WO2012174810A1 - 一种具有零静态电流消耗和稳定起拉电压的上电复位电路 - Google Patents

一种具有零静态电流消耗和稳定起拉电压的上电复位电路 Download PDF

Info

Publication number
WO2012174810A1
WO2012174810A1 PCT/CN2011/080841 CN2011080841W WO2012174810A1 WO 2012174810 A1 WO2012174810 A1 WO 2012174810A1 CN 2011080841 W CN2011080841 W CN 2011080841W WO 2012174810 A1 WO2012174810 A1 WO 2012174810A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
type
circuit
type coms
inverter
Prior art date
Application number
PCT/CN2011/080841
Other languages
English (en)
French (fr)
Inventor
时龙兴
单伟伟
曹鹏
柏娜
王学香
赵涛
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US13/704,184 priority Critical patent/US8803580B2/en
Publication of WO2012174810A1 publication Critical patent/WO2012174810A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/20Modifications for resetting core switching units to a predetermined state
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/22Modifications for ensuring a predetermined initial state when the supply voltage has been applied
    • H03K17/223Modifications for ensuring a predetermined initial state when the supply voltage has been applied in field-effect transistor switches

Definitions

  • the invention relates to a power-on reset circuit, in particular to a power-on reset circuit with zero quiescent current consumption and stable pull-up voltage, and belongs to the technical field of integrated circuits.
  • SoC system-on-a-chip
  • the Power-on-Reset Circuit is an indispensable component of the SoC. It provides a global reset signal to the system during the initial phase of power supply to ensure that the entire system is in a certain state. Startup; In addition, during normal operation of the circuit, if the supply voltage is too low, it will cause a system reset to prevent the system from operating in an unstable state.
  • the POR circuit should be connected to the power supply whether it is powered, powered down or stable. Therefore, the design of very low power, high performance POR circuits is critical to SoC chips.
  • POR circuits are generally implemented using the RC charge and discharge principle.
  • the reset signal remains low; as the power supply voltage charges the capacitor C until the voltage of the upper plate of the capacitor reaches the threshold voltage of the subsequent inverter
  • the reset signal output changes rapidly from low to high and remains high, and the reset process ends.
  • the power-on reset circuit has a simple structure, but the pull-up voltage is unstable, and the large capacitance is also difficult to implement in the chip. Summary of the invention
  • the invention comprises a power switch for inputting a power supply voltage; a band gap comparator circuit connected to the output end of the power switch, and outputting two current signals according to a change signal of the power supply voltage; a current comparison circuit, and a band gap comparator circuit output
  • the terminal phase connection is used for comparing two current signals and outputting a voltage detection signal
  • the state latch circuit is connected to the output end of the current comparison circuit for latching the voltage detection signal and outputting the latch signal
  • the output buffer circuit Connected to the output of the state latch circuit for buffering the latch signal, the output buffer circuit includes a first buffer and a second buffer connected in sequence, and the first buffer output terminal is connected to the power switch for controlling the power switch On and off, the second buffer outputs the final power-on reset signal
  • the undervoltage detection circuit the input is connected to the power supply voltage, and the output is connected to the output of the state latch circuit.
  • the power switch includes a zeroth P-type COMS tube; the zeroth P-type COMS tube source is connected to a power supply voltage, and the gate is connected First buffer output.
  • the bandgap comparator circuit includes a zeroth NPN bipolar tube, a first NPN bipolar tube, a first resistor and a second resistor; and a zeroth NPN bipolar tube has an emitter area smaller than the first NPN type The emitter area of the bipolar tube; the zeroth NPN bipolar tube emitter is grounded, and the collector is connected to the base; the first NPN bipolar tube emitter is grounded, and the collector is connected to the base; The second resistor is connected to the zeroth P-type C0MS tube drain at one end, and the other end is connected to the zeroth NPN bipolar tube collector; the first resistor is connected to the zeroth NPN bipolar tube base at one end, and the other end is connected The first NPN type bipolar tube base.
  • the current comparison circuit includes a third current mirror, a fourth P-type COMS tube, a fifth N-type COMS tube, a sixth P-type C0MS tube, and a transmission gate;
  • the third current mirror includes a third P-type COMS tube, and a fourth NPN type Bipolar tube and fifth NPN bipolar tube;
  • third P-type C0MS tube, fourth P-type C0MS tube and sixth P-type C0MS tube source are connected to the zeroth P-type C0MS tube drain;
  • fourth P The drain of the C0MS tube is connected to the gate;
  • the gate of the third P-type COMS is connected to the common terminal of the gate and the drain of the second P-type COMS, and the drain thereof is connected to the collector of the fourth NPN bipolar tube and
  • the fourth NPN-type bipolar tube base is connected to the zeroth NPN-type bipolar tube collector, and its emitter is grounded;
  • the state latch circuit includes a zeroth capacitor, a latch ring, a fourth inverter, a fifth inverter, a sixth inverter, a first inverter, and a fourteenth P-type COMS transistor; One pole is connected to the power supply voltage, the other pole is connected to the fourth inverter input terminal and the latch ring input terminal; the fourth inverter output terminal is connected to the fifth inverter input terminal, and the fifth inverter output terminal is connected.
  • the sixth inverter output terminal is connected to the fourteenth P-type COMS tube gate; the fourteenth P-type COMS tube drain is connected to the other end of the transmission gate, and the source is connected to the An inverter input terminal; a latch ring output terminal connected to the first buffer input terminal; and a first inverter output terminal connected to the latch ring input terminal.
  • the undervoltage detecting circuit comprises a ninth P-type COMS tube, a tenth N-type COMS tube, a first N-type COMS tube, a twelfth N-type COMS tube, a thirteenth P-type COMS tube and a second capacitor;
  • the three P-type COMS tube source is connected to the power supply voltage, and the gate and the drain are connected to the common terminal to the second capacitor one pole and the ninth P-type COMS tube source;
  • the ninth P-type COMS tube and the tenth N-type COMS tube Forming an undervoltage inverter, the source of the tenth N-type COMS tube and the other end of the second capacitor are grounded;
  • the one end of the undervoltage inverter is connected to the power supply, and the other end is connected to the eleventh N-type COMS tube gate and the twelfth N-type COMS tube gate;
  • the eleventh N-type COMS tube source is grounded, its
  • the latch ring includes a second inverter and a third inverter; the second inverter output is coupled to the third inverter input, and the third inverter output is coupled to the second inverter input.
  • the invention has the advantages of simple and novel structure, high reliability, stable pulling voltage, less influence of power supply power-on rate, temperature and process deviation, static static power consumption, and can be integrated into the SOC chip for low-power applications. in. DRAWINGS
  • Figure 1 is a block diagram showing the structure of the present invention
  • Figure 2 is a schematic diagram of the circuit of Figure 1; 3 is a circuit diagram of a bandgap comparator circuit of the present invention;
  • FIG. 4 is a circuit diagram of a current comparison circuit of the present invention.
  • Figure 5 is a circuit diagram of a state latch circuit in the present invention.
  • Figure 6 is a circuit diagram of the undervoltage detecting circuit of the present invention.
  • Figure 7 is a waveform diagram showing several signals during the power-on reset of the circuit of the present invention.
  • the present invention includes a power switch 0, a bandgap comparator circuit 1, a current comparison circuit 2, a state latch circuit 3, an undervoltage detection circuit 4, and an output buffer circuit 5.
  • the input end of the power switch 0 is connected to the power supply voltage, the output end is connected to the input end of the bandgap comparator circuit 1, the output end of the bandgap comparator circuit 1 is connected to the input end of the current comparison circuit 2, and the output of the current comparison circuit 2 is connected to the state lock.
  • the input terminal of the memory circuit 3, the input voltage of the undervoltage detection circuit 4 is connected to the power supply voltage, the output terminal is connected to the output terminal of the state latch circuit 3, the output terminal of the state latch circuit 3 is connected to the input terminal of the output buffer circuit 5, and the output buffer circuit 5 includes The first buffer Buffer1 and the second buffer B U ffer2 are connected, and the first buffer Buffer1 sends a power control enable signal to the power switch 0 for controlling the opening and closing of the power switch 0, thereby controlling the band gap comparator circuit. 1 and the operating state of the current comparison circuit 2, the second buffer B U ffer2 outputs the final power-on reset signal P 0 r_ rese t.
  • the bandgap comparator circuit, and a current comparison circuit 2 outputs a voltage detection signal DET_OUT, DET_OUT voltage detection signal is input to the state of the latch circuit 3, the latch state of the latch circuit 3 and outputs a voltage detection signal DET_OUT latch signal Lateh_ 0U t; if The power supply voltage is higher than the pull-up voltage, and the output buffer circuit 5 outputs the final power-on reset signal Por_reset while turning off the power switch 0 (ie, cutting off the operating power of the bandgap comparator circuit 1 and the current comparison circuit 2).
  • the undervoltage detection circuit 4 detects that the power supply voltage is lower than the threshold required for normal operation of the system, it pulls down the level of the output of the state latch circuit 3, the system resets (low reset), and simultaneously turns on the power switch 0 (band gap) Comparator circuit 1 and current comparison circuit 2 resume operation), restarting the power-on reset process.
  • the reset signal includes a process from low level to high level, and the reset signal is high level to indicate the end of the reset process.
  • the power switch 0 includes the zeroth P-type COMS tube M0, the zeroth P-type COMS tube M0 source is connected to the power supply voltage, and its gate is connected to the first buffer Bufferl output.
  • the bandgap comparator circuit 1 outputs two current signals to the current comparison circuit 2 according to the voltage change signal of the external power source V DD and then according to the power supply control enable signal fed back from the output buffer circuit 5.
  • This circuit utilizes the characteristics of several NPN transistors with a fixed emitter grounded in the CMOS process to achieve a stable pull-up voltage with a small temperature coefficient.
  • the bandgap comparator circuit 1 generates a small temperature coefficient of the pull-up voltage and is less affected by the process.
  • the bandgap comparator circuit 1 of the present invention includes a first current mirror, a second current mirror, a first resistor R1 and a second resistor R2.
  • the first current mirror comprises a zeroth NPN bipolar tube Q0, a third NPN bipolar tube Q3 and a first P type COMS tube Ml; wherein the second current mirror comprises a first NPN bipolar tube Ql , a second NPN bipolar tube Q2 and a second P type COMS tube M2.
  • the emitter area of the zeroth NPN bipolar tube Q0 is smaller than the emitter area of the first NPN bipolar tube.
  • the first P-type COMS tube M1 source is connected to the zeroth P-type COMS tube M0 drain, and its gate is connected to the drain; the third NPN-type bipolar tube Q3 collector is connected to the first P-type COMS tube M1 gate
  • the common end of the drain and the emitter are grounded, and the base thereof is connected to the base of the zeroth NPN type bipolar tube Q0; the zeroth NPN type bipolar tube Q0 emitter is grounded.
  • the second P-type COMS tube M2 source is connected to the zeroth P-type COMS tube M0 drain, and the gate end and the drain end are connected; the second NPN-type bipolar tube Q2 collector is connected to the second P-type COMS tube M2 gate
  • the common end of the drain and the emitter are grounded, and the base thereof is connected to the base of the first NPN bipolar transistor Q1; the emitter of the first NPN bipolar transistor Q1 is grounded, and the collector is connected to the base.
  • the second resistor R2 terminates the drain of the zeroth P-type COMS tube M0, and the other end of which is connected to the zeroth NPN bipolar tube Q0 collector;
  • the first resistor R1 terminates the third NPN bipolar tube Q3 base
  • the common terminal of the pole of the pole and the zeroth NPN bipolar tube Q0 is connected to the common end of the base of the first NPN bipolar tube and the base of the second NPN bipolar tube Q2.
  • the working principle of the bandgap comparator circuit 1 is as follows:
  • the zeroth NPN bipolar PN junction pipe Q0 is forward yet, since the first NPN type bipolar tube The emitter area is N times the area of the zeroth NPN-type bipolar tube Q0, and the second current 1 2 is greater than the first current 1 1 ( >
  • V BE1 of the base and emitter of the zeroth NPN bipolar transistor Q0 is equal to the voltage V R1 plus the first
  • the circuit can use two changes of the current path, by comparing the size of the two channels to determine the current power supply voltage V DD reaches the power-on reset from the pull-up voltage V TP, V DD denotes a power supply voltage when L is greater than 12 The magnitude of the pull-up voltage V TP has not yet been reached. When 1 2 is equal to ⁇ , it is a critical condition. At this time, the power supply voltage V DD is the pull-up voltage V TP , and when 12 is less than, the circuit outputs a power-on reset signal Por_reset.
  • V TP V T ⁇ N + V T Vr l N - V T ln(C Cooperr g ) + V g
  • C Q is the diffusion coefficient
  • ct is a constant
  • N is the first NPN bipolar tube Q1 and The ratio of the emitter area of the zeroth NPN bipolar tube Q0
  • V g is the band gap voltage
  • V T kT/q
  • k is the Boltzmann constant
  • q the electron charge
  • T is the temperature.
  • the pull-up voltage of the circuit can be minimized by the temperature change near the temperature.
  • the current comparison circuit 2 outputs a corresponding high and low level by comparing the mirror currents of the two branches in the bandgap comparator circuit 1, thereby outputting the power-on reset voltage detection signal Det_out to the state latch circuit 3. .
  • the current comparison circuit 2 of the present invention includes a third current mirror, a fourth P-type COMS tube M4, and a fifth N-type COMS tube. M5, sixth P-type COMS tube M6 and transmission gate.
  • the third current mirror includes a third P-type COMS tube M3, a fourth NPN-type bipolar tube Q4, and a fifth NPN-type bipolar tube Q5.
  • the third P-type COMS tube M3, the fourth P-type COMS tube M4 and the sixth P-type COMS tube M6 source are connected to the zeroth P-type COMS tube M0 drain; the fourth P-type COMS tube M4 drain and gate phase Connection; the third P-type COMS tube M3 gate is connected to the common terminal of the second P-type COMS tube M2 gate and the drain, and the drain thereof is connected to the fourth NPN-type bipolar tube Q4 collector and the fifth N-type COMS tube M5 gate; fourth NPN bipolar tube Q4 base is connected to the zeroth NPN bipolar tube Q0 collector, its emitter is grounded; fifth NPN bipolar tube Q5 base is connected to the fourth NPN type double The base of the pole tube Q4 has its source grounded, and its collector is connected to the common terminal of the drain and gate of the fourth P-type COMS tube M4; the sixth P-type COMS tube M6 is connected to the fourth P-type COMS tube M4 drain
  • the zeroth NPN bipolar transistor Q0 and the first NPN bipolar transistor Q1 in the bandgap comparator circuit 1 correspond to the branch circuits II and 12, and are mirrored to the current comparison circuit 2 through the third current mirror, when 12 is smaller than II At this time, the current comparison circuit 2 outputs a voltage detection signal Det_out.
  • the working principle of the current comparison circuit 2 is as follows:
  • the circuit obtains the mirror current in the bandgap comparator circuit 1 through the third current mirror.
  • the power supply voltage V DD starts to be powered on
  • the power supply voltage V DD is lower than the pull-up voltage V TP
  • the current 1 2 is greater than the I node a is charged, and the potential is raised, so that the fifth N-type COMS tube M5 is turned on, and since L is very Small, the sixth P-type COMS tube M6 is in an off state, the Bay Ijb point is a low level, and the transmission gate formed by the seventh N-type COMS tube M7 and the eighth P-type COMS tube M8 outputs a low level;
  • the circuit When the power supply voltage V DD exceeds the pull-up voltage V TP , the current 1 2 is less than the potential of the I node a is pulled low, becomes the low level, the fifth N-type COMS tube M5 is turned off, and the sixth P-type COMS tube M6 leads Then, the circuit outputs a high level signal, that is, the voltage detection signal Det_out.
  • Det_out starts to remain at 0, and when the power supply voltage V DD rises to the pull-up voltage V TP , Det_out rises.
  • the state of the latch circuit 3 receives the current comparison circuit of the voltage detection signal Det_out 2, the voltage detecting signal DET_OUT latch, and the latch output signal Lateh_ 0U t, and the latch signal to the output Lateh_ 0U t Buffer circuit 5.
  • the reference for the state latch circuit 3 is: SK Wadhwa, et al. Zero steady state current power-on-reset circuit with Brown-out detector [C]. Proceedings of the IEEE International Conference on VLSI Design, 2006: 631-636 .
  • the state latch circuit 3 of the present invention includes a zeroth capacitor C0, a latch loop, a fourth inverter INV4, a fifth inverter INV5, a sixth inverter INV6, a first inverter INV1, and a fourteenth P-type COMS tube M14, first capacitor C1 and fifteenth N-type COMS tube M15.
  • the zeroth capacitor C0 is connected to the power supply voltage, the other end is connected to the fourth inverter INV4 input terminal and the latch ring input terminal; the fourth inverter INV4 output terminal is connected to the fifth inverter INV5 input terminal, The output of the fifth inverter INV5 is connected to the input end of the sixth inverter INV6, and the output of the sixth inverter INV6 is connected to the gate of the fourteenth P-type COMS tube M14; the fourteenth P-type COMS tube M14 is connected to the transmission gate At the other end, the source is connected to the first capacitor C1, the first inverter INV1 is input.
  • the state latch circuit 3 works as follows:
  • the body of the state latch circuit 3 is a latch ring composed of a second inverter INV2 and a third inverter INV3, the input terminal of which is connected to the power supply voltage V DD via a zeroth capacitance CO.
  • the state latch circuit 3 has two operating states. First, at the beginning of power-on, as the power supply voltage V DD increases, since the voltage difference across the zeroth capacitor CO remains unchanged, the voltage of the node 3 ⁇ 4 follows Raise. In this circuit, the inversion voltages of the second inverter INV2 and the fourth inverter INV4 are designed to be lower values, and after the fifth inverter INV5 and the sixth inverter INV6, the voltage of the node is low, so that The fourteen P-type COMS tube M14 is in an on state, and will latch a low level Det_out signal as a global reset signal of the chip.
  • the Det_out signal goes high from 0 and rises as the power supply voltage V DD increases.
  • the P-type COMS fourteenth tube M14 since the P-type COMS fourteenth tube M14 also in the on state, the voltage is pulled low point, Latch_ 0U t signal goes high.
  • the 3 ⁇ 4 point becomes low, and the gate voltage of the fourteenth P-type COMS transistor M14 is turned high to be turned off, thereby isolating the front stage circuit from the state latch circuit 3.
  • Latch_ 0U t zeroth P-type COMS M0 off tube cut off the power supply of the bandgap comparator circuit 1 and the current comparison circuit 2, so that the steady-state power to zero.
  • the above circuit has the following problems: Since the fourteenth P-type COMS tube M14 is turned off and the point is left floating after the power-on reset, the state latch circuit 3 will slowly discharge through the leakage current of the fourteenth P-type COMS tube M14, and once n voltage lower than the inverting voltage of the three points of the first inverter INV1 will cause ⁇ point voltage becomes high, thereby enabling low voltage Latch_ 0U t, it will cause the circuit to reset the error. In order to avoid this, the fifteenth N-type COMS tube M15 is added. When the power-on reset process is finished, Latch_out is high so that the fifteenth N-type COMS tube M15 is turned on, so that the voltage of the n 3 terminal is fixed to a high level. This ensures that the output voltage is high.
  • the output buffer circuit 5 is used for buffering the input latch signal Lat C h_ 0U t, outputting the final power-on reset signal Por_reset, and simultaneously issuing a power control enable signal to the power switch 3, controlling the opening and closing of the power switch 3, and then controlling the band The operating states of the comparator circuit 1 and the current comparison circuit 2.
  • the undervoltage detecting circuit 4 outputs a reset signal to the output of the state latch circuit 3 when the power supply voltage V DD voltage is lower than the threshold required for the normal operation of the system according to the voltage change signal of the external power source, and the system resets to prevent the system.
  • the undervoltage detecting circuit 4 of the present invention comprises a ninth P-type COMS tube M9, a tenth N-type COMS tube M10, a first N-type COMS tube Mi l, a twelfth N-type COMS tube M12, and a thirteenth P-type COMS. Tube M13 and second capacitor C2.
  • the thirteenth P-type COMS tube M13 source is connected to the power supply voltage, and the gate and the drain are connected to the common terminal to the second capacitor C2—the pole and the ninth P-type COMS tube M9 source; the ninth P-type COMS tube M9 and The tenth N-type COMS tube M10 constitutes an undervoltage inverter, the tenth N-type COMS tube M10 source and the second capacitor C2 are grounded at the other end; the undervoltage inverter is connected to the power supply at one end, and the other end is connected to the first one.
  • Type COMS tube Mi l gate and twelfth N type COMS tube M12 gate tenth An N-type COMS tube Mi l source is grounded, and its drain is connected to the latch ring output terminal; the twelfth N-type COMS tube M12 has a source grounded, and its drain is connected to the fourteenth P-type COMS tube M14 source.
  • the undervoltage detection circuit 4 works as follows:
  • the thirteenth P-type COMS tube M13 in the circuit is connected to the second capacitor C2 using a diode connection.
  • VDD-Vth the voltage at the n4 point
  • Vth the threshold voltage of the thirteenth P-type COMS transistor M13.
  • the thirteenth P-type COMS transistor M13 When the power supply voltage VDD is powered down so that VDD is lower than the n4 point voltage, the thirteenth P-type COMS transistor M13 is turned off, and due to the action of the second capacitor C2, the n4 point will maintain the high voltage VDD-Vth before the power-down.
  • VDD continues to fall, after going low, the undervoltage inverter, the output high voltage, turns on the first N-type COMS tube Mi l and the twelfth N-type COMS tube M12, changing the potential of the n4 node and the Latch_out, The Latch_out voltage is pulled low and the circuit is reset again.
  • the zeroth P-type COMS tube M0 of the circuit is also turned on, and the bandgap comparator circuit 1 and the current comparison circuit 2 are restarted.
  • the circuit of the present invention consumes several microampere-level currents in the process of VDD rising from 0 to the pull-up voltage, and consumes several microampere-level pulse currents in a very short time after the Det_out signal is generated, at the end of the power-on reset.
  • the quiescent current after the circuit is stable is only a small leakage current of the picoampere level, thus achieving the requirement of zero quiescent current consumption of POR.

Landscapes

  • Electronic Switches (AREA)
  • Logic Circuits (AREA)

Abstract

提供了一种具有零静态电流消耗和稳定起拉电压的上电复位电路,该电路包括电源开关(0)、与电源开关(0)相连接并输出电压检测信号的带隙比较器电路(1)及电流比较电路(2)、锁存电压检测信号并输出锁存信号的状态锁存电路(3)、缓冲锁存信号的输出缓冲电路(5)和欠压检测电路(4)。本方案通过在上电复位之后切断带隙比较器电路(1)和电流比较电路(2)的电源来实现复位稳定后的零静态电流消耗。当检测到电源电压低于系统正常工作所需阈值时,欠压检测电路(4)将拉低状态锁存电路(3)输出端的电平,重新接通带隙比较器电路(1)和电流比较电路(2)的电源,系统复位。本方案具有高可靠性,起拉电压稳定,受电源上电速率、温度和工艺偏差影响较小,静态功耗小,可集成于低功耗应用的SOC芯片中。

Description

一种具有零静态电流消耗和稳定起拉电压的上电复位电路 技术领域
本发明涉及一种上电复位电路, 具体涉及一种具有零静态电流消耗和稳定起拉电压 的上电复位电路, 属于集成电路技术领域。
背景技术
随着芯片集成度的不断提高, 低功耗技术在片上系统芯片 (简称 SoC)设计中的应用 已经越来越成为研究者所关注的内容说。 单个芯片上集成的功能模块越来越多, 对芯片功 耗的要求就越高。尤其是无线传感器网络节点芯片对静态功耗的要求越来越苛刻, 要求 节点芯片能超长持续工作到数月甚至数年, 而大多数时间节点芯片是处在待机休眠状 书
态, 这就对静态功耗提出了极为严格的要求。
上电复位电路 (Power-on-Reset circuit, 简称 POR), 是 SoC中不可缺少的组成部分, 它在整个芯片开始供电的初始阶段给系统提供一个全局复位信号,确保整个系统从一个 确定的状态启动; 此外, 在电路正常工作阶段, 如果电源电压变至过低也会引起系统复 位以防止系统工作在不稳定状态。 POR电路不管是在电源上电、 掉电还是稳定阶段都应 连接电源。 因此, 极低功耗、 高性能的 POR电路的设计对 SoC芯片至关重要。
POR电路一般采用 RC充放电原理来实现。 当电源电压开始升高时, 由于电容 C两端 电压不能突变, 复位信号保持低电平; 随着电源电压对电容 C充电, 直至电容上极板的 电压到达后级反向器的阈值电压时, 复位信号输出迅速由低变高并保持高电平, 复位过 程结束。这种上电复位电路结构简单,但其起拉电压不稳定,大电容也难在芯片内实现。 发明内容
针对现有技术存在的不足, 本发明目的是提供一种高可靠性、 起拉电压稳定、 低功 耗的具有零静态电流消耗和稳定起拉电压的上电复位电路。
为了实现上述目的, 本发明是通过如下的技术方案来实现:
本发明包括输入端接电源电压的电源开关; 带隙比较器电路, 与电源开关输出端相 连接, 根据电源电压的变化信号, 输出两路电流信号; 电流比较电路, 与带隙比较器电 路输出端相连接, 用于比较两路电流信号, 并输出电压检测信号; 状态锁存电路, 与电 流比较电路输出端相连接, 用于锁存电压检测信号, 并输出锁存信号; 输出缓冲电路, 与状态锁存电路输出端相连接, 用于缓冲锁存信号, 输出缓冲电路包括依次连接的第一 缓冲器和第二缓冲器,第一缓冲器输出端接电源开关,用于控制电源开关的开启和关闭, 第二缓冲器输出最终的上电复位信号; 欠压检测电路, 输入接电源电压, 输出接状态锁 存电路输出端, 当检测到电源电压低于系统正常工作所需阈值时, 将拉低状态锁存电路 输出端的电平, 系统复位以防止系统工作在不稳定状态。
上述电源开关包括第零 P型 COMS管; 第零 P型 COMS管源极接电源电压, 其栅极接 第一缓冲器输出端。
上述带隙比较器电路包括第零 NPN型双极型管、第一 NPN型双极型管、 第一电阻和 第二电阻; 第零 NPN型双极型管的发射极面积小于第一 NPN型双极型管的发射极面积; 第零 NPN型双极型管发射极接地, 其集电极与基极相连接; 第一 NPN型双极型管发射极 接地, 其集电极与基极相连接; 第二电阻一端接第零 P型 C0MS管漏极, 其另一端接第 零 NPN型双极型管集电极; 第一电阻一端接第零 NPN型双极型管基极, 其另一端接第一 NPN型双极型管基极。
上述电流比较电路包括第三电流镜、 第四 P型 C0MS管、 第五 N型 C0MS管、 第六 P 型 C0MS管和传输门; 第三电流镜包括第三 P型 C0MS管、 第四 NPN型双极型管和第五 NPN型双极型管; 第三 P型 C0MS管、第四 P型 C0MS管和第六 P型 C0MS管源极均接第零 P型 C0MS管漏极; 第四 P型 C0MS管漏极与栅极相连接; 第三 P型 COMS管栅极接第二 P 型 COMS管栅极与漏极的公共端, 其漏极接第四 NPN型双极型管集电极和第五 N型 COMS管栅极;第四 NPN型双极型管基极接第零 NPN型双极型管集电极,其发射极接地; 第五 NPN型双极型管基极接第四 NPN型双极型管基极, 其源极接地, 其集电极接第四 P 型 COMS管漏极与栅极的公共端; 第六 P型 COMS管栅极接第四 P型 COMS管漏极与栅极 的公共端, 其漏极接第五 N型 COMS管漏极和传输门一端; 第五 N型 COMS管源极接地。
上述状态锁存电路包括第零电容、 锁存器环、 第四反相器、 第五反相器、 第六反相 器、 第一反相器和第十四 P型 COMS管; 第零电容一极接电源电压, 其另一极接第四反 相器输入端和锁存器环输入端; 第四反相器输出端接第五反相器输入端, 第五反相器输 出端接第六反相器输入端, 所述第六反相器输出端接第十四 P型 COMS管栅极; 第十四 P 型 COMS管漏极接所述传输门另一端, 其源极接第一反相器输入端; 锁存器环输出端接 第一缓冲器输入端; 第一反相器输出端接锁存器环输入端。
上述欠压检测电路包括第九 P型 COMS管、 第十 N型 COMS管、第 ^一 N型 COMS管、 第十二 N型 COMS管、 第十三 P型 COMS管和第二电容; 第十三 P型 COMS管源极接电源 电压, 其栅极与漏极相连接公共端接第二电容一极和第九 P型 COMS管源极; 第九 P型 COMS管与第十 N型 COMS管构成欠压反相器, 第十 N型 COMS管源极和第二电容另一端 均接地; 欠压反相器一端接电源电源, 另一端接第十一 N型 COMS管栅极和第十二 N型 COMS管栅极; 第十一 N型 COMS管源极接地, 其漏极接锁存器环输出端; 第十二 N型 COMS管源极接地, 其漏极接第十四 P型 COMS管源极。
上述锁存器环包括第二反相器和第三反相器;第二反相器输出端接第三反相器输入 端, 第三反相器输出端接第二反相器输入端。
本发明结构简单新颖, 具有很高的可靠性, 其起拉电压稳定, 受电源上电速率、 温 度和工艺偏差的影响较小, 静态功耗极小, 可以集成于低功耗应用的 S0C芯片中。 附图说明
下面结合附图和具体实施方式来详细说明本发明;
图 1为本发明的结构框图;
图 2为图 1的电路原理图; 图 3为本发明中带隙比较器电路的电路图;
图 4为本发明中电流比较电路的电路图;
图 5为本发明中状态锁存电路的电路图;
图 6为本发明中欠压检测电路的电路图;
图 7 是本发明电路上电复位过程中几个信号的波形示意图。
具体实施方式
为使本发明实现的技术手段、 创作特征、 达成目的与功效易于明白了解, 下面结合 具体实施方式, 进一步阐述本发明。
参见图 1和图 2, 本发明包括电源开关 0、 带隙比较器电路 1、 电流比较电路 2、 状态 锁存电路 3、 欠压检测电路 4和输出缓冲电路 5。
