WO2023071691A1 - 一种电化学装置及电子装置 - Google Patents

一种电化学装置及电子装置 Download PDF

Info

Publication number
WO2023071691A1
WO2023071691A1 PCT/CN2022/122425 CN2022122425W WO2023071691A1 WO 2023071691 A1 WO2023071691 A1 WO 2023071691A1 CN 2022122425 W CN2022122425 W CN 2022122425W WO 2023071691 A1 WO2023071691 A1 WO 2023071691A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochemical device
mass percentage
compound
carbonate
present application
Prior art date
Application number
PCT/CN2022/122425
Other languages
English (en)
French (fr)
Inventor
崔辉
刘建
唐超
Original Assignee
东莞新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞新能源科技有限公司 filed Critical 东莞新能源科技有限公司
Priority to EP22885576.3A priority Critical patent/EP4421938A1/en
Priority to KR1020247014302A priority patent/KR20240067966A/ko
Publication of WO2023071691A1 publication Critical patent/WO2023071691A1/zh
Priority to US18/645,936 priority patent/US20240283029A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of energy storage technology, in particular to an electrochemical device and an electronic device.
  • Electrochemical devices such as lithium-ion batteries
  • wearable devices smartphones, drones, laptops, and other fields due to their high operating voltage, high energy density, environmental friendliness, stable cycle, and safety;
  • the requirements for charging capacity and charging temperature rise of electrochemical devices are getting higher and higher.
  • the purpose of the present application is to provide an electrochemical device and an electronic device to reduce the temperature rise during charging.
  • the first aspect of the present application provides an electrochemical device, which includes a positive electrode, a negative electrode, and an electrolyte, wherein the electrolyte includes an organic solvent, a lithium salt, and an additive; the organic solvent includes an acetate compound and a carbonate compound , the carbonate compound comprises ethylene carbonate (EC) and propylene carbonate (PC), based on the total mass of the electrolyte, the mass percentage A of the acetate compound is 4% to 50%, The mass percent content B of the ethylene carbonate is 5% to 20%.
  • the inventors found that the above-mentioned content of the acetate compound and the carbonate compound contained in the organic solvent can improve the cycle performance of the electrochemical device and reduce the charging temperature rise.
  • the acetate compound includes at least one of methyl acetate, ethyl acetate, and propyl acetate.
  • the electrolyte solution further comprises polynitrile compounds
  • the polynitrile compounds include succinonitrile, adiponitrile, 1,3,6-hexanetrinitrile, 1,2 , at least two of 3-tris(2-cyanooxy)propane, ethylene glycol (bispropionitrile) ether and 1,4-dicyano-2-butene.
  • the mass percentage C of the polynitrile compound is 0.1% to 10%.
  • the mass percentage C of the polynitrile compound and the mass percentage A of the acetate compound satisfy the relationship: 0.1 ⁇ C/A ⁇ 0.8.
  • the additive comprises fluoroethylene carbonate (FEC), the mass percentage D of the fluoroethylene carbonate is equal to the mass percentage of the propylene carbonate
  • the content E satisfies the relationship: 0.2 ⁇ D/E ⁇ 1.
  • the mass percentage content E of the propylene carbonate is 5% to 30% or the mass percentage content D of the fluoroethylene carbonate is 0.1% to 15% %, by regulating the content of fluoroethylene carbonate and propylene carbonate within the above range, the cycle performance of the electrochemical device can be improved.
  • the lithium salt is LiPF 6
  • the lithium salt content is 10% to 20% based on the total mass of the electrolyte.
  • the negative electrode active material in the negative electrode has a compacted density of 1.40 g/cm 3 to 1.70 g/cm 3 .
  • the negative electrode comprises pores, and the pores satisfy at least one of the following: (a) 20 ⁇ m to 100 ⁇ m, (b) pore depth ranging from 5 ⁇ m to 50 ⁇ m, (c) unit The number of area holes is 0.5/mm 2 to 100/mm 2 .
  • the second aspect of the present application provides an electronic device, which includes the electrochemical device provided in the first aspect of the present application.
  • the electrochemical device and electronic device of the present application can improve the kinetic characteristics of the electrochemical device, increase the charging capacity, and reduce the temperature rise of charging by optimizing the content and type of solvent in the electrolyte. By adding appropriate additives to the electrolyte, the charