WO2012172773A1 - 抵抗変化素子の駆動方法、及び不揮発性記憶装置 - Google Patents

抵抗変化素子の駆動方法、及び不揮発性記憶装置 Download PDF

Info

Publication number
WO2012172773A1
WO2012172773A1 PCT/JP2012/003791 JP2012003791W WO2012172773A1 WO 2012172773 A1 WO2012172773 A1 WO 2012172773A1 JP 2012003791 W JP2012003791 W JP 2012003791W WO 2012172773 A1 WO2012172773 A1 WO 2012172773A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
voltage pulse
electrode
layer
voltage
Prior art date
Application number
PCT/JP2012/003791
Other languages
English (en)
French (fr)
Inventor
高木 剛
幸治 片山
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/883,075 priority Critical patent/US9142289B2/en
Priority to JP2013516872A priority patent/JP5313413B2/ja
Publication of WO2012172773A1 publication Critical patent/WO2012172773A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0064Verifying circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0073Write using bi-directional cell biasing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/009Write using potential difference applied between cell electrodes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0092Write characterized by the shape, e.g. form, length, amplitude of the write pulse
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/15Current-voltage curve
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/30Resistive cell, memory material aspects
    • G11C2213/32Material having simple binary metal oxide structure

Definitions

  • the present invention relates to a resistance change element driving method and a nonvolatile memory device that implements the method.
  • the resistance change element described in Patent Document 1 includes a data storage material layer (variable resistance material layer) whose resistance changes according to the magnitude and direction of a voltage or current pulse, and a voltage or current pulse applied to the variable resistance material layer. Depending on the size, the high resistance state and the low resistance state transition reversibly.
  • the present invention has been made in view of such circumstances, and provides a resistance change element driving method and a nonvolatile memory device capable of suppressing variation in resistance value and realizing a stable memory operation.
  • a resistance change element driving method includes a first electrode, a second electrode, and the first electrode and the second electrode,
  • a driving method for driving a resistance change element including a resistance change layer whose resistance value reversibly changes based on a voltage pulse applied between the first electrode and the second electrode a low-polarity first polarity is provided.
  • a resistance voltage pulse to the resistance change layer to change the resistance change layer from a low resistance state to a high resistance state, and the high resistance process includes at least a plurality of the resistance change layers.
  • Applying, and applying a second high-resistance voltage pulse which is given after the first high-resistance voltage pulse and whose resistance value is VH2 smaller than VH1.
  • variable resistance element driving method and the nonvolatile memory device it is possible to suppress variations in resistance value and realize a stable memory operation.
  • FIG. 1 is a schematic diagram showing an example of the configuration of the variable resistance element according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing an example of a circuit configuration for operating the variable resistance element according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing the relationship between the current value of the current flowing through the circuit including the variable resistance element according to Embodiment 1 of the present invention and the resistance value of the variable resistance layer when reading data.
  • FIG. 4 is a diagram showing an operation example in the low resistance process and the high resistance process in the variable resistance element according to Embodiment 1 of the present invention.
  • FIG. 5 is a normal expected value plot diagram of the resistance value of the variable resistance layer included in the variable resistance element according to Embodiment 1 of the present invention.
  • FIG. 6A is a diagram illustrating an operation example of the variable resistance element according to Reference Example 1.
  • FIG. 6B is a diagram illustrating an operation example of the variable resistance element according to Reference Example 2.
  • FIG. 7A is a normal expected value plot diagram of the resistance value of the resistance change layer included in the resistance change element according to Reference Example 1.
  • FIG. 7B is a normal expected value plot diagram of the resistance value of the variable resistance layer included in the variable resistance element according to Reference Example 2.
  • FIG. 7C is a normal expected value plot diagram of the resistance value of the variable resistance layer included in the variable resistance element according to Embodiment 1 of the present invention.
  • FIG. 8 is a normal expected value plot diagram of the resistance value of the resistance change layer in the high resistance state included in the resistance change element according to the reference example 2 and the first embodiment.
  • FIG. 9 is a graph showing resistance-voltage characteristics of the variable resistance element according to Embodiment 1 of the present invention.
  • FIG. 10 is a graph showing current-voltage characteristics of the variable resistance element according to Embodiment 1 of the present invention.
  • FIG. 11 is a graph showing resistance-voltage characteristics of the single variable resistance element according to Embodiment 1 of the present invention.
  • FIG. 12 is a graph showing current-voltage characteristics of the variable resistance element alone according to Embodiment 1 of the present invention.
  • FIG. 13 is a diagram showing another operation example of the resistance reduction process and the resistance increase process in the variable resistance element according to Embodiment 1 of the present invention.
  • FIG. 10 is a graph showing current-voltage characteristics of the variable resistance element according to Embodiment 1 of the present invention.
  • FIG. 11 is a graph showing resistance-voltage characteristics of the single variable resistance element according to Embodiment 1 of the present invention.
  • FIG. 12 is a graph showing current-voltage characteristics of the variable resistance element alone
  • FIG. 14 is a diagram illustrating another operation example of the low resistance process and the high resistance process in the variable resistance element according to Embodiment 1 of the present invention.
  • FIG. 15 is a normal expected value plot diagram of the resistance value of the variable resistance layer included in the variable resistance element according to Embodiment 1 of the present invention.
  • FIG. 16 is a diagram showing another operation example of the resistance reduction process and the resistance increase process in the variable resistance element according to Embodiment 1 of the present invention.
  • FIG. 17 is a normal expected value plot diagram of the resistance value of the variable resistance layer included in the variable resistance element according to Embodiment 1 of the present invention.
  • FIG. 18 is a block diagram showing an example of the configuration of the nonvolatile memory device according to Embodiment 2 of the present invention.
  • FIG. 19 is a block diagram showing an example of the configuration of the nonvolatile memory device according to Embodiment 3 of the present invention.
  • FIG. 20A is a diagram showing an operation example of the nonvolatile memory device according to Embodiment 4 of the present invention.
  • FIG. 20B is a diagram showing another operation example of the nonvolatile memory device according to Embodiment 4 of the present invention.
  • the resistance change layer In a nonvolatile memory device, in order to ensure stable memory operation, the resistance change layer needs to have a sufficient difference in resistance value between a high resistance state with a high resistance value and a low resistance state with a low resistance value. is there. Therefore, for example, by increasing the voltage of the voltage pulse for increasing the resistance, the resistance value of the resistance change layer in the high resistance state is set to a higher value, and thereby the resistance value between the high resistance state and the low resistance state. Possible measures include widening the difference.
  • a resistance change element driving method capable of suppressing variation in resistance value and realizing a stable memory operation, and a nonvolatile memory that implements the method Found the device.
  • the variable resistance element driving method includes a first electrode, a second electrode, and the first electrode and the second electrode interposed between the first electrode and the second electrode.
  • the resistance change voltage pulse of the first polarity is applied to the resistance change layer.
  • a high resistance voltage pulse having a second polarity different from the first polarity is applied to the resistance change layer.
  • a resistance increasing layer that changes the resistance change layer from a low resistance state to a high resistance state by applying to the resistance changing layer, wherein the resistance increasing layer applies at least a plurality of the resistance increasing voltage pulses.
  • the second resistance having the voltage value VH2 smaller than VH1 is increased. Since the high voltage pulse is applied, the resistance value of the resistance change layer whose resistance is increased by the first high voltage pulse can be stabilized by the second high voltage pulse. Thereby, the memory
  • the voltage value VH2 of the second high-resistance voltage pulse is smaller than the voltage value VH1 of the first high-resistance voltage pulse, variation in resistance value can be suppressed.
  • the second high-resistance voltage pulse for stabilizing the resistance value of the resistance change layer is applied subsequent to the first high-resistance voltage pulse for increasing the resistance of the resistance change layer.
  • the resistance value of the variable resistance layer can be further stabilized.
  • the variable resistance layer is composed of a first metal oxide layer made of a first metal oxide and a second metal oxide, and more than the first metal oxide layer. It is preferable that a second metal oxide layer having a small oxygen deficiency be stacked.
  • the second electrode is in contact with the second metal oxide layer, and the second polarity is a polarity with which the voltage of the second electrode is positive when the potential of the first electrode is used as a reference. It is preferable that
  • the first metal is a first transition metal and the second metal is a second transition metal.
  • a method for driving a nonvolatile memory element includes a first electrode, a second electrode, and the first electrode and the second electrode interposed between the first electrode and the second electrode.
  • a driving method for driving a resistance change element having a resistance change layer whose resistance value reversibly changes based on a voltage pulse applied between the second electrodes a low resistance voltage pulse having a first polarity is applied.
  • a resistance reduction process for changing the resistance change layer from a high resistance state to a low resistance state and a high resistance voltage pulse having a second polarity different from the first polarity are applied.
  • the high resistance process includes at least a plurality of the high resistance voltage pulses. 1 high by applying Applying a first high-resistance voltage pulse having a voltage value of VH1 between the first electrode and the second electrode in the high-resistance process. Confirming that the variable resistance layer has changed to a high resistance state, and a second high voltage value VH2 which is given after the first high resistance voltage pulse and whose voltage value is VH2 smaller than VH1. Applying a resistance voltage pulse, and applying the second resistance voltage pulse when the resistance change layer is confirmed to have changed to a high resistance state in the confirmation step. Applying the second high resistance voltage pulse to the variable resistance layer in the step of performing, and confirming that the variable resistance layer has not changed to the high resistance state in the checking step, It is intended to apply the first high resistance writing voltage pulse again.
  • the second resistance having the voltage value VH2 smaller than VH1 is increased. Since the high voltage pulse is applied, the resistance value of the resistance change layer whose resistance is increased by the first high voltage pulse can be stabilized by the second high voltage pulse. Thereby, the memory
  • the voltage value VH2 of the second high-resistance voltage pulse is smaller than the voltage value VH1 of the first high-resistance voltage pulse, variation in resistance value can be suppressed.
  • the voltage to be continuously applied depends on whether or not the resistance change layer has increased in resistance.
  • the voltage value of the pulse can be selected. Thereby, the memory
  • the step of applying the second high resistance voltage pulse before the step of applying the second high resistance voltage pulse is performed again, so that the first high resistance voltage pulse is applied again to the variable resistance element.
  • the second high resistance voltage is applied in the step of applying the second high resistance voltage pulse. It is preferable to apply the first high-resistance voltage pulse before applying the high-voltage pulse and subsequently apply the second high-voltage pulse.
  • the resistance change layer can be efficiently increased in resistance and stabilized.
  • a nonvolatile memory device is a nonvolatile memory device including a nonvolatile variable resistance element and a voltage pulse applying device, wherein the variable resistance element includes a first electrode, a second electrode, An electrode, and a resistance change layer that is interposed between the first electrode and the second electrode, and whose resistance value reversibly changes based on a voltage pulse applied between the first electrode and the second electrode; And the voltage pulse applying device applies a low-resistance voltage pulse having a first polarity to the resistance change layer to change the resistance change layer from a high resistance state to a low resistance state.
  • the high resistance process is a high resistance process in which a single high resistance is completed by applying at least a plurality of high resistance voltage pulses.
  • the first electrode After the process of applying at least the first high-resistance voltage pulse having a voltage value of VH1 and the process of applying the first high-resistance voltage pulse between the second electrode and the second electrode, the voltage value is VH1.
  • the second resistance having the voltage value VH2 smaller than VH1 is increased. Since the high voltage pulse is applied, the resistance value of the resistance change layer whose resistance is increased by the first high voltage pulse can be stabilized by the second high voltage pulse. Thereby, the memory
  • the voltage pulse applying device applies the first high-resistance voltage pulse between the first electrode and the second electrode, and subsequently applies the second high-resistance voltage pulse.
  • the resistance change layer can be efficiently increased in resistance and stabilized.
  • the variable resistance layer is composed of a first metal oxide layer made of a first metal oxide and a second metal oxide, and more than the first metal oxide layer. It is preferable that the second metal oxide layer with a low degree of oxygen deficiency be stacked.
  • the resistance value of the second metal oxide layer is larger than the resistance value of the first metal oxide layer.
  • the first metal and the second metal are the same.
  • the first metal is a first transition metal and the second metal is a second transition metal.
  • the variable resistance layer includes an oxygen-deficient first tantalum oxide layer having a composition represented by TaO x (where 0.8 ⁇ x ⁇ 1.9) and TaO y (where 2. And a second tantalum oxide layer having a composition represented by 1 ⁇ y).
  • the resistance value of the resistance change layer can be stably changed at high speed.
  • the first metal and the second metal are different from each other, and the standard electrode potential of the second metal is lower than the standard electrode potential of the first metal.
  • FIG. 1 is a schematic diagram showing an example of the configuration of the variable resistance element according to Embodiment 1 of the present invention.
  • the variable resistance element 10 of the present embodiment is formed on a substrate 1, a first electrode (lower electrode) 2 formed on the substrate 1, and the first electrode 2.
  • a resistance change layer 3 and a second electrode (upper electrode) 4 formed on the resistance change layer 3 are provided. That is, the resistance change layer 3 is disposed so as to be interposed between the first electrode 2 and the second electrode 4.
  • the first electrode 2 and the second electrode 4 are electrically connected to the resistance change layer 3.
  • the substrate 1 is composed of, for example, a silicon substrate.
  • the 1st electrode 2 and the 2nd electrode 4 are comprised using the material of 1 or more of Au (gold), Pt (platinum), Ir (iridium), and Cu (copper), for example. .
  • the resistance change layer 3 is configured by laminating a first transition metal oxide layer 3a and a second transition metal oxide layer 3b.
  • the variable resistance layer 3 is configured by laminating a first tantalum oxide layer 3a and a second tantalum oxide layer 3b.
  • the oxygen content of the second tantalum oxide layer 3b is higher than the oxygen content of the first tantalum oxide layer 3a.
  • the oxygen deficiency of the second tantalum oxide layer 3b is less than the oxygen deficiency of the first tantalum oxide layer 3a.
  • the oxygen deficiency refers to the ratio of oxygen deficiency with respect to the amount of oxygen constituting the oxide of the stoichiometric composition in each transition metal oxide.
  • the transition metal is tantalum (Ta)
  • the stoichiometric oxide composition is Ta 2 O 5 , and thus can be expressed as TaO 2.5 .
  • the degree of oxygen deficiency of TaO 2.5 is 0%.
  • the oxygen content of Ta 2 O 5 is the ratio of oxygen atoms to the total number of atoms (O / (Ta + O)), which is 71.4%. Therefore, the oxygen content of the oxygen-deficient tantalum oxide is larger than 0 and smaller than 71.4%.
  • the composition of the first tantalum oxide layer 3a is 0.8 ⁇ x ⁇ 1.9 in the case of the TaO x, and, TaO the composition of the second tantalum oxide layer 3b When y , 2.1 ⁇ y.
  • x and y are preferably within the above range.
  • the thickness of the resistance change layer 3 is 1 ⁇ m or less, a change in the resistance value is recognized, but it is preferably 200 nm or less. This is because, when patterning process lithography is used, it is easy to process, and the voltage value of the voltage pulse required to change the resistance value of the resistance change layer 3 can be lowered.
  • the thickness of the resistance change layer 3 is preferably at least 5 nm or more from the viewpoint of more reliably avoiding breakdown (dielectric breakdown) during voltage pulse application.
  • the thickness of the second tantalum oxide layer 3b is disadvantageous in that the initial resistance value becomes too high if it is too large, and if it is too small, there is a disadvantage that a stable resistance change cannot be obtained. About 8 nm or less is preferable.
  • the first electrode 2 is disposed in contact with the first tantalum oxide layer
  • the second electrode 4 is disposed in contact with the second tantalum oxide layer 3b.
  • the power source 5 functions as an electrical pulse applying device for driving the resistance change element 10, and an electrical pulse (with a predetermined polarity, voltage, and time width) is provided between the first electrode 2 and the second electrode 4. (Voltage pulse) can be applied.
  • the voltage for changing the resistance change layer 3 from the high resistance state to the low resistance state is a low resistance voltage pulse having the first polarity
  • the voltage for changing the resistance change layer 3 from the low resistance state to the high resistance state is the second voltage.
  • the second polarity is a polarity that makes the voltage of the second electrode positive when the potential of the first electrode is used as a reference.
  • variable resistance element 10 [Method of manufacturing variable resistance element] Next, a method for manufacturing the variable resistance element 10 will be described.
  • the first electrode 2 having a thickness of 0.2 ⁇ m is formed on the substrate 1 by sputtering. Thereafter, a tantalum oxide layer is formed on the first electrode 2 by a so-called reactive sputtering method in which a Ta target is sputtered in argon gas and oxygen gas.
  • the oxygen content in the tantalum oxide layer can be easily adjusted by changing the flow ratio of oxygen gas to argon gas.
  • the substrate temperature can be set to room temperature without any particular heating.
  • the outermost surface of the tantalum oxide layer formed as described above is oxidized to modify its surface.
  • a region (second region) having a higher oxygen content than the region (first region) where the tantalum oxide layer was not oxidized is formed on the surface of the tantalum oxide layer.
  • These first region and second region correspond to the first tantalum oxide layer 3a and the second tantalum oxide layer 3b, respectively, and the first tantalum oxide layer 3a and the second tantalum oxide formed in this way.
  • the variable resistance layer 3 is configured by the layer 3b.
  • variable resistance element 10 is obtained by forming the second electrode 4 having a thickness of 0.2 ⁇ m on the variable resistance layer 3 formed as described above by a sputtering method.
  • size and shape of the 1st electrode 2, the 2nd electrode 4, and the resistance change layer 3 can be adjusted with a mask and lithography.
  • the size of the first electrode 2 and the resistance change layer 3 is 0.5 ⁇ m ⁇ 0.5 ⁇ m (area 0.25 ⁇ m 2 ), and the size of the portion where the second electrode 4 and the resistance change layer 3 are in contact with each other.
  • the thickness was also 0.5 ⁇ m ⁇ 0.5 ⁇ m (area 0.25 ⁇ m 2 ).
  • a low resistance voltage pulse which is a negative voltage pulse
  • the resistance value of the resistance change layer 3 is decreased, and the resistance change layer 3 Changes from a high resistance state to a low resistance state.
  • this is referred to as a low resistance process.
  • a high-resistance voltage pulse which is a positive voltage pulse
  • the resistance value of the resistance change layer 3 increases and the resistance change occurs.
  • Layer 3 changes from a low resistance state to a high resistance state.
  • this is referred to as a high resistance process.
  • This high resistance process is a high resistance process in which a single high resistance is completed by applying at least a plurality of high resistance voltage pulses.
  • the resistance value of the resistance change layer 3 is set between the low resistance state and the high resistance state based on the voltage pulse applied between the first electrode 2 and the second electrode 4. And reversibly change between.
  • a negative voltage is applied to the second electrode 4 when the first electrode 2 is used as a reference
  • a positive voltage is applied to the second electrode 4 when the first electrode 2 is used as a reference.
  • the case is defined as positive polarity.
  • the resistance change layer 3 When the resistance change layer 3 is in the low resistance state, even if a negative voltage pulse having the same polarity as the low resistance voltage pulse is applied between the first electrode 2 and the second electrode 4, the resistance change Layer 3 remains low resistance. Similarly, when the resistance change layer 3 is in a high resistance state, even if a positive voltage pulse having the same polarity as the high resistance voltage pulse is applied between the first electrode 2 and the second electrode 4, The resistance change layer 3 remains in a high resistance state.
  • FIG. 2 is a diagram showing an example of a circuit configuration for operating the variable resistance element 10 according to Embodiment 1 of the present invention.
  • this circuit includes a resistance change element 10, a first terminal 11, and a second terminal 12.
  • the first electrode 2 of the resistance change element 10 is electrically connected to the first terminal 11, and the second electrode 4 is electrically connected to the second terminal 12.
  • the first terminal 11 is installed (ground: GND), and a voltage pulse is supplied to the second terminal 12. This voltage pulse is specified with reference to the first electrode 2 and the grounding point.
  • the resistance change element 10 When the resistance change element 10 is in the initial state, when a negative resistance reduction voltage pulse is supplied to the second terminal 12, the resistance value of the resistance change layer 3 decreases and enters a low resistance state (low resistance Process). As a result, 1-bit data representing “1” is written. In the low resistance state, when a positive high-resistance voltage pulse is supplied to the second terminal 12, the resistance value of the resistance change layer 3 increases and changes from the low resistance state to the high resistance state. (High resistance process). As a result, 1-bit data representing “0” is written.
  • the resistance changing operation is roughly classified into a unipolar operation and a bipolar operation depending on the polarity and magnitude of the voltage applied during the writing process.
  • the unipolar operation typically refers to an operation in which the resistance is changed by applying a voltage having the same polarity of the high resistance voltage and the polarity of the low resistance voltage.
  • the same operation is possible for both positive and negative polarities, and whether the resistance change element 10 has a high resistance or a low resistance does not depend on the polarity.
  • the absolute value of the low resistance voltage is larger than the absolute value of the high resistance voltage.
  • the bipolar operation refers to an operation in which the resistance is changed by applying voltages having different polarities of the high resistance voltage and the low resistance voltage.
  • the absolute value of the low resistance voltage is typically smaller than the absolute value of the high resistance voltage in the effective voltage applied to the variable resistance element 10 alone.
  • the resistance change occurs due to the movement of oxygen ions in the resistance change layer by applying voltages of different polarities.
  • the resistance change is caused by the movement of oxygen ions between the second electrode 4 and the second tantalum oxide layer 3 b of the resistance change layer 3.
  • oxygen ions having a negative charge move to the second electrode 4 side, and the oxygen concentration of the second tantalum oxide layer 3b increases (oxygen defect concentration).
  • the resistance change layer 3 is increased in resistance.
  • the oxygen ions move away from the second electrode 4, and the oxygen concentration of the second tantalum oxide layer 3 b decreases (the oxygen defect concentration increases).
  • the resistance change layer 3 is reduced in resistance.
  • the resistance change layer 3 includes a second tantalum oxide layer 3b which is a Ta 2 O 5 layer (high resistance layer) having a high oxygen concentration and a high resistance, and a TaO x layer (low resistance layer) having a low oxygen concentration and a low resistance.
  • the first tantalum oxide layer 3a has a two-layer structure.
  • variable resistance element that performs bipolar operation
  • the driving method of the present embodiment has a high resistance caused by oxygen ions moving to the electrode side and a low resistance caused by dielectric breakdown in a bipolar variable resistance element that involves the movement of oxygen ions.
  • the problem of competing with the resistance is solved, and the resistance value of the variable resistance element is stabilized. Specifically, in the process of increasing resistance, one increase in resistance is completed by supplying a positive resistance voltage pulse twice or more times.
  • FIG. 3 is a diagram showing the relationship between the current value of the current flowing through the circuit including the resistance change element 10 according to the first embodiment of the present invention and the resistance value of the resistance change layer 3 when reading data.
  • a voltage pulse for reading (for example, a voltage pulse of +0.5 V) is supplied to the second terminal 12, a current corresponding to the resistance value of the resistance change layer 3 flows through the circuit. That is, as shown in FIG. 3, when the variable resistance layer 3 is in the low resistance state RL, a current having a current value Ia flows through the circuit, and when in the high resistance state RH, a current having a current value Ib flows through the circuit. Therefore, if a voltage pulse for reading is supplied to the second terminal 12 and the detected value of the current flowing between the first terminal 11 and the second terminal 12 at that time is Ia, the resistance change layer 3 is in the low resistance state RL. Can be determined.
  • the data written in the resistance change element 10 is “1”.
  • the detected current value is Ib
  • the resistance change layer 3 is in the high resistance state RH.
  • the data written in the resistance change element 10 is “0”.
  • the resistance state of the resistance change element 10 does not change.
  • the resistance change element 10 of the present embodiment does not change its resistance value even when the power is turned off. Therefore, a nonvolatile memory device can be realized by using the variable resistance element 10.
  • FIG. 4 is a diagram illustrating an operation example in the low resistance process and the high resistance process in the variable resistance element 10 according to Embodiment 1 of the present invention.
  • a resistance reduction voltage pulse having a voltage value VL is applied to the resistance change element 10.
  • the first high resistance voltage pulse having the voltage value VH1 and the second high resistance voltage pulse having the voltage value VH2 are applied to the variable resistance element 10 in this order.
  • the relationship between the voltage value VH1 of the first high-resistance pulse and the voltage value VH2 of the second high-resistance pulse satisfies VH1> VH2.
  • the first high-resistance voltage pulse refers to a high-resistance voltage pulse having the largest absolute voltage value when the high-resistance pulse is applied a plurality of times.
  • the first high resistance voltage pulse is a pulse voltage that changes the resistance change element 10 in the low resistance state to the high resistance state.
  • the voltage value VH1 of the first high resistance voltage pulse is set to a relatively large value.
  • the resistance change element 10 when 2.4 V is applied to the resistance change element 10 together with the load resistance (see FIGS. 9 and 10), the resistance is increased with this voltage so that the voltage is applied to the resistance change element 10 alone. Even in this case, a large current flows through the resistance change element 10. As a result, defects (oxygen vacancies) are generated in the second tantalum oxide layer 3b having a high resistance, and thus there is a case where the resistance cannot be sufficiently increased in the entire region of the resistance change element 10. Further, in the resistance change element 10, the resistance value may become unstable due to simultaneous increase in resistance and reduction in resistance due to generation of defects due to current.
  • the second high-resistance pulse is a voltage for changing the state of the resistance change element 10 (resistance change layer 3), which has been generally increased in resistance by the first high-resistance pulse, to a stable high-resistance state. It is a pulse.
  • the voltage value VH2 of the second high-resistance voltage pulse is a relatively small value compared to the voltage value VH1 of the first high-resistance voltage pulse, and to the extent that the resistance change element 10 can be increased in resistance. Set to a large value. Thereby, the high resistance state can be stabilized. This is considered to be because the second high-resistance pulse recovers the defects generated by the first high-resistance pulse.
  • the resistance change element 10 Since the resistance change element 10 is generally increased in resistance by the first resistance increase pulse, when the second resistance increase pulse is applied, a voltage is effectively applied to the resistance change element 10. In addition, no excessive current flows through the resistance change element 10. Therefore, by applying the second high resistance pulse, the resistance change element 10 (resistance change layer 3) is changed so that oxygen ions fill the defects (oxygen vacancies) generated by the first high resistance pulse. It is thought that it is made to do. Thereby, the high resistance state of the variable resistance element 10 can be stabilized.
  • Read in FIG. 4 means a voltage pulse for reading (for example, a voltage pulse of +0.5 V). By supplying the voltage pulse for reading, it is possible to determine whether the resistance change layer 3 is in the high resistance state or the resistance state as described above, and to read data.
  • FIG. 5 is a normal expected value plot diagram of the resistance value of the resistance change layer 3 provided in the resistance change element 10 according to the first exemplary embodiment of the present invention.
  • the horizontal axis represents the resistance value of the resistance change layer 3 (resistance measurement voltage is +0.4 V), and the vertical axis represents the normal expected value indicating the degree of variation when fitting with a normal distribution.
  • the data shown in FIG. 5 is obtained when the low resistance process and the high resistance process are repeated 100 times (the same applies to other normal expected value plots shown below).
  • a low resistance voltage pulse of ⁇ 1.5V is applied to the resistance change layer 3
  • a voltage of + 2.4V is used as the first high resistance voltage pulse.
  • a voltage pulse of +1.5 V is applied to the resistance change layer 3 as a second high resistance voltage pulse.
  • Data when a voltage pulse of ⁇ 1.5 V is applied is indicated by white triangles. Further, data when only the first high-resistance voltage pulse is applied is indicated by crosses. After the application of the first high-resistance voltage pulse, data when a second high-resistance voltage pulse is applied is indicated by white circles.
  • the window W1 and the second high-resistance voltage after the first high-resistance voltage pulse (+ 2.4V) are applied.
  • W2 is larger with respect to the window W2 in the case where the activating voltage pulse (+1.5 V) is applied. From this, in the process of increasing the resistance, the first high-resistance voltage pulse having the voltage value VH1 and the second high-resistance voltage pulse having the voltage value VH2 (VH1> VH2) are successively applied in this order. It can be confirmed that a more stable storage operation can be realized.
  • FIG. 6A is a diagram illustrating an operation example of the variable resistance element according to Reference Example 1
  • FIG. 6B is a diagram illustrating an exemplary operation of the variable resistance element according to Reference Example 2.
  • the configuration of the resistance change element in Reference Example 1 and Reference Example 2 is the same as that of the resistance change element 10 of the present embodiment.
  • a low resistance voltage pulse having a voltage value VL is applied in the low resistance process, and a first high resistance voltage pulse having a voltage value VH1 is applied in the high resistance process.
  • the low resistance voltage pulse having the voltage value VL is applied in the low resistance process, and the first high resistance voltage pulse having the voltage value VH1 is applied in the high resistance process.
  • VL ⁇ 1.5V
  • VH1 + 2.4V.
  • FIG. 7A is a normal expected value plot of the resistance value of the variable resistance layer included in the variable resistance element according to Reference Example 1.
  • FIG. 7B is the normal expected value of the resistance value of the variable resistance layer included in the variable resistance element according to Reference Example 2.
  • FIG. 7C is a plot of normal expected values of resistance values of the resistance change layer included in the resistance change element according to the present exemplary embodiment.
  • the horizontal axis represents the resistance value of the resistance change layer 3 (resistance measurement voltage is +0.4 V), and the vertical axis represents the degree of variation when fitting with a normal distribution. Each normal expected value is shown.
  • FIG. 7C shows the same graph as FIG. In FIG. 7A to FIG.
  • FIG. 7C data when a low resistance voltage pulse of ⁇ 1.5 V is applied is indicated by white triangles.
  • FIG. 7A data when the first high resistance voltage pulse (+2.4 V) is applied is indicated by crosses.
  • FIG. 7B data when only the first high-resistance voltage pulse (+2.4 V) is applied is indicated by a cross, and after the first high-resistance voltage pulse (+2.4 V) is applied, The data when the first high resistance voltage pulse (+2.4 V) is applied are indicated by white square marks. Further, in FIG.
  • each window W is about 35 k ⁇ in FIG. 7A, about 50 k ⁇ in FIG. 7B, and about 70 k ⁇ in FIG. 7C.
  • the first embodiment can secure a larger window W than the reference example 1 and the reference example 2.
  • the normal expected value of the resistance value of the resistance change layer in the high resistance state in Reference Example 2 and Embodiment 1 is collectively shown in FIG.
  • FIG. 8 the data indicated by white square marks in FIG. 7B and the data indicated by white circle marks in FIG. 7C were compared on the same graph.
  • the resistance value spreads in the horizontal direction and varies, whereas in the case of the present embodiment, such a horizontal spread is small, It can also be confirmed that the so-called tail bit (distribution end) has been improved.
  • the voltage value of the second high-resistance voltage pulse is +2.4 V in Reference Example 2 compared to +2.4 V in Reference Example 2, and is therefore higher resistance in this embodiment. It is possible to reduce current consumption during the conversion process. Therefore, the present embodiment is superior to the reference example 2 from the viewpoint of power saving.
  • the high-resistance voltage pulse having the voltage value VH1 and the high-resistance voltage pulse having the voltage value VH2 are sequentially applied in this order. Thereby, it is possible to accurately determine whether the resistance state of the resistance change layer is the high resistance state or the low resistance state, and a stable operation can be realized. As described above, such an effect is achieved by satisfying the condition of VH1> VH2. However, for the purpose of realizing a more stable operation, it is considered that VH2 has a desirable range. This preferred range has been considered and will be described below.
  • FIG. 9 is a graph showing resistance-voltage characteristics of the variable resistance element 10 according to Embodiment 1 of the present invention.
  • FIG. 10 is a graph showing current-voltage characteristics of the variable resistance element 10 according to Embodiment 1 of the present invention. These data shown in FIGS. 9 and 10 are not the resistance-voltage characteristics of the variable resistance element 10 alone, but a load resistance having a resistance value of 1 k ⁇ is electrically connected in series to the variable resistance layer 3. In this state, a voltage in the range of ⁇ 1.5 V to +2.4 V is applied to the resistance change layer 3.
  • the resistance value greatly varies in the high resistance state. Specifically, the resistance value greatly varies when the applied voltage is +1.6 V or more. This is because, when a voltage pulse is applied, there is an increase in resistance caused by oxygen atoms in the resistance change layer 3 moving to the second electrode 4 side as ions and a reduction in resistance caused by dielectric breakdown. It is thought that this is because the resistance value becomes unstable due to competition. Considering this characteristic, it can be said that the voltage value VH2 of the second high-resistance voltage pulse is desirably smaller than + 1.6V. As described above, in this embodiment, VH2 + 1.5V, which is smaller than + 1.6V. In this case, as shown in FIG.
  • the threshold voltage for increasing the resistance of the resistance change layer is approximately +0.5 to +0.7 V (described in FIG. 11 described later), the voltage applied in the process of increasing resistance is higher than that. A value is considered desirable.
  • the voltage value VH2 of the second high resistance voltage pulse applied to the resistance change layer 3 is larger than +0.7 and smaller than + 1.6V.
  • FIG. 11 is a graph showing a single resistance-voltage characteristic of the variable resistance element 10 according to Embodiment 1 of the present invention
  • FIG. 12 is a graph showing a single current-voltage characteristic of the variable resistance element 10 similarly. is there.
  • the resistance value greatly varies in the high resistance state when the applied voltage is +1.3 V or higher. It can be said that a value smaller than 3 V is desirable. In this case, as shown in FIG. 12, since the current consumption is sufficiently small, power saving can be achieved. Further, since the resistance is increased when the applied voltage exceeds + 0.7V, it can be said that the voltage applied in the process of increasing the resistance is desirably a value larger than + 0.7V.
  • the voltage value VH2 of the second high resistance voltage pulse applied to the resistance change layer 3 is larger than +0.7 and smaller than + 1.3V.
  • FIG. 13 is a diagram illustrating another operation example of the variable resistance element 10 according to Embodiment 1 of the present invention in the low resistance process and the high resistance process.
  • a resistance-reducing voltage pulse having a voltage value VL is supplied to the resistance change element 10.
  • the first variable resistance voltage pulse having the voltage value VH1 for example, + 2.4V
  • the voltage value VH2 for example, a second high-resistance voltage pulse of +1.5 V
  • the voltage value of the second high resistance voltage pulse is the voltage of the first high resistance voltage pulse applied before that. It is lower than the value.
  • the voltage value of the second high resistance voltage pulse applied after the first high resistance voltage pulse is greater than the voltage value of the first high resistance voltage pulse applied before. If it is lower, the tail bit in the high resistance state is improved in the same manner as described above, and a sufficiently large window can be secured.
  • the first high resistance voltage pulse having the largest absolute value (VH1) is applied. If a second high resistance voltage pulse (voltage value VH2 ⁇ VH1) is applied later, it is considered that a certain effect is recognized. For example, + 2.0V and + 2.4V high resistance voltage pulses are applied in this order. A mode in which a high-resistance voltage pulse of +1.5 V is applied after application is also envisaged.
  • a voltage value VH1 higher than VH3 is applied after the third high-resistance voltage pulse having the voltage value VH3 (VH3 ⁇ VH1) is applied to the variable resistance element 10.
  • a first high-resistance voltage pulse is applied, and then a second high-voltage pulse having a voltage value VH2 (VH2 ⁇ VH1) is applied.
  • VH1 high-resistance voltage pulse having the highest voltage value (VH1)
  • VH2 ⁇ VH1 there is a pair of a first high-resistance voltage pulse having a second high-resistance voltage pulse having a low voltage value (VH2) applied thereafter. ing.
  • FIG. 15 shows that in the above operation example, when VH3 and VH2 are both +1.5 V and VH1 is +2.4 V, that is, high resistance voltage pulses are applied in the order of +1.5 V, +2.4 V, and +1.5 V. It is a normal expected value plot figure of the resistance value of the resistance change layer 3 in the case of doing.
  • VH3 the case where only the first +1.5 V (VH3) third high-resistance voltage pulse is applied is plotted with white square marks, and the first high-voltage pulse is followed by the first high-voltage pulse.
  • W1 is compared with the window W2 when the second high-resistance voltage pulse of +1.5 V is further applied finally, W2 is the largest.
  • the largest window can be secured when the second high-resistance voltage pulse (voltage value VH2) is applied after the first high-resistance voltage pulse (voltage value VH1).
  • a third voltage value VH3 lower than VH1 is applied after the first high resistance voltage pulse having the voltage value VH1 is applied to the variable resistance element 10.
  • a high resistance voltage pulse is applied, and then a second high resistance voltage pulse having a voltage value VH2 lower than VH1 and higher than VH3 is applied.
  • FIG. 17 shows a case where VH1 is set to + 2.4V, VH2 is set to + 1.5V, and VH3 is set to + 0.8V in the operation example shown in FIG. 16, that is, + 2.4V, + 0.8V, + 1.5V. It is a normal expected value plot figure of the resistance value of the resistance change layer 3 in the case of applying a high resistance voltage pulse in order.
  • VH1 is set to + 2.4V
  • VH2 is set to + 1.5V
  • VH3 is set to + 0.8V in the operation example shown in FIG. 16, that is, + 2.4V, + 0.8V, + 1.5V.
  • W3 is compared with the window W2 when the second high-resistance voltage pulse of +1.5 V is finally applied, W2 is the largest. As described above, referring to FIG. 17, it can be confirmed that the largest window can be secured in this operation example when the second high-resistance voltage pulse of VH2 is applied.
  • the nonvolatile memory device according to Embodiment 2 is a one-transistor / one-volatile memory unit type in which a memory cell as a basic unit is configured by connecting one transistor and one nonvolatile memory unit in series ( 1T1R type) nonvolatile memory device, which includes the variable resistance element described in Embodiment 1.
  • 1T1R type 1T1R type nonvolatile memory device
  • FIG. 18 is a block diagram showing an example of the configuration of the nonvolatile memory device according to this embodiment.
  • the 1T1R type nonvolatile memory device 100 includes a memory main body 101 on a semiconductor substrate.
  • the memory main body 101 includes a memory array 102, a row selection circuit / driver 103, A column selection circuit 104, a write circuit 105 for writing information, and a sense amplifier that detects the amount of current flowing through the selected bit line and determines which of the four data is stored.
  • 106 and a data input / output circuit 107 that performs input / output processing of input / output data via a terminal DQ.
  • the nonvolatile memory device 100 also includes a cell plate power supply (VCP power supply) 108, an address input circuit 109 that receives an address signal input from the outside, and a control signal input from the outside. And a control circuit 110 for controlling the operation.
  • VCP power supply cell plate power supply
  • the memory array 302 is formed on a semiconductor substrate and has a plurality of word lines WL0, WL1, WL2,... And bit lines BL0, BL1, BL2,. .., And a plurality of transistors T11, T12, T13, T21, respectively provided corresponding to the intersections of the word lines WL0, WL1, WL2,... And the bit lines BL0, BL1, BL2,. T22, T23, T31, T32, T33,... (Hereinafter referred to as “transistors T11, T12,...”) And a plurality of memories provided in a one-to-one relationship with the transistors T11, T12,.
  • Memory cells M111, M112, M113, M121, M122, M123, M131, M132, M133 (hereinafter referred to as “memory cells M111, M112,. - referred to as ”) and a.
  • the memory cells M111, M112,... Correspond to the resistance change element 10 of the first embodiment.
  • the memory array 102 includes a plurality of plate lines PL0, PL1, PL2,... Arranged in parallel with the word lines WL0, WL1, WL2,.
  • the drains of the transistors T11, T12, T13, ... are on the bit line BL0, the drains of the transistors T21, T22, T23, ... are on the bit line BL1, and the drains of the transistors T31, T32, T33, ... are bits. Each is connected to a line BL2.
  • the gates of the transistors T11, T21, T31,... are on the word line WL0, the gates of the transistors T12, T22, T32,... Are on the word line WL1, and the gates of the transistors T13, T23, T33,. Each is connected to a line WL2.
  • the sources of the transistors T11, T12,... are connected to the memory cells M111, M112,.
  • the memory cells M111, M121, M131,... are on the plate line PL0
  • the memory cells M112, M122, M132,... are on the plate line PL1
  • the memory cells M113, M123, M133,. Each is connected to PL2.
  • the address input circuit 109 receives an address signal from an external circuit (not shown), outputs a row address signal to the row selection circuit / driver 103 based on the address signal, and outputs a column address signal to the column selection circuit 104.
  • the address signal is a signal indicating the address of a specific memory cell selected from among the plurality of memory cells M111, M112,.
  • the row address signal is a signal indicating a row address among the addresses indicated by the address signal
  • the column address signal is a signal indicating a column address among the addresses indicated by the address signal.
  • the control circuit 110 instructs the application of the write voltage according to the input data Din input to the data input / output circuit 107.
  • a write signal to be output is output to the write circuit 105.
  • the control circuit 110 outputs a read signal instructing application of a read voltage to the column selection circuit 104.
  • the row selection circuit / driver 103, the column selection circuit 104, and the writing circuit 105 constitute a voltage pulse application device, and the voltage pulse application device has a low resistance process and a high resistance described in the first embodiment. Perform the process.
  • the row selection circuit / driver 103 receives the row address signal output from the address input circuit 109, selects one of the plurality of word lines WL0, WL1, WL2,... According to the row address signal, A predetermined voltage is applied to the selected word line.
  • the column selection circuit 104 receives the column address signal output from the address input circuit 109, and selects one of the plurality of bit lines BL0, BL1, BL2,... According to the column address signal. Then, a write voltage or a read voltage is applied to the selected bit line.
  • the write circuit 105 When the write circuit 105 receives the write signal output from the control circuit 110, the write circuit 105 outputs a signal instructing the column selection circuit 104 to apply the write voltage to the selected bit line.
  • the writing circuit 105 when a value corresponding to the resistance value in the low resistance state is written (low resistance reduction process), the writing circuit 105 outputs a signal instructing application of a low resistance voltage pulse whose voltage value is VL.
  • the writing circuit 105 uses the first high resistance voltage pulse with the voltage value VH1 and the second high voltage voltage with the voltage value VH2.
  • a signal instructing to apply the resistance voltage pulse in this order is output.
  • the positive and negative polarity of the voltage here corresponds to the polarity of voltage application to the resistance change element, and is as defined in the first embodiment.
  • the sense amplifier 106 detects the amount of current flowing through the selected bit line to be read and discriminates stored data.
  • each of the memory cells M111, M112,... Has two resistance states, a high resistance state and a low resistance state, and these states are associated with each data. Therefore, the sense amplifier 106 determines which state the resistance state of the resistance change layer of the selected memory cell is in, and determines which of the binary data is stored accordingly. To do.
  • the output data DO obtained as a result is output to an external circuit via the data input / output circuit 107.
  • the nonvolatile memory device 100 realizes a stable memory operation.
  • the plate line is arranged in parallel with the word line, but may be arranged in parallel with the bit line.
  • the plate line is configured to apply a common potential to a plurality of transistors, but has a plate line selection circuit / driver having a configuration similar to that of the row selection circuit / driver 103, and the selected plate line and the non-selected plate The line may be driven with a different voltage (including polarity).
  • the nonvolatile memory device according to Embodiment 3 is a cross-point type nonvolatile memory device in which memory cells are arranged at positions where a plurality of word lines and a plurality of bit lines arranged so as to intersect each other.
  • the variable resistance element described in Embodiment 1 is included. The configuration and operation of this nonvolatile memory device will be described below.
  • FIG. 19 is a block diagram showing an example of the configuration of the nonvolatile memory device according to this embodiment.
  • the nonvolatile memory device 200 includes a memory main body 201 on a semiconductor substrate.
  • the memory main body 201 includes a memory array 202 and a row selection circuit / driver. 203, a column selection circuit / driver 204, a writing circuit 205 for writing information, and the amount of current flowing through the selected bit line is detected, and which of the four values of data is stored
  • a sense amplifier 206 that performs discrimination and a data input / output circuit 207 that performs input / output processing of input / output data via a terminal DQ are provided.
  • the nonvolatile memory device 200 further includes an address input circuit 208 that receives an address signal input from the outside, and a control circuit 209 that controls the operation of the memory body 201 based on the control signal input from the outside. I have.
  • the memory array 202 includes a plurality of word lines WL0, WL1, WL2,... Formed above and parallel to each other on a semiconductor substrate and above these word lines WL0, WL1, WL2,.
  • a plurality of bit lines BL0 formed in a plane parallel to each other in a plane parallel to the main surface of the semiconductor substrate and three-dimensionally intersecting (for example, orthogonally crossing) the plurality of word lines WL0, WL1, WL2,. , BL1, BL2,.
  • a plurality of memory cells M211, M212, M213, M221 provided in a matrix corresponding to the intersections of these word lines WL0, WL1, WL2,... And bit lines BL0, BL1, BL2,. , M222, M223, M231, M232, M123,... (Hereinafter referred to as “memory cells M211, M212,...”).
  • the memory cells M211, M212,... are elements equivalent to the resistance change element 10 of the first embodiment, MIM (Metal-Insulator-Metal) diodes, MSM (Metal-Semiconductor-Metal) diodes, and the like.
  • the current suppressing element is configured to be connected.
  • the address input circuit 208 receives an address signal from an external circuit (not shown), outputs a row address signal to the row selection circuit / driver 203 based on the address signal, and outputs a column address signal to the column selection circuit / driver 204. Output to.
  • the address signal is a signal indicating the address of a specific memory cell selected from among the plurality of memory cells M211, M212,.
  • the row address signal is a signal indicating a row address among the addresses indicated by the address signal, and the column address signal is also a signal indicating a column address.
  • control circuit 209 In the information writing process, the control circuit 209 outputs a write signal instructing application of a write voltage to the write circuit 205 in accordance with the input data Din input to the data input / output circuit 207. On the other hand, in the information reading process, the control circuit 209 outputs a read signal instructing a read operation to the column selection circuit / driver 204.
  • the row selection circuit / driver 203 receives the row address signal output from the address input circuit 208, selects one of the plurality of word lines WL0, WL1, WL2,... According to the row address signal, A predetermined voltage is applied to the selected word line.
  • the column selection circuit / driver 204 receives the column address signal output from the address input circuit 208, and selects one of the plurality of bit lines BL0, BL1, BL2,... According to the column address signal. Then, a write voltage or a read voltage is applied to the selected bit line.
  • the write circuit 205 When the write circuit 205 receives the write signal output from the control circuit 209, the write circuit 205 outputs a signal for instructing the row selection circuit / driver 203 to apply a voltage to the selected word line, and the column selection circuit / A signal instructing the driver 204 to apply a write voltage to the selected bit line is output.
  • the writing circuit 205 when a value corresponding to the resistance value in the low resistance state is written (low resistance reduction process), the writing circuit 205 outputs a signal instructing application of the low resistance voltage pulse having the voltage value VL.
  • the writing circuit 205 uses the first high resistance voltage pulse with the voltage value VH1 and the second high resistance voltage with the voltage VH2. A signal instructing to apply the pulses in this order is output.
  • the positive and negative polarity of the voltage here corresponds to the polarity of voltage application to the resistance change element, and is as defined in the first embodiment.
  • the sense amplifier 206 detects the amount of current flowing through the selected bit line to be read and discriminates stored data.
  • the resistance states of the memory cells M211, M212,... are set to two states of high and low, and these states and data are associated with each other. Therefore, the sense amplifier 206 determines which state the resistance state of the resistance change layer of the selected memory cell is in, and accordingly determines which of the binary data is stored. To do.
  • the output data DO obtained as a result is output to an external circuit via the data input / output circuit 207.
  • the nonvolatile memory device 200 realizes a stable memory operation.
  • the memory arrays in the nonvolatile memory device according to the present embodiment shown in FIG. 19 are stacked three-dimensionally, that is, by stacking the memory arrays in a direction perpendicular to the memory array surface, a nonvolatile memory having a multilayer structure It is also possible to implement the device. By providing the multi-layered memory array configured as described above, it is possible to realize an ultra-large capacity nonvolatile memory device.
  • the driving method of the nonvolatile memory device according to the fourth embodiment includes a verify operation in the write operation in the high resistance state. The operation of this nonvolatile memory device will be described below.
  • the verify operation is an operation for confirming whether or not the resistance state of the variable resistance element satisfies a desired condition. By performing the verify operation, the reliability of stored data is improved.
  • 20A and 20B are diagrams illustrating an operation example of the nonvolatile memory device according to the present embodiment.
  • the first high-resistance pulse having the voltage value VH1 and the second high-resistance pulse having the voltage value VH2 are sequentially applied. .
  • a first high resistance pulse having a voltage value VH1 is applied to the variable resistance element 10 of a desired memory cell. After applying the first high-resistance pulse and before applying the second high-resistance pulse, it is verified (confirmed) whether or not the variable resistance element 10 is changed to the high-resistance state by the first high-resistance pulse. .
  • the verify process for example, data is read from the memory cell that has been written, and the read data is compared with the expected value data that was initially input. Is determined. If the read data does not match the expected value data, it is determined that the resistance increase has failed.
  • the first resistance increase pulse is applied again. Then, verification is performed again, and if the resistance increase is successful (Yes in FIG. 20A), the second resistance increase pulse is applied. Further, in the case where the resistance increase has failed, the first resistance increase pulse is applied again (No in FIG. 20A).
  • an upper limit of the number of times of application of the first high resistance pulse is set in order to prevent the step of applying the first high resistance pulse from being repeated infinitely. Also good.
  • FIG. 20B is a diagram showing another operation example of the nonvolatile memory device in this embodiment.
  • the resistance change element 10 of the desired memory cell is supplied with the first voltage value VH1. 1 high resistance pulse is applied. After applying the first high-resistance pulse, before applying the second high-resistance pulse, it is verified (confirmed) whether or not the resistance change element 10 is changed to the high-resistance state by the first high-resistance pulse.
  • the second resistance increase pulse is applied to the verified memory cell. Thereby, the resistance change element 10 will be in the stable high resistance state.
  • the operation example shown in FIG. 20B is a method in which the verify process is performed only once in the operation example shown in FIG. 20A.
  • the resistance change element 10 can be stably increased in resistance. Thereby, the reliability of the data stored in the nonvolatile storage device can be improved.
  • variable resistance layer has a laminated structure of tantalum oxide, but the present invention is not limited to this.
  • a stacked structure of zirconium (Zr) oxide or a stacked structure of hafnium (Hf) oxide may be used.
  • both the first and second zirconium oxides have a stoichiometric composition.
  • the composition is an oxygen-deficient composition
  • x is about 0.9 or more and 1.4 or less
  • y is about 1.8 or more and 2 or less.
  • the film thickness of the second zirconium oxide is preferably 1 to 5 nm.
  • both the first and second hafnium oxides have a stoichiometric amount. It is preferable that the composition is an oxygen-deficient composition with respect to the theoretical composition, x is about 0.9 to 1.6 and y is about 1.89 to 1.97.
  • the film thickness of the second hafnium oxide is preferably 3 to 4 nm.
  • the oxygen-deficient hafnium oxide and the oxygen-deficient zirconium oxide can be prepared by the same manufacturing method as the oxygen-deficient tantalum oxide described in the above embodiment.
  • variable resistance layer may be a metal oxide. Therefore, in addition to the transition metal oxide, for example, aluminum oxide (Al 2 O 3 ) or the like may be used. That is, the “first transition metal”, “second transition metal”, “first transition metal oxide”, and “second transition metal oxide” in the above description are referred to as “first metal”, “ Examples of “second metal”, “first metal oxide”, and “second metal oxide”.
  • transition metals constituting the resistance change layer are exemplified, but in addition, titanium (Ti), niobium (Nb), tungsten (W), or the like can be used. Since transition metals can take a plurality of oxidation states, different resistance states can be realized by oxidation-reduction reactions.
  • the resistance change layer 3 configured in a stacked structure includes the first transition metal and the second transition metal oxide layer that constitute the first transition metal oxide layer 3a.
  • the case where the same transition metal is used as the second transition metal constituting 3b has been described as an example. However, the present invention is not limited to this.
  • the first transition metal constituting the first transition metal oxide layer 3a and the second transition metal constituting the second transition metal oxide layer 3b are used. Different materials may be used. In this case, it is preferable that the second transition metal oxide layer 3b has a lower oxygen deficiency than the first transition metal oxide layer 3a, that is, has a higher resistance value.
  • the standard electrode potential of the second transition metal is preferably lower than the standard electrode potential of the first transition metal.
  • a stable resistance changing operation can be obtained by using oxygen-deficient tantalum oxide for the first transition metal oxide layer 3a and TiO 2 for the second transition metal oxide layer 3b.
  • the standard electrode potential represents a characteristic that the higher the value (larger), the more difficult it is to oxidize.
  • the resistance change phenomenon in the resistance change layer of the laminated structure of each material described above is caused by an oxidation-reduction reaction occurring in a small filament formed in the second transition metal oxide layer 3b having a high resistance. Changes and is thought to occur.
  • the second electrode 4 is, for example, a standard compared to the transition metal constituting the second transition metal oxide layer 3b such as platinum (Pt), iridium (Ir), palladium (Pd), and the first electrode 2. It is preferable to use a material having a higher electrode potential. By adopting such a configuration, a redox reaction occurs selectively in the second transition metal oxide layer 3b in the vicinity of the interface between the second electrode 4 and the second transition metal oxide layer 3b, and stable. Resistance change phenomenon is obtained.
  • the resistance change layer may not be formed of a laminated structure of transition metal oxides, and may be formed of a single layer of transition metal oxide. Even if the variable resistance layer is formed of such a single transition metal oxide layer, a stable operation can be realized in the same manner.
  • variable resistance element driving method and nonvolatile memory device of the present invention are useful as a variable resistance element driving method and nonvolatile memory device used in various electronic devices such as personal computers or portable telephones.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

 安定した動作を実現することができる抵抗変化素子の駆動方法及び不揮発性記憶装置を提供する。低抵抗化過程においては、抵抗変化素子(10)が備える抵抗変化層(3)に対して、負極性の低抵抗化電圧パルスを1回印加する一方で、高抵抗化過程においては、同じく抵抗変化層(3)に対して、正極性の高抵抗化電圧パルスを2回以上印加する。ここで、そのうちの一の高抵抗化電圧パルスの電圧値をVH1とし、それよりも後に印加される高抵抗化電圧パルスの電圧値をVH2とした場合に、VH1>VH2が成立する。

Description

抵抗変化素子の駆動方法、及び不揮発性記憶装置
 本発明は、抵抗変化素子の駆動方法、及びその方法を実施する不揮発性記憶装置に関する。
 近年、デジタル技術の進展に伴って、携帯情報機器や情報家電等の電子機器がより一層高機能化している。これらの電子機器の高機能化に伴い、使用される半導体素子の微細化及び高速化が急速に進んでいる。その中でも、フラッシュメモリに代表されるような大容量の不揮発性記憶装置の用途が急速に拡大している。さらに、このフラッシュメモリに置き換わる次世代の不揮発性記憶装置として、電気的信号によって抵抗値が可逆的に変化する性質を有する抵抗変化素子を備えた不揮発性記憶装置の研究開発が進んでいる(例えば、特許文献1、非特許文献1参照)。
 特許文献1に記載の抵抗変化素子は、電圧や電流パルスの大きさと方向によって抵抗が変化するデータ貯蔵物質層(可変抵抗物質層)を備え、可変抵抗物質層に印加される電圧や電流パルスの大きさによって、高抵抗状態と低抵抗状態とを可逆的に遷移する。
特開2004-363604号公報
W.W.Zhuang et al., "Novell Colossal Magnetoresistive Thin Film Nonvolatile Resistance Random Access Memory(RRAM)", IEDM Technical Digest, pp.193-196, December 2002
 上記のような従来の不揮発性記憶装置において、安定した記憶動作の実現と、抵抗値ばらつきの抑制の両立が困難であるという問題がある。
 本発明は斯かる事情に鑑みてなされたものであり、抵抗値のばらつきを抑制し、安定した記憶動作を実現することができる抵抗変化素子の駆動方法及び不揮発性記憶装置を提供する。
 上述した課題を解決するために、本発明の一の態様の抵抗変化素子の駆動方法は、第1電極と、第2電極と、前記第1電極と前記第2電極との間に介在し、前記第1電極および前記第2電極間に印加する電圧パルスに基づいて可逆的に抵抗値が変化する抵抗変化層と、を備えた抵抗変化素子を駆動する駆動方法において、第1の極性の低抵抗化電圧パルスを前記抵抗変化層に印加することによって、当該抵抗変化層を高抵抗状態から低抵抗状態へ変化させる低抵抗化過程と、前記第1の極性とは異なる第2の極性の高抵抗化電圧パルスを前記抵抗変化層に印加することによって、当該抵抗変化層を低抵抗状態から高抵抗状態へ変化させる高抵抗化過程とを有し、前記高抵抗化過程は、少なくとも複数の前記高抵抗化電圧パルスを印加することにより1回の高抵抗化が完了する高抵抗化過程であり、前記高抵抗化過程において、前記第1電極と前記第2電極間に、電圧値がVH1の第1の高抵抗化電圧パルスを印加するステップと、前記第1の高抵抗化電圧パルスよりも後に与えられ、電圧値の抵抗値がVH1よりも小さいVH2である第2の高抵抗化電圧パルスを印加するステップとを含む。
 本発明に係る抵抗変化素子の駆動方法及び不揮発性記憶装置によれば、抵抗値のばらつきを抑制し、安定した記憶動作を実現することができる。
図1は、本発明の実施の形態1に係る抵抗変化素子の構成の一例を示す模式図である。 図2は、本発明の実施の形態1に係る抵抗変化素子を動作させる回路の構成の一例を示す図である。 図3は、データの読み出しの際に、本発明の実施の形態1に係る抵抗変化素子を備える回路を流れる電流の電流値と抵抗変化層の抵抗値との関係を示す図である。 図4は、本発明の実施の形態1に係る抵抗変化素子において、低抵抗化過程及び高抵抗化過程における動作例を示す図である。 図5は、本発明の実施の形態1に係る抵抗変化素子が備える抵抗変化層の抵抗値の正規期待値プロット図である。 図6Aは、参考例1に係る抵抗変化素子の動作例を示す図である。 図6Bは、参考例2に係る抵抗変化素子の動作例を示す図である。 図7Aは、参考例1に係る抵抗変化素子が備える抵抗変化層の抵抗値の正規期待値プロット図である。 図7Bは、参考例2に係る抵抗変化素子が備える抵抗変化層の抵抗値の正規期待値プロット図である。 図7Cは、本発明の実施の形態1に係る抵抗変化素子が備える抵抗変化層の抵抗値の正規期待値プロット図である。 図8は、参考例2及び実施の形態1に係る抵抗変化素子が備える高抵抗状態での抵抗変化層の抵抗値の正規期待値プロット図である。 図9は、本発明の実施の形態1に係る抵抗変化素子の抵抗-電圧特性を示すグラフである。 図10は、本発明の実施の形態1に係る抵抗変化素子の電流-電圧特性を示すグラフである。 図11は、本発明の実施の形態1に係る抵抗変化素子単体の抵抗-電圧特性を示すグラフである。 図12は、本発明の実施の形態1に係る抵抗変化素子単体の電流-電圧特性を示すグラフである。 図13は、本発明の実施の形態1に係る抵抗変化素子において、低抵抗化過程及び高抵抗化過程の他の動作例を示す図である。 図14は、本発明の実施の形態1に係る抵抗変化素子において、低抵抗化過程及び高抵抗化過程の他の動作例を示す図である。 図15は、本発明の実施の形態1に係る抵抗変化素子が備える抵抗変化層の抵抗値の正規期待値プロット図である。 図16は、本発明の実施の形態1に係る抵抗変化素子において、低抵抗化過程及び高抵抗化過程の他の動作例を示す図である。 図17は、本発明の実施の形態1に係る抵抗変化素子が備える抵抗変化層の抵抗値の正規期待値プロット図である。 図18は、本発明の実施の形態2に係る不揮発性記憶装置の構成の一例を示すブロック図である。 図19は、本発明の実施の形態3に係る不揮発性記憶装置の構成の一例を示すブロック図である。 図20Aは、本発明の実施の形態4に係る不揮発性記憶装置の動作例を示す図である。 図20Bは、本発明の実施の形態4に係る不揮発性記憶装置の他の動作例を示す図である。
 以下、本発明の実施の形態について詳細に説明する前に、本発明の基礎となった知見について説明する。
 不揮発性記憶装置において、安定した記憶動作を確保するためには抵抗変化層において、抵抗値が高い高抵抗状態と抵抗値が低い低抵抗状態との抵抗値の差が十分にあることが必要である。そのために、例えば、高抵抗化させるための電圧パルスの電圧を高くすることによって、高抵抗状態の抵抗変化層の抵抗値をより高い値とし、これにより高抵抗状態と低抵抗状態との抵抗値の差を広げる等の対応が考えられる。
 ここで、抵抗変化層に高い電圧の電圧パルスを印加すると、抵抗変化層において酸化反応が活発に生じ、抵抗変化層の高抵抗化が進む。一方で、抵抗変化層に高い電圧の電圧パルスを印加すると、絶縁破壊が生じやすくなり、低抵抗化が進みやすくなる。したがって、高い電圧の電圧パルスを印加した場合、抵抗変化層において、酸化反応による高抵抗化と絶縁破壊による低抵抗化との競合状態が発生するため、抵抗値がばらついてしまい、安定した記憶動作を実現することが困難になるという問題がある。
 斯かる事情に鑑み、本発明者が鋭意検討をした結果、抵抗値のばらつきを抑制し、安定した記憶動作を実現することができる抵抗変化素子の駆動方法、及びその方法を実施する不揮発性記憶装置を見出した。
 本発明の一態様に係る抵抗変化素子の駆動方法は、第1電極と、第2電極と、前記第1電極と前記第2電極との間に介在し、前記第1電極および前記第2電極間に印加する電圧パルスに基づいて可逆的に抵抗値が変化する抵抗変化層と、を備えた抵抗変化素子を駆動する駆動方法において、第1の極性の低抵抗化電圧パルスを前記抵抗変化層に印加することによって、当該抵抗変化層を高抵抗状態から低抵抗状態へ変化させる低抵抗化過程と、前記第1の極性とは異なる第2の極性の高抵抗化電圧パルスを前記抵抗変化層に印加することによって、当該抵抗変化層を低抵抗状態から高抵抗状態へ変化させる高抵抗化過程とを有し、前記高抵抗化過程は、少なくとも複数の前記高抵抗化電圧パルスを印加することにより1回の高抵抗化が完了する高抵抗化過程であり、前記高抵抗化過程において、前記第1電極と前記第2電極間に、電圧値がVH1の第1の高抵抗化電圧パルスを印加するステップと、前記第1の高抵抗化電圧パルスよりも後に与えられ、電圧値がVH1よりも小さいVH2である第2の高抵抗化電圧パルスを印加するステップとを含むものである。
 この構成によれば、抵抗変化層に、電圧値がVH1である第1の高抵抗化電圧パルスを印加して高抵抗化した後、電圧値がVH1よりも小さいVH2である第2の高抵抗化電圧パルスを印加するので、第1の高抵抗化電圧パルスにより高抵抗化した抵抗変化層の抵抗値を、第2の高抵抗化電圧パルスにより安定させることができる。これにより、抵抗変化素子の記憶動作を安定化することができる。また、第2の高抵抗化電圧パルスの電圧値VH2が、第1の高抵抗化電圧パルスの電圧値VH1よりも小さいため、抵抗値のばらつきを抑制することができる。
 また、前記高抵抗化過程において、前記第1の高抵抗化電圧パルスを印加するステップに引き続き、前記第2の高抵抗化電圧パルスを印加するステップを実行することが好ましい。
 この構成によれば、抵抗変化層を高抵抗化させるための第1の高抵抗化電圧パルスに引き続いて、抵抗変化層の抵抗値を安定させるための第2の高抵抗化電圧パルスを印加することにより、抵抗変化層の抵抗値をより安定させることができる。
 また、前記抵抗変化層は、第1の金属の酸化物で構成される第1の金属酸化物層と、第2の金属の酸化物で構成され、かつ前記第1の金属酸化物層よりも酸素不足度が小さい第2の金属酸化物層とが積層されていることが好ましい。
 また、前記第2電極は、前記第2の金属酸化物層に接し、前記第2の極性とは、前記第1電極の電位を基準としたときに前記第2電極の電圧が正となる極性であることが好ましい。
 この構成によれば、バイポーラ動作をする抵抗変化層において、高抵抗化した抵抗変化層の抵抗値を安定させることができる。
 また、前記第1の金属は第1の遷移金属であり、前記第2の金属は第2の遷移金属であることが好ましい。
 また、本発明の一の態様に係る不揮発性記憶素子の駆動方法は、第1電極と、第2電極と、前記第1電極と前記第2電極との間に介在し、前記第1電極および前記第2電極間に印加する電圧パルスに基づいて可逆的に抵抗値が変化する抵抗変化層と、を備えた抵抗変化素子を駆動する駆動方法において、第1の極性の低抵抗化電圧パルスを前記抵抗変化層に印加することによって、当該抵抗変化層を高抵抗状態から低抵抗状態へ変化させる低抵抗化過程と、前記第1の極性とは異なる第2の極性の高抵抗化電圧パルスを前記抵抗変化層に印加することによって、当該抵抗変化層を低抵抗状態から高抵抗状態へ変化させる高抵抗化過程とを有し、前記高抵抗化過程は、少なくとも複数の前記高抵抗化電圧パルスを印加することにより1回の高抵抗化が完了する高抵抗化過程であり、前記高抵抗化過程において、前記第1電極と前記第2電極間に、電圧値がVH1である第1の高抵抗化電圧パルスを印加するステップと、前記抵抗変化層が高抵抗状態へ変化していることを確認するステップと、前記第1の高抵抗化電圧パルスよりも後に与えられ、電圧値がVH1よりも小さいVH2である第2の高抵抗化電圧パルスを印加するステップとを含み、前記確認するステップにおいて前記抵抗変化層が高抵抗化状態へ変化していることが確認されたときは、前記第2の高抵抗化電圧パルスを印加するステップにおいて前記抵抗変化層に前記第2の高抵抗化電圧パルスを印加し、前記確認するステップにおいて前記抵抗変化層が高抵抗化状態へ変化していないことが確認されたときは、前記第1の高抵抗化電圧パルスを再度印加するものである。
 この構成によれば、抵抗変化層に、電圧値がVH1である第1の高抵抗化電圧パルスを印加して高抵抗化した後、電圧値がVH1よりも小さいVH2である第2の高抵抗化電圧パルスを印加するので、第1の高抵抗化電圧パルスにより高抵抗化した抵抗変化層の抵抗値を、第2の高抵抗化電圧パルスにより安定させることができる。これにより、抵抗変化素子の記憶動作を安定化することができる。また、第2の高抵抗化電圧パルスの電圧値VH2が、第1の高抵抗化電圧パルスの電圧値VH1よりも小さいため、抵抗値のばらつきを抑制することができる。さらに、第1の高抵抗化電圧パルスを印加した後、抵抗変化層が高抵抗化していることを確認するステップを含むので、抵抗変化層が高抵抗化しているか否かにより、引き続き印加する電圧パルスの電圧値を選択することができる。これにより、抵抗変化素子の記憶動作をより安定化することができる。
 また、前記確認するステップにおいて、前記抵抗変化層が高抵抗状態へ変化していないことが確認されたときは、前記第2の高抵抗化電圧パルスを印加するステップの前に、前記第1の高抵抗化電圧パルスを印加するステップを再度行うことにより、前記抵抗変化素子に前記第1の高抵抗化電圧パルスを再度印加することが好ましい。
 また、前記確認するステップにおいて、前記抵抗変化層が高抵抗状態へ変化していないことが確認されたときは、前記第2の高抵抗化電圧パルスを印加するステップにおいて、前記第2の高抵抗化電圧パルスを印加する前に前記第1の高抵抗化電圧パルスを印加し、引き続き、前記第2の高抵抗化電圧パルスを印加することが好ましい。
 この構成によれば、抵抗変化層の高抵抗化と安定化とを効率よく行うことができる。
 本発明の一の態様に係る不揮発性記憶装置は、不揮発性の抵抗変化素子と、電圧パルス印加装置とを備える不揮発性記憶装置であって、前記抵抗変化素子は、第1電極と、第2電極と、前記第1電極と前記第2電極との間に介在し、前記第1電極および前記第2電極間に印加される電圧パルスに基づいて可逆的に抵抗値が変化する抵抗変化層と、を備え、前記電圧パルス印加装置は、第1の極性の低抵抗化電圧パルスを前記抵抗変化層に印加することによって、当該抵抗変化層を高抵抗状態から低抵抗状態へ変化させる低抵抗化過程と、前記第1の極性とは異なる第2の極性の高抵抗化電圧パルスを前記抵抗変化層に印加することによって、当該抵抗変化層を低抵抗状態から高抵抗状態へ変化させる高抵抗化過程とを実行するように構成され、前記高抵抗化過程は、少なくとも複数の前記高抵抗化電圧パルスを印加することにより1回の高抵抗化が完了する高抵抗化過程であり、前記高抵抗化過程においては、前記第1電極と前記第2電極間に、少なくとも、電圧値がVH1である第1の高抵抗化電圧パルスを印加する処理と、前記第1の高抵抗化電圧パルスを印加する処理の後、電圧値がVH1よりも小さいVH2である第2の高抵抗化電圧パルスを印加する処理とを実行するものである。
 この構成によれば、抵抗変化層に、電圧値がVH1である第1の高抵抗化電圧パルスを印加して高抵抗化した後、電圧値がVH1よりも小さいVH2である第2の高抵抗化電圧パルスを印加するので、第1の高抵抗化電圧パルスにより高抵抗化した抵抗変化層の抵抗値を、第2の高抵抗化電圧パルスにより安定させることができる。これにより、抵抗変化素子の記憶動作を安定化することができる。
 また、前記電圧パルス印加装置は、前記第1電極と前記第2電極間に、前記第1の高抵抗化電圧パルスを印加し、引き続き第2の高抵抗化電圧パルスを印加することが好ましい。
 この構成によれば、抵抗変化層の高抵抗化と安定化とを効率よく行うことができる。
 また、前記抵抗変化層は、第1の金属の酸化物で構成される第1の金属酸化物層と、第2の金属の酸化物で構成され、かつ前記第1の金属酸化物層よりも酸素不足度が小さい第2の金属酸化物層とが積層されて構成されることが好ましい。
 また、前記第2の金属酸化物層の抵抗値は、前記第1の金属酸化物層の抵抗値よりも大きいことが好ましい。
 また、前記第1の金属と、前記第2の金属とは同一であることが好ましい。
 また、前記第1の金属は第1の遷移金属であり、前記第2の金属は第2の遷移金属であることが好ましい。
 また、前記抵抗変化層は、TaO(但し、0.8≦x≦1.9)で表される組成を有する酸素不足型の第1のタンタル酸化物層と、TaO(但し、2.1≦y)で表される組成を有する第2のタンタル酸化物層と、を有することが好ましい。
 この構成によれば、抵抗変化層の抵抗値を安定して高速に変化させることができる。
 また、前記第1の金属と、前記第2の金属とは互いに異なり、前記第2の金属の標準電極電位は、前記第1の金属の標準電極電位より低いことが好ましい。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、より好ましい形態を構成する構成要素として説明される。なお、各図は、模式図であり、必ずしも厳密に図示したものではない。
 (実施の形態1)
 [抵抗変化素子の構成]
 まず、本発明の実施の形態1の抵抗変化素子の構成について説明する。
 図1は、本発明の実施の形態1に係る抵抗変化素子の構成の一例を示す模式図である。図1に示すように、本実施の形態の抵抗変化素子10は、基板1と、基板1の上に形成された第1電極(下部電極)2と、第1電極2の上に形成された抵抗変化層3と、抵抗変化層3の上に形成された第2電極(上部電極)4とを備えている。すなわち、第1電極2と、第2電極4との間に介在するように、抵抗変化層3が配置されている。第1電極2及び第2電極4は、抵抗変化層3と電気的に接続されている。
 基板1は、例えばシリコン基板により構成される。また、第1電極2及び第2電極4は、例えば、Au(金)、Pt(白金)、Ir(イリジウム)、及びCu(銅)のうちの1つまたは複数の材料を用いて構成される。
 抵抗変化層3は、第1の遷移金属酸化物層3aと第2の遷移金属酸化物層3bとが積層されて構成されている。本実施の形態においては、その一例として、第1タンタル酸化物層3aと第2タンタル酸化物層3bとが積層されて抵抗変化層3が構成されている。ここで、第2タンタル酸化物層3bの酸素含有率は、第1タンタル酸化物層3aの酸素含有率よりも高くなっている。言い換えると、第2タンタル酸化物層3bの酸素不足度は、第1タンタル酸化物層3aの酸素不足度よりも少ない。
 なお、酸素不足度とは、それぞれの遷移金属酸化物において、その化学量論的組成の酸化物を構成する酸素の量に対して、不足している酸素の割合をいう。例えば、遷移金属がタンタル(Ta)の場合、化学量論的な酸化物の組成はTaであるので、TaO2.5と表現できる。TaO2.5の酸素不足度は0%である。例えば、TaO1.5の組成の酸素不足型のタンタル酸化物の酸素不足度は、酸素不足度=(2.5-1.5)/2.5=40%となる。また、Taの酸素含有率は、総原子数に占める酸素原子の比率(O/(Ta+O))となり、71.4%となる。したがって、酸素不足型のタンタル酸化物の酸素含有率は0より大きく、71.4%より小さいことになる。
 本実施の形態においては、例えば、第1タンタル酸化物層3aの組成をTaOとした場合に0.8≦x≦1.9であり、且つ、第2タンタル酸化物層3bの組成をTaOとした場合に、2.1≦yである。このような構成とすることにより、抵抗変化層3の抵抗値を安定して高速に変化させることができる。したがって、x及びyは上記の範囲内にあることが好ましい。
 抵抗変化層3の厚みは、1μm以下であれば抵抗値の変化が認められるが、200nm以下であることが好ましい。パターニングプロセスリソグラフィーを使用する場合に、加工し易く、しかも抵抗変化層3の抵抗値を変化させるために必要となる電圧パルスの電圧値を低くすることができるからである。他方、電圧パルス印加時のブレークダウン(絶縁破壊)をより確実に回避するという観点からは、抵抗変化層3の厚みは少なくとも5nm以上であることが好ましい。
 また、第2タンタル酸化物層3bの厚みについては、大きすぎると初期抵抗値が高くなりすぎる等の不都合があり、また小さすぎると安定した抵抗変化が得られないという不都合があるため、1nm以上8nm以下程度が好ましい。
 図1に示す抵抗変化素子10においては、第1電極2は第1タンタル酸化物層に接して配置され、第2電極4は第2タンタル酸化物層3bに接して配置されている。上述したように構成される抵抗変化素子10を動作させる場合、第1電極2及び第2電極4が、電源5の異なる端子に電気的に接続される。この電源5は、抵抗変化素子10を駆動するための電気的パルス印加装置として機能し、第1電極2と第2電極4との間に、所定の極性、電圧及び時間幅の電気的パルス(電圧パルス)を印加することができるように構成されている。例えば、抵抗変化層3を高抵抗状態から低抵抗状態へ変化させる電圧を第1の極性の低抵抗化電圧パルス、抵抗変化層3を低抵抗状態から高抵抗状態へ変化させる電圧を第2の極性の高抵抗化電圧パルスとすると、第2の極性とは、第1電極の電位を基準としたときに第2電極の電圧が正となる極性である。
 [抵抗変化素子の製造方法]
 次に、抵抗変化素子10の製造方法について説明する。
 まず、基板1上に、スパッタリング法により、厚さ0.2μmの第1電極2を形成する。その後、Taターゲットをアルゴンガス及び酸素ガス中でスパッタリングする所謂反応性スパッタリング法によって、第1電極2の上にタンタル酸化物層を形成する。ここで、タンタル酸化物層における酸素含有率は、アルゴンガスに対する酸素ガスの流量比を変えることにより容易に調整することができる。なお、基板温度は特に加熱することなく室温とすることができる。
 次に、上記のようにして形成されたタンタル酸化物層の最表面を酸化することによりその表面を改質する。これにより、タンタル酸化物層の表面に、当該タンタル酸化物層の酸化されなかった領域(第1領域)よりも酸素含有率の高い領域(第2領域)が形成される。これらの第1領域及び第2領域が第1タンタル酸化物層3a及び第2タンタル酸化物層3bにそれぞれ相当し、このようにして形成された第1タンタル酸化物層3a及び第2タンタル酸化物層3bによって抵抗変化層3が構成されることになる。
 次に、上記のようにして形成された抵抗変化層3の上に、スパッタリング法により、厚さ0.2μmの第2電極4を形成することにより、抵抗変化素子10が得られる。
 なお、第1電極2及び第2電極4並びに抵抗変化層3の大きさ及び形状は、マスク及びリソグラフィによって調整することができる。本実施の形態では、第1電極2及び抵抗変化層3の大きさを0.5μm×0.5μm(面積0.25μm)とし、第2電極4と抵抗変化層3とが接する部分の大きさも0.5μm×0.5μm(面積0.25μm)とした。
 また、本実施の形態では、第1タンタル酸化物層3aの組成をTaO(x=1.54)とし、第2タンタル酸化物層3bの組成をTaO(y=2.47)としている。さらに、抵抗変化層3の厚みを30nmとし、第1タンタル酸化物層3aの厚みを25nm、第2タンタル酸化物層3bの厚みを5nmとしている。
 なお、このように、本実施の形態においてはx=1.54、y=2.47であるが、x及びyの値はこれに限られるわけではない。上述したとおり、xの値が0.8以上1.9以下の範囲内であり、yの値が2.1以上範囲内(2.1≦y)であれば、本実施の形態での抵抗変化特性と同様に、安定した抵抗変化を実現できる。
 [抵抗変化素子の基本動作]
 次に、上述した製造方法により得られた抵抗変化素子10の動作について説明する。
 電源5を用いて、負極性の電圧パルスである低抵抗化電圧パルスを第1電極2及び第2電極4間に印加することにより、抵抗変化層3の抵抗値が減少し、抵抗変化層3が高抵抗状態から低抵抗状態へ変化する。以下では、これを低抵抗化過程という。
 他方、電源5を用いて、正極性の電圧パルスである高抵抗化電圧パルスを第1電極2及び第2電極4間に印加することにより、抵抗変化層3の抵抗値が増加し、抵抗変化層3が低抵抗状態から高抵抗状態へ変化する。以下では、これを高抵抗化過程という。
 この高抵抗化過程は、少なくとも複数の前記高抵抗化電圧パルスを印加することにより1回の高抵抗化が完了する高抵抗化過程である。
 以上のように、本実施形態における抵抗変化素子10は、第1電極2および第2電極4間に与えられる電圧パルスに基づいて、抵抗変化層3の抵抗値は、低抵抗状態と高抵抗状態との間で可逆的に変化する。なお、第1電極2を基準としたときに第2電極4に負の電圧を印加する場合を負極性とし、第1電極2を基準としたときに第2電極4に正の電圧を印加する場合を正極性と定義する。
 なお、抵抗変化層3が低抵抗状態にある場合に、低抵抗化電圧パルスと同極性である負極性の電圧パルスが第1電極2及び第2電極4間に印加されたとしても、抵抗変化層3は低抵抗状態のまま変化しない。同様にして、抵抗変化層3が高抵抗状態にある場合に、高抵抗化電圧パルスと同極性である正極性の電圧パルスが第1電極2及び第2電極4間に印加されたとしても、抵抗変化層3は高抵抗状態のまま変化しない。
 次に、抵抗変化素子10をメモリとして使用して1ビットデータの書き込み/読み出し処理を行う場合について、説明する。なお、以下では、抵抗変化層3の抵抗値が低抵抗値である場合を「1」に対応させ、高抵抗値である場合を「0」に対応させる。
 図2は、本発明の実施の形態1に係る抵抗変化素子10を動作させる回路の構成の一例を示す図である。図2に示すように、この回路は、抵抗変化素子10と、第1端子11及び第2端子12とを備えている。抵抗変化素子10の第1電極2は第1端子11に電気的に接続されており、第2電極4は第2端子12に電気的に接続されている。図2に示すように、第1端子11は設置(グランド:GND)され、第2端子12に電圧パルスが供給される。この電圧パルスは、第1電極2及び接地点を基準に特定される。
 抵抗変化素子10が初期状態にある場合に、負極性の低抵抗化電圧パルスが第2端子12に供給されると、抵抗変化層3の抵抗値は減少し、低抵抗状態となる(低抵抗化過程)。これにより、「1」を表す1ビットデータが書き込まれたことになる。その低抵抗状態にある場合において、正極性の高抵抗化電圧パルスが第2端子12に供給されると、抵抗変化層3の抵抗値が増加し、低抵抗状態から高抵抗状態へと変化する(高抵抗化過程)。これにより、「0」を表す1ビットデータが書き込まれたことになる。
 ここで、抵抗変化動作は、書き込み処理の際に印加される電圧の極性と大きさによって、ユニポーラ動作とバイポーラ動作に大別される。
 ユニポーラ動作(ノンポーラ動作)とは、典型的には、高抵抗化電圧の極性と低抵抗化電圧の極性が同じである電圧を印加して抵抗変化させる動作のことをいう。なお、ユニポーラ動作(ノンポーラ動作)においては、正負どちらの極性においても同等の動作が可能であり、抵抗変化素子10が高抵抗化するか低抵抗化するかは極性には依存しない。ただし、その場合、抵抗変化素子10単体にかかる実効的な電圧において、低抵抗化電圧の絶対値が高抵抗化電圧の絶対値より大きい。
 一方、バイポーラ動作とは、高抵抗化電圧の極性と低抵抗化電圧の極性が異なる電圧を印加して抵抗変化させる動作のことをいう。バイポーラ動作では、典型的には、抵抗変化素子10単体にかかる実効的な電圧において、低抵抗化電圧の絶対値が高抵抗化電圧の絶対値より小さい。
 バイポーラ動作においては、異なる極性の電圧を印加することにより、抵抗変化層中の酸素イオンが移動して抵抗変化が生じていると考えられる。図1に示される例では、第2電極4と抵抗変化層3の第2タンタル酸化物層3bの間での酸素イオンの移動により抵抗変化が生じていると考えられている。例えば、第2電極4に正電圧が印加されると、負の電荷を持った酸素イオンが第2電極4側に移動し、第2タンタル酸化物層3bの酸素濃度が高くなり(酸素欠陥濃度が低下し)、その結果、抵抗変化層3は高抵抗化する。逆に、負電圧が印加されると、酸素イオンは第2電極4から遠ざかるように移動し、第2タンタル酸化物層3bの酸素濃度が低くなり(酸素欠陥濃度が上昇し)、その結果、抵抗変化層3は低抵抗化する。
 このバイポーラ動作は、第2電極4と第2タンタル酸化物層3bとの界面での酸素濃度(酸素欠陥濃度)の増減により起こるため、安定に動作させるためには、図1に示したように、上下構造に非対称性を持たせることが望ましい。例えば、抵抗変化層3をあらかじめ酸素濃度の高く抵抗の高いTa層(高抵抗層)である第2タンタル酸化物層3bと酸素濃度の低く抵抗の低いTaO層(低抵抗層)である第1タンタル酸化物層3aの2層構成とする。この構成により、電圧は第2タンタル酸化物層3bに有効に印加され、第2タンタル酸化物層3b側の電極界面付近で抵抗変化が優先的に起こる。この場合、第2タンタル酸化物層3bに接する第2電極4に正電圧を印加すると、酸素イオンが電極界面に移動し、高抵抗化が起こる。
 なお、本実施の形態では、バイポーラ動作を行う抵抗変化素子を用いている。本実施の形態の駆動方法は、後述するように、酸素イオンの移動を伴うバイポーラ型の抵抗変化素子において、酸素イオンが電極側へ移動することによって生じる高抵抗化と、絶縁破壊により生じる低抵抗化とが競合する問題を解消し、抵抗変化素子の抵抗値を安定にする。具体的には、高抵抗化過程において、正極性の高抵抗化電圧パルスを2回以上供給することにより1回の高抵抗化が完了する。
 上述したようにして書き込まれたデータは、次のようにして読み出される。図3は、データの読み出しの際に、本発明の実施の形態1に係る抵抗変化素子10を備える回路を流れる電流の電流値と抵抗変化層3の抵抗値との関係を示す図である。
 第2端子12に読み出し用の電圧パルス(例えば、+0.5Vの電圧パルス)が供給されると、抵抗変化層3の抵抗値に応じた電流が回路を流れる。すなわち、図3に示すように、抵抗変化層3が低抵抗状態RLにある場合は電流値Iaの電流が回路を流れ、高抵抗状態RHにある場合は電流値Ibの電流が回路を流れる。そのため、読み出し用の電圧パルスを第2端子12に供給し、そのときに第1端子11及び第2端子12間に流れる電流の検出値がIaであれば、抵抗変化層3が低抵抗状態RLにあると判別することができる。この場合、抵抗変化素子10に書き込まれたデータが「1」であることが分かる。他方、電流の検出値がIbであれば、抵抗変化層3が高抵抗状態RHにあると判別することができる。この場合、抵抗変化素子10に書き込まれたデータが「0」であることが分かる。ここで、抵抗変化素子10に読み出し用の電圧パルスを印加しても、抵抗変化素子10の抵抗状態は変化しない。
 本実施の形態の抵抗変化素子10は、電源を切ったとしても抵抗値が変化しない。そのため、この抵抗変化素子10を用いることにより、不揮発性記憶装置を実現することができる。
 [低抵抗化過程及び高抵抗化過程]
 以下、上述した本発明の実施の形態1における低抵抗化過程及び高抵抗化過程の詳細について、説明する。
 図4は、本発明の実施の形態1の抵抗変化素子10において、低抵抗化過程及び高抵抗化過程における動作例を示す図である。図4に示すように、低抵抗化過程においては、抵抗変化素子10に対して、電圧値VLの低抵抗化電圧パルスが印加される。他方、高抵抗化過程においては、抵抗変化素子10に対して、電圧値VH1の第1の高抵抗化電圧パルス及び電圧値VH2の第2の高抵抗化電圧パルスがこの順に印加される。ここで、第1の高抵抗化パルスの電圧値VH1と第2の高抵抗化パルスの電圧値VH2との関係は、VH1>VH2が成立する。すなわち、高抵抗化過程においては、電圧値VH1の第1の高抵抗化電圧パルスを印加した後、第1の高抵抗化電圧パルスの電圧値VH1よりも低い電圧値VH2の第2の高抵抗化電圧パルスを連続して印加する。なお、第1の高抵抗化電圧パルスとは、高抵抗化パルスを複数回印加する場合、最も電圧の絶対値が大きい高抵抗化電圧パルスを指す。
 第1の高抵抗化電圧パルスは、低抵抗状態の抵抗変化素子10を高抵抗状態に変化させるパルス電圧である。第1の高抵抗化電圧パルスの電圧値VH1は、比較的大きい値に設定される。これにより、例えば、抵抗変化素子10に負荷抵抗等が接続されている場合に、負荷抵抗による電圧分配により抵抗変化素子10単体に印加される電圧値が減少したとしても、抵抗変化素子10に対して抵抗変化動作に十分な大きさの電圧を印加することができる。
 例えば、抵抗変化素子10に、負荷抵抗と合わせて2.4V印加された場合(図9、10参照)、この電圧で高抵抗化が行われて抵抗変化素子10単体に電圧が印加されるようになっても、抵抗変化素子10には大きな電流が流れてしまう。これにより、高抵抗化した第2タンタル酸化物層3bに欠陥(酸素空孔)が生じるため、抵抗変化素子10の全領域において十分に高抵抗化が行えない場合がある。また、抵抗変化素子10においては、高抵抗化と電流による欠陥発生による低抵抗化とが同時におこり、抵抗値が不安定になる場合もある。
 また、第2の高抵抗化パルスは、第1の高抵抗化パルスでおおむね高抵抗化した抵抗変化素子10(抵抗変化層3)の状態を、安定した高抵抗状態へと変化させるための電圧パルスである。第2の高抵抗化電圧パルスの電圧値VH2は、第1の高抵抗化電圧パルスの電圧値VH1に比べて比較的小さい値であり、抵抗変化素子10の高抵抗化が可能な程度には大きい値に設定される。これにより、高抵抗状態を安定かさせることができる。これは、第2の高抵抗化パルスが、第1の高抵抗化パルスで生じた欠陥を回復させるためであると考えられる。
 抵抗変化素子10は第1の高抵抗化パルスによっておおむね高抵抗化しているので、これに対して第2の高抵抗化パルスを印加した際には、抵抗変化素子10に有効に電圧がかかり、かつ、抵抗変化素子10に過剰な電流が流れることはない。そのため、第2の高抵抗化パルスを印加することにより、第1の高抵抗化パルスで生じた欠陥(酸素空孔)を酸素イオンが埋めるように抵抗変化素子10(抵抗変化層3)を変化させると考えられると考えられる。これにより、抵抗変化素子10の高抵抗化状態を安定させることができる。
 なお、図4における“Read”は、読み出し用の電圧パルスを意味している(例えば、+0.5Vの電圧パルス)。この読み出し用の電圧パルスを供給することにより、上述したようにして、抵抗変化層3が高抵抗状態、抵抵抗状態の何れの状態にあるのかを判別し、データを読み出すことができる。
 図5は、本発明の実施の形態1に係る抵抗変化素子10が備える抵抗変化層3の抵抗値の正規期待値プロット図である。図5において、横軸は抵抗変化層3の抵抗値(抵抗測定電圧は+0.4V)を、縦軸は正規分布でフィッティングした場合におけるばらつきの度合いを示す正規期待値をそれぞれ表している。
 図5に示されるデータは、低抵抗化過程及び高抵抗化過程を100回繰り返し実施した場合に得られたものである(これ以降に示す他の正規期待値プロット図においても同様である)。ここで、低抵抗化過程においては、-1.5Vの低抵抗化電圧パルスを抵抗変化層3に印加し、高抵抗化過程においては、第1の高抵抗化電圧パルスとして+2.4Vの電圧パルスを、第2の高抵抗化電圧パルスとして+1.5Vの電圧パルスを抵抗変化層3に印加している。-1.5Vの電圧パルスを印加したときのデータは白い三角印で示している。また、第1の高抵抗化電圧パルスのみを印加したときのデータをバツ印で示している。第1の高抵抗化電圧パルスの印加後、さらに、第2の高抵抗化電圧パルスを印加したときのデータを白い丸印で記載している。
 書き込まれたデータの読み出しを正確に行うためには、高抵抗状態における抵抗値の最小値と低抵抗状態における抵抗値の最大値との差で規定されるウィンドウを大きくすることが望ましい。図5に示すように、第1の高抵抗化電圧パルス(+2.4V)のみを印加した場合におけるウィンドウW1と、第1の高抵抗化電圧パルス(+2.4V)の後に第2の高抵抗化電圧パルス(+1.5V)を印加した場合におけるウィンドウW2とでは、W2の方が大きくなっている。このことから、高抵抗化過程において、電圧値VH1の第1の高抵抗化電圧パルス及び電圧値VH2の第2の高抵抗化電圧パルス(VH1>VH2)をこの順に連続して印加することによって、より安定した記憶動作が実現可能であることが確認できる。
 ここで、本実施の形態における駆動方法と他の駆動方法とを対比し、本実施の形態の優位性を説明する。対比する駆動方法を参考例1及び参考例2として以下に示す。図6Aは、参考例1に係る抵抗変化素子の動作例を示す図、図6Bは、参考例2に係る抵抗変化素子の動作例を示す図である。なお、これらの参考例1及び参考例2の抵抗変化素子の構成は、本実施の形態の抵抗変化素子10と同様である。
 図6Aに示すように、参考例1では、低抵抗化過程において電圧値VLの低抵抗化電圧パルスが印加され、高抵抗化過程において電圧値VH1の第1の高抵抗化電圧パルスが印加される。また、図6Bに示すように、参考例2では、低抵抗化過程において電圧値VLの低抵抗化電圧パルスが印加され、高抵抗化過程において電圧値VH1の第1の高抵抗化電圧パルスが連続して2回印加される。ここで、VL=-1.5V、VH1=+2.4Vである。
 図7Aは、参考例1に係る抵抗変化素子が備える抵抗変化層の抵抗値の正規期待値プロット図、図7Bは参考例2に係る抵抗変化素子が備える抵抗変化層の抵抗値の正規期待値プロット図、図7Cは本実施の形態に係る抵抗変化素子が備える抵抗変化層の抵抗値の正規期待値プロット図である。図5の場合と同様に、図7A乃至図7Cにおいて、横軸は抵抗変化層3の抵抗値(抵抗測定電圧は+0.4V)を、縦軸は正規分布でフィッティングした場合におけるばらつきの度合いを示す正規期待値をそれぞれ表している。なお、図7Cは図5と同一のグラフを示している。図7A乃至図7Cにおいて、-1.5Vの低抵抗化電圧パルスを印加したときのデータは白い三角印で示している。図7Aでは、第1の高抵抗化電圧パルス(+2.4V)を印加したときのデータをバツ印で示している。また、図7Bでは、第1の高抵抗化電圧パルス(+2.4V)のみを印加したときのデータをバツ印で示し、第1の高抵抗化電圧パルス(+2.4V)印加の後、さらに、第1の高抵抗化電圧パルス(+2.4V)を印加したときのデータを白い四角印で記載している。さらに、図7Cでは、第1の高抵抗化電圧パルス(+2.4V)のみを印加したときのデータをバツ印で示し、第1の高抵抗化電圧パルス(+2.4V)印加の後、さらに、第2の高抵抗化電圧パルス(+1.5V)を印加したときのデータを白い丸印で記載している。図7A乃至図7Cから理解できるように、各々のウィンドウWは、図7Aでは約35kΩ、図7Bでは約50kΩ、図7Cでは約70kΩである。
 図7A乃至図7Cを参照すると、本実施の形態1の方が参考例1及び参考例2よりも大きいウィンドウWを確保できることが確認できる。この点をより明確に把握するために、参考例2及び実施の形態1における高抵抗状態での抵抗変化層の抵抗値の正規期待値を図8にまとめて示す。図8では、図7Bにおいて白い四角印で記載したデータ及び図7Cにおいて白い丸印で記載したデータをそれぞれ同一のグラフ上で比較した。
 図8を参照すると、第2回目の高抵抗化電圧パルスとして第1の高抵抗化電圧パルス(+2.4V)と同じ高抵抗化電圧パルスを印加する参考例2の場合(白い四角印のデータ)と比べて、第2回目の高抵抗化電圧パルスとして第2の高抵抗化電圧パルス(+1.5V)を印加する本実施の形態の場合(白い丸印のデータ)の方が、高抵抗値の最小値が大きいため、より大きなウィンドウが確保可能であることが確認できる。また、抵抗値の最小値付近に着目すると、参考例2の方では抵抗値が横方向に広がってばらついているのに対し、本実施の形態の場合ではそのような横方向の広がりが少なく、所謂テイルビット(分布の端)の広がりの改善が図られていることも確認することができる。なお、第2回目の高抵抗化電圧パルスの電圧値は、参考例2が+2.4Vであるのに対して本実施の形態では+1.5Vであるため、本実施の形態の方が高抵抗化過程における消費電流を低減することができる。したがって、省電力化の観点からも、本実施の形態の方が参考例2よりも優れている。
 [高抵抗化過程における印加電圧]
 上述したとおり、本実施の形態では、電圧値VH1の高抵抗化電圧パルス及び電圧値VH2の高抵抗化電圧パルス(VH1>VH2)をこの順に連続して印加する。これにより、抵抗変化層の抵抗状態が高抵抗状態、低抵抗状態の何れであるのかを正確に判別することができ、安定した動作を実現することができる。このような効果がVH1>VH2の条件を満たすことによって奏されることは上述したとおりであるが、より一層の安定動作の実現を目的とした場合、VH2には望ましい範囲があると考えられる。この望ましい範囲について考察したので、以下に説明する。
 図9は、本発明の実施の形態1に係る抵抗変化素子10の抵抗-電圧特性を示すグラフである。また、図10は、本発明の実施の形態1に係る抵抗変化素子10の電流-電圧特性を示すグラフである。なお、これらの図9及び図10に示されるデータは、抵抗変化素子10の単体の抵抗-電圧特性ではなく、抵抗値が1kΩの負荷抵抗が抵抗変化層3に電気的に直列に接続された状態で、-1.5V乃至+2.4Vの範囲の電圧を抵抗変化層3に印加することによって得られたものである。
 図9を参照すると、高抵抗状態において抵抗値が大きくばらついている箇所があることが確認できる。具体的には、印加電圧が+1.6V以上の場合に抵抗値が大きくばらついている。これは、電圧パルスが印加された場合に、抵抗変化層3中の酸素原子がイオンとなって第2電極4側に移動することにより生じる高抵抗化と、絶縁破壊により生じる低抵抗化とが競合するために、抵抗値が安定しなくなることが原因であると考えられる。この特性を考慮すると、第2の高抵抗化電圧パルスの電圧値VH2は、+1.6Vより小さい値であることが望ましいといえる。上述したように、本実施の形態では、VH2=+1.5Vとしており、+1.6Vより小さい値となっている。この場合、図10に示されるように、消費電流は十分に小さいため、省電力化を図ることができる。また、抵抗変化層を高抵抗化させるための閾値電圧は概ね+0.5乃至+0.7V程度である(後述する図11で説明)ため、高抵抗化過程において印加する電圧としてはそれよりも大きい値であることが望ましいと考えられる。
 以上より、負荷抵抗を含めた場合においては、抵抗変化層3に印加する第2回目の高抵抗化電圧パルスの電圧値VH2が+0.7より大きく且つ+1.6Vよりも小さいことが望ましい。
 図11は、本発明の実施の形態1に係る抵抗変化素子10の単体の抵抗-電圧特性を示すグラフであり、図12は、同じく抵抗変化素子10の単体の電流-電圧特性を示すグラフである。
 図11に示されるように、負荷抵抗を除外した素子単体の場合では、印加電圧が+1.3V以上の場合に高抵抗状態において抵抗値が大きくばらついていることが確認できるため、VH2は+1.3Vより小さい値であることが望ましいといえる。この場合、図12に示されるように、消費電流は十分に小さいため、省電力化を図ることができる。また、印加電圧が+0.7Vを超えたところから高抵抗化が見られるため、高抵抗化過程において印加する電圧としては+0.7Vより大きい値であることが望ましいといえる。
 以上より、素子単体の場合においては、抵抗変化層3に印加する第2の高抵抗化電圧パルスの電圧値VH2が+0.7より大きく且つ+1.3Vよりも小さいことが望ましい。
 [高抵抗化過程における印加回数]
 上述したとおり、本実施の形態では、高抵抗化過程において合計2回の高抵抗化電圧パルス(第1の高抵抗化電圧パルスと、その後の第2の高抵抗化電圧パルス)を印加しているが、その印加回数は3回以上であってもよい。図13は、低抵抗化過程及び高抵抗化過程における本発明の実施の形態1に係る抵抗変化素子10の他の動作例を示す図である。
 図13に示すように、低抵抗化過程においては、抵抗変化素子10に対して、電圧値VLの低抵抗化電圧パルスが供給される。他方、高抵抗化過程においては、抵抗変化素子10に対して、電圧値VH1(例えば、+2.4V)の第1の高抵抗化電圧パルスを連続的に2回印加した後に、電圧値VH2(例えば、+1.5V)の第2の高抵抗化電圧パルスを印加する。すなわち、高抵抗化過程において、合計3回の高抵抗化電圧パルスを印加し、第2の高抵抗化電圧パルスの電圧値が、その前に印加される第1の高抵抗化電圧パルスの電圧値よりも低くなっている。このように、第1の高抵抗化電圧パルスの後に印加される第2の高抵抗化電圧パルスの電圧値が、それによりも前に印加される第1の高抵抗化電圧パルスの電圧値よりも低くなっている場合、上述した場合と同様にして高抵抗状態におけるテイルビットが改善され、十分に大きなウィンドウを確保することが可能になる。
 なお、上述した通り、高抵抗化過程において3回以上の高抵抗化電圧パルスを印加する場合においては、絶対値が最も大きい電圧値(VH1)の第1の高抵抗化電圧パルスが印加された後に第2の高抵抗化電圧パルス(電圧値VH2<VH1)が印加されれば、一定の効果が認められると考えられるため、例えば+2.0V及び+2.4Vの高抵抗化電圧パルスをこの順に印加した後に、+1.5Vの高抵抗化電圧パルスを印加するような態様も想定される。
 以下、高抵抗化電圧パルスを3回印加する場合について、その効果を確認する。
 図14に示す動作例では、高抵抗化過程において、抵抗変化素子10に対し、電圧値VH3(VH3<VH1)の第3の高抵抗化電圧パルスを印加した後にVH3よりも高い電圧値VH1の第1の高抵抗化電圧パルスを印加し、さらにその後、電圧値VH2(VH2<VH1)の第2の高抵抗化電圧パルスを印加する。この動作例においては、最も高い電圧値(VH1)の第1の高抵抗化電圧パルス、及びそれ以降に印加される低い電圧値(VH2)の第2の高抵抗化電圧パルスのペアが存在している。
 図15は、上記の動作例において、VH3及びVH2を共に+1.5Vとし、VH1を+2.4Vとした場合、すなわち+1.5V、+2.4V、+1.5Vの順に高抵抗化電圧パルスを印加する場合での抵抗変化層3の抵抗値の正規期待値プロット図である。なお、図15において、最初の+1.5V(VH3)の第3の高抵抗化電圧パルスのみを印加した場合を白い四角印でプロットし、第3の高抵抗化電圧パルスの後に第1の高抵抗化電圧パルス(VH1=+2.4V)を印加した場合をバツ印でプロットし、この第1の高抵抗化電圧パルスを印加した後さらに+1.5V(VH2)の第2の高抵抗化電圧パルスを印加した場合を白い丸印でプロットしている。
 図15に示すように、最初の+1.5Vの第3の高抵抗化電圧パルスを印加した場合におけるウィンドウW3と、その後に+2.4Vの第1の高抵抗化電圧パルスを印加した場合におけるウィンドウW1と、最後に+1.5Vの第2の高抵抗化電圧パルスをさらに印加した場合におけるウィンドウW2とを比較すると、W2が最も大きくなっている。このように、第1の高抵抗化電圧パルス(電圧値VH1)の後に第2の高抵抗化電圧パルス(電圧値VH2)を印加した場合に最も大きなウィンドウを確保できることが確認できる。
 更なる変形例も考えられる。例えば、図16に示す動作例では、高抵抗化過程において、抵抗変化素子10に対し、電圧値VH1の第1の高抵抗化電圧パルスを印加した後にVH1よりも低い電圧値VH3の第3の高抵抗化電圧パルスを印加し、さらに、その後VH1よりも低くVH3よりも高い電圧値VH2の第2の高抵抗化電圧パルスを印加する。この動作例においても、最も高い電圧値(VH1)の第1の高抵抗化電圧パルス、及びそれ以降に印加される低い電圧値(VH2)の第2の高抵抗化電圧パルスのペアが存在している。
 図17は、上記の図16に示した動作例において、VH1を+2.4Vとし、VH2を+1.5Vとし、VH3を+0.8Vとした場合、すなわち+2.4V、+0.8V、+1.5Vの順に高抵抗化電圧パルスを印加する場合での抵抗変化層3の抵抗値の正規期待値プロット図である。なお、図17において、最初の+2.4V(VH1)の第1の高抵抗化電圧パルスのみを印加した場合をバツ印でプロットし、第1の高抵抗化電圧パルスの後に+0.8V(VH3)の第3の高抵抗化電圧パルスを印加した場合を白い四角印でプロットし、第1の高抵抗化電圧パルス、及び第3の高抵抗化電圧パルスに引き続いて+1.5V(VH2)の第2の高抵抗化電圧パルスを印加した場合は白い丸印でプロットしている。
 図17に示すように、最初の+2.4Vの第1の高抵抗化電圧パルスを印加した場合におけるウィンドウW1と、その後に+0.8Vの第3の高抵抗化電圧パルスを印加した場合におけるウィンドウW3と、最後に+1.5Vの第2の高抵抗化電圧パルスを印加した場合におけるウィンドウW2とを比較すると、W2が最も大きくなっている。このように、図17を参照すると、この動作例においても、VH2の第2の高抵抗化電圧パルスを印加した場合に最も大きなウィンドウを確保できることが確認できる。
 (実施の形態2)
 実施の形態2に係る不揮発性記憶装置は、基本単位となるメモリセルが、1つのトランジスタと1つの不揮発性記憶部とが直列に接続されて構成された1トランジスタ/1不揮発性記憶部型(1T1R型)の不揮発性記憶装置であり、実施の形態1で示した抵抗変化素子を有する。以下、この不揮発性記憶装置の構成及び動作について説明する。
 [不揮発性記憶装置の構成及び動作]
 図18は、本実施の形態に係る不揮発性記憶装置の構成の一例を示すブロック図である。図18に示すように、1T1R型の不揮発性記憶装置100は、半導体基板上にメモリ本体部101を備えており、このメモリ本体部101は、メモリアレイ102と、行選択回路/ドライバ103と、列選択回路104と、情報の書き込みを行うための書き込み回路105と、選択ビット線に流れる電流量を検出し、4値のデータのうちの何れのデータが記憶されているかの判定を行うセンスアンプ106と、端子DQを介して入出力データの入出力処理を行うデータ入出力回路107とを具備している。
 また、不揮発性記憶装置100は、セルプレート電源(VCP電源)108と、外部から入力されるアドレス信号を受け取るアドレス入力回路109と、外部から入力されるコントロール信号に基づいて、メモリ本体部101の動作を制御する制御回路110とをさらに備えている。
 メモリアレイ302は、半導体基板の上に形成された、互いに交差(例えば、直交)するように配列された複数のワード線WL0,WL1,WL2,・・・およびビット線BL0,BL1,BL2,・・・と、これらのワード線WL0,WL1,WL2,・・・及びビット線BL0,BL1,BL2,・・・の交点に対応してそれぞれ設けられた複数のトランジスタT11,T12,T13,T21,T22,T23,T31,T32,T33,・・・(以下、「トランジスタT11,T12,・・・」と表す)と、トランジスタT11,T12,・・・と1対1に設けられた複数のメモリセルM111,M112,M113,M121,M122,M123,M131,M132,M133(以下、「メモリセルM111,M112,・・・」と表す)とを備えている。ここで、メモリセルM111,M112,・・・は、実施の形態1の抵抗変化素子10に相当する。
 また、メモリアレイ102は、ワード線WL0,WL1,WL2,・・・に平行して配列されている複数のプレート線PL0,PL1,PL2,・・・を備えている。
 トランジスタT11,T12,T13,・・・のドレインはビット線BL0に、トランジスタT21,T22,T23,・・・のドレインはビット線BL1に、トランジスタT31,T32,T33,・・・のドレインはビット線BL2に、それぞれ接続されている。
 また、トランジスタT11,T21,T31,…のゲートはワード線WL0に、トランジスタT12,T22,T32,・・・のゲートはワード線WL1に、トランジスタT13,T23,T33,・・・のゲートはワード線WL2に、それぞれ接続されている。
 さらに、トランジスタT11,T12,・・・のソースはそれぞれ、メモリセルM111,M112,・・・と接続されている。
 また、メモリセルM111,M121,M131,・・・はプレート線PL0に、メモリセルM112,M122,M132,・・・はプレート線PL1に、メモリセルM113,M123,M133,・・・はプレート線PL2に、それぞれ接続されている。
 アドレス入力回路109は、外部回路(図示せず)からアドレス信号を受け取り、このアドレス信号に基づいて行アドレス信号を行選択回路/ドライバ103へ出力するとともに、列アドレス信号を列選択回路104へ出力する。ここで、アドレス信号は、複数のメモリセルM111,M112,・・・のうちの選択される特定のメモリセルのアドレスを示す信号である。また、行アドレス信号は、アドレス信号に示されたアドレスのうちの行のアドレスを示す信号であり、列アドレス信号は、アドレス信号に示されたアドレスのうちの列のアドレスを示す信号である。
 制御回路110は、情報の書き込み工程(上記の低抵抗化過程及び高抵抗化過程に相当)においては、データ入出力回路107に入力された入力データDinに応じて、書き込み用電圧の印加を指示する書き込み信号を書き込み回路105へ出力する。他方、情報の読み出し工程において、制御回路110は、読み出し用電圧の印加を指示する読み出し信号を列選択回路104へ出力する。
 行選択回路/ドライバ103、列選択回路104、書き込み回路105にて、電圧パルス印加装置を構成しており、電圧パルス印加装置は、実施の形態1にて述べた低抵抗化過程及び高抵抗化過程を実行する。
 行選択回路/ドライバ103は、アドレス入力回路109から出力された行アドレス信号を受け取り、この行アドレス信号に応じて、複数のワード線WL0,WL1,WL2,…のうちの何れかを選択し、その選択されたワード線に対して、所定の電圧を印加する。
 また、列選択回路104は、アドレス入力回路109から出力された列アドレス信号を受け取り、この列アドレス信号に応じて、複数のビット線BL0,BL1,BL2,・・・のうちの何れかを選択し、その選択されたビット線に対して、書き込み用電圧または読み出し用電圧を印加する。
 書き込み回路105は、制御回路110から出力された書き込み信号を受け取った場合、列選択回路104に対して選択されたビット線に対して書き込み用電圧の印加を指示する信号を出力する。ここで、低抵抗状態の抵抗値に対応する値を書き込む場合(低抵抗化過程)、書き込み回路105は、電圧値がVLの低抵抗化電圧パルスの印加を指示する信号を出力する。他方、高抵抗状態の抵抗値に対応する値を書き込む場合(高抵抗化過程)、書き込み回路105は、電圧値がVH1の第1の高抵抗化電圧パルス及び電圧値がVH2の第2の高抵抗化電圧パルスをこの順に印加することを指示する信号を出力する。なお、ここでの電圧の正負の極性は、抵抗変化素子に対する電圧印加の極性に対応しており、実施の形態1にて説明した定義の通りである。
 センスアンプ106は、情報の読み出し工程において、読み出し対象となる選択ビット線に流れる電流量を検出し、記憶されているデータを判別する。本実施の形態の場合、各メモリセルM111,M112,・・・の抵抗状態を高抵抗状態、低抵抗状態の2つの状態とし、それらの各状態と各データとを対応させる。そのため、センスアンプ106は、選択されたメモリセルの抵抗変化層の抵抗状態が何れの状態にあるのかを判別し、それに応じて2値のデータのうち何れのデータが記憶されているのかを判定する。その結果得られた出力データDOは、データ入出力回路107を介して、外部回路へ出力される。
 上記のように動作することにより、不揮発性記憶装置100は、安定した記憶動作を実現する。
 なお、上記の構成例では、プレート線はワード線と平行に配置されているが、ビット線と平行に配置してもよい。また、プレート線は複数のトランジスタに共通の電位を与える構成としているが、行選択回路/ドライバ103と同様の構成のプレート線選択回路/ドライバを有し、選択されたプレート線と非選択のプレート線を異なる電圧(極性も含む)で駆動する構成としてもよい。
 (実施の形態3)
 実施の形態3に係る不揮発性記憶装置は、互いに交差するように配列された複数のワード線と複数のビット線との交差する位置にメモリセルが配置されたクロスポイント型の不揮発性記憶装置であり、実施の形態1で示した抵抗変化素子を有する。以下、この不揮発性記憶装置の構成及び動作について説明する。
 [不揮発性記憶装置の構成及び動作]
 図19は、本実施の形態に係る不揮発性記憶装置の構成の一例を示すブロック図である。図19に示すように、本実施の形態に係る不揮発性記憶装置200は、半導体基板上にメモリ本体部201を備えており、このメモリ本体部201は、メモリアレイ202と、行選択回路/ドライバ203と、列選択回路/ドライバ204と、情報の書き込みを行うための書き込み回路205と、選択ビット線に流れる電流量を検出し、4値のデータのうちの何れのデータが記憶されているかの判別を行うセンスアンプ206と、端子DQを介して入出力データの入出力処理を行うデータ入出力回路207とを具備している。
 また、不揮発性記憶装置200は、外部から入力されるアドレス信号を受け取るアドレス入力回路208と、外部から入力されるコントロール信号に基づいて、メモリ本体部201の動作を制御する制御回路209とをさらに備えている。
 メモリアレイ202は、図19に示すように、半導体基板上に互い平行に形成された複数のワード線WL0,WL1,WL2,・・・と、これらのワード線WL0,WL1,WL2,…の上方にその半導体基板の主面に平行な面内において互いに平行に、しかも複数のワード線WL0,WL1,WL2,・・・に立体交差(例えば、直交)するように形成された複数のビット線BL0,BL1,BL2,・・・とを備えている。
 また、これらのワード線WL0,WL1,WL2,・・・及びビット線BL0,BL1,BL2,・・・の交点に対応してマトリクス状に設けられた複数のメモリセルM211,M212,M213,M221,M222,M223,M231,M232,M123,・・・(以下、「メモリセルM211,M212,・・・」と表す)が設けられている。ここで、メモリセルM211,M212,・・・は、実施の形態1の抵抗変化素子10に相当する素子と、MIM(Metal-Insulator-Metal)ダイオード又はMSM(Metal-Semiconductor-Metal)ダイオード等で構成される電流抑制素子とが接続されて構成されている。
 アドレス入力回路208は、外部回路(図示せず)からアドレス信号を受け取り、このアドレス信号に基づいて行アドレス信号を行選択回路/ドライバ203へ出力するとともに、列アドレス信号を列選択回路/ドライバ204へ出力する。ここで、アドレス信号は、複数のメモリセルM211,M212,・・・のうちの選択される特定のメモリセルのアドレスを示す信号である。また、行アドレス信号はアドレス信号に示されたアドレスのうちの行のアドレスを示す信号であり、列アドレス信号は同じく列のアドレスを示す信号である。
 制御回路209は、情報の書き込み工程において、データ入出力回路207に入力された入力データDinに応じて、書き込み用電圧の印加を指示する書き込み信号を書き込み回路205へ出力する。他方、情報の読み出し工程において、制御回路209は、読み出し動作を指示する読み出し信号を列選択回路/ドライバ204へ出力する。
 行選択回路/ドライバ203は、アドレス入力回路208から出力された行アドレス信号を受け取り、この行アドレス信号に応じて、複数のワード線WL0,WL1,WL2,…のうちの何れかを選択し、その選択されたワード線に対して、所定の電圧を印加する。
 また、列選択回路/ドライバ204は、アドレス入力回路208から出力された列アドレス信号を受け取り、この列アドレス信号に応じて、複数のビット線BL0,BL1,BL2,…のうちの何れかを選択し、その選択されたビット線に対して、書き込み用電圧または読み出し用電圧を印加する。
 書き込み回路205は、制御回路209から出力された書き込み信号を受け取った場合、行選択回路/ドライバ203に対して選択されたワード線に対する電圧の印加を指示する信号を出力するとともに、列選択回路/ドライバ204に対して選択されたビット線に対して書き込み用電圧の印加を指示する信号を出力する。
 ここで、低抵抗状態の抵抗値に対応する値を書き込む場合(低抵抗化過程)、書き込み回路205は、電圧値がVLの低抵抗化電圧パルスの印加を指示する信号を出力する。他方、高抵抗状態の抵抗値に対応する値を書き込む場合(高抵抗化過程)、書き込み回路205は、電圧値がVH1の第1の高抵抗化電圧パルス及びVH2の第2の高抵抗化電圧パルスをこの順に印加することを指示する信号を出力する。なお、ここでの電圧の正負の極性は、抵抗変化素子に対する電圧印加の極性に対応しており、実施の形態1にて説明した定義の通りである。
 センスアンプ206は、情報の読み出し工程において、読み出し対象となる選択ビット線に流れる電流量を検出し、記憶されているデータを判別する。本実施の形態の場合、各メモリセルM211,M212,・・・の抵抗状態を高低の2つの状態とし、それらの各状態と各データとを対応させる。そのため、センスアンプ206は、選択されたメモリセルの抵抗変化層の抵抗状態が何れの状態にあるのかを判別し、それに応じて2値のデータのうち何れのデータが記憶されているのかを判定する。その結果得られた出力データDOは、データ入出力回路207を介して、外部回路へ出力される。
 上記のように動作することにより、不揮発性記憶装置200は、安定した記憶動作を実現する。
 なお、図19に示す本実施の形態に係る不揮発性記憶装置におけるメモリアレイを3次元に積み重ねる、すなわち、メモリアレイ面に垂直な方向にメモリアレイを積層することによって、多層化構造の不揮発性記憶装置を実現することも可能である。このように構成された多層化メモリアレイを設けることによって、超大容量不揮発性記憶装置を実現することが可能となる。
 (実施の形態4)
 実施の形態4に係る不揮発性記憶装置の駆動方法は、高抵抗状態の書き込み動作においてベリファイ動作を含むものである。以下、この不揮発性記憶装置の動作について説明する。
 ベリファイ動作は、抵抗変化素子の抵抗状態が所望の条件を満足するかどうかを確認する動作である。ベリファイ動作が行なわれることにより、記憶されたデータの信頼性が向上する。
 図20A及び図20Bは、本実施の形態における不揮発性記憶装置の動作例を示す図である。
 低抵抗状態から高抵抗状態への書き込みは、実施の形態1と同様に、電圧値VH1の第1の高抵抗化パルス及び電圧値VH2の第2の高抵抗化パルスを順に印加するものである。
 はじめに、図20Aに示すように、低抵抗状態の抵抗変化素子10を高抵抗化するために、所望のメモリセルの抵抗変化素子10に電圧値VH1の第1の高抵抗化パルスを印加する。第1の高抵抗化パルス印加後、第2の高抵抗化パルス印加前に、第1の高抵抗化パルスにより抵抗変化素子10が高抵抗状態に変化しているか否かをベリファイ(確認)する。
 ベリファイの工程では、例えば、書き込みを行ったメモリセルからのデータ読み出しを行い、読み出されたデータと最初に入力された期待値データとの比較を行い、一致している場合は高抵抗化成功と判定する。読み出されたデータと期待値データとが一致していない場合は、高抵抗化失敗と判定する。
 高抵抗化成功の場合は、図20AのYesに示すように、ベリファイを行ったメモリセルに、第2の高抵抗化パルスを印加する。これにより、抵抗変化素子10は、安定した高抵抗状態となる。
 高抵抗化失敗の場合は、図20AのNoに示すように、再度第1の高抵抗化パルスを印加する。そして、再度ベリファイを行い、高抵抗化成功の場合には(図20AのYes)、第2の高抵抗化パルスを印加する。また、高抵抗化失敗の場合には、第1の高抵抗化パルスを再度印加する(図20AのNo)。なお、高抵抗化失敗の場合については、第1の高抵抗化パルスを印加するステップが無限に繰り返されるのを抑制するために、第1の高抵抗化パルスの印加回数の上限を設定してもよい。
 また、図20Bは、本実施の形態における不揮発性記憶装置の他の動作例を示す図である。
 図20Aに示した工程と同様に、はじめに、図20Bに示すように、低抵抗状態の抵抗変化素子10を高抵抗化するために、所望のメモリセルの抵抗変化素子10に電圧値VH1の第1の高抵抗化パルスを印加する。第1の高抵抗化パルス印加後、第2の高抵抗化パルス印加前に、第1の高抵抗化パルスにより抵抗変化素子10が高抵抗状態に変化しているか否かベリファイ(確認)する。
 ベリファイの工程では、図20Aに示した場合と同様、例えば、書き込みを行ったメモリセルからのデータ読み出しを行い、読み出されたデータと最初に入力された期待値データとの比較を行い、一致している場合は高抵抗化成功と判定する。読み出されたデータと期待値データとが一致していない場合は、高抵抗化失敗と判定する。
 高抵抗化成功の場合は、図20BのYesに示すように、ベリファイを行ったメモリセルに、第2の高抵抗化パルスを印加する。これにより、抵抗変化素子10は、安定した高抵抗状態となる。
 高抵抗化失敗の場合は、図20BのNoに示すように、再度第1の高抵抗化パルスを印加し、引き続き第2の高抵抗化パルスを印加する(図20BのNo)。これにより、抵抗変化素子10は、安定した高抵抗状態となる。言い換えると、図20Bに示される動作例は、図20Aに示される動作例において、ベリファイの工程を1回のみ行なう方法である。
 第1の高抵抗化パルスの印加及び第2の高抵抗化パルスの印加の間にこのようなベリファイ動作を含むことにより、抵抗変化素子10を安定して高抵抗化することができる。これにより、不揮発性記憶装置の記憶データの信頼性を向上させることができる。
 (その他の実施の形態)
 上記の各実施の形態において、抵抗変化層はタンタル酸化物の積層構造で構成されていたが、本発明はこれに限定されるわけではない。例えば、ジルコニウム(Zr)酸化物の積層構造またはハフニウム(Hf)酸化物の積層構造などであってもよい。
 ジルコニウム酸化物の積層構造を採用する場合は、第1ジルコニウム酸化物の組成をZrOとし、第2ジルコニウム酸化物の組成をZrOとすると、第1及び第2ジルコニウム酸化物ともに化学量論組成に対して酸素不足型の組成とし、xが0.9以上1.4以下程度であって、yが1.8以上2以下程度であることが好ましい。第2ジルコニウム酸化物の膜厚は、1~5nmが好ましい。
 また、ハフニウム酸化物の積層構造を採用する場合は、第1ハフニウム酸化物の組成をHfOとし、第2ハフニウム酸化物の組成をHfOとすると、第1及び第2ハフニウム酸化物ともに化学量論組成に対して酸素不足型の組成とし、xが0.9以上1.6以下程度であって、yが1.89以上1.97以下程度であることが好ましい。第2ハフニウム酸化物の膜厚は、3~4nmが好ましい。
 上記の酸素不足型ハフニウム酸化物および酸素不足型ジルコニウム酸化物は、上述した実施の形態にて説明した酸素不足型タンタル酸化物と同様の製造方法で作成することができる。
 上記では、抵抗変化層が遷移金属酸化物である例について説明しているが、抵抗変化層は金属酸化物であればよい。したがって、遷移金属酸化物の他に、例えば酸化アルミニウム(Al)等を用いてもよい。すなわち、上記説明における「第1の遷移金属」、「第2の遷移金属」、「第1の遷移金属酸化物」、「第2の遷移金属酸化物」は、「第1の金属」、「第2の金属」、「第1の金属酸化物」、「第2の金属酸化物」の一例である。
 さらに、上記では、抵抗変化層を構成する遷移金属をいくつか例示しているが、その他にも、チタン(Ti)、ニオブ(Nb)、タングステン(W)等を用いることができる。遷移金属は複数の酸化状態をとることができるため、異なる抵抗状態を酸化還元反応により実現することが可能である。
 また、上述した実施の形態においては、積層構造にて構成された抵抗変化層3は、第1の遷移金属酸化物層3aを構成する第1の遷移金属と、第2の遷移金属酸化物層3bを構成する第2の遷移金属は、同一の遷移金属を用いる場合を例にして説明した。しかしながら、本発明はこれに限らず、図1において、第1の遷移金属酸化物層3aを構成する第1の遷移金属と、第2の遷移金属酸化物層3bを構成する第2の遷移金属とは、異なる材料を用いてもよい。この場合、第2の遷移金属酸化物層3bは、第1の遷移金属酸化物層3aよりも酸素不足度が小さい、つまり抵抗値が高い方が好ましい。このような構成とすることにより、抵抗変化時に第2電極4及び第1電極2間に印加された電圧は、第2の遷移金属酸化物層3bにより多くの電圧が分配され、第2の遷移金属酸化物層3b中で発生する酸化還元反応をより起こしやすくすることができる。また、第1の遷移金属と第2の遷移金属とが互いに異なる材料を用いる場合、第2の遷移金属の標準電極電位は、第1の遷移金属の標準電極電位より低い方が好ましい。例えば、第1の遷移金属酸化物層3aに、酸素不足型のタンタル酸化物を用い、第2の遷移金属酸化物層3bにTiOを用いることにより、安定した抵抗変化動作が得られる。チタン(標準電極電位=-1.63eV)はタンタル(標準電極電位=-0.6eV)より標準電極電位が低い材料である。標準電極電位は、その値が高い(大きい)ほど酸化しにくい特性を表す。第2の遷移金属酸化物層3bに第1の遷移金属酸化物層3aより標準電極電位が小さい金属の酸化物を配置することにより、第2の遷移金属酸化物層3b中で、より酸化還元反応が発生しやすくなる。
 上記の各材料の積層構造の抵抗変化層における抵抗変化現象は、いずれも抵抗が高い第2の遷移金属酸化物層3b中に形成された微小なフィラメント中で酸化還元反応が起こってその抵抗値が変化し、発生すると考えられる。
 また、第2電極4は、例えば、白金(Pt)、イリジウム(Ir)、パラジウム(Pd)など、第2の遷移金属酸化物層3bを構成する遷移金属及び第1電極2と比べて、標準電極電位がより高い材料で構成することが好ましい。このような構成とすることにより、第2電極4と第2の遷移金属酸化物層3bの界面近傍の第2の遷移金属酸化物層3b中において、選択的に酸化還元反応が発生し、安定した抵抗変化現象が得られる。
 また、抵抗変化層は遷移金属酸化物の積層構造で構成されていなくてもよく、単層の遷移金属酸化物によって構成されていてもよい。このような単層の遷移金属酸化物層で抵抗変化層を構成したとしても、同様にして安定した動作を実現することができる。
 なお、上記の各実施の形態を適宜組み合わせることによって新たな実施の形態を実現することも可能である。
 本発明の抵抗変化素子の駆動方法及び不揮発性記憶装置は、パーソナルコンピュータ又は携帯型電話機などの種々の電子機器に用いられる抵抗変化素子の駆動方法及び不揮発性記憶装置などとして有用である。
 1  基板
 2  第1電極
 3  抵抗変化層
 3a  第1タンタル酸化物層
 3b  第2タンタル酸化物層
 4  第2電極
 5  電源
 10  抵抗変化素子
 11  第1端子
 12  第2端子
 100  不揮発性記憶装置
 101  メモリ本体部
 102  メモリアレイ
 103  行選択回路/ドライバ
 104  列選択回路
 105  書き込み回路
 106  センスアンプ
 107  データ入出力回路
 108  VCP電源
 109  アドレス入力回路
 110  制御回路
 200  不揮発性記憶装置
 201  メモリ本体部
 202  メモリアレイ
 203  行選択回路/ドライバ
 204  列選択回路/ドライバ
 205  書き込み回路
 206  センスアンプ
 207  データ入出力回路
 208  アドレス入力回路
 209  制御回路

