WO2013000117A1 - 铈掺杂钨酸钡镁发光薄膜及其制备方法和应用 - Google Patents

铈掺杂钨酸钡镁发光薄膜及其制备方法和应用 Download PDF

Info

Publication number
WO2013000117A1
WO2013000117A1 PCT/CN2011/076467 CN2011076467W WO2013000117A1 WO 2013000117 A1 WO2013000117 A1 WO 2013000117A1 CN 2011076467 W CN2011076467 W CN 2011076467W WO 2013000117 A1 WO2013000117 A1 WO 2013000117A1
Authority
WO
WIPO (PCT)
Prior art keywords
strontium
doped
luminescent film
mass percentage
cerium
Prior art date
Application number
PCT/CN2011/076467
Other languages
English (en)
French (fr)
Inventor
周明杰
王平
陈吉星
黄辉
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to JP2014517373A priority Critical patent/JP5778863B2/ja
Priority to EP11868703.7A priority patent/EP2727975B1/en
Priority to PCT/CN2011/076467 priority patent/WO2013000117A1/zh
Priority to US14/130,228 priority patent/US9270084B2/en
Priority to CN201180070930.9A priority patent/CN103534332B/zh
Publication of WO2013000117A1 publication Critical patent/WO2013000117A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/3018AIIBVI compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • C09K11/7716Chalcogenides
    • C09K11/7718Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7768Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source