电源开关 0的输入端接电源电压, 输出端接带隙比较器电路 1的输入端, 带隙比较器 电路 1的输出端接电流比较电路 2的输入端, 电流比较电路 2输出端接状态锁存电路 3输入 端, 欠压检测电路 4输入端接电源电压, 其输出端接状态锁存电路 3输出端, 状态锁存电 路 3输出端接输出缓冲电路 5输入端, 输出缓冲电路 5包括依次连接的第一缓冲器 Bufferl 和第二缓冲器 BUffer2, 第一缓冲器 Bufferl向电源开关 0发出电源控制使能信号, 用于控 制电源开关 0的开启和关闭, 进而控制带隙比较器电路 1及电流比较电路 2的工作状态, 第二缓冲器 BUffer2输出最终的上电复位信号 P0r_reset。
本发明的工作过程如下:
带隙比较器电路 1和电流比较电路 2输出电压检测信号 Det_out, 电压检测信号 Det_out输入到状态锁存电路 3, 状态锁存电路 3锁存电压检测信号 Det_out并输出锁存信 号 Lateh_0Ut; 如果电源电压高于起拉电压, 输出缓冲电路 5输出最终的上电复位信号 Por_reset,同时切断电源开关 0 (即切断带隙比较器电路 1和电流比较电路 2的工作电源)。
当欠压检测电路 4检测到电源电压低于系统正常工作所需阈值时, 其拉低状态锁存 电路 3输出端的电平, 系统复位 (低电平复位) , 同时打开电源开关 0 (带隙比较器电路 1和电流比较电路 2重新开始工作) , 重新开始上电复位过程。
复位信号包括从低电平到高电平的一个过程, 复位信号为高电平时表示复位过程结 束。
电源开关 0包括第零 P型 COMS管 M0, 第零 P型 COMS管 M0源极接电源电压, 其栅极 接第一缓冲器 Bufferl输出端。
参见图 3, 带隙比较器电路 1根据外部电源 VDD的电压变化信号, 再根据输出缓冲电 路 5反馈的电源控制使能信号, 输出两个电流信号到电流比较电路 2。 该电路利用 CMOS 工艺中发射极固定接地的数个 NPN晶体管的特性来实现温度系数小的稳定的起拉电压。
带隙比较器电路 1产生的起拉电压温度系数小, 受工艺的影响小。
本发明的带隙比较器电路 1包括第一电流镜、 第二电流镜、 第一电阻 R1和第二电阻 R2。 其中, 第一电流镜包括第零 NPN型双极型管 Q0、 第三 NPN型双极型管 Q3和第一 P 型 COMS管 Ml ; 其中第二电流镜包括第一 NPN型双极型管 Ql、 第二 NPN型双极型管 Q2 和第二 P型 COMS管 M2。 第零 NPN型双极型管 Q0的发射极面积小于第一 NPN型双极型管 的发射极面积。 第一 P型 COMS管 Ml源极接第零 P型 COMS管 M0漏极, 其栅极与漏极相连接; 第三 NPN型双极型管 Q3集电极接第一 P型 COMS管 Ml栅极与漏极的公共端, 其发射极接地, 其基极接第零 NPN型双极型管 Q0基极; 第零 NPN型双极型管 Q0发射极接地。
第二 P型 COMS管 M2源极接第零 P型 COMS管 M0漏极, 其栅端与漏端相连接; 第二 NPN型双极型管 Q2集电极接第二 P型 COMS管 M2栅极与漏极的公共端, 其发射极接地, 其基极接第一 NPN型双极型管 Q1基极; 第一 NPN型双极型管 Q1发射极接地, 其集电极 与基极相连接。
第二电阻 R2—端接第零 P型 COMS管 M0漏极, 其另一端接第零 NPN型双极型管 Q0 集电极; 第一电阻 R1—端接第三 NPN型双极型管 Q3基极与第零 NPN型双极型管 Q0基极 的公共端, 其另一端接第一 NPN型双极型管 基极与第二 NPN型双极型管 Q2基极的公 共端。
带隙比较器电路 1的工作原理如下:
由于在电源电压 VDD从 0开始上升变化的过程中, 当电源电压 VDD较小时, 第零 NPN 型双极型管 Q0的 PN结还没有正向导通, 由于第一 NPN型双极型管 的发射极面积是第 零 NPN型双极型管 Q0发射极面积的 N倍, 此时的第二电流 12大于第一电流 11 (>
当电源电压 VDD上升到第零 NPN型双极型管 Q0的 PN结导通之后,第零 NPN型双极型 管 Q0基极和发射极的电压差 VBEQ等于 的电压 VR1加上第一 NPN型双极型管 Q1基极和 发射极的电压差 VBE1, 即 VBEQ=VR1+VBE1, 即 VBEQ> VBE1,因此 12小于 L。
因此可以利用电路中这两路电流的变化规律,通过比较这两路电流的大小来判断电 源电压 VDD是否达到上电复位的起拉电压 VTP,当 12大于 L时表示电源电压 VDD还未达到起 拉电压 VTP的大小, 当 12等于 ^时为临界情况, 此时的电源电压 VDD为起拉电压 VTP, 当 12 小于 时电路输出上电复位信号 Por_reset。
上电复位电路正常工作时, 我们可以得到起拉电压 VTP的表达式:
VTP = VT ^ N + VT Vr l N - VT ln(C„rg) + Vg 其中, CQ为扩散系数, ct为常数, N为第一 NPN型双极型管 Q1和第零 NPN型双极型 管 Q0的发射极面积的比值, Vg为带隙电压, VT=kT/q, k为波尔兹曼常数, q为电子电 量, T为温度。
对起拉电 VTP求导, 可以得到表达式:
dVTP l dT = - \n(C0Ta:))
Figure imgf000006_0001
通过调节第一电阻 Rl和第二电阻 R2使起拉电压 VTP的导数为零, 可使电路的起拉电 压在该温度附近受温度变化的影响最小。
参见图 4, 电流比较电路 2通过比较带隙比较器电路 1中两条支路的镜像电流, 输出 对应的高、 低电平, 从而输出上电复位的电压检测信号 Det_out到状态锁存电路 3。
本发明的电流比较电路 2包括第三电流镜、 第四 P型 COMS管 M4、 第五 N型 COMS管 M5、 第六 P型 COMS管 M6和传输门。 第三电流镜包括第三 P型 COMS管 M3、 第四 NPN型 双极型管 Q4和第五 NPN型双极型管 Q5。
第三 P型 COMS管 M3、第四 P型 COMS管 M4和第六 P型 COMS管 M6源极均接第零 P型 COMS管 M0漏极; 第四 P型 COMS管 M4漏极与栅极相连接; 第三 P型 COMS管 M3栅极接 第二 P型 COMS管 M2栅极与漏极的公共端,其漏极接第四 NPN型双极型管 Q4集电极和第 五 N型 COMS管 M5栅极; 第四 NPN型双极型管 Q4基极接第零 NPN型双极型管 Q0集电极, 其发射极接地; 第五 NPN型双极型管 Q5基极接第四 NPN型双极型管 Q4基极, 其源极接 地, 其集电极接第四 P型 COMS管 M4漏极与栅极的公共端; 第六 P型 COMS管 M6栅极接 第四 P型 COMS管 M4漏极与栅极的公共端, 其漏极接第五 N型 COMS管 M5漏极和传输门 一端; 第五 N型 COMS管 M5源极接地。
带隙比较器电路 1中第零 NPN型双极型管 Q0和第一 NPN型双极型管 Q1对应支路电 路 II和 12, 通过第三电流镜镜像到电流比较电路 2, 当 12小于 II时, 电流比较电路 2输出 电压检测信号 Det_out。
电流比较电路 2的工作原理如下:
电路通过第三电流镜得到带隙比较器电路 1中的镜像电流。 电源电压 VDD开始上电 时, 电源电压 VDD低于起拉电压 VTP, 电流 12大于 I 节点 a被充电, 电位升高, 使得第五 N型 COMS管 M5导通, 同时由于 L很小, 第六 P型 COMS管 M6处于截止状态, 贝 Ijb点为低 电平, 通过第七 N型 COMS管 M7和第八 P型 COMS管 M8构成的传输门输出低电平;
当电源电压 VDD升高使得 11= 12时, 电路处于平衡状态, 此时的电源电压 VDD为电路 的起拉电压 VTP;
当电源电压 VDD超过起拉电压 VTP时, 电流 12小于 I 节点 a的电位被拉低, 变为低电 平, 第五 N型 COMS管 M5截止, 同时第六 P型 COMS管 M6导通, 则电路输出高电平信号, 即电压检测信号 Det_out。
所以当电源电压 VDD从 0开始上升时, Det_out开始保持为 0, 当电源电压 VDD上升到 起拉电压 VTP时, Det_out升高。
参见图 5, 状态锁存电路 3收到电流比较电路 2的电压检测信号 Det_out, 锁存该电压 检测信号 Det_out, 并输出锁存信号 Lateh_0Ut, 并将该锁存信号 Lateh_0Ut输出到输出缓 冲电路 5。 状态锁存电路 3的参考文献为: S. K. Wadhwa, et al. Zero steady state current power-on-reset circuit with Brown-out detector[C]. Proceedings of the IEEE International Conference on VLSI Design, 2006: 631-636.
本发明的状态锁存电路 3包括第零电容 C0、 锁存器环、 第四反相器 INV4、 第五反相 器 INV5、 第六反相器 INV6、 第一反相器 INV1、 第十四 P型 COMS管 M14、 第一电容 C1 和第十五 N型 COMS管 M15。
第零电容 C0—极接电源电压, 其另一极接第四反相器 INV4输入端和锁存器环输入 端; 第四反相器 INV4输出端接第五反相器 INV5输入端, 第五反相器 INV5输出端接第六 反相器 INV6输入端, 第六反相器 INV6输出端接第十四 P型 COMS管 M14栅极; 第十四 P 型 COMS管 M14漏极接传输门另一端,其源极接第一电容 C1一极、第一反相器 INV1输入 端和第十五 N型 COMS管 M15源极; 第一电容 C1另一极接地; 第十五 N型 C0MS管 M15 漏极接电源电压, 其栅极接锁存器环输出端, 锁存器环输出端接第一缓冲器 Bufferl输入 端; 第一反相器 INV1输出端接锁存器环输入端。
状态锁存电路 3的工作原理如下:
状态锁存电路 3的主体是一个由第二反相器 INV2和第三反相器 INV3组成的锁存器 环, 其输入端经第零电容 CO连接到电源电压 VDD
状态锁存电路 3具有两个工作状态, 首先, 在上电开始的阶段, 随着电源电压 VDD 的升高, 由于第零电容 CO两端的电压差保持不变, 所以节点¾的电压随之升高。 本电路 中将第二反相器 INV2和第四反相器 INV4的翻转电压设计成较低值, 通过第五反相器 INV5和第六反相器 INV6后, 节点 的电压为低, 使第十四 P型 COMS管 M14处于导通状 态, 并将锁存一个低电平的 Det_out信号作为芯片的全局复位信号。
其次, 当电源电压 VDD超过上电复位电路的起拉电压 VTP时, Det_out信号由 0变高, 并且随着电源电压 VDD的升高而升高。 因为此时第十四 P型 COMS管 M14还处于导通状 态, 所以 点的电压被拉低, Latch_0Ut信号变高。 同时 ¾点变低, 使第十四 P型 COMS 管 M14的栅电压变高从而关闭, 从而将前级电路与状态锁存电路 3隔离。 经过少许延时 后 Latch_0Ut信号将第零 P型 COMS管 M0关断, 切断了带隙比较器电路 1和电流比较电路 2 的电源, 使其稳态功耗为零。
以上电路存在如下问题: 由于上电复位结束后第十四 P型 COMS管 M14关断造成 点悬空, 状态锁存电路 3会通过第十四 P型 COMS管 M14的泄漏电流缓慢放电, 而一旦 n3 点的电压低于第一反相器 INV1的翻转电压, 会造成 ηι点电压变高, 进而使 Latch_0Ut电压 变低, 将会导致电路错误的重新复位。 为了避免这种情况, 增加了第十五 N型 COMS管 M15, 当上电复位过程结束, Latch_out为高使得第十五 N型 COMS管 M15导通, 使得 n3 端电压固定为高电平, 从而保证输出电压为高。
输出缓冲电路 5用于缓冲输入的锁存信号 LatCh_0Ut, 输出最终的上电复位信号 Por_reset, 同时发出电源控制使能信号到电源开关 3, 控制电源开关 3的开断, 进而控制 带隙比较器电路 1和电流比较电路 2的工作状态。
参见图 6, 欠压检测电路 4根据外部电源的电压变化信号, 当电源电压 VDD电压低于 系统正常工作所需阈值时, 输出复位信号到状态锁存电路 3输出端, 系统复位来防止系 统工作在不稳定状态。 参考文献: S. K. Wadhwa, et al. Zero steady state current power-on-reset circuit with Brown-out detector[C]. Proceedings of the IEEE International Conference on VLSI Design, 2006: 631-636.
本发明的欠压检测电路 4包括第九 P型 COMS管 M9、 第十 N型 COMS管 M10、 第 ^一 N型 COMS管 Mi l、 第十二 N型 COMS管 M12、 第十三 P型 COMS管 M13和第二电容 C2。
第十三 P型 COMS管 M13源极接电源电压, 其栅极与漏极相连接公共端接第二电容 C2—极和第九 P型 COMS管 M9源极;第九 P型 COMS管 M9与第十 N型 COMS管 M10构成欠 压反相器, 第十 N型 COMS管 M10源极和第二电容 C2另一端均接地; 欠压反相器一端接 电源电源, 另一端接第 ^一 N型 COMS管 Mi l栅极和第十二 N型 COMS管 M12栅极; 第十 一 N型 COMS管 Mi l源极接地, 其漏极接锁存器环输出端; 第十二 N型 COMS管 M12源极 接地, 其漏极接第十四 P型 COMS管 M14源极。
欠压检测电路 4的工作原理如下:
它利用暂存在第二电容 C2上的电压给第九 P型 COMS管 M9、 第十 N型 COMS管 M10 组成的欠压反相器提供电源。电路中第十三 P型 COMS管 M13使用二极管连接方式与第二 电容 C2连接。
当电源电压 VDD上升到高电压时, n4点的电压为 VDD-Vth, Vth是第十三 P型 COMS 管 M13的阈值电压, 此时该部分电路没有从电源到地的直流通路, 因而稳态功耗为零。
当电源电压 VDD掉电使得 VDD低于 n4点电压时, 第十三 P型 COMS管 M13关断, 由 于第二电容 C2的作用, n4点将保持掉电前的高电压 VDD-Vth。 当 VDD持续下降,变低后 经过欠压反相器, 输出的高电压, 使第 ^一 N型 COMS管 Mi l和第十二 N型 COMS管 M12 导通, 改变 n4节点和 Latch_out的电位, Latch_out电压被拉低, 进而电路重新复位。 同时 电路的第零 P型 COMS管 M0也被打开, 带隙比较器电路 1和电流比较电路 2重新启动。
参见图 7, 在电源电压 VDD升高到起拉电压 VTP时, 产生 Por_reset信号, 并且信号 Det_out被及时关断, 通过 Latch_out锁存。 当电源电压 VDD下降到某一值时, POR电路 产生低电平复位信号 Por_reset。 随着电源电压 VDD的再次升高, Por_reset也升高, 复位 过程结束。
本发明电路除了在 VDD从 0上升至起拉电压的过程中消耗数个微安级别的电流, 以 及 Det_out信号产生后的极短时间内消耗数个微安级别的脉冲电流,在上电复位结束、 电 路稳定之后的静态电流仅有皮安级别的微小漏电流, 从而实现了 POR零静态电流消耗的 要求。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人 员应该了解, 本发明不受上述实施例的限制, 上述实施例和'说明书中描述的只是说明本 发明的原理, 在不脱离本发明精神和范围的前提下, 本发明还会有各种变化和改进, 这 些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求 书及其等效物界定。

Claims

权 利 要 求 书
1、 一种具有零静态电流消耗和稳定起拉电压的上电复位电路, 其特征在于, 包 括输入端接电源电压的电源开关 (0) ;
带隙比较器电路(1 ) , 与电源开关(0)输出端相连接, 根据电源电压的变化信 号, 输出两路电流信号;
电流比较电路(2) , 与带隙比较器电路(1 )输出端相连接, 用于比较所述两路 电流信号, 并输出电压检测信号;
状态锁存电路(3) , 与电流比较电路(2)输出端相连接, 用于锁存所述电压检 测信号, 并输出锁存信号;
输出缓冲电路(5) , 与状态锁存电路(3)输出端相连接, 用于缓冲所述锁存信 号, 所述输出缓冲电路 (5) 包括依次连接的第一缓冲器和第二缓冲器, 所述第一缓 冲器输出端接电源开关(0) , 用于控制电源开关(0) 的开启和关闭, 所述第二缓冲 器输出最终的上电复位信号;
欠压检测电路(4) , 输入接电源电压, 输出接状态锁存电路(3)输出端, 当检 测到电源电压低于系统正常工作所需阈值时, 将拉低状态锁存电路 (3) 输出端的电 平系统复位。
2、 根据权利要求 1所述的具有零静态电流消耗和稳定起拉电压的上电复位电路, 其特征在于, 所述电源开关 (0) 包括第零 P型 COMS管;
所述第零 P型 COMS管源极接电源电压, 其栅极接第一缓冲器输出端。
3、 根据权利要求 2所述的具有零静态电流消耗和稳定起拉电压的上电复位电路, 其特征在于, 所述带隙比较器电路 (1 ) 包括第零 NPN型双极型管、 第一 NPN型双极 型管、 第一电阻和第二电阻;
所述第零 NPN型双极型管的发射极面积小于第一 NPN型双极型管的发射极面积; 所述第零 NPN型双极型管发射极接地, 其集电极与基极相连接;
所述第一 NPN型双极型管发射极接地, 其集电极与基极相连接;
所述第二电阻一端接第零 P型 COMS管漏极, 其另一端接第零 NPN型双极型管集 电极;
所述第一电阻一端接第零 NPN型双极型管基极,其另一端接第一 NPN型双极型管 基极。
4、 根据权利要求 3所述的具有零静态电流消耗和稳定起拉电压的上电复位电路, 其特征在于, 所述电流比较电路 (2) 包括第三电流镜、 第四 P型 COMS管、 第五 N型
COMS管、 第六 P型 COMS管和传输门;
所述第三电流镜包括第三 P型 COMS管、 第四 NPN型双极型管和第五 NPN型双极 型管;
所述第三 P型 COMS管、 第四 P型 COMS管和第六 P型 COMS管源极均接第零 P型 COMS管漏极;
所述第四 P型 COMS管漏极与栅极相连接;
所述第三 P型 COMS管栅极接第二 P型 COMS管栅极与漏极的公共端, 其漏极接第 四 NPN型双极型管集电极和第五 N型 COMS管栅极;
所述第四 NPN型双极型管基极接第零 NPN型双极型管集电极, 其发射极接地; 所述第五 NPN型双极型管基极接第四 NPN型双极型管基极, 其源极接地,其集电 极接第四 P型 COMS管漏极与栅极的公共端;
所述第六 P型 COMS管栅极接第四 P型 COMS管漏极与栅极的公共端, 其漏极接第 五 N型 COMS管漏极和传输门一端;
所述第五 N型 COMS管源极接地。
5、 根据权利要求 4所述的具有零静态电流消耗和稳定起拉电压的上电复位电路, 其特征在于, 所述状态锁存电路 (3) 包括第零电容、 锁存器环、 第四反相器、 第五 反相器、 第六反相器、 第一反相器和第十四 P型 COMS管;
所述第零电容一极接电源电压, 其另一极接第四反相器输入端和锁存器环输入 所述第四反相器输出端接第五反相器输入端,所述第五反相器输出端接第六反相 器输入端, 所述第六反相器输出端接第十四 P型 COMS管栅极;
所述第十四 P型 COMS管漏极接所述传输门另一端,其源极接第一反相器输入端; 所述锁存器环输出端接第一缓冲器输入端;
所述第一反相器输出端接锁存器环输入端。
6、 根据权利要求 5所述的具有零静态电流消耗和稳定起拉电压的上电复位电路, 其特征在于, 所述欠压检测电路 (4) 包括第九 P型 COMS管、 第十 N型 COMS管、 第 -i ^一 N型 COMS管、 第十二 N型 COMS管、 第十三 P型 COMS管和第二电容;
所述第十三 P型 COMS管源极接电源电压, 其栅极与漏极相连接公共端接第二电 容一极和第九 P型 COMS管源极;
所述第九 P型 COMS管与第十 N型 COMS管构成欠压反相器, 所述第十 N型 COMS 管源极和第二电容另一端均接地;
所述欠压反相器一端接电源电源, 另一端接第十一 N型 COMS管栅极和第十二 N 型 COMS管栅极;
所述第十一 N型 COMS管源极接地, 其漏极接锁存器环输出端;
所述第十二 N型 COMS管源极接地, 其漏极接第十四 P型 COMS管源极。
7、 根据权利要求 5或 6所述的具有零静态电流消耗和稳定起拉电压的上电复位电 路, 其特征在于, 所述锁存器环包括第二反相器和第三反相器;
所述第二反相器输出端接第三反相器输入端,所述第三反相器输出端接第二反相 器输入端。
PCT/CN2011/080841 2011-06-21 2011-10-17 一种具有零静态电流消耗和稳定起拉电压的上电复位电路 WO2012174810A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/704,184 US8803580B2 (en) 2011-06-21 2011-10-17 Power-on-reset (POR) circuit with zero steady-state current consumption and stable pull-up voltage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110166958.4 2011-06-21
CN2011101669584A CN102291110B (zh) 2011-06-21 2011-06-21 一种具有零静态电流消耗和稳定起拉电压的上电复位电路

Publications (1)

Publication Number Publication Date
WO2012174810A1 true WO2012174810A1 (zh) 2012-12-27

Family

ID=45337255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080841 WO2012174810A1 (zh) 2011-06-21 2011-10-17 一种具有零静态电流消耗和稳定起拉电压的上电复位电路

Country Status (3)

Country Link
US (1) US8803580B2 (zh)
CN (1) CN102291110B (zh)
WO (1) WO2012174810A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391805A (zh) * 2018-04-16 2019-10-29 亚德诺半导体无限责任公司 复位电路上的低静态电流功率

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130169255A1 (en) * 2011-12-30 2013-07-04 Tyler Daigle Regulator power-on-reset with latch
WO2014032610A1 (zh) * 2012-09-03 2014-03-06 东南大学 一种面向cpu流水线的错误恢复电路
CN102983846B (zh) * 2012-12-07 2015-05-27 广州慧智微电子有限公司 一种小尺寸低静态电流的上电复位电路
CN105306027B (zh) * 2014-07-08 2018-09-25 国家电网公司 一种复位电路及电路复位方法
US10191527B2 (en) * 2015-05-14 2019-01-29 Arm Limited Brown-out detector
US9385689B1 (en) 2015-10-13 2016-07-05 Freescale Semiconductor, Inc. Open loop band gap reference voltage generator
US9729138B1 (en) 2015-12-16 2017-08-08 Adesto Technologies Corporation Circuits and systems having low power power-on-reset and/or brown out detection
CN106921371B (zh) * 2015-12-28 2020-03-31 上海新微技术研发中心有限公司 低功耗上电复位电路
CN105406848B (zh) * 2015-12-31 2018-07-13 上海芯泽电子科技有限公司 零静态功耗上下电复位信号产生电路和上下电复位芯片
CN106982052B (zh) * 2016-01-15 2021-07-09 中芯国际集成电路制造(上海)有限公司 一种上电重置电路及电子装置
US9871520B1 (en) * 2016-08-15 2018-01-16 Xilinx, Inc. Voting circuit and self-correcting latches
CN107317297B (zh) * 2017-06-09 2020-03-13 青岛海信电器股份有限公司 设备的自复位方法及终端设备
TWI646781B (zh) * 2017-08-01 2019-01-01 世界先進積體電路股份有限公司 具狀態回復機制之上電控制電路及操作電路
CN107800411A (zh) * 2017-10-19 2018-03-13 深圳市汇春科技股份有限公司 一种延时电路
CN108418573B (zh) * 2018-02-07 2024-02-06 中国科学院半导体研究所 电源采样电路及包括其的零功耗上电复位电路
CN110297514B (zh) 2018-03-22 2020-12-01 华邦电子股份有限公司 电源开启重置电路
TWI641220B (zh) * 2018-03-22 2018-11-11 華邦電子股份有限公司 電源開啟重置電路
CN108649939B (zh) * 2018-04-16 2022-07-29 芯原微电子(上海)股份有限公司 电源检测电路及方法
KR102519602B1 (ko) 2018-12-17 2023-04-07 에스케이하이닉스 주식회사 레벨 쉬프터 및 이를 포함하는 드라이버 회로
KR102445814B1 (ko) * 2018-05-31 2022-09-21 에스케이하이닉스 주식회사 반도체 장치
US10892750B2 (en) 2018-05-31 2021-01-12 SK Hynix Inc. Semiconductor apparatus
CN111092613B (zh) * 2018-10-23 2023-12-05 雅特力科技(重庆)有限公司 上电重置电路与相关的重置方法
CN109496021A (zh) * 2019-01-09 2019-03-19 厦门安斯通微电子技术有限公司 一种零静态电流的led灯控制和按键输入分时复用电路
CN110706726B (zh) * 2019-01-23 2020-07-28 深圳市芯天下技术有限公司 一种上电复位电压稳定的上电复位电路
US10951209B1 (en) 2019-10-17 2021-03-16 Himax Technologies Limited Power on ready signal generating apparatus and operation method thereof
CN112787486B (zh) * 2019-11-08 2023-04-28 奇景光电股份有限公司 电源就绪信号产生装置及其操作方法
CN114326907B (zh) * 2022-01-12 2024-04-12 上海南芯半导体科技股份有限公司 一种新型的por电路
CN114839425B (zh) * 2022-06-29 2022-10-14 圣邦微电子(北京)股份有限公司 欠压检测器及包含该欠压检测器的电源系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020109535A1 (en) * 2001-02-09 2002-08-15 Telcom Semiconductor, Inc. Power on reset circuit arrangement
CN101394171A (zh) * 2008-10-24 2009-03-25 华中科技大学 一种静态零功耗上电复位电路
CN101588167A (zh) * 2009-06-18 2009-11-25 广州润芯信息技术有限公司 上电复位和欠压关断电路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991887A (en) * 1996-02-28 1999-11-23 Dallas Semiconductor Corporation Low power wake up circuitry, with internal power down of the wake up circuitry itself
DE10336480B3 (de) * 2003-08-08 2005-04-14 Infineon Technologies Ag Rücksetzgeneratorschaltung zur Erzeugung eines Rücksetzsignals
US6879194B1 (en) * 2003-08-25 2005-04-12 National Semiconductor Corporation Apparatus and method for an active power-on reset current comparator circuit
US20080012603A1 (en) * 2006-07-17 2008-01-17 Wadhwa Sanjay K Brown out detector
US7821307B2 (en) * 2008-12-23 2010-10-26 Texas Instruments Incorporated Bandgap referenced power on reset (POR) circuit with improved area and power performance
US8228100B2 (en) * 2010-01-26 2012-07-24 Freescale Semiconductor, Inc. Data processing system having brown-out detection circuit
CN201725187U (zh) * 2010-05-14 2011-01-26 深圳市中奥吉达电梯有限公司 一种微机自动控制系统
CN101969188B (zh) * 2010-10-25 2013-08-21 灿芯半导体(上海)有限公司 用于开关电源的电阻短路保护装置和保护方法
US8604847B2 (en) * 2012-05-03 2013-12-10 Texas Instruments Incorporated Detection of fast supply ramp in reset circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020109535A1 (en) * 2001-02-09 2002-08-15 Telcom Semiconductor, Inc. Power on reset circuit arrangement
CN101394171A (zh) * 2008-10-24 2009-03-25 华中科技大学 一种静态零功耗上电复位电路
CN101588167A (zh) * 2009-06-18 2009-11-25 广州润芯信息技术有限公司 上电复位和欠压关断电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, CAN ET AL.: "A bandgap voltage comparator used as Power-On Reset and Brown-Out Detect circuit", PROCEEDINGS OF 2006 SICHUAN INSTITUTE OF ELECTRONICS, SPECIAL COMMITTEE OF SEMICONDUCTOR AND INTEGRATION TECHNOLOGY SYMPOSIUM, 31 December 2006 (2006-12-31), pages 97 - 100 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391805A (zh) * 2018-04-16 2019-10-29 亚德诺半导体无限责任公司 复位电路上的低静态电流功率
US10651840B2 (en) 2018-04-16 2020-05-12 Analog Devices Global Unlimited Company Low quiescent current power on reset circuit
TWI757597B (zh) * 2018-04-16 2022-03-11 百慕達商亞德諾半導體環球無限公司 一種低靜態電流上電重置電路
CN110391805B (zh) * 2018-04-16 2023-08-25 亚德诺半导体国际无限责任公司 复位电路上的低静态电流功率

Also Published As

Publication number Publication date
US20140097873A1 (en) 2014-04-10
US8803580B2 (en) 2014-08-12
CN102291110A (zh) 2011-12-21
CN102291110B (zh) 2013-01-02

Similar Documents

Publication Publication Date Title
WO2012174810A1 (zh) 一种具有零静态电流消耗和稳定起拉电压的上电复位电路
US10884442B2 (en) Bandgap reference power generation circuit and integrated circuit
US7224209B2 (en) Speed-up circuit for initiation of proportional to absolute temperature biasing circuits
US6404252B1 (en) No standby current consuming start up circuit
JP3752107B2 (ja) 集積回路用パワーオンリセット回路
US8269477B2 (en) Reference voltage generation circuit
US20220294426A1 (en) Ultra-low energy per cycle oscillator topology
US8294450B2 (en) Start-up circuits for starting up bandgap reference circuits
WO2023130499A1 (zh) 一种带隙基准电路
CN103427812B (zh) 一种上电复位电路及其方法
CN110867826A (zh) 一种低温漂欠压锁定电路
US9667134B2 (en) Startup circuit for reference circuits
JP2006303579A (ja) 半導体装置
JPH0917181A (ja) 半導体メモリ装置の定電圧発生回路
WO2023103748A1 (zh) 一种低压检测电路
US20190245499A1 (en) Fast startup bias current generator
CN202103637U (zh) 一种具有零静态电流消耗和稳定起拉电压的上电复位电路
US20160191041A1 (en) Circuit and Method for Power-On Reset of an Integrated Circuit
WO2019028595A1 (zh) 振荡器、集成电路、计时芯片和电子设备
CN107992144B (zh) 带隙基准源的启动电路
TWI381172B (zh) 電源偵測電路、可攜式裝置以及防止資料遺失方法
US11967949B2 (en) Bias circuit, sensor device, and wireless sensor device
WO2021135661A1 (zh) 一种掉电检测电路
CN112667014A (zh) 一种应用于超低压电压场景的带隙基准电路
WO2018098773A1 (zh) 一种侦测时序错误的电路、触发器和锁存器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868310

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13704184

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 11868310

Country of ref document: EP

Kind code of ref document: A1