WO2012162893A1 - 一种含金属类导电物质高容量锂离子电池 - Google Patents

一种含金属类导电物质高容量锂离子电池 Download PDF

Info

Publication number
WO2012162893A1
WO2012162893A1 PCT/CN2011/075198 CN2011075198W WO2012162893A1 WO 2012162893 A1 WO2012162893 A1 WO 2012162893A1 CN 2011075198 W CN2011075198 W CN 2011075198W WO 2012162893 A1 WO2012162893 A1 WO 2012162893A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
conductive material
lithium
carbide
negative electrode
Prior art date
Application number
PCT/CN2011/075198
Other languages
English (en)
French (fr)
Inventor
张潘毅
潘杰民
张贵萍
Original Assignee
Zhang Panyi
Pan Jiemin
Zhang Guiping
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhang Panyi, Pan Jiemin, Zhang Guiping filed Critical Zhang Panyi
Priority to US14/119,450 priority Critical patent/US20140113175A1/en
Priority to EP11866733.6A priority patent/EP2717366A1/en
Priority to JP2014511702A priority patent/JP2014517993A/ja
Priority to PCT/CN2011/075198 priority patent/WO2012162893A1/zh
Priority to KR1020137031434A priority patent/KR20140039208A/ko
Publication of WO2012162893A1 publication Critical patent/WO2012162893A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/191Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery, and more particularly to a high capacity lithium ion battery containing a metal-based conductive material. Background technique
  • a chemical battery is a device that converts chemical energy directly into electrical energy.
  • the chemical battery mainly includes a casing as a sealing material, an electrolyte solution in the casing, and a positive and negative electrode sheets and a wire connecting the electrodes immersed in the solution.
  • a circuit board for performing a charging operation is further included, and the above electrolyte solution and positive and negative electrode sheets and the like are collectively referred to as a battery core.
  • Existing lithium ion batteries are one type of chemical batteries and are currently in widespread use. Both the positive electrode tab and the negative electrode tab of the lithium ion battery include an active material, a conductive agent, a current collector, and a binder.
  • conductive carbon black (or carbon nanofibers, carbon nanotubes, acetylene black and other non-metallic conductive materials) are usually used as conductive agents in the positive electrode sheets or negative electrode sheets of commercial lithium-ion batteries, mainly because of positive electrode active materials (such as cobalt). Lithium acid, lithium nickel cobaltate, lithium manganate, manganese dioxide, lithium thionyl chloride, etc.) have poor conductivity.
  • the positive active material absorbs electrons when externally outputting electric energy, and the electrons reach the current collector and output electric energy through the current collector.
  • the action of the conductive carbon black transmits the electrons released by the current collector to the active material, and functions as an electronic conduction inside the battery.
  • the function of the conductive carbon black is to transfer the electrons from the current collector.
  • the positive active material if no conductive agent is added, the internal resistance of the battery is large, and the electrons released by the active material cannot be transported to the current collector. The electrical properties (such as capacity) of the battery are not exerted, or the battery cannot be charged, and the battery cannot be commercialized. Use.
  • the negative electrode sheet if no conductive agent is added, the high rate discharge of the battery will be affected, so conductive carbon black (or carbon nanofibers, carbon nanotubes, acetylene black and other non-metallic conductive substances) plays an important role in lithium ion batteries. The role.
  • lithium-ion rechargeable batteries also known as secondary batteries
  • lithium-ion batteries such as mobile phones, notebook computers, MP3, MP4 and other consumer electronics products.
  • the conductive material of the electrode of the lithium ion battery is a non-metallic conductive material such as conductive carbon black, carbon nanofiber, carbon nanotube or acetylene black, and the resistivity of these conductive materials is 4 ⁇ 1 0 - 6 O m - 7 X 1 0" 6 O m , poor oxidation resistance, easy to burn in an aerobic environment.
  • the technical problem to be solved by the present invention is to provide a lithium ion battery having high capacity and capacity density, a high discharge platform and high low temperature discharge efficiency, especially high safety.
  • the technical solution adopted by the present invention to solve the technical problems thereof is to provide a high-capacity lithium ion battery containing a metal-based conductive material, including a positive electrode sheet, a negative electrode sheet, a separator, an electrolyte, an adhesive, and a seal.
  • a material, the conductive material of the positive electrode sheet contains a metal carbide, a metal boride or a metal nitride, and the conductive material of the negative electrode sheet contains a metal carbide, a metal boride or a metal nitride;
  • the metal carbide is titanium carbonitride, vanadium carbide, tantalum carbide, a co-melt of tungsten carbide and titanium carbide, tungsten carbide or titanium carbide, and the metal boride is molybdenum boride, tungsten boride or vanadium boride.
  • the metal nitride is titanium nitride, tungsten nitride or tantalum nitride.
  • a high-capacity lithium ion battery containing a metal-based conductive material, including a positive electrode sheet, a negative electrode sheet, a separator, an electrolyte, an adhesive, and a sealing material.
  • the conductive material of the positive electrode sheet contains a powdery metal
  • the conductive material of the negative electrode sheet contains a powdery metal
  • the powdered metal is nickel powder, copper powder or chromium powder.
  • the positive electrode sheet includes a positive electrode active material, a positive electrode current collector and a binder, and the positive electrode active material is lithium iron phosphate, lithium cobaltate, barium manganate, nickel nickel cobalt manganese lithium, lithium manganese phosphate, phosphoric acid.
  • the negative electrode sheet includes a negative electrode active material, a negative electrode current collector and a binder, and the negative electrode active material is a mixture of artificial graphite, natural graphite, artificial graphite and natural graphite, mesocarbon microbeads, metallic lithium, metallic tin, silicon Or lithium titanate.
  • the separator is a three-layer composite polypropylene, a polyethylene, a polypropylene microporous membrane, a single-layer polyethylene microporous membrane or a polyimide microporous membrane.
  • the binder is gum arabic, modified polyethylene oxide, polyvinylidene fluoride, styrene butadiene rubber latex or carboxymethyl cellulose.
  • the electrolyte comprises a solvent, a soluble lithium salt and an additive
  • the solvent is ethylene carbonate, cesium carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, propyl propyl carbonate or ethyl acetate.
  • the soluble lithium salt is a hexafluorophosphoric acid, a dodecafluoroborate, a bisoxalic acid boric acid or an lithium imide salt
  • the additive is propane sultone, vinylene carbonate, ethylene carbonate, fluorine Carbonate, vinyl sulfite, hexamethyldisilazane or triphenyl phosphite.
  • the sealing material is self-fire-retardant rigid polyvinyl chloride plastic, stainless steel or aluminum-plastic composite film or aluminum shell material.
  • the conductive material of the positive electrode sheet contains a radiation cross-linked mixture of a metal-based conductive material and polyethylene
  • the conductive material of the negative electrode sheet contains a radiation-crosslinked mixture of a metal-based conductive material and polyethylene
  • the beneficial effects of the present invention are that the metal carbide or metal boride, or the metal nitride and the powdered metal have a resistivity of about: 5 X 1 0 - 7 ⁇ ⁇ _ 5 X 1 0 - 9 ⁇ ⁇ , thermal stability The temperature is about 31 00 °C.
  • Metal carbides or metal borides, or metal nitrides have good chemical stability (corrosion resistance, acid and alkali resistance), good oxidation resistance, and are difficult in aerobic environment. Burning; the lithium ion battery of the present invention, adding a metal conductive material to the positive electrode sheet and/or the negative electrode sheet Description
  • Substrate completely replace or partially replace the original non-metallic conductive material in the positive electrode sheet and/or the negative electrode sheet of the ion battery, further improve the capacity and capacity density of the lithium ion battery, and the low-temperature discharge efficiency, and safety. Further improved.
  • the metal-based conductive material has a lower resistivity, so that the internal resistance of the battery is reduced. When the battery is discharged to a certain potential (voltage, such as 2.8V or 3.0V), the discharge time of the battery is longer, and thus the lithium ion The capacity and capacity density of the battery are improved.
  • the metal-based conductive material is not easily burned, so that the safety of the battery is improved. detailed description
  • the invention will be a powdered metal carbide (such as titanium carbonitride, tungsten carbide, titanium carbide, etc.), or a metal boride (such as molybdenum boride, tungsten boride, vanadium boride, etc.), or a metal nitride (such as Titanium nitride, tungsten nitride, tantalum nitride, etc.) and powdered metals (such as nickel powder, copper powder, chromium powder, etc.) referred to as "metal-based conductive materials", and conductive carbon black (or carbon nanofibers, Carbon nanotubes, acetylene black, etc. are referred to as "non-metallic conductive materials”.
  • the metal-based conductive material has a particle diameter of between 1 nm and 9999 ⁇ m or more.
  • the metal carbide is not limited to titanium carbonitride, tungsten carbide or titanium carbide, and other metal carbides are also included in the claims of the present invention, such as vanadium carbide, tantalum carbide, a co-melt of tungsten carbide and titanium carbide, and the like.
  • the metal boride is not limited to molybdenum boride, tungsten boride or vanadium boride, and the metal nitride is not limited to titanium nitride, tungsten nitride or tantalum nitride.
  • the high-capacity lithium ion battery of the present invention contains a metal-based conductive material.
  • the positive electrode sheet, the negative electrode sheet and the separator are wound to form a polymer lithium ion secondary battery of 500 mAh.
  • the positive active material of the battery is lithium cobalt oxide
  • the positive electrode conductive agent is titanium carbide
  • the positive electrode binder is polyvinylidene fluoride PVDF
  • the ratio of positive electrode components is: cobalt acid/titanium carbide/polyvinylidene fluoride
  • the ratio of the compaction density of the conductive carbon black is 3.6 times, and the conductivity of the metal-based conductive material is excellent.
  • the ratio of the compacted density of the conductive carbon black is 3.6 times.
  • the conductive agent should be replaced by the same volume fraction when replacing it. Therefore, when the metal-based conductive material replaces the non-metallic conductive material, the metal-based conductive material Description
  • the material compaction density is 3.6 times that of the non-metallic conductive material, and the original non-metallic conductive material addition ratio is 2. 2 parts, so the weight fraction of the titanium carbide in this embodiment is 7.92 parts.
  • the positive electrode collector is an aluminum foil.
  • the negative electrode active material is mesocarbon microbeads
  • the negative electrode conductive agent is SUPER P conductive carbon
  • the binder is styrene-butadiene rubber latex SBR and carboxymethyl cellulose CMC
  • the ratio of negative electrode components is: mesophase carbon microspheres/
  • the ratio of the conductive carbon SUPER P / styrene-butadiene rubber latex / carboxy fluorenyl cellulose is 94.2 parts / 2. 0 parts / 2. 0 parts / 1. 8 parts by weight
  • the negative electrode current collector is copper foil
  • Water acts as a solvent for the negative electrode binder.
  • the battery separator is a three-layer composite (polypropylene/polyethylene/polypropylene) microporous membrane.
  • the battery electrolyte is: solvent consisting of ethylene carbonate (EC), ethyl lanthanum carbonate (EMC), propylene carbonate (PC), Dimethyl phthalate (DMC), diethyl carbonate (DEC), propyl propyl carbonate (MPC), ethyl acetate, etc. plus lithium salt lithium hexafluorophosphate and additives propane sultone, vinylene carbonate (VC), carbonic acid Ethylene glycol (vinyl ethylene carbonate, VEC), vinyl sulfite, silanoids and other substances.
  • the sealing material of the battery (outer casing, battery cover) is self-flame-retardant rigid PVC.
  • the present embodiment is modified on the basis of the embodiment 1.
  • the ratio of lithium cobaltate / titanium carbide / polyvinylidene fluoride is 92.58 parts / 7.92 parts / 1. 7 parts by weight.
  • Example 2 This example was modified on the basis of Example 1, and the titanium carbide in Example 1 was changed to titanium oxynitride, and the rest remained unchanged.
  • Example 2 This embodiment was modified on the basis of Example 2, and the titanium carbide in Example 1 was changed to titanium oxynitride, and the rest remained unchanged.
  • Example 1 This embodiment was modified on the basis of Example 1, and the titanium carbide in Example 1 was changed to nickel powder, and the rest remained unchanged.
  • Instruction manual
  • Example 2 This embodiment was modified on the basis of Example 2.
  • the titanium carbide in Example 2 was changed to nickel powder, and the rest remained unchanged.
  • Example 1 This embodiment was modified on the basis of Example 1.
  • the titanium carbide in Example 1 was changed to tungsten carbide, and the rest was unchanged.
  • Example 2 This embodiment was modified on the basis of Example 2.
  • the titanium carbide of Example 2 was changed to tungsten carbide, and the rest remained unchanged.
  • Example 2 This example was modified on the basis of Example 1.
  • the titanium carbide in Example 1 was changed to vanadium boride, and the rest was unchanged.
  • Example 2 This example was modified on the basis of Example 1.
  • the titanium carbide in Example 1 was changed to vanadium boride, and the rest was unchanged.
  • Embodiment 1 1 is a diagrammatic representation of Embodiment 1 1
  • Example 1 This embodiment was modified on the basis of Example 1.
  • the negative electrode conductive agent SUPER P conductive carbon in Example 1 was changed to titanium carbide, and the rest remained unchanged.
  • Example 2 This embodiment was modified on the basis of Example 2.
  • the negative electrode conductive agent SUPER P conductive carbon in Example 2 was changed to titanium carbide, and the rest remained unchanged.
  • Example 2 This example was modified on the basis of Example 1.
  • the lithium cobaltate in Example 1 was changed to lithium iron phosphate, and the rest remained unchanged.
  • Embodiment 1 manufacturing 500 Instruction manual
  • the mAh polymer lithium ion secondary battery is changed to a polymer lithium ion secondary battery of 3000 mAh.
  • the battery size is 5. 5 *5 3* 106mm 3
  • the positive electrode conductive agent titanium carbide is changed to titanium carbide.
  • the mixture with high-density polyethylene, the weight ratio is 80/10
  • the mixing method of titanium carbide and high-density polyethylene is: using titanium carbide and high-density polyethylene at high temperature (160 °C) with internal mixer or twin screw
  • the machine is melted and mixed, and after being cooled, it is pulverized by a pulverizer, and passed through a sieve of 300 mesh or more to obtain a mixture of powdered titanium carbide and high density polyethylene, and then irradiated and crosslinked.
  • the irradiation method is It is irradiated with cobalt 60 or an electron beam, thereby obtaining a conductive agent of a mixture of powdered titanium carbide and high-density poly
  • This embodiment is improved on the basis of the second embodiment.
  • a polymer lithium ion secondary battery of 500 mAh is manufactured, and a polymer lithium ion secondary battery of 3000 mAh is manufactured.
  • Dimensions: 5. 5*53* 106mm3 the titanium carbide in the positive electrode conductive agent is changed to a mixture of titanium carbide and high-density polyethylene. The weight ratio is 80/10 for titanium carbide and high-density polyethylene.
  • Titanium carbide and high-density poly The mixing method of ethylene is as follows: The titanium carbide and the high-density polyethylene are melted and mixed at a high temperature (160 ° C) by an internal mixer or a twin-screw machine, and after being cooled, they are pulverized by a pulverizer, and then passed through 300 mesh. In the above sieve, a mixture of titanium carbide and high-density polyethylene is obtained, and then irradiated and cross-linked, and the irradiation method is irradiated with cobalt 60 or electron beam, thereby obtaining powdered titanium carbide and high-density polyethylene. The conductive agent of the mixture, the rest remains unchanged.
  • This embodiment is improved on the basis of the embodiment 1, in which the polymer lithium ion secondary battery of 500 mAh is manufactured, and the polymer lithium ion secondary battery of 3000 mAh is manufactured, and the battery is replaced.
  • Dimensions: 5. 5 *5 3* 106mm 3 the titanium carbide in the positive electrode conductive agent is changed to a mixture of titanium carbide and nylon 6, and the weight ratio is 80/10.
  • the mixing method of titanium carbide and high density nylon 6 is: carbonization Titanium and nylon 6 are melted and mixed at a high temperature (220 °C) with an internal mixer or a twin-screw machine. After cooling, they are pulverized by a pulverizer and passed through a sieve of 300 mesh or more to obtain titanium carbide and nylon 6.
  • the mixture is then subjected to irradiation cross-linking by irradiating it with cobalt 60 or an electron beam, thereby obtaining a conductive agent of a mixture of powdered titanium carbide and high-density polyethylene, and the rest remains unchanged.
  • This embodiment is improved on the basis of the second embodiment.
  • a polymer lithium ion secondary battery of 500 mAh is manufactured, and a polymer lithium ion secondary battery of 3000 mAh is manufactured.
  • Dimensions: 5. 5 *5 3* 106mm 3 the titanium carbide in the positive electrode conductive agent is changed to a mixture of titanium carbide and nylon 6, and the weight ratio is 80/10.
  • the mixing method of titanium carbide and high density nylon 6 is: carbonization Titanium and nylon 6 are melted and mixed at a high temperature (220 °C) with an internal mixer or a twin-screw machine. After cooling, they are pulverized by a pulverizer and passed through a sieve of 300 mesh or more to obtain titanium carbide and nylon 6.
  • the mixture is then subjected to irradiation cross-linking by irradiating it with cobalt 60 or an electron beam, thereby obtaining a conductive agent of a mixture of powdered titanium carbide and high-density polyethylene, and the rest remains unchanged.
  • the present invention is a cylindrical AA-type lithium manganese dioxide primary battery having a battery size of 50 ⁇ (height) * 14.5 mm (diameter), positive electrode active.
  • the material is manganese dioxide
  • the positive electrode conductive agent is titanium carbide
  • the positive electrode binder is polytetrafluoroethylene emulsion
  • the positive electrode current collector is nickel mesh
  • the negative electrode active material is pure lithium foil
  • the negative electrode current collector is nickel strip
  • the negative electrode current collector is nickel strip
  • the separator is glass fiber.
  • the cloth, the electrolyte is: a mixture of lithium perchlorate dissolved in a mixed solvent of propylene carbonate and cesium carbonate, in a concentration of 1 mole.
  • Embodiment 20 of the high-capacity lithium ion battery containing a metal-based conductive material of the present invention is a prismatic lithium sulfonate primary battery of 1500 mAh, 9*36*55 mm 3 , a positive active material of nythroyl chloride, and a positive electrode conductive agent.
  • Titanium carbide, the positive electrode binder is a polytetrafluoroethylene emulsion, the positive electrode current collector is a nickel mesh, the negative electrode active material is a pure lithium foil, the negative electrode current collector is a nickel strip, the separator is a glass fiber cloth, and the electrolyte is: dissolved in perchloric acid A mixture of thionyl chloride at a concentration of 1 mole.
  • Comparative Example 1 The ratio of lithium cobaltate / titanium carbide / polyvinylidene fluoride in Example 1 was 92.58 parts / 7.92 parts / 1. 7 parts by weight to lithium cobalt oxide / carbon The ratio of black SUPER P/polyvinylidene fluoride is 95. 1 part / 2. 2 parts / 1. 0 / 1. 7 parts by weight, the rest is unchanged.
  • Comparative Example 2 The same as Comparative Example 1.
  • Comparative Example 3 The same as Comparative Example 1.
  • Comparative Example 4 The same as Comparative Example 1. Instruction manual
  • Comparative Example 6 The positive electrode conductive agent titanium carbide in Example 19 was changed to acetylene black, which was the same as in Embodiment 19.
  • Comparative Example 7 The positive electrode conductive agent titanium carbide in the embodiment 20 was changed to acetylene black, and the rest was the same as in the embodiment 20.
  • the radiation crosslinking method of the metal conductive material of the invention and the plastic such as polyethylene or nylon is: using a metal conductive material and polyethylene at a high temperature (150 ° C - 180 ° C) by an open mill, rheological
  • the instrument, the internal mixer or the twin-screw machine is melt-mixed, and after being cooled, it is pulverized by a pulverizer, and passed through a 20-mesh to 1000-mesh sieve to obtain a mixture of a metal-based conductive material and polyethylene, and then subjected to irradiation crosslinking.
  • the irradiation method is to irradiate with a radiation such as cobalt 60 or an electron beam, thereby obtaining a powdery conductive agent of a mixture of a metal-based conductive material and polyethylene.
  • the battery safety test method of the present invention (according to relevant domestic and international standards) is as follows: Overcharge test: The test battery is charged with a current of 0. 5C with a power supply of not less than 10V until its capacity reaches 250% of the rated capacity.
  • Acupuncture test A fully charged test cell is attached to the fixture and pierced in a radial direction with a 3-legged steel needle.
  • Thermal shock test The test cell is heated in a natural convection or forced convection oven. The oven temperature is raised to 1 30 °C at 5 ⁇ 2 °C /min and stopped after 10 min.
  • Heavy impact test Place the test cell on a flat surface, and place a rod with a diameter of 15.8 mm across the center surface of the sample, and let the weight of 9. 1 ⁇ 0. 46 kg fall from 61 ⁇ 1. 5 ⁇ . Go to the sample.
  • a cylindrical or prismatic battery When impacted, its long axis should be parallel to the plane and perpendicular to the surface of the 15.8 mm diameter rod placed in the center of the specimen.
  • the square battery should be rotated 90 degrees along the long axis so that both the wide side and the narrow side are subjected to impact. Each sample battery is only subjected to one direction of rushing Description
  • Table 1 illustrates the comparison and improvement of the performance of the lithium ion battery of the metal-containing conductive material of the present invention with the prior art (Comparative Example).
  • the lithium battery manufactured by the prior art uses a non-metallic conductive agent for the conductive agent, such as an overcharge test, a needle test, and a safety test.
  • a non-metallic conductive agent for the conductive agent such as an overcharge test, a needle test, and a safety test.
  • the high-capacity lithium ion battery containing the metal-based conductive material of the present invention that is, the embodiment uses a metal-based conductive agent
  • the comparison shows that the technology of the present invention uses metal-based conductive agent can solve the shortcomings of the prior art battery unsafe.
  • a lithium battery manufactured by using a non-metallic conductive agent shows that the use of a metal-based conductive agent in the present invention can improve the capacity of a battery of the prior art (Comparative Example, a non-metallic conductive agent used for a conductive agent).
  • the negative electrode active material mesophase carbon microspheres can be changed to stone black materials, such as artificial graphite (such as petroleum coke, high purity graphite, needle coke, G4 material, carbon fiber, etc.), natural graphite (such as coated natural graphite, etc.), a mixture of artificial graphite and natural graphite, etc., or changed to lithium titanate.
  • artificial graphite such as petroleum coke, high purity graphite, needle coke, G4 material, carbon fiber, etc.
  • natural graphite Such as coated natural graphite, etc.
  • a mixture of artificial graphite and natural graphite, etc. or changed to lithium titanate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)