Definitions

  • the invention belongs to the technical field of semiconductor optoelectronic materials, and in particular relates to a bismuth doped strontium strontium tungstate luminescent film and a preparation method and application thereof.
  • an embodiment of the present invention provides a bismuth-doped strontium strontium strontium silicate luminescent film, a preparation method thereof, and an application thereof, which solves the complicated preparation and high cost of preparing a lanthanum tungstate-doped lanthanum strontium silicate luminescent film in the prior art
  • the technical problem that the tungstate lanthanum-doped lanthanum strontium silicate luminescent film has low luminous efficiency.
  • the present invention is implemented in this way,
  • Mg x Ba 1-x W 2 O 8 : YCe 3+ wherein x is from 0.13 to 0.96 and Y is from 0.0002 to 0.0124.
  • a method for preparing a bismuth-doped strontium strontium tungstate luminescent film comprises the following steps:
  • Magnesium oxide, cerium oxide, tungsten trioxide and antimony trioxide are mixed and sintered to form a sputtering target, wherein the mass percentage of the magnesium oxide is 0.1% to 15%, and the mass percentage of the cerium oxide is 0.1% to 40%, the mass percentage of the antimony trioxide is 0.01% to 0.8%, and the balance is tungsten trioxide,
  • the sputtering target is subjected to magnetron sputtering to form a ytterbium-doped lanthanum strontium tungstate luminescent film precursor;
  • the ruthenium-doped lanthanum lanthanum oxylate light-emitting film precursor is annealed to obtain a ytterbium-doped yttrium-tungstate luminescent film.
  • Embodiments of the present invention further provide the use of the above-described cerium-doped lanthanum magnesium tungstate in an electroluminescent device.
  • the cerium-doped lanthanum strontium strontium silicate luminescent film of the embodiment of the invention has strong luminescent efficiency by the combination of cerium and lanthanum strontium tungstate, and has strong luminescence in both the red region and the blue region.
  • the peaks have, for example, luminescence peaks at 470 nm and 670 nm; the preparation method of the ytterbium-doped yttrium-tungstate luminescent film of the present invention is simple in operation, low in cost, and suitable for industrial production.
  • FIG. 1 is a flow chart of a method for preparing a bismuth doped barium strontium silicate luminescent film according to an embodiment of the present invention
  • Example 2 is an XRD pattern of a ytterbium-doped lanthanum strontium silicate luminescent film obtained in Example 1;
  • FIG. 3 is an EL spectrum chart of a ytterbium-doped lanthanum strontium silicate luminescent film according to an embodiment of the present invention
  • Figure 5 is a structural view of an electroluminescent device to which a ytterbium-doped magnesium lanthanum silicate luminescent film is applied in accordance with an embodiment of the present invention.
  • Mg x Ba 1-x W 2 O 8 : YCe 3+ wherein x is from 0.13 to 0.96, preferably 0.43, and Y is from 0.0002 to 0.0124, preferably 0.0023.
  • the ytterbium-doped lanthanum strontium sulphate luminescent film of the embodiment of the present invention uses yttrium magnesium tungstate as the luminescent substrate of the luminescent film, and the lanthanum element is used as the luminescent center, and the synergistic action of lanthanum magnesium tungstate and lanthanum makes the embodiment of the invention
  • the ytterbium-doped lanthanum strontium sulphate luminescent film has strong luminescence efficiency; the luminescence intensity of the yttrium-doped lanthanum strontium sulphate luminescent film is adjusted by the change of magnesium and strontium content in the luminescent matrix magnesium strontium t
  • FIG. 3 is a view showing an EL spectrum of a yttrium-doped lanthanum strontium silicate luminescent film according to an embodiment of the present invention.
  • the ytterbium-doped lanthanum strontium silicate luminescent film of the embodiment of the present invention is at 470 nm and 670 nm. There are two illuminating peaks. Please refer to FIG. 4.
  • FIG. 4 FIG.
  • the curve 1 represents the change of the luminescence intensity of the film
  • the curve 2 represents the luminescence peak position of the film.
  • the mass percentage of magnesium oxide used in the method is about 6%, the relative intensity of luminescence is the strongest; with the increase of magnesium oxide content, the luminescence peak wavelength of ytterbium doped yttrium lanthanum sulphate luminescence film becomes shorter.
  • FIG. 1 is a flow chart showing a method for preparing a bismuth doped strontium strontium silicate luminescent film according to an embodiment of the present invention, comprising the following steps:
  • Step S01 preparing a sputtering target
  • Magnesium oxide, cerium oxide, tungsten trioxide and antimony trioxide are mixed and sintered to form a sputtering target, wherein the mass percentage of the magnesium oxide is 0.1% to 15%, and the mass percentage of the cerium oxide is 0.1% to 40%, the mass percentage of the antimony trioxide is 0.01% to 0.8%, and the balance is tungsten trioxide;
  • Step S02 magnetron sputtering
  • the sputtering target is subjected to magnetron sputtering to form a ytterbium-doped lanthanum strontium tungstate luminescent film precursor;
  • the ruthenium-doped lanthanum lanthanum oxylate light-emitting film precursor is annealed to obtain a ytterbium-doped yttrium-tungstate luminescent film.
  • the magnesium oxide (MgO), barium oxide (BaO), tungsten trioxide (WO 3 ), and antimony trioxide (Ce 2 O 3 ) are powders having a purity of 99.99% or more.
  • the magnesium oxide has a mass percentage of 0.1% to 15%, preferably 2% to 10%, for example, 6%; and the cerium oxide has a mass percentage of 0.1% to 40%, preferably 0.2% to 30%.
  • the antimony trioxide has a mass percentage of 0.01% to 0.8%, preferably 0.02% to 0.6%, for example 0.15%.
  • step S01 magnesium oxide, cerium oxide, tungsten trioxide and antimony trioxide are uniformly mixed, and then sintered at a temperature of 900 to 1300 ° C to form a sputtering target of ⁇ 50 ⁇ 2 mm; the sintering temperature is preferably 1250 ° C .
  • step S02 the ITO substrate and the sputtering target are loaded into the cavity of the coating device, and the vacuum degree of the cavity is pumped to 1.0 ⁇ 10 -3 Pa ⁇ 1.0 ⁇ 10 by a mechanical pump and a molecular pump. -5 Pa, preferably 5.0 ⁇ 10 -4 Pa; the distance between the substrate and the target is 50-100 mm, the substrate temperature is 250 ° C to 750 ° C, the mixed gas of hydrogen and inert gas is the working gas, and the gas flow rate is 15-30 sccm. Sputtering treatment at a pressure of 0.2 to 4.5 Pa to obtain a cerium-doped lanthanum strontium silicate luminescent film precursor;
