque Tmg is controlled.
  • the electric motor torque control means 168 sets the electric motor torque Tmg to zero in the upward gradient.
  • the case where the gradient of the travel path is an upward slope may be a case where the slope of the travel path is greater than zero with the upward direction as a positive direction. This is a case where the gradient is higher than a predetermined gradient enough to feel the gradient resistance.
  • the motor torque control unit 168 determines that the actual vehicle deceleration detected by the acceleration sensor 72 is the motor control target.
  • Vehicle deceleration control for controlling the motor torque Tmg so as to approach the vehicle deceleration Grdmgt is executed.
  • the electric motor torque Tmg corresponds to the vehicle braking force of the electric motor MG.
  • the motor torque control means 168 calculates a difference obtained by subtracting the actual vehicle deceleration from the motor control target vehicle deceleration Grdmgt, and takes into account the gear ratio of the automatic transmission 18 and the like.
  • the motor torque Tmg is controlled so that the calculated vehicle deceleration difference approaches zero.
  • the electric motor torque Tmg is basically generated in the deceleration direction of the vehicle 8, that is, the regeneration direction, but may be generated in the acceleration direction of the vehicle 8.
  • the lockup clutch LU is engaged during the execution of the vehicle deceleration control.
  • the actual vehicle deceleration is sequentially detected by the acceleration sensor 72, and at the same time, the target vehicle deceleration determination means 166 determines that the target vehicle deceleration Grdmgt for motor control is the vehicle speed V and the travel. It is updated sequentially according to the gradient of the road.
  • the electric motor torque control means 168 ends the vehicle deceleration control when an acceleration operation is performed, for example, when the accelerator pedal 71 is depressed thereafter.
  • FIG. 8 is a flowchart for explaining a main part of the control operation of the electronic control device 160, that is, a control operation for executing the vehicle deceleration control during inertial traveling, and is extremely short, for example, about several milliseconds to several tens of milliseconds. It is executed repeatedly at cycle time.
  • the control operation shown in FIG. 8 is executed alone or in parallel with other control operations.
  • SB1 of FIG. 8 it is determined whether or not the free-run control is started. For example, if the free-run control has been started and has not yet finished, it is determined that the free-run control has been started.
  • SB1 determines whether or not the free-run control has been started.
  • SB1 corresponds to the free-run determining unit 164. Even if the vehicle deceleration control is executed in SB8, which will be described later, the determination of SB1 does not change from positive to negative for that reason.
  • the vehicle speed V is detected by the vehicle speed sensor 68, and the gradient of the travel path at the vehicle position is acquired from the road map information. After SB2, the process proceeds to SB3.
  • SB3 the vertical axis in FIG. 4 is replaced with the motor control target vehicle deceleration Grdmgt, and the motor control target vehicle deceleration Grdmgt on the flat ground is determined from the predetermined relationship in FIG. It is determined based on V. After SB3, the process proceeds to SB4.
  • SB4 it is determined whether or not the gradient of the traveling path acquired in SB2 is an uphill, that is, whether or not the traveling path is an uphill. If the determination in SB4 is affirmative, that is, if the gradient of the travel path is an upward gradient, the process proceeds to SB5. On the other hand, if the determination at SB4 is negative, the operation proceeds to SB6.
  • the case where the gradient of the travel path is determined to be an upward slope in SB4 may be a case where the gradient of the travel path is larger than zero with the upward direction as the positive direction. This is a case where the driver has an ascending gradient that is equal to or greater than a predetermined gradient (upward is a positive direction) that allows the driver to feel the gradient resistance while the vehicle is traveling.
  • the target vehicle deceleration Grdmgt for motor control determined in SB3 is corrected according to the fact that the gradient of the travel path is an upward gradient. Specifically, the actual actual vehicle deceleration is detected by the acceleration sensor 72, and the motor control target vehicle deceleration Grdmgt is corrected to the same value as the detected actual vehicle deceleration. After SB5, the process proceeds to SB8.
  • the case where the gradient of the travel road is determined to be a downward slope in SB6 may be a case where the slope of the travel road is greater than zero with the downward direction as a positive direction. This is a case where the driver has a downward gradient equal to or greater than a predetermined gradient (downward is a positive direction) to the extent that the driver can feel that the gradient resistance is smaller than that of a flat ground during vehicle travel. If the determination at SB6 is affirmative, that is, if the gradient of the travel path is a downward gradient, the process proceeds to SB7. On the other hand, if the determination at SB6 is negative, the operation proceeds to SB8.
  • the motor control target vehicle deceleration Grdmgt determined in SB3 is corrected according to the fact that the gradient of the travel path is a downward gradient. More specifically, the vertical axis in FIG. 5 is replaced with the target vehicle deceleration Grdmgt for motor control, and according to the predetermined relationship of FIG. The target vehicle deceleration Grdmgt for motor control determined in SB3 is corrected so that the target vehicle deceleration Grdmgt becomes smaller.
  • SB2 to SB7 correspond to the target vehicle deceleration determination means 166.
  • the vehicle deceleration control is executed. For example, in the vehicle deceleration control, an actual vehicle deceleration is detected by the acceleration sensor 72, and a difference obtained by subtracting the actual vehicle deceleration from the target motor deceleration Grdmgt for motor control is calculated. Then, the motor torque Tmg is controlled so that the calculated difference approaches zero.
  • the motor torque control means 168 determines that the actual vehicle deceleration detected by the acceleration sensor 72 is the target vehicle deceleration Grdmgt for motor control.
  • the vehicle deceleration control for controlling the motor torque Tmg so as to approach (target vehicle deceleration during free-run control) is executed.
  • the electric motor torque Tmg corresponds to the vehicle braking force of the electric motor MG. Therefore, when the free-run control is started, the driver can feel a sense of deceleration with the vehicle braking force of the electric motor MG, and the uncomfortable feeling can be reduced.
  • the motor torque control means 168 determines that the motor control target vehicle deceleration Grdmgt is the actual vehicle deceleration in the vehicle deceleration control. To control. In short, the electric motor torque control means 168 sets the electric motor torque Tmg to zero in the upward gradient. Therefore, since the electric motor MG does not generate vehicle braking force on the uphill traveling road, fuel efficiency can be improved on the uphill traveling road. In addition, even when the motor torque Tmg is set to zero on an uphill traveling road, it is possible to give the driver a feeling of deceleration due to the uphill slope and to suppress the uncomfortable feeling.
  • the free run control is started during coasting, but the start of the free run control may be simultaneously with the start of coasting or the free run control. May be started after the start of the coasting.
  • the vehicle 8 is a hybrid vehicle including one electric motor MG.
  • the vehicle 8 includes two electric motors, that is, a first electric motor MG1 and a second electric motor MG2.
  • the hybrid vehicle 200 may be replaced.
  • the hybrid vehicle 200 includes an engine 12, a first electric motor MG1, a planetary gear device 202 as a differential mechanism, a second electric motor MG2, and the like.
  • the power of the engine 12 or the second electric motor MG2 is transmitted from the ring gear R0 of the planetary gear unit 202 to the pair of drive wheels 24 via the differential gear unit 21, the pair of axles 22, and the like in order.
  • the planetary gear device 202 includes a carrier CA0 connected to the engine 12, a sun gear S0 connected to the first electric motor MG1, a ring gear R0 connected to the driving wheel 24 and integrally rotated with the second electric motor MG2, and a ring gear. Each of R0 and sun gear S0 is meshed with a pinion gear P0 that is rotatably supported by carrier CA0.
  • the first electric motor MG1 outputs a reaction torque that opposes the engine torque Te, so that power is transmitted from the engine 12 to the drive wheels 24. On the contrary, the first electric motor MG1 is caused to idle so that the power transmission between the engine 12 and the drive wheels 24 is interrupted.
  • the first electric motor MG1 and the planetary gear device 202 correspond to the power interrupting device of the present invention.
  • the second electric motor MG2 generates a vehicle braking force by regenerative operation.
  • the first electric motor MG1 is idled and the engine 12 is stopped, and a pseudo engine brake is generated by the regenerative operation of the second electric motor MG2.
  • the vehicle 8 includes the electric motor MG.
  • the vehicle 8 may be replaced with an engine vehicle that does not include the electric motor MG.
  • the vehicle 8 may be replaced with the hybrid vehicle 200 shown in FIG.
  • the vehicle deceleration control when executed, the vehicle deceleration control may be started at the same time as the free-run control is started.
  • the free run control may be started after a delay.
  • the free-run start target vehicle deceleration Grdt is determined to be the same value as the free-run estimated vehicle deceleration GFrd.
  • the free-run control is easier to execute than when the travel path is not uphill, but the free-run control is performed when the travel path is up-gradient by other methods. It may be easier to implement.
  • the free run control execution means 98 may execute the free run control regardless of the determination of the vehicle deceleration determination means 96.
  • the deceleration difference determination value DG1rd is set to a larger value than when it is not an uphill slope so that the free-run control can be easily performed. Good.
  • the electric motor MG is connected to the pump impeller 16p of the torque converter 16, but not the pump impeller 16p, the transmission output shaft. It may be connected to 20.
  • the motive power of the engine 12 and the motive power of the electric motor MG are both transmitted to the common drive wheel 24, but the vehicle 8 is connected to one wheel of the front wheel and the rear wheel.
  • the power of the engine 12 may be transmitted and the power of the electric motor MG may be transmitted to the other wheel.
  • the front wheels and the rear wheels are drive wheels of the vehicle 8.
  • the vehicle 8 includes the automatic transmission 18 as shown in FIG. 1, but the automatic transmission 18 is not essential.
  • the torque converter 16 includes the lockup clutch LU.
  • the torque converter 16 may not include the lockup clutch LU. Further, the torque converter 16 is not essential.
  • SA3 is executed after SA2 in the flowchart of FIG. 6, but the execution order of SA2 and SA3 may be switched. For example, SA2 is executed after SA3. There is no problem.
  • the free-run control is more easily performed as the free-run estimated vehicle deceleration GFrd is closer to the free-run start target vehicle deceleration Grdt. Whether or not it is easy to execute can be determined by various determination methods.
  • the difference between the free-run estimated vehicle deceleration GFrd and the free-run start target vehicle deceleration Grdt (vehicle deceleration difference DGrd) If the number of times that free-run control is executed increases as the value becomes smaller, it is determined that free-run control is easier to execute as the free-run estimated vehicle deceleration GFrd is closer to the target vehicle deceleration Grdt at the start of free-run. it can.
  • the plurality of embodiments described above can be implemented in combination with each other, for example, by setting priorities. For example, when the first embodiment and the second embodiment are combined and executed, when the free run control is started in SA5 of the flowchart of FIG. 6, the determination of SB1 of the flowchart of FIG. 8 is affirmative. Is done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Atmospheric Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Fluid Mechanics (AREA)
  • Mathematical Physics (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 惰性走行中において燃費を改善すると共に運転者に生じる違和感を軽減することができる車両用走行制御装置を提供する。 フリーラン制御が開始される前に、フリーラン開始時目標車両減速度Grdtが車速Vに基づいて決定されると共に、フリーラン時推定車両減速度GFrdが推定される。そして、車両減速度判断手段96は、フリーラン時推定車両減速度GFrdがフリーラン開始時目標車両減速度Grdtに近いほど、フリーラン制御が実行され易くなる実行開始条件の下で、そのフリーラン制御を実行するか否かの判断をする。このようにしてフリーラン制御が実行されれば、フリーラン制御が実行されても、減速感が乏しい等という運転者に生じる違和感を軽減することが可能である。また、フリーラン制御では、惰性走行中にエンジン12が走行負荷にならないので、車両8の燃費を改善することが可能である。