Abstract

一种含导电物质的锂离子电池,包括正极、负极、隔膜、电解液、粘合剂和密封材料,该正极的导电物质含有金属碳化物、金属硼化物或金属氮化物,该负极的导电物质含有金属碳化物、金属硼化物或金属氮化物;该金属碳化物为碳氧化钛、碳化钨或碳化钛,碳化钒,碳化钽,碳化钨与碳化钛的共熔体,该金属硼化物为硼化钼、硼化钨或硼化钒,该金属氮化物为氮化钛、氮化钨或氮化钽。该正极的导电物质还可含有粉状金属,该负极的导电物质含有粉状金属;该粉状金属为镍粉、铜粉或铬粉。

Description

说 明 书
一种含金属类导电物质高容量锂离子电池 技术领域
本发明涉及一种电池, 特别是设计一种含金属类导电物质高容量锂 离子电池。 背景技术
化学电池是将化学能直接转变为电能的装置。 化学电池主要包括作 为密封材料的壳体、 壳体内的电解质溶液、 以及浸在所述溶液中的正、 负极片和连接电极的导线。 在可充电化学电池中, 还进一步包括进行充 电操作的电路板, 而上述的电解质溶液和正、 负极片等被总称为电芯。 现有锂离子电池是化学电池的一种, 目前得到普遍应用。 所述锂离子电 池正极片和负极片都包括活性物质、 导电剂, 集流体以及粘结剂。 目前 商业化锂离子电池正极片中或负极片中通常都采用导电碳黑 (或碳纳米 纤维, 碳纳米管, 乙炔黑等非金属导电物质)作为导电剂, 主要原因是 正极活性物质 (如钴酸锂, 镍钴酸锂, 锰酸锂, 二氧化锰, 锂亚硫酰氯 等)本身的导电性差, 正极活性物质对外输出电能时要吸收电子, 电子 到达集流体并通过集流体对外输出电能, 而导电碳黑的作用将集流体释 放的电子传送到活性物质, 起到电芯内部电子导电的作用, 若是二次锂 离子电池, 当充电时, 导电碳黑的作用是将电子从集流体传送给正极活 性物质, 如果不加导电剂, 则电池的内阻大, 活性物质释放的电子无法 传送到集流体, 电池的电性能 (如容量)得不到发挥, 或无法充电, 电 池无法实现商业化使用。 负极片中如果不加导电剂, 电池的高倍率放电 会受到影响, 因此导电碳黑 (或碳纳米纤维, 碳纳米管, 乙炔黑等非金 属导电物质)在锂离子电池中起到至关重要的作用。
而自 1990年代 SONY公司成功实现锂离子可充电电池(又称二次电 池) 商业化生产以来, 现有大量生产的锂离子电池, 例如应用在手机、 笔记本电脑、 MP3、 MP4等消费电子产品上, 能较好的满足电子产品的电 性能要求, 技术上也很成熟, 由于具有能量密度高的优势, 随着时代的 说 明 书
发展, 轻, 薄, 高能量密度等特性在一些尚未使用锂离子电池的领域也 受到极大的欢迎和重视, 但是现有的已商业化的锂离子电池技术却不能 满足新型领域的产品要求, 例如在航空领域, 在高空会有 -40 °C的低温 并且要求较高的工作电流和高安全性并且要求重量轻 (高能量密度), 又比如在欧洲较北部的地区, 电动摩托车大受欢迎, 但是很难在 -20 °C 既能充电又能高效率的工作且长循环寿命。 再比如在防弹服或作战服, 要求在低温下工作, 又能承受子弹穿透 (高安全性), 并且要求较高的 工作电流和要求重量轻(高能量密度)等等。 因此对于进一步提高能量 密度和低温放电效率仍有迫切性, 如航空领域, 消费电子领域, 电动新 能源。
但是目前锂离子电池的电极的导电物质为导电碳黑、 碳纳米纤维、 碳纳米管或乙炔黑等非金属导电物质,这些导电物质的电阻率为 4 χ 1 0—6 O m- 7 X 1 0"6 O m , 抗氧化性差, 有氧环境下易燃烧。 发明内容
本发明要解决的技术问题是提供一种具有高的容量及容量密度, 高 的放电平台及高的低温放电效率, 尤其是具有高安全性的锂离子电池。
为了解决上述技术问题, 本发明解决其技术问题所采用的技术方案 是: 提供一种含金属类导电物质高容量锂离子电池, 包括正极片、 负极 片、 隔膜、 电解液、 粘合剂和密封材质, 所述正极片的导电物质含有金 属碳化物、 金属硼化物或金属氮化物, 所述负极片的导电物质含有金属 碳化物、 金属硼化物或金属氮化物;
所述金属碳化物为碳氮化钛、 碳化钒、 碳化钽、 碳化钨与碳化钛的 共熔体、碳化钨或碳化钛, 所述金属硼化物为硼化钼、硼化钨或硼化钒, 所述金属氮化物为氮化钛、 氮化钨或氮化钽。
为解决上述技术问题, 本发明采用的另一个技术方案是: 提供一种 含金属类导电物质高容量锂离子电池, 包括正极片、 负极片、 隔膜、 电 解液、 粘合剂和密封材质, 所述正极片的导电物质含有粉状金属, 所述 负极片的导电物质含有粉状金属; 说 明 书
所述粉状金属为镍粉、 铜粉或铬粉。
其中, 所述正极片包括正极活性物质、 正极集流体和粘结剂, 所述 正极片活性物质为磷酸亚铁锂、 钴酸锂、 锰酸俚、 氧化镍钴锰锂、 磷酸 锰锂、 磷酸锰铁锂、 硅酸锰锂、 二氧化锰或锂亚硫酰氯, 所述正极集流 体为铝箔, 所述粘结剂为阿拉伯胶、 改性聚氧化乙烯、 聚偏氟乙烯、 丁 苯橡胶胶乳或羧曱基纤维素;
所述负极片包括负极活性物质、 负极集流体和粘结剂, 负极活性物 质为人造石墨、 天然石墨、 人造石墨和天然石墨两者的混合物、 中间相 碳微球、 金属锂、 金属锡、 硅或钛酸锂。
其中, 所述隔膜为三层复合的聚丙烯、 聚乙烯、 聚丙烯微孔隔膜、 单层聚乙烯微孔隔膜或聚酰亚胺微孔隔膜。
其中, 所述粘结剂为阿拉伯胶、 改性聚氧化乙烯、 聚偏氟乙浠、 丁 苯橡胶胶乳或羧曱基纤维素。
其中, 所述电解液包括溶剂、 可溶性锂盐和添加剂, 所述溶剂为碳 酸乙烯酯、 碳酸曱乙酯、 碳酸丙烯酯、 碳酸二甲酯、 碳酸二乙酯、 碳酸 曱丙酯或乙酸乙酯, 所述可溶性锂盐为六氟磷酸裡、 十二氟硼酸裡、 双 草酸硼酸裡或亚胺锂盐, 所述添加剂为丙磺酸内酯、 碳酸亚乙烯酯、 碳 酸乙烯亚乙酯、 氟化碳酸酯、 亚硫酸乙烯酯、 六曱基二硅胺烷或亚磷酸 三苯酯。
其中, 所述密封材质为自阻燃型硬质聚氯乙烯塑料、 不锈钢或铝塑 复合膜或铝壳材质。
其中, 所述正极片的导电物质含有金属类导电物质与聚乙烯的辐照 交联混合物, 所述负极片的导电物质含有金属类导电物质与聚乙烯的辐 照交联混合物。
本发明的有益效果是, 金属碳化物或金属硼化物, 或金属氮化物以 及粉状的金属的电阻率约为: 5 X 1 0— 7 Ω ΙΒ_ 5 X 1 0— 9 Ω ηι, 热稳定性温度为 31 00 °C左右, 金属碳化物或金属硼化物, 或金属氮化物有较好的化学稳 定性(耐腐蚀性, 耐酸碱), 有较好的抗氧化性, 有氧环境下不易燃烧; 本发明的锂离子电池, 在其正极片和(或) 负极片中加入金属类导电物 说 明 书
质 , 全部取代或部分取代裡离子电池的正极片和(或) 负极片中的原有 的非金属类导电物质, 进一步提高了锂离子电池的容量及容量密度, 和 低温放电效率, 并且安全性进一步得到提高。 金属类导电物质具有更低 的电阻率,使得电池的内阻减小, 当电池放电至某一电位(电压,如 2. 8V 或 3. 0V )时, 电池的放电时间更长, 从而锂离子电池的容量及容量密度 得到提高。 金属类导电物质不易燃烧, 使得电池的安全性得到提高。 具体实施方式
为详细说明本发明的技术内容、 构造特征、 所实现目的及效果, 以 下结合实施方式说明。
本发明将粉状的金属碳化物 (如碳氮化钛, 碳化钨, 碳化钛等), 或金属硼化物 (如硼化钼, 硼化钨, 硼化钒等), 或金属氮化物 (如氮 化钛, 氮化钨, 氮化钽等) 以及粉状的金属 (如镍粉, 铜粉, 铬粉等) 简称为 "金属类导电物质", 同时将导电碳黑 (或碳纳米纤维, 碳纳米 管, 乙炔黑等)在简称为 "非金属类导电物质"。 金属类导电物质的粒 径为 1纳米至 9999微米之间甚至更大。
所述金属碳化物并不限于碳氮化钛、 碳化钨或碳化钛, 其它金属碳 化物也含在本发明权利要求, 如碳化钒, 碳化钽, 碳化钨和碳化钛的共 熔体等, 所述金属硼化物也不局限于硼化钼、 硼化钨或硼化钒, 所述金 属氮化物也不局限于氮化钛、 氮化钨或氮化钽。
实施例 1
本发明含金属类导电物质高容量锂离子电池实施例 1以正极片, 负 极片和隔膜采用卷绕结构制造 500毫安时的聚合物锂离子二次电池, 电 池尺寸: 5. 0* 303*48mm3, 电池的正极活性物质为钴酸锂, 正极导电剂为 碳化钛, 正极粘结剂为聚偏氟乙烯 PVDF, 正极组分的配比为: 钴酸裡 / 碳化钛 /聚偏氟乙烯的比例为 92. 58份 /7. 92份 / 1. 7份(重量比), 实测 碳化钛的压实密度为导电碳黑的压实密度的 3. 6倍, 金属类导电物质电 导率优于非金属类导电物质, 导电剂替换时只要以其同等体积分数替换 即可, 所以金属类导电物质替代非金属类导电物廣时, 由于金属类导电 说 明 书
物质压实密度为非金属类导电物质的 3. 6倍, 原有非金属类导电物质添 加比为 2. 2份, 所以本实施例中碳化钛的重量分数在 7. 92份。 正极集 流体为铝箔。
负极活性物质为中间相碳微球, 负极导电剂为 SUPER P导电碳, 粘 结剂为丁苯橡胶胶乳 SBR和羧曱基纤维素 CMC, 负极组分的配比为: 中 间相碳微球 /导电碳 SUPER P/丁苯橡胶胶乳 /羧曱基纤维素的比例为 94. 2份 /2. 0份 /2. 0份 / 1. 8份(重量比), 负极集流体为铜箔, 以水作为 负极粘结剂的溶剂。
电池隔膜为三层复合的 (聚丙浠 /聚乙烯 /聚丙烯)微孔隔膜, 电池 电解液为: 溶剂由碳酸乙烯酯 ( EC )、 碳酸曱乙酯 ( EMC )、 碳酸丙烯酯 ( PC ), 碳酸二曱酯 (DMC )、 碳酸二乙酯 (DEC )、 碳酸曱丙酯 (MPC )、 乙酸乙酯等加上锂盐六氟磷酸锂以及添加剂丙磺酸内酯、 碳酸亚乙烯酯 ( VC )、 碳酸乙烯亚乙酯(乙烯基碳酸亚乙酯, VEC)、 亚硫酸乙烯酯、 硅 胺烷类等物质组成。 电池的密封材质 (外壳, 电池壳盖) 为自阻燃型硬 质聚氯乙烯。
实施方式 2
本实施例在实施例 1 的基 上进行改进, 将实施例 1 中, 钴酸锂 / 碳化钛 /聚偏氟乙烯的比例 92. 58份 /7. 92份 / 1. 7份(重量比)改为钴酸 锂 /碳化钛 /碳黑 SUPER P/聚偏氟乙烯的比例 92. 98份 /4. 32份 / 1. 0份 /1. 7份 (重量比), 其余不变。
实施方式 3
本实施例在实施例 1的基础上进行改进, 将实施例 1中的碳化钛改 为氮碳化钛, 其余不变。
实施方式 4
本实施例在实施例 2的基础上进行改进, 将实施例 1中的碳化钛改 为氮碳化钛, 其余不变。
实施方式 5
本实施例在实施例 1的基础上进行改进, 将实施例 1中的碳化钛改 为镍粉, 其余不变。 说 明 书
实施方式 6
本实施例在实施例 2的基础上进行改进 将实施例 2中的碳化钛改 为镍粉, 其余不变。
实施方式 7
本实施例在实施例 1的基础上进行改进 将实施例 1中的碳化钛改 为碳化钨, 其余不变。
实施方式 8
本实施例在实施例 2的基础上进行改进 将实施例 2的碳化钛改为 碳化钨, 其余不变。
实施方式 9
本实施例在实施例 1的基础上进行改进 将实施例 1中的碳化钛改 为硼化钒, 其余不变。
实施方式 1 0
本实施例在实施例 1的基础上进行改进 将实施例 1中的碳化钛改 为硼化钒, 其余不变。
实施方式 1 1
本实施例在实施例 1的基础上进行改进 将实施例 1中的负极导电 剂 SUPER P导电碳改为碳化钛, 其余不变。
实施方式 1 2
本实施例在实施例 2的基础上进行改进 将实施例 2中的负极导电 剂 SUPER P导电碳改为碳化钛, 其余不变。
实施方式 1 3
本实施例在实施例 1的基础上进行改进 将实施例 1中的钴酸锂改 为磷酸亚铁锂, 其余不变。
实施方式 14
本实施例在实施例 2的基础上进行改进, 将实施例二中的钴 S史锂改 为磷酸亚铁锂, 其余不变。
实施方式 1 5
本实施例在实施例 1的基础上进行改进 将实施例 1 中, 制造 500 说 明 书
毫安时的聚合物锂离子二次电池, 改为制造 3000 毫安时的聚合物锂离 子二次电池, 电池尺寸: 5. 5 *5 3* 106mm3, 正极导电剂碳化钛改为碳化钛 与高密度聚乙烯的混合物, 重量比为 80/10 , 碳化钛与高密度聚乙烯的 混合方法为: 将碳化钛与高密度聚乙烯在高温下 (160 °C ) 用密炼机或 双螺杆机进行融熔混合, 待冷却后, 用粉碎机将其粉碎, 再过 300目以 上的筛子, 得到粉状的碳化钛与高密度聚乙烯的混合物, 然后进行辐照 交联, 辐照方法为用钴 60 或电子射线对其辐照, 由此得到粉状的碳化 钛与高密度聚乙烯的混合物的导电剂, 其余不变。
实施方式 16
本实施例在实施例 2的基础上进行改进, 将实施例 2中, 制造 500 毫安时的聚合物锂离子二次电池, 改为制造 3000 毫安时的聚合物锂离 子二次电池, 电池尺寸: 5. 5*53* 106mm3 , 正极导电剂中的碳化钛改为 碳化钛与高密度聚乙烯的混合物, 重量比为碳化钛与高密度聚乙烯为 80/10 , 碳化钛与高密度聚乙烯的混合方法为: 将碳化钛与高密度聚乙 烯在高温下 (160 °C ) 用密炼机或双螺杆机进行融熔混合, 待冷却后, 用粉碎机将其粉碎, 再过 300目以上的筛子, 得到碳化钛与高密度聚乙 烯的混合物, 然后进行辐照交联, 辐照方法为用钴 60 或电子射线对其 辐照, 由此得到粉状的碳化钛与高密度聚乙烯的混合物的导电剂, 其余 不变。
实施方式 17
本实施例在实施例 1的基础上进行改进, 将实施例 1 中, 制造 500 毫安时的聚合物锂离子二次电池, 改为制造 3000 毫安时的聚合物锂离 子二次电池, 电池尺寸: 5. 5 *5 3* 106mm3, 正极导电剂中的碳化钛改为碳 化钛与尼龙 6的混合物, 重量比为 80/10, 碳化钛与高密度尼龙 6的混 合方法为: 将碳化钛与尼龙 6 在高温下 ( 220 °C ) 用密炼机或双螺杆机 进行融熔混合, 待冷却后, 用粉碎机将其粉碎, 再过 300 目以上的筛子, 得到碳化钛与尼龙 6的混合物, 然后进行辐照交联, 辐照方法为用钴 60 或电子射线对其辐照, 由此得到粉状的碳化钛与高密度聚乙烯的混合物 的导电剂, 其余不变。 说 明 书
实施方式 18
本实施例在实施例 2的基础上进行改进, 将实施例 2中, 制造 500 毫安时的聚合物锂离子二次电池, 改为制造 3000 毫安时的聚合物锂离 子二次电池, 电池尺寸: 5. 5 *5 3* 106mm3, 正极导电剂中的碳化钛改为碳 化钛与尼龙 6的混合物, 重量比为 80/10 , 碳化钛与高密度尼龙 6的混 合方法为: 将碳化钛与尼龙 6 在高温下 ( 220 °C ) 用密炼机或双螺杆机 进行融熔混合, 待冷却后, 用粉碎机将其粉碎, 再过 300 目以上的筛子, 得到碳化钛与尼龙 6的混合物, 然后进行辐照交联, 辐照方法为用钴 60 或电子射线对其辐照, 由此得到粉状的碳化钛与高密度聚乙烯的混合物 的导电剂, 其余不变。
实施方式 19
本发明含金属类导电物质高容量锂离子电池实施例 19为制造 1300 毫安时的圓柱 AA 型锂二氧化锰一次电池, 电池尺寸为 50匪 (高) *14. 5mm (直径), 正极活性物质为二氧化锰, 正极导电剂为碳化钛, 正 极粘合剂为聚四氟乙烯乳液, 正极集流体为镍网, 负极活性物质为纯锂 箔, 负极集流体为镍条, 隔膜为玻璃纤维布, 电解质为: 高氯酸鋰溶解 在碳酸丙烯酯和碳酸曱乙酯混合溶剂中的混合物, 浓度 1摩尔。
实施方式 20
本发明含金属类导电物质高容量锂离子电池实施例 20为制造 1500 毫安时的方型锂亚 酰氯一次电池, 9* 36*55mm3, 正极活性物质为亚石克 酰氯, 正极导电剂为碳化钛, 正极粘合剂为聚四氟乙烯乳液, 正极集流 体为镍网, 负极活性物质为纯锂箔, 负极集流体为镍条, 隔膜为玻璃纤 维布, 电解质为: 高氯酸裡溶解在亚硫酰氯中的混合物, 浓度 1摩尔。
比较实施例 1 : 将实施例 1 中的钴酸锂 /碳化钛 /聚偏氟乙浠的比例 92. 58份 /7. 92份 /1. 7份(重量比) 改为钴酸锂 /碳黑 SUPER P/聚偏氟乙 烯的比例 95. 1份 /2. 2份 / 1. 0/ 1. 7份 (重量比), 其余不变。
比较实施例 2 : 同比较实施例 1一样。
比较实施例 3 : 同比较实施例 1一样。
比较实施例 4 : 同比较实施例 1一样。 说 明 书
比较实施例 6 : 将实施例 19中的正极导电剂碳化钛改为乙炔黑, 其 余同实施方式 19一样。
比较实施例 7 : 将实施方式 20中的正极导电剂碳化钛改为乙炔黑, 其余同实施方式 20—样。
