WO2013012040A1 - 溶融ガラスの製造方法およびガラス製品の製造方法 - Google Patents

溶融ガラスの製造方法およびガラス製品の製造方法 Download PDF

Info

Publication number
WO2013012040A1
WO2013012040A1 PCT/JP2012/068351 JP2012068351W WO2013012040A1 WO 2013012040 A1 WO2013012040 A1 WO 2013012040A1 JP 2012068351 W JP2012068351 W JP 2012068351W WO 2013012040 A1 WO2013012040 A1 WO 2013012040A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle size
granulated
granulated body
molten glass
glass
Prior art date
Application number
PCT/JP2012/068351
Other languages
English (en)
French (fr)
Inventor
伸広 篠原
康弘 国狭
智 大川
小野田 仁
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP12815440.8A priority Critical patent/EP2735549B1/en
Priority to KR1020137033521A priority patent/KR101965007B1/ko
Priority to JP2013524746A priority patent/JP5920350B2/ja
Priority to CN201280034587.7A priority patent/CN103648991B/zh
Publication of WO2013012040A1 publication Critical patent/WO2013012040A1/ja
Priority to US14/161,056 priority patent/US20140130547A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B1/00Preparing the batches
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B1/00Preparing the batches
    • C03B1/02Compacting the glass batches, e.g. pelletising
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • C03B3/026Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet by charging the ingredients into a flame, through a burner or equivalent heating means used to heat the melting furnace
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for producing a molten glass by an air melting method using a granulated body, and a method for producing a glass product using the method for producing the molten glass.
  • a glass product is manufactured by using a glass melting furnace to convert a glass raw material into molten glass and solidifying and molding the glass material into a predetermined shape.
  • a glass melting furnace to convert a glass raw material into molten glass and solidifying and molding the glass material into a predetermined shape.
  • particles (granulated material) composed of a mixture of glass raw materials are heated and melted in a gas phase atmosphere to form molten glass particles, and then the molten glass particles are accumulated to form a liquid phase (molten glass).
  • a technique called an in-air melting method has been proposed (see, for example, Patent Document 1 and Non-Patent Document 1).
  • the granulated body is conveyed to a burner with air or the like, and the granulated body is melted in the air with a flame to be vitrified. It is not preferable that dust is generated in these processes. For example, if fine particles are contained in the granulation body supplied to the air melting furnace, the fine particles become dust. Moreover, when the strength of the granulated body is insufficient, a part of the granulated body is collapsed during transportation, or particles on the surface of the granulated body are peeled off to be pulverized, and the fine powder becomes dust.
  • the dust Since the dust is likely to fly up and scatter in the air melting furnace or in the air current conveying device for air conveying the granulated material, it is easily discharged outside the air melting furnace. For this reason, when a granulated body that easily forms dust is supplied to the air melting furnace, a large amount of dust enters the exhaust path, and therefore the filter is easily clogged. Moreover, the composition of the molten glass obtained by the in-flight melting method varies, and the composition of the molten glass tends to be non-uniform.
  • the present invention provides a method for producing a molten glass capable of suppressing the generation of dust when producing molten glass by an air melting method, and a method for producing a glass product using the method for producing molten glass. It is aimed.
  • the method for producing a molten glass of the present invention comprises forming a molten glass particle by melting a granulated material of a glass raw material mixture in a gas phase atmosphere at least a part of the granulated particle.
  • the molten glass particles are accumulated to form a molten glass.
  • the granulated body contains silica sand as the glass raw material, (1)
  • the granulated material is sieved using a sieve having an opening of 1 mm, and the granulated material that has passed through the sieve is measured by a dry laser diffraction scattering method.
  • D50 is 80 to 800 ⁇ m
  • the average particle diameter of silica sand in the granulated body is 1 to 40 ⁇ m
  • D10 representing a particle size of 10% of the cumulative volume from the small particle size side and a cumulative volume of 90
  • the ratio D90 / D10 with respect to D90 representing a particle size of 10% is 10 or more.
  • the bulk density of the granulated body measured by a mercury intrusion method is 50% or more.
  • the number of peaks in the particle size distribution curve obtained by measuring the granulated body by a dry laser diffraction scattering method is one.
  • the content of particles having a particle size of 48 ⁇ m or less is preferably 5% by volume or less.
  • the crushing strength of the granulated body is preferably 1 MPa or more.
  • the granulated body is preferably a granulated body produced by mixing glass raw materials and then granulating the mixture without crushing.
  • the granulated body is preferably a granulated body produced by granulation by a rolling granulation method.
  • the granulated body is also preferably a granulated body produced by mixing glass raw materials, pulverizing the mixture, and granulating the mixture.
  • the granulated body is preferably a granulated body produced by granulation by a spray dry granulation method.
  • this invention provides the manufacturing method of glass products which shape
  • the method for producing a molten glass of the present invention when the molten glass is produced by an air melting method, generation of dust is suppressed, so that a molten glass having a uniform composition is obtained, and a uniform high glass composition is obtained. A quality glass product is obtained.
  • the granulated body in the present invention means an aggregate of particles (referred to as granulated particles in the present invention) in which a plurality of particles (referred to as constituent particles in the present invention) are integrally aggregated.
  • D50 representing the average particle diameter of particles is a median diameter of 50% cumulative volume in a particle size distribution curve measured using a dry or wet laser diffraction scattering method.
  • D10 represents the particle size of 10% cumulative volume from the small particle size side in the particle size distribution curve
  • D90 represents the particle size of 90% cumulative volume from the small particle size side in the particle size distribution curve.
  • D1 represents the particle size of 1% cumulative volume from the small particle size side in the particle size distribution curve
  • D99 represents the particle size of 99% cumulative volume from the small particle size side in the particle size distribution curve.
  • the dry method for measuring the particle size distribution means measuring the particle size distribution of a powder sample using a laser diffraction scattering method.
  • the wet method for measuring the particle size distribution is a state in which a powder sample is dispersed at a rate of 0.01 to 0.1 g with respect to 100 mL of water at 20 ° C., and the particle size distribution is measured using a laser diffraction scattering method. Means to measure.
  • the particle size distribution curve measured by the wet laser diffraction scattering method does not include components dissolved in water under the above conditions.
  • ⁇ Glass composition> the components in the glass are represented by oxides such as B 2 O 3 , SiO 2 , Al 2 O 3 , MgO, CaO, SrO, BaO, Na 2 O, and the content of each component is in terms of oxide Expressed in mass ratio (mass%).
  • a glass composition says the glass composition of solid glass, and the glass composition of a molten glass is shown with the glass composition of the glass which solidified the molten glass.
  • the molten glass or glass product in the present invention is not particularly limited as long as the composition (glass composition) contains SiO 2 .
  • soda lime glass having a composition centered on SiO 2 , Na 2 O, and CaO
  • borosilicate glass containing silicon oxide as a main component and containing a boron component may be used.
  • the borosilicate glass may be an alkali-free borosilicate glass that does not substantially contain an alkali metal oxide, or may contain an alkali metal oxide.
  • the alkali-free glass is glass that does not substantially contain an alkali metal oxide.
  • the proportion of the alkali metal oxide in the glass composition is preferably 0.1% by mass or less, and particularly preferably 0.02% by mass or less. The following are examples of preferred glass compositions.
  • SiO 2 45 to 85%, Na 2 O: 1 to 25%, CaO: 0 to 25%, Al 2 O 3 : 0 to 20%, K 2 O: 0 to 15%, MgO: 0 to 10% are preferable, SiO 2: 50 ⁇ 75%, Na 2 O: 1 ⁇ 20%, CaO: 1 ⁇ 18%, Al 2 O 3: 0 ⁇ 11%, K 2 O: 0 ⁇ 13%, MgO: 0 ⁇ 8% is More preferred.
  • the glass composition of the alkali-free borosilicate glass is SiO 2 : 40 to 85%, Al 2 O 3 : 1 to 25%, B 2 O 3 : 1 to 20%, MgO: 0 to 10%, CaO: 0 to 17%, SrO: 0 to 24%, BaO: 0 to 30%, R 2 O (R represents an alkali metal): preferably less than 0.1%, SiO 2 : 45 to 70%, Al 2 O 3 : 10 to 22%, B 2 O 3 : 5 to 16%, MgO: 0 to 7%, CaO: 0 to 14%, SrO: 0.5 to 13% BaO: 0 to 15%, R 2 O (R represents an alkali metal): More preferably less than 0.1%.
  • the glass composition of the borosilicate glass containing an alkali metal is SiO 2 : 45 to 85%, Al 2 O 3 : 2 to 20%, B 2 O 3 : 1 to 15%, MgO: 0 to 10%, CaO: 0 to 10%, SrO: 0 to 9%, BaO: 0 to 9%, R 2 O (R represents an alkali metal): 2 to 15% are preferable, SiO 2 : 50 to 82%, Al 2 O 3 : 2 to 20%, B 2 O 3 : 2 to 13%, MgO: 0 to 5%, CaO: 0 to 9%, SrO: 0 to 6%, BaO : 0 to 2%, R 2 O (R represents an alkali metal): 4 to 15% is more preferable.
  • the glass raw material is a compound that can be an oxide shown in the glass composition in the manufacturing process of molten glass. Specifically, an oxide shown in the glass composition or a compound that can be converted to the oxide by thermal decomposition (chloride, hydroxide, carbonate, sulfate, nitrate, etc.) is used.
  • the composition of the glass raw material mixture is designed to substantially match the target glass composition in terms of oxide. In the case of producing a glass containing a volatile component such as boron oxide, the composition of the glass raw material is determined in consideration of the volatilization amount of the volatile component in the glass production process.
  • the amount of the boron source is set to be larger by an amount considering the volatile content than the boron oxide content of the target borosilicate glass.
  • a glass raw material mixture is normally used with a powder form.
  • the water-soluble compound may be used in a state of being dissolved in water in advance.
  • a compound that dissolves in 100 mL of water at 20 ° C. is referred to as a water-soluble component, and a compound that is less than 1.0 g is referred to as a water-insoluble component.
  • the silicon source is a compound that can be a SiO 2 component in the manufacturing process of molten glass.
  • at least silica sand is used as the silicon source. It is preferred that all of the silicon source is silica sand.
  • Silica sand is a water-insoluble component.
  • the content of silica sand in the glass raw material mixture is preferably 40% by mass or more, and more preferably 45% by mass or more. Although an upper limit is decided according to the kind of compound used as the glass composition to obtain and the oxide which forms a glass composition, it is about 70 mass% substantially.
  • An aluminum source is a compound that can be an Al 2 O 3 component in the manufacturing process of molten glass.
  • Aluminum oxide, aluminum hydroxide and the like are preferably used. These may be used alone or in combination of two or more.
  • Aluminum oxide and aluminum hydroxide are both water-insoluble components.
  • the boron source is a compound that can be a B 2 O 3 component in the manufacturing process of molten glass.
  • Boric acids such as orthoboric acid (H 3 BO 3 ), metaboric acid (HBO 2 ), and tetraboric acid (H 2 B 4 O 7 ) are preferably used. Of these, orthoboric acid is preferred because it is inexpensive and easily available.
  • boric acid and a boron source other than boric acid may be used in combination. Examples of boron sources other than boric acid include boric oxide (B 2 O 3 ) and colemanite. These may be used alone or in combination of two or more. Among these, boric acid and boron oxide are water-soluble components, and colemanite is a water-insoluble component. Colemanite is both a boron source and a calcium source.
  • a magnesium source is a compound that can become an MgO component during the manufacturing process of molten glass. Examples include magnesium carbonate, sulfate, nitrate, oxide, hydroxide, chloride, and fluoride. These may be used alone or in combination of two or more. Among these, water-soluble components are MgSO 4 , Mg (NO 3 ) 2 and MgCl 2 , and water-insoluble components are MgCO 3 , MgO, Mg (OH) 2 and MgF 2 . MgSO 4 , Mg (NO 3 ) 2 and MgCl 2 are usually present as hydrates.
  • hydrates are MgSO 4 .7H 2 O, Mg (NO 3 ) 2 .6H 2 O, MgCl 2 .7H 2 O.
  • magnesium chloride, magnesium sulfate, and magnesium fluoride are also fining agents.
  • Dolomite (ideal chemical composition: CaMg (CO 3 ) 2 ) can also be used. Dolomite is both a magnesium source and a calcium source. Dolomite is a water-insoluble component.
  • the alkaline earth metal in the present invention refers to Sr, Ca, or Ba.
  • the alkaline earth metal source is a compound that can be SrO, CaO, or BaO during the manufacturing process of molten glass.
  • Examples of the alkaline earth metal source include carbonates, sulfates, nitrates, oxides, hydroxides, chlorides, and fluorides of alkaline earth metals. These may be used alone or in combination of two or more.
  • water-soluble components are chlorides and nitrates of each alkaline earth metal, and barium hydroxide Ba (OH) 2 .8H 2 O and strontium hydroxide Sr (OH) 2 .8H 2 O.
  • the water-insoluble components are calcium hydroxide Ca (OH) 2 , carbonates, sulfates and fluorides of each alkaline earth metal.
  • the oxide reacts with water to form a hydroxide.
  • Alkaline earth metal sulfates, chlorides and fluorides are also fining agents.
  • the alkali metal in the present invention refers to Na, K, and Li.
  • the alkali metal source is a compound that can be Na 2 O, K 2 O, Li 2 O during the manufacturing process of molten glass.
  • Examples of the alkali metal source include alkali metal carbonates, sulfates, nitrates, oxides, hydroxides, chlorides, and fluorides. These may be used alone or in combination of two or more. Among these, all except lithium fluoride LiF are water-soluble components. The oxide reacts with water to form a hydroxide. Alkali metal sulfates, chlorides and fluorides are also fining agents.
  • the granulated body in the present invention is obtained by granulating a raw material composition containing a plurality of glass raw materials. That is, the granulated body is a granulated body of a glass raw material mixture including a plurality of glass raw materials that can be glass having a target glass composition.
  • the glass raw material mixture used for granulation may contain, as necessary, a refining agent, a colorant, a melting aid, an opacifier, and the like as auxiliary materials.
  • the proportion of the glass raw material in the dry solid content of the glass raw material mixture used for granulation is preferably 90% by mass or more, and more preferably 95% by mass or more. It may be 100% by mass.
  • the granulated body in the present invention is prepared by mixing all necessary glass raw materials into a glass raw material mixture, and appropriately using a known granulation method for the glass raw material mixture (which may contain auxiliary raw materials as described above). It is manufactured and granulated.
  • the granulation method using water the water-soluble glass raw material can be contained in the glass raw material mixture in the form of an aqueous solution.
  • the process from when the glass raw material is mixed until the granulated body is obtained is hereinafter referred to as a granulation process.
  • a granulation process When using the glass raw material ground to the required particle size in advance, it is not necessary to grind the glass raw material mixture in the granulation step.
  • the glass raw material mixture is first pulverized in the granulation step and then granulated.
  • the granulation method include a rolling granulation method, a fluidized bed granulation method, an extrusion granulation method, a spray dry granulation method, and a freeze drying method.
  • the rolling granulation method can be used conveniently because mixing and granulation can be performed continuously, and the spray dry granulation method can granulate a large amount of raw materials.
  • a rolling granulation method and a spray dry granulation method are preferable.
  • a glass raw material mixture is put in a container of a rolling granulator, and a predetermined amount of water is sprayed while mixing and rolling and stirring by vibrating and / or rotating the container. And granulating.
  • the rolling granulator include an Eirich intensive mixer (trade name: manufactured by Eirich Co.) and a Laedige mixer (trade name: manufactured by Laedige). After granulating with a rolling granulator, it is preferable to heat-dry the resulting particles.
  • the spray dry granulation method for example, water is supplied to a glass raw material mixture and stirred to prepare a raw material slurry, and the raw material slurry is sprayed at a high temperature of about 200 to 500 ° C. using a spraying means such as a spray dryer.
  • a granulated body is obtained by spraying in an atmosphere and drying and solidifying.
  • the glass raw material which is not grind
  • a raw material slurry consisting of a glass raw material mixture and water is obtained, and in the case of a glass raw material mixture powder obtained by performing pulverization and stirring in a dry manner, water is added thereto and stirred.
  • the raw material slurry can be obtained.
  • the particle size at the time of mixing and the obtained granule The particle sizes are believed to be substantially consistent. Therefore, in the case of silica sand, the particle size distribution of the silica sand particles in the granulate is considered to be substantially equal to the particle size distribution of the silica sand used as the glass raw material, and the particle size distribution before mixing with other glass raw materials. Is measured, the measured value can be made the particle size distribution of the silica sand particles in the granulated body.
  • the granulated body in the present invention may be one obtained by sieving and removing coarse particles as necessary after the granulation step.
  • the recovery rate when the granulated body in the present invention is sieved using a sieve having an opening of 1 mm is preferably 60% by mass or more, and 80% by mass. % Or more is more preferable.
  • the granulated product obtained in the granulation step is preliminarily sieved to remove coarse particles as the granulated product in the present invention.
  • the sieve opening used when sieving in advance is preferably 1 mm or less, more preferably 500 ⁇ m to 1 mm.
  • the collection rate of sieving is the ratio (unit: mass%) of the mass of the granulated material that has passed through the sieving to the total mass of the granulated material subjected to sieving.
  • a granulated material satisfying the following conditions (1) to (3) is used when producing a molten glass by an air melting method.
  • a granule that satisfies the conditions (1) to (3) and further satisfies one or more of the following conditions (4) to (7) is preferable.
  • the granulated material is sieved using a sieve having an opening of 1 mm, and the granulated material that has passed through the sieve is measured by a dry laser diffraction scattering method (hereinafter sometimes abbreviated as a dry measurement method).
  • D50 representing the cumulative volume median diameter (hereinafter referred to as D50 of the granulated product) is 80 to 800 ⁇ m.
  • the granulated body has a D50 of 80 ⁇ m or more, the content of fine particles having a particle diameter of 50 ⁇ m or less, which is dust, is small, and thus generation of dust is easily suppressed.
  • the air melting method a part or all of the granulated material is melted by flying in a burner flame.
  • D50 of the granulated body is 800 ⁇ m or less, it is easy to melt when heated. Further, it is considered that the granulated body is subjected to a thermal shock when entering the burner flame, and the larger the particle size of the granulated body, the more likely to break due to the thermal shock.
  • the granulated body When the granulated body has a D50 of 800 ⁇ m or less, the granulated body is not easily broken in the air melting furnace, so that generation of dust can be suppressed.
  • the preferable range of D50 of the granulated body is 90 to 800 ⁇ m, and more preferably 100 to 700 ⁇ m.
  • the average particle diameter of silica sand in the granulated body is 1 to 40 ⁇ m.
  • the average particle diameter of the silica sand refers to D ave in D50 or (II) in the later (I). If the average particle size of the silica sand is less than 1 ⁇ m, it is not preferable because it costs high to pulverize the silica sand to such fine particles.
  • the bulk of the raw material may increase, and uniform mixing may be difficult.
  • the average particle size of silica sand is 40 ⁇ m or less, the generation of dust is suppressed because the content ratio of relatively small granulated particles that cause dust and silica sand existing alone is small. That is, in the granulated body, a plurality of silica sand particles are aggregated together with other glass raw material particles to form one granulated body particle. At this time, it is considered that an adhesion force (a force of forming a liquid film between the particles and attracting each other) is exerted between the silica sand particles.
  • silica sand particles having a large particle size are difficult to agglomerate integrally with other silica sand particles due to such adhesion, granulated particles having a small particle size are formed so that only one silica sand particle is contained.
  • Granule particles with such a small particle size not only cause dust, but also reduce the uniformity of the composition between the granule particles, so the uniformity of the composition of the molten glass produced using the granulate Tends to decrease.
  • the preferable range of the average particle size of the silica sand is 3 to 40 ⁇ m, and more preferably 5 to 30 ⁇ m.
  • the average particle size of the silica sand means the following (I) or (II).
  • the silica sand used for the production of the granulated body so that the D50 by the wet measurement method is 1 to 40 ⁇ m, and using the silica sand, the granulated body satisfying the condition (2) can be obtained. can get.
  • the particle size distribution of silica sand used as a glass raw material, and the particle size distribution of silica sand in the granulated product Will be different.
  • the granulated body is observed with an electron beam microanalyzer (EPMA), silica sand in the granulated body is discriminated, and the particle diameter is measured by the method described in JIS R 1670. . Since the particle size distribution measured by this method is based on the number, it is converted into a volume-based particle size distribution using the Scwartz-Saltykov method.
  • the average particle diameter D ave a volume basis obtained from this it can be regarded as a volume cumulative median diameter quartz sand granulates particles (D50).
  • D50 volume cumulative median diameter quartz sand granulates particles
  • volume of the sphere (particle) is calculated from the diameter of the sphere (particle), thereby converting it into a volume-based particle size distribution.
  • the Scwartz-Saltykov method is described in the following document (2) and is publicly known. Reference (2): Satoshi Mizutani, et al., “Ceramic Processing” pp. 195-201 Gihodo Publishing 1985.
  • D10 representing a particle size of 10% of the cumulative volume from the small particle size side and 90% of the cumulative volume
  • the ratio D90 / D10 with respect to D90 representing the particle size is 10 or more. That is, a glass raw material mixture to be granulated and individual raw materials before mixing are measured, and the measurement target is dispersed in water to dissolve water-soluble components, and the remaining water-insoluble particles are A particle size distribution curve is measured by a laser diffraction scattering method in a state dispersed in water, and D90 / D10 is obtained from the measurement result.
  • D90 / D10 can be obtained using the granulated body itself as a measurement target.
  • the glass raw material mixture to be measured may be a glass raw material mixture before granulation if it is granulated without pulverizing the glass raw material mixture, and granulated after pulverizing the glass raw material mixture.
  • pulverization and before granulation is used as a measuring object.
  • the water-insoluble raw material among the raw materials before mixing is individually measured by a wet laser diffraction scattering method.
  • D90 / D10 of the glass raw material mixture can be calculated from the measurement result and the composition of the glass raw material mixture. Further, when the binder component in the granulated body is water-soluble, the granulated body is dispersed in water to dissolve the water-soluble component, and the remaining water-insoluble particles are dispersed in water in the laser. D90 / D10 can be obtained in the same manner by measuring the particle size distribution curve by the diffraction scattering method. The particle size distribution curve thus obtained corresponds to the particle size distribution curve of only the water-insoluble raw material particles among the constituent particles of the granulated body.
  • the D90 / D10 is referred to as D90 / D10 of the constituent particles of the granulated body.
  • the value of D90 / D10 of the constituent particles of the granule when the value of D90 / D10 of the constituent particles of the granule is 10 or more, the effect of improving the density of the granule particles due to the presence of such coarse particles and fine particles can be sufficiently obtained.
  • the upper limit of the D90 / D10 value of the constituent particles of the granulated body is not particularly limited, but the D90 may be 500 ⁇ m or less in that it is easy to satisfy D50 of the granulated body of the above condition (1).
  • the preferable range of the values of D10 to D90 of the constituent particles of the granulated body is 0.5 to 500 ⁇ m, and more preferably 1 to 300 ⁇ m.
  • D90 / D10 of the water-insoluble constituent particles in the pulverized glass raw material mixture is D90 of the constituent particles of the granulated body.
  • / D10 can be regarded as equivalent. Therefore, the above condition (3) is satisfied by adjusting the glass raw material mixture after pulverization so that D90 / D10 in the particle size distribution curve measured by a wet laser diffraction scattering method is 10 or more. it can. For example, what is necessary is just to adjust so that D90 / D10 in the particle size distribution curve of the water-insoluble component which exists in the slurry used for spray drying may be 10 or more.
  • D90 / D10 in the particle size distribution curve obtained by measuring the glass raw material mixture before granulation by a wet laser diffraction scattering method is: It can be regarded as equivalent to D90 / D10 of the constituent particles of the granule. Therefore, the above condition (3) can be satisfied by adjusting the mixing of the water-insoluble raw materials so that D90 / D10 in the particle size distribution curve is 10 or more.
  • the particle size distribution curve is measured by wet laser diffraction scattering method for each water-insoluble raw material, and the content ratio of each water-insoluble raw material in the total of all the water-insoluble raw materials is obtained. From the above, it is possible to calculate a particle size distribution curve for the total of all water-insoluble raw materials in the glass raw material mixture. Therefore, the condition (3) can be satisfied by adjusting the D90 / D10 in the particle size distribution curve to 10 or more when mixing raw materials such as glass raw materials.
  • the bulk density of the granulated body measured by mercury porosimetry is 50% or more.
  • the bulk density of the granule measured by the mercury intrusion method is a value calculated by the following formulas (i) and (ii) using the pore volume value measured by the mercury intrusion method.
  • the material density in the formula (i) is the density of the substance constituting the granulated body, and here it is calculated from the literature value of the composition density of each raw material used for granulation and the composition ratio of each raw material. The density of the mixture was determined and used as the material density.
  • the upper limit of the bulk density of the granulated body is not particularly limited, but is practically about 80% or less.
  • the number of peaks in the particle size distribution curve obtained by measuring the granulated material by a dry laser diffraction scattering method is one.
  • the peak in the particle size distribution curve is a point where the slope of the particle size distribution curve representing the frequency distribution becomes zero within a range from D1 at which the particle size is substantially minimum to D99 at which the particle size is substantially maximum.
  • the particle size distribution curve measured under the following condition (X) satisfies the condition (5) if the number of peaks is one.
  • the second peak appears on the smaller diameter side of the main peak. Therefore, when there is no such second peak and the number of peaks in the particle size distribution curve is one, dust is easily suppressed well.
  • the content of particles having a particle size of 48 ⁇ m or less is 5% by volume or less.
  • the size of the dust is approximately 50 ⁇ m or less. Therefore, a granule having a particle diameter of 48 ⁇ m or less, or fine particles having a particle size of 48 ⁇ m or less generated by breaking the granule easily cause dust. Therefore, in order to better suppress the generation of dust, the content of particles having a particle diameter of 48 ⁇ m in the granulated body is preferably 5% by volume or less, more preferably 3% by volume or less, and zero. Is most preferred.
  • the concentration of the slurry is increased as much as possible (at least the solid content is 30% or more in terms of weight). It is preferable that the feed rate of the slurry is increased, the atomization method is a disk rotation type atomizer, the disk rotation number is not excessively high, or the spraying method is a pressure nozzle method There is a method in which the size of the droplets forming the granulated body is increased within a range where drying is possible, for example, by preventing the pressure from becoming too high. In the case of rolling granulation, fine granulation is performed by preventing the amount of water added from becoming too small, taking a sufficient granulation time, or adding an organic or inorganic binder suitable for granulation. Granules can be reduced.
  • the crushing strength of the granulated body is preferably 1 MPa or more.
  • the value of the crushing strength of the granulated body is obtained by measuring the crushing strength of 50 to 100 granulated particles arbitrarily separated from the granulated body by a method according to JIS R 1639-5. It is an average value of the obtained values (unit: MPa).
  • the crushing strength is 1 MPa or more, it is difficult for the granulated material to be broken in the process of producing molten glass by the air melting method, and generation of fine particles that cause dust is easily suppressed.
  • the granule is destroyed by collision between particles during conveyance of the granule (air conveyance), the granule is destroyed by collision with the passage wall, and the granule is in the burner flame.
  • the granulated body may be destroyed due to a sudden temperature change (thermal shock) when incident, it can be satisfactorily prevented when the crushing strength of the granulated body is 1 MPa or more.
  • the crushing strength of the granulated body is more preferably 2 MPa or more, and further preferably 3 MPa or more.
  • an upper limit is not specifically limited, Actually, it is about 20 MPa or less.
  • the manufacturing method of the molten glass of the present invention is an air melting method. That is, the granulated material is melted at least part of the granulated particles in a gas phase atmosphere to form molten glass particles, and the molten glass particles are accumulated to form a molten glass.
  • the granulated material is introduced into a high-temperature gas phase atmosphere of an air melting apparatus.
  • a well-known apparatus can be used for the air melting apparatus.
  • the molten glass particles melted in the air melting apparatus are accumulated to form a certain amount of molten glass.
  • the molten glass taken out from the air melting apparatus is subjected to molding.
  • melting at least a part of the granulated particles means melting a part or all of the one granulated body for each granulated body.
  • the state in which a part of the granulated particles is melted includes, for example, a state in which the surface of (one) granulated body is melted and the central portion is not sufficiently melted. In the case of this example, the molten glass particles (one piece) are not melted entirely, and there is a portion that is not sufficiently melted at the center.
  • the particles are heated in the process of accumulating and forming a molten glass, so that a homogeneous molten glass can be obtained when subjected to molding.
  • the air melting method it is preferable to melt individual granulation bodies in a gas phase atmosphere to form molten glass particles. Even if some of the granules are not sufficiently melted in the gas phase atmosphere, it is preferable that most of the granules are respectively made into molten glass particles in the gas phase atmosphere.
  • particles generated in a gas phase atmosphere including particles that are not sufficiently melted in the gas phase atmosphere are referred to as molten glass particles.
  • the glass product manufacturing method of the present invention is characterized in that the molten glass obtained by the molten glass manufacturing method of the present invention is molded and slowly cooled.
  • the glass product refers to an article in which a glass that is solid at room temperature and has substantially no fluidity is used for part or all of the glass product, and includes, for example, a glass surface processed.
  • the molten glass obtained by the method for producing molten glass is first formed into a desired shape and then slowly cooled. Then, a glass product is obtained by performing post-processing by a well-known method, such as cutting
  • Molding can be performed by a known method such as a float method, a downdraw method, a fusion method, or the like.
  • the float process is a method of forming molten glass into a plate shape on molten tin.
  • Slow cooling can also be performed by a known method.
  • the use of the granulated product of the present invention can suppress the generation of dust and provide a molten glass or glass product with good composition uniformity.
  • a dry measurement method uses a laser diffraction / scattering particle size / particle size distribution measurement device (Microtrac MT3200: trade name, manufactured by Nikkiso Co., Ltd.), and a wet measurement method uses laser diffraction / A scattering type particle size distribution measuring device (LA-950V2: trade name, manufactured by HORIBA, Ltd.) was used.
  • LA-950V2 trade name, manufactured by HORIBA, Ltd.
  • (A) Average particle diameter of silica sand in granulated body If you produce a granular material in a spray drying granulation method such as the following examples, there is a grinding of the glass raw material mixture before granulation, an average particle diameter D ave in the (II), granulating the same The average particle size of silica sand in the body was used. As the electron microanalyzer, EPMA-1610 (trade name) manufactured by Shimadzu Corporation was used. When a granulated body was produced by the rolling granulation method, D50 of the silica sand used as the glass raw material in the above (I) was measured and used as the average particle diameter of the silica sand in the granulated body. The average particle diameter of the silica sand is expressed as D50 below.
  • [(C) D50 of granulated body] The granulated product is sieved using a sieve having an opening of 1 mm, and the granulated product passing through the sieve is measured by a dry measurement method, and the particle size distribution curve of the granulated product is measured under the condition (X). D50 of the granulated product was determined from the measured particle size distribution curve. [(D) Content of particles of 48 ⁇ m or less], [(e) Number of peaks] The granule was measured for the granule size distribution curve under the above condition (X) by a dry measurement method, and the content of particles of 48 ⁇ m or less of the granulation product from the obtained particle size distribution curve (unit:%) ) And the number of peaks was determined.
  • the granulated body 2 was supplied to the air melting furnace 1 having the structure shown in FIG. 1 at a rate of 40 to 150 kg per hour together with 10 to 70 Nm 3 of carrier air per hour to produce a molten glass 3.
  • the dust discharged from the flue 4 together with the gas and collected in the bag filter and the exhaust duct (not shown) leading to the bag filter was collected.
  • Reference numeral 5 in the figure indicates an air melting burner.
  • the molten glass was produced at an ambient temperature of 1500 to 1550 ° C. for soda lime glass and at an ambient temperature of 1600 to 1660 ° C. for borosilicate glass, and the amount of dust was collected and measured every predetermined time.
  • the supply amount of the granulated material was obtained from the supply rate and time of the granulated material. Furthermore, the ratio (unit: mass%) of the amount of dust with respect to the supply amount of the granulated body was determined and used as the dust generation rate. For some granulations, a small test furnace having the same structure as in FIG. 1 is used to produce 2 to 7 kg per hour together with 1 to 3 Nm 3 carrier air per hour. After supplying the granule and performing a melting test to determine the ratio of the amount of dust to the input amount, melting in the air using the relational expression of the amount of dust generated in the test furnace and the air melting furnace 1 calculated in advance. The dust generation rate was calculated in terms of the amount of dust in the furnace 1.
  • Tables 1 and 2 show the composition of the glass raw materials in each example (unit: mass%. The sum may not be 100 due to rounded significant figures).
  • the average particle size (D50) of each glass raw material before being subjected to the granulation step is also shown. D50 before the granulation step is a value obtained by a wet measurement method.
  • Table 1 is an example of soda-lime glass, and in each example, the target glass composition is SiO 2 : 72% by mass, Al 2 O 3 : 1.8% by mass, Na 2 O: 13.1% by mass, K 2 O: 0.4% by mass, MgO: 4.0% by mass, CaO: 8. 4% by mass.
  • Table 2 is an example of an alkali-free borosilicate glass, and the target glass composition of each example is SiO 2: 59.7 wt%, Al 2 O 3: 17.4 wt%, B 2 O 3: 8.0 wt%, MgO: 3.2 wt%, CaO: 4.0 wt%, SrO: 7 .6% by mass.
  • Examples of the granulation method include spray-dry granulation method (described as S in the table), rolling granulation method using a Roedige mixer (described as L in the table), or rolling granulation method using an Eirich mixer. (Denoted as E in the table).
  • Examples 1 and 2 Spray-dry granulation method
  • Examples 1 and 2 are examples carried out under the same conditions on different days. Good reproducibility was obtained.
  • 1.5 tons of glass raw material having the composition shown in Table 1 was placed in a ball mill container having a capacity of about 8 m 3 in which a spherical stone having a diameter of 50 to 70 mm mainly composed of silica was accommodated so that the volume thereof was about 50%.
  • 1 ton of water passed through a 3 ⁇ m filter was added as a medium, and pulverized and mixed for 16 hours to prepare a raw slurry.
  • the obtained raw material slurry was spray-dried at a speed at which approximately 100 kg of granulated material was obtained per hour under the conditions of an inlet temperature of 260 ° C. and an outlet temperature of 170 ° C. using an atomizer type spray dryer. .
  • the obtained granule was sieved through a sieve having an opening of 500 ⁇ m.
  • the above-mentioned measurements (a) to (h) were performed on the granulated material that passed through the sieve (recovery rate: 100% by mass). The results are shown in FIGS.
  • the horizontal axis is the particle size (unit: ⁇ m)
  • the vertical axis is the frequency (unit: volume%) (hereinafter the same).
  • Example 3 Rolling granulation method (Laedige mixer)] A glass raw material of 30 kg having the composition shown in Table 1 was put into a 130 L capacity Laedige mixer (manufactured by Chuo Kiko Co., Ltd.), and mixed for 3 minutes at a shovel rotational speed of 160 rpm and a chopper rotational speed of 1750 rpm.
  • Example 4 Spray-dry granulation method
  • alumina spheres having a diameter of 20 mm were accommodated so as to be about 50% of the volume.
  • 100 kg of glass raw material having the composition shown in Table 2 and 100 kg of water passed through a 3 ⁇ m filter as a medium were added, and a polyacrylic acid ammonium salt-based dispersant (manufactured by Chukyo Yushi Co., Ltd., product name: Selna D305) was added. After adding 0.5 mass% with respect to the glass raw material, pulverization mixing was performed for 4 hours, and the raw material slurry was obtained.
  • the obtained raw material slurry was spray-dried under a condition of an inlet temperature of 500 ° C. using a pressure nozzle type spray dryer.
  • the obtained granulated material was sieved using a sieve having an opening of 1 mm.
  • the above-mentioned measurements (a) to (h) were performed on the granulated material that passed through the sieve (recovery rate 100 mass%). The results are shown in FIG.
  • Examples 5 and 6 spray dry granulation method
  • 5 tons of glass raw material having the composition shown in Table 2 is placed in a ball mill container having a capacity of about 20 m 3 in which a spherical stone having a diameter of 50 to 80 mm mainly containing silica is accommodated so as to be about 50% of the volume.
  • 5 tons of water passed through a 3 ⁇ m filter was added, and 0.5 mass% of polyacrylic acid ammonium salt dispersant (product name: Aron A-6114, manufactured by Toagosei Co., Ltd.) was added to the glass raw material. Thereafter, the mixture was pulverized and mixed for 12 hours.
  • polyacrylic acid ammonium salt dispersant product name: Aron A-6114, manufactured by Toagosei Co., Ltd.
  • the resulting slurry was diluted by adding 5 tons of water to prepare a raw slurry for spray drying.
  • the obtained raw material slurry was spray-dried at a speed at which approximately 800 kg of granulated material was obtained per hour under the condition of an inlet temperature of 500 ° C. using a pressure nozzle type spray dryer.
  • the obtained granulated material was sieved using a sieve having an opening of 1 mm.
  • the above-mentioned measurements (a) to (h) were performed on the granulated material that passed through the sieve (recovery rate: 100% by mass). The results are shown in FIGS.
  • Examples 7 and 8 rolling granulation method (Eirich mixer)]
  • Eirich mixer a glass raw material of 50 kg having the composition shown in Table 2 was put into an Eirich mixer (R08, manufactured by Nihon Eirich Co., Ltd.) having a capacity of 75 L, and the raw materials were mixed for 30 seconds at a pan rotation speed of 24 rpm and a rotor rotation speed of 500 rpm.
  • 7.1 kg of an aqueous solution adjusted to contain 2% by mass of PVA as a binder (corresponding to 12% by mass in terms of the weight ratio of the aqueous solution to (glass raw material + aqueous solution)) was added, and the rotor rotation speed was adjusted to 1680 rpm. And granulated for 15 minutes.
  • the obtained granulated body was put into a stainless steel container and dried at 120 ° C. for about 12 hours in a hot air dryer. Further, the dried granulated material was sieved through a sieve having an opening of 1 mm. The above-mentioned measurements (a) to (h) were performed on the granulated material that passed through the sieve (recovery rate 90 mass%). The results are shown in FIGS.
  • Example 9 Rolling granulation method (Eirich mixer)
  • Eirich mixer A solution prepared by dissolving 5 times the amount of magnesium chloride hexahydrate and magnesium sulfate heptahydrate (magnesium chloride 17.5 kg, magnesium sulfate 6 kg) in the mixing ratio shown in Table 2 in 68.2 kg of water was prepared in advance.
  • 476.5 kg of raw materials excluding magnesium chloride hexahydrate and magnesium sulfate heptahydrate out of the glass raw materials shown in Table 2 were put into an Erich mixer (product name: RV15, manufactured by Nihon Eirich) with a capacity of 750 L.
  • RV15 manufactured by Nihon Eirich
  • the mixture was mixed for 30 seconds at a pan rotation speed of 10 rpm and a rotor rotation speed of 250 rpm.
  • a solution in which the magnesium chloride hexahydrate and magnesium sulfate heptahydrate were dissolved (solid content 23.5 kg, water 68.2 kg) was added to 91.7 kg (water content 12% by mass with respect to a total of 500 kg of glass raw materials).
  • the rotor speed was increased to 860 rpm and granulation was carried out for 15 minutes. Further, the rotor rotation speed is reduced to 230 rpm, and the granulation operation is performed for 2 minutes (the particle size and the particle shape of the granulation body are adjusted).
  • the obtained raw material slurry was spray-dried at a speed at which approximately 55 kg of granulated material was obtained per hour under the conditions of an inlet temperature of 300 ° C. and an outlet temperature of 160 ° C. using an atomizer type spray dryer. .
  • the obtained granule was sieved through a sieve having an opening of 500 ⁇ m.
  • the above-mentioned measurements (a) to (h) were performed on the granulated material (recovery rate 100 mass%) that passed through the sieve. The results are shown in FIG.
  • a slurry for spray drying was prepared by adding 2.5 tons of water and diluting the obtained raw material slurry.
  • a slurry for spray drying was prepared by adding 5 tons of water to the obtained raw material slurry and diluting it.
  • the obtained slurry for spray drying was spray-dried at a speed at which a granulated body of about 800 kg was obtained per hour under the condition of an inlet temperature of 500 ° C. using a pressure nozzle type spray dryer. .
  • the obtained granule was sieved through a sieve having an opening of 1 mm.
  • the above-mentioned measurements (a) to (h) were performed on the granulated material that passed through the sieve (recovery rate: 100% by mass). The results are shown in FIGS.
  • the obtained granulated body was put into a stainless steel container and dried at 120 ° C. for about 12 hours in a hot air dryer. Further, the dried granulated material was sieved through a sieve having an opening of 1 mm. The above-mentioned measurements (a) to (h) were performed on the granulated material that passed through the sieve (recovery rate 90 mass%). The results are shown in FIG.
  • the rotor rotation speed was again reduced to 300 rpm, and a particle size adjusting operation (for adjusting the particle size and particle shape of the granulated body) was performed for 2 minutes.
  • the obtained granulated body was put into a stainless steel container and dried in a hot air dryer at 120 ° C. for about 8 hours. Further, the dried granulated material was sieved through a sieve having an opening of 1 mm.
  • the above-mentioned measurements (a) to (h) were performed on the granulated material that passed through the sieve (recovery rate 90 mass%). The results are shown in FIG.
  • the granules obtained in Examples 1 to 9 have a small content of particles having a particle size of 48 ⁇ m or less that tend to become dust, and the peak in the particle size distribution curve is One, the bulk density was high, the crushing strength was high, and the dust generation rate was reduced when used in the production of molten glass by the air melting method. The reproducibility of the characteristics of the granulated material was good, and the meltability in the air melting furnace was also good.
  • Comparative Example 1 is an example in which D50 of silica sand in the constituent particles is as large as 56.6 ⁇ m.
  • Comparative Examples 2 to 4 are examples in which the value of D90 / D10 of the constituent particles of the granulated body is smaller than 10. The bulk density of the granulated material was low, and the strength of the granulated particles was low. Further, the content of particles having a particle size of 48 ⁇ m or less in the granulated body is high. When molten glass was produced using this granulated body, a lot of dust was generated, and frequent dust treatment was required.
  • Comparative Examples 5 and 6 are examples in which D50 of silica sand in the constituent particles is as large as 44.5 ⁇ m. Although the content of particles having a particle size of 48 ⁇ m or less in the granulated material was low, two peaks appeared in the particle size distribution curve. When molten glass was produced using this granulated body, a lot of dust was generated, and frequent dust treatment was required.
  • the present invention is a method for producing molten glass by an air melting method, and a glass product is produced from the obtained molten glass.
  • the granulated material of the glass raw material mixture used in the present invention is suitable for mass production of molten glass by an air melting method because it is easy to suppress the generation of dust during its transportation.
  • the entire content of the specification, claims, drawings and abstract of Japanese Patent Application No. 2011-157767 filed on July 19, 2011 is cited here as the disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

 気中溶融法により溶融ガラスを製造する際に、粉塵の発生を抑制できる溶融ガラスの製造方法を提供する。 ケイ砂を含み、下記条件(1)~(3)を満たす造粒体を用いる。(1)造粒体を目開き1mmの篩を用いて篩分けをし、篩を通過した造粒体を乾式によるレーザ回折散乱法で測定した粒度分布曲線において、体積累計メディアン径を表わすD50が100~800μmであり、(2)造粒体中のケイ砂の体積基準の平均粒子径が1~40μmであり、(3)造粒体の構成粒子となる非水溶性粒子を湿式によるレーザ回折散乱法で測定した粒度分布曲線において、小粒径側から体積累計10%の粒径を表わすD10と体積累計90%の粒径を表わすD90との比D90/D10が10以上である。

Description

溶融ガラスの製造方法およびガラス製品の製造方法
 本発明は、造粒体を用いて気中溶融法により溶融ガラスを製造する方法、および該溶融ガラスの製造方法を用いてガラス製品を製造する方法に関する。
 ガラス製品は、一般に、ガラス溶融炉を用いてガラス原料を溶融ガラスとし、所定の形状に固化成形することによって製造されている。しかし、ガラス溶融炉を用いて均質な溶融ガラスを得るには、極めて長期間にわたる溶融状態の保持が必要であり、膨大なエネルギー消費が避けられない。
 この問題を解決するために、ガラス原料の混合物からなる粒子(造粒体)を気相雰囲気中で加熱し溶かして溶融ガラス粒子とし、次いで溶融ガラス粒子を集積して液体相(溶融ガラス)を形成する気中溶融法と呼ばれる技術が提案されている(例えば、特許文献1、非特許文献1参照)。
特開2007-297239号公報
伊勢田 徹、「NEDO先導研究"気中溶解法による革新的省エネルギーガラス溶解技術"の研究成果」NEW GLASS Vol.23 No.4 2008、P.42-45
 かかる気中溶融法を用いてガラス製品を製造する際、気中溶融炉では空気等で造粒体をバーナーまで搬送し、火炎にて該造粒体を気中で溶融させガラス化させるが、これらの過程で粉塵が発生すると好ましくない。
 例えば、気中溶融炉に供給される造粒体に微細な粒子が含まれていると、該微細な粒子が粉塵となる。また造粒体の強度が不十分であると、搬送中に造粒体の一部が崩壊したり、造粒体表面の粒子が剥がれたりして微粉化し、それらの微粉が粉塵となる。
 粉塵は、気中溶融炉内や、造粒体を気流搬送する気流搬送装置内で舞い上がって飛び散りやすいため、気中溶融炉外に排出されやすい。このため、粉塵を形成し易い造粒体が気中溶融炉に供給されると、多量の粉塵が排気径路に入り込むため、フィルタの詰りが生じ易い。また、気中溶融法により得られる溶融ガラスの組成が変動してしまい、溶融ガラスの組成が不均一となりやすい。
 本発明は、気中溶融法により溶融ガラスを製造する際に、粉塵の発生を抑制できる溶融ガラスの製造方法、および該溶融ガラスの製造方法を用いてガラス製品を製造する方法を提供することを目的としている。
 前記課題を解決するために、本発明の溶融ガラスの製造方法は、ガラス原料混合物の造粒体を、気相雰囲気中で前記造粒体粒子の少なくとも一部分を溶融させて溶融ガラス粒子を形成し、前記溶融ガラス粒子を集積して溶融ガラスを形成する、溶融ガラスの製造方法であって、
 前記造粒体が前記ガラス原料としてケイ砂を含み、
 (1)前記造粒体を、目開き1mmの篩を用いて篩分けをし、篩を通過した造粒体を乾式によるレーザ回折散乱法で測定した粒度分布曲線において、体積累計メディアン径を表わすD50が80~800μmであり、
 (2)前記造粒体中のケイ砂の平均粒子径が1~40μmであり、
  ただし、
 (I):ガラス原料を混合した後該混合物を粉砕することなく造粒して製造される造粒体の場合、ガラス原料として使用するケイ砂を湿式によるレーザ回折散乱法で粒度分布曲線を測定し、得られた粒度分布曲線において体積累計メディアン径を表わすD50を前記ケイ砂の平均粒子径とする。
 (II):ガラス原料を混合し、該混合物を粉砕した後造粒して製造される造粒体の場合、製造された造粒体を電子線マイクロアナライザー(EPMA)で観察して、造粒体中のケイ砂を判別し、その粒子径をJIS R 1670に記載されている方法で測定し、該測定により個数基準の粒子径分布を得、これをScwartz-Saltykov法により体積基準の粒子径分布に換算し、得られた体積基準の平均粒子径Daveを前記ケイ砂の平均粒子径とする。
 (3)前記造粒体の構成粒子となる非水溶性粒子を湿式によるレーザ回折散乱法で測定した粒度分布曲線において、小粒径側から体積累計10%の粒径を表わすD10と体積累計90%の粒径を表わすD90との比D90/D10が10以上であることを特徴とする。
 (4)前記造粒体の、水銀圧入法で測定した嵩密度が50%以上であることが好ましい。
 (5)前記造粒体を乾式によるレーザ回折散乱法で測定した粒度分布曲線におけるピークの数が1つであることが好ましい。
 (6)前記造粒体を乾式によるレーザ回折散乱法で測定した粒度分布曲線において、粒径が48μm以下である粒子の含有率が5体積%以下であることが好ましい。
 (7)前記造粒体の圧壊強度が1MPa以上であることが好ましい。
 さらに、前記造粒体は、ガラス原料を混合した後該混合物を粉砕することなく造粒して製造された造粒体であることが好ましい。この場合、前記造粒体は転動造粒法で造粒して製造された造粒体であることが好ましい。
 また、前記造粒体は、ガラス原料を混合し、該混合物を粉砕した後造粒して製造された造粒体であることも好ましい。この場合、前記造粒体はスプレードライ造粒法で造粒して製造された造粒体であることが好ましい。
 また本発明は、本発明の溶融ガラスの製造方法で得られた溶融ガラスを成形し徐冷する、ガラス製品の製造方法を提供する。
 本発明の溶融ガラスの製造方法によれば、気中溶融法により溶融ガラスを製造する際に、粉塵の発生が抑制されるため、均一な組成の溶融ガラスが得られ、ガラス組成の均一な高品質なガラス製品が得られる。
実施例において粉塵発生率の測定に用いた気中溶融炉を模式的に示した図である。 実施例にかかる粒度分布曲線の測定結果を示すグラフである。 実施例にかかる粒度分布曲線の測定結果を示すグラフである。 実施例にかかる粒度分布曲線の測定結果を示すグラフである。 実施例にかかる粒度分布曲線の測定結果を示すグラフである。 実施例にかかる粒度分布曲線の測定結果を示すグラフである。 実施例にかかる粒度分布曲線の測定結果を示すグラフである。 実施例にかかる粒度分布曲線の測定結果を示すグラフである。 実施例にかかる粒度分布曲線の測定結果を示すグラフである。 実施例にかかる粒度分布曲線の測定結果を示すグラフである。 比較例にかかる粒度分布曲線の測定結果を示すグラフである。 比較例にかかる粒度分布曲線の測定結果を示すグラフである。 比較例にかかる粒度分布曲線の測定結果を示すグラフである。 比較例にかかる粒度分布曲線の測定結果を示すグラフである。 比較例にかかる粒度分布曲線の測定結果を示すグラフである。 比較例にかかる粒度分布曲線の測定結果を示すグラフである。
 本発明における造粒体は、複数の粒子(本発明では構成粒子という。)が一体的に凝集した粒子(本発明では造粒体粒子という。)の集合を意味する。
 本発明において、粒子の平均粒径を表すD50とは、乾式または湿式によるレーザー回折散乱法を用いて測定された粒度分布曲線における、体積累計50%のメディアン径である。
 D10とは該粒度分布曲線における、小粒径側から体積累計10%の粒径を表わし、D90とは該粒度分布曲線における、小粒径側から体積累計90%の粒径を表わす。
 D1とは該粒度分布曲線における、小粒径側から体積累計1%の粒径を表わし、D99とは該粒度分布曲線における、小粒径側から体積累計99%の粒径を表わす。
 粒度分布を測定する際の乾式とは、粉体の試料についてレーザー回折散乱法を用いて粒度分布を測定することを意味する。
 粒度分布を測定する際の湿式とは、20℃の水100mLに対して、0.01~0.1gの割合で粉体試料を分散させた状態で、レーザー回折散乱法を用いて粒度分布を測定することを意味する。
 なお、湿式によるレーザ回折散乱法で測定した粒度分布曲線には、前記条件において水に溶解した成分は含まれない。
<ガラス組成>
 本発明において、ガラス中の成分はB、SiO、Al、MgO、CaO、SrO、BaO、NaO等の酸化物で表し、各成分の含有量は酸化物換算の質量割合(質量%)で表す。また、ガラス組成は固体ガラスのガラス組成をいい、溶融ガラスのガラス組成はその溶融ガラスを固化したガラスのガラス組成で示す。
 本発明における溶融ガラスまたはガラス製品は、その組成(ガラス組成)にSiOが含まれているものであればよく特に限定されない。
 例えばSiO、NaO、CaOを中心とした組成を有するソーダ石灰ガラス(ソーダライムガラス)でもよく、酸化ケイ素を主成分とし、ホウ素成分を含有するホウケイ酸ガラスでもよい。ホウケイ酸ガラスは、アルカリ金属酸化物を実質的に含有しない無アルカリのホウケイ酸ガラスでもよく、アルカリ金属酸化物を含有してもよい。なお無アルカリガラスとは、アルカリ金属酸化物を実質的に含有しないガラスである。具体的にはガラス組成中におけるアルカリ金属酸化物の割合は0.1質量%以下が好ましく、0.02質量%以下が特に好ましい。
 以下は好ましいガラス組成の例である。
 ソーダライムガラスのガラス組成(単位:質量%)としては
 SiO:45~85%、NaO:1~25%、CaO:0~25%、Al:0~20%、KO:0~15%、MgO:0~10%、が好ましく、
 SiO:50~75%、NaO:1~20%、CaO:1~18%、Al:0~11%、KO:0~13%、MgO:0~8%がより好ましい。
 無アルカリのホウケイ酸ガラスのガラス組成としては
 SiO:40~85%、Al:1~25%、B:1~20%、MgO:0~10%、CaO:0~17%、SrO:0~24%、BaO:0~30%、RO(Rはアルカリ金属を表す。):0.1%未満が好ましく、
 SiO:45~70%、Al:10~22%、B:5~16%、MgO:0~7%、CaO:0~14%、SrO:0.5~13%、BaO:0~15%、RO(Rはアルカリ金属を表す。):0.1%未満がより好ましい。
 アルカリ金属を含有するホウケイ酸ガラスのガラス組成としては
 SiO:45~85%、Al:2~20%、B:1~15%、MgO:0~10%、CaO:0~10%、SrO:0~9%、BaO:0~9%、RO(Rはアルカリ金属を表す。):2~15%が好ましく、
 SiO:50~82%、Al:2~20%、B:2~13%、MgO:0~5%、CaO:0~9%、SrO:0~6%、BaO:0~2%、RO(Rはアルカリ金属を表す。):4~15%がより好ましい。
<ガラス原料>
 ガラス原料は、溶融ガラスの製造工程中で上記ガラス組成に示される酸化物となり得る化合物である。具体的には、上記ガラス組成に示される酸化物または熱分解等により該酸化物となりうる化合物(塩化物、水酸化物、炭酸塩、硫酸塩、硝酸塩等)が用いられる。
 ガラス原料混合物の組成は、酸化物換算で目的とするガラス組成とほぼ一致するように設計される。酸化ホウ素などの揮発性の成分を含むガラスを製造する場合には、ガラス製造過程における揮発性成分の揮発量を考慮してガラス原料の組成が決められる。例えばホウ素源は、目的とするホウケイ酸ガラスの酸化ホウ素含有量よりも揮発分を考慮した量だけ多い量とする。
 造粒体を製造する際、ガラス原料混合物は通常粉体状で用いられる。水溶性である化合物は、予め水に溶解した状態で用いてもよい。
 本発明において、20℃の水100mLに溶解する量が1.0g以上である化合物を水溶性成分、1.0g未満である化合物を非水溶性成分という。
 ガラス原料としては、公知のガラス原料を適宜用いることができる。以下に例を挙げる。
[ケイ素源]
 ケイ素源は、溶融ガラスの製造工程中でSiO成分となり得る化合物である。本発明ではケイ素源として少なくともケイ砂を用いる。ケイ素源の全部がケイ砂であることが好ましい。ケイ砂は非水溶性成分である。
 ガラス原料混合物中のケイ砂の含有量は40質量%以上が好ましく、45質量%以上がより好ましい。上限は、得ようとするガラス組成や、ガラス組成を形成する酸化物となる化合物の種類に応じて決まるが、実質的には70質量%程度である。
[アルミニウム源]
 アルミニウム源は、溶融ガラスの製造工程中でAl成分となり得る化合物である。酸化アルミニウム、水酸化アルミウム等が好適に用いられる。これらは1種でもよく2種以上を併用してもよい。酸化アルミニウム、水酸化アルミニウムはいずれも非水溶性成分である。
[ホウ素源]
 ホウ素源は、溶融ガラスの製造工程中でB成分となり得る化合物である。オルトホウ酸(HBO)、メタホウ酸(HBO)、四ホウ酸(H)等のホウ酸が好適に用いられる。これらの中でも安価で、入手しやすい点から、オルトホウ酸が好ましい。また、ホウ酸と、ホウ酸以外のホウ素源を併用してもよい。ホウ酸以外のホウ素源としては、酸化ホウ酸(B)、コレマナイト等が挙げられる。これらは1種でもよく2種以上を併用してもよい。
 これらのうち、水溶性成分であるのはホウ酸、酸化ホウ素、非水溶性成分であるのはコレマナイトである。コレマナイトはホウ素源でありカルシウム源でもある。
[マグネシウム源]
 マグネシウム源は、溶融ガラスの製造工程中でMgO成分となり得る化合物である。マグネシウムの炭酸塩、硫酸塩、硝酸塩、酸化物、水酸化物、塩化物、フッ化物が挙げられる。これらは1種でもよく2種以上を併用してもよい。
 これらのうち水溶性成分であるのはMgSO、Mg(NO、MgCl、非水溶性成分であるのはMgCO、MgO、Mg(OH)、MgFである。MgSO、Mg(NO、MgClは通常は水和物として存在する。これらの水和物はMgSO・7HO、Mg(NO・6HO、MgCl・7HOである。
 上記に挙げたマグネシウム源のうち、塩化マグネシウム、硫酸マグネシウム、フッ化マグネシウムは清澄剤でもある。
 また、ドロマイト(理想化学組成:CaMg(CO)も使用できる。ドロマイトはマグネシウム源でありカルシウム源でもある。ドロマイトは非水溶性成分である。
[アルカリ土類金属源]
 本発明におけるアルカリ土類金属とは、Sr、Ca、またはBaを指す。アルカリ土類金属源は、溶融ガラスの製造工程中でSrO、CaO、またはBaOとなり得る化合物である。アルカリ土類金属源としては、アルカリ土類金属の炭酸塩、硫酸塩、硝酸塩、酸化物、水酸化物、塩化物、フッ化物が挙げられる。これらは1種でもよく2種以上を併用してもよい。
 これらのうち、水溶性成分であるのは、各アルカリ土類金属の塩化物、硝酸塩、及び水酸化バリウムBa(OH)・8HO、水酸化ストロンチウムSr(OH)・8HOであり、非水溶性成分であるのは水酸化カルシウムCa(OH)、各アルカリ土類金属の炭酸塩、硫酸塩、フッ化物である。酸化物は水と反応して水酸化物を形成する。
 アルカリ土類金属の硫酸塩、塩化物、フッ化物は清澄剤でもある。
[アルカリ金属源]
 本発明におけるアルカリ金属とは、Na、K、Liを指す。アルカリ金属源は、溶融ガラスの製造工程中でNaO、KO、LiOとなり得る化合物である。アルカリ金属源としては、アルカリ金属の炭酸塩、硫酸塩、硝酸塩、酸化物、水酸化物、塩化物、フッ化物が挙げられる。これらは1種でもよく2種以上を併用してもよい。
 これらのうち、フッ化リチウムLiFを除いていずれも水溶性成分である。酸化物は水と反応して水酸化物を形成する。
 アルカリ金属の硫酸塩、塩化物、フッ化物は清澄剤でもある。
<造粒体>
 本発明における造粒体は複数のガラス原料を含む原料組成物を造粒して得られるものである。すなわち、造粒体は、目的とするガラス組成のガラスとなりうる複数のガラス原料を含む、ガラス原料混合物の造粒体である。
 造粒に供するガラス原料混合物には、ガラス原料の他に、必要に応じて、副原料として清澄剤、着色剤、溶融助剤、乳白剤等を含有させてもよい。また造粒のために必要な造粒成分として、例えば、バインダー、分散剤、界面活性剤等を含有させてもよい。これらの副原料または造粒成分は公知の成分を適宜用いることができる。
 造粒に供するガラス原料混合物の乾燥固形分のうち、ガラス原料が占める割合は90質量%以上が好ましく、95質量%以上がより好ましい。100質量%でもよい。
 本発明における造粒体は、必要な全ガラス原料を混合してガラス原料混合物とし、そのガラス原料混合物(前記のように、副原料等を含んでいてもよい)を公知の造粒法を適宜用いて造粒して製造される。水を用いる造粒法を使用する場合、水溶性のガラス原料は水溶液の形態でガラス原料混合物に含有させることができる。
 ガラス原料を混合する時点から造粒体を得るまでの工程を以下造粒工程という。あらかじめ必要な粒度にまで粉砕したガラス原料を使用する場合は、造粒工程においてガラス原料混合物を粉砕する必要はない。しかし、ガラス原料の一部でも必要な粒度にまで粉砕されていない場合は、造粒工程においてまずガラス原料混合物を粉砕し、その後に造粒を行う。
 造粒法としては、例えば転動造粒法、流動層造粒法、押出造粒法、スプレードライ造粒法、凍結乾燥法などが挙げられる。なかでも、転動造粒法は混合と造粒が連続して行えるために、便利に使用でき、スプレードライ造粒法は大量の原料の造粒を行うことができる。本発明における造粒法としては転動造粒法とスプレードライ造粒法が好ましい。
 転動造粒法としては、例えば、ガラス原料混合物を転動造粒装置の容器内に入れ、容器内を振動および/または回転させることにより混合転動撹拌させながら、所定量の水を噴霧して造粒する方法が好ましい。転動造粒装置として、例えばアイリッヒ・インテンシブミキサ(商品名:アイリッヒ社製)、レーディゲミキサ(商品名:レーディゲ社製)などが挙げられる。転動造粒装置で造粒した後、得られた粒子を加熱乾燥させることが好ましい。
 スプレードライ造粒法は、例えば、ガラス原料混合物に水を供給して、攪拌して原料スラリーを調製し、該原料スラリーをスプレードライヤー等の噴霧手段を用いて、例えば200~500℃程度の高温雰囲気中に噴霧して乾燥固化させることにより造粒体が得られる。また、必要な粒度にまで粉砕されていないガラス原料を使用する場合には、ボールミル等の粉砕撹拌装置を用い、ガラス原料を混合し、粉砕しながら攪拌してガラス原料混合物とする。粉砕撹拌を水の存在下で行うことによりガラス原料混合物と水からなる原料スラリーが得られ、粉砕撹拌を乾式で行うことにより得られたガラス原料混合物の粉末の場合は、それに水を加えて撹拌し原料スラリーとすることができる。
 造粒工程においてガラス原料粒子の粒度分布を積極的に変化させる粉砕等の過程がない場合、各ガラス原料粒子において、特に強度の低い粒子を除き、混合時点の粒度と得られた造粒体における粒度は実質的に一致すると考えられる。したがって、ケイ砂の場合、造粒体中のケイ砂粒子の粒度分布はガラス原料として使用するケイ砂の粒度分布と実質的に等しいと考えられ、他のガラス原料と混合する前にその粒度分布を測定すれば、その測定値を造粒体中のケイ砂粒子の粒度分布とすることができる。
 一方、スプレードライ造粒法などの造粒法においては、造粒工程においてガラス原料粒子の粒度を積極的に変化させる粉砕等の過程を設けて造粒体の大量生産を行うことが容易である。その場合、ガラス原料粒子の粒度分布が造粒工程前と造粒体中では異なることより、造粒体におけるガラス原料粒子の粒度分布はその造粒体を測定することにより得る。したがって、ケイ砂の場合、製造された造粒体を測定対象とし、その造粒体中の粒子からケイ砂粒子を判別して、そのケイ砂粒子の粒度分布を測定する。
 本発明における造粒体は、造粒工程の後、必要に応じて、篩分けして粗大な粒子が除去されたものでもよい。
 後述の条件(1)のD50の測定において、本発明における造粒体を、目開き1mmの篩を用いて篩分けをしたときの回収率は、60質量%以上であることが好ましく、80質量%以上であることがより好ましい。このために、必要であれば、造粒工程で得られた造粒体を、予め篩分けして粗大な粒子を除去したものを、本発明における造粒体とすることが好ましい。このように予め篩分けする際に用いる篩の目開きは1mm以下が好ましく、500μm~1mmがより好ましい。
 なお、篩分けの回収率は、篩分けに供した造粒体の全質量に対する、篩を通過した造粒体の質量の割合(単位:質量%)である。
 本発明では気中溶融法により溶融ガラスを製造する際に、下記の条件(1)~(3)を満たす造粒体を用いる。条件(1)~(3)を満たすとともに、さらに下記の条件(4)~(7)のうちの1以上を満たす造粒体が好ましい。
(1)造粒体を目開き1mmの篩を用いて篩分けをし、篩を通過した造粒体を乾式によるレーザ回折散乱法(以下、乾式の測定法と略記する場合もある。)で測定した粒度分布曲線において、体積累計メディアン径を表わすD50(以下、造粒体のD50という。)が80~800μmである。
 造粒体のD50が80μm以上であると、粉塵となる粒径50μm以下の微細な粒子の含有量が少ないため、粉塵の発生が抑えられやすい。
 気中溶融法では、造粒体をバーナー炎中を飛翔させることによってその一部または全部を溶融する。造粒体のD50が800μm以下であると、加熱されたときに溶融しやすい。
 また造粒体はバーナー炎中に入射する際に熱衝撃を受け、造粒体の粒径が大きいほど、かかる熱衝撃による破壊が生じやすいと考えられる。造粒体のD50が800μm以下であると、造粒体が気中溶融炉中で壊れにくいため、粉塵の発生が抑えられる。
 造粒体のD50の好ましい範囲は90~800μmであり、100~700μmがより好ましい。
(2)前記造粒体中のケイ砂の平均粒子径が1~40μmである。ただし、ケイ砂の平均粒子径とは後述の(I)におけるD50または(II)におけるDaveをいう。
 ケイ砂の平均粒子径が1μm未満であると、そのような微細な粒子にケイ砂を粉砕するためのコストがかかるため好ましくない。また、転動造粒法で造粒する際に、原料の嵩が増大して均一混合が難しくなる場合がある。
 一方、ケイ砂の平均粒子径が40μm以下であると、粉塵の原因となる比較的小さい造粒体粒子や単独で存在するケイ砂の含有割合が少ないため、粉塵の発生が抑えられる。
 すなわち、造粒体にあっては、複数個のケイ砂粒子が他のガラス原料粒子とともに凝集して1個の造粒体粒子を形成している。このとき、ケイ砂粒子間には液架橋による付着力(粒子と粒子の間に液体の膜ができてお互いに引き合う力)が働いていると考えられる。しかしながら粒径が大きいケイ砂粒子は、かかる付着力では他のケイ砂粒子と一体的に凝集し難いため、ケイ砂粒子を1個しか含まないような、粒径が小さい造粒体粒子が形成されやすい。かかる粒径が小さい造粒体粒子は粉塵の原因となりやすいだけでなく、造粒体粒子間における組成の均一性を低下させるため、造粒体を用いて製造される溶融ガラスの組成の均一性が低下しやすくなる。
 ケイ砂の平均粒子径の好ましい範囲は3~40μmであり、5~30μmがより好ましい。
 前記のケイ砂の平均粒子径とは下記(I)または(II)を意味する。
 (I):ガラス原料を混合した後該混合物を粉砕することなく造粒して製造される造粒体の場合、ガラス原料として使用するケイ砂を湿式によるレーザ回折散乱法で粒度分布曲線を測定し、得られた粒度分布曲線において体積累計メディアン径を表わすD50を前記ケイ砂の平均粒子径とする。なお、粒径近似のデータ処理を行う場合は、円相当径として実施する。
 したがって、造粒体の製造に用いるケイ砂を、湿式の測定法によるD50が1~40μmとなるように調整し、そのケイ砂を使用することによって、前記条件(2)を満たす造粒体が得られる。
 (II):ガラス原料を混合し、該混合物を粉砕した後造粒して製造される造粒体の場合、製造された造粒体を電子線マイクロアナライザー(EPMA)で観察して、造粒体中のケイ砂を判別し、その粒子径をJIS R 1670に記載されている方法で測定し、該測定により個数基準の粒子径分布を得、これをScwartz-Saltykov法により体積基準の粒子径分布に換算し、得られた体積基準の平均粒子径Daveを前記ケイ砂の平均粒子径とする。
 前記のように、ガラス原料混合物の粉砕過程を含む造粒工程で製造された造粒体の場合は、ガラス原料として使用するケイ砂の粒度分布と、造粒体中のケイ砂の粒度分布とは違ったものになる。このような場合は、造粒体を電子線マイクロアナライザー(EPMA)で観察して、造粒体中のケイ砂を判別し、その粒子径を、JIS R 1670に記載されている方法で測定する。この方法で測定される粒度分布は個数基準であるため、Scwartz-Saltykov法を用いて体積基準の粒度分布に換算する。これより得られる体積基準の平均粒子径Daveは、造粒体粒子中のケイ砂の体積累計メディアン径(D50)とみなすことができる。
 具体的には、造粒体から任意に取り分けた3~5個の造粒体粒子について、電子線マイクロアナライザー(EPMA)によるカラーマッピング図と通常の電子顕微鏡像との比較から、電子顕微鏡像中のケイ砂粒子を特定し、約100個のケイ砂粒子に対して、JIS R 1670(ファインセラミックスのグレインサイズ測定方法)に規定された方法で円相当径(粒子径)を測定する。次に、Schwartz-Saltykov法を用いて、得られた円相当径の分布(粒子径分布)から球体(粒子)の直径の分布を算出する。さらに球体(粒子)の直径から球体(粒子)の体積を求めることによって体積基準の粒子径分布に換算する。以下の式に従って体積基準の平均粒子径Daveを算出する。
 Dave=Σ(球体の直径×体積)/Σ(球体の体積)
 なお、Scwartz-Saltykov法は、下記文献(2)に記載されており、公知である。
 文献(2):水谷惟恭、他、「セラミックプロセシング」 pp.195-201 技報堂出版 1985.
(3)造粒体の構成粒子となる非水溶性粒子を湿式によるレーザ回折散乱法で測定した粒度分布曲線において、小粒径側から体積累計10%の粒径を表わすD10と体積累計90%の粒径を表わすD90との比D90/D10が10以上である。すなわち、造粒体とするガラス原料混合物や混合する前の個々の原料を測定対象とし、その測定対象物を水に分散させて水溶性成分を溶解し、残った非水溶性の粒子をそれが水に分散した状態でレーザ回折散乱法で粒度分布曲線を測定し、その測定結果よりD90/D10を求める。場合により、造粒体そのものを測定対象としてD90/D10を求めることもできる。
 測定対象のガラス原料混合物としては、ガラス原料混合物を粉砕することなく造粒して造粒体を製造する場合は造粒前のガラス原料混合物であればよく、ガラス原料混合物を粉砕した後造粒して造粒体を製造する場合は粉砕後かつ造粒前のガラス原料混合物を測定対象として使用する。さらに、ガラス原料混合物を粉砕することなく造粒して造粒体を製造する場合は、混合する前の原料のうち非水溶性の原料を個々に湿式によるレーザ回折散乱法で測定して、その測定結果とガラス原料混合物の組成よりガラス原料混合物のD90/D10を算出することができる。また、さらに、造粒体中のバインダー成分が水溶性である場合は、造粒体を水に分散させて水溶性成分を溶解させ、残った非水溶性の粒子が水に分散した状態でレーザ回折散乱法で粒度分布曲線を測定し、同じようにD90/D10を求めることもできる。
 このようにして得られる粒度分布曲線は造粒体の構成粒子のうち非水溶性の原料粒子のみの粒度分布曲線に相当する。以下、該D90/D10を、造粒体の構成粒子のD90/D10という。
 造粒体の構成粒子のD90/D10の値が大きいほど、粒度分布曲線における粒子径の分布が広く、微粒と粗粒の粒子径の差が大きいことを意味する。造粒体の構成粒子に粗粒と微粒が存在すると、個々の造粒体粒子において粗粒の間に微粒が充填されて、造粒体粒子の密度が向上しやすくなる。造粒体粒子の密度が向上すると、造粒体粒子の強度が向上しやすい。
 本発明において、造粒体の構成粒子のD90/D10の値が10以上であると、このような粗粒と微粒が存在することによる造粒体粒子の密度向上効果が十分に得られやすい。
 造粒体の構成粒子のD90/D10の値の上限は特に限定されないが、前記条件(1)の造粒体のD50を満たすのが容易である点で、該D90が500μm以下であることが好ましい。
 造粒体の構成粒子のD10~D90の値の好ましい範囲は0.5~500μmであり、1~300μmがより好ましい。
 ガラス原料混合物を粉砕した後に造粒して製造される造粒体の場合、粉砕された後のガラス原料混合物中の、非水溶性の構成粒子のD90/D10は造粒体の構成粒子のD90/D10と同等とみなすことができる。したがって、粉砕された後のガラス原料混合物の、湿式によるレーザ回折散乱法で測定した粒度分布曲線におけるD90/D10が10以上となるように調整することによって、上記の条件(3)を満たすことができる。
 例えば噴霧乾燥に供されるスラリー中に存在する、非水溶性成分の粒度分布曲線におけるD90/D10が10以上となるように調整すればよい。
 一方、ガラス原料混合物を粉砕することなく造粒して製造される造粒体の場合、造粒前のガラス原料混合物を湿式によるレーザ回折散乱法で測定した粒度分布曲線におけるD90/D10は、造粒体の構成粒子のD90/D10と同等とみなすことができる。したがって、粒度分布曲線におけるD90/D10が10以上となるように、非水溶性の原料の混合を調整することによって、上記の条件(3)を満たすことができる。
 また、各非水溶性原料についてそれぞれ湿式によるレーザー回折散乱法で粒度分布曲線を測定し、得られた各粒度分布曲線と、全非水溶性原料の合計のうちの各非水溶性原料の含有比率とから、ガラス原料混合物のうち全非水溶性原料の合計についての粒度分布曲線を算出することができる。したがって、ガラス原料等の原料の混合の際に上記粒度分布曲線におけるD90/D10が10以上となるように調整することによって、前記条件(3)を満たすことができる。
(4)造粒体の、水銀圧入法で測定した嵩密度が50%以上であることが好ましい。
 本発明において、造粒体の、水銀圧入法で測定した嵩密度とは、水銀圧入法によって測定した細孔容積の値を用いて下式(i)、(ii)により算出される値である。
 式(i)中の材料密度は、造粒体を構成する物質の密度であり、ここでは造粒に用いた各原料それぞれの組成物の密度の文献値と、各原料の構成比率から計算によって混合物の密度を求め、材料密度とした。
Figure JPOXMLDOC01-appb-M000001
 該造粒体の嵩密度が50%以上であると、造粒体粒子中に含まれる空隙率が小さくて造粒体粒子の良好な強度が得られやすい。したがって、造粒体粒子の崩壊等による粉塵の発生が抑制されやすい。該造粒体の嵩密度の上限は特に限定されないが、現実的には80%以下程度である。
(5)造粒体を乾式によるレーザ回折散乱法で測定した粒度分布曲線におけるピークの数が1つであることが好ましい。本発明において、粒度分布曲線におけるピークとは、粒子径がほぼ最小となるD1から、粒子径がほぼ最大となるD99の範囲内において、頻度分布を表す粒度分布曲線の傾きがゼロになる点をいう。
 本発明において、下記の条件(X)で測定した粒度分布曲線において、ピークの数が1つであれば、条件(5)を満たすものとする。
 条件(X):1~1500μmの範囲におけるレンジの分解能(分割数)が少なくとも50以上であること。
 例えば前記条件(2)で述べたような、他のケイ砂粒子と一体的に凝集し難い、比較的粒径が大きいケイ砂が多く存在すると、後述の比較例の図11、15、16のように、粒度分布曲線において、主たるピークの小径側に2つめのピークが現れる。
 したがって、かかる2つめのピークが無く、粒度分布曲線におけるピークの数が1つであると、粉塵が良好に抑制されやすい。
(6)前記造粒体を乾式によるレーザ回折散乱法で測定した粒度分布曲線において、粒径が48μm以下である粒子の含有率が5体積%以下である。
 本発明者らの知見によれば、粉塵の大きさは概ね50μm以下である。したがって粒子径が48μm以下である造粒体、または造粒体が壊れて生じた48μm以下の微粒は粉塵の原因となりやすい。
 したがって、粉塵の発生をより良好に抑えるためには、造粒体中の、粒径が48μmである粒子の含有率が5体積%以下であることが好ましく、3体積%以下がより好ましく、ゼロが最も好ましい。
 造粒体中の粒径48μm以下である粒子を低減させる方法としては、例えばスプレードライ造粒法の場合は、スラリーの濃度をなるべく高くする(少なくとも固形分が重量換算で30%以上含まれていることが好ましい。)、スラリーの送り量を大きくする、噴霧方式がディスク回転式のアトマイザーの場合は、ディスクの回転数が高くなりすぎないようにする、または噴霧方式が加圧ノズル方式の場合は圧力が高くなりすぎないようにする、などの方法によって、造粒体を形成する液滴の大きさを乾燥が可能な範囲で大きくする方法がある。また、転動造粒法の場合は、水分の添加量が少なくなりすぎないようにする、造粒時間を十分にとる、造粒に適した有機または無機バインダーを添加する、などによって微細な造粒体を低減させることができる。
(7)造粒体の圧壊強度が1MPa以上であることが好ましい。
 本発明において、造粒体の圧壊強度の値は、造粒体から任意に取り分けた50~100個の造粒体粒子について、JIS R 1639-5に準じた方法で圧壊強度を測定して得られる値(単位:MPa)の平均値である。
 該圧壊強度が1MPa以上であると、気中溶融法による溶融ガラスの製造過程で造粒体の破壊が生じ難く、粉塵の原因となる微粒子の発生が抑えられやすい。
 例えば、気中溶融法においては、造粒体搬送(空気搬送)時の粒子同士の衝突による造粒体の破壊、通路壁との衝突による造粒体の破壊、造粒体がバーナー炎中に入射した時の、急激な温度変化(熱衝撃)による造粒体の破壊等が起こり得ると考えられるが、造粒体の圧壊強度が1MPa以上であると、これらを良好に防止できる。
 該造粒体の圧壊強度は2MPa以上がより好ましく、3MPa以上がさらに好ましい。上限は特に限定されないが、現実的には20MPa以下程度である。
<溶融ガラスの製造方法>
 本発明の溶融ガラスの製造方法は気中溶融法である。すなわち造粒体を、気相雰囲気中で前記造粒体粒子の少なくとも一部分を溶融させて溶融ガラス粒子を形成し、溶融ガラス粒子を集積して溶融ガラスとする。
 概略、まず造粒体を気中溶融装置の高温の気相雰囲気中に導入する。気中溶融装置は公知のものを使用できる。次いで、気中溶融装置内で溶融した溶融ガラス粒子を集積してある量の溶融ガラスとする。気中溶融装置から取り出した溶融ガラスは成形に供される。溶融ガラス粒子を集積する方法としては、例えば、気相雰囲気中を自重で落下する溶融ガラス粒子を、気相雰囲気の下部に設けた耐熱容器に受けて集積する方法が挙げられる。
 なお造粒体粒子の少なくとも一部分を溶融させるとは、個々の造粒体を対象として、その一個の造粒体の一部または全部を溶融させることをいう。造粒体粒子の一部分が溶融した状態とは、例えば(一個の)造粒体の表面が溶融し中心部が充分に溶融していない状態が挙げられる。この例の場合に(一個の)溶融ガラス粒子は、粒子の全体が溶融されておらず、中心に充分に溶融していない部分が存在している。しかし充分に溶融していない部分が存在した場合であっても、その粒子が集積して溶融ガラスとなる過程で加熱されるので、成形に供する際には均質な溶融ガラスが得られる。
 気中溶融法では、個々の造粒体をそれぞれ気相雰囲気中で溶融して溶融ガラス粒子とすることが好ましい。一部の造粒体は気相雰囲気中で充分に溶融しなかったとしても、大部分の造粒体を気相雰囲気中でそれぞれ溶融ガラス粒子とすることが好ましい。本発明では、気相雰囲気中で充分に溶融しなかった粒子を含め、気相雰囲気中で生成する粒子を溶融ガラス粒子という。
<ガラス製品の製造方法>
 本発明のガラス製品の製造方法は、本発明の溶融ガラスの製造方法で得られた溶融ガラスを成形し徐冷することを特徴とする。なおガラス製品とは、室温で固体状であり実質的に流動性を有していないガラスが、一部または全部に用いられた物品を言い、例えばガラス表面が加工されてなるもの等を含む。
 具体的には、まず前記溶融ガラスの製造方法で得た溶融ガラスを、目的の形状に成形した後、徐冷する。その後、必要に応じて後加工工程において切断や研磨など、公知の方法で後加工を施すことによりガラス製品が得られる。
 成形はフロート法、ダウンドロー法、フュージョン法等の公知の方法で行うことができる。フロート法は、溶融スズ上で溶融ガラスを板状に成形する方法である。
 徐冷も公知の方法で行うことができる。
 溶融ガラスの製造またはガラス製品の製造において、本発明の造粒体を用いることにより、粉塵の発生が抑えられ、組成の均一性が良好な溶融ガラスまたはガラス製品が得られる。
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。測定方法は以下の方法を用いた。
 粒度分布曲線の測定において、乾式の測定法では、レーザー回折・散乱式粒径・粒度分布測定装置(マイクロトラックMT3200:商品名、日機装株式会社製)を用い、湿式の測定法では、レーザー回折/散乱式粒子径分布測定装置(LA-950V2:商品名、堀場製作所社製)を用いた。なお、粒径近似のデータ処理は、円相当径として実施した。
[(a)造粒体中のケイ砂の平均粒子径]
 下記実施例等のスプレードライ造粒法で造粒体を製造した場合は、造粒前にガラス原料混合物の粉砕があるため、前記(II)で平均粒子径Daveを求め、これを造粒体中のケイ砂の平均粒子径とした。電子線マイクロアナライザーは、島津製作所製、EPMA-1610(商品名)を用いた。
 転動造粒法で造粒体を製造した場合は、前記(I)でガラス原料として用いるケイ砂のD50を測定して、それを造粒体中のケイ砂の平均粒子径とした。
 なお、上記ケイ砂の平均粒子径を以下いずれもD50と表す。
[(b)造粒体の構成粒子となる非水溶性粒子のD10、D50、D90、およびD90/D10]
 スプレードライ造粒法で造粒体を製造した場合は、噴霧乾燥に供されるスラリー中の粒子(溶解していない粒子)について、湿式の測定法により粒度分布曲線を測定し、D10、D50、D90、およびD90/D10を求めた。
 転動造粒法で造粒体を製造した場合は、ガラス原料のうちの非水溶性成分について、それぞれ湿式の測定法により粒度分布曲線を測定し、得られた各粒度分布曲線と、ガラス原料における各非水溶性成分の組成(含有比率)とから、ガラス原料のうち非水溶性粒子のみの合計についての粒度分布曲線を算出し、該粒度分布曲線におけるD10、D50、D90、およびD90/D10を求めた。
[(c)造粒体のD50]
 造粒体を目開き1mmの篩を用いて篩分けをし、篩を通過した造粒体を乾式の測定法により、前記条件(X)で造粒体の粒度分布曲線を測定し、得られた粒度分布曲線から造粒体のD50を求めた。
[(d)48μm以下の粒子の含有率]、[(e)ピークの数]
 造粒体を、乾式の測定法により、前記条件(X)で造粒体の粒度分布曲線を測定し、得られた粒度分布曲線から造粒体の48μm以下の粒子の含有率(単位:%)、ピークの数を求めた。
[(f)造粒体の嵩密度]
 水銀圧入法による造粒体の嵩密度の測定は、水銀ポロシメータ(Thermo Fisher Scientific社製、製品名:PASCAL 140/440)を用いて行った。
[(g)造粒体の圧壊強度]
 得られた造粒体から任意に取り分けた30~50個の造粒体粒子について、JIS R 1639-5に準じた方法で圧壊強度(単位:MPa)を測定し、平均値を求めた。
 測定装置には、粉粒体硬度測定器(セイシン企業社製、ベターハードネステスター BHT500)を用いた。
[(h)粉塵発生率]
 図1に示す構成の気中溶融炉1に、1時間当り10~70Nmの搬送空気とともに、1時間当り40~150kgの投入量で造粒体2を供給して溶融ガラス3を製造した。煙道4からガスとともに排出され、バグフィルター及び、バグフィルターに通じる排気ダクト(図示せず)中に付着した粉塵を回収した。図中符号5は気中溶融バーナーを示す。溶融ガラスの製造は、ソーダライムガラスの場合は雰囲気温度1500~1550℃、ホウケイ酸ガラスの場合は雰囲気温度1600~1660℃で実施し、所定時間ごとに粉塵を回収して量を測定した。造粒体の供給量は、造粒体の供給速度と時間から求めた。さらに、造粒体の供給量に対する粉塵量の割合(単位:質量%)を求め、粉塵発生率とした。
 また、一部の造粒体に対しては、図1と同様の構造を有する小型の試験炉で、1時間当り1~3Nmの搬送空気とともに、1時間当り2~7kgの投入量で造粒体を供給し、溶融試験を行って投入量に対する粉塵量の割合を求めた後、予め算出しておいた試験炉と気中溶融炉1の粉塵発生量の関係式を用い、気中溶融炉1での粉塵量の割合に換算して粉塵発生率を求めた。
[ガラス原料の組成]
 表1、2に、各例におけるガラス原料の組成(単位:質量%。四捨五入の有効数字の関係で合計が100にならない場合もある。)を示す。各ガラス原料の、造粒工程に供する前の平均粒径(D50)も合わせて示す。該造粒工程前のD50は湿式の測定法により求めた値である。
 表1はソーダライム系ガラスの例であり、いずれの例も目標のガラス組成は、
 SiO:72質量%、Al:1.8質量%、NaO:13.1質量%、KO:0.4質量%、MgO:4.0質量%、CaO:8.4質量%である。
 表2は無アルカリのホウケイ酸系ガラスの例であり、いずれの例も目標のガラス組成は、
 SiO:59.7質量%、Al:17.4質量%、B:8.0質量%、MgO:3.2質量%、CaO:4.0質量%、SrO:7.6質量%である。
[造粒法]
 造粒法としては、スプレードライ造粒法(表にはSと記載する。)、レーディゲミキサによる転動造粒法(表にはLと記載する。)、またはアイリッヒミキサによる転動造粒法(表にはEと記載する。)のいずれかで行った。
[実施例1、2:スプレードライ造粒法]
 実施例1と2は異なる日に同じ条件で実施した例である。良好な再現性が得られた。
 すなわちケイ石を主成分とした直径50~70mmの球石が容積の約50%になるように収容された容量約8mのボールミル容器に、表1に示す組成のガラス原料を1.5トン、媒体として3μmのフィルターを通した水1トンを投入し、16時間粉砕混合を行って原料スラリーを調製した。
 得られた原料スラリーを、アトマイザー方式のスプレードライヤーを用いて、入口温度260℃、出口温度170℃の条件にて、1時間におよそ100kgの造粒体が得られる速度にて噴霧乾燥を実施した。
 得られた造粒体に対して、目開き500μmの篩を通して篩分けを行った。篩を通過した造粒体(回収率100質量%)について、上記(a)~(h)の測定を行った。結果を図2、3および表3に示す。図2、3の粒度分布曲線において、横軸は粒径(単位:μm)、縦軸は頻度(単位:体積%)である(以下、同様)。
[実施例3:転動造粒法(レーディゲミキサ)]
 容量130Lのレーディゲミキサ(中央機工社製)に、表1に示す組成のガラス原料30kgを投入し、ショベル回転数160rpm、チョッパー回転数1750rpmにて3分間を混合した。その後、バインダーとしてポリビニルアルコール(以下、PVAと略記する。)(中京油脂社製、製品名:セルナWF-804)を、固形分として2質量%含むように調整した水溶液を4.1kg((ガラス原料+水溶液)に対する水溶液の重量比で12質量%相当)を約30秒かけて投入し、ショベル、チョッパー回転数は前記と同条件のまま16分間攪拌して造粒を行った。
 得られた造粒体をステンレス製の容器に入れ、熱風乾燥機中120℃で約12時間乾燥した。さらに、乾燥後の造粒体に対して、目開き1mmの篩を通して篩分けを行った。篩を通過した造粒体(回収率95質量%)について、上記(a)~(h)の測定を行った。結果を図4および表3に示す。
[実施例4:スプレードライ造粒法]
 アルミナで内張りした容量200Lのボールミル容器に、直径20mmのアルミナ球を容積の約50%になるように収容した。それに、表2に示す組成のガラス原料100kgと、媒体として3μmのフィルターを通した水100kgを投入し、さらにポリアクリル酸アンモニウム塩系の分散剤(中京油脂社製、製品名:セルナD305)をガラス原料に対して0.5質量%添加した後、4時間粉砕混合を行って原料スラリーを得た。
 得られた原料スラリーを、加圧ノズル方式のスプレードライヤーを用いて、入口温度500℃の条件にて噴霧乾燥を実施した。
 得られた造粒体に対して、目開き1mmの篩を用いて篩分けを行った。篩を通過した造粒体(回収率100質量%)について、上記(a)~(h)の測定を行った。結果を図5および表3に示す。
[実施例5、6:スプレードライ造粒法]
 ケイ石を主成分とした直径50~80mmの球石が容積の約50%になるように収容された容量約20mのボールミル容器に、表2に示す組成のガラス原料を5トン、媒体として3μmのフィルターを通した水5トンを投入し、さらにポリアクリル酸アンモニウム塩系の分散剤(東亞合成社製、製品名:アロンA-6114)をガラス原料に対して0.5質量%添加した後、12時間粉砕混合を行った。得られたスラリーに水を5トンを追加して希釈し、スプレードライ用の原料スラリーを調整した。
 得られた原料スラリーを、加圧ノズル方式のスプレードライヤーを用いて、入口温度500℃の条件にて、1時間におよそ800kgの造粒体が得られる速度にて噴霧乾燥を実施した。
 得られた造粒体に対して、目開き1mmの篩を用いて篩分けを行った。篩を通過した造粒体(回収率100質量%)について、上記(a)~(h)の測定を行った。結果を図6、7および表3に示す。
[実施例7、8:転動造粒法(アイリッヒミキサ)]
 容量75Lのアイリッヒミキサ(R08、日本アイリッヒ社製)に、表2に示す組成のガラス原料50kgを投入し、パン回転数24rpm、ロータ回転数500rpmにて30秒間原料を混合した。その後、バインダーとしてPVAを固形分として2質量%含むように調整した水溶液7.1kg((ガラス原料+水溶液)に対する水溶液の重量比で12質量%相当)を投入するとともに、ロータ回転数を1680rpmに上げて15分間造粒を実施した。
 得られた造粒体をステンレス製の容器に入れ、熱風乾燥機中120℃で約12時間乾燥した。さらに乾燥後の造粒体に対して、目開き1mmの篩を通して篩分けを行った。篩を通過した造粒体(回収率90質量%)について、上記(a)~(h)の測定を行った。結果を図8、9および表3に示す。
[実施例9:転動造粒法(アイリッヒミキサ)]
 予め、表2に示した配合割合の塩化マグネシウム6水塩と硫酸マグネシウム7水塩の5倍量(塩化マグネシウム17.5kg、硫酸マグネシウム6kg)を68.2kgの水に溶かした液を用意した。
 次に、表2に示すガラス原料のうち塩化マグネシウム6水塩、硫酸マグネシウム7水塩を除いた原料476.5kgを、容量750Lのアイリッヒミキサ(日本アイリッヒ社製、製品名:RV15)に投入し、パン回転数10rpm、ロータ回転数250rpmにて30秒間混合した。これに前記塩化マグネシウム6水塩と硫酸マグネシウム7水塩を溶解した液(固形分23.5kg、水68.2kg)91.7kg(ガラス原料合計500kgに対して水分量12質量%)を投入するとともに、ロータ回転数を860rpmに上げて15分間造粒を実施した。さらにロータ回転数を230rpmに落とし、2分間の整粒操作(造粒体の粒径、粒形を整える)を実施した後、造粒体を容器から取り出して乾燥機にて残留水分量が2%以下になるまで乾燥した。乾燥後の造粒体に対して、目開き1mmの篩を通して篩分けを行った。篩を通過した造粒体(回収率80質量%)について、上記(a)~(h)の測定を行った。結果を図10および表3に示す。
[比較例1:転動造粒法(レーディゲミキサ)]
 本例では、実施例1~3と比べてケイ砂のみ粒度の粗い(D50=56.6μm)原料を使用した。
 容量1200Lのレーディゲミキサ(中央機工社製)に、表1に示す組成のガラス原料250kgを投入し、ショベル回転数115rpm、チョッパー回転数1750rpmにて3分間原料を混合した。その後、バインダーとしてPVA(中京油脂社製、製品名:セルナWF-804)を固形分として5質量%含むように調整した水溶液27.5kgを約30秒かけて投入し、ショベル、チョッパー回転数は前記と同条件のまま10分間攪拌し、造粒を行った。
 得られた造粒体をステンレス製の容器に入れ、熱風乾燥機中120℃で約12時間乾燥を実施した。さらに、乾燥後の造粒体に対して、目開き1mmの篩を通して篩分けを行った。篩を通過した造粒体(回収率90質量%)について、上記(a)~(h)の測定を行った。結果を図11および表3に示す。
[比較例2:スプレードライ造粒法]
 ケイ石を主成分とした直径50~70mmの球石が容積の約50%になるように収容された容量約8mのボールミル容器に、表2に示す組成のガラス原料を1.1トン、媒体として3μmのフィルターを通した水1.6トンを投入し、さらにポリカルボン酸アンモニウム塩系の分散剤(中京油脂社製、製品名:セルナD305)をガラス原料に対して0.5質量%添加した後、1時間混合を行って原料スラリーを調製した。
 得られた原料スラリーを、アトマイザー方式のスプレードライヤーを用いて、入口温度300℃、出口温度160℃の条件にて、1時間におよそ55kgの造粒体が得られる速度にて噴霧乾燥を実施した。得られた造粒体に対して目開き500μmの篩を通して篩分けを行った。篩を通過した造粒体(回収率100質量%)について、上記(a)~(h)の測定を行った。結果を図12および表3に示す。
[比較例3、4:スプレードライ造粒法]
 ケイ石を主成分とした直径50~80mmの球石が容積の約50%になるように収容された容量約20mのボールミル容器に、表2に示す組成のガラス原料5トン、媒体として3μmのフィルターを通した水5トンを投入し、さらにポリアクリル酸アンモニウム塩系の分散剤(東亞合成社製、製品名:アロンA-6114)をガラス原料に対して0.5質量%添加した後、8時間粉砕混合を行って原料スラリーを調製した。
 比較例3では、得られた原料スラリーに水2.5トンを追加して希釈したものをスプレードライ用のスラリーとした。
 比較例4では得た原料スラリーに水を5トン追加して希釈したものをスプレードライ用のスラリーとした。
 得られたスプレードライ用のスラリーを、加圧ノズル方式のスプレードライヤーを用いて、入口温度500℃の条件にて、1時間におよそ800kgの造粒体が得られる速度にて噴霧乾燥を実施した。得られた造粒体に対して、目開き1mmの篩を通して篩分けを行った。篩を通過した造粒体(回収率100質量%)について、上記(a)~(h)の測定を行った。結果を図13、14および表3に示す。
[比較例5:転動造粒法(レーディゲミキサ)]
 容量1200Lのレーディゲミキサ(中央機工社製)に、表2に示す組成のガラス原料350kgを投入し、ショベル回転数115rpm、チョッパー回転数1750rpmにて3分間原料を混合した。その後、バインダーとしてPVA(中京油脂社製、製品名:セルナWF-804)を固形分として5質量%含むように調整した水溶液39kgを約30秒かけて投入し、ショベル、チョッパー回転数は前記と同条件のまま10分間攪拌し、造粒を行った。
 得られた造粒体をステンレス製の容器に入れ、熱風乾燥機中120℃で約12時間乾燥した。さらに、乾燥後の造粒体に対して、目開き1mmの篩を通して篩分けを行った。篩を通過した造粒体(回収率90質量%)について、上記(a)~(h)の測定を行った。結果を図15および表3に示す。
[比較例6:転動造粒法(アイリッヒミキサ)]
 容量250Lのアイリッヒ・インテンシブミキサ(日本アイリッヒ社製)に、表2に示す組成のガラス原料170kgを投入し、パン回転数18rpm、ロータ回転数300rpmにて2分間混合した。その後、バインダーとしてPVA(中部サイデン社製、製品名:バンスターPX25)を5質量%含む水溶液25kgを投入するとともに、ロータ回転数を1000rpmに上げて約8分間造粒を実施した。その後、ロータ回転数を再度300rpmに落として2分間整粒操作(造粒体の粒径、粒形を整える)を行った。
 得られた造粒体をステンレス製の容器に入れ、熱風乾燥機中120℃で約8時間乾燥を実施した。さらに乾燥後の造粒体に対して、目開き1mmの篩を通して篩分けを行った。篩を通過した造粒体(回収率90質量%)について、上記(a)~(h)の測定を行った。結果を図16および表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3および図2~16の結果に示されるように、実施例1~9で得られた造粒体は、粉塵となりやすい粒径48μm以下の粒子の含有量が少なく、粒度分布曲線におけるピークは1つであり、嵩密度が高く、圧壊強度が高く、気中溶融法による溶融ガラスの製造に用いたときに粉塵発生率が低減された。造粒体の特性の再現性も良く、気中溶融炉での溶融性も良好であった。
 これに対して、比較例1は、構成粒子中のケイ砂のD50が56.6μmと大きい例である。造粒体中における粒径48μm以下の粒子の含有量が高く、粒度分布曲線には2つのピークが現れた。この造粒体を用いて溶融ガラスを製造したところ、粉塵が比較的多く発生した。
 比較例2~4は、造粒体の構成粒子のD90/D10の値が10より小さい例である。造粒体の嵩密度が低く、造粒体粒子の強度が低かった。また造粒体中の粒径48μm以下の粒子の含有量が高い。この造粒体を用いて溶融ガラスを製造したところ、粉塵が多く発生し、頻繁な粉塵の処理が必要であった。
 比較例5、6は、構成粒子中のケイ砂のD50が44.5μmと大きい例である。造粒体中における粒径48μm以下の粒子の含有量は低いが、粒度分布曲線には2つのピークが現れた。この造粒体を用いて溶融ガラスを製造したところ、粉塵が多く発生し、頻繁な粉塵の処理が必要であった。
 本発明は、気中溶融法による溶融ガラスの製造方法であり、得られた溶融ガラスからガラス製品が製造される。本発明に使用するガラス原料混合物の造粒体はその搬送時に粉塵の発生を抑制しやすいことより、本発明は、気中溶融法による溶融ガラスの大量生産に適している。
 なお、2011年7月19日に出願された日本特許出願2011-157767号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 1 気中溶融炉、
 2 造粒体、
 3 溶融ガラス、
 4 煙道、
 5 気中溶融バーナー。

Claims (10)

  1.  ガラス原料混合物の造粒体を、気相雰囲気中で前記造粒体粒子の少なくとも一部分を溶融させて溶融ガラス粒子を形成し、前記溶融ガラス粒子を集積して溶融ガラスを形成する、溶融ガラスの製造方法であって、前記造粒体が前記ガラス原料としてケイ砂を含み、
     (1)前記造粒体を目開き1mmの篩を用いて篩分けをし、篩を通過した造粒体を乾式によるレーザ回折散乱法で測定した粒度分布曲線において、体積累計メディアン径を表わすD50が80~800μmであり、
     (2)前記造粒体中のケイ砂の平均粒子径が1~40μmであり、
      ただし、
     (I):ガラス原料を混合した後該混合物を粉砕することなく造粒して製造される造粒体の場合、ガラス原料として使用するケイ砂を湿式によるレーザ回折散乱法で粒度分布曲線を測定し、得られた粒度分布曲線において体積累計メディアン径を表わすD50を前記ケイ砂の平均粒子径とする。
     (II):ガラス原料を混合し、該混合物を粉砕した後造粒して製造される造粒体の場合、製造された造粒体を電子線マイクロアナライザー(EPMA)で観察して、造粒体中のケイ砂を判別し、その粒子径をJIS R 1670に記載されている方法で測定し、該測定により個数基準の粒子径分布を得、これをScwartz-Saltykov法により体積基準の粒子径分布に換算し、得られた体積基準の平均粒子径Daveを前記ケイ砂の平均粒子径とする。
     (3)前記造粒体の構成粒子となる非水溶性粒子を湿式によるレーザ回折散乱法で測定し、得られた粒度分布曲線において、小粒径側から体積累計10%の粒径を表わすD10と体積累計90%の粒径を表わすD90との比D90/D10が10以上である、
    ことを特徴とする溶融ガラスの製造方法。
  2.  前記造粒体の、水銀圧入法で測定した嵩密度が50%以上である、請求項1記載の溶融ガラスの製造方法。
  3.  前記造粒体を乾式によるレーザ回折散乱法で測定した粒度分布曲線におけるピークの数が1つである、請求項1または2に記載の溶融ガラスの製造方法。
  4.  前記造粒体を乾式によるレーザ回折散乱法で測定した粒度分布曲線において、粒径が48μm以下である粒子の含有率が5体積%以下である、請求項1~3のいずれか一項に記載の溶融ガラスの製造方法。
  5.  前記造粒体の圧壊強度が1MPa以上である、請求項1~4のいずれか一項に記載の溶融ガラスの製造方法。
  6.  前記造粒体が、ガラス原料を混合した後該混合物を粉砕することなく造粒して製造された造粒体である、請求項1~5のいずれか一項に記載の溶融ガラスの製造方法。
  7.  前記造粒体が、転動造粒法で造粒して製造された造粒体である、請求項6に記載の溶融ガラスの製造方法。
  8.  前記造粒体が、ガラス原料を混合し、該混合物を粉砕した後造粒して製造された造粒体である、請求項1~5のいずれか一項に記載の溶融ガラスの製造方法。
  9.  前記造粒体が、スプレードライ造粒法で造粒して製造された造粒体である、請求項8に記載の溶融ガラスの製造方法。
  10.  請求項1~9のいずれか一項に記載の溶融ガラスの製造方法で得られた溶融ガラスを成形し徐冷する、ガラス製品の製造方法。
PCT/JP2012/068351 2011-07-19 2012-07-19 溶融ガラスの製造方法およびガラス製品の製造方法 WO2013012040A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12815440.8A EP2735549B1 (en) 2011-07-19 2012-07-19 Manufacturing method for molten glass and manufacturing method for glass article
KR1020137033521A KR101965007B1 (ko) 2011-07-19 2012-07-19 용융 유리의 제조 방법 및 유리 제품의 제조 방법
JP2013524746A JP5920350B2 (ja) 2011-07-19 2012-07-19 溶融ガラスの製造方法およびガラス製品の製造方法
CN201280034587.7A CN103648991B (zh) 2011-07-19 2012-07-19 熔融玻璃的制造方法和玻璃制品的制造方法
US14/161,056 US20140130547A1 (en) 2011-07-19 2014-01-22 Method for producing molten glass, and method for producing glass product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-157767 2011-07-19
JP2011157767 2011-07-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/161,056 Continuation US20140130547A1 (en) 2011-07-19 2014-01-22 Method for producing molten glass, and method for producing glass product

Publications (1)

Publication Number Publication Date
WO2013012040A1 true WO2013012040A1 (ja) 2013-01-24

Family

ID=47558215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068351 WO2013012040A1 (ja) 2011-07-19 2012-07-19 溶融ガラスの製造方法およびガラス製品の製造方法

Country Status (7)

Country Link
US (1) US20140130547A1 (ja)
EP (1) EP2735549B1 (ja)
JP (1) JP5920350B2 (ja)
KR (1) KR101965007B1 (ja)
CN (1) CN103648991B (ja)
TW (1) TWI548601B (ja)
WO (1) WO2013012040A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103897A1 (ja) * 2012-12-27 2014-07-03 旭硝子株式会社 アルカリアルミノシリケートガラスの製造方法
WO2015119209A1 (ja) * 2014-02-06 2015-08-13 旭硝子株式会社 造粒体の製造方法およびガラス物品の製造方法
CN105980318A (zh) * 2013-12-13 2016-09-28 旭硝子株式会社 玻璃熔融物制造装置及玻璃物品的制造方法
JP2016210633A (ja) * 2015-04-30 2016-12-15 旭硝子株式会社 ガラス原料造粒体の製造方法、溶融ガラスの製造方法、およびガラス物品の製造方法
EP3042883A4 (en) * 2013-09-05 2017-02-22 Asahi Glass Company, Limited Granulated body, production method therefor, and production method for glass article
WO2018088503A1 (ja) * 2016-11-14 2018-05-17 旭硝子株式会社 溶融ガラスの製造方法およびガラス物品の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6142869B2 (ja) 2012-02-28 2017-06-07 旭硝子株式会社 造粒体およびその製造方法
KR20170068433A (ko) * 2014-10-22 2017-06-19 아사히 가라스 가부시키가이샤 유리 원료 조립체의 제조 방법, 용융 유리의 제조 방법, 및 유리 물품의 제조 방법
CN108025946B (zh) * 2015-09-17 2021-05-28 Agc株式会社 玻璃原料造粒体的制造方法、熔融玻璃的制造方法以及玻璃物品的制造方法
CN106145687B (zh) * 2016-07-08 2018-05-01 中国计量大学 一种高强度玻璃纤维
CN107892476A (zh) * 2017-10-30 2018-04-10 江苏铁锚玻璃股份有限公司 一种防溅玻璃及其制备方法
CN108975679B (zh) * 2018-09-05 2021-02-05 中建材蚌埠玻璃工业设计研究院有限公司 一种tft-lcd玻璃基板用硅微粉制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297239A (ja) 2006-04-28 2007-11-15 Tokyo Institute Of Technology ガラスの原料溶解方法および溶解装置ならびにガラス製造装置
JP2010202413A (ja) * 2007-06-27 2010-09-16 Asahi Glass Co Ltd ガラスの製造方法、ガラス原料の製造方法及びガラス原料
WO2012039327A1 (ja) * 2010-09-24 2012-03-29 旭硝子株式会社 ガラス原料造粒体の製造方法およびガラス製品の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4099952A (en) * 1977-07-18 1978-07-11 Ppg Industries, Inc. Movable submersible dam barrier for use in a glass forming chamber
DE4319808C1 (de) * 1993-06-15 1994-07-28 Schott Glaswerke Verfahren zur Herstellung von natursteinähnlichen, plattenförmigen Bau- und Dekorationsmaterialien
DE4330868A1 (de) * 1993-09-11 1995-03-16 Hoechst Ag Verfahren zur Herstellung körniger Natriumsilikate
DE10214449B4 (de) * 2002-03-30 2005-03-24 Schott Ag Verfahren zur Herstellung von alkalifreien Aluminosilicatgläsern
US7937969B2 (en) * 2004-08-26 2011-05-10 Carty William M Selective batching for boron-containing glasses
JP5252771B2 (ja) * 2005-06-15 2013-07-31 Hoya株式会社 無アルカリガラス、その製造方法および液晶表示装置のtft形成用ガラス基板
JP2010132541A (ja) * 2008-11-10 2010-06-17 Asahi Glass Co Ltd 無アルカリガラスの製造方法
WO2011024913A1 (ja) * 2009-08-28 2011-03-03 旭硝子株式会社 造粒体の製造方法およびガラス製品の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297239A (ja) 2006-04-28 2007-11-15 Tokyo Institute Of Technology ガラスの原料溶解方法および溶解装置ならびにガラス製造装置
JP2010202413A (ja) * 2007-06-27 2010-09-16 Asahi Glass Co Ltd ガラスの製造方法、ガラス原料の製造方法及びガラス原料
WO2012039327A1 (ja) * 2010-09-24 2012-03-29 旭硝子株式会社 ガラス原料造粒体の製造方法およびガラス製品の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOBUYASU MIZUTANI ET AL.: "Ceramic Processing", 1985, GIHODO SHUPPAN CO., LTD., pages: 195 - 201
TORU ISEDA: "Development of Innovative In-flight Glass Melting Technology for Energy Conservation", NEW GLASS, vol. 23, no. 4, 2008, pages 42 - 45

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103897A1 (ja) * 2012-12-27 2014-07-03 旭硝子株式会社 アルカリアルミノシリケートガラスの製造方法
EP3042883A4 (en) * 2013-09-05 2017-02-22 Asahi Glass Company, Limited Granulated body, production method therefor, and production method for glass article
US10035726B2 (en) 2013-09-05 2018-07-31 Asahi Glass Company, Limited Granules, method for their production, and method for producing glass product
CN105980318A (zh) * 2013-12-13 2016-09-28 旭硝子株式会社 玻璃熔融物制造装置及玻璃物品的制造方法
WO2015119209A1 (ja) * 2014-02-06 2015-08-13 旭硝子株式会社 造粒体の製造方法およびガラス物品の製造方法
JPWO2015119209A1 (ja) * 2014-02-06 2017-03-23 旭硝子株式会社 造粒体の製造方法およびガラス物品の製造方法
US10173917B2 (en) 2014-02-06 2019-01-08 AGC Inc. Method for producing granules and method for producing glass product
JP2016210633A (ja) * 2015-04-30 2016-12-15 旭硝子株式会社 ガラス原料造粒体の製造方法、溶融ガラスの製造方法、およびガラス物品の製造方法
WO2018088503A1 (ja) * 2016-11-14 2018-05-17 旭硝子株式会社 溶融ガラスの製造方法およびガラス物品の製造方法
KR20190082781A (ko) * 2016-11-14 2019-07-10 에이지씨 가부시키가이샤 용융 유리의 제조 방법 및 유리 물품의 제조 방법
JPWO2018088503A1 (ja) * 2016-11-14 2019-10-03 Agc株式会社 溶融ガラスの製造方法およびガラス物品の製造方法
KR102413987B1 (ko) 2016-11-14 2022-06-29 에이지씨 가부시키가이샤 용융 유리의 제조 방법 및 유리 물품의 제조 방법

Also Published As

Publication number Publication date
JPWO2013012040A1 (ja) 2015-02-23
EP2735549A4 (en) 2015-03-18
CN103648991A (zh) 2014-03-19
KR101965007B1 (ko) 2019-04-02
EP2735549B1 (en) 2017-10-25
JP5920350B2 (ja) 2016-05-18
EP2735549A1 (en) 2014-05-28
US20140130547A1 (en) 2014-05-15
TW201307221A (zh) 2013-02-16
KR20140039229A (ko) 2014-04-01
TWI548601B (zh) 2016-09-11
CN103648991B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5920350B2 (ja) 溶融ガラスの製造方法およびガラス製品の製造方法
JP6142869B2 (ja) 造粒体およびその製造方法
TWI482744B (zh) A method for producing a glass raw material granule and a method for producing the same
JP5454580B2 (ja) 造粒体の製造方法およびガラス製品の製造方法
US20170174545A1 (en) Method for producing glass raw material granules, method for producing molten glass, and method for producing glass article
WO2012161275A1 (ja) 造粒体の製造方法、溶融ガラスの製造方法、ならびにガラス物品の製造方法
US10035726B2 (en) Granules, method for their production, and method for producing glass product
JP2015051889A (ja) 造粒体、その製造方法およびガラス物品の製造方法
KR102517491B1 (ko) 유리 원료 조립체의 제조 방법, 용융 유리의 제조 방법, 및 유리 물품의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12815440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013524746

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012815440

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012815440

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137033521

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE