WO2013021649A1 - 抵抗変化型不揮発性記憶素子の書き込み方法 - Google Patents

抵抗変化型不揮発性記憶素子の書き込み方法 Download PDF

Info

Publication number
WO2013021649A1
WO2013021649A1 PCT/JP2012/005068 JP2012005068W WO2013021649A1 WO 2013021649 A1 WO2013021649 A1 WO 2013021649A1 JP 2012005068 W JP2012005068 W JP 2012005068W WO 2013021649 A1 WO2013021649 A1 WO 2013021649A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
electrode
voltage
nonvolatile memory
memory element
Prior art date
Application number
PCT/JP2012/005068
Other languages
English (en)
French (fr)
Inventor
幸治 片山
三谷 覚
高木 剛
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280001911.5A priority Critical patent/CN103081019B/zh
Priority to JP2012547390A priority patent/JP5184721B1/ja
Priority to US13/809,175 priority patent/US8942025B2/en
Publication of WO2013021649A1 publication Critical patent/WO2013021649A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0064Verifying circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0073Write using bi-directional cell biasing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0092Write characterized by the shape, e.g. form, length, amplitude of the write pulse
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/50Resistive cell structure aspects
    • G11C2213/56Structure including two electrodes, a memory active layer and a so called passive or source or reservoir layer which is NOT an electrode, wherein the passive or source or reservoir layer is a source of ions which migrate afterwards in the memory active layer to be only trapped there, to form conductive filaments there or to react with the material of the memory active layer in redox way
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/79Array wherein the access device being a transistor

Definitions

  • the present invention relates to a writing method for a variable resistance nonvolatile memory element in which a resistance value reversibly changes in accordance with an applied electrical signal.
  • nonvolatile memory devices using nonvolatile memory elements such as ferroelectric capacitors and variable resistance elements as large-capacity and high-speed nonvolatile memory devices used for portable digital devices and the like.
  • variable resistance elements There are two types of variable resistance elements, called unipolar (or monopolar) variable resistance elements and bipolar variable resistance elements.
  • the unipolar (or monopolar) variable resistance element has a characteristic that can be changed from a high resistance state to a low resistance state or from a low resistance state to a high resistance state with two drive voltages having the same polarity.
  • the bipolar variable resistance element has a characteristic that can be changed from a high resistance state to a low resistance state or from a low resistance state to a high resistance state by two drive voltages having different polarities.
  • the unipolar variable resistance element for example, a unidirectional diode that uses only a non-linear voltage-current characteristic in the polarity of one voltage can be used as the current control element.
  • the memory cell structure can be simplified.
  • a bipolar variable resistance element typically uses a bidirectional diode that utilizes nonlinear voltage-current characteristics in both voltage polarities as a current control element.
  • the bipolar variable resistance element can perform a reset operation for increasing the resistance of the variable resistance element and a set operation for decreasing the resistance of the variable resistance element using electrical pulses having a short pulse width, so that the operation speed is high. is there.
  • Patent Document 1 discloses a 1T1R type nonvolatile memory element using a bipolar variable resistance element made of copper oxide (Cu 2 O).
  • a so-called 1D1R type cross-point memory cell in which a diode and a resistance change element are connected in series is arranged in a matrix.
  • the present inventor has found that the conventional nonvolatile memory element has a problem that variation occurs in a high resistance state.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a writing method of a resistance change type nonvolatile memory element capable of suppressing variation in a high resistance state.
  • one embodiment of a write method for a variable resistance nonvolatile memory element includes a first electrode, a second electrode, and the first electrode and the second electrode. Then, when the electrical signal is applied between the first electrode and the second electrode and is in contact with the first electrode and the second electrode, two states of a high resistance state and a low resistance state are obtained. And a resistance change layer capable of reversibly changing a resistance state, wherein the resistance change layer is formed of a first metal in contact with the first electrode. And the writing method is based on the first electrode.
  • the layered structure includes a first metal oxide and a second metal oxide composed of a second metal in contact with the second electrode.
  • a negative first voltage to the second electrode A step of setting the resistance change layer to the low resistance state indicating a resistance value RL; and a step of setting the resistance change layer to the high resistance state.
  • a step of applying a positive second voltage to the second electrode with respect to the first electrode to set a resistance value of the variable resistance layer to a resistance value RH greater than the resistance value RL; and After the positive second voltage is applied by the step of setting the resistance value RH to be greater than RL, the resistance change layer is changed from the high resistance state to the low resistance state with respect to the second electrode with respect to the first electrode.
  • a negative third voltage smaller than the absolute value of the threshold voltage to be changed to the high resistance state in which the resistance change layer shows a resistance value RH1 equal to or higher than the resistance value RH.
  • variable resistance nonvolatile memory element writing method capable of suppressing variations on the low resistance side in a high resistance state and ensuring a maximum resistance change window.
  • FIG. 1 is a schematic diagram illustrating an example of the configuration of the nonvolatile memory element according to Embodiment 1.
  • FIG. 2A is a flowchart for explaining the writing method of the nonvolatile memory element according to Embodiment 1.
  • FIG. 2B is a flowchart for explaining the writing method of the nonvolatile memory element according to Embodiment 1.
  • FIG. 3A is a diagram for explaining a writing method for increasing the resistance of the nonvolatile memory element according to Embodiment 1.
  • 3B is a diagram for explaining a writing method for increasing the resistance of the nonvolatile memory element according to Embodiment 1.
  • FIG. FIG. 3C is a diagram for explaining a writing method for increasing the resistance of a conventional nonvolatile memory element.
  • FIG. 1 is a schematic diagram illustrating an example of the configuration of the nonvolatile memory element according to Embodiment 1.
  • FIG. 2A is a flowchart for explaining the writing method of the nonvolatile memory element according to
  • FIG. 4 is a graph showing resistance change when positive and negative alternating pulses are applied to the nonvolatile memory element according to Embodiment 1 by a conventional writing method.
  • FIG. 5 is a graph showing a normal expected value distribution of resistance values at the time of resistance change when positive and negative alternating pulses are applied to the nonvolatile memory element according to Embodiment 1 by the conventional writing method.
  • FIG. 6 is a graph showing resistance change characteristics when the nonvolatile memory element according to Embodiment 1 is changed from a low resistance state to a high resistance state by a voltage sweep.
  • FIG. 7 is a graph showing resistance change characteristics when the nonvolatile memory element according to Embodiment 1 is changed from a high resistance state to a low resistance state by a voltage sweep.
  • FIG. 8A is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 200 ns. It is.
  • FIG. 8B is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 200 ns.
  • FIG. 8C is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 200 ns.
  • FIG. 8D is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 200 ns.
  • FIG. 8E is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 200 ns. It is.
  • FIG. 8E is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 200 ns. It is.
  • FIG. 8D is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse
  • FIG. 8F is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 200 ns. It is.
  • FIG. 8G is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 200 ns.
  • FIG. 9A is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to the first embodiment and the width of the high-resistance stabilized write voltage pulse is 1 ⁇ s. It is.
  • FIG. 9B is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 1 ⁇ s.
  • FIG. 9C is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 1 ⁇ s.
  • FIG. 9D is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 1 ⁇ s.
  • FIG. 9E is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 1 ⁇ s.
  • FIG. 9F is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to the first embodiment and the width of the high-resistance stabilized write voltage pulse is 1 ⁇ s. It is.
  • FIG. 9E is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 1 ⁇ s. It is.
  • FIG. 9E is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 1
  • FIG. 9G is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 1 ⁇ s.
  • FIG. 10A is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to the first embodiment and the width of the high-resistance stabilized write voltage pulse is 10 ⁇ s.
  • FIG. 10B is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 10 ⁇ s. It is.
  • FIG. 10C is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 10 ⁇ s. It is.
  • FIG. 10D is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 10 ⁇ s.
  • FIG. 10E is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 10 ⁇ s.
  • FIG. 10F is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to the first embodiment and the width of the high-resistance stabilized write voltage pulse is 10 ⁇ s.
  • FIG. 10G is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 10 ⁇ s.
  • FIG. 11A is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to the first embodiment and the width of the high-resistance stabilized write voltage pulse is 100 ⁇ s.
  • FIG. 11B is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 100 ⁇ s.
  • FIG. 11C is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 100 ⁇ s. It is.
  • FIG. 11C is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 100 ⁇ s. It is.
  • FIG. 11B is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse
  • FIG. 11D is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 100 ⁇ s. It is.
  • FIG. 11E is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 100 ⁇ s. It is.
  • FIG. 11F is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to the first embodiment and the width of the high-resistance stabilized write voltage pulse is 100 ⁇ s. It is.
  • FIG. 11G is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 100 ⁇ s.
  • FIG. 12A is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to the first embodiment and the width of the high-resistance stabilized write voltage pulse is 1 ms.
  • FIG. 12B is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 1 ms.
  • FIG. 12C is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 1 ms. It is.
  • FIG. 12D is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 1 ms. It is.
  • FIG. 12C is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 1 ms. It is.
  • FIG. 12D is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized
  • FIG. 12E is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 1 ms. It is.
  • FIG. 12F is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 1 ms. It is.
  • FIG. 12G is a graph showing a normal expected value distribution of resistance values when 100 sets are applied in the high-resistance write method according to Embodiment 1 and the width of the high-resistance stabilized write voltage pulse is 1 ms.
  • FIG. 13 is a diagram illustrating a relationship between each pulse width and the values of Vtl1 and Vtl according to the first embodiment.
  • FIG. 14 is a graph showing a resistance change when the write method according to the modification of the first embodiment is performed on the nonvolatile memory element.
  • FIG. 15 is a graph showing a normal expected value distribution of resistance values when resistance is changed when the write method according to the modification of the first embodiment is performed on a nonvolatile memory element.
  • FIG. 16 is a block diagram showing one configuration when the nonvolatile memory device according to Embodiment 1 has memory cells having a specific array structure.
  • FIG. 17 is a diagram showing a configuration of a conventional nonvolatile memory element.
  • the present inventor relates to a conventional semiconductor element writing method, and in the case of high-resistance writing that changes from a low-resistance state to a high-resistance state, the resistance state may remain insufficient. I found that there was a problem.
  • FIG. 17 shows a configuration of a conventional nonvolatile memory element, which is a 1T1R nonvolatile memory element using a bipolar variable resistance element.
  • 17 includes a resistance change element 930 and a MOS transistor 938.
  • the MOS transistor 938 is an example of an active element that controls access to the resistance change element 930.
  • the resistance change element 930 and the MOS transistor 938 are electrically connected in series.
  • the resistance change element 930 includes a first electrode 936, a second electrode 932, and a resistance change layer 934, and the resistance change layer 934 is sandwiched between the first electrode 936 and the second electrode 932. ing.
  • a conventional writing method to the nonvolatile memory element 940 configured as described above is as follows.
  • a terminal for example, a source terminal
  • the resistance value of the resistance change element 930 transitions from a high resistance state to a low resistance state, and the resistance value of the nonvolatile memory element 940 becomes a low resistance state.
  • the resistance change element 930 when the resistance change element 930 is in a low resistance state, when a high resistance voltage in which a current flows from the second electrode 932 to the first electrode 936 is applied to the resistance change element 930, The resistance value of the resistance change element 930 transitions from a low resistance state to a high resistance state, and the resistance value of the nonvolatile memory element 940 becomes a high resistance state.
  • the present inventors examined a bipolar variable resistance nonvolatile memory device having an oxygen-deficient oxide of a transition metal such as tantalum or hafnium in a variable resistance layer.
  • the oxygen-deficient oxide refers to an oxide in which oxygen is insufficient due to the stoichiometric composition of the oxide.
  • Many metal oxides having a stoichiometric composition exhibit insulating properties.
  • semiconductor or conductive properties are exhibited.
  • the transition metal oxygen-deficient oxide was written by the above conventional writing method.
  • a positive voltage write pulse is applied to a memory cell having an oxygen-deficient oxide of a transition metal in a resistance change layer when a high resistance state is applied, and a negative voltage write pulse is applied to a low resistance state.
  • a positive voltage write pulse is applied to a memory cell having an oxygen-deficient oxide of a transition metal in a resistance change layer when a high resistance state is applied, and a negative voltage write pulse is applied to a low resistance state.
  • the resistance change nonvolatile memory equipped with a plurality of memory cells becomes small. That is, in such a case, there is a possibility that, for example, the reading speed decreases, or the window disappears due to variations in the resistance state, resulting in characteristic deterioration or malfunctioning that makes reading impossible.
  • the power consumption can be reduced by operating the variable resistance nonvolatile memory device on the high resistance side (low current side) as much as possible.
  • the aspect of the present disclosure has been made in view of such circumstances, and is a variable resistance nonvolatile device that can suppress variation on the low resistance side of a high resistance state and ensure the maximum resistance change window.
  • An object is to provide a writing method of a memory element.
  • a writing method of a variable resistance nonvolatile memory element includes a first electrode, a second electrode, and the first electrode and the second electrode. Then, when the electrical signal is applied between the first electrode and the second electrode and is in contact with the first electrode and the second electrode, two states of a high resistance state and a low resistance state are obtained. And a resistance change layer capable of reversibly changing a resistance state, wherein the resistance change layer is formed of a first metal in contact with the first electrode. And the writing method is based on the first electrode.
  • the layered structure includes a first metal oxide and a second metal oxide composed of a second metal in contact with the second electrode.
  • a negative first voltage to the second electrode A step of setting the resistance change layer to the low resistance state indicating a resistance value RL; and a step of setting the resistance change layer to the high resistance state.
  • a step of applying a positive second voltage to the second electrode with respect to the first electrode to set a resistance value of the variable resistance layer to a resistance value RH greater than the resistance value RL; and After the positive second voltage is applied by the step of setting the resistance value RH to be greater than RL, the resistance change layer is changed from the high resistance state to the low resistance state with respect to the second electrode with respect to the first electrode.
  • a negative third voltage smaller than the absolute value of the threshold voltage to be changed to the high resistance state in which the resistance change layer shows a resistance value RH1 equal to or higher than the resistance value RH.
  • the high resistance writing step writing is performed in which a negative voltage is applied after a positive voltage is applied in order to increase the resistance of the variable resistance nonvolatile memory element. That is, in the high resistance write step, the second high resistance write step for stabilizing the high resistance is performed after the first high resistance write step for increasing the resistance. In other words, even if the variable resistance nonvolatile memory element may be in a non-high resistance state in the first high resistance writing step, the second high resistance writing for stabilizing the subsequent high resistance may occur.
  • the variable resistance nonvolatile memory element can be reliably changed to a high resistance state by the step.
  • variable resistance element that may appear in a non-high resistance state is corrected to a normal high resistance state, thereby suppressing variations on the low resistance side of the high resistance state and ensuring a maximum resistance change window.
  • the oxygen deficiency of the first metal oxide may be greater than the oxygen deficiency of the second metal oxide.
  • the resistance value of the second metal oxide may be larger than the resistance value of the first metal oxide.
  • first metal and the second metal may each be a transition metal.
  • first transition metal and the second transition metal may be the same metal.
  • the first metal and the second metal may be tantalum.
  • the first metal and the second metal are different metals, and the standard electrode potential of the second metal may be lower than the standard electrode potential of the first metal.
  • the resistance value of the resistance change layer is set to a resistance value RH larger than the resistance value RL. Applying the negative third voltage after the positive second voltage is applied, and reading the data of the variable resistance nonvolatile memory element using the applied negative third voltage It may be done.
  • a variable resistance nonvolatile memory element includes a first electrode, a second electrode, and the first electrode and the second electrode.
  • the two resistors ie, a high resistance state and a low resistance state, are in contact with the first electrode and the second electrode, and an electrical signal is applied between the first electrode and the second electrode.
  • variable resistance layer capable of reversibly changing a state
  • the variable resistance layer includes a first metal oxide composed of a first metal in contact with the first electrode; It is comprised by the laminated structure with the 2nd metal oxide comprised with the 2nd metal which contact
  • the characteristic of changing to the low resistance state indicating the resistance value RL and the first electrode are obtained.
  • the resistance value RH is larger than the resistance value RL.
  • the second electrode is used with reference to the first electrode.
  • the resistance value is applied by applying the third voltage which is a negative third voltage and is smaller than an absolute value of a threshold voltage which changes the resistance change layer from the high resistance state to the low resistance state. And a characteristic of changing to the high resistance state showing a resistance value RH1 equal to or higher than RH.
  • the high resistance state can be surely achieved.
  • variable resistance nonvolatile memory element writing method capable of suppressing variations in the high resistance state and ensuring the maximum resistance change window on the high resistance side. Further, in addition to the stabilization of the high resistance state of the variable resistance nonvolatile memory element, it is possible to increase the reading speed of the memory cell, improve the yield, and reduce the power consumption.
  • variable resistance nonvolatile memory composed of a memory cell using an oxygen-deficient oxide of a transition metal such as tantalum or hafnium for a variable resistance layer as a bipolar variable resistance material.
  • a variable resistance nonvolatile memory element including a memory cell using such a material will be described.
  • FIG. 1 is a schematic diagram illustrating an example of the configuration of the nonvolatile memory element according to Embodiment 1.
  • variable resistance element 10 includes a variable resistance element 10 and a current control element 20, and the variable resistance element 10 and the current control element are connected in series.
  • the resistance change element 10 includes the first electrode 1, the second electrode 2, and the first electrode 1, the second electrode 2, and the first electrode 1, the second electrode 2, and the second electrode 2.
  • the first electrode 1, the resistance change layer 3, and the second electrode 2 are laminated on the substrate in this order.
  • the resistance change layer 3 is configured to be sandwiched between the first electrode 1 and the second electrode 2, and an electrical signal is applied between the first electrode 1 and the second electrode 2.
  • the resistance change layer 3 includes a first transition metal oxide layer 3a made of an oxygen-deficient transition metal oxide, and a transition metal oxide having a lower degree of oxygen deficiency than the first transition metal oxide layer 3a. It is comprised with the comprised 2nd transition metal oxide layer 3b.
  • the degree of oxygen deficiency refers to the ratio of oxygen deficiency with respect to the amount of oxygen constituting the oxide of the stoichiometric composition in each transition metal.
  • the transition metal is tantalum (Ta)
  • the stoichiometric oxide composition is Ta 2 O 5 and can be expressed as TaO 2.5 .
  • the oxygen deficiency of TaO 2.5 is 0%.
  • an oxide having a stoichiometric composition often shows an insulator-like characteristic, but an oxygen-deficient transition metal oxide often shows a semiconductor-like characteristic. That is, in general, it can be said that a transition metal oxide having a lower oxygen deficiency (closer to a stoichiometric composition) has a higher resistance than a transition metal oxide having a higher oxygen deficiency.
  • the second transition metal oxide layer 3b may have a higher resistance than the first transition metal oxide layer 3a.
  • the transition metal oxide generated in the second transition metal oxide layer 3b can be used.
  • the transition metal oxide having the highest resistance value or the transition metal oxide among them can be used.
  • An oxygen-deficient transition metal oxide in which oxygen is lost from a material may be used.
  • the metal which comprises the 1st transition metal oxide layer 3a can take a some stoichiometric composition as an oxide, the transition metal which comprises the 2nd transition metal oxide layer 3b among them
  • An oxygen-deficient transition metal oxide having a resistance value lower than that of the oxide may be used.
  • the same material may be used for the first transition metal constituting the first transition metal oxide layer 3a and the second transition metal constituting the second transition metal oxide layer 3b.
  • Different materials may be used.
  • the transition metal tantalum (Ta), titanium (Ti), hafnium (Hf), zirconium (Zr), niobium (Nb), tungsten (W), or the like can be used. Since transition metals can take a plurality of oxidation states, different resistance states can be realized by oxidation-reduction reactions.
  • the standard electrode potential of the second transition metal may be lower than the standard electrode potential of the first transition metal.
  • the resistance change phenomenon is considered to be caused by a redox reaction occurring in a minute filament (conductive path) formed in or near the second transition metal oxide layer 3b having a high resistance, so that the resistance value changes. is there.
  • the standard electrode potential represents a characteristic that the lower the value, the easier it is to oxidize, and a more stable redox reaction can be expected when more redox reactions occur in the second transition metal oxide.
  • the increase (resistance increase) of the resistance value of the resistance change layer 3 is that oxygen ions move from the first transition metal oxide layer 3a to the second transition metal oxide layer 3b by a positive voltage pulse, It is considered that this phenomenon is manifested by compensating for oxygen defects in a minute filament formed in or near the second transition metal oxide layer 3b.
  • the resistance value of the resistance change layer 3 is decreased (lower resistance) because oxygen ions move from the second transition metal oxide layer 3b to the first transition metal oxide layer 3a by the negative voltage pulse, This is considered to be caused by an increase in oxygen defects in a minute filament formed in or near the second transition metal oxide layer 3b.
  • variable resistance layer 3 for example, when tantalum is used for both the first transition metal constituting the first transition metal oxide layer 3a and the second transition metal constituting the second transition metal oxide layer 3b.
  • first transition metal oxide layer 3a is represented as TaO x
  • second transition metal oxide layer 3b is represented as TaO y
  • 0.8 ⁇ x ⁇ 1.9 and x ⁇ y may be satisfied. .
  • the second electrode 2 includes a single metal or an alloy having a standard electrode potential higher than that of the transition metal constituting the resistance change layer 3.
  • the second electrode 2 may be configured with a single layer structure or a stacked structure of a plurality of layers.
  • the metal having a higher standard electrode potential than the transition metal constituting the resistance change layer 3 may be a noble metal such as platinum (Pt), iridium (Ir), or palladium (Pd).
  • the material constituting the second electrode 2 includes the transition metal oxide constituting the oxygen-deficient transition metal oxide.
  • a material having a standard electrode potential higher than the standard electrode potential, and the standard electrode potential of the lower electrode layer (first electrode 1) being lower than the standard electrode potential of the upper electrode layer (second electrode 2) choose.
  • an electrode material having a higher standard electrode potential for example, an electrode material that is in contact with the first transition metal oxide layer 3a having a small oxygen deficiency
  • Pt, Ir, Pd, etc. the electrode material having a lower standard electrode potential
  • tantalum (Ta), tantalum nitride ( TaN), titanium (Ti) may be used.
  • variable resistance element 10 can obtain a stable variable resistance characteristic.
  • the current control element 20 is composed of a load resistance element such as a selection transistor or a diode.
  • the current control element 20 has a threshold voltage in each of a positive applied voltage region and a negative applied voltage region, and is in a conductive (on) state when the absolute value of the applied voltage is larger than the absolute value of each threshold voltage.
  • the value of the applied voltage is in the other region (when the absolute value of the applied voltage is smaller than the absolute value of the corresponding threshold value)
  • it has a non-linear characteristic such that it is in a cutoff (off) state. That is, when the current control element 20 is in a conductive state (ON), the current control element becomes a load resistance with respect to the resistance change element 10.
  • the nonvolatile memory element 100 is configured.
  • FIG. 2A is a flowchart for explaining a writing method for increasing the resistance of the nonvolatile memory element according to Embodiment 1.
  • FIG. 2B is a flowchart illustrating a process surrounded by a broken line portion in FIG. 2A.
  • FIG. 3A is a diagram for explaining a writing method for increasing the resistance of the nonvolatile memory element according to Embodiment 1.
  • FIG. 3B is a diagram illustrating a portion surrounded by a broken line portion in FIG. 3A.
  • FIG. 3C is a diagram for explaining a writing method for increasing the resistance of a conventional nonvolatile memory element. Note that the nonvolatile memory element writing method according to Embodiment 1 only needs to include at least the steps shown in FIGS. 2B and 3B, and other steps are appropriately employed depending on the embodiment. It is an optional process.
  • a case where a voltage higher than the first electrode 1 of the resistance change element 10 is applied to the second electrode 2 is defined as a positive voltage application unless otherwise specified regarding the polarity of the voltage application. .
  • a negative first voltage ⁇ Vl having a sufficiently larger amplitude than the low resistance threshold voltage is applied to the second electrode 2 with respect to the first electrode 1.
  • low resistance writing is performed to bring the resistance change layer 3 into a low resistance state (S11).
  • a negative voltage is applied to the first variable resistance element 10 in the high resistance state and the amplitude is gradually increased, the voltage at which the resistance is lowered is referred to as a low resistance threshold voltage.
  • a positive voltage is applied to the resistance change element 10 in the low resistance state and the amplitude thereof is gradually increased, the voltage at which the increase in resistance occurs is referred to as a first high resistance threshold voltage.
  • a first voltage (low-resistance write voltage) ⁇ Vl is applied to the resistance change element 10 to bring the resistance change layer 3 into a low resistance state.
  • the resistance change element 10 is applied by applying a low resistance threshold voltage or a voltage having a smaller amplitude than the first high resistance threshold voltage. May be read (“Vread” in FIG. 3A).
  • variable resistance element 10 high resistance writing is performed to bring the variable resistance layer 3 into the first high resistance state (S12).
  • a positive second voltage V2 having an amplitude sufficiently larger than the first high resistance threshold voltage is applied to the second electrode 2 with respect to the first electrode 1 to change the resistance.
  • First high resistance writing is performed to bring the element 10 into the first high resistance state (S121).
  • a negative third voltage ⁇ V3 smaller than the amplitude of the low resistance threshold voltage is applied to the second electrode 2 with reference to the first electrode 1.
  • the resistance change layer 3 is changed to the second high resistance state to perform the second high resistance write (S122).
  • the nonvolatile memory A second high resistance write voltage ⁇ V3 is applied to the memory element 100 to bring the resistance change layer 3 into the second high resistance state.
  • the first high resistance write voltage V2 and the second high resistance write voltage -V3 have different polarities, and the second high resistance write voltage -V3. Is smaller than the absolute value of the low resistance threshold voltage.
  • the resistance value in the second high resistance state is higher than the resistance value in the first high resistance state.
  • the nonvolatile memory element 100 is written with high resistance.
  • the resistance change element 10 may be in a state where the resistance change element 10 is sufficiently increased in resistance only by the first high resistance write with respect to the resistance change element 10, but the second after the first high resistance write.
  • the high resistance state can be surely achieved by performing the high resistance writing.
  • the resistance change type nonvolatile memory element capable of suppressing variation in the high resistance state and ensuring a maximum resistance change window (difference in resistance value between the low resistance state and the high resistance state) on the high resistance side.
  • the writing method can be realized.
  • the resistance change window is widened, so that the reading speed of the memory cell, the yield improvement, and the low consumption are achieved. There is also an effect that electric power can be realized.
  • the writing method of the nonvolatile memory element according to Embodiment 1 may include the writing process (S12) for increasing resistance of the nonvolatile memory element illustrated in FIGS. 2B and 3B, and S11 is appropriately introduced. It is an optional process. Further, the writing (S12) for increasing the resistance of the nonvolatile memory element is not limited to one time but may be performed a plurality of times. Even in that case, the high resistance write (S12) is performed by ending the flow of high resistance write in the second high resistance write (S122), in other words, in the write method of the present embodiment. The above effect can be realized by setting the last applied voltage as the second high resistance write voltage.
  • the writing method of the present embodiment can suppress variations on the low resistance side in the high resistance state.
  • FIG. 4 is a graph showing resistance change when positive and negative alternating pulses are applied to the nonvolatile memory element according to Embodiment 1 by a conventional writing method.
  • FIG. 5 is a graph showing a normal expected value distribution of resistance values at the time of resistance change when positive and negative alternating pulses are applied to the nonvolatile memory element according to Embodiment 1 by the conventional writing method.
  • FIG. 4 an electric signal having different polarities is applied between the first electrode 1 and the second electrode 2 of the nonvolatile memory element 100 shown in FIG.
  • the two resistance states are reversibly changed.
  • FIG. 4 with respect to the terminals at both ends of the nonvolatile memory element 100 (including the resistance change element 10 and the current control element 20), as shown in FIG.
  • the state of resistance change when the resistance write voltage -Vl is alternately applied is shown.
  • the horizontal axis in FIG. 4 indicates the application of the high-resistance write voltage or the low-resistance write voltage, that is, the number of pulses (number of pulses) applied, and the vertical axis indicates the resistance value of the nonvolatile memory element 100.
  • FIG. 5 shows a normal expected value distribution of resistance values at that time.
  • the pulse width of the voltage applied to the nonvolatile memory element 100 is 200 ns.
  • the resistance value of the nonvolatile memory element 100 is a value when measurement is performed with Vread after application of the high-resistance write voltage or low-resistance write voltage, that is, after application of each voltage pulse.
  • the resistance value of the nonvolatile memory element 100 in the high resistance state is the minimum value Rmin1 and the maximum value Rmax1, and varies by about one digit.
  • FIG. 6 is a graph showing resistance change characteristics when the nonvolatile memory element according to Embodiment 1 is changed from the low resistance state RL to the high resistance state RH by a voltage sweep.
  • the pulse width of the positive voltage pulse is 200 ns
  • the resistance value is obtained by applying Vread to the nonvolatile memory element 100 after applying each pulse and detecting the current flowing through the nonvolatile memory element 100. ing.
  • the resistance value of the nonvolatile memory element 100 hardly changes until the applied voltage by the positive voltage pulse reaches Vth, and remains in the low resistance state RL.
  • the applied voltage becomes higher than Vth, the resistance value starts to increase. That is, when the voltage at which the resistance starts to increase is the first resistance increase threshold voltage, the first resistance increase threshold voltage is Vth here.
  • the applied voltage is further increased, the resistance value once decreases in the middle, but the resistance value gradually increases while repeatedly increasing and decreasing, and a phenomenon in which a high resistance state RH is reached is observed.
  • the increase in the resistance value of the resistance change layer 3 is caused by oxygen ions moving from the first transition metal oxide layer 3a to the second transition metal oxide layer 3b by a positive voltage pulse, It is considered that this phenomenon is manifested by compensating for oxygen defects in a minute filament formed in or near the second transition metal oxide layer 3b.
  • the decrease in the resistance value is caused by a breakdown of a minute filament formed in or near the second transition metal oxide layer 3b by a positive voltage pulse or trapped in an oxygen defect. It is considered that this phenomenon is caused by an increase in oxygen vacancies due to, for example, the released electrons.
  • first high resistance writing step Writing to the first high resistance state by this positive voltage pulse is referred to as a first high resistance writing step.
  • FIG. 7 is a graph showing resistance change characteristics when the nonvolatile memory element according to Embodiment 1 is changed from the high resistance state RH to the low resistance state RL by a voltage sweep.
  • the left direction on the horizontal axis is the negative voltage direction.
  • the pulse width of the negative voltage pulse is set to 200 ns, and the resistance value is obtained by applying Vread to the nonvolatile memory element 100 after applying each pulse, and the current flowing through the nonvolatile memory element 100 is determined.
  • the resistance value is obtained by detection.
  • the resistance value of the first high resistance state RH of the nonvolatile memory element 100 does not change much when the applied voltage due to the negative voltage pulse is in the range of 0 to ⁇ Vtl1. However, it can be seen that the resistance value increases from the first high-resistance state RH to the second high-resistance state RH1 as the applied voltage increases from ⁇ Vtl1 to ⁇ Vtl.
  • ⁇ Vtl1 means that the applied voltage is decreased with respect to the nonvolatile memory element 100 in the first high resistance state RH (the amplitude of the applied voltage due to the negative voltage pulse).
  • the resistance value changes from a flat region where the resistance value does not substantially change to a region where the resistance value increases.
  • the low resistance threshold voltage is changed to change from the high resistance state to the low resistance state.
  • an appropriate negative voltage pulse a voltage pulse having an amplitude larger than Vtl1 and smaller than Vtl
  • the high resistance state can be changed to the second high resistance state RH1.
  • writing to the second high resistance state RH1 by the negative voltage pulse is referred to as high resistance stabilization writing.
  • the high resistance stabilization writing may be referred to as a second high resistance writing step.
  • high resistance stabilization writing (step of setting the resistance change layer 3 to a high resistance state) can be expressed as follows. That is, in the step of setting the resistance change layer 3 to the high resistance state, a positive second voltage is applied to the second electrode 2 with respect to the first electrode 1, and the resistance change layer 3 is set to the low resistance state RL (resistance value RL). ) After the positive second voltage is applied by the step of setting a high resistance state (resistance value RH) having a larger resistance value and the step of setting the resistance value RH larger than the resistance value RL, the first electrode 1 is set as a reference.
  • a negative third voltage smaller than the absolute value of the threshold voltage for changing the resistance change layer 3 from the high resistance state to the low resistance state is applied to the second electrode 2, thereby causing the resistance change layer 3 to exceed the resistance value RH.
  • the third voltage is an appropriate negative voltage pulse having an absolute value smaller than the low resistance threshold voltage (-Vtl in FIG. 7). More specifically, the third voltage is a voltage pulse whose absolute value of amplitude is larger than Vtl1 and smaller than Vtl.
  • the voltage pulse ⁇ Vtl1 can also be expressed as a threshold voltage from which the resistance value starts to increase from the first high resistance state RH (resistance value RH) to the second high resistance state RH1 (resistance value RH1) from FIG. .
  • the third voltage may have a smaller absolute value of the amplitude.
  • FIGS. 8A to 8G show the high resistance writing method according to the first embodiment (the second high resistance writing is performed after the first high resistance writing) 100 times and the high resistance stabilization. It is a graph which shows the normal expected value distribution of resistance value when the width
  • FIGS. 9A to 9G show the normal expected value of the resistance value when the high resistance writing method according to the first embodiment is applied 100 times and the width of the high resistance stabilizing write voltage pulse is 1 ⁇ s. It is a graph which shows distribution.
  • FIGS. 10A to 10G show normal expected value distributions of resistance values when 100 times is applied by the high resistance writing method according to the first embodiment and the width of the high resistance stabilization write voltage pulse is 10 ⁇ s. It is a graph.
  • FIG. 11A to FIG. 11G show normal expected value distributions of resistance values when 100 times is applied by the high resistance writing method according to the first embodiment and the width of the high resistance stabilization write voltage pulse is 100 ⁇ s. It is a graph. 12A to 12G show normal expected value distributions of resistance values when 100 times is applied by the high resistance writing method according to the first embodiment and the width of the high resistance stabilization write voltage pulse is 1 ms. It is a graph. In each figure, the resistance value on the horizontal axis is displayed on a log scale.
  • FIGS. 8A to 8G, 9A to 9G, 10A to 10G, 11A to 11G, and 12A to 12G are 1) a negative low resistance write voltage pulse (amplitude V1, Pulse width 200ns, resistance value after application is displayed in white square) 2) Positive first high resistance write voltage pulse (condition: amplitude V2, pulse width 200ns, resistance value after application is displayed in white triangle) 3) Three pulses of a negative high resistance stabilization write voltage pulse (amplitude V3, the resistance value after application is indicated by a black square) are sequentially applied 100 times, and the normal expected value distribution of the resistance value after application is applied each time. The graph is shown. Further, the resistance value of the nonvolatile memory element 100 is measured by applying a positive read voltage Vread to the nonvolatile memory element 100 after each pulse is applied and detecting the current flowing through the nonvolatile memory element 100. Seeking.
  • V1 Pulse width 200ns, resistance value after application is displayed in white square
  • Positive first high resistance write voltage pulse condition: amplitude
  • the pulse width of the high resistance stabilization write voltage pulse is 200 ns in FIGS. 8A to 8G, 1 ⁇ s in FIGS. 9A to 9G, 10 ⁇ s in FIGS. 10A to 10G, 100 ⁇ s in FIGS. 11A to 11G, and FIG. In FIG. 12G, 1 ms is set.
  • the amplitude V3 of the high-resistance stabilization write voltage pulse is Va.
  • the amplitude V3 of the high resistance stabilization write voltage pulse is Vb.
  • V3 Vc in FIGS. 8C-12C
  • V3 Vd in FIGS. 8D-12D
  • V3 Ve in FIGS. 8E-12E
  • V3 Vf in FIGS. 8F-12F
  • V3 Vg.
  • FIG. 13 is a diagram showing the relationship between each pulse width and the values of Vtl1 and Vtl according to the first embodiment.
  • the amplitude V3 of the negative high resistance stabilization write voltage pulse is greater than or equal to (Vtl1-0.2V) and Vtl1.
  • the resistance value after the high resistance stabilization writing has almost no difference in the resistance value distribution compared to the resistance value after the first high resistance writing.
  • the amplitude V3 of the high resistance stabilization write voltage pulse is increased to (Vtl1 + 0.1V) or more and (Vtl1 + 0.2V) or less, the resistance variation after the first high resistance write is caused by the high resistance stabilization write.
  • the amplitude of the negative high resistance stabilization write pulse voltage is set to (Vtl1 + 0.1V) or more and (Vtl1 + 0.3V) or less. Good.
  • the amplitude V3 of the high resistance stabilization write pulse voltage is (Vtl1 + 0.05V) or more.
  • the voltage is (Vtl1 + 0.25V) or less, by applying the high-resistance stabilized write voltage pulse ⁇ V3, the variation can be improved to the high-resistance side compared to after the first high-resistance write, or overall It can be seen that the resistance can be increased.
  • the amplitude V3 of the high-resistance stabilization write pulse voltage is (Vtl1 + 0.05V) or more.
  • the voltage is (Vtl1 + 0.35V) or less, by applying the high-resistance stabilized write voltage pulse ⁇ V3, the variation can be improved to the high-resistance side compared to after the first high-resistance write, or overall It can be seen that the resistance can be increased.
  • the amplitude V3 of the high resistance stabilization write pulse voltage is (Vtl1 + 0.1V).
  • the voltage is (Vtl1 + 0.3V) or less, by applying the high-resistance stabilized write voltage pulse ⁇ V3, the variation can be improved to the high-resistance side as compared to after the first high-resistance write, or the whole It can be seen that the resistance can be increased.
  • the pulse width of the high resistance stabilization write voltage pulse is 1 ms (FIGS. 12A to 12G)
  • the amplitude V3 of the high resistance stabilization write pulse voltage is (Vtl1 + 0.1V) or more and (Vtl1 + 0.3V) or less
  • the improvement effect is considered to be related to the amount of charge injected into the second transition metal oxide layer 3b.
  • the lower limit value of the amplitude of the high resistance stabilization write pulse that has the effect of improving variation in the high resistance state may be a smaller value as the pulse width of the high resistance stabilization write pulse is increased.
  • the resistance of the high resistance stabilized write voltage pulse is larger when the pulse width is larger. It can be seen that even when the amplitude of the stabilized write pulse voltage is small, a higher resistance state can be achieved. However, when the pulse width of the high resistance stabilization write voltage pulse is large, the absolute value Vtl of the low resistance threshold voltage also decreases, so the amplitude of the high resistance stabilization write voltage pulse cannot be increased too much. .
  • the absolute value Vtl of the low resistance threshold voltage is the resistance value after the first high resistance write, and thus the resistance value in the low resistance state, the condition of the first high resistance write voltage pulse, the low resistance write voltage pulse It is determined by the conditions, the film thickness, the composition, and the like of the first and second transition metal oxide layers.
  • the first high resistance By executing the second high resistance write (high resistance stabilization write) for high resistance stabilization after the resistance write, the high resistance state can be surely achieved.
  • a variable resistance nonvolatile memory element writing method that can suppress variation in the high resistance state and can ensure the maximum resistance change window on the high resistance side can be realized.
  • high resistance stabilization writing is performed with one pulse
  • the present invention is not limited to this. If an appropriate pulse width and pulse voltage are selected, high-resistance stable writing may be performed using a plurality of pulses. For example, the voltage may be continuously changed from a small amplitude voltage to a large voltage.
  • the present invention is not limited to this.
  • the first high-resistance write voltage pulse and the negative high-resistance stabilization pulse may be applied continuously, or after applying the first high-resistance write voltage pulse, the resistance value is measured, If the value is not sufficiently high, additional writing may be performed with a negative high resistance stabilization pulse.
  • FIG. 14 is a graph showing a resistance change when the write method according to the modification of the first embodiment is performed on the nonvolatile memory element.
  • FIG. 15 is a graph showing a normal expected value distribution of resistance values at the time of resistance change when the writing method according to the modification of the first embodiment is performed on the nonvolatile memory element.
  • the read voltage ⁇ Vread having an amplitude smaller than the low resistance threshold voltage ⁇ Vtl is set to a positive high resistance write voltage (amplitude, V2) and a negative low voltage with respect to the nonvolatile memory element 100 shown in FIG.
  • the state of resistance change when a resistance write voltage (amplitude V1) is alternately applied is shown.
  • the horizontal axis in FIG. 14 indicates the application of the high-resistance write voltage or the low-resistance write voltage, that is, the number (number of pulses) of each voltage pulse application, and the vertical axis indicates the resistance value of the nonvolatile memory element 100.
  • FIG. 15 shows a normal expected value distribution of resistance values at that time.
  • a fixed resistor having a resistance value R is used as the current control element 20.
  • the pulse width of the voltage applied to the nonvolatile memory element 100 is 100 ns.
  • FIGS. 14 and 15 show a comparative example in which positive and negative alternating pulses are applied by a conventional writing method, and resistance measurement (data reading) is performed at a positive voltage of + Vread, which is smaller than the high resistance threshold voltage. The measurement results are also shown.
  • black circles ( ⁇ ) indicate the measurement results of this modification example with a read voltage of ⁇ Vread
  • white squares ( ⁇ ) indicate the measurement results of the comparative example with a read voltage of + Vread. Show.
  • the resistance value in the low resistance state is hardly changed when the present modification example in which the read voltage is ⁇ Vread and the comparative example in which the read voltage is + Vread are compared.
  • the resistance value in the high resistance state is several times larger than the minimum value Rmin2 in the case of the comparative example in which the read voltage is + Vread, and the minimum value in the present modification example in which the read voltage is ⁇ Vread is several times larger You can see that
  • Embodiment 2 In the first embodiment, the basic configuration with one memory cell is illustrated for simplicity of description, but in practice, the present invention can be realized as a nonvolatile memory device in which a plurality of memory cells are arranged in an array. . In the second embodiment, a specific example will be described.
  • FIG. 16 is a block diagram showing one configuration when the nonvolatile memory device according to Embodiment 1 has memory cells having a specific array structure.
  • the non-volatile storage device 300 includes a memory main body 301 on a semiconductor substrate (not shown).
  • the memory main body 301 includes a memory cell array 302, a row selection circuit / driver 303, a column selection circuit 304, a write circuit 101 for writing information, and a resistance value of a memory cell selected from the memory cell array 302. , And a sense amplifier 102 that determines data “1” or “0”.
  • the nonvolatile memory device 300 also includes a power supply control circuit 308 that generates a plurality of power supplies necessary for writing data to the selected memory cell, an address input circuit 309 that receives an externally input address signal, and an external input And a data input / output circuit 307 that performs input / output processing of input / output data based on the control signal.
  • a power supply control circuit 308 that generates a plurality of power supplies necessary for writing data to the selected memory cell
  • an address input circuit 309 that receives an externally input address signal
  • an external input And a data input / output circuit 307 that performs input / output processing of input / output data based on the control signal.
  • the memory cell array 302 is formed on a semiconductor substrate, and a plurality of first wirings (in the example of FIG. 15, formed so as to extend in parallel with each other in a first direction within a first plane substantially parallel to the surface of the semiconductor substrate.
  • the word lines WL0, WL1, WL2,... are hereinafter referred to as “word lines WL0, WL1, WL2,...”
  • the second plane parallel to the first plane so as to extend parallel to each other in the second direction.
  • a plurality of second wirings formed so as to cross three-dimensionally with the first wiring (in the example of FIG. 16, bit lines BL0, BL1, BL2,..., For convenience of explanation, “bit lines BL0, BL1, BL2,.
  • Each of the memory cells M211, M212,... Includes the memory cell (nonvolatile memory element 100) shown in FIG. 1, and the word lines WL0, WL1, WL2,... Are select transistors included in the respective memory cells M211, M212,.
  • Bits connected to the gates of T11, T12, T13, T21, T22, T23, T31, T32, T33,... (Hereinafter referred to as “transistors T11, T12,...”)
  • the lines BL0, BL1, BL2,... Are connected to one end of the memory cell 105a included in each memory cell M211, M212,.
  • the resistance change element 10 operates as a nonvolatile memory element in the memory cells M211, M212,. Since the memory cells M211, M212,... Are composed of one transistor and one resistance change element 10, they are called 1T1R type memory cells.
  • the memory cell array 302 includes a plurality of plate lines PL0, PL1, PL2,... Arranged in parallel with the word lines WL0, WL1, WL2,.
  • the plate lines PL0, PL1, PL2,... are connected to the other ends of the memory cells (nonvolatile memory element 100) included in the respective memory cells M211, M212,.
  • the plate line is arranged in parallel with the word line, but may be arranged in parallel with the bit line.
  • the source line of the transistor is configured to apply a common potential to the transistors connected as plate lines, but has a source line selection circuit / driver having a configuration similar to that of the row selection circuit / driver, and the selected source The line and the non-selected source line may be driven with different voltages (including polarity).
  • the nonvolatile memory elements included in the memory cells M211, M212,... Have a resistance change layer including a transition metal oxide such as an oxygen-deficient tantalum oxide as described above. More specifically, the nonvolatile memory elements included in the memory cells M211, M212,... include the first electrode 1 that is the lower electrode of the resistance change element 10 illustrated in FIG. 1 and the second electrode that is the upper electrode. 2 and the resistance change layer 3.
  • the select transistors T11, T12, T13,... are shown as an example using n-channel MOS transistors.
  • the gates of the transistors T11, T21, T31,... are on the word line WL0, the gates of the transistors T12, T22, T32,... Are on the word line WL1, and the gates of the transistors T13, T23, T33,. Each is connected.
  • the sources of the transistors T11, T21, T31, ... are on the plate line PL0
  • the sources of the transistors T12, T22, T32, ... are on the plate line PL1
  • the sources of the transistors T13, T23, T33, ... are on the plate line PL2.
  • the address input circuit 309 receives an address signal from an external circuit (not shown) under the control of the control circuit 310, and outputs a row address signal to the row selection circuit / driver 303 based on the address signal.
  • An address signal is output to the column selection circuit 304.
  • the address signal is a signal indicating the address of a specific memory cell selected from among the plurality of memory cells M211, M212,.
  • the row address signal is a signal indicating a row address among the addresses indicated by the address signal
  • the column address signal is a signal indicating a column address among the addresses indicated by the address signal.
  • the row selection circuit / driver 303 and the column selection circuit 304 constitute a selection circuit that selects at least one memory cell to be written or read from the memory cell array 302.
  • the control circuit 310 In the information write cycle, the control circuit 310 outputs a write signal instructing application of a write voltage to the write circuit 101 in accordance with input data input to the data input / output circuit 307. On the other hand, in the information read cycle, the control circuit 310 outputs a read signal for instructing a read operation to the sense amplifier 102 and the column selection circuit 304.
  • the row selection circuit / driver 303 receives the row address signal output from the address input circuit 309, selects one of the plurality of word lines WL0, WL1, WL2,... According to the row address signal, A predetermined voltage is applied to the selected word line.
  • the column selection circuit 304 receives the column address signal output from the address input circuit 309, selects one of the plurality of bit lines BL0, BL1, BL2,... According to the column address signal, A write voltage or a read voltage is applied to the selected bit line.
  • the power supply control circuit 308 generates and selectively outputs a ground level (GND, 0V) or a predetermined applied voltage (write voltage ⁇ V1, V2, ⁇ V3 or read voltage Vread) according to the application direction. At the same time, the voltage is variable as necessary.
  • the write circuit 101 applies a predetermined potential to all bit lines and plate lines in accordance with a write command output from the control circuit 310, or applies a write voltage to the bit lines selected via the column selection circuit 304. Apply a pulse.
  • the sense amplifier 102 is an example of a read circuit that performs read with respect to the memory cell that has selected the read cycle described above, and determines data “1” or “0” based on the time difference at which the applied read voltage is discharged.
  • the output data obtained as a result is output to an external circuit via the data input / output circuit 307.
  • the writing method of the nonvolatile memory element according to the present invention has been described based on the embodiments, but the present invention is not limited to these embodiments. Modifications obtained by subjecting these embodiments to various modifications conceived by those skilled in the art without departing from the gist of the present invention are also included in the present invention.
  • the resistance change layer 3 includes a first transition metal oxide layer 3a composed of an oxygen-deficient transition metal oxide, and a transition metal oxide having a lower degree of oxygen deficiency than the first transition metal oxide layer 3a.
  • the second transition metal oxide layer 3b is made of a material, but is not limited thereto.
  • aluminum (Al) may be used instead of the transition metal. That is, the resistance change layer 3 is composed of a first metal oxide layer 3a composed of an oxygen-deficient metal oxide and a metal oxide having a lower degree of oxygen deficiency than the first metal oxide layer 3a. And the second metal oxide layer 3b.
  • a first metal oxide layer made of oxygen-deficient tantalum oxide (TaO x ), and an Al oxide (Al 2 O 3 ) having a lower oxygen deficiency than the first metal oxide layer It is good also as comprised with the 2nd metal oxide layer comprised by these.
  • the writing method of the nonvolatile memory element of the present invention is useful as a writing method of a nonvolatile memory device used in various electronic devices such as a personal computer and a portable phone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

 本開示の抵抗変化型不揮発性記憶素子の書き込み方法は、第1の電極を基準に第2の電極に負の第1の電圧(-V1)を印加して、抵抗変化層を低抵抗状態にするステップと、抵抗変化層を高抵抗状態にするステップとを含み、抵抗変化層を高抵抗状態にするステップは、第1の電極を基準に第2の電極に正の第2の電圧(V2)を印加するステップと、第1の電極を基準に第2の電極に正の第2の電圧(V2)を印加するステップ後に、第1の電極を基準に、抵抗変化層を高抵抗状態から低抵抗状態へ変化させる負のしきい値電圧の絶対値より小さい負の第3の電圧(-V3)を第2電極に印加することにより、抵抗変化層を高抵抗状態にするステップと、を含む。

Description

抵抗変化型不揮発性記憶素子の書き込み方法
 本発明は、印加される電気的信号に応じて可逆的に抵抗値が変化する抵抗変化型不揮発性記憶素子の書き込み方法に関する。
 近年、携帯型デジタル機器等に用いられる大容量かつ高速の不揮発性記憶装置として、例えば強誘電体キャパシタや抵抗変化素子などの不揮発性記憶素子を用いた不揮発性記憶装置が注目されている。
 抵抗変化素子には、ユニポーラ型(あるいはモノポーラ型)抵抗変化素子とバイポーラ型抵抗変化素子と呼ばれる2種類のものがある。ユニポーラ型(あるいはモノポーラ型)抵抗変化素子は、同じ極性の2つの駆動電圧で高抵抗状態から低抵抗状態、または低抵抗状態から高抵抗状態に変化できる特性を有する。バイポーラ型抵抗変化素子は、異なる極性の2つの駆動電圧で高抵抗状態から低抵抗状態、あるいは低抵抗状態から高抵抗状態に変化できる特性を有する。
 ユニポーラ型抵抗変化素子は、電流制御素子として、例えば、1つの電圧の極性における非線形な電圧-電流特性のみが利用される単方向ダイオードを用いることができるので、抵抗変化素子と電流制御素子とからなるメモリセルの構造をシンプルにできる。
 一方、バイポーラ型抵抗変化素子は、電流制御素子として、典型的には、両方の電圧極性における非線形な電圧-電流特性が利用される双方向ダイオードを用いる。バイポーラ型抵抗変化素子は、抵抗変化素子を高抵抗化させるリセット動作および抵抗変化素子を低抵抗化させるセット動作を短いパルス幅の電気的パルスを用いて行うことができるので、動作速度が高速である。
 抵抗変化素子を用いた不揮発性記憶装置として、MOSトランジスタと抵抗変化素子を直列に接続した、いわゆる1T1R型と呼ばれるメモリセルをマトリックス状にアレイ配置したものが知られている。例えば特許文献1では、酸化銅(Cu2O)によるバイポーラ型の抵抗変化素子を用いた1T1R型の不揮発性記憶素子が開示されている。
 また、抵抗変化素子を用いた不揮発性記憶装置として、ダイオードと抵抗変化素子を直列に接続した、いわゆる1D1R型と呼ばれるクロスポイントメモリセルをマトリックス状にアレイ配置したものも知られている。
米国特許第7289351号明細書(Fig.2、Fig.5、Fig.7)
 しかしながら、本発明者は、上記従来の不揮発性記憶素子において、高抵抗状態でばらつきが発生してしまうという課題があることを見出した。
 本発明は、このような事情に鑑みてなされたものであり、高抵抗状態のばらつきを抑制することができる抵抗変化型不揮発性記憶素子の書き込み方法を提供することを目的とする。
 上記目的を達成するために、本発明に係る抵抗変化型不揮発性記憶素子の書き込み方法の一態様は、第1電極と、第2電極と、前記第1電極および前記第2電極の間に介在して、前記第1電極および前記第2電極に接しており、前記第1電極および前記第2電極の間に電気的信号が印加されることにより、高抵抗状態と低抵抗状態との2つの抵抗状態を可逆的に変化可能な抵抗変化層と、を備える抵抗変化型不揮発性記憶素子に対するデータの書き込み方法であって、前記抵抗変化層は、前記第1電極に接する第1の金属で構成される第1の金属酸化物と、前記第2電極に接する第2の金属で構成される第2の金属酸化物との積層構造で構成され、前記書き込み方法は、前記第1電極を基準に前記第2電極に負の第1の電圧を印加することにより、前記抵抗変化層を、抵抗値RLを示す前記低抵抗状態にするステップと、前記抵抗変化層を前記高抵抗状態にするステップと、を含み、前記抵抗変化層を前記高抵抗状態にするステップは、前記第1電極を基準に前記第2電極に正の第2の電圧を印加し前記抵抗変化層の抵抗値を、前記抵抗値RLより大きい抵抗値RHにするステップと、前記抵抗値RLより大きい抵抗値RHにするステップによって前記正の第2の電圧が印加された後に、前記第1電極を基準に前記第2電極に、前記抵抗変化層を前記高抵抗状態から前記低抵抗状態へ変化させる閾値電圧の絶対値より小さい負の第3の電圧を印加することにより、前記抵抗変化層を前記抵抗値RH以上の抵抗値RH1を示す前記高抵抗状態にするステップと、を含む。
 なお、これらの全般的または具体的な態様は、システム、方法、集積回路で実現されてもよく、システム、方法または集積回路の任意な組み合わせで実現されてもよい。
 本発明によれば、高抵抗状態の低抵抗側のばらつきを抑制し、抵抗変化ウィンドウを最大限確保することを可能とする抵抗変化型不揮発性記憶素子の書き込み方法を実現することができる。
図1は、実施の形態1に係る不揮発性記憶素子の構成の一例を示す模式図である。 図2Aは、実施の形態1に係る不揮発性記憶素子の書き込み方法を説明するためのフローチャートである。 図2Bは、実施の形態1に係る不揮発性記憶素子の書き込み方法を説明するためのフローチャートである。 図3Aは、実施の形態1に係る不揮発性記憶素子の高抵抗化の書き込み方法を説明するための図である。 図3Bは、実施の形態1に係る不揮発性記憶素子の高抵抗化の書き込み方法を説明するための図である。 図3Cは、従来の不揮発性記憶素子の高抵抗化の書き込み方法を説明するための図である。 図4は、実施の形態1に係る不揮発性記憶素子に対して、従来の書き込み方法で正負交互パルスを印加した場合の抵抗変化を示すグラフである。 図5は、実施の形態1に係る不揮発性記憶素子に対して、従来の書き込み方法で正負交互パルスを印加した場合の抵抗変化時の抵抗値の正規期待値分布を示すグラフである。 図6は、実施の形態1に係る不揮発性記憶素子を電圧スイープで低抵抗状態から高抵抗状態に変化させた場合の抵抗変化特性を示すグラフである。 図7は、実施の形態1に係る不揮発性記憶素子を電圧スイープで高抵抗状態から低抵抗状態に変化させる場合の抵抗変化特性を示すグラフである。 図8Aは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が200nsのときの抵抗値の正規期待値分布を示すグラフである。 図8Bは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が200nsのときの抵抗値の正規期待値分布を示すグラフである。 図8Cは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が200nsのときの抵抗値の正規期待値分布を示すグラフである。 図8Dは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が200nsのときの抵抗値の正規期待値分布を示すグラフである。 図8Eは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が200nsのときの抵抗値の正規期待値分布を示すグラフである。 図8Fは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が200nsのときの抵抗値の正規期待値分布を示すグラフである。 図8Gは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が200nsのときの抵抗値の正規期待値分布を示すグラフである。 図9Aは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が1μsのときの抵抗値の正規期待値分布を示すグラフである。 図9Bは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が1μsのときの抵抗値の正規期待値分布を示すグラフである。 図9Cは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が1μsのときの抵抗値の正規期待値分布を示すグラフである。 図9Dは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が1μsのときの抵抗値の正規期待値分布を示すグラフである。 図9Eは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が1μsのときの抵抗値の正規期待値分布を示すグラフである。 図9Fは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が1μsのときの抵抗値の正規期待値分布を示すグラフである。 図9Gは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が1μsのときの抵抗値の正規期待値分布を示すグラフである。 図10Aは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が10μsのときの抵抗値の正規期待値分布を示すグラフである。 図10Bは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が10μsのときの抵抗値の正規期待値分布を示すグラフである。 図10Cは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が10μsのときの抵抗値の正規期待値分布を示すグラフである。 図10Dは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が10μsのときの抵抗値の正規期待値分布を示すグラフである。 図10Eは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が10μsのときの抵抗値の正規期待値分布を示すグラフである。 図10Fは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が10μsのときの抵抗値の正規期待値分布を示すグラフである。 図10Gは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が10μsのときの抵抗値の正規期待値分布を示すグラフである。 図11Aは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が100μsのときの抵抗値の正規期待値分布を示すグラフである。 図11Bは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が100μsのときの抵抗値の正規期待値分布を示すグラフである。 図11Cは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が100μsのときの抵抗値の正規期待値分布を示すグラフである。 図11Dは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が100μsのときの抵抗値の正規期待値分布を示すグラフである。 図11Eは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が100μsのときの抵抗値の正規期待値分布を示すグラフである。 図11Fは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が100μsのときの抵抗値の正規期待値分布を示すグラフである。 図11Gは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が100μsのときの抵抗値の正規期待値分布を示すグラフである。 図12Aは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が1msのときの抵抗値の正規期待値分布を示すグラフである。 図12Bは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が1msのときの抵抗値の正規期待値分布を示すグラフである。 図12Cは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が1msのときの抵抗値の正規期待値分布を示すグラフである。 図12Dは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が1msのときの抵抗値の正規期待値分布を示すグラフである。 図12Eは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が1msのときの抵抗値の正規期待値分布を示すグラフである。 図12Fは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が1msのときの抵抗値の正規期待値分布を示すグラフである。 図12Gは、実施の形態1に係る高抵抗化の書き込み方法で100セット印加する場合で、かつ、高抵抗安定化書き込み電圧パルスの幅が1msのときの抵抗値の正規期待値分布を示すグラフである。 図13は、実施の形態1に係る各パルス幅とVtl1、Vtlの値との関係を示す図である。 図14は、実施の形態1の変形例に係る書き込み方法を不揮発性記憶素子に対して行った場合の抵抗変化を示すグラフである。 図15は、実施の形態1の変形例に係る書き込み方法を不揮発性記憶素子に対して行った場合抵抗変化時の抵抗値の正規期待値分布を示すグラフである。 図16は、実施の形態1に係る不揮発性記憶装置が具体的なアレイ構造のメモリセルを有する場合の一構成を示すブロック図である。 図17は、従来の不揮発性記憶素子の構成を示す図である。
 (本発明の一態様を得るに至った経緯)
 本発明者は、従来の半導体素子の書き込み方法に関し、低抵抗の状態から高抵抗の状態に変化する高抵抗化の書き込みの際、不十分な高抵抗状態に留まる抵抗状態になってしまう場合があるという問題が生じることを見出した。
 以下、それに至った経緯について説明する。
 図17は、従来の不揮発性記憶素子の構成であって、バイポーラ型の抵抗変化素子を用いた1T1R型の不揮発性記憶素子の構成を示している。
 図17に示す不揮発性記憶素子940は、抵抗変化素子930とMOSトランジスタ938とを備える。
 MOSトランジスタ938は、抵抗変化素子930へのアクセスを制御する能動素子の1例である。抵抗変化素子930とMOSトランジスタ938とは電気的に直列に接続されている。
 抵抗変化素子930は、第1の電極936と第2の電極932と抵抗変化層934と備え、抵抗変化層934は、第1の電極936および第2の電極932の間に挟まれて構成されている。
 以上のように構成された不揮発性記憶素子940への従来の書き込み方法は、例えば以下の通りである。
 すなわち、抵抗変化素子930の抵抗値が高抵抗の状態であるときに、MOSトランジスタ938のドレイン/ソース端子の内、抵抗変化素子930と接続しない端子(例えばソース端子)を基準電圧(接地)にし、抵抗変化素子930に低抵抗化電圧が印加されるように第1の電極936に正電圧を供給する。これにより、抵抗変化素子930の抵抗値が高抵抗の状態から低抵抗の状態へと遷移し、不揮発性記憶素子940の抵抗値が低抵抗の状態となる。
 一方、抵抗変化素子930の抵抗値が低抵抗の状態である時に、第2の電極932から第1の電極936の方向に電流が流れる高抵抗化電圧が抵抗変化素子930に印加されると、抵抗変化素子930の抵抗値が低抵抗の状態から高抵抗の状態へと遷移し、不揮発性記憶素子940の抵抗値が高抵抗の状態となる。
 しかしながら、従来の半導体素子の書き込み方法では、高抵抗状態でばらつきが発生してしまうという課題、すなわち、低抵抗の状態から高抵抗の状態に変化する高抵抗化の書き込みの際、不十分な高抵抗状態に留まる抵抗状態になってしまう場合があるという課題がある。以下その課題について説明する。
 本発明者らは、タンタルやハフニウム等の遷移金属の酸素不足型酸化物を抵抗変化層に有するバイポーラ型の抵抗変化型不揮発性記憶装置を検討した。ここで、酸素不足型の酸化物とは、その酸化物の化学量論的組成から酸素が不足した状態の酸化物をいう。化学量論的な組成を有する金属酸化物の多くは絶縁性を示すが、酸素不足型とすることで、半導体的、または導体的特性を示すようになる。
 上記従来の書き込み方法で、遷移金属の酸素不足型酸化物の書き込みを実施した。すなわち遷移金属の酸素不足型酸化物を抵抗変化層に有するメモリセルに高抵抗の状態に遷移させる場合は正電圧の書込みパルスを印加し、低抵抗の状態に遷移させる場合は負電圧の書込みパルスを印加した。
 すると、低抵抗の状態から高抵抗の状態に変化する高抵抗化の書き込みの際、高抵抗状態の抵抗値が所定の抵抗値にならずに、所定の抵抗値より低抵抗側にシフトした状態になってしまう場合があった。なお、以降、このような不十分な高抵抗状態に留まる抵抗状態を未高抵抗状態と呼ぶことにする。
 高抵抗化の書き込み後、高抵抗の状態が上記未高抵抗状態(所定の抵抗値より低抵抗側にシフトした状態)となるような場合には、複数のメモリセルを搭載する抵抗変化型不揮発性記憶装置では高抵抗の状態と低抵抗の状態との間の抵抗差である読み出しウィンドウが小さくなってしまう。つまり、このような場合には、例えば読出し速度が低下してしまったり、抵抗状態のばらつきによりウィンドウが消滅し、読出しができなくなったりする特性劣化や動作不良が発生する可能性がある。
 また、抵抗変化型不揮発性記憶装置を、なるべく高抵抗側(低電流側)で動作させたほうが、消費電力を低減できる。
 本開示の態様は、このような事情に鑑みてなされたものであり、高抵抗状態の低抵抗側のばらつきを抑制し、抵抗変化ウィンドウを最大限確保することを可能とする抵抗変化型不揮発性記憶素子の書き込み方法を提供することを目的とする。
 上記目的を達成するために、本開示の一態様に係る抵抗変化型不揮発性記憶素子の書き込み方法は、第1電極と、第2電極と、前記第1電極および前記第2電極の間に介在して、前記第1電極および前記第2電極に接しており、前記第1電極および前記第2電極の間に電気的信号が印加されることにより、高抵抗状態と低抵抗状態との2つの抵抗状態を可逆的に変化可能な抵抗変化層と、を備える抵抗変化型不揮発性記憶素子に対するデータの書き込み方法であって、前記抵抗変化層は、前記第1電極に接する第1の金属で構成される第1の金属酸化物と、前記第2電極に接する第2の金属で構成される第2の金属酸化物との積層構造で構成され、前記書き込み方法は、前記第1電極を基準に前記第2電極に負の第1の電圧を印加することにより、前記抵抗変化層を、抵抗値RLを示す前記低抵抗状態にするステップと、前記抵抗変化層を前記高抵抗状態にするステップと、を含み、前記抵抗変化層を前記高抵抗状態にするステップは、前記第1電極を基準に前記第2電極に正の第2の電圧を印加し前記抵抗変化層の抵抗値を、前記抵抗値RLより大きい抵抗値RHにするステップと、前記抵抗値RLより大きい抵抗値RHにするステップによって前記正の第2の電圧が印加された後に、前記第1電極を基準に前記第2電極に、前記抵抗変化層を前記高抵抗状態から前記低抵抗状態へ変化させる閾値電圧の絶対値より小さい負の第3の電圧を印加することにより、前記抵抗変化層を前記抵抗値RH以上の抵抗値RH1を示す前記高抵抗状態にするステップと、を含む。
 これにより、高抵抗化書き込みステップによって、抵抗変化型不揮発性記憶素子を高抵抗化するために正の電圧の印加後に負の電圧が印加される書き込みを行う。つまり、高抵抗化書き込みステップにおいて、高抵抗化するための第1の高抵抗化書き込みステップの後に高抵抗安定化のための第2の高抵抗化書き込みステップが行われる。換言すると、第1の高抵抗化書き込みステップでたとえ抵抗変化型不揮発性記憶素子が未高抵抗状態になる場合があっても、その後に続く高抵抗安定化のための第2の高抵抗化書き込みステップによって抵抗変化型不揮発性記憶素子は確実に高抵抗状態に変化できる。
 それにより、未高抵抗状態が出現し得る抵抗変化素子であっても、正常な高抵抗状態に修正することにより、高抵抗状態の低抵抗側のばらつきを抑制し、抵抗変化ウィンドウを最大限確保することを可能とする抵抗変化素子の書き込み方法を実現することができる。
 また、例えば前記第1の金属酸化物の酸素不足度は、前記第2の金属酸化物の酸素不足度より大きいとしてもよい。
 また、例えば前記第2金属酸化物の抵抗値は、前記第1の金属酸化物の抵抗値より大きいとしてもよい。
 また、例えば前記第1の金属と前記第2の金属とは、それぞれ遷移金属であるとしてもよい。
 また、例えば前記第1の遷移金属と前記第2の遷移金属とは同じ金属であるとしてもよい。
 ここで、例えば前記第1の金属と前記第2の金属とは、タンタルであるとしてもよい。
 また、例えば前記第1の金属と前記第2の金属とは異なる金属であり、前記第2の金属の標準電極電位は、前記第1の金属の標準電極電位より低いとしてもよい。
 また、例えば前記抵抗変化層を前記抵抗値RH以上の抵抗値RH1を示す前記高抵抗状態にするステップでは、前記抵抗変化層の抵抗値を、前記抵抗値RLより大きい抵抗値RHにするステップによって前記正の第2の電圧が印加された後の前記負の第3の電圧を印加し、印加された前記負の第3の電圧を用いて前記抵抗変化型不揮発性記憶素子のデータの読み出しを行うとしてもよい。
 また、上記目的を達成するために、本発明の一態様に係る抵抗変化型不揮発性記憶素子は、第1電極と、第2電極と、前記第1電極および前記第2電極の間に介在して、前記第1電極および前記第2電極に接しており、前記第1電極および前記第2電極の間に電気的信号が印加されることにより、高抵抗状態と低抵抗状態との2つの抵抗状態を可逆的に変化可能な抵抗変化層と、を備え、前記抵抗変化層は、前記抵抗変化層は、前記第1電極に接する第1の金属で構成される第1の金属酸化物と、前記第2電極に接する第2の金属で構成される第2の金属酸化物との積層構造で構成され、前記第1電極を基準に前記第2電極に負の第1の電圧が印加されることにより、抵抗値RLを示す前記低抵抗状態に変化する特性と、前記第1電極を基準に前記第2電極に正の第2の電圧を印加されることで前記抵抗値RLより大きい抵抗値RHにされ、前記第2の電圧の印加後に、前記第1電極を基準に前記第2電極に、負の第3の電圧であって前記抵抗変化層を前記高抵抗状態から前記低抵抗状態へ変化させる閾値電圧の絶対値より小さい前記第3の電圧が印加されることにより、前記抵抗値RH以上の抵抗値RH1を示す前記高抵抗状態に変化する特性と、を有するとしてもよい。
 本開示によれば、高抵抗状態の低抵抗側のばらつきを抑制し、抵抗変化ウィンドウを最大限確保することを可能とする抵抗変化素子の書き込み方法を実現することができる。
 具体的には、抵抗変化素子に対して第1の高抵抗化書き込みを実施したときに抵抗変化素子が不十分に高抵抗化された未高抵抗状態に変化する場合があるとしても第1の高抵抗化書き込み後に高抵抗安定化のための第2の高抵抗化書き込みを実施することによって確実に高抵抗状態とすることができる。
 それにより、高抵抗状態のばらつきを抑え、抵抗変化のウィンドウを高抵抗側に最大限確保することが可能となる抵抗変化型不揮発性記憶素子の書き込み方法が実現できる。また、抵抗変化型不揮発性記憶素子の高抵抗状態の安定化を実現することができるのに加えて、メモリセルの読出し高速化や歩留り向上、低消費電力化を実現することができる。
 なお、これらの全般的または具体的な態様は、システム、方法、集積回路で実現されてもよく、システム、方法または集積回路の任意な組み合わせで実現されてもよい。
 また、以下で説明する実施の形態は、いずれも本発明の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。
 上述したように、本願発明者らは、バイポーラ型の抵抗変化材料として、タンタルやハフニウム等の遷移金属の酸素不足型酸化物を抵抗変化層に用いたメモリセルで構成された抵抗変化型不揮発性記憶装置を検討している。以下の実施の形態では、このような材料を用いたメモリセルで構成された抵抗変化型不揮発性記憶素子について説明する。
 (実施の形態1)
 図1は、実施の形態1に係る不揮発性記憶素子の構成の一例を示す模式図である。
 図1に示す不揮発性記憶素子100は、抵抗変化素子10と電流制御素子20とを備え、抵抗変化素子10と電流制御素子とは直列に接続されている。
 抵抗変化素子10は、第1の電極1と、第2の電極2と、第1の電極1および第2の電極2の間に介在して、第1の電極1と第2の電極2とに接している抵抗変化層3とを備え、第1の電極1と抵抗変化層3と第2の電極2とは、基板上にこの順に積層されて構成される。
 抵抗変化層3は、第1の電極1と第2の電極2とに挟まれて構成されており、第1の電極1と第2の電極2との間に電気的信号が印加されることにより、高抵抗状態と低抵抗状態との2つの抵抗状態が可逆的に変化する。抵抗変化層3は、酸素不足型の遷移金属酸化物で構成された第1の遷移金属酸化物層3aと、第1の遷移金属酸化物層3aよりも酸素不足度が小さい遷移金属酸化物で構成された第2の遷移金属酸化物層3bとで構成される。
 ここで、酸素不足度とは、それぞれの遷移金属において、その化学量論的組成の酸化物を構成する酸素の量に対し、不足している酸素の割合をいう。例えば、遷移金属がタンタル(Ta)の場合、化学量論的な酸化物の組成はTaであって、TaO2.5と表現できる。ここで、TaO2.5の酸素不足度は0%である。また、例えばTaO1.5の組成の酸素不足型のタンタル酸化物の酸素不足度は、酸素不足度=(2.5-1.5)/2.5=40%となる。
 通常、化学量論的組成の酸化物は、絶縁体的な特性を示すことが多いが、酸素不足型の遷移金属酸化物は半導体的な特性を示すことが多い。つまり、一般的には酸素不足度がより小さい(化学量論的組成により近い)遷移金属酸化物は、酸素不足度がより大きい遷移金属酸化物より抵抗が高いといえる。ここで、第2の遷移金属酸化物層3bは、第1の遷移金属酸化物層3aよりも抵抗が高くてもよい。このような構成とすることにより、抵抗変化時に第1の電極1及び第2の電極2の間に印加された電圧は、第2の遷移金属酸化物層3bにより多くの電圧が分配され、第2の遷移金属酸化物層3b中で発生する遷移金属酸化物の酸化還元反応をより起こしやすくすることができる。例えば、第2の遷移金属酸化物層3bを構成する遷移金属が、酸化物として複数の化学量論的組成をとりうる場合、それらのうち最も抵抗値の高い遷移金属酸化物または当該遷移金属酸化物から酸素が欠損した酸素不足型の遷移金属酸化物を用いてもよい。また、第1の遷移金属酸化物層3aを構成する金属が、酸化物として複数の化学量論的組成をとりうる場合、それらのうち、第2の遷移金属酸化物層3bを構成する遷移金属酸化物よりも抵抗値の低い酸素不足型の遷移金属酸化物を用いてもよい。
 ここで、第1の遷移金属酸化物層3aを構成する第1の遷移金属と、第2の遷移金属酸化物層3bを構成する第2の遷移金属とは、同じ材料を用いてもよいし、異なる材料を用いてもよい。遷移金属としては、タンタル(Ta)、チタン(Ti)、ハフニウム(Hf)、ジルコニウム(Zr)、ニオブ(Nb)、タングステン(W)等を用いることができる。遷移金属は複数の酸化状態をとることができるため、異なる抵抗状態を酸化還元反応により実現することが可能である。第1の遷移金属と第2の遷移金属とが互いに異なる材料を用いる場合、第2の遷移金属の標準電極電位は、第1の遷移金属の標準電極電位より低くてもよい。抵抗変化現象は、抵抗が高い第2の遷移金属酸化物層3b中またはその近傍に形成された微小なフィラメント(導電パス)中で酸化還元反応が起こってその抵抗値が変化すると考えられるからである。標準電極電位は、その値が低い方が酸化されやすいという特性を表し、第2の遷移金属酸化物中でより多くの酸化還元反応が起こる方が、安定な動作を期待できる。
 ここで、抵抗変化層3の抵抗値の増加(高抵抗化)は、正の電圧パルスによって酸素イオンが第1の遷移金属酸化物層3aから第2の遷移金属酸化物層3bに移動し、第2の遷移金属酸化物層3b中またはその近傍に形成された微小なフィラメントの酸素欠陥を補償することによって発現すると考えられる。一方、抵抗変化層3の抵抗値の減少(低抵抗化)は、負の電圧パルスによって酸素イオンが第2の遷移金属酸化物層3bから第1の遷移金属酸化物層3aに移動し、第2の遷移金属酸化物層3b中またはその近傍に形成された微小なフィラメントの酸素欠陥が増加することによって発現すると考えられる。
 抵抗変化層3において、第1の遷移金属酸化物層3aを構成する第1の遷移金属と、第2の遷移金属酸化物層3bを構成する第2の遷移金属をともに例えばタンタルを用いる場合には、第1の遷移金属酸化物層3aをTaO、第2の遷移金属酸化物層3bをTaOと表したとき、0.8≦x≦1.9、x<yであってもよい。
 また、例えば第1の遷移金属酸化物層3aを構成する第1の遷移金属と、第2の遷移金属酸化物層3bを構成する第2の遷移金属をともにハフニウムを用いる場合には、第1の遷移金属酸化物層3aの組成をHfOとし、第2の遷移金属酸化物層3bの組成をHfOとすると、0.9≦x≦1.6であって、yが1.8<yであってもよい。また、例えば第1の遷移金属酸化物層3aを構成する第1の遷移金属と、第2の遷移金属酸化物層3bを構成する第2の遷移金属をともにジルコニウムを用いる場合には、第1の遷移金属酸化物層3aの組成をZrOとし、第2の遷移金属酸化物層3bの組成をZrOとすると、0.9≦x≦1.4であって、yが1.9<yであってもよい。
 第2の電極2は、抵抗変化層3を構成する遷移金属より標準電極電位が高い金属単体または合金を含んで構成されている。第2の電極2は、単層構造で構成されているとしてもよいし複数層の積層構造で構成されるとしてもよい。ここで、抵抗変化層3を構成する遷移金属より標準電極電位が高い金属は、白金(Pt)、イリジウム(Ir)、パラジウム(Pd)等の貴金属類であってもよい。
 第2の電極2を構成する材料には、抵抗変化層3の材料が酸素不足型の遷移金属酸化物で構成される場合には、酸素不足型の遷移金属酸化物を構成する当該遷移金属の標準電極電位より高い標準電極電位を有していて、下部電極層(第1の電極1)の標準電極電位が上部電極層(第2の電極2)の標準電極電位より低くなるような材料を選ぶ。それにより、標準電極電位が高い方の電極(第2の電極2)と抵抗変化層3の界面において、印加される電圧に応じて抵抗変化層3の酸化還元反応が優先的に発生し、高酸素濃度あるいは低酸素濃度の抵抗変化層を形成できるため、安定動作が得られる。特に、酸素不足型の遷移金属酸化物がタンタル酸化物である場合には、酸素不足度が小さい第1の遷移金属酸化物層3aに接する電極に上記標準電極電位が高い方の電極材料(例えば、Pt、Ir、Pd等)を用い、酸素不足度が大きい第2の遷移金属酸化物層3bに接する電極に上記標準電極電位が低い方の電極材料(例えば、タンタル(Ta)、窒化タンタル(TaN)、チタン(Ti)等)を用いればよい。
 上記の構成とすることにより、抵抗変化素子10は安定な抵抗変化特性を得ることができる。
 また、電流制御素子20は、選択トランジスタやダイオードなどの負荷抵抗素子で構成される。
 電流制御素子20は、正の印加電圧領域と負の印加電圧領域とにそれぞれ閾値電圧を有し、印加電圧の絶対値がそれぞれの閾値電圧の絶対値より大きい場合に導通(オン)状態となり、印加電圧の値がそれ以外の領域の場合(印加電圧の絶対値が対応するそれぞれの閾値の絶対値より小さい場合)に遮断(オフ)状態となるような非線形の特性を有する。すなわち、電流制御素子20が導通状態(オン)の時、電流制御素子は抵抗変化素子10に対し負荷抵抗となる。
 以上のように、不揮発性記憶素子100は構成される。
 次に、以上のように構成された不揮発性記憶素子100の高抵抗化の書き込み方法について説明する。
 図2Aは、実施の形態1に係る不揮発性記憶素子の高抵抗化の書き込み方法を説明するためのフローチャートである。図2Bは、図2Aの破線部で囲まれた工程を示すフローチャートである。図3Aは、実施の形態1に係る不揮発性記憶素子の高抵抗化の書き込み方法を説明するための図である。図3Bは、図3Aの破線部で囲まれた部分を示す図である。図3Cは、従来の不揮発性記憶素子の高抵抗化の書き込み方法を説明するための図である。なお、本実施の形態1に係る不揮発性記憶素子の書き込み方法は、少なくとも図2Bおよび図3Bに示される工程を備えればよく、それ以外の工程については実施の形態に応じて適宜採用される任意の工程である。
 なお、以下では、電圧印加の極性に関して、特に断らない限り、抵抗変化素子10の第1の電極1よりも高い電圧が第2の電極2に印加される場合を、正の電圧印加と定義する。
 図2Aに示すように、まず、抵抗変化素子10において、第1の電極1を基準に第2の電極2に、低抵抗化閾値電圧より振幅が十分大きい負の第1の電圧-Vlを印加することにより、抵抗変化層3を低抵抗状態にする低抵抗化書き込みが行われているとする(S11)。ここで、第1の高抵抗状態の抵抗変化素子10に負の電圧を印加し、その振幅を徐々に大きくしていった場合、低抵抗化が起こり出す電圧を低抵抗化閾値電圧という。同様に、低抵抗状態の抵抗変化素子10に正の電圧を印加し、その振幅を徐々に大きくしていった場合、高抵抗化が起こり出す電圧を第1の高抵抗化閾値電圧という。
 具体的には、図3Aに示すように、抵抗変化素子10に対して、第1の電圧(低抵抗化書き込み電圧)-Vlを印加して、抵抗変化層3を低抵抗状態にする。図2Aには図示していないが、この状態において、図3Aに示すように、低抵抗化閾値電圧あるいは第1の高抵抗化閾値電圧よりも振幅が小さい電圧を印加して、抵抗変化素子10の抵抗値を読み出してもよい(図3Aにおける「Vread」)。
 次に、抵抗変化素子10において、抵抗変化層3を第1の高抵抗状態にする高抵抗化書き込みを行う(S12)。
 より詳細には、S12において、まず、第1の電極1を基準に第2の電極2に第1の高抵抗化閾値電圧より振幅が十分大きい正の第2の電圧V2を印加して抵抗変化素子10を第1の高抵抗状態にする第1の高抵抗化書き込みを行う(S121)。次いで、S121において正の第2の電圧V2が印加された後に、第1の電極1を基準に、低抵抗化閾値電圧の振幅より小さい負の第3の電圧-V3を第2の電極2に印加することにより、抵抗変化層3を第2の高抵抗状態にする第2の高抵抗化書き込みを行う(S122)。
 具体的には、図3Aに示すように、抵抗変化素子10に対して、第1の高抵抗化書き込み電圧V2を印加して抵抗変化層3を第1の高抵抗状態にした後、不揮発性記憶素子100に対して、第2の高抵抗化書き込み電圧-V3を印加して、抵抗変化層3を第2の高抵抗状態にする。ここで、図3Aに示すように、第1の高抵抗化書き込み電圧V2と第2の高抵抗化書き込み電圧-V3とは、極性が異なっており、かつ第2の高抵抗化書き込み電圧-V3の振幅は、低抵抗化閾値電圧の絶対値より小さい。ここで、第2の高抵抗状態の抵抗値は、第1の高抵抗状態の抵抗値より高い。
 以上のように不揮発性記憶素子100は高抵抗化の書き込みが行われる。
 つまり、抵抗変化素子10に対して第1の高抵抗化書き込みだけでは、抵抗変化素子10が不十分に高抵抗化された状態になる場合があるが、第1の高抵抗化書き込み後に第2の高抵抗化書き込みを実施することによって確実に高抵抗状態にすることができる。それにより、高抵抗状態のばらつきを抑え、抵抗変化のウィンドウ(低抵抗状態と高抵抗状態の抵抗値の差)を高抵抗側に最大限確保することが可能となる抵抗変化型不揮発性記憶素子の書き込み方法が実現できる。
 また、抵抗変化型の不揮発性記憶素子100の高抵抗状態の安定化を実現することができるのに加えて、抵抗変化のウィンドウが広がるため、メモリセルの読出しの高速化や歩留り向上、低消費電力化を実現することができるという効果も奏する。
 なお、実施の形態1に係る不揮発性記憶素子の書き込み方法は、図2B、図3Bに示す不揮発性記憶素子の高抵抗化の書き込み工程(S12)を備えればよく、S11は適宜導入される任意の工程である。また、不揮発性記憶素子の高抵抗化の書き込み(S12)は、一回のみに限らず、複数回実施するとしてもよい。その場合であっても、高抵抗化書き込み(S12)は、高抵抗化書き込みのフローを第2の高抵抗化書き込み(S122)で終了することにより、言い換えると、本実施の形態の書き込み方法において、最後に印加される電圧を第2の高抵抗化書き込み電圧とすることにより、上述の効果を実現することができる。
 以下、本実施の形態の書き込み方法が、高抵抗状態の低抵抗側のばらつきを抑制できることを説明する。
 まず、従来の不揮発性記憶素子の書き込み方法について説明し、それをもとに実施の形態1の不揮発性記憶素子の書き込み方法を想到したことについて説明する。
 図4は、実施の形態1に係る不揮発性記憶素子に対して、従来の書き込み方法で正負交互パルスを印加した場合の抵抗変化を示すグラフである。図5は、実施の形態1に係る不揮発性記憶素子に対して、従来の書き込み方法で正負交互パルスを印加した場合の抵抗変化時の抵抗値の正規期待値分布を示すグラフである。
 図4では、図1に示す不揮発性記憶素子100の第1の電極1と第2の電極2との間に極性が異なる電気的信号を印加することで、高抵抗状態と低抵抗状態との2つの抵抗状態を可逆的に変化させている。具体的には、図4では、不揮発性記憶素子100の両端(抵抗変化素子10と電流制御素子20を含む)の端子に対して、図3Cに示すように、高抵抗化書き込み電圧V2、低抵抗化書き込み電圧-Vlを交互に印加したときの抵抗変化の様子を示している。図4の横軸は、高抵抗化書き込み電圧または低抵抗化書き込み電圧の印加すなわち各電圧パルス印加の回数(パルス数)を示しており、縦軸は、不揮発性記憶素子100の抵抗値を示している。図5はその時の抵抗値の正規期待値分布を示している。
 ここでは、電流制御素子20として抵抗値Rの固定抵抗を用いている。また、不揮発性記憶素子100に印加される電圧のパルス幅は200nsとしている。不揮発性記憶素子100の抵抗値は、高抵抗化書き込み電圧または低抵抗化書き込み電圧の印加後すなわち各電圧パルス印加後に、Vreadで測定(read)を行ったときの値である。
 図4および図5より、高抵抗状態での不揮発性記憶素子100の抵抗値は、最小値Rmin1、最大値Rmax1となっており、1桁程度ばらついていることがわかる。
 次に、従来の不揮発性記憶素子の書き込み方法によって不揮発性記憶素子100を低抵抗状態から高抵抗状態へ抵抗変化させた場合の様子について詳しく調べたので、その結果について説明する。
 図6は、実施の形態1に係る不揮発性記憶素子を電圧スイープで低抵抗状態RLから高抵抗状態RHに変化させた場合の抵抗変化特性を示すグラフである。
 図6では、不揮発性記憶素子100が低抵抗状態RLの場合において、正の電圧パルスを、所定のステップ電圧で高抵抗化書き込み電圧V2まで振幅を増加させながら不揮発性記憶素子100に印加(電圧スイープ)したときの不揮発性記憶素子100の抵抗値を示している。
 ここで、正の電圧パルスのパルス幅は200nsとしており、その抵抗値は、各パルス印加後にVreadを不揮発性記憶素子100に印加して、不揮発性記憶素子100に流れる電流を検出することで求めている。
 図6より、正の電圧パルスによる印加電圧がVthまでは不揮発性記憶素子100の抵抗値はほとんど変化せず低抵抗状態RLのままである。印加電圧がVthより大きくなると抵抗値は増加し始める。つまり、この高抵抗化し始める電圧を第1の高抵抗化閾値電圧とすると、第1の高抵抗化閾値電圧はここではVthである。さらに印加電圧を増加させると途中で一旦抵抗値は減少するが、増減を繰り返しながら抵抗値は徐々に増加し、高抵抗状態RHになっていく現象がみられる。
 図4および図5に示すように高抵抗状態RHの抵抗値ばらつきが大きいのは、図6に示すように、高抵抗化時に抵抗値の増加と減少とが同時に起こっているためと考えられる。
 ここで、上述したように、抵抗変化層3の抵抗値の増加は、正の電圧パルスによって酸素イオンが第1の遷移金属酸化物層3aから第2の遷移金属酸化物層3bに移動し、第2の遷移金属酸化物層3b中またはその近傍に形成された微小なフィラメントの酸素欠陥を補償することによって発現すると考えられる。一方、高抵抗化時の抵抗値の減少は、正の電圧パルスによって第2の遷移金属酸化物層3b中またはその近傍に形成された微小なフィラメントの絶縁破壊が進行したり、酸素欠陥にトラップされていた電子が放出されたりすることなどにより、酸素欠陥が増加することによって発現すると考えられる。
 次に、従来の不揮発性記憶素子の書き込み方法によって不揮発性記憶素子100を高抵抗状態から低抵抗状態へ抵抗変化させた場合の様子について詳しく調べたので、その結果について説明する。この正電圧パルスによる第1の高抵抗状態への書き込みを、第1の高抵抗化書き込みステップと呼ぶ。
 図7は、実施の形態1に係る不揮発性記憶素子を電圧スイープで高抵抗状態RHから低抵抗状態RLに変化させた場合の抵抗変化特性を示すグラフである。図7において、横軸左方向が負の電圧方向である。
 図7では、不揮発性記憶素子100が通常の第1の高抵抗状態RHの場合において、負の電圧パルスの振幅を、所定のステップ電圧で-V1まで増加させながら不揮発性記憶素子100に印加(電圧スイープ)したときの不揮発性記憶素子100の抵抗値を示している。
 ここで、上記と同様に、負の電圧パルスのパルス幅は200nsとしており、その抵抗値は、各パルス印加後にVreadを不揮発性記憶素子100に印加して、不揮発性記憶素子100に流れる電流を検出することでその抵抗値を求めている。
 図7を見ると、負の電圧パルスによる印加電圧が0から-Vtl1の範囲では不揮発性記憶素子100の第1の高抵抗状態RHの抵抗値はあまり変化していない。しかし、印加電圧が-Vtl1から-Vtlにかけて第1の高抵抗状態RHから第2の高抵抗状態RH1へと抵抗値が増加していることがわかる。
 これは、正電圧パルス印加時に生じた酸素イオンまたは電子が、負電圧パルスを印加することによって再び第2の遷移金属酸化物層3b中の酸素欠陥に捕獲されたため抵抗値が増加したものと推測している。電子の捕獲は、第2の遷移金属酸化物層3bのみ(つまり単層)で抵抗変化層3が構成される場合でも起こりうる。
 さらに負の電圧パルスによる印加電圧の振幅がVtlより大きくなると、第2の高抵抗状態RH1から低抵抗状態RLへとその抵抗値が減少していることがわかる。なお、本実施の形態において、-Vtl1とは、第1の高抵抗状態RHにある不揮発性記憶素子100に対して印加電圧を減少させていった場合(負の電圧のパルスによる印加電圧の振幅を増加させていった場合)に、抵抗値が実質的に変化しないフラットな領域から、抵抗値が増大する領域へと変化するときの、立ち上がりの点における印加電圧に対応する。
 以上のことから、正の電圧パルスで不揮発性記憶素子100の抵抗状態を低抵抗状態から高抵抗状態へ変化させた後、高抵抗状態から低抵抗状態へと変化するための低抵抗化閾値電圧(図7においては-Vtl)よりも絶対値の小さい適切な負の電圧パルス(振幅がVtl1より大きくVtlより小さい電圧パルス)を印加することにより、通常の第1の高抵抗状態RHよりもさらに高抵抗な第2の高抵抗状態RH1に変化させることができることがわかった。この負電圧パルスによる第2の高抵抗状態RH1への書き込みを、以下では、高抵抗安定化書き込みと呼ぶ。なお、高抵抗安定化書き込みは、第2の高抵抗化書き込みステップと呼ぶこともある。
 以上のことから、高抵抗安定化書き込み(抵抗変化層3を高抵抗状態にするステップ)は、以下のように表現できる。すなわち、抵抗変化層3を高抵抗状態にするステップは、第1電極1を基準に第2電極2に正の第2の電圧を印加し抵抗変化層3を、低抵抗状態RL(抵抗値RL)より大きい抵抗値である高抵抗状態(抵抗値RH)にするステップと、抵抗値RLより大きい抵抗値RHにするステップによって正の第2の電圧が印加された後に、第1電極1を基準に第2電極2に、抵抗変化層3を高抵抗状態から低抵抗状態へ変化させる閾値電圧の絶対値より小さい負の第3の電圧を印加することにより、抵抗変化層3を抵抗値RH以上の抵抗値RH1を示す高抵抗状態にするステップを含む。
 ここで、第3の電圧は、低抵抗化閾値電圧(図7においては-Vtl)よりも絶対値の小さい適切な負の電圧パルスである。より具体的には、第3の電圧は、振幅の絶対値がVtl1より大きくVtlより小さい電圧パルスである。なお、電圧パルス-Vtl1は、図7より、第1の高抵抗状態RH(抵抗値RH)から第2の高抵抗状態RH1(抵抗値RH1)へと抵抗値が増加し始める閾値電圧とも表現できる。また、この第3の電圧は、後述するように、そのパルス幅をより大きくした場合、その振幅の絶対値をより小さくしてもよい。
 次に、本実施の形態の不揮発性記憶素子100の書き込み方法の特徴である高抵抗安定化書き込みの電圧パルスの電圧値の範囲にパルス幅依存性があるかどうかについて検討を行った。その結果について説明する。
 図8A~図8Gは、実施の形態1に係る高抵抗化の書き込み方法(第1の高抵抗化書き込み後に第2の高抵抗化書き込みを実施)を100回印加し、かつ、高抵抗安定化書き込み電圧パルスの幅が200nsのときの抵抗値の正規期待値分布を示すグラフである。同様に、図9A~図9Gは、実施の形態1に係る高抵抗化の書き込み方法で100回印加し、かつ、高抵抗安定化書き込み電圧パルスの幅が1μsのときの抵抗値の正規期待値分布を示すグラフである。図10A~図10Gは、実施の形態1に係る高抵抗化の書き込み方法で100回印加し、かつ、高抵抗安定化書き込み電圧パルスの幅が10μsのときの抵抗値の正規期待値分布を示すグラフである。図11A~図11Gは、実施の形態1に係る高抵抗化の書き込み方法で100回印加し、かつ、高抵抗安定化書き込み電圧パルスの幅が100μsのときの抵抗値の正規期待値分布を示すグラフである。図12A~図12Gは、実施の形態1に係る高抵抗化の書き込み方法で100回印加し、かつ、高抵抗安定化書き込み電圧パルスの幅が1msのときの抵抗値の正規期待値分布を示すグラフである。それぞれの図において、横軸の抵抗値はlogスケールで表示されている。
 具体的には、図8A~図8G、図9A~図9G、図10A~図10G、図11A~図11Gおよび図12A~図12Gは、1)負の低抵抗化書き込み電圧パルス(振幅V1、パルス幅200ns、印加後の抵抗値を白四角で表示)、2)正の第1の高抵抗化書き込み電圧パルス(条件:振幅V2、パルス幅200ns、印加後の抵抗値を白三角で表示)、3)負の高抵抗安定化書き込み電圧パルス(振幅V3、印加後の抵抗値を黒四角で表示)の3つのパルスを順に100回印加し、それぞれ印加後の抵抗値の正規期待値分布のグラフを示している。また、不揮発性記憶素子100の抵抗値の測定は、各パルス印加後に正の読み出し電圧Vreadを不揮発性記憶素子100に印加して、不揮発性記憶素子100に流れる電流を検出することでその抵抗値を求めている。
 ここで、高抵抗安定化書き込み電圧パルスのパルス幅は、それぞれ図8Aから図8Gでは200ns、図9Aから図9Gでは1μs、図10Aから図10Gでは10μs、図11Aから図11Gでは100μs、図12A~図12Gでは1msとしている。
 また、図8A、図9A、図10A、図11Aおよび図12Aにおいては、それぞれ高抵抗安定化書き込み電圧パルスの振幅V3をVaとしている。図8B、図9B、図10B、図11Bおよび図12Bにおいては、それぞれ高抵抗安定化書き込み電圧パルスの振幅V3をVbとしている。同様に、図8C~図12Cにおいては、V3=Vc、図8D~図12Dにおいては、V3=Vd、図8E~図12EにおいてはV3=Ve、図8F~図12FにおいてはV3=Vf、図8G~図12GにおいてはV3=Vgとしている。
 ここで、Va、Vb、Vc、Vd、Ve、Vf、Vgはそれぞれある一定の電圧であり、Vtl1との関係は表1に示す通りである。また、図13は、実施の形態1に係る各パルス幅とVtl1、Vtlの値との関係を示す図である。
 図13に示すように、Vtl1、Vtlの値は、パルス幅が大きくなるほど小さくなるため、同じ電圧パルス振幅でも、Vtl1との関係は異なってくる。表1においても、各パルス幅におけるVtl1の値は、図13に示すように互いに異なる。
Figure JPOXMLDOC01-appb-T000001
 まず、図8A~図8Gを見ると、高抵抗安定化書き込み電圧パルスのパルス幅が200nsの場合には、負の高抵抗安定化書き込み電圧パルスの振幅V3が(Vtl1-0.2V)以上Vtl1以下のとき、高抵抗安定化書き込み後の抵抗値は第1の高抵抗化書き込み後の抵抗値と比べて、その抵抗値の分布にほとんど差がないことがわかる。また、高抵抗安定化書き込み電圧パルスの振幅V3を(Vtl1+0.1V)以上(Vtl1+0.2V)以下と大きくしたときには、高抵抗安定化書き込みによって、第1の高抵抗化書き込み後の抵抗値のばらつきの中で特に抵抗の低いものが改善され、より高抵抗な状態になっていることがわかる。さらに高抵抗安定化書き込み電圧パルスの振幅V3を大きくして(Vtl1+0.3V)とした場合には、高抵抗安定化書き込みによって全体的に抵抗値が増加しているのが確認できる。しかしながら、高抵抗安定化書き込み電圧パルスの振幅V3が(Vtl1+0.4V)のときには、高抵抗化書き込み後と比べて抵抗値が減少するものが現れ、抵抗値の分布のばらつきは大きくなる。これは、一部低抵抗化が起こっているものと考えられる。
 したがって、高抵抗安定化書き込み電圧パルスのパルス幅が200nsの場合には、その負の高抵抗安定化書き込みパルス電圧の振幅は、(Vtl1+0.1V)以上(Vtl1+0.3V)以下に設定してもよい。
 次に、図9A~図9G、図10A~図10G、図11A~図11Gおよび図12A~図12Gについても同様に考察する。
 高抵抗安定化書き込み電圧パルスのパルス幅が1μsの場合(図9A~図9G)は、図9B~図9Eからわかるように、高抵抗安定化書き込みパルス電圧の振幅V3は(Vtl1+0.05V)以上(Vtl1+0.25V)以下である場合に、高抵抗安定化書き込み電圧パルス-V3を印加することによって、第1の高抵抗化書き込み後と比べてばらつきを高抵抗側に改善できる、または全体的に抵抗を増加させることができることがわかる。
 高抵抗安定化書き込み電圧パルスのパルス幅が10μsの場合(図10A~図10G)は、図10A~図10Eからわかるように、高抵抗安定化書き込みパルス電圧の振幅V3は(Vtl1+0.05V)以上(Vtl1+0.35V)以下である場合に、高抵抗安定化書き込み電圧パルス-V3を印加することによって、第1の高抵抗化書き込み後と比べてばらつきを高抵抗側に改善できる、または全体的に抵抗を増加させることができることがわかる。
 また、高抵抗安定化書き込み電圧パルスのパルス幅が100μsの場合(図11A~図11G)は、図11A~図11Dからわかるように、高抵抗安定化書き込みパルス電圧の振幅V3は(Vtl1+0.1V)以上(Vtl1+0.3V)以下である場合に、高抵抗安定化書き込み電圧パルス-V3を印加することによって、第1の高抵抗化書き込み後と比べてばらつきを高抵抗側に改善できる、または全体的に抵抗を増加させることができることがわかる。
 高抵抗安定化書き込み電圧パルスのパルス幅が1msの場合(図12A~図12G)、高抵抗安定化書き込みパルス電圧の振幅V3は(Vtl1+0.1V)以上(Vtl1+0.3V)以下である場合に、高抵抗安定化書き込み電圧パルス-V3を印加することによって、第1の高抵抗化書き込み後と比べてばらつきを高抵抗側に改善できる、または全体的に抵抗を増加させることができることがわかる。
 以上のように、高抵抗安定化書き込みパルスのパルス幅を大きいほど、高抵抗安定化書き込みパルスの振幅が小さくても、高抵抗状態のばらつき改善の効果があることがわかり、高抵抗状態のばらつき改善の効果が第2の遷移金属酸化物層3bに注入される電荷量に関係していると考えられる。つまり、高抵抗状態のばらつき改善の効果がある高抵抗安定化書き込みパルスの振幅の下限値は、高抵抗安定化書き込みパルスのパルス幅を大きいほど小さい値でもよい。
 一方、低抵抗状態の分布については、上記のいずれの条件においてもほとんど変化がないことがわかる。このことから、第1の高抵抗化書き込み後と比べて高抵抗安定化書き込みを行えば、第2の高抵抗状態の抵抗値のばらつきを高抵抗側に改善できると抵抗変化ウィンドウが拡大できることがわかる。
 また、図8A~図8G、図9A~図9G、図10A~図10G、図11A~図11Gおよび図12A~図12Gから、高抵抗安定化書き込み電圧パルスのパルス幅が大きい方が、高抵抗安定化書き込みパルス電圧の振幅が小さくてもより高抵抗な状態にできることがわかる。しかしながら、逆に高抵抗安定化書き込み電圧パルスのパルス幅が大きい場合には、低抵抗化閾値電圧の絶対値Vtlも低くなるため、高抵抗安定化書き込み電圧パルスの振幅をあまり高くすることはできない。この低抵抗化閾値電圧の絶対値Vtlは、第1の高抵抗書き込み後の抵抗値、ひいては低抵抗状態の抵抗値、第1の高抵抗化書き込み電圧パルスの条件、低抵抗化書き込み電圧パルスの条件、第1、第2の遷移金属酸化物層の膜厚、組成などによって決定される。
 以上、本実施の形態によれば、高抵抗状態のばらつきを抑制し、抵抗変化ウィンドウを最大限確保することを可能とする抵抗変化素子の書き込み方法を実現することができる。
 具体的には、抵抗変化素子に対して第1の高抵抗化書き込みを実施したときに抵抗変化素子が十分に高抵抗化されない未高抵抗状態に変化する場合があるとしても、第1の高抵抗化書き込み後に高抵抗安定化のための第2の高抵抗化書き込み(高抵抗安定化書き込み)を実施することによって、確実に高抵抗状態とすることができる。それにより、高抵抗状態のばらつきを抑え、抵抗変化のウィンドウを高抵抗側に最大限確保することが可能となる抵抗変化型不揮発性記憶素子の書き込み方法が実現できる。
 なお、本実施の形態では、高抵抗安定化書き込みを1回のパルスで行う例を挙げて説明を行ったが、それに限らない。適切なパルス幅とパルス電圧を選択すれば複数回のパルスを用いて高抵抗化安定書き込みを行うとしてもよい。例えば、振幅の小さい電圧から大きい電圧になるよう連続的に変化させてもよい。
 また、本実施の形態では、効果の確認のために第1の高抵抗化書き込み電圧パルスを印加した後の抵抗値測定を行った場合について説明したが、それに限られない。例えば、第1の高抵抗化書き込み電圧パルスと負の高抵抗安定化パルスを連続して印加してもよいし、第1の高抵抗化書き込み電圧パルスを印加後、抵抗値を測定し、抵抗値が十分に高くない場合に負の高抵抗安定化パルスで追加書き込みしてもよい。
 (変形例)
 実施の形態1では、第1の高抵抗化書き込み電圧パルス印加後に負の高抵抗安定化書き込み電圧パルスを印加することで、より高抵抗な状態への書き込みを行い、正の読み出し電圧Vreadで抵抗測定(データ読み出し)を行った場合について説明した。ここで、正の電圧ではなく負の電圧でデータ読み出し(抵抗測定)を行えば、負のデータ読み出しと高抵抗安定化書き込み電圧印加を兼ねることが可能であると考えられる。そこで、本変形例では、高抵抗安定化のための第2の高抵抗化書き込みの代わりに負の読み出し電圧でのデータ読み出しを行うことで代用する例について説明する。
 図14は、実施の形態1の変形例に係る書き込み方法を不揮発性記憶素子に対して行った場合の抵抗変化を示すグラフである。図15は、実施の形態1の変形例に係る書き込み方法を不揮発性記憶素子に対して行った場合の抵抗変化時の抵抗値の正規期待値分布を示すグラフである。
 図14では、図1に示す不揮発性記憶素子100に対して、低抵抗化閾値電圧-Vtlより振幅が小さい読み出し電圧-Vreadとし、正の高抵抗化書き込み電圧(振幅、V2)、負の低抵抗化書き込み電圧(振幅V1)を交互に印加したときの抵抗変化の様子を示している。図14の横軸は、高抵抗化書き込み電圧または低抵抗化書き込み電圧の印加すなわち各電圧パルス印加の回数(パルス数)を示しており、縦軸は、不揮発性記憶素子100の抵抗値を示している。図15はその時の抵抗値の正規期待値分布を示している。
 なお、ここでは電流制御素子20として抵抗値Rの固定抵抗を用いている。また、不揮発性記憶素子100に印加される電圧のパルス幅は100nsとしている。
 また、図14および図15には、比較例として、従来の書き込み方法で正負交互パルスを印加し、高抵抗化閾値電圧より小さい+Vreadの正の電圧で抵抗測定(データ読み出し)を行っている場合の測定結果を併せて示している。図14および図15においては、黒丸印(●)は読み出し電圧が-Vreadの本変形例の測定結果を示しており、白四角印(□)は読み出し電圧が+Vreadである比較例の測定結果を示している。
 図14、図15において、読み出し電圧が-Vreadの本変形例の場合と読み出し電圧が+Vreadの比較例の場合を比較すると、低抵抗状態での抵抗値はほとんど変わらないのがわかる。それに対して、高抵抗状態での抵抗値は、読み出し電圧が+Vreadの比較例の場合の最小値Rmin2に対して、読み出し電圧が-Vreadの本変形例の場合の最小値はRmin3と数倍大きくなっていることがわかる。
 これは、読み出し動作と同時に実施の形態1で説明した高抵抗安定化書き込みと同様の変化が起きているためであると考えられる。
 以上より、第1の電極1を基準に第2の電極2に正の第2の電圧を印加する第1の高抵抗化書き込みに続いて、少なくとも第1の高抵抗状態の読み出しを、負電圧で行うことによって、抵抗変化層3をより高抵抗な状態(第2の高抵抗状態)にする第2の高抵抗化書き込みを兼用することができる。それにより、比較例のように正電圧で読み出す場合よりも大きな抵抗変化ウィンドウを得ることができ、より安定な動作を実現できる。
 (実施の形態2)
 実施の形態1では、説明を簡単にするためメモリセルを1つにした基本構成を例示したが、実際には複数のメモリセルをアレイ状に配置した不揮発性記憶装置として本発明は実現され得る。実施の形態2では、その具体例について説明する。
 図16は、実施の形態1に係る不揮発性記憶装置が、具体的なアレイ構造のメモリセルを有する場合の一構成を示すブロック図である。
 図16に示すように、本実施の形態に係る不揮発性記憶装置300は、半導体基板(図示されず)上に、メモリ本体部301を備えている。このメモリ本体部301は、メモリセルアレイ302と、行選択回路・ドライバ303と、列選択回路304と、情報の書き込みを行うための書き込み回路101と、メモリセルアレイ302のうち選択したメモリセルの抵抗値を検出し、データ「1」または「0」と判定するセンスアンプ102とを具備している。また、不揮発性記憶装置300は、選択メモリセルにデータを書き込むために必要な複数の電源を生成する電源制御回路308と、外部から入力されるアドレス信号を受け取るアドレス入力回路309と、外部から入力されるコントロール信号に基づいて、メモリ本体部301の動作を制御する制御回路310と、入出力データの入出力処理を行うデータ入出力回路307とをさらに備えている。
 メモリセルアレイ302は、半導体基板の上に形成され、半導体基板表面に概略平行な第1平面内において第1方向に互いに平行に延びるように形成された複数の第1配線(図15の例では、ワード線WL0、WL1、WL2、…。以下、説明の便宜上「ワード線WL0、WL1、WL2、…」という。)及び第1平面と平行な第2平面内において第2方向に互いに平行に延びるようにかつ第1配線と立体交差するように形成された複数の第2配線(図16の例では、ビット線BL0、BL1、BL2、…。以下、説明の便宜上「ビット線BL0、BL1、BL2、…」という。)と、これらのワード線WL0、WL1、WL2、…及びビット線BL0、BL1、BL2、…の立体交差点のそれぞれに設けられたメモリセルM211、M212、M213、M221、M222、M223、M231、M232、M233(以下、「メモリセルM211、M212、…」と表す)とを備える。それぞれのメモリセルM211、M212、…は図1に示すメモリセル(不揮発性記憶素子100)を備え、ワード線WL0、WL1、WL2、…はそれぞれのメモリセルM211、M212、…に含まれる選択トランジスタ(以下、単に「トランジスタ」ともいう)T11、T12、T13、T21、T22、T23、T31、T32、T33、…(以下、「トランジスタT11、T12、…」と表す)のゲートに接続され、ビット線BL0、BL1、BL2、…は、それぞれのメモリセルM211、M212、…が備えるメモリセル105aの一端に接続されている。
 抵抗変化素子10はメモリセルM211、M212、…内で不揮発性記憶素子として動作する。メモリセルM211、M212、…は、1つのトランジスタと1つの抵抗変化素子10から構成されていることから、1T1R型メモリセルと呼ぶ。また、メモリセルアレイ302は、ワード線WL0、WL1、WL2、…に平行して配列されている複数のプレート線PL0、PL1、PL2、…を備えている。プレート線PL0、PL1、PL2、…は、それぞれのメモリセルM211、M212、…が備えるメモリセル(不揮発性記憶素子100)の他端に接続されている。
 なお、ここでは、プレート線はワード線と平行に配置されているが、ビット線と平行に配置してもよい。また、トランジスタのソース線は、プレート線として接続されるトランジスタに共通の電位を与える構成としているが、行選択回路/ドライバと同様の構成のソース線選択回路/ドライバを有し、選択されたソース線と非選択のソース線を異なる電圧(極性も含む)で駆動する構成としてもよい。
 ここで、メモリセルM211、M212、…に含まれる不揮発性記憶素子は、前述したように酸素不足型のタンタル酸化物等の遷移金属酸化物を含む抵抗変化層を有している。より具体的には、メモリセルM211、M212、…に含まれる不揮発性記憶素子は、図1に示す抵抗変化素子10の下部電極である第1の電極1と、上部電極である第2の電極2と、抵抗変化層3とを具備している。
 図16のメモリセルアレイ302における選択トランジスタT11、T12、T13、…はnチャンネルのMOSトランジスタを用いた例で示してある。これらのトランジスタT11、T12、T13、…のドレインは抵抗変化型素子を介してビット線BL0に、トランジスタT21、T22、T23、…のドレインは抵抗変化型素子を介してビット線BL1に、トランジスタT31、T32、T33、…のドレインは抵抗変化型素子を介してビット線BL2に、それぞれ接続されている。
 また、トランジスタT11、T21、T31、…のゲートはワード線WL0に、トランジスタT12、T22、T32、…のゲートはワード線WL1に、トランジスタT13、T23、T33、…のゲートはワード線WL2に、それぞれ接続されている。
 さらに、トランジスタT11、T21、T31、…のソースはプレート線PL0に、トランジスタT12、T22、T32、…のソースはプレート線PL1に、トランジスタT13、T23、T33、…のソースはプレート線PL2に、それぞれ接続されている。なお、上述したドレインとソースの関係は、説明上便宜的に定義しただけで印加方向によって入れ代わることはいうまでもない。
 アドレス入力回路309は、制御回路310による制御の下で、外部回路(図示せず)からアドレス信号を受け取り、このアドレス信号に基づいて行アドレス信号を行選択回路・ドライバ303へ出力するとともに、列アドレス信号を列選択回路304へ出力する。ここで、アドレス信号は、複数のメモリセルM211、M212、…のうちの選択される特定のメモリセルのアドレスを示す信号である。また、行アドレス信号は、アドレス信号に示されたアドレスのうちの行のアドレスを示す信号であり、列アドレス信号は、アドレス信号に示されたアドレスのうちの列のアドレスを示す信号である。なお、行選択回路・ドライバ303及び列選択回路304は、メモリセルアレイ302から、書き込み又は読み出しの対象となる、少なくとも一つのメモリセルを選択する選択回路を構成している。
 制御回路310は、情報の書き込みサイクルにおいては、データ入出力回路307に入力された入力データに応じて、書き込み用電圧の印加を指示する書き込み信号を書き込み回路101へ出力する。他方、情報の読み出しサイクルにおいて、制御回路310は、読み出し動作を指示する読み出し信号をセンスアンプ102と列選択回路304へ出力する。
 行選択回路・ドライバ303は、アドレス入力回路309から出力された行アドレス信号を受け取り、この行アドレス信号に応じて、複数のワード線WL0、WL1、WL2、…のうちの何れかを選択し、その選択されたワード線に対して、所定の電圧を印加する。
 また、列選択回路304は、アドレス入力回路309から出力された列アドレス信号を受け取り、この列アドレス信号に応じて、複数のビット線BL0、BL1、BL2、…のうちの何れかを選択し、その選択されたビット線に対して、書き込み電圧または読み出し電圧を印加する。このとき印加方向に応じて、電源制御回路308は、グランドレベル(GND、0V)または所定の印加電圧(書き込み電圧-V1、V2、-V3または読み出し電圧Vread)を生成して選択的に出力するとともに、必要に応じて電圧を可変とする。
 書き込み回路101は、制御回路310から出力された書き込み指令に従って、全てのビット線とプレート線に所定の電位を与えたり、列選択回路304を介して選択されたビット線に対して書き込み用電圧のパルスを印加したりする。
 また、センスアンプ102は、上述した読み出しサイクルを選択したメモリセルに対する読み出しをおこなう読み出し回路の一例であり、印加した読み出し電圧が放電する時間差でもって、データ「1」または「0」と判定する。その結果得られた出力データは、データ入出力回路307を介して、外部回路へ出力される。
 以上、本発明によれば、高抵抗状態の低抵抗側のばらつきを抑制し、抵抗変化ウィンドウを最大限確保することを可能とする抵抗変化素子の書き込み方法を実現することができる。
 以上、本発明に係る不揮発性記憶素子の書き込み方法ついて、実施の形態に基づいて説明したが、本発明は、これらの実施の形態に限定されるものではない。本発明の主旨を逸脱しない範囲で、これらの実施の形態に対して当業者が思いつく各種変形を施して得られる変形例も、本発明に含まれる。
 例えば、抵抗変化層3は、酸素不足型の遷移金属酸化物で構成された第1の遷移金属酸化物層3aと、第1の遷移金属酸化物層3aよりも酸素不足度が小さい遷移金属酸化物で構成された第2の遷移金属酸化物層3bとで構成されるとしたがそれに限られない。例えば、遷移金属に代えてアルミニウム(Al)を用いてもよい。すなわち、抵抗変化層3は、酸素不足型の金属酸化物で構成された第1の金属酸化物層3aと、第1の金属酸化物層3aよりも酸素不足度が小さい金属酸化物で構成された第2の金属酸化物層3bとで構成されればよい。例えば、酸素不足型のタンタル酸化物(TaO)で構成された第1の金属酸化物層と、第1の金属酸化物層よりも酸素不足度が小さいAlの酸化物(Al)で構成された第2の金属酸化物層とで構成されるとしてもよい。
 本発明の不揮発性記憶素子の書き込み方法は、パーソナルコンピュータおよび携帯型電話機などの種々の電子機器に用いられる不揮発性記憶装置の書き込み方法などとして有用である。
 1、936  第1の電極
 2、932  第2の電極
 3、934  抵抗変化層
 3a  第1の遷移金属酸化物層
 3b  第2の遷移金属酸化物層
 10、930  抵抗変化素子
 20  電流制御素子
 100、940  不揮発性記憶素子
 300  不揮発性記憶装置
 301  メモリ本体部
 302  メモリセルアレイ
 303  ドライバ
 304  列選択回路
 307  データ入出力回路
 308  電源制御回路
 309  アドレス入力回路
 310  制御回路
 938  MOSトランジスタ

Claims (9)

  1.  第1電極と、第2電極と、前記第1電極および前記第2電極の間に介在して、前記第1電極および前記第2電極に接しており、前記第1電極および前記第2電極の間に電気的信号が印加されることにより、高抵抗状態と低抵抗状態との2つの抵抗状態を可逆的に変化可能な抵抗変化層と、を備える抵抗変化型不揮発性記憶素子に対するデータの書き込み方法であって、
     前記抵抗変化層は、前記第1電極に接する第1の金属で構成される第1の金属酸化物と、前記第2電極に接する第2の金属で構成される第2の金属酸化物との積層構造で構成され、
     前記書き込み方法は、
     前記第1電極を基準に前記第2電極に負の第1の電圧を印加することにより、前記抵抗変化層を、抵抗値RLを示す前記低抵抗状態にするステップと、
     前記抵抗変化層を前記高抵抗状態にするステップと、を含み、
     前記抵抗変化層を前記高抵抗状態にするステップは、
     前記第1電極を基準に前記第2電極に正の第2の電圧を印加し前記抵抗変化層の抵抗値を、前記抵抗値RLより大きい抵抗値RHにするステップと、
     前記抵抗値RLより大きい抵抗値RHにするステップによって前記正の第2の電圧が印加された後に、前記第1電極を基準に前記第2電極に、前記抵抗変化層を前記高抵抗状態から前記低抵抗状態へ変化させる閾値電圧の絶対値より小さい負の第3の電圧を印加することにより、前記抵抗変化層を前記抵抗値RH以上の抵抗値RH1を示す前記高抵抗状態にするステップと、を含む
     抵抗変化型不揮発性記憶素子の書き込み方法。
  2.  前記第1の金属酸化物の酸素不足度は、前記第2の金属酸化物の酸素不足度より大きい
     請求項1に記載の抵抗変化型不揮発性記憶素子の書き込み方法。
  3.  前記第2金属酸化物の抵抗値は、前記第1の金属酸化物の抵抗値より大きい
     請求項2に記載の抵抗変化型不揮発性記憶素子の書き込み方法。
  4.  前記第1の金属と前記第2の金属とは、それぞれ遷移金属である
     請求項2又は3に記載の抵抗変化型不揮発性記憶素子の書き込み方法。
  5.  前記第1の遷移金属と前記第2の遷移金属とは同じ金属である
     請求項2乃至4のいずれか1項に記載の抵抗変化型不揮発性記憶素子の書き込み方法。
  6.  前記第1の金属と前記第2の金属とは、タンタルである
     請求項5に記載の抵抗変化型不揮発性記憶素子の書き込み方法。
  7.  前記第1の金属と前記第2の金属とは異なる金属であり、
     前記第2の金属の標準電極電位は、前記第1の金属の標準電極電位より低い
     請求項2乃至4のいずれか1項に記載の抵抗変化型不揮発性記憶素子の書き込み方法。
  8.  前記抵抗変化層を前記抵抗値RH以上の抵抗値RH1を示す前記高抵抗状態にするステップでは、前記抵抗変化層の抵抗値を、前記抵抗値RLより大きい抵抗値RHにするステップによって前記正の第2の電圧が印加された後の前記負の第3の電圧を印加し、印加された前記負の第3の電圧を用いて前記抵抗変化型不揮発性記憶素子のデータの読み出しを行う
     請求項1乃至7のいずれか1項に記載の抵抗変化型不揮発性記憶素子の書き込み方法。
  9.  第1電極と、
     第2電極と、
     前記第1電極および前記第2電極の間に介在して、前記第1電極および前記第2電極に接しており、前記第1電極および前記第2電極の間に電気的信号が印加されることにより、高抵抗状態と低抵抗状態との2つの抵抗状態を可逆的に変化可能な抵抗変化層と、を備え、
     前記抵抗変化層は、
     前記抵抗変化層は、前記第1電極に接する第1の金属で構成される第1の金属酸化物と、前記第2電極に接する第2の金属で構成される第2の金属酸化物との積層構造で構成され、
     前記第1電極を基準に前記第2電極に負の第1の電圧が印加されることにより、抵抗値RLを示す前記低抵抗状態に変化する特性と、
     前記第1電極を基準に前記第2電極に正の第2の電圧を印加されることで前記抵抗値RLより大きい抵抗値RHにされ、前記第2の電圧の印加後に、前記第1電極を基準に前記第2電極に、負の第3の電圧であって前記抵抗変化層を前記高抵抗状態から前記低抵抗状態へ変化させる閾値電圧の絶対値より小さい前記第3の電圧が印加されることにより、前記抵抗値RH以上の抵抗値RH1を示す前記高抵抗状態に変化する特性と、を有する
     抵抗変化型不揮発性記憶素子。
PCT/JP2012/005068 2011-08-10 2012-08-09 抵抗変化型不揮発性記憶素子の書き込み方法 WO2013021649A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280001911.5A CN103081019B (zh) 2011-08-10 2012-08-09 电阻变化型非易失性存储元件的写入方法
JP2012547390A JP5184721B1 (ja) 2011-08-10 2012-08-09 抵抗変化型不揮発性記憶素子の書き込み方法
US13/809,175 US8942025B2 (en) 2011-08-10 2012-08-09 Variable resistance nonvolatile memory element writing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-175411 2011-08-10
JP2011175411 2011-08-10

Publications (1)

Publication Number Publication Date
WO2013021649A1 true WO2013021649A1 (ja) 2013-02-14

Family

ID=47668184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005068 WO2013021649A1 (ja) 2011-08-10 2012-08-09 抵抗変化型不揮発性記憶素子の書き込み方法

Country Status (4)

Country Link
US (1) US8942025B2 (ja)
JP (1) JP5184721B1 (ja)
CN (1) CN103081019B (ja)
WO (1) WO2013021649A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011090755A (ja) * 2009-10-26 2011-05-06 Nec Corp 素子制御回路、スイッチング素子及び素子制御方法
WO2014196142A1 (ja) * 2013-06-06 2014-12-11 パナソニックIpマネジメント株式会社 抵抗変化型不揮発性記憶装置
GB2509040B (en) * 2011-10-18 2015-01-07 Micron Technology Inc Stabilization of resistive memory

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9286978B2 (en) * 2013-10-09 2016-03-15 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
DE102013020517B4 (de) * 2013-12-11 2015-06-25 Forschungszentrum Jülich GmbH Verfahren zum Auslesen einer resistiven Speicherzelle und eine Speicherzelle zur Durchführung
FR3018943A1 (fr) * 2014-06-10 2015-09-25 Commissariat Energie Atomique Procede de programmation d'une cellule memoire
FR3040227B1 (fr) * 2015-08-18 2017-09-01 Commissariat Energie Atomique Procede de programmation d'un reseau de neurones artificiels
US10861547B1 (en) * 2019-05-21 2020-12-08 Taiwan Semiconductor Manufacturing Co., Ltd. Multi-step reset technique to enlarge memory window
JP2021039816A (ja) * 2019-09-05 2021-03-11 キオクシア株式会社 半導体記憶装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007004935A (ja) * 2005-06-27 2007-01-11 Sony Corp 記憶装置
WO2010021134A1 (ja) * 2008-08-20 2010-02-25 パナソニック株式会社 抵抗変化型不揮発性記憶装置およびメモリセルの形成方法
JP2011146111A (ja) * 2010-01-18 2011-07-28 Toshiba Corp 不揮発性記憶装置及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7289351B1 (en) 2005-06-24 2007-10-30 Spansion Llc Method of programming a resistive memory device
WO2010116754A1 (ja) 2009-04-10 2010-10-14 パナソニック株式会社 不揮発性記憶素子の駆動方法
JP4642942B2 (ja) 2009-04-27 2011-03-02 パナソニック株式会社 抵抗変化型不揮発性記憶素子の書き込み方法及び抵抗変化型不揮発性記憶装置
JP5418147B2 (ja) 2009-10-26 2014-02-19 日本電気株式会社 素子制御回路、スイッチング素子及び素子制御方法
WO2011096194A1 (ja) * 2010-02-02 2011-08-11 パナソニック株式会社 抵抗変化素子の駆動方法、初期処理方法、及び不揮発性記憶装置
KR101744757B1 (ko) 2010-06-22 2017-06-09 삼성전자 주식회사 가변 저항 소자, 상기 가변 저항 소자를 포함하는 반도체 장치 및 상기 반도체 장치의 동작 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007004935A (ja) * 2005-06-27 2007-01-11 Sony Corp 記憶装置
WO2010021134A1 (ja) * 2008-08-20 2010-02-25 パナソニック株式会社 抵抗変化型不揮発性記憶装置およびメモリセルの形成方法
JP2011146111A (ja) * 2010-01-18 2011-07-28 Toshiba Corp 不揮発性記憶装置及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011090755A (ja) * 2009-10-26 2011-05-06 Nec Corp 素子制御回路、スイッチング素子及び素子制御方法
GB2509040B (en) * 2011-10-18 2015-01-07 Micron Technology Inc Stabilization of resistive memory
US8958233B2 (en) 2011-10-18 2015-02-17 Micron Technology, Inc. Stabilization of resistive memory
US9224471B2 (en) 2011-10-18 2015-12-29 Micron Technology, Inc. Stabilization of resistive memory
WO2014196142A1 (ja) * 2013-06-06 2014-12-11 パナソニックIpマネジメント株式会社 抵抗変化型不揮発性記憶装置
US9484090B2 (en) 2013-06-06 2016-11-01 Panasonic Intellectual Property Management Co., Ltd. Read and write methods for a resistance change non-volatile memory device

Also Published As

Publication number Publication date
JPWO2013021649A1 (ja) 2015-03-05
CN103081019B (zh) 2015-08-19
US8942025B2 (en) 2015-01-27
JP5184721B1 (ja) 2013-04-17
US20130242642A1 (en) 2013-09-19
CN103081019A (zh) 2013-05-01

Similar Documents

Publication Publication Date Title
JP5184721B1 (ja) 抵抗変化型不揮発性記憶素子の書き込み方法
JP5291248B2 (ja) 抵抗変化型不揮発性記憶素子のフォーミング方法及び抵抗変化型不揮発性記憶装置
US9378817B2 (en) Variable resistance nonvolatile memory element writing method and variable resistance nonvolatile memory device
JP4972238B2 (ja) 抵抗変化型不揮発性記憶素子のフォーミング方法
US9142289B2 (en) Method for driving variable resistance element, and nonvolatile memory device
US9202565B2 (en) Write method for writing to variable resistance nonvolatile memory element and variable resistance nonvolatile memory device
JP5128718B2 (ja) 不揮発性記憶素子の駆動方法および不揮発性記憶装置
WO2013080499A1 (ja) 抵抗変化型不揮発性記憶素子の書き込み方法および抵抗変化型不揮発性記憶装置
JP5000026B2 (ja) 不揮発性記憶装置
JP5450911B2 (ja) 不揮発性記憶素子のデータ読み出し方法及び不揮発性記憶装置
US20140050013A1 (en) Nonvolatile memory element and nonvolatile memory device
WO2012124314A1 (ja) 不揮発性記憶素子の駆動方法及び不揮発性記憶装置
JPWO2013021648A1 (ja) 抵抗変化型不揮発性記憶素子の書き込み方法
WO2013157261A1 (ja) 不揮発性記憶素子の駆動方法および不揮発性記憶装置
JP5380611B2 (ja) 不揮発性記憶素子のデータ読み出し方法及び不揮発性記憶装置
JP2012169000A (ja) 抵抗変化素子の駆動方法、不揮発性記憶装置、抵抗変化素子および多値記憶方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001911.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012547390

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13809175

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822238

Country of ref document: EP

Kind code of ref document: A1