Claims (16)

  1.  第1電極と、第2電極と、前記第1電極と前記第2電極との間に介在し、前記第1電極および前記第2電極間に印加する電圧パルスに基づいて可逆的に抵抗値が変化する抵抗変化層と、を備えた抵抗変化素子を駆動する駆動方法において、
     第1の極性の低抵抗化電圧パルスを前記抵抗変化層に印加することによって、当該抵抗変化層を高抵抗状態から低抵抗状態へ変化させる低抵抗化過程と、
     前記第1の極性とは異なる第2の極性の高抵抗化電圧パルスを前記抵抗変化層に印加することによって、当該抵抗変化層を低抵抗状態から高抵抗状態へ変化させる高抵抗化過程とを有し、
     前記高抵抗化過程は、少なくとも複数の前記高抵抗化電圧パルスを印加することにより1回の高抵抗化が完了する高抵抗化過程であり、
     前記高抵抗化過程において、前記第1電極と前記第2電極間に、電圧値がVH1である第1の高抵抗化電圧パルスを印加するステップと、
     前記第1の高抵抗化電圧パルスよりも後に与えられ、電圧値がVH1よりも小さいVH2である第2の高抵抗化電圧パルスを印加するステップとを含む、
    抵抗変化素子の駆動方法。
  2.  前記高抵抗化過程において、前記第1の高抵抗化電圧パルスを印加するステップに引き続き、前記第2の高抵抗化電圧パルスを印加するステップを実行する、
    請求項1に記載の抵抗変化素子の駆動方法。
  3.  前記抵抗変化層は、
     第1の金属の酸化物で構成される第1の金属酸化物層と、
     第2の金属の酸化物で構成され、かつ前記第1の金属酸化物層よりも酸素不足度が小さい第2の金属酸化物層とが積層されている、
    請求項1または2に記載の抵抗変化素子の駆動方法。
  4.  前記第2電極は、前記第2の金属酸化物層に接し、
     前記第2の極性とは、前記第1電極の電位を基準としたときに前記第2電極の電圧が正となる極性である、
    請求項3に記載の抵抗変化素子の駆動方法。
  5.  前記第1の金属は第1の遷移金属であり、前記第2の金属は第2の遷移金属である、
    請求項3または4に記載の抵抗変化素子の駆動方法。
  6.  第1電極と、第2電極と、前記第1電極と前記第2電極との間に介在し、前記第1電極および前記第2電極間に印加する電圧パルスに基づいて可逆的に抵抗値が変化する抵抗変化層と、を備えた抵抗変化素子を駆動する駆動方法において、
     第1の極性の低抵抗化電圧パルスを前記抵抗変化層に印加することによって、当該抵抗変化層を高抵抗状態から低抵抗状態へ変化させる低抵抗化過程と、
     前記第1の極性とは異なる第2の極性の高抵抗化電圧パルスを前記抵抗変化層に印加することによって、当該抵抗変化層を低抵抗状態から高抵抗状態へ変化させる高抵抗化過程とを有し、
     前記高抵抗化過程は、少なくとも複数の前記高抵抗化電圧パルスを印加することにより1回の高抵抗化が完了する高抵抗化過程であり、
     前記高抵抗化過程において、前記第1電極と前記第2電極間に、電圧値がVH1である第1の高抵抗化電圧パルスを印加するステップと、
     前記抵抗変化層が高抵抗状態へ変化していることを確認するステップと、
     前記第1の高抵抗化電圧パルスよりも後に与えられ、電圧値がVH1よりも小さいVH2である第2の高抵抗化電圧パルスを印加するステップとを含み、
     前記確認するステップにおいて前記抵抗変化層が高抵抗状態へ変化していることが確認されたときは、前記第2の高抵抗化電圧パルスを印加するステップにおいて前記抵抗変化層に前記第2の高抵抗化電圧パルスを印加し、
     前記確認するステップにおいて前記抵抗変化層が高抵抗状態へ変化していないことが確認されたときは、前記第1の高抵抗化電圧パルスを再度印加する、
    抵抗変化素子の駆動方法。
  7.  前記確認するステップにおいて、前記抵抗変化層が高抵抗状態へ変化していないことが確認されたときは、前記第2の高抵抗化電圧パルスを印加するステップの前に、前記第1の高抵抗化電圧パルスを印加するステップを再度行うことにより、前記抵抗変化素子に前記第1の高抵抗化電圧パルスを再度印加する、
    請求項6に記載の抵抗変化素子の駆動方法。
  8.  前記確認するステップにおいて、前記抵抗変化層が高抵抗状態へ変化していないことが確認されたときは、前記第2の高抵抗化電圧パルスを印加するステップにおいて、前記第2の高抵抗化電圧パルスを印加する前に前記第1の高抵抗化電圧パルスを印加し、引き続き、前記第2の高抵抗化電圧パルスを印加する、
    請求項6に記載の抵抗変化素子の駆動方法。
  9.  不揮発性の抵抗変化素子と、電圧パルス印加装置とを備える不揮発性記憶装置であって、
     前記抵抗変化素子は、
     第1電極と、第2電極と、前記第1電極と前記第2電極との間に介在し前記第1電極および前記第2電極間に印加される電圧パルスに基づいて可逆的に抵抗値が変化する抵抗変化層と、を備え、
     前記電圧パルス印加装置は、
     第1の極性の低抵抗化電圧パルスを前記抵抗変化層に印加することによって、当該抵抗変化層を高抵抗状態から低抵抗状態へ変化させる低抵抗化過程と、
     前記第1の極性とは異なる第2の極性の高抵抗化電圧パルスを前記抵抗変化層に印加することによって、当該抵抗変化層を低抵抗状態から高抵抗状態へ変化させる高抵抗化過程とを実行するように構成され、
     前記高抵抗化過程は、少なくとも複数の前記高抵抗化電圧パルスを印加することにより1回の高抵抗化が完了する高抵抗化過程であり、
     前記高抵抗化過程においては、前記第1電極と前記第2電極間に、少なくとも、電圧値がVH1である第1の高抵抗化電圧パルスを印加する処理と、前記第1の高抵抗化電圧パルスを印加する処理の後、電圧値がVH1よりも小さいVH2である第2の高抵抗化電圧パルスを印加する処理とを実行する、
    不揮発性記憶装置。
  10.  前記電圧パルス印加装置は、前記第1電極と前記第2電極間に、前記第1の高抵抗化電圧パルスを印加し、引き続き第2の高抵抗化電圧パルスを印加する、
    請求項9に記載の不揮発性記憶装置。
  11.  前記抵抗変化層は、
     第1の金属の酸化物で構成される第1の金属酸化物層と、
     第2の金属の酸化物で構成され、かつ前記第1の金属酸化物層よりも酸素不足度が小さい第2の金属酸化物層とが積層されて構成された、
    請求項9または10に記載の不揮発性記憶装置。
  12.  前記第2の金属酸化物層の抵抗値は、前記第1の金属酸化物層の抵抗値よりも大きい、
    請求項11に記載の不揮発性記憶装置。
  13.  前記第1の金属と、前記第2の金属とは同一である、
    請求項12に記載の不揮発性記憶装置。
  14.  前記第1の金属は第1の遷移金属であり、前記第2の金属は第2の遷移金属である、
    請求項11から13のいずれか1項に記載の不揮発性記憶装置。
  15.  前記抵抗変化層は、
     TaO(但し、0.8≦x≦1.9)で表される組成を有する酸素不足型の第1のタンタル酸化物層と、TaO(但し、2.1≦y)で表される組成を有する第2のタンタル酸化物層と、を有する、
    請求項9または10に記載の不揮発性記憶装置。
  16.  前記第1の金属と、前記第2の金属とは互いに異なり、前記第2の金属の標準電極電位は、前記第1の金属の標準電極電位より低い、
    請求項11に記載の不揮発性記憶装置。
     
PCT/JP2012/003791 2011-06-13 2012-06-11 抵抗変化素子の駆動方法、及び不揮発性記憶装置 WO2012172773A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/883,075 US9142289B2 (en) 2011-06-13 2012-06-11 Method for driving variable resistance element, and nonvolatile memory device
JP2013516872A JP5313413B2 (ja) 2011-06-13 2012-06-11 抵抗変化素子の駆動方法、及び不揮発性記憶装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-130860 2011-06-13
JP2011130860 2011-06-13

Publications (1)

Publication Number Publication Date
WO2012172773A1 true WO2012172773A1 (ja) 2012-12-20

Family

ID=47356780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003791 WO2012172773A1 (ja) 2011-06-13 2012-06-11 抵抗変化素子の駆動方法、及び不揮発性記憶装置

Country Status (3)

Country Link
US (1) US9142289B2 (ja)
JP (1) JP5313413B2 (ja)
WO (1) WO2012172773A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014146633A (ja) * 2013-01-28 2014-08-14 National Institute For Materials Science 多機能電気伝導素子
US8958233B2 (en) 2011-10-18 2015-02-17 Micron Technology, Inc. Stabilization of resistive memory
JP2019169210A (ja) * 2018-03-22 2019-10-03 東芝メモリ株式会社 半導体記憶装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3004576B1 (fr) 2013-04-15 2019-11-29 Commissariat A L'energie Atomique Et Aux Energies Alternatives Cellule memoire avec memorisation de donnees non volatile
FR3004577A1 (ja) 2013-04-15 2014-10-17 Commissariat Energie Atomique
FR3009421B1 (fr) * 2013-07-30 2017-02-24 Commissariat Energie Atomique Cellule memoire non volatile
US9269432B2 (en) * 2014-01-09 2016-02-23 Micron Technology, Inc. Memory systems and memory programming methods
KR102144779B1 (ko) * 2014-02-04 2020-08-14 삼성전자 주식회사 저항체를 이용한 비휘발성 메모리 장치의 구동 방법
CN105225691A (zh) * 2014-07-04 2016-01-06 华邦电子股份有限公司 电阻式随机存取存储单元的工作方法
TWI547944B (zh) * 2014-07-14 2016-09-01 華邦電子股份有限公司 電阻可變型記憶體及其寫入方法
TWI584283B (zh) 2014-07-16 2017-05-21 東芝股份有限公司 非揮發性記憶裝置及其控制方法
US20160055906A1 (en) * 2014-08-19 2016-02-25 Winbond Electronics Corp. Operation method of resistive random access memory cell
EP3001424A1 (en) * 2014-09-26 2016-03-30 Winbond Electronics Corp. Operation method of resistive random access memory cell
JP6482959B2 (ja) * 2015-06-10 2019-03-13 ルネサスエレクトロニクス株式会社 半導体記憶装置
DE102015225693A1 (de) * 2015-12-17 2017-06-22 Henkel Ag & Co. Kgaa Treibmittelfreie Deodorant- und/oder Antitranspirantien mit speziellen Konservierungsmittelkombinationen
US9779812B1 (en) * 2016-03-17 2017-10-03 Toshiba Memory Corporation Semiconductor memory device
US10056138B1 (en) * 2016-06-02 2018-08-21 SK Hynix Inc. Electronic device
WO2018004697A1 (en) * 2016-07-01 2018-01-04 Intel Corporation Dual layer metal oxide rram devices and methods of fabrication
US9959928B1 (en) * 2016-12-13 2018-05-01 Macronix International Co., Ltd. Iterative method and apparatus to program a programmable resistance memory element using stabilizing pulses
US10074424B1 (en) 2017-04-10 2018-09-11 Macronix International Co., Ltd. Memory device, system and operating method thereof
KR102669148B1 (ko) 2018-10-11 2024-05-27 삼성전자주식회사 독출 마진을 증대시키기 위한 저항성 메모리 장치의 동작 방법
KR102641097B1 (ko) * 2018-12-31 2024-02-27 삼성전자주식회사 저항성 메모리 장치 및 저항성 메모리 장치의 프로그램 방법
US10867671B1 (en) * 2019-07-02 2020-12-15 Micron Technology, Inc. Techniques for applying multiple voltage pulses to select a memory cell
KR20220099061A (ko) 2021-01-05 2022-07-12 에스케이하이닉스 주식회사 반도체 장치 및 반도체 장치의 동작 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294592A (ja) * 2006-04-24 2007-11-08 Sony Corp 記憶装置の駆動方法
WO2011052239A1 (ja) * 2009-11-02 2011-05-05 パナソニック株式会社 抵抗変化型不揮発性記憶装置およびメモリセルの形成方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472766A (ja) 1990-07-13 1992-03-06 Ricoh Co Ltd Mimim素子
KR100773537B1 (ko) 2003-06-03 2007-11-07 삼성전자주식회사 한 개의 스위칭 소자와 한 개의 저항체를 포함하는비휘발성 메모리 장치 및 그 제조 방법
JP5201138B2 (ja) 2007-06-15 2013-06-05 日本電気株式会社 半導体装置及びその駆動方法
KR101219774B1 (ko) 2007-07-20 2013-01-18 삼성전자주식회사 전이금속 산화막을 갖는 반도체소자의 제조방법 및 관련된소자
JP5012312B2 (ja) * 2007-08-15 2012-08-29 ソニー株式会社 記憶装置の駆動方法
CN101952893B (zh) * 2008-02-25 2013-09-11 松下电器产业株式会社 电阻变化元件的驱动方法及使用它的电阻变化型存储装置
CN102017145B (zh) * 2008-12-04 2012-08-01 松下电器产业株式会社 非易失性存储元件以及非易失性存储装置
JP4846813B2 (ja) 2009-03-12 2011-12-28 株式会社東芝 不揮発性半導体記憶装置
KR101136936B1 (ko) 2009-10-26 2012-04-20 에스케이하이닉스 주식회사 반도체 장치 및 그 동작방법
JP2011146111A (ja) 2010-01-18 2011-07-28 Toshiba Corp 不揮発性記憶装置及びその製造方法
KR101744757B1 (ko) 2010-06-22 2017-06-09 삼성전자 주식회사 가변 저항 소자, 상기 가변 저항 소자를 포함하는 반도체 장치 및 상기 반도체 장치의 동작 방법
JP5300796B2 (ja) 2010-07-13 2013-09-25 株式会社東芝 抵抗変化型メモリ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294592A (ja) * 2006-04-24 2007-11-08 Sony Corp 記憶装置の駆動方法
WO2011052239A1 (ja) * 2009-11-02 2011-05-05 パナソニック株式会社 抵抗変化型不揮発性記憶装置およびメモリセルの形成方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8958233B2 (en) 2011-10-18 2015-02-17 Micron Technology, Inc. Stabilization of resistive memory
US9224471B2 (en) 2011-10-18 2015-12-29 Micron Technology, Inc. Stabilization of resistive memory
JP2014146633A (ja) * 2013-01-28 2014-08-14 National Institute For Materials Science 多機能電気伝導素子
JP2019169210A (ja) * 2018-03-22 2019-10-03 東芝メモリ株式会社 半導体記憶装置

Also Published As

Publication number Publication date
US20130223131A1 (en) 2013-08-29
US9142289B2 (en) 2015-09-22
JPWO2012172773A1 (ja) 2015-02-23
JP5313413B2 (ja) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5313413B2 (ja) 抵抗変化素子の駆動方法、及び不揮発性記憶装置
JP4607257B2 (ja) 不揮発性記憶素子及び不揮発性記憶装置
US9087582B2 (en) Driving method of non-volatile memory element and non-volatile memory device
JP5352032B2 (ja) 不揮発性記憶素子および不揮発性記憶装置
JP5899474B2 (ja) 不揮発性記憶素子、不揮発性記憶装置、不揮発性記憶素子の製造方法、及び不揮発性記憶装置の製造方法
JP5351363B1 (ja) 不揮発性記憶素子および不揮発性記憶装置
JP4778125B1 (ja) 抵抗変化素子の駆動方法、初期処理方法、及び不揮発性記憶装置
WO2010109876A1 (ja) 抵抗変化素子の駆動方法及び不揮発性記憶装置
JP5450911B2 (ja) 不揮発性記憶素子のデータ読み出し方法及び不揮発性記憶装置
JP5390730B2 (ja) 不揮発性記憶素子のデータ書き込み方法及び不揮発性記憶装置
WO2013021649A1 (ja) 抵抗変化型不揮発性記憶素子の書き込み方法
CN109791791B (zh) 非易失性存储装置、以及驱动方法
JP5367198B1 (ja) 抵抗変化型不揮発性記憶装置
JP5312709B1 (ja) 抵抗変化素子の駆動方法及び不揮発性記憶装置
JP5291270B1 (ja) 不揮発性記憶素子、不揮発性記憶装置、及び不揮発性記憶素子の書き込み方法
WO2012102025A1 (ja) 不揮発性記憶装置
JP2014086692A (ja) 不揮発性記憶素子及び不揮発性記憶素子の駆動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516872

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13883075

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800166

Country of ref document: EP

Kind code of ref document: A1