Description

車両用走行制御装置
 本発明は、車両が惰性走行しているときの走行制御の改良に関する。
 エンジンと駆動輪との間の動力伝達を遮断する動力断続装置を備えた車両において、惰性走行中に前記動力断続装置により前記動力伝達を遮断する車両用走行制御装置が、従来から知られている。例えば、特許文献1に記載されたクラッチ制御装置がそれである。その特許文献1において、動力伝達経路に設けられたクラッチが上記動力断続装置として機能しており、上記クラッチ制御装置は、アクセルペダルが踏み込まれている状態からそのアクセルペダルが急に戻された場合に、前記クラッチを解放して前記エンジンと前記駆動輪との間の動力伝達を遮断する。このようにすることで燃料消費率を改善することができる。
特開2002-227885号公報 特開2003-074682号公報 特開2000-074201号公報 特開2007-187090号公報 特開2001-233196号公報 特開2007-291919号公報
 運転者は、踏み込んでいたアクセルペダルを急に戻した場合には、所謂エンジンブレーキがかかることを期待しているため、ある程度の減速感が生じるものと考えている。しかし、前記特許文献1のクラッチ制御装置のように、アクセルペダルが急に戻されたことを条件に一律に前記エンジンと前記駆動輪との間の動力伝達を遮断したのでは、例えば低車速で車両の走行抵抗が小さい場合などに、運転者の期待に対してより乏しい減速感しか得られず、運転者に違和感を与える可能性があった。なお、このような課題は未公知のことである。
 本発明は、以上の事情を背景として為されたものであり、その目的とするところは、惰性走行中において燃費を改善すると共に運転者に生じる違和感を軽減することができる車両用走行制御装置を提供することにある。
 上記目的を達成するための第1発明の要旨とするところは、(a)エンジンと駆動輪との間の動力伝達を遮断する動力断続装置を備えた車両において、惰性走行中に前記動力断続装置により前記動力伝達を遮断すると共に前記エンジンを停止させるフリーラン制御を実行する車両用走行制御装置であって、(b)前記フリーラン制御を開始する前に、車速に基づいてそのフリーラン制御開始時の目標車両減速度を決定すると共に、そのフリーラン制御を開始した時の推定車両減速度を推定し、(c)前記推定車両減速度が前記フリーラン制御開始時の目標車両減速度に近いほど、前記フリーラン制御が実行され易くなることを特徴とする。
 このようにすれば、前記フリーラン制御が実行されれば、エンジンが走行負荷にならないので、前記惰性走行中にエンジンと駆動輪との間の動力伝達が遮断されない場合と比較して、車両の燃費を改善することが可能である。また、前記フリーラン制御が実行されたとした場合に、前記フリーラン制御開始時の目標車両減速度に近い車両減速度、例えば、所望の車両減速度に近い車両減速度が得られ易いと考えられるので、前記フリーラン制御が実行されても、減速感が乏しい等という運転者に生じる違和感を軽減することが可能である。すなわち、惰性走行中のドライバビリティの悪化を抑えつつ前記フリーラン制御の実行により燃費を向上させることが可能である。なお、前記所望の車両減速度とは具体的に言えば、運転者が要求する車両減速度である。また、燃費とは、例えば単位燃料消費量当たりの走行距離等であり、燃費の向上とはその単位燃料消費量当たりの走行距離が長くなることであり、或いは、燃料消費率(=燃料消費量/駆動輪出力)が小さくなることである。逆に、燃費の低下(悪化)とはその単位燃料消費量当たりの走行距離が短くなることであり、或いは、燃料消費率が大きくなることである。
 また、第2発明の要旨とするところは、前記第1発明の車両用走行制御装置であって、前記推定車両減速度と前記フリーラン制御開始時の目標車両減速度との差が予め定められた減速度差判定値よりも小さい場合に、前記フリーラン制御を実行することを特徴とする。このようにすれば、前記フリーラン制御は、前記推定車両減速度が前記フリーラン制御開始時の目標車両減速度に近い場合に実行されるところ、そのフリーラン制御を実行することを、前記減速度差判定値を用いて容易に決定することが可能である。そして、前記第1発明と同様に、惰性走行中のドライバビリティの悪化を抑えつつ前記フリーラン制御の実行により燃費を向上させることが可能である。
 また、第3発明の要旨とするところは、前記第1発明または前記第2発明の車両用走行制御装置であって、(a)前記車両が走行する走行路の勾配に基づいて前記推定車両減速度を推定し、(b)その走行路の勾配に基づいて前記フリーラン制御開始時の目標車両減速度を決定することを特徴とする。このようにすれば、惰性走行中の車両減速度は前記走行路の勾配に応じて変わるものであるので、上記走行路の勾配が加味されない場合と比較して、前記フリーラン制御を実行するか否かを適切に判断できる。
 また、第4発明の要旨とするところは、前記第3発明の車両用走行制御装置であって、前記走行路の下り勾配が大きいほど、前記フリーラン制御開始時の目標車両減速度が小さいことを特徴とする。ここで、上記走行路の下り勾配が大きいほど、車両はその勾配により加速され易くなるので、運転者は、大きな車両減速度を期待しなくなるものである。従って、上記第4発明のようにすれば、下り勾配の走行路において、前記フリーラン制御開始時の目標車両減速度を運転者が期待するであろう減速感に合わせて決定することが可能である。
 また、第5発明の要旨とするところは、前記第3発明または前記第4発明の車両用走行制御装置であって、前記走行路が上り勾配である場合には、その走行路が上り勾配ではない場合と比較して、前記フリーラン制御が実行され易くなることを特徴とする。ここで、上り勾配の走行路では、惰性走行中に上記フリーラン制御が実行された場合、車輪の転がり抵抗や空気抵抗などに加えて上記上り勾配に起因して車両が減速するので、前記減速感が乏しいというという違和感が運転者に生じにくい。従って、上記第5発明のようにすれば、上り勾配の走行路で、上記フリーラン制御に起因した違和感を抑えつつ、積極的に前記フリーラン制御が実行されることで、燃費を向上させることが可能である。
 また、第6発明の要旨とするところは、前記第1発明または前記第2発明の車両用走行制御装置であって、前記フリーラン制御開始時の目標車両減速度が、前記惰性走行中の前記フリーラン制御開始前の車両減速度であるものとして、そのフリーラン制御を実行するか否かの判断をすることを特徴とする。このようにすれば、前記フリーラン制御開始前の車両減速度を検出することで、上記フリーラン制御を実行するか否かを判断するための目標車両減速度が得られるので、簡潔且つ適切に、上記フリーラン制御を実行するか否かの判断をすることができる。
 また、第7発明の要旨とするところは、前記第1発明から前記第6発明の何れか一の車両用走行制御装置であって、(a)前記車両は、車両制動力を発生する電動機を備えており、(b)前記フリーラン制御を開始した場合には、実際の車両減速度が前記フリーラン制御中の目標車両減速度に近付くように前記電動機の車両制動力を制御することを特徴とする。このようにすれば、前記フリーラン制御が開始された場合において電動機の車両制動力で運転者に減速感を与えて違和感を軽減できる。
 ここで、好適には、前記第1発明から前記第6発明の何れか一の車両用走行制御装置であって、(a)前記車両は、前記駆動輪に連結された電動機を備えており、(b)前記フリーラン制御では前記電動機のトルクを零にする。
本発明の一実施例であるハイブリッド車両に係る駆動系統の構成を概念的に示す図である。 図1の電子制御装置に備えられた制御機能の要部を説明するための実施例1の機能ブロック線図である。 図2の電子制御装置が有する車両減速度推定手段がフリーラン時推定車両減速度を推定するために用いる、そのフリーラン時推定車両減速度と走行路の勾配および車速との予め実験的に求められ設定された関係を示した図である。 図2の電子制御装置の制御において、平地におけるフリーラン開始時目標車両減速度と車速Vとの関係を表した図である。 図2の電子制御装置の制御において、ある車速におけるフリーラン開始時目標車両減速度と走行路の勾配との関係を表した図である。 図2の電子制御装置の制御作動の要部、すなわち、フリーラン制御を実行する制御作動を説明するための実施例2のフローチャートである。 図1の電子制御装置に備えられた制御機能の要部を説明するための実施例2の機能ブロック線図である。 図7の電子制御装置の制御作動の要部、すなわち、惰性走行中に車両減速制御を実行する制御作動を説明するための実施例2のフローチャートである。 図1のハイブリッド車両とは異なる別の、本発明が適用されるハイブリッド車両の概略的な骨子図である。
 以下、本発明の実施例を図面を参照しつつ詳細に説明する。
 図1は、本発明の一実施例であるハイブリッド車両8(以下、単に「車両8」ともいう)に係る駆動系統の構成を概念的に示す図である。この図1に示すハイブリッド車両8は、車両用駆動装置10(以下、「駆動装置10」という)と差動歯車装置21と左右1対の車軸22と左右1対の駆動輪24と油圧制御回路34とインバータ56と電子制御装置58とを備えている。そして、その駆動装置10は、走行用駆動力源として機能し公知のガソリンエンジンやディーゼルエンジン等であるエンジン12と、そのエンジン12の始動または停止やスロットル制御等のエンジン出力制御を行うエンジン出力制御装置14と、走行用駆動力源として機能する走行用電動機である電動機MGと、エンジン断続用クラッチK0と、トルクコンバータ16と、自動変速機18とを備えている。図1に示すように、車両8は、エンジン12と電動機MGとの一方または両方により発生させられた動力が、トルクコンバータ16、自動変速機18、差動歯車装置21、及び左右1対の車軸22をそれぞれ介して左右1対の駆動輪24へ伝達されるように構成されている。そのため、車両8は、エンジン12の動力で走行するエンジン走行と、エンジン12を停止させると共に専ら電動機MGの動力で走行するEV走行(モータ走行)とを択一的に選択して走行することができる。上記エンジン走行では、走行状態に応じて電動機MGがアシストトルクを発生させることがある。
 前記電動機MGは、駆動輪24に連結されており、例えば3相の同期電動機であって、動力を発生させるモータ(発動機)としての機能と反力を発生させるジェネレータ(発電機)としての機能とを有するモータジェネレータである。例えば電動機MGは、回生作動することで車両制動力を発生する。
 また、前記エンジン12とその電動機MGとの間の動力伝達経路には、一般的に知られた湿式多板型の油圧式摩擦係合装置で構成されるエンジン断続用クラッチK0が設けられており、そのエンジン断続用クラッチK0は、油圧制御回路34から供給される油圧で作動し、エンジン12と駆動輪24との間の動力伝達を選択的に遮断する動力断続装置として機能する。具体的には、エンジン12の出力部材であるエンジン出力軸26(例えばクランク軸)は、エンジン断続用クラッチK0が係合されることで電動機MGのロータ30に相対回転不能に連結され、エンジン断続用クラッチK0が解放されることで電動機MGのロータ30から切り離される。要するに、上記エンジン出力軸26は、エンジン断続用クラッチK0を介して電動機MGのロータ30に選択的に連結されるようになっている。従って、そのエンジン断続用クラッチK0は、前記エンジン走行では係合されており、前記モータ走行では解放されている。また、その電動機MGのロータ30は、前記トルクコンバータ16の入力部材であるポンプ翼車16pに相対回転不能に連結されている。
 前記自動変速機18は、トルクコンバータ16と駆動輪24との間の動力伝達経路の一部を構成しており、エンジン12または電動機MGの動力を駆動輪24に伝達する。そして、自動変速機18は、予め設定された関係(変速線図)に従って係合要素の掴み替えによりクラッチ・ツゥ・クラッチ変速を行う有段式の自動変速機である。換言すれば、その自動変速機18は、予め定められた複数の変速段(変速比)の何れかが択一的に成立させられる自動変速機構であり、斯かる変速を行うために、複数の遊星歯車装置と油圧制御回路34からの油圧で作動する複数のクラッチまたはブレーキとを備えて構成されている。
 トルクコンバータ16は、電動機MGと自動変速機18との間に介装された流体伝動装置である。トルクコンバータ16は、入力側回転要素であるポンプ翼車16pと、出力側回転要素であるタービン翼車16tと、ステータ翼車16sとを備えている。そして、トルクコンバータ16は、ポンプ翼車16pに入力された動力をタービン翼車16tへ流体(作動油)を介して伝達する。ステータ翼車16sは、非回転部材であるトランスミッションケース36に一方向クラッチを介して連結されている。また、トルクコンバータ16は、ポンプ翼車16pとタービン翼車16tとの間に、ポンプ翼車16p及びタービン翼車16tを選択的に相互に直結するロックアップクラッチLUを備えている。そのロックアップクラッチLUは、油圧制御回路34からの油圧で制御される。
 前記ハイブリッド車両8においては、例えば前記モータ走行から前記エンジン走行への移行に際して、前記エンジン断続用クラッチK0の係合によりエンジン回転速度Neが引き上げられてエンジン12の始動が行われる。
 また、フットブレーキが踏み込まれた車両減速中や、運転者による車両制動操作および加速操作が解除された惰性走行中には、電子制御装置58は、走行中の車両8を電動機MGの回生作動で制動することにより得られた回生エネルギーを蓄電装置57に供給する電動機回生制御を行う。具体的に、その電動機回生制御では、エンジン断続用クラッチK0の解放によりエンジン12と駆動輪24との間の動力伝達を遮断すると共にエンジン12を停止し、車両8の有する慣性エネルギーで電動機MGを回生作動させる。そして、その慣性エネルギーが電力として回生され電動機MGから蓄電装置57に充電される。この電動機回生制御の実行中においてはロックアップクラッチLUは係合される。また、電子制御装置58は、上記惰性走行中には、燃費の向上を図るために車両8の走行状態によっては、上記電動機回生制御に替えて、エンジン断続用クラッチK0によりエンジン12と駆動輪24との間の動力伝達を遮断すると共にエンジン12を停止させるフリーラン制御を実行する。そのフリーラン制御では、電力を回生するために車両制動を行うことを目的としないので、電動機MGで車両制動を行わず、電動機MGのトルクTmg(以下、電動機トルクTmgという)は零にされるのが好ましい。すなわち、電動機MGが空転させられるのが好ましい。このようにすれば上記フリーラン制御が実行されることにより車両8は空走させられる。但し、上記フリーラン制御の実行中に擬似的に走行抵抗を発生させるように電動機トルクTmgが僅かに発生させられても差し支えない。
 車両8は、その図1に例示するような制御系統を備えている。この図1に示す電子制御装置58は、車両8の走行に関連する制御を行う車両用走行制御装置としての機能を含んでおり、所謂マイクロコンピュータを含んで構成されている。図1に示すように、上記電子制御装置58には、前記ハイブリッド車両8に設けられた各センサにより検出される各種入力信号が供給されるようになっている。例えば、アクセル開度センサ60により検出されるアクセルペダル71の踏込量であるアクセル開度Accを表す信号、電動機回転速度センサ62により検出される前記電動機MGの回転速度(電動機回転速度)Nmgを表す信号、エンジン回転速度センサ64により検出される前記エンジン12の回転速度(エンジン回転速度)Neを表す信号、タービン回転速度センサ66により検出される前記トルクコンバータ16のタービン翼車16tの回転速度(タービン回転速度)Ntを表す信号、車速センサ68により検出される車速Vを表す信号、スロットル開度センサ70により検出されるエンジン12のスロットル開度θthを表す信号、及び、蓄電装置57から得られるその蓄電装置57の充電残量(充電状態)SOCを表す信号、加速度センサ72により検出される車両8の前後方向の車両加速度を表す信号等が、上記電子制御装置58に入力される。ここで、電動機回転速度センサ62により検出される電動機回転速度Nmgは、前記トルクコンバータ16の入力回転速度であり、そのトルクコンバータ16におけるポンプ翼車16pの回転速度(ポンプ回転速度)Npに相当する。また、上記タービン回転速度センサ66により検出されるタービン回転速度Ntは、前記トルクコンバータ16の出力回転速度であり、前記自動変速機18における変速機入力軸19の回転速度Natinすなわち変速機入力回転速度Natinに相当する。また、自動変速機18の出力軸20(以下、変速機出力軸20という)の回転速度Natoutすなわち変速機出力回転速度Natoutは、前記車速Vに対応する。また、本実施例で、車両加速度および車両減速度は何れも、単位時間当たりの車速Vの変化幅であって正負どちらの値もとり得るが、車両加速度は増速方向を正方向とする一方で、車両減速度は減速方向を正方向とする。
 また、前記電子制御装置58から、前記ハイブリッド車両8に設けられた各装置に各種出力信号が供給されるようになっている。
 また、車両8は、図1に示すように、ナビゲーションシステム80(以下、ナビ80という)を備えている。そのナビ80は、例えばCD-ROMやDVD-ROMやHDD(hard disk drive)などの記憶媒体82を備え、記憶媒体82に記憶された道路地図情報を用いて公知のナビゲーション制御を実行する機能を有している。その道路地図情報では、一般的に知られているように、実際の道路は、複数のノードにより分割され各ノード間を結ぶ複数の区間としてのリンクで表現されている。そして、各リンクに対しては、それぞれのリンクを区別するために、リンクID(道路番号)が決められている。また、各リンクID毎に、ノードにより定義される始点座標及び終点座標、走行路情報としての平均曲率半径と道路長と道路勾配と標高、一般道や高速道路や一方通行などの道路種別、交差点や直線路における通過点などの各ノードにおける情報、などが記憶媒体82に記憶されており、これらのリンクID毎の情報も上記道路地図情報に含まれている。また、記憶媒体82は、電子制御装置58が上記道路地図情報を読み取れるようになっている。
 図2は、前記電子制御装置58に備えられた制御機能の要部を説明するための機能ブロック線図である。図2に示すように、電子制御装置58は、惰性走行判断部としての惰性走行判断手段90と、車両減速度推定部としての車両減速度推定手段92と、目標車両減速度決定部としての目標車両減速度決定手段94と、車両減速度判断部としての車両減速度判断手段96と、フリーラン制御実行部としてのフリーラン制御実行手段98とを備えている。
 惰性走行判断手段90は、車両8が惰性走行中であるか否かを判断する。その惰性走行とは、運転者による車両制動操作および加速操作が共に解除されており、エンジン断続用クラッチK0が係合され車両8に所謂エンジンブレーキがかかる状態で車両8が走行することである。従って、惰性走行判断手段90は、上記車両制動操作および加速操作が共に解除されており、エンジン断続用クラッチK0が係合されており、車両8が走行中である場合に、車両8が惰性走行中であると判断する。上記惰性走行中に前記電動機回生制御が実行されることがあるが、その電動機回生制御が実行されているか否かは問わない。上記車両制動操作が解除されている場合とは、例えば、フットブレーキが踏み込まれていないブレーキオフの場合である。上記加速操作が解除されている場合とは、例えば、アクセルペダル71が踏み込まれていないアクセルオフの場合である。また、高速走行中には所謂エンジンブレーキを弱めるために運転者が僅かなアクセル開度Accを維持する場合があり、このようにエンジンブレーキ(駆動系の走行負荷)を弱めるために僅かなアクセル開度Accが維持され走行抵抗によって車速Vが漸減する場合も、上記加速操作が解除されている場合に含まれる。
 車両減速度推定手段92は、惰性走行判断手段90により車両8が惰性走行中であると判断された場合には、前記フリーラン制御が開始される前に、そのフリーラン制御が開始された時の推定車両減速度GFrd(以下、フリーラン時推定車両減速度GFrdという)を推定する。そのフリーラン時推定車両減速度GFrdは、言い換えれば、そのフリーラン制御が開始されたとした場合におけるその開始直後の推定車両減速度である。上記フリーラン時推定車両減速度GFrdは、車両の減速方向を正方向とし、その単位は例えばm/sである。前記フリーラン制御開始後の車両8は走行抵抗によって減速し、その走行抵抗は空気抵抗、勾配抵抗、及び、車輪(駆動輪24及び従動輪)の転がり抵抗の和であるので、上記フリーラン時推定車両減速度GFrdは、車両8が走行する走行路の勾配および車速Vが判ればそれら走行路の勾配および車速Vに基づいて算出することができる。本実施例では、そのフリーラン時推定車両減速度GFrdと上記走行路の勾配および車速Vとの関係が図3に示すように予め実験的に求められ設定されており、車両減速度推定手段92は、上記走行路の勾配と車速Vとに基づいて、その図3に示す予め設定された関係から上記フリーラン時推定車両減速度GFrdを算出する。すなわち、そのフリーラン時推定車両減速度GFrdを推定する。その図3では、車速Vが高いほど前記空気抵抗と転がり抵抗とが大きくなるので、フリーラン時推定車両減速度GFrdは大きくなる。また、上記走行路の勾配が下り方向に大きいほど前記勾配抵抗が小さくなるので、フリーラン時推定車両減速度GFrdは小さくなる。なお、上記走行路の勾配は、ナビ80が利用する前記道路地図情報から得られるものであってもよいし、車両8が有するセンサ類によって検出されるものであってもよい。
 目標車両減速度決定手段94は、惰性走行判断手段90により車両8が惰性走行中であると判断された場合には、前記フリーラン制御が開始される前に、そのフリーラン制御開始時の目標車両減速度Grdt(以下、フリーラン開始時目標車両減速度Grdtという)を決定する。ここで、車両8の惰性走行中において運転者はエンジンブレーキおよび走行抵抗によって減速することを期待しており、上記フリーラン開始時目標車両減速度Grdtは、その運転者が惰性走行中に期待する減速感が得られる車両減速度になるように、予め実験的に定められている。従って、フリーラン開始時目標車両減速度Grdtは、惰性走行中の運転者が期待する車両減速度に合わせて実験的に定められているので、上記フリーラン制御開始時の運転者が要求する要求車両減速度であるとも言える。
 具体的に本実施例では、上記フリーラン開始時目標車両減速度Grdtと、車両8が走行する走行路の勾配および車両Vとの関係は、図4および図5のように予め実験的に定められている。その図4は、平地(勾配=0deg)におけるフリーラン開始時目標車両減速度Grdtと車速Vとの関係を表しており、図5は、ある車速Vにおけるフリーラン開始時目標車両減速度Grdtと上記走行路の勾配との関係を表している。図4では、車速Vが高いほどフリーラン開始時目標車両減速度Grdtは小さくなる。運転者は、車速Vが高いほど自動変速機18が高車速側のギヤ段に変速されエンジンブレーキが効かなくなるという走行感覚を有しているので、車速Vが高いほど車両8が減速することを期待しなくなるからである。また、図5では、上記走行路の下り勾配が大きいほど、フリーラン開始時目標車両減速度Grdtは小さくなる。その走行路の下り勾配が大きいほど前記勾配抵抗が小さくなり、運転者は車両8が減速することを期待しなくなるからである。このように、目標車両減速度決定手段94は、前記フリーラン制御が開始される前に、車速Vと上記走行路の勾配とに基づいて、図4および図5に示す予め定められた関係から上記フリーラン開始時目標車両減速度Grdtを決定する。このフリーラン開始時目標車両減速度Grdtを決定する基になる車速Vおよび走行路の勾配は、車両減速度推定手段92が前記フリーラン時推定車両減速度GFrdを推定する基になる車速Vおよび走行路の勾配と同じものであることが好ましい。
 また、目標車両減速度決定手段94は、車両8が走行する走行路が上り勾配である場合には、図4および図5に示す予め定められた関係に因らずに、上記フリーラン開始時目標車両減速度Grdtを、車両減速度推定手段92により推定されたフリーラン時推定車両減速度GFrdと同一値に決定する。このようにすることで、上記走行路が上り勾配である場合には、後述の車両減速度判断手段96の判断が肯定され、その走行路が上り勾配ではない場合すなわち下り勾配または平地である場合と比較して、前記フリーラン制御が実行され易くなるからである。なお、上記走行路が上り勾配である場合とは、その走行路の勾配が上り方向を正方向として零よりも大きい場合であってもよいが、好ましくは、運転者が車両走行中に前記勾配抵抗を感じることができる程度の所定勾配以上の上り勾配である場合である。
 車両減速度判断手段96は、車両減速度推定手段92により推定されたフリーラン時推定車両減速度GFrdと、目標車両減速度決定手段94により決定されたフリーラン開始時目標車両減速度Grdtとをそれぞれ取得し、そのフリーラン時推定車両減速度GFrdとフリーラン開始時目標車両減速度Grdtとの差DGrdである車両減速度差DGrd(=GFrd-Grdt)の絶対値が予め定められた減速度差判定値DG1rdよりも小さいか否かを判断する。その車両減速度差DGrdの絶対値が上記減速度差判定値DG1rdよりも小さいか否かは、前記フリーラン制御の実行開始条件である。すなわち、車両減速度判断手段96は、上記フリーラン時推定車両減速度GFrdが上記フリーラン開始時目標車両減速度Grdtに近いほど、上記フリーラン制御が実行され易くなる実行開始条件の下で、そのフリーラン制御を実行するか否かの判断をすると言える。表現を換えれば、前記車両減速度差DGrdの絶対値が前記減速度差判定値DG1rdよりも小さい場合とは、そうでない場合と比較して、フリーラン時推定車両減速度GFrdがフリーラン開始時目標車両減速度Grdtに近いということであり、前記フリーラン制御はその車両減速度差DGrdの絶対値が減速度差判定値DG1rdよりも小さい場合に実行されるものであるので、上記フリーラン時推定車両減速度GFrdが上記フリーラン開始時目標車両減速度Grdtに近いほど、上記フリーラン制御が実行され易くなると言える。前記減速度差判定値DG1rdは、前記フリーラン制御が実行されたときに減速感が乏しいと運転者に感じさせないように且つ上記フリーラン制御が実行され易くなるように、予め実験的に定められている。
 フリーラン制御実行手段98は、車両減速度判断手段96の判断に従って、前記惰性走行中にエンジン断続用クラッチK0によりエンジン12と駆動輪24との間の動力伝達を遮断すると共にエンジン12を停止させる前記フリーラン制御を実行する。そのフリーラン制御では、エンジン断続用クラッチK0を解放させてエンジン12を停止させる。そして、本実施例では上記フリーラン制御の実行中は電動機MGを空転させる。具体的に、フリーラン制御実行手段98は、車両減速度判断手段96により前記車両減速度差DGrdの絶対値が前記減速度差判定値DG1rdよりも小さいと判断された場合には、上記フリーラン制御を実行する。その一方で、上記車両減速度差DGrdの絶対値が上記減速度差判定値DG1rd以上であると判断された場合には、上記フリーラン制御を実行しない。例えばその場合、そのフリーラン制御は実行されず前記電動機回生制御が実行されてもよい。
 また、フリーラン制御実行手段98は、上記フリーラン制御の実行を開始すると、その後に例えばアクセルペダル71が踏み込まれる等して加速操作(アクセルオン)がなされた場合には、そのフリーラン制御を終了する。
 ここで、目標車両減速度決定手段94は、前述したように、前記フリーラン制御が開始される前に、図4および図5に示す予め定められた関係から前記フリーラン開始時目標車両減速度Grdtを決定するが、その図4および図5には従わずに、例えば、その惰性走行中のフリーラン制御が開始される前(直前)に車両減速度を加速度センサ72により検出し、そのフリーラン開始時目標車両減速度Grdtを、その惰性走行中のフリーラン制御開始前の車両減速度としてもよい。上記惰性走行中の上記フリーラン制御開始前であれば、その時の車両減速度は駆動系が走行負荷として作用する等して運転者が期待する車両減速度になっているものと考えられるからである。そのように目標車両減速度決定手段94がフリーラン開始時目標車両減速度Grdtを決定したとすれば、車両減速度判断手段96は、フリーラン開始時目標車両減速度Grdtが、上記惰性走行中のフリーラン制御開始前の車両減速度であるものとして、そのフリーラン制御を実行するか否かの判断をすることになる。
 図6は、電子制御装置58の制御作動の要部、すなわち、前記フリーラン制御を実行する制御作動を説明するためのフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。例えば、この図6に示す制御作動は、前記フリーラン制御が未だ実行されていないときに開始される。この図6に示す制御作動は、単独で或いは他の制御作動と並列的に実行される。
 先ず、図6のステップ(以下、「ステップ」を省略する)SA1においては、車両8が惰性走行中であるか否かが判断される。このSA1の判断が肯定された場合、すなわち、車両8が惰性走行中である場合には、SA2に移る。一方、このSA1の判断が否定された場合には、SA6に移る。なお、SA1は惰性走行判断手段90に対応する。
 車両減速度推定手段92に対応するSA2においては、車速Vと前記走行路の勾配とが検出される等して取得される。そして、前記フリーラン制御が実行されると仮定して、そのフリーラン制御が開始された時の推定車両減速度GFrd、すなわち、前記フリーラン時推定車両減速度GFrdが、その車速Vと走行路の勾配とに基づいて推定される。SA2の次はSA3に移る。
 目標車両減速度決定手段94に対応するSA3においては、車速Vと前記走行路の勾配とが検出される等して取得され、前記フリーラン開始時目標車両減速度Grdtが、その車速Vと走行路の勾配とに基づいて、図4および図5に示す予め定められた関係から決定される。ここで、そのフリーラン開始時目標車両減速度Grdtは、車速Vと上記走行路の勾配とに基づいて直ちに算出されてもよいし、或いは、車速Vに基づき図4に示す予め定められた関係から平地での値が先ず算出され、その平地での値が上記走行路の勾配に基づき図5に示す予め定められた関係に従って補正されて算出されても差し支えない。また、車両8が走行する走行路が上り勾配である場合には、上記フリーラン開始時目標車両減速度Grdtは、図4および図5に示す予め定められた関係に因らずに、SA2にて推定されたフリーラン時推定車両減速度GFrdと同一値に決定される。
 また、SA3において、上記フリーラン開始時目標車両減速度Grdtは、上記図4および図5には従わずに、例えば、前記フリーラン制御が実行されると仮定して、惰性走行中のフリーラン制御が開始される前(直前)に検出された車両減速度とされてもよい。そのようにする場合の走行路の勾配は、上記上り勾配が除かれていてもよいし除かれていなくてもよい。SA3の次はSA4に移る。
 車両減速度判断手段96に対応するSA4においては、SA2にて推定されたフリーラン時推定車両減速度GFrdとSA3にて決定されたフリーラン開始時目標車両減速度Grdtとの差DGrdである前記車両減速度差DGrdが算出され、その車両減速度差DGrdの絶対値が前記減速度差判定値DG1rdよりも小さいか否かが判断される。このSA4の判断が肯定された場合、すなわち、上記車両減速度差DGrdの絶対値が上記減速度差判定値DG1rdよりも小さい場合には、SA5に移る。一方、このSA4の判断が否定された場合には、SA6に移る。
 SA5においては、前記フリーラン制御が実行される。その一方で、SA6においては、上記フリーラン制御は実行されない。なお、SA5およびSA6はフリーラン制御実行手段98に対応する。
 上述した本実施例によれば、前記フリーラン制御が開始される前に、前記フリーラン開始時目標車両減速度Grdtが車速Vに基づいて決定されると共に、前記フリーラン時推定車両減速度GFrdが推定される。そして、前記フリーラン制御は、前記車両減速度差DGrd(=GFrd-Grdt)の絶対値が前記減速度差判定値DG1rdよりも小さい場合に実行される。すなわち、前記フリーラン時推定車両減速度GFrdが前記フリーラン開始時目標車両減速度Grdtに近いほど、前記フリーラン制御が実行され易くなると言える。このようにして前記フリーラン制御が実行されれば、前記フリーラン制御が実行されたとした場合に、前記フリーラン開始時目標車両減速度Grdtに近い車両減速度、例えば、運転者が要求する所望の車両減速度に近い車両減速度が得られ易いと考えられるので、前記フリーラン制御が実行されても、減速感が乏しい等という運転者に生じる違和感を軽減することが可能である。また、そのフリーラン制御では、エンジン12が走行負荷にならないので、前記惰性走行中にエンジン12と駆動輪24との間の動力伝達が遮断されない場合と比較して、車両8の燃費を改善することが可能である。すなわち、惰性走行中のドライバビリティの悪化を抑えつつ前記フリーラン制御の実行により燃費を向上させることが可能である。
 また、前記フリーラン制御が開始される前に前記フリーラン時推定車両減速度GFrdが推定されて、前記フリーラン制御を実行するか否かが判断されるので、前記フリーラン制御の開始後に検出される車両減速度が不適切であるとして直ちにそのフリーラン制御が中止されるという事態が回避される。そのため、エンジン始動が頻繁になることを低減でき、エンジン始動に起因したエネルギロスを抑えることが可能である。
 また、本実施例によれば、フリーラン制御実行手段98は、車両減速度判断手段96により前記車両減速度差DGrdの絶対値が前記減速度差判定値DG1rdよりも小さいと判断された場合に、前記フリーラン制御を実行する。従って、前記フリーラン時推定車両減速度GFrdが前記フリーラン開始時目標車両減速度Grdtに近い場合に前記フリーラン制御が実行されるということを、前記減速度差判定値DG1rdを用いて容易に実現することが可能である。
 また、本実施例によれば、車両減速度推定手段92は、車両8が走行する走行路の勾配に基づいて前記フリーラン時推定車両減速度GFrdを推定する。また、目標車両減速度決定手段94は、その走行路の勾配に基づいて前記フリーラン開始時目標車両減速度Grdtを決定する。ここで、惰性走行中の車両減速度は前記走行路の勾配に応じて変わるものである。従って、上記走行路の勾配が加味されない場合と比較して、前記フリーラン制御を実行するか否かを適切に判断できる。
 また、本実施例によれば、図5に示すように、上記走行路の下り勾配が大きいほど、上記フリーラン開始時目標車両減速度Grdtは小さくなる。ここで、上記走行路の下り勾配が大きいほど、車両8はその勾配により加速され易くなるので、運転者は、大きな車両減速度を期待しなくなるものである。従って、下り勾配の走行路において、前記フリーラン開始時目標車両減速度Grdtを運転者が期待するであろう減速感に合わせて決定することが可能である。
 また、本実施例によれば、目標車両減速度決定手段94は、車両8が走行する走行路が上り勾配である場合には、図4および図5に示す予め定められた関係に因らずに、前記フリーラン開始時目標車両減速度Grdtを、車両減速度推定手段92により推定されたフリーラン時推定車両減速度GFrdと同一値に決定する。そうすると、前記車両減速度差DGrdが零になり、その車両減速度差DGrdの絶対値は前記減速度差判定値DG1rdよりも小さいと判断されるので、上記走行路が上り勾配である場合には、その走行路が上り勾配ではない場合と比較して、前記フリーラン制御が実行され易くなる。ここで、上り勾配の走行路では、惰性走行中に上記フリーラン制御が実行された場合、車輪の転がり抵抗や空気抵抗などに加えて上記上り勾配に起因して車両8が減速するので、前記減速感が乏しいというという違和感が運転者に生じにくい。従って、上り勾配の走行路で、上記フリーラン制御に起因した違和感を抑えつつ、積極的に前記フリーラン制御が実行されることで、燃費を向上させることが可能である。
 また、本実施例によれば、車両減速度判断手段96は、フリーラン開始時目標車両減速度Grdtが、前記惰性走行中のフリーラン制御開始前の車両減速度であるものとして、そのフリーラン制御を実行するか否かの判断をするとしてもよい。そのようにしたとすれば、前記フリーラン制御開始前の車両減速度を検出することで、上記フリーラン制御を実行するか否かを判断するための上記フリーラン開始時目標車両減速度Grdtが得られるので、簡潔且つ適切に、上記フリーラン制御を実行するか否かの判断をすることができる。
 次に、本発明の他の実施例を説明する。なお、以下の説明において実施例相互に共通する部分には同一の符号を付して説明を省略する。
 本実施例(実施例2)は前述の実施例1の電子制御装置58を電子制御装置160に置き換えたものである。実施例1では、前記フリーラン制御を実行するか否かを判断するための制御に関して主として説明したが、実施例2では、主として、そのフリーラン制御の開始後における制御に関して説明する。図7は、その電子制御装置160に備えられた制御機能の要部を説明するための機能ブロック線図である。図7に示すように、電子制御装置160は、フリーラン判断部としてのフリーラン判断手段164と、目標車両減速度決定部としての目標車両減速度決定手段166と、電動機トルク制御部としての電動機トルク制御手段168とを備えている。
 図7のフリーラン判断手段164は、前記フリーラン制御が開始されたか否かを判断する。例えば、前述の実施例1のフリーラン制御実行手段98が前記フリーラン制御を開始した場合には、そのフリーラン制御が開始されたと判断する。また、エンジン12の作動状態、エンジン断続用クラッチK0の作動状態、及び電動機トルクTmg等から判断してもよい。
 目標車両減速度決定手段166は、フリーラン判断手段164により前記フリーラン制御が開始されたと判断された場合には、車速センサ68から車速Vを検出し、前記道路地図情報から自車位置の走行路の勾配を取得する。そして、その車速Vとその走行路の勾配とに基づいて、電動機MGの車両制動力に対応する電動機トルクTmgを決定するための車両減速度の目標値である所定の電動機制御用目標車両減速度Grdmgtを決定する。その電動機制御用目標車両減速度Grdmgtは、運転者が惰性走行中に期待する減速感が得られる車両減速度になるように、予め実験的に定められているという点で前記フリーラン開始時目標車両減速度Grdtと同様であるが、その決定の基となる車速Vおよび走行路の勾配の取得時期が前記フリーラン制御の開始後であるという点で異なる。要するに、電動機制御用目標車両減速度Grdmgtは、前記フリーラン制御中の目標車両減速度である。目標車両減速度決定手段166は、前述の実施例1の目標車両減速度決定手段94が上記フリーラン開始時目標車両減速度Grdtを決定するのと同様にして、上記電動機制御用目標車両減速度Grdmgtを決定する。例えば、目標車両減速度決定手段166は、先ず、図4にて縦軸を電動機制御用目標車両減速度Grdmgtに置き換えて、その図4の予め定められた関係から、平地における上記電動機制御用目標車両減速度Grdmgtを車速Vに基づいて決定する。そして、目標車両減速度決定手段166は、前記走行路の勾配が下り勾配である場合には、図5にて縦軸を上記電動機制御用目標車両減速度Grdmgtに置き換えて、その図5の予め定められた関係に従って、その下り勾配が大きいほど電動機制御用目標車両減速度Grdmgtが小さくなるように、上記図4から得られた電動機制御用目標車両減速度Grdmgtを補正する。このとき、運転者は下り勾配では惰性走行中における減速感を平地ほどには期待しないので、下り勾配における電動機制御用目標車両減速度Grdmgtは平地における上記電動機制御用目標車両減速度Grdmgtよりも常に小さくなる。
 一方で、目標車両減速度決定手段166は、前記走行路の勾配が上り勾配である場合には、現時点の実際の車両減速度を加速度センサ72により検出し、上記電動機制御用目標車両減速度Grdmgtを、その検出した実際の車両減速度と同一値に決定する。このようにすることで、上記走行路が上り勾配である場合には、後述の電動機トルク制御手段168は、後述の車両減速制御において、上記電動機制御用目標車両減速度Grdmgtが実際の車両減速度であるものとして電動機トルクTmgを制御する。要するに、その電動機トルク制御手段168は上り勾配では電動機トルクTmgを零にする。なお、上記走行路の勾配が上り勾配である場合とは、その走行路の勾配が上り方向を正方向として零よりも大きい場合であってもよいが、好ましくは、運転者が車両走行中に前記勾配抵抗を感じることができる程度の所定勾配以上の上り勾配である場合である。
 電動機トルク制御手段168は、目標車両減速度決定手段166により前記電動機制御用目標車両減速度Grdmgtが決定された場合には、加速度センサ72により検出される実際の車両減速度がその電動機制御用目標車両減速度Grdmgtに近付くように電動機トルクTmgを制御する車両減速制御を実行する。その電動機トルクTmgは電動機MGの車両制動力に対応する。例えば、電動機トルク制御手段168は、その車両減速制御では、上記電動機制御用目標車両減速度Grdmgtから上記実際の車両減速度を差し引いた差を算出し、自動変速機18の変速比等を加味した上で、その算出した車両減速度の差を零に近付けるように電動機トルクTmgを制御する。なお、上記車両減速制御において電動機トルクTmgは基本的に車両8の減速方向すなわち回生方向に発生するが、車両8の増速方向に発生することがあっても差し支えない。また、上記車両減速制御の実行中はロックアップクラッチLUは係合されるのが好ましい。上記車両減速制御の実行中においては、実際の車両減速度が加速度センサ72により逐次検出され、それと共に、目標車両減速度決定手段166により、電動機制御用目標車両減速度Grdmgtは車速Vと前記走行路の勾配とに応じて逐次更新される。
 また、電動機トルク制御手段168は、上記車両減速制御の実行を開始すると、その後に例えばアクセルペダル71が踏み込まれる等して加速操作がなされた場合には、その車両減速制御を終了する。
 図8は、電子制御装置160の制御作動の要部、すなわち、惰性走行中に前記車両減速制御を実行する制御作動を説明するためのフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。この図8に示す制御作動は、単独で或いは他の制御作動と並列的に実行される。
 先ず、図8のSB1においては、前記フリーラン制御が開始されたか否かが判断される。例えば、そのフリーラン制御が開始されており、未だ終了していない場合には、フリーラン制御が開始されたと判断される。このSB1の判断が肯定された場合、すなわち、前記フリーラン制御が開始された場合には、SB2に移る。一方、このSB1の判断が否定された場合には、本フローチャートは終了する。なお、SB1はフリーラン判断手段164に対応する。また、後述のSB8において前記車両減速制御が実行されても、それを理由にこのSB1の判断が肯定から否定に切り替わることはない。
 SB2においては、車速センサ68によって車速Vが検出され、自車位置の走行路の勾配が前記道路地図情報から取得される。SB2の次はSB3に移る。
 SB3においては、図4にてその縦軸が電動機制御用目標車両減速度Grdmgtに置き換えられて、平地における上記電動機制御用目標車両減速度Grdmgtが、その図4の予め定められた関係から、車速Vに基づいて決定される。SB3の次はSB4に移る。
 SB4においては、SB2にて取得された走行路の勾配が上り勾配であるか否か、すなわちその走行路が登坂であるか否かが判断される。このSB4の判断が肯定された場合、すなわち、上記走行路の勾配が上り勾配である場合には、SB5に移る。一方、このSB4の判断が否定された場合には、SB6に移る。なお、このSB4で上記走行路の勾配が上り勾配であると判断される場合とは、その走行路の勾配が上り方向を正方向として零よりも大きい場合であってもよいが、好ましくは、運転者が車両走行中に前記勾配抵抗を感じることができる程度の所定勾配(上りが正方向)以上の上り勾配である場合である。
 SB5においては、SB3で決定された電動機制御用目標車両減速度Grdmgtが、前記走行路の勾配が上り勾配であることに応じて補正される。具体的には、現時点の実際の車両減速度が加速度センサ72により検出され、上記電動機制御用目標車両減速度Grdmgtが、その検出された実際の車両減速度と同一値に補正される。SB5の次はSB8に移る。
 SB6においては、SB2にて取得された走行路の勾配が下り勾配であるか否か、すなわちその走行路が降坂であるか否かが判断される。例えば、このSB6で上記走行路の勾配が下り勾配であると判断される場合とは、その走行路の勾配が下り方向を正方向として零よりも大きい場合であってもよいが、好ましくは、運転者が車両走行中に前記勾配抵抗が平地よりも小さいと感じることができる程度の所定勾配(下りが正方向)以上の下り勾配である場合である。このSB6の判断が肯定された場合、すなわち、上記走行路の勾配が下り勾配である場合には、SB7に移る。一方、このSB6の判断が否定された場合には、SB8に移る。
 SB7においては、SB3で決定された電動機制御用目標車両減速度Grdmgtが、前記走行路の勾配が下り勾配であることに応じて補正される。具体的には、図5にてその縦軸が上記電動機制御用目標車両減速度Grdmgtに置き換えられて、その図5の予め定められた関係に従って、上記走行路の下り勾配が大きいほど電動機制御用目標車両減速度Grdmgtが小さくなるように、上記SB3で決定された電動機制御用目標車両減速度Grdmgtが補正される。SB7の次はSB8に移る。なお、SB2からSB7は目標車両減速度決定手段166に対応する。
 電動機トルク制御手段168に対応するSB8においては、前記車両減速制御が実行される。例えば、その車両減速制御では、加速度センサ72により実際の車両減速度が検出され、上記電動機制御用目標車両減速度Grdmgtからその実際の車両減速度を差し引いた差が算出される。そして、電動機トルクTmgが、その算出された差を零に近付けるように制御される。
 上述した本実施例によれば、電動機トルク制御手段168は、前記フリーラン制御が開始された場合には、加速度センサ72により検出される実際の車両減速度が前記電動機制御用目標車両減速度Grdmgt(フリーラン制御中の目標車両減速度)に近付くように電動機トルクTmgを制御する前記車両減速制御を実行する。そして、その電動機トルクTmgは電動機MGの車両制動力に対応する。従って、前記フリーラン制御が開始された場合において電動機MGの車両制動力で運転者に減速感を与えて違和感を軽減できる。また、前記走行路が上り勾配である場合には、電動機トルク制御手段168は、上記車両減速制御において、上記電動機制御用目標車両減速度Grdmgtが上記実際の車両減速度であるものとして電動機トルクTmgを制御する。要するに、その電動機トルク制御手段168は上り勾配では電動機トルクTmgを零にする。そのため、上り勾配の走行路では、電動機MGは車両制動力を発生させないことになるので、その上り勾配の走行路で燃費を向上させることができる。また、上り勾配の走行路では、電動機トルクTmgを零にしても、その上り勾配により運転者に減速感を与え前記違和感を抑えることが可能である。
 以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
 例えば、前述の実施例1において、前記フリーラン制御は惰性走行中に開始されるが、そのフリーラン制御の開始時はその惰性走行の開始時と同時であってもよいし、そのフリーラン制御がその惰性走行の開始に遅れて開始されてもよい。
 また、前述の実施例2において、車両8は1つの電動機MGを備えたハイブリッド車両であるが、例えば、図9に示すように、2つの電動機すなわち第1電動機MG1および第2電動機MG2を備えたハイブリッド車両200に置き換えられても差し支えない。その図9において、ハイブリッド車両200は、エンジン12、第1電動機MG1、差動機構としての遊星歯車装置202、および第2電動機MG2などを備えている。そのエンジン12または第2電動機MG2の動力は、遊星歯車装置202のリングギヤR0から、差動歯車装置21および一対の車軸22等を順次介して一対の駆動輪24へ伝達される。また、遊星歯車装置202は、エンジン12に連結されたキャリヤCA0と、第1電動機MG1に連結されたサンギヤS0と、第2電動機MG2と一体回転し駆動輪24に連結されたリングギヤR0と、リングギヤR0とサンギヤS0とのそれぞれに噛み合いキャリヤCA0に回転自在に支持されたピニオンギヤP0とを備えている。このように構成された遊星歯車装置202では、エンジントルクTeに対抗する反力トルクを第1電動機MG1が出力することで、エンジン12から駆動輪24に動力伝達される。逆に、第1電動機MG1が空転させられることで、エンジン12と駆動輪24との間の動力伝達が遮断される。すなわち、ハイブリッド車両200では、第1電動機MG1および遊星歯車装置202が本発明の動力断続装置に対応する。また、第2電動機MG2は回生作動することで車両制動力を発生する。このハイブリッド車両200の惰性走行では、例えば、第1電動機MG1が空転させられると共にエンジン12が停止され、第2電動機MG2の回生作動により擬似的にエンジンブレーキが発生させられる。
 また、前述の実施例1において、車両8は電動機MGを備えているが、その電動機MGを備えていないエンジン車両に置き換えられても差し支えない。また、車両8は、図9に示すハイブリッド車両200に置き換えられても差し支えない。
 また、前述の実施例2において、前記車両減速制御が実行されるとした場合、その車両減速制御の開始時は前記フリーラン制御の開始時と同時であってもよいし、その車両減速制御がそのフリーラン制御の開始時に遅れて開始されてもよい。
 また、前述の実施例1において、車両8が走行する走行路が上り勾配である場合には、前記フリーラン開始時目標車両減速度Grdtが前記フリーラン時推定車両減速度GFrdと同一値に決定されることで、前記フリーラン制御は、その走行路が上り勾配ではない場合と比較して実行され易くなるが、他の方法によって、上記走行路が上り勾配である場合に上記フリーラン制御が実行され易くなっても差し支えない。例えば、上記走行路が上り勾配である場合には、車両減速度判断手段96の判断に拘らず、フリーラン制御実行手段98が前記フリーラン制御を実行するとしてもよい。或いは、上記走行路が上り勾配である場合には、上り勾配ではない場合よりも前記減速度差判定値DG1rdが大きい値に設定変更されることで、上記フリーラン制御が実行され易くなってもよい。
 また、前述の実施例1,2において、図1に示すように、電動機MGはトルクコンバータ16のポンプ翼車16pに連結されているが、そのポンプ翼車16pにではなく、前記変速機出力軸20に連結されていても差し支えない。
 また、前述の実施例1,2において、エンジン12の動力と電動機MGの動力とは何れも共通の駆動輪24に伝達されるが、車両8は、前輪と後輪との一方の車輪に前記エンジン12の動力が伝達され、他方の車輪に前記電動機MGの動力が伝達されるものであっても差し支えない。その場合には上記前輪および後輪が車両8の駆動輪である。
 また、前述の実施例1,2において、図1に示すように車両8は自動変速機18を備えているが、その自動変速機18は必須ではない。
 また、前述の実施例1,2において、トルクコンバータ16はロックアップクラッチLUを備えているが、そのロックアップクラッチLUを備えていなくても差し支えない。また、トルクコンバータ16も必須ではない。
 また、前述の実施例1において、図6のフローチャートではSA2の次にSA3が実行されるが、SA2とSA3との実行順序が入れ替わっていてもよく、例えば、SA3の次にSA2が実行されても差し支えない。
 また、前述の実施例1において、前記フリーラン時推定車両減速度GFrdが前記フリーラン開始時目標車両減速度Grdtに近いほど、前記フリーラン制御が実行され易くなるが、そのようにフリーラン制御が実行され易くなるか否かは種々の判別方法によって判別できる。例えば、少なくとも同じ車速条件で、異なる勾配の走行路を車両8が走行する場合に、フリーラン時推定車両減速度GFrdとフリーラン開始時目標車両減速度Grdtとの差(車両減速度差DGrd)が小さくなるほどフリーラン制御が実行される回数が増加していれば、フリーラン時推定車両減速度GFrdがフリーラン開始時目標車両減速度Grdtに近いほどフリーラン制御が実行され易くなることが判別できる。
 また、前述した複数の実施例は、例えば優先順位を設けるなどして、相互に組み合わせて実施することができる。例えば、実施例1と実施例2とが組み合わせられて実施された場合には、図6のフローチャートのSA5にて前記フリーラン制御が開始された場合に、図8のフローチャートのSB1の判断が肯定される。
8,200:ハイブリッド車両(車両)
12:エンジン
24:駆動輪
58,160:電子制御装置(車両用走行制御装置)
202:遊星歯車装置(動力断続装置)
MG:電動機
K0:エンジン断続用クラッチ(動力断続装置)
MG1:第1電動機(動力断続装置)
MG2:第2電動機(電動機)
 

Claims (7)

  1.  エンジンと駆動輪との間の動力伝達を遮断する動力断続装置を備えた車両において、惰性走行中に前記動力断続装置により前記動力伝達を遮断すると共に前記エンジンを停止させるフリーラン制御を実行する車両用走行制御装置であって、
     前記フリーラン制御を開始する前に、車速に基づいて前記フリーラン制御開始時の目標車両減速度を決定すると共に、前記フリーラン制御を開始した時の推定車両減速度を推定し、
     前記推定車両減速度が前記フリーラン制御開始時の目標車両減速度に近いほど、前記フリーラン制御が実行され易くなる
     ことを特徴とする車両用走行制御装置。
  2.  前記推定車両減速度と前記フリーラン制御開始時の目標車両減速度との差が予め定められた減速度差判定値よりも小さい場合に、前記フリーラン制御を実行する
     ことを特徴とする請求項1に記載の車両用走行制御装置。
  3.  前記車両が走行する走行路の勾配に基づいて前記推定車両減速度を推定し、
     前記走行路の勾配に基づいて前記フリーラン制御開始時の目標車両減速度を決定する
     ことを特徴とする請求項1又は2に記載の車両用走行制御装置。
  4.  前記走行路の下り勾配が大きいほど、前記フリーラン制御開始時の目標車両減速度が小さい
     ことを特徴とする請求項3に記載の車両用走行制御装置。
  5.  前記走行路が上り勾配である場合には、前記走行路が上り勾配ではない場合と比較して、前記フリーラン制御が実行され易くなる
     ことを特徴とする請求項3又は4に記載の車両用走行制御装置。
  6.  前記フリーラン制御開始時の目標車両減速度が、前記惰性走行中の前記フリーラン制御開始前の車両減速度であるものとして、前記フリーラン制御を実行するか否かの判断をする
     ことを特徴とする請求項1又は2に記載の車両用走行制御装置。
  7.  前記車両は、車両制動力を発生する電動機を備えており、
     前記フリーラン制御を開始した場合には、実際の車両減速度が前記フリーラン制御中の目標車両減速度に近付くように前記電動機の車両制動力を制御する
     ことを特徴とする請求項1から6の何れか1項に記載の車両用走行制御装置。
     
PCT/JP2011/069093 2011-08-24 2011-08-24 車両用走行制御装置 WO2013027288A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2011/069093 WO2013027288A1 (ja) 2011-08-24 2011-08-24 車両用走行制御装置
CN201180072957.1A CN103748379B (zh) 2011-08-24 2011-08-24 车辆用行驶控制装置
DE112011105550.1T DE112011105550B4 (de) 2011-08-24 2011-08-24 Fahrzeug-Fahrsteuervorrichtung
US14/186,892 US9031727B2 (en) 2011-08-24 2014-02-21 Vehicle travel control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/069093 WO2013027288A1 (ja) 2011-08-24 2011-08-24 車両用走行制御装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/186,892 Continuation-In-Part US9031727B2 (en) 2011-08-24 2014-02-21 Vehicle travel control apparatus

Publications (1)

Publication Number Publication Date
WO2013027288A1 true WO2013027288A1 (ja) 2013-02-28

Family

ID=47746068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069093 WO2013027288A1 (ja) 2011-08-24 2011-08-24 車両用走行制御装置

Country Status (4)

Country Link
US (1) US9031727B2 (ja)
CN (1) CN103748379B (ja)
DE (1) DE112011105550B4 (ja)
WO (1) WO2013027288A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072044A (ja) * 2013-10-03 2015-04-16 三菱電機株式会社 車両の制御装置
DE102017105382A1 (de) 2016-04-28 2017-11-02 Toyota Jidosha Kabushiki Kaisha Fahrzeugsteuerungsvorrichtung
US9969397B2 (en) 2013-12-17 2018-05-15 Toyota Jidosha Kabushiki Kaisha Control device for vehicle

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014211502A1 (de) * 2014-06-16 2015-12-17 Continental Automotive Gmbh Vorrichtung und Verfahren zur Regelung eines Antriebsmomentes eines Hybridkraftfahrzeuges
KR101628495B1 (ko) * 2014-10-13 2016-06-08 현대자동차주식회사 친환경자동차의 타행 주행 유도 장치와 방법
US9333974B1 (en) * 2015-01-15 2016-05-10 Ford Global Technologies, Llc System and method for improving driveline operation
EP3954917B1 (en) * 2015-02-25 2023-05-03 Denso Corporation Vehicle control device for controlling inertia operation of vehicle
JP6319357B2 (ja) * 2016-04-27 2018-05-09 マツダ株式会社 車両の制御装置
JP6528743B2 (ja) * 2016-08-26 2019-06-12 トヨタ自動車株式会社 車両の制御装置
CN107867165A (zh) * 2016-09-28 2018-04-03 比亚迪股份有限公司 用于车辆的动力驱动系统以及车辆
CN109878518B (zh) 2017-12-04 2021-08-17 京东方科技集团股份有限公司 用于控制车辆行驶的装置及方法
JP6852696B2 (ja) * 2018-02-26 2021-03-31 トヨタ自動車株式会社 車両のエンジン始動制御装置
JP6607984B2 (ja) * 2018-03-05 2019-11-20 本田技研工業株式会社 動力装置
KR102474613B1 (ko) * 2018-08-23 2022-12-06 현대자동차주식회사 차량의 어드밴스 관성주행제어방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09112680A (ja) * 1995-10-12 1997-05-02 Nissan Motor Co Ltd 無段変速機の変速制御装置
JPH11280879A (ja) * 1998-03-30 1999-10-15 Nissan Motor Co Ltd 無段変速機の変速制御装置
JP2010209902A (ja) * 2009-03-12 2010-09-24 Toyota Motor Corp 車両用制御装置

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0937407A (ja) * 1995-07-18 1997-02-07 Toyota Motor Corp 回生制動制御装置
US5722500A (en) * 1995-10-12 1998-03-03 Nissan Motor Co., Ltd. Continuously variable transmission control apparatus
JP4195741B2 (ja) * 1998-08-26 2008-12-10 本田技研工業株式会社 車両の走行制御方法
US6672415B1 (en) * 1999-05-26 2004-01-06 Toyota Jidosha Kabushiki Kaisha Moving object with fuel cells incorporated therein and method of controlling the same
JP4427856B2 (ja) * 2000-02-24 2010-03-10 アイシン精機株式会社 車両用制動制御装置
JP3475179B2 (ja) * 2001-02-06 2003-12-08 日野自動車株式会社 クラッチ制御装置
WO2002094601A2 (de) * 2001-05-21 2002-11-28 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Steuerverfahren für kraftfahrzeuge mit automatisierter kupplunsvorrichtung
JP3803269B2 (ja) * 2001-08-07 2006-08-02 ジヤトコ株式会社 パラレルハイブリッド車両
JP2003074682A (ja) * 2001-08-31 2003-03-12 Fuji Heavy Ind Ltd 無段変速機の制御装置
JP3712652B2 (ja) * 2001-09-28 2005-11-02 ジヤトコ株式会社 パラレルハイブリッド車両
DE10162017A1 (de) * 2001-12-18 2003-07-10 Bosch Gmbh Robert Vorrichtung und Verfahren zur Regelung der Fahrgeschwindigkeit eines Fahrzeugs
US20030184152A1 (en) * 2002-03-25 2003-10-02 Ford Motor Company Regenerative braking system for a hybrid electric vehicle
JP3941058B2 (ja) * 2003-06-12 2007-07-04 本田技研工業株式会社 駆動装置
JP3701660B2 (ja) * 2003-07-04 2005-10-05 本田技研工業株式会社 ハイブリッド車両の制御装置
EP1493604B1 (en) * 2003-07-04 2013-09-18 Honda Motor Co., Ltd. Control apparatus for hybrid vehicle
JP2005164010A (ja) * 2003-12-05 2005-06-23 Toyota Motor Corp 車両の減速制御装置
JP2005162175A (ja) * 2003-12-05 2005-06-23 Toyota Motor Corp 車両の減速制御装置
JP3915774B2 (ja) * 2003-12-05 2007-05-16 トヨタ自動車株式会社 車両の減速制御装置
JP4175291B2 (ja) * 2004-05-12 2008-11-05 トヨタ自動車株式会社 車両の減速制御装置
JP4086043B2 (ja) * 2004-07-06 2008-05-14 トヨタ自動車株式会社 ハイブリッド車およびその走行抵抗の測定方法
US7383115B2 (en) * 2004-08-30 2008-06-03 Toyota Jidosha Kabushiki Kaisha Vehicle deceleration control apparatus
JP2006094589A (ja) * 2004-09-21 2006-04-06 Toyota Motor Corp 車両の減速度制御装置
US8061463B2 (en) * 2004-11-25 2011-11-22 Honda Motor Co., Ltd. Control system for hybrid vehicle
JP4655723B2 (ja) * 2005-03-31 2011-03-23 トヨタ自動車株式会社 車両およびその制御方法
JP4501790B2 (ja) * 2005-06-15 2010-07-14 トヨタ自動車株式会社 車両の減速度制御装置
JP2007187090A (ja) * 2006-01-13 2007-07-26 Toyota Motor Corp 速度維持制御装置
JP4677945B2 (ja) * 2006-04-24 2011-04-27 トヨタ自動車株式会社 車両用走行制御装置
JP2007296958A (ja) * 2006-04-28 2007-11-15 Toyota Motor Corp 車両の制御装置
US8235191B2 (en) * 2007-06-12 2012-08-07 Schaeffler Technologies AG & Co. KG Force transfer device, a drive train with force transfer device, and a method for controlling the operation of a force transfer device in a drive train
JP5304274B2 (ja) * 2009-01-29 2013-10-02 日産自動車株式会社 車両用制動制御装置
DE102009028242A1 (de) * 2009-08-05 2011-02-10 Zf Friedrichshafen Ag Verfahren zur Steuerung eines Roll- bzw. Segelmodus eines Fahrzeuges
CN102770320B (zh) * 2010-03-30 2015-02-18 爱信艾达株式会社 车辆用变速装置
JP5177277B2 (ja) * 2010-09-09 2013-04-03 トヨタ自動車株式会社 変速機の制御装置
US9493148B2 (en) * 2011-04-13 2016-11-15 Ford Global Technologies, Llc Torque modulation in a hybrid vehicle downshift during regenerative braking
JP5622050B2 (ja) * 2011-04-18 2014-11-12 アイシン・エィ・ダブリュ株式会社 車両用駆動装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09112680A (ja) * 1995-10-12 1997-05-02 Nissan Motor Co Ltd 無段変速機の変速制御装置
JPH11280879A (ja) * 1998-03-30 1999-10-15 Nissan Motor Co Ltd 無段変速機の変速制御装置
JP2010209902A (ja) * 2009-03-12 2010-09-24 Toyota Motor Corp 車両用制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072044A (ja) * 2013-10-03 2015-04-16 三菱電機株式会社 車両の制御装置
US9969397B2 (en) 2013-12-17 2018-05-15 Toyota Jidosha Kabushiki Kaisha Control device for vehicle
DE102017105382A1 (de) 2016-04-28 2017-11-02 Toyota Jidosha Kabushiki Kaisha Fahrzeugsteuerungsvorrichtung
JP2017198173A (ja) * 2016-04-28 2017-11-02 トヨタ自動車株式会社 車両制御装置
US10124803B2 (en) 2016-04-28 2018-11-13 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus
DE102017105382B4 (de) * 2016-04-28 2020-11-05 Toyota Jidosha Kabushiki Kaisha Fahrzeugsteuerungsvorrichtung

Also Published As

Publication number Publication date
US20140172217A1 (en) 2014-06-19
DE112011105550T5 (de) 2014-04-30
US9031727B2 (en) 2015-05-12
CN103748379B (zh) 2016-06-22
DE112011105550B4 (de) 2018-01-11
CN103748379A (zh) 2014-04-23

Similar Documents

Publication Publication Date Title
WO2013027288A1 (ja) 車両用走行制御装置
JP3712652B2 (ja) パラレルハイブリッド車両
KR101558812B1 (ko) 하이브리드 차량의 타행 주행시 모터 토크 제어 방법
JP5045431B2 (ja) ハイブリッド車両のエンジン始動制御装置
EP2639130B1 (en) Hybrid vehicle control device
JP5176421B2 (ja) ハイブリッド車両の制御装置
CN103596827B (zh) 车辆的控制装置
JP5305576B2 (ja) 車両の制御装置
JP2002213266A (ja) 車両の駆動力制御装置
JP2007261442A (ja) ハイブリッド車両の運転モード遷移制御装置
JP2007069790A (ja) ハイブリッド車両のエンジン始動制御装置
JP5703689B2 (ja) 車両用走行制御装置
JP2008290492A (ja) ハイブリッド車両の惰性走行制御装置
JP2008154394A (ja) 車両およびその制御方法
JP2010143512A (ja) ハイブリッド車両の制御装置
JP2009214580A (ja) ハイブリッド車およびその制御方法
JP5104061B2 (ja) 車両の変速制御装置
JP2000170903A (ja) パワートレーンの制御装置
JP5618007B2 (ja) 車両用走行制御装置
JP5761327B2 (ja) ハイブリッド車両の制御装置
JP3925723B2 (ja) パラレルハイブリッド車両
JP2007313959A (ja) ハイブリッド車両の制御装置及びハイブリッド車両の制御方法。
JP2001169402A (ja) 車両の回生制御装置
JP5703687B2 (ja) 車両の変速制御装置
JP2012091620A (ja) ハイブリッド車両のエンジン始動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871245

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013529822

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120111055501

Country of ref document: DE

Ref document number: 112011105550

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871245

Country of ref document: EP

Kind code of ref document: A1