本发明金属类导电物质与聚乙烯或尼龙等塑料的辐照交联混合方 法为: 将金属类导电物质与聚乙烯在高温下( 150 °C --180 °C )用开炼机, 流变仪, 密炼机或双螺杆机进行熔融混合, 待冷却后, 用粉碎机将其粉 碎, 再过 20目至 1000目的筛子, 得到金属类导电物质与聚乙烯的混合 物, 然后进行辐照交联, 辐照方法为用钴 60 或电子射线等射线对其辐 照, 由此得到金属类导电物质与聚乙烯的混合物的粉状的导电剂。
金属类导电物质与聚乙烯的混合物, 其重量比为 1 / 99至 99/ 1。 本发明电池安全性测试方法 (依据国内外相关标准)如下: 过充电测试: 用不小于 10V的电源给测试电池以 0. 5C 电流充电, 直至其容量达到额定容量的 250%。
针刺测试: 将充满电的测试电池固定于夹具上, 用直径为 3腿的钢 针, 沿径向强力刺穿。
挤压测试: 将测试电池放在平面上, 将一直径 15. 8mm 的棒横放在 样品中心表面上, 让重量 9. 1 ± 0. 46kg的重物从 61 ± 2. 5隱高度落到试 样上。 圓柱形或方形电池受冲击时, 其长轴应平行于平面并且与放在试 样中心的 15. 8mm直径的棒的曲面垂直。方形电池应沿长轴方向转 90度, 以使宽侧和窄侧均承受冲击。 每个样品电池只承受一个方向的冲击, 每 个测试都采用独立试样。
热冲击测试: 将测试电池放在一自然对流或强制对流烘箱中加热, 烘箱温度以 5 ± 2 °C /min速度升温至 1 30 °C, 并保持 l Omin后停止。
重物冲击测试: 将测试电池放在平面上, 将一直径 15. 8mm 的棒横 放在样品中心表面上, 让重量 9. 1 ± 0. 46kg的重物从 61 ± 1. 5匪高度落 到试样上。 圓柱形或方形电池受冲击时, 其长轴应平行于平面并且与放 在试样中心的 15. 8mm 直径的棒的曲面垂直。 方形电池应沿长轴方向转 90度, 以使宽侧和窄侧均承受冲击。 每个样品电池只承受一个方向的冲 说 明 书
击, 每个测试都采用独立试样。
表一说明了本发明技术的含金属类导电物质高容量锂离子电池与 现有技术 (比较实施例) 的锂离子电池的性能的的对比及改进效果。
Figure imgf000011_0001
说 明 书
Figure imgf000012_0001
从表一的比较可以知道, 采用现有技术(即比较实施例)制造的锂 电池, 其导电剂采用的非金属类导电剂, 在做安全性测试时, 如过充电 测试, 针刺测试, 重物冲击测试, 电池出现着火爆炸或冒烟现象, 而本 发明技术的含金属类导电物质高容量锂离子电池(即实施例, 采用金属 类导电剂)在做安全性测试时, 如过充电测试, 针刺测试, 重物冲击测 试, 电池均未出现起火爆炸现象, 对比说明本发明技术采用金属类导电 剂可以解决现有技术的电池不安全的缺点。
从表一的比较还可以知道本发明技术的锂离子电池(即实施例, 采 用金属类导电剂) 电池的容量均高于现有技术(比较实施例, 导电剂采 说 明 书
用的非金属类导电剂) 制造的锂电池, 对比说明本发明技术采用金属 类导电剂可以改善提高现有技术(比较实施例, 导电剂采用的非金属类 导电剂) 的电池的容量。
在更多实施方式中, 可以将负极活性物质中间相碳微球改为石黑类 物质, 如人造石墨(比如石油焦、 高純石墨、针状焦、 G4料、碳纤维等)、 天然石墨(如包覆的天然石墨等)、 人造石墨和天然石墨两者的混合物 等, 或改为钛酸锂。
或者将电池的密封材质 (外壳, 电池壳盖) 的自阻燃型硬质聚氯乙 烯塑料替换为不锈钢, 或改为铝塑复合膜或铝壳材质, 其余不变。
以上所述各实施例及其改进, 可以根据需要, 灵活调整各改进方案 的搭配。
以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利用本发明说明书所作的等效结构或等效流程变换, 或直接或间接 运用在其他相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权 利 要 求 书
1、 一种含金属类导电物质高容量锂离子电池, 包括正极片、 负极 片、 隔膜、 电解液、 粘合剂和密封材质, 其特征在于: 所述正极片的导 电物质含有金属碳化物、 金属硼化物或金属氮化物, 所述负极片的导电 物质含有金属碳化物、 金属硼化物或金属氮化物;
所述金属碳化物为碳氮化钛、 碳化钒、 碳化钽、 碳化钨与碳化钛的 共熔体、碳化钨或碳化钛, 所述金属硼化物为硼化钼、硼化钨或硼化钒, 所述金属氮化物为氮化钛、 氮化钨或氮化钽。
2、 一种含金属类导电物质高容量锂离子电池, 包括正极片、 负极 片、 隔膜、 电解液、 粘合剂和密封材质, 其特征在于: 所述正极片的导 电物质含有粉状金属, 所述负极片的导电物质含有粉状金属;
所述粉状金属为镍粉、 铜粉或铬粉。
3、 根据权利要求 1或 2所述的含金属类导电物质高容量锂离子电 池, 其特征在于: 所述正极片包括正极活性物质、正极集流体和粘结剂, 所述正极片活性物质为磷酸亚铁锂、 钴酸裡、 锰酸 4里、 氧化镍钴锰裡、 磷酸锰锂、 磷酸锰铁锂、 硅酸锰锂、 二氧化锰或锂亚硫酰氯, 所述正极 集流体为铝箔, 所述粘结剂为阿拉伯胶、 改性聚氧化乙烯、 聚偏氟乙烯、 丁苯橡胶胶乳或羧曱基纤维素;
所述负极片包括负极活性物质、 负极集流体和粘结剂, 负极活性物 质为人造石墨、 天然石墨、 人造石墨和天然石墨两者的混合物、 中间相 碳微球、 金属锂、 金属锡、 硅或钛酸锂。
4、 根据权利要求 1或 2任意一项所述的含金属类导电物质高容量 锂离子电池, 其特征在于: 所述隔膜为三层复合的聚丙烯、 聚乙烯、 聚 丙烯微孔隔膜、 单层聚乙烯微孔隔膜或聚酰亚胺微孔隔膜。
5、 根据权利要求 1或 2任意一项所述的含金属类导电物质高容量 锂离子电池, 其特征在于: 所述粘结剂为阿拉伯胶、 改性聚氧化乙烯、 聚偏氟乙烯、 丁苯橡胶胶乳或羧甲基纤维素。
6、 根据权利要求 1或 2任意一项所述的含金属类导电物质高容量 锂离子电池, 其特征在于: 所述电解液包括溶剂、 可溶性锂盐和添加剂, 权 利 要 求 书
所述溶剂为碳酸乙烯酯、 碳酸曱乙酯、 碳酸丙烯酯、 碳酸二甲酯、 碳酸 二乙酯、 碳酸甲丙酯或乙酸乙酯, 所述可溶性锂盐为六氟碑酸锂、 十二 氟硼酸锂、 双草酸硼酸锂或亚胺锂盐, 所述添加剂为丙磺酸内酯、 碳酸 亚乙烯酯、 碳酸乙婦亚乙酯、 氟化碳酸酯、 亚克酸乙烯酯、 六曱基二硅 胺烷或亚磷酸三苯酯。
7、 根据权利要求 1或 2任意一项所述的含金属类导电物质高容量 锂离子电池,其特征在于: 所述密封材质为自阻燃型硬质聚氯乙烯塑料、 不锈钢或铝塑复合膜或铝壳材质。
8、 根据权利要求 1或 2任意一项所述的含金属类导电物质高容量 锂离子电池, 其特征在于: 所述正极片的导电物质含有金属类导电物质 与聚乙烯的辐照交联混合物, 所述负极片的导电物质含有金属类导电物 质与聚乙烯的辐照交联混合物。
PCT/CN2011/075198 2011-06-02 2011-06-02 一种含金属类导电物质高容量锂离子电池 WO2012162893A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/119,450 US20140113175A1 (en) 2011-06-02 2011-06-02 High capacity lithium ion battery containing metallic conducting materials
EP11866733.6A EP2717366A1 (en) 2011-06-02 2011-06-02 High capacitance lithium ion battery containing metallic conducting materials
JP2014511702A JP2014517993A (ja) 2011-06-02 2011-06-02 金属系導電性物質を含む高容量リチウムイオン電池
PCT/CN2011/075198 WO2012162893A1 (zh) 2011-06-02 2011-06-02 一种含金属类导电物质高容量锂离子电池
KR1020137031434A KR20140039208A (ko) 2011-06-02 2011-06-02 일종의 금속류 전도성 물질을 함유한 고용량 리튬 이온 배터리