  • the inert gas is not limited, for example, nitrogen, helium, argon, helium, etc.; in the mixed gas of hydrogen and inert gas, the volume percentage of hydrogen in the mixed gas is 1-15%, preferably It is 10%; wherein the substrate and target distance is preferably 70 mm, the substrate temperature is preferably 600 ° C, the gas flow rate is preferably 25 sccm, and the pressure is preferably 2.0 Pa.
  • the ytterbium-doped lanthanum lanthanum sulphate luminescent film precursor is annealed in a vacuum oven at a pressure of 0.01 Pa for 1 to 3 hours, preferably 2 hours, and the annealing temperature is 500 to 800 ° C, preferably 700 ° C. ⁇ doped yttrium magnesium lanthanum luminescence film.
  • a method for preparing a bismuth-doped strontium strontium silicate luminescent film is prepared by mixing and sintering magnesium oxide, cerium oxide, tungsten trioxide and antimony trioxide to form a sputtering target, and then sputtering to form a cerium doping.
  • ⁇ -doped lanthanum lanthanum lanthanum lanthanum lanthanum lanthanum lanthanum lanthanum hydride luminescent film, the ytterbium doped lanthanum lanthanum lanthanum lanthanum lanthanum lanthanum lanthanum oxylate luminescent film has strong luminous efficiency;
  • the preparation method of the luminescent film is simple in operation, low in cost, and suitable for industrial production.
  • Embodiments of the present invention further provide the use of the above-described cerium-doped lanthanum strontium strontium silicate light-emitting film in an electroluminescent device.
  • FIG. 5 is a structural diagram of an electroluminescent device using an ytterbium-doped lanthanum strontium silicate luminescent film according to an embodiment of the present invention, including an anode 1, a light-emitting layer 2 and a cathode 3.
  • the anode 1 is made of ITO glass.
  • the material of the light-emitting layer 2 is the erbium-doped lanthanum strontium strontium silicate light-emitting film of the embodiment of the invention, and the material of the cathode 3 is silver.
  • cerium-doped lanthanum strontium strontium silicate luminescent film The preparation method of the above-mentioned cerium-doped lanthanum strontium strontium silicate luminescent film is described in detail below with reference to specific embodiments.
  • Magnesium oxide, cerium oxide, antimony trioxide and tungsten trioxide are uniformly mixed to obtain a mixture, wherein the mass percentage of MgO is 6%, the mass percentage of BaO is 30%, and the mass percentage of Ce 2 O 3 is 0.15%, the balance is WO 3 (mass fraction ratio);
  • the mixture is sintered at 1250 ° C into a ceramic sputtering target of ⁇ 50 ⁇ 2 mm;
  • the target is placed in a vacuum chamber, and then the glass substrate with ITO is ultrasonically cleaned with acetone, absolute ethanol and deionized water, and subjected to oxygen plasma treatment, placed in a vacuum chamber, and the target and the liner are placed.
  • the distance between the bottom is set to 75mm.
  • the vacuum of the chamber is pumped to 5.0 ⁇ 10 -4 Pa with a mechanical pump and a molecular pump, and the argon-hydrogen mixture with a volume of 10% hydrogen is used as the working gas.
  • the gas flow rate is 25 sccm.
  • the pressure is adjusted to 2.0 Pa
  • the substrate temperature is 600 ° C
  • a sputtering treatment is performed to obtain a cerium-doped lanthanum magnesium lanthanum oxylate light-emitting film precursor;
  • the ruthenium-doped lanthanum strontium silicate luminescent film precursor was annealed in a 0.01 Pa vacuum furnace at a temperature of 700 ° C for 2 h to obtain a ytterbium-doped lanthanum strontium sulphate luminescent film.
  • the ytterbium-doped lanthanum lanthanum lanthanum lanthanide- doped lanthanum strontium silicate luminescent film has the formula: Mg 0.43 Ba 0.57 W 2 O 8 : 0.0023 Ce 3+ ;
  • an Ag was deposited on the ytterbium-doped yttrium-tungstate luminescence film as a cathode to obtain an electroluminescent device containing the ytterbium-doped yttrium-tungstate luminescent film of the present invention.
  • FIG. 2 is an XRD pattern of a lanthanum-doped lanthanum lanthanum lanthanum lanthanum lanthanide-doped lanthanum lanthanum lanthanide luminescence film according to the embodiment 1.
  • the standard PDF card is a crystallization peak of lanthanum tungstate, and no doping element is present. And diffraction peaks of other impurities.
  • Magnesium oxide, cerium oxide, antimony trioxide and tungsten trioxide are uniformly mixed to obtain a mixture, wherein the mass percentage of MgO is 0.1%, the mass percentage of BaO is 40%, and the mass percentage of Ce 2 O 3 0.01%, the balance is WO 3 (mass fraction ratio);
  • the mixture was sintered at 900 ° C into a ceramic sputtering target of ⁇ 50 ⁇ 2 mm;
  • the target is placed in a vacuum chamber, and then the glass substrate with ITO is ultrasonically cleaned with acetone, absolute ethanol and deionized water, and subjected to oxygen plasma treatment, placed in a vacuum chamber, and the target and the liner are placed.
  • the distance between the bottom is set to 50mm.
  • the vacuum of the cavity is pumped to 1.0 ⁇ 10 -5 Pa with a mechanical pump and a molecular pump, and the argon-hydrogen mixture with a volume of 1% hydrogen is used as the working gas.
  • the gas flow rate is 15 sccm.
  • the pressure is adjusted to 0.2 Pa
  • the substrate temperature is 600 ° C
  • a sputtering treatment is performed to obtain a cerium-doped lanthanum strontium silicate luminescent film precursor;
  • the ytterbium-doped lanthanum strontium silicate luminescent film precursor was annealed in a 0.01 Pa vacuum furnace at a temperature of 500 ° C for 1 h to obtain a ytterbium-doped lanthanum strontium sulphate luminescent film.
  • the ytterbium-doped lanthanum lanthanum lanthanum lanthanum lanthanide- doped lanthanum strontium silicate luminescent film has the molecular formula: Mg 0.13 Ba 0.87 W 2 O 8 : 0.0002 Ce 3+ ;
  • an Ag was deposited on the ytterbium-doped yttrium-tungstate luminescence film as a cathode to obtain an electroluminescent device containing the ytterbium-doped yttrium-tungstate luminescent film of the present invention.
  • Magnesium oxide, cerium oxide, antimony trioxide and tungsten trioxide are uniformly mixed to obtain a mixture, wherein the mass percentage of MgO is 15%, the mass percentage of BaO is 0.1%, and the mass percentage of Ce 2 O 3 0.8%, the balance is WO 3 (mass fraction ratio);
  • the mixture is sintered at 1300 ° C into a ceramic sputtering target of ⁇ 50 ⁇ 2 mm;
  • the target is placed in a vacuum chamber, and then the glass substrate with ITO is ultrasonically cleaned with acetone, absolute ethanol and deionized water, and subjected to oxygen plasma treatment, placed in a vacuum chamber, and the target and the liner are placed.
  • the distance between the bottom is set to 100mm.
  • the vacuum of the chamber is pumped to 1.0 ⁇ 10 -3 Pa with a mechanical pump and a molecular pump, and the argon-hydrogen mixture with a volume of 15% hydrogen is used as the working gas.
  • the gas flow rate is 30 sccm.
  • the pressure is adjusted to 4.5 Pa
  • the substrate temperature is 600 ° C
  • a sputtering treatment is performed to obtain a cerium-doped lanthanum strontium tungstate luminescent film precursor;
  • the ruthenium-doped lanthanum strontium sulphate luminescent film precursor was annealed in a 0.01 Pa vacuum furnace at a temperature of 800 ° C for 3 h to obtain a ytterbium-doped lanthanum strontium titanate luminescent film.
  • the ytterbium-doped lanthanum lanthanum lanthanum lanthanum lanthanide-doped lanthanum strontium silicate luminescent film has the formula: Mg 0.96 Ba 0.04 W 2 O 8 : 0.0124 Ce 3+ ;
  • an Ag was deposited on the ytterbium-doped yttrium-tungstate luminescence film as a cathode to obtain an electroluminescent device containing the ytterbium-doped yttrium-tungstate luminescent film of the present invention.
  • Magnesium oxide, cerium oxide, antimony trioxide and tungsten trioxide are uniformly mixed to obtain a mixture, wherein the mass percentage of MgO is 0.2%, the mass percentage of BaO is 30%, and the mass percentage of Ce 2 O 3 is 0.6%, the balance is WO 3 (mass fraction ratio);
  • the mixture was sintered at 900 ° C into a ceramic sputtering target of ⁇ 50 ⁇ 2 mm;
  • the target is placed in a vacuum chamber, and then the glass substrate with ITO is ultrasonically cleaned with acetone, absolute ethanol and deionized water, and subjected to oxygen plasma treatment, placed in a vacuum chamber, and the target and the liner are placed.
  • the distance between the bottom is set to 50mm.
  • the vacuum of the chamber is pumped to 5.0 ⁇ 10 -4 Pa with a mechanical pump and a molecular pump, and the argon-hydrogen mixture with a volume of 8% hydrogen is used as the working gas.
  • the gas flow rate is 20 sccm.
  • the pressure is adjusted to 0.2 Pa
  • the substrate temperature is 600 ° C
  • a sputtering treatment is performed to obtain a cerium-doped lanthanum strontium silicate luminescent film precursor;
  • the ytterbium-doped lanthanum strontium silicate luminescent film precursor was annealed in a 0.01 Pa vacuum furnace at a temperature of 500 ° C for 2 h to obtain a ytterbium-doped lanthanum strontium sulphate luminescent film.
  • the ytterbium-doped lanthanum lanthanum lanthanum lanthanum lanthanide-doped lanthanum strontium silicate luminescent film has the formula: Mg 0.026 Ba 0.974 W 2 O 8 : 0.0093Ce 3+ ;
  • an Ag was deposited on the ytterbium-doped yttrium-tungstate luminescence film as a cathode to obtain an electroluminescent device containing the ytterbium-doped yttrium-tungstate luminescent film of the present invention.
  • Magnesium oxide, cerium oxide, antimony trioxide and tungsten trioxide are uniformly mixed to obtain a mixture, wherein the mass percentage of MgO is 10%, the mass percentage of BaO is 0.2%, and the mass percentage of Ce 2 O 3 is 0.4%, the balance is WO 3 ;
  • the mixture was sintered at 1300 ° C into a ceramic sputtering target of ⁇ 50 ⁇ 2 mm;
  • the target is placed in a vacuum chamber, and then the glass substrate with ITO is ultrasonically cleaned with acetone, absolute ethanol and deionized water, and subjected to oxygen plasma treatment, placed in a vacuum chamber, and the target and the liner are placed.
  • the distance between the bottom is set to 80mm.
  • the vacuum of the chamber is pumped to 5.0 ⁇ 10 -4 Pa with a mechanical pump and a molecular pump, and the argon-hydrogen mixture with a volume of 11% hydrogen is used as the working gas.
  • the gas flow rate is 23 sccm.
  • the pressure is adjusted to 2.0 Pa
  • the substrate temperature is 600 ° C
  • a sputtering treatment is performed to obtain a cerium-doped lanthanum magnesium lanthanum oxylate light-emitting film precursor;
  • the ytterbium-doped lanthanum strontium silicate luminescent film precursor was annealed in a 0.01 Pa vacuum furnace at a temperature of 650 ° C for 2 h to obtain a ytterbium-doped lanthanum strontium sulphate luminescent film.
  • the ytterbium-doped lanthanum lanthanum lanthanum lanthanum lanthanide-doped lanthanum lanthanum oxylate luminescent film has the formula: Mg 0.995 Ba 0.005 W 2 O 8 : 0.0062 Ce 3 + ;
  • an Ag was deposited on the ytterbium-doped yttrium-tungstate luminescence film as a cathode to obtain an electroluminescent device containing the ytterbium-doped yttrium-tungstate luminescent film of the present invention.
  • Magnesium oxide, cerium oxide, cerium antimony trioxide and tungsten trioxide are uniformly mixed to obtain a mixture, wherein the mass percentage of MgO is 15%, the mass percentage of BaO is 20%, and the mass percentage of Ce 2 O 3 The content is 0.8%, and the balance is WO 3 (mass fraction);
  • the mixture is sintered at 1000 ° C into a ceramic sputtering target of ⁇ 50 ⁇ 2 mm;
  • the target is placed in a vacuum chamber, and then the glass substrate with ITO is ultrasonically cleaned with acetone, absolute ethanol and deionized water, and subjected to oxygen plasma treatment, placed in a vacuum chamber, and the target and the liner are placed.
  • the distance between the bottom is set to 95mm.
  • the vacuum of the chamber is pumped to 5.0 ⁇ 10 -4 Pa with a mechanical pump and a molecular pump, and the argon-hydrogen mixture with a volume of 9% hydrogen is used as the working gas.
  • the gas flow rate is 20 sccm.
  • the pressure is adjusted to 2.0 Pa
  • the substrate temperature is 600 ° C
  • a sputtering treatment is performed to obtain a cerium-doped lanthanum magnesium lanthanum oxylate light-emitting film precursor;
  • the ytterbium-doped lanthanum strontium silicate luminescent film precursor was annealed in a 0.01 Pa vacuum furnace at a temperature of 750 ° C for 2.5 h to obtain a ytterbium-doped lanthanum strontium sulphate luminescent film.
  • the ytterbium-doped lanthanum lanthanum lanthanum lanthanum lanthanide-doped lanthanum strontium silicate luminescent film has the molecular formula: Mg 0.74 Ba 0.26 W 2 O 8 : 0.0124Ce 3+ ;
  • an Ag was deposited on the ytterbium-doped yttrium-tungstate luminescence film as a cathode to obtain an electroluminescent device containing the ytterbium-doped yttrium-tungstate luminescent film of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种铈掺杂钨酸钡镁发光薄膜、其制备方法和应用,该铈掺杂钨酸钡镁发光薄膜制备方法包括以下步骤:将MgO、BaO、WO3及Ce2O3混合,烧结形成溅射靶材;进行磁控溅射,形成铈掺杂钨酸钡镁发光薄膜前体;将该铈掺杂钨酸钡镁发光薄膜前体进行退火处理,得到铈掺杂钨酸钡镁发光薄膜,该铈掺杂钨酸钡镁发光薄膜具有较高的发光效率,在红光区和蓝光区有较强的发光峰。该方法具有操作简单、成本低廉,适用于工业化生产的优点。

Description

铈掺杂钨酸钡镁发光薄膜及其制备方法和应用 技术领域
本发明属于半导体光电材料技术领域,尤其涉及一种铈掺杂钨酸钡镁发光薄膜及其制备方法和应用。
背景技术
白钨矿结构的AWO4(A = Ca,Sr,Ba)是一类重要的激光材料。它们在常温下为四方相结构,在紫外光的激发下发射出蓝光。钨酸钡从室温至熔化(1820 K)都保持四方相结构,具有良好的结构稳定性。由于这些优越的性能,钨酸钡在发光与显示技术、激光与光电子技术以及探测技术等领域,具有诱人的应用前景。目前,钨酸钡在荧光粉中有应用到,但是在铈掺杂钨酸钡镁发光薄膜领域中,钨酸钡涉及较少,而且所形成的膜发光效率不高,制备过程复杂。
技术问题
有鉴于此,本发明实施例提供一种铈掺杂钨酸钡镁发光薄膜及其制备方法和应用,解决现有技术中钨酸钡铈掺杂钨酸钡镁发光薄膜制备复杂,成本高,钨酸盐铈掺杂钨酸钡镁发光薄膜发光效率低的技术问题。
技术解决方案
本发明是这样实现的,
一种铈掺杂钨酸钡镁发光薄膜,具有如下分子式:
MgxBa1-xW2O8: YCe3+,其中,x为0.13~0.96,Y为0.0002~0.0124。
以及,
一种铈掺杂钨酸钡镁发光薄膜制备方法,包括如下步骤:
将氧化镁、氧化钡、三氧化钨及三氧化二铈混合,烧结形成溅射靶材,其中,该氧化镁的质量百分含量为0.1%~15%,该氧化钡的质量百分含量为0.1%~40%、该三氧化二铈的质量百分含量为0.01%~0.8%,余量为三氧化钨,
将该溅射靶材进行磁控溅射,形成铈掺杂钨酸钡镁发光薄膜前体;
将该铈掺杂钨酸钡镁发光薄膜前体进行退火处理,得到铈掺杂钨酸钡镁发光薄膜。
本发明实施例进一步提供上述铈掺杂钨酸钡镁在电致发光器件中的应用。
有益效果
本发明实施例的铈掺杂钨酸钡镁发光薄膜,通过铈和钨酸钡镁的配合作用,使得其具有较强的发光效率,并且在红光区和蓝光区均能有较强的发光峰,例如,在470nm和670nm处有发光峰;本发明实施例铈掺杂钨酸钡镁发光薄膜制备方法,操作简单、成本低廉,适于工业化生产。
附图说明
图1是本发明实施例铈掺杂钨酸钡镁发光薄膜制备方法流程图;
图2 是实施例1得到铈掺杂钨酸钡镁发光薄膜XRD图谱;
图3是本发明实施例铈掺杂钨酸钡镁发光薄膜EL光谱图;
图4是本发明实施例铈掺杂钨酸钡镁发光薄膜发光强度、发光峰位与氧化镁含量关系图;
图5是应用本发明实施例铈掺杂钨酸钡镁发光薄膜的电致发光器件结构图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例进提供一种铈掺杂钨酸钡镁发光薄膜,该铈掺杂钨酸钡镁发光薄膜,具有如下分子式:
MgxBa1-xW2O8: YCe3+,其中,x为0.13~0.96,优选为0.43,Y为0.0002~0.0124,优选为0.0023。
本发明实施例的铈掺杂钨酸钡镁发光薄膜,以钨酸钡镁为发光薄膜的发光基质,以铈元素为发光中心,通过钨酸钡镁和铈的配合作用,使得本发明实施例铈掺杂钨酸钡镁发光薄膜具有较强的发光效率;通过发光基质钨酸钡镁中镁和钡含量的变化,调节铈掺杂钨酸钡镁发光薄膜的发光强度;
请参阅图3,图3显示本发明实施例铈掺杂钨酸钡镁发光薄膜EL光谱图,从图3中可以看出,本发明实施例铈掺杂钨酸钡镁发光薄膜在470nm和670nm处有两处发光峰。请参阅图4,图4显示本发明实施例铈掺杂钨酸钡镁发光薄膜发光强度和发光峰位随氧化镁含量变化图,曲线1代表薄膜发光强度变化情况,曲线2代表薄膜发光峰位变化情况,从图4中可以看出,铈掺杂钨酸钡镁发光薄膜的发光强度随着氧化镁含量的增加,铈掺杂钨酸钡镁发光薄膜的发光强度现增加后降低,在制备方法中使用的氧化镁质量百分含量约为6%时,发光相对强度最强;随着氧化镁含量的增加,铈掺杂钨酸钡镁发光薄膜的发光峰位波长逐渐变短。
请参阅图1,图1显示本发明实施例铈掺杂钨酸钡镁发光薄膜制备方法流程图,包括如下步骤:
步骤S01,制备溅射靶材
将氧化镁、氧化钡、三氧化钨及三氧化二铈混合,烧结形成溅射靶材,其中,该氧化镁的质量百分含量为0.1%~15%,该氧化钡的质量百分含量为0.1%~40%、该三氧化二铈的质量百分含量为0.01%~0.8%,余量为三氧化钨;
步骤S02,磁控溅射
将该溅射靶材进行磁控溅射,形成铈掺杂钨酸钡镁发光薄膜前体;
步骤S03,退火
将该铈掺杂钨酸钡镁发光薄膜前体进行退火处理,得到铈掺杂钨酸钡镁发光薄膜。
具体地,步骤S01中,该氧化镁(MgO)、氧化钡(BaO)、三氧化钨(WO3)及三氧化二铈(Ce2O3)为纯度在99.99%以上的粉体。该氧化镁的质量百分含量为0.1%-15%,优选为2%-10%,例如,6%;该氧化钡的质量百分含量为0.1%-40%,优选为0.2%-30%,例如30%;该三氧化二铈的质量百分含量为0.01%-0.8%,优选为0.02%-0.6%,例如0.15%。
步骤S01中,将氧化镁、氧化钡、三氧化钨及三氧化二铈混合均匀,然后在温度为900~1300℃下烧结,形成Φ50×2mm的溅射靶材;该烧结温度优选为1250℃。
具体地,步骤S02中,将ITO衬底及该溅射靶材装入镀膜设备的腔体,,用机械泵和分子泵把腔体的真空度抽至1.0×10-3Pa~1.0×10-5Pa,优选5.0×10-4Pa;在衬底和靶材距离为50~100mm、衬底温度为250℃~750℃、氢气和惰性气体混合气体为工作气体,气体流量15~30sccm、压强0.2~4.5Pa条件下进行溅射处理,得到铈掺杂钨酸钡镁发光薄膜前体;
步骤S02中,该惰性气体没有限制,例如,氮气、氦气、氩气、氖气等;该氢气和惰性气体的混合气体中,混合气体中氢气的体积百分含量为1-15%,优选为10%;其中,该衬底和靶材距离优选为70mm,该衬底温度优选为600℃,气体流量优选25sccm,该压强优选2.0Pa。
具体地,步骤S03中,将该铈掺杂钨酸钡镁发光薄膜前体在压强为0.01Pa真空炉中退火1~3h,优选2h,退火温度为500℃~800℃,优选700℃,得到铈掺杂钨酸钡镁发光薄膜。
本发明实施例铈掺杂钨酸钡镁发光薄膜制备方法,通过将氧化镁、氧化钡、三氧化钨及三氧化二铈混合、烧结形成溅射靶材,再溅射成膜,得到铈掺杂钨酸钡镁铈掺杂钨酸钡镁发光薄膜,该铈掺杂钨酸钡镁铈掺杂钨酸钡镁发光薄膜具有较强的发光效率;本发明实施例铈掺杂钨酸钡镁发光薄膜制备方法,操作简单、成本低廉,适于工业化生产。
本发明实施例进一步提供上述铈掺杂钨酸钡镁发光薄膜在电致发光器件中的应用。请参阅图5,图5显示应用本发明实施例铈掺杂钨酸钡镁发光薄膜的电致发光器件结构图,包括阳极1、发光层2及阴极3,该阳极1的材质为ITO玻璃,该发光层2的材质为本发明实施例的铈掺杂钨酸钡镁发光薄膜,该阴极3的材质为银。
以下结合具体实施例对上述铈掺杂钨酸钡镁发光薄膜制备方法进行详细阐述。
实施例一
将氧化镁、氧化钡、三氧化二铈及三氧化钨混合均匀,得到混合物,其中,MgO的质量百分含量为6%,BaO质量百分含量为30%,Ce2O3质量百分含量为0.15%,余量为WO3(质量分数比);
将该混合物在1250℃下烧结成Φ50×2mm的陶瓷溅射靶材;
将靶材装入真空腔体内,然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体,把靶材和衬底的距离设定为75mm,用机械泵和分子泵把腔体的真空度抽到5.0×10-4Pa,通入氢气体积含量为10%的氩氢混合气为工作气体,气体流量为25sccm,压强调节为2.0Pa,衬底温度为600℃,进行溅射处理,得到铈掺杂钨酸钡镁发光薄膜前体;
将铈掺杂钨酸钡镁发光薄膜前体在0.01Pa真空炉中,在温度为700℃条件下退火2h,得到铈掺杂钨酸钡镁发光薄膜。
得到铈掺杂钨酸钡镁铈掺杂钨酸钡镁发光薄膜分子式为:Mg0.43Ba0.57W2O8:0.0023 Ce3+;
然后在铈掺杂钨酸钡镁发光薄膜上面蒸镀一层Ag,作为阴极,得到含有本发明实施例铈掺杂钨酸钡镁发光薄膜的电致发光器件。
请参阅图2,由图2为实施例1得到铈掺杂钨酸钡镁铈掺杂钨酸钡镁发光薄膜XRD图谱,对照标准PDF卡片,是钨酸钡的结晶峰,没有出现掺杂元素以及其它杂质的衍射峰。
实施例二
将氧化镁、氧化钡、三氧化二铈及三氧化钨混合均匀,得到混合物,其中,MgO的质量百分含量为0.1%,BaO质量百分含量为40%,Ce2O3质量百分含量为0.01%,余量为WO3(质量分数比);
将该混合物在900℃下烧结成Φ50×2mm的陶瓷溅射靶材;
将靶材装入真空腔体内,然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体,把靶材和衬底的距离设定为50mm,用机械泵和分子泵把腔体的真空度抽到1.0×10-5Pa,通入氢气体积含量为1%的氩氢混合气为工作气体,气体流量为15sccm,压强调节为0.2Pa,衬底温度为600℃,进行溅射处理,得到铈掺杂钨酸钡镁发光薄膜前体;
将铈掺杂钨酸钡镁发光薄膜前体在0.01Pa真空炉中,在温度为500℃条件下退火1h,得到铈掺杂钨酸钡镁发光薄膜。
得到铈掺杂钨酸钡镁铈掺杂钨酸钡镁发光薄膜分子式为:Mg0.13Ba0.87W2O8:0.0002 Ce3+;
然后在铈掺杂钨酸钡镁发光薄膜上面蒸镀一层Ag,作为阴极,得到含有本发明实施例铈掺杂钨酸钡镁发光薄膜的电致发光器件。
实施例三
将氧化镁、氧化钡、三氧化二铈及三氧化钨混合均匀,得到混合物,其中,MgO的质量百分含量为15%,BaO质量百分含量为0.1%,Ce2O3质量百分含量为0.8%,余量为WO3(质量分数比);
将该混合物在1300℃下烧结成Φ 50×2mm的陶瓷溅射靶材;
将靶材装入真空腔体内,然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体,把靶材和衬底的距离设定为100mm,用机械泵和分子泵把腔体的真空度抽到1.0×10-3Pa,通入氢气体积含量为15%的氩氢混合气为工作气体,气体流量为30sccm,压强调节为4.5Pa,衬底温度为600℃,进行溅射处理,得到铈掺杂钨酸钡镁发光薄膜前体;
将铈掺杂钨酸钡镁发光薄膜前体在0.01Pa真空炉中,在温度为800℃条件下退火3h,得到铈掺杂钨酸钡镁发光薄膜。
得到铈掺杂钨酸钡镁铈掺杂钨酸钡镁发光薄膜分子式为:Mg0.96Ba0.04W2O8:0.0124 Ce3+;
然后在铈掺杂钨酸钡镁发光薄膜上面蒸镀一层Ag,作为阴极,得到含有本发明实施例铈掺杂钨酸钡镁发光薄膜的电致发光器件。
实施例四
将氧化镁、氧化钡、三氧化二铈及三氧化钨混合均匀,得到混合物,其中,MgO的质量百分含量为0.2%,BaO质量百分含量为30%,Ce2O3质量百分含量为0.6%,余量为WO3(质量分数比);
将该混合物在900℃下烧结成Φ 50×2mm的陶瓷溅射靶材;
将靶材装入真空腔体内,然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体,把靶材和衬底的距离设定为50mm,用机械泵和分子泵把腔体的真空度抽到5.0×10-4Pa,通入氢气体积含量为8%的氩氢混合气为工作气体,气体流量为20sccm,压强调节为0.2Pa,衬底温度为600℃,进行溅射处理,得到铈掺杂钨酸钡镁发光薄膜前体;
将铈掺杂钨酸钡镁发光薄膜前体在0.01Pa真空炉中,在温度为500℃条件下退火2h,得到铈掺杂钨酸钡镁发光薄膜。
得到铈掺杂钨酸钡镁铈掺杂钨酸钡镁发光薄膜分子式为:Mg0.026Ba0.974W2O8:0.0093Ce3+;
然后在铈掺杂钨酸钡镁发光薄膜上面蒸镀一层Ag,作为阴极,得到含有本发明实施例铈掺杂钨酸钡镁发光薄膜的电致发光器件。
实施例五
将氧化镁、氧化钡、三氧化二铈及三氧化钨混合均匀,得到混合物,其中,MgO的质量百分含量为10%,BaO质量百分含量为0.2%,Ce2O3质量百分含量为0.4%,余量为WO3
将该混合物在1300℃下烧结成Φ50×2mm的陶瓷溅射靶材;
将靶材装入真空腔体内,然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体,把靶材和衬底的距离设定为80mm,用机械泵和分子泵把腔体的真空度抽到5.0×10-4Pa,通入氢气体积含量为11%的氩氢混合气为工作气体,气体流量为23sccm,压强调节为2.0Pa,衬底温度为600℃,进行溅射处理,得到铈掺杂钨酸钡镁发光薄膜前体;
将铈掺杂钨酸钡镁发光薄膜前体在0.01Pa真空炉中,在温度为650℃条件下退火2h,得到铈掺杂钨酸钡镁发光薄膜。
得到铈掺杂钨酸钡镁铈掺杂钨酸钡镁发光薄膜分子式为:Mg0.995Ba0.005W2O8:0.0062Ce3+;
然后在铈掺杂钨酸钡镁发光薄膜上面蒸镀一层Ag,作为阴极,得到含有本发明实施例铈掺杂钨酸钡镁发光薄膜的电致发光器件。
实施例六
将氧化镁、氧化钡、铈三氧化二铈及三氧化钨混合均匀,得到混合物,其中,MgO的质量百分含量为15%,BaO质量百分含量为20%,Ce2O3质量百分含量为0.8%,余量为WO3(质量分数比);
将该混合物在1000℃下烧结成Φ50×2mm的陶瓷溅射靶材;
将靶材装入真空腔体内,然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体,把靶材和衬底的距离设定为95mm,用机械泵和分子泵把腔体的真空度抽到5.0×10-4Pa,通入氢气体积含量为9%的氩氢混合气为工作气体,气体流量为20sccm,压强调节为2.0Pa,衬底温度为600℃,进行溅射处理,得到铈掺杂钨酸钡镁发光薄膜前体;
将铈掺杂钨酸钡镁发光薄膜前体在0.01Pa真空炉中,在温度为750℃条件下退火2.5h,得到铈掺杂钨酸钡镁发光薄膜。
得到铈掺杂钨酸钡镁铈掺杂钨酸钡镁发光薄膜分子式为:Mg0.74Ba0.26W2O8:0.0124Ce3+;
然后在铈掺杂钨酸钡镁发光薄膜上面蒸镀一层Ag,作为阴极,得到含有本发明实施例铈掺杂钨酸钡镁发光薄膜的电致发光器件。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种铈掺杂钨酸钡镁发光薄膜,具有如下分子式:
    MgxBa1-xW2O8: YCe3+,其中,x为0.13~0.96,Y为0.0002~0.0124。
  2. 如权利要求1所述的铈掺杂钨酸钡镁发光薄膜,其特征在于,所述x为0.43,Y为0.0023。
  3. 一种铈掺杂钨酸钡镁发光薄膜制备方法,包括如下步骤:
    将氧化镁、氧化钡、三氧化钨及三氧化二铈混合,烧结形成溅射靶材,其中,所述氧化镁的质量百分含量为0.1%~15%,所述氧化钡的质量百分含量为0.1%~40%、所述三氧化二铈的质量百分含量为0.01%~0.8%,余量为三氧化钨;
    将所述溅射靶材进行磁控溅射,形成铈掺杂钨酸钡镁发光薄膜前体;
    将所述铈掺杂钨酸钡镁发光薄膜前体进行退火处理,得到铈掺杂钨酸钡镁发光薄膜。
  4. 如权利要求3所述的铈掺杂钨酸钡镁发光薄膜制备方法,其特征在于,所述氧化镁的质量百分含量为0.2%~10%,所述氧化钡的质量百分含量为0.2%~30%、所述三氧化二铈的质量百分含量为0.02%~0.6%,余量为三氧化钨。
  5. 如权利要求3所述的铈掺杂钨酸钡镁发光薄膜制备方法,其特征在于,所述氧化镁的质量百分含量为6 %,所述氧化钡的质量百分含量为30%、所述三氧化二铈的质量百分含量为0.15%,余量为三氧化钨。
  6. 如权利要求3所述的铈掺杂钨酸钡镁发光薄膜制备方法,其特征在于,所述烧结步骤中温度为900~1300℃。
  7. 如权利要求3所述的铈掺杂钨酸钡镁发光薄膜制备方法,其特征在于,所述溅射步骤条件为:
    衬底和靶材距离为50~100mm、衬底温度为250℃~750℃、氢气和惰性气体混合气体为工作气体,气体流量15~30sccm、压强0.2~4.5Pa。
  8. 如权利要求7所述的铈掺杂钨酸钡镁发光薄膜制备方法,其特征在于,所述混合气体中氢气的体积百分含量为1%-15%。
  9. 如权利要求3所述的铈掺杂钨酸钡镁发光薄膜制备方法,其特征在于,所述退火的温度为500℃~800℃,时间为1-3小时。
  10. 如权利要求1-2任一项所述的铈掺杂钨酸钡镁发光薄膜在电致发光器件中的应用。
PCT/CN2011/076467 2011-06-28 2011-06-28 铈掺杂钨酸钡镁发光薄膜及其制备方法和应用 WO2013000117A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014517373A JP5778863B2 (ja) 2011-06-28 2011-06-28 セリウムをドープしたタングステン酸バリウム・マグネシウム発光薄膜及びその製造方法、並びに電界発光デバイス
EP11868703.7A EP2727975B1 (en) 2011-06-28 2011-06-28 Cerium doped magnesium barium tungstate luminescent thin film, manufacturing method and application thereof
PCT/CN2011/076467 WO2013000117A1 (zh) 2011-06-28 2011-06-28 铈掺杂钨酸钡镁发光薄膜及其制备方法和应用
US14/130,228 US9270084B2 (en) 2011-06-28 2011-06-28 Cerium doped magnesium barium tungstate luminescent thin film, manufacturing method and application thereof
CN201180070930.9A CN103534332B (zh) 2011-06-28 2011-06-28 铈掺杂钨酸钡镁发光薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/076467 WO2013000117A1 (zh) 2011-06-28 2011-06-28 铈掺杂钨酸钡镁发光薄膜及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2013000117A1 true WO2013000117A1 (zh) 2013-01-03

Family

ID=47423357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076467 WO2013000117A1 (zh) 2011-06-28 2011-06-28 铈掺杂钨酸钡镁发光薄膜及其制备方法和应用

Country Status (5)

Country Link
US (1) US9270084B2 (zh)
EP (1) EP2727975B1 (zh)
JP (1) JP5778863B2 (zh)
CN (1) CN103534332B (zh)
WO (1) WO2013000117A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104140811A (zh) * 2013-05-06 2014-11-12 海洋王照明科技股份有限公司 铕掺杂碱土硫代镓酸盐发光材料、制备方法及其应用
CN105199730A (zh) * 2014-05-27 2015-12-30 五邑大学 一种制备稀土掺杂氧化钨纳米结构薄膜的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06251872A (ja) * 1993-02-23 1994-09-09 Konica Corp 電場発光素子及びその製造方法
JP2003138257A (ja) * 2001-11-06 2003-05-14 Nagaoka Univ Of Technology 高輝度金属酸化物蛍光構造体、その製造方法及び製造装置
WO2006111568A2 (en) * 2005-04-20 2006-10-26 Etech Ag Novel materials used for emitting light
CN1865537A (zh) * 2006-04-21 2006-11-22 北京工业大学 提高稀土离子掺杂浓度的钨酸钡单晶制备工艺

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE631924A (zh) 1962-05-07 1900-01-01
US3338841A (en) * 1964-05-14 1967-08-29 Du Pont Luminescent molybdate and tungstate compositions
JPS5821477A (ja) * 1981-07-31 1983-02-08 Yoshihide Kodera 螢光体
JPH01263188A (ja) * 1988-04-15 1989-10-19 Hitachi Ltd タングステン酸カルシウム発光薄膜およびその製造方法
JPH05320639A (ja) * 1992-05-25 1993-12-03 Konica Corp 電場発光素子およびその製造方法
JPH0892553A (ja) * 1994-09-19 1996-04-09 Toshiba Corp 蛍光体
US20030052000A1 (en) * 1997-07-11 2003-03-20 Vladimir Segal Fine grain size material, sputtering target, methods of forming, and micro-arc reduction method
JP2005220299A (ja) * 2004-02-09 2005-08-18 Matsushita Electric Ind Co Ltd 蛍光体
JP4566663B2 (ja) 2004-03-26 2010-10-20 キヤノン株式会社 発光材料及びその製造方法
JP4378230B2 (ja) 2004-06-15 2009-12-02 キヤノン株式会社 発光素子及びその製造方法
JP2006232601A (ja) 2005-02-24 2006-09-07 Osaka Univ 黄色顔料
WO2009096165A1 (ja) * 2008-01-31 2009-08-06 Panasonic Corporation 光学的情報記録媒体とその製造方法、及びターゲット
CN103233204A (zh) * 2008-06-06 2013-08-07 出光兴产株式会社 氧化物薄膜用溅射靶及其制造方法
CN101368258A (zh) 2008-09-12 2009-02-18 江苏大学 一种负热膨胀材料ZrW2O8薄膜的制备方法
TWI405838B (zh) 2009-03-27 2013-08-21 Chunghwa Picture Tubes Ltd 紅光螢光材料及其製造方法、及白光發光裝置
CN102791052B (zh) * 2011-05-16 2015-03-18 海洋王照明科技股份有限公司 钛铈共掺杂钨酸钡发光薄膜、其制备方法及有机电致发光器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06251872A (ja) * 1993-02-23 1994-09-09 Konica Corp 電場発光素子及びその製造方法
JP2003138257A (ja) * 2001-11-06 2003-05-14 Nagaoka Univ Of Technology 高輝度金属酸化物蛍光構造体、その製造方法及び製造装置
WO2006111568A2 (en) * 2005-04-20 2006-10-26 Etech Ag Novel materials used for emitting light
CN1865537A (zh) * 2006-04-21 2006-11-22 北京工业大学 提高稀土离子掺杂浓度的钨酸钡单晶制备工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2727975A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104140811A (zh) * 2013-05-06 2014-11-12 海洋王照明科技股份有限公司 铕掺杂碱土硫代镓酸盐发光材料、制备方法及其应用
CN105199730A (zh) * 2014-05-27 2015-12-30 五邑大学 一种制备稀土掺杂氧化钨纳米结构薄膜的方法
CN105199730B (zh) * 2014-05-27 2018-03-23 五邑大学 一种制备稀土掺杂氧化钨纳米结构薄膜的方法

Also Published As

Publication number Publication date
US9270084B2 (en) 2016-02-23
US20140145114A1 (en) 2014-05-29
JP5778863B2 (ja) 2015-09-16
EP2727975A4 (en) 2014-12-31
CN103534332A (zh) 2014-01-22
JP2014528004A (ja) 2014-10-23
EP2727975B1 (en) 2016-03-09
EP2727975A1 (en) 2014-05-07
CN103534332B (zh) 2014-12-31

Similar Documents

Publication Publication Date Title
KR101420337B1 (ko) 일종 백광 엘이디 적색 인광체 및 그 제조 방법
WO2013000117A1 (zh) 铈掺杂钨酸钡镁发光薄膜及其制备方法和应用
WO2022247386A1 (zh) 一种烧结体、靶材及其制备方法
WO2012083562A1 (zh) 一种导电膜及其制备方法和应用
CN115259663A (zh) 一种全无机钙钛矿量子点复合玻璃及其制备方法
CN102791052B (zh) 钛铈共掺杂钨酸钡发光薄膜、其制备方法及有机电致发光器件
WO2012009853A1 (zh) 一种发射白光的玻璃陶瓷及其制备方法
CN102796517B (zh) 一种含氮硅酸镁薄膜及其制备方法和应用
WO2011103721A1 (zh) 掺铽的硼酸钆盐基绿色发光材料及其制备方法
WO2013000111A1 (zh) 钛掺杂三元系硅酸盐薄膜及其制备方法和应用
WO2011130926A1 (zh) 含有金属粒子的稀土离子掺杂镓酸镧盐发光材料及其制备方法
CN112551892B (zh) 一种用于led显示的广色域玻璃及其制备方法
WO2012009845A1 (zh) 一种发光材料及其制备方法
WO2012022019A1 (zh) 一种颜色可调的荧光粉及其制备方法
CN102796518B (zh) 一种发光薄膜、其制备方法和应用
JP4952956B2 (ja) 結晶化金属酸化物薄膜を備えた蛍光体
CN102796523B (zh) 发光薄膜及其制备方法和应用
CN102796984B (zh) 多元素掺杂磷酸锶的发光薄膜及其制备方法和应用
CN115353375B (zh) 一种二价铕离子激活的单基质全光谱白光陶瓷材料及其制备方法
CN102796520A (zh) 一种发光薄膜及其制备方法和应用
CN102796519B (zh) 发光薄膜、其制备方法和应用
CN102863956B (zh) 镨掺杂钛酸钡发光材料、制备方法及其应用
WO2013174041A1 (zh) 荧光粉混合物、其制作方法及相应的液晶显示装置
CN102912441B (zh) 铈铽共掺杂钛酸锶发光薄膜、其制备方法及无机电致发光器件
KR100385703B1 (ko) 구형의 bam 청색 형광체의 새로운 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868703

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011868703

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014517373

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14130228

Country of ref document: US