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/075198 WO2012162893A1 (zh) 2011-06-02 2011-06-02 一种含金属类导电物质高容量锂离子电池

Publications (1)

Publication Number Publication Date
WO2012162893A1 true WO2012162893A1 (zh) 2012-12-06

Family

ID=47258286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075198 WO2012162893A1 (zh) 2011-06-02 2011-06-02 一种含金属类导电物质高容量锂离子电池

Country Status (5)

Country Link
US (1) US20140113175A1 (zh)
EP (1) EP2717366A1 (zh)
JP (1) JP2014517993A (zh)
KR (1) KR20140039208A (zh)
WO (1) WO2012162893A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207521A1 (en) * 2013-06-27 2014-12-31 Toyota Jidosha Kabushiki Kaisha Electrode for non-aqueous secondary battery
US20150221952A1 (en) * 2014-02-06 2015-08-06 Samsung Electronics Co., Ltd. Positive electrode for lithium air battery and lithium air battery including the same
CN109167066A (zh) * 2018-09-03 2019-01-08 济南大学 一种少层碳化钛原位生长氮掺杂碳纳米管三维复合材料的制备方法
CN110380052A (zh) * 2019-07-19 2019-10-25 田韬 一种基于锂硫电池正极用高导电硫基复合材料
CN113054252A (zh) * 2019-12-27 2021-06-29 张家港市国泰华荣化工新材料有限公司 一种电解液及锂离子电池
CN113697811A (zh) * 2021-08-26 2021-11-26 河北师范大学 一种三维层状硼掺杂碳化钛及其制备方法和应用

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5832943B2 (ja) * 2012-03-23 2015-12-16 富士フイルム株式会社 導電性組成物、導電性部材、導電性部材の製造方法、タッチパネルおよび太陽電池
US9780386B2 (en) 2014-08-08 2017-10-03 Samsung Electronics Co., Ltd. Composite for lithium air battery, method of preparing the composite, and lithium air battery employing positive electrode including the composite
CN104752768B (zh) * 2015-04-21 2018-01-09 叶利萍 一种钛酸锂电池用电解液及其钛酸锂电池
JPWO2017014245A1 (ja) * 2015-07-23 2018-01-25 日立化成株式会社 リチウムイオン二次電池
CN106450304A (zh) * 2016-11-15 2017-02-22 安徽安达新能源材料有限公司 磷酸锰锂复合正极材料及其制备方法和应用
KR102143101B1 (ko) 2017-09-29 2020-08-10 주식회사 엘지화학 이차전지용 양극 활물질의 제조방법, 이와 같이 제조된 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2019066585A1 (ko) * 2017-09-29 2019-04-04 주식회사 엘지화학 이차전지용 양극 활물질의 제조방법, 이와 같이 제조된 양극 활물질 및 이를 포함하는 리튬 이차전지
US11228028B2 (en) 2017-12-27 2022-01-18 Industrial Technology Research Institute Cathode of lithium ion battery
CN109994736A (zh) * 2019-04-10 2019-07-09 江西安驰新能源科技有限公司 一种高比能锂电池及其制备方法
CN110783554B (zh) * 2019-11-27 2022-10-18 江苏红东科技有限公司 一种高倍率耐低温长寿命的锂离子电池负极材料
CN111769281A (zh) * 2020-06-18 2020-10-13 合肥国轩高科动力能源有限公司 一种锂离子电池导电剂及锂离子电池
CN111987278B (zh) * 2020-07-30 2022-05-10 中国科学院化学研究所 一种锂金属二次电池用复合隔膜及其制备方法和应用
CN111710874B (zh) * 2020-08-19 2020-12-08 广州纳诺新材料科技有限公司 一种固态锂电池、复合负极及其制备方法
CN113745751B (zh) * 2021-08-31 2023-07-25 远景动力技术(江苏)有限公司 锂离子电池隔膜及其制备方法与应用
CN113991117B (zh) * 2021-10-28 2024-05-10 骆驼集团资源循环襄阳有限公司 一种磷酸铁锂复合材料的制备方法
CN114497454A (zh) * 2021-12-24 2022-05-13 贵州梅岭电源有限公司 一种正极极片、电池及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1842933A (zh) * 2003-08-26 2006-10-04 三洋电机株式会社 非水电解质电池
CN101420022A (zh) * 2007-10-26 2009-04-29 比亚迪股份有限公司 一种锂离子电池正极
CN101609878A (zh) * 2009-07-03 2009-12-23 中南大学 一种高倍率离子电容电池负极材料及其制备方法
CN101926029A (zh) * 2008-01-11 2010-12-22 A123系统公司 硅基复合材料

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217582A (ja) * 1992-01-31 1993-08-27 Sony Corp 非水電解質二次電池
JPH09161776A (ja) * 1995-12-08 1997-06-20 Yuasa Corp 非水二次電池
WO1999067840A1 (fr) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cellule et procede de fabrication correspondant
JP2000021388A (ja) * 1998-06-30 2000-01-21 Toshiba Corp 非水電解液二次電池
JP2001202965A (ja) * 2000-01-20 2001-07-27 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2001223030A (ja) * 2000-02-09 2001-08-17 Ngk Insulators Ltd リチウム二次電池
JP4610213B2 (ja) * 2003-06-19 2011-01-12 三洋電機株式会社 リチウム二次電池及びその製造方法
JPWO2005020355A1 (ja) * 2003-08-26 2006-11-02 三洋電機株式会社 非水電解質電池
WO2005038966A1 (ja) * 2003-10-17 2005-04-28 Sanyo Electric Co., Ltd. 非水電解質電池
JP2006059771A (ja) * 2004-08-24 2006-03-02 Sanyo Electric Co Ltd 非水電解質電池
JP2006092808A (ja) * 2004-09-21 2006-04-06 Nissan Motor Co Ltd 電池構造体
JP2008021614A (ja) * 2006-07-14 2008-01-31 Nissan Motor Co Ltd 電池用電極

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1842933A (zh) * 2003-08-26 2006-10-04 三洋电机株式会社 非水电解质电池
CN101420022A (zh) * 2007-10-26 2009-04-29 比亚迪股份有限公司 一种锂离子电池正极
CN101926029A (zh) * 2008-01-11 2010-12-22 A123系统公司 硅基复合材料
CN101609878A (zh) * 2009-07-03 2009-12-23 中南大学 一种高倍率离子电容电池负极材料及其制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207521A1 (en) * 2013-06-27 2014-12-31 Toyota Jidosha Kabushiki Kaisha Electrode for non-aqueous secondary battery
CN105359315A (zh) * 2013-06-27 2016-02-24 丰田自动车株式会社 用于无水二次电池的电极
US20150221952A1 (en) * 2014-02-06 2015-08-06 Samsung Electronics Co., Ltd. Positive electrode for lithium air battery and lithium air battery including the same
CN109167066A (zh) * 2018-09-03 2019-01-08 济南大学 一种少层碳化钛原位生长氮掺杂碳纳米管三维复合材料的制备方法
CN110380052A (zh) * 2019-07-19 2019-10-25 田韬 一种基于锂硫电池正极用高导电硫基复合材料
CN110380052B (zh) * 2019-07-19 2022-05-17 东营昆宇电源科技有限公司 一种基于锂硫电池正极用高导电硫基复合材料
CN113054252A (zh) * 2019-12-27 2021-06-29 张家港市国泰华荣化工新材料有限公司 一种电解液及锂离子电池
CN113054252B (zh) * 2019-12-27 2022-08-30 张家港市国泰华荣化工新材料有限公司 一种电解液及锂离子电池
CN113697811A (zh) * 2021-08-26 2021-11-26 河北师范大学 一种三维层状硼掺杂碳化钛及其制备方法和应用

Also Published As

Publication number Publication date
EP2717366A1 (en) 2014-04-09
JP2014517993A (ja) 2014-07-24
US20140113175A1 (en) 2014-04-24
KR20140039208A (ko) 2014-04-01

Similar Documents

Publication Publication Date Title
WO2012162893A1 (zh) 一种含金属类导电物质高容量锂离子电池
CN102751530B (zh) 一种含金属类导电物质高容量锂离子电池
CN109755467B (zh) 一种电极极片、电化学装置及安全涂层
CN105845928B (zh) 一种锂离子动力电池及其制备方法
JP5183016B2 (ja) 非水系電解液二次電池用多孔質セパレータおよびそれを用いた非水系電解液二次電池
WO2017128983A1 (zh) 全固态锂离子电池正极复合材料及其制备方法和应用
WO2022037092A1 (zh) 一种集流体、极片和电池
CN102231434A (zh) 一种锂离子电池改性天然石墨负极材料及其制备方法
CN108232111A (zh) 一种固态电池用的复合正极极片及其制备方法
WO2014134967A1 (zh) 一种锂离子电池正极膜及其制备和应用
WO2004001880A1 (ja) 電極およびそれを用いた電池
CN105870449B (zh) 一种全固态锂-空气电池复合正极材料及全固态锂-空气电池
TW200913348A (en) Lithium secondary battery
CN111785925A (zh) 极片及应用、含有该极片的低温升高安全性锂离子电池
CN105047891A (zh) 一种石墨锡基复合负极材料的制备方法
CN106887593B (zh) 一种高容量锂离子电池负极材料的制备方法
CN105810919A (zh) 一种锂离子电池改性石墨负极材料的制备方法
WO2018059180A1 (zh) 一种高功率高能量化学电源及其制备方法
CN105826561A (zh) 一种高倍率锂离子电池负极材料的制备方法
WO2023071691A1 (zh) 一种电化学装置及电子装置
CN110690398A (zh) 用于高温锂硫电池的多功能复合隔膜、其制备方法和应用
JP2016152100A (ja) リチウム二次電池用負極材料及びその製造方法、並びに該負極材料を用いたリチウム二次電池用の負極活物質層用組成物、リチウム二次電池用負極及びリチウム二次電池
CN110875476A (zh) 锂二次电池的负极、其制备方法和锂二次电池
CN103078088B (zh) 一种锂离子电池负极材料
CN109755465B (zh) 一种电极极片、电化学装置及安全涂层

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866733

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011866733

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014511702

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14119450

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137031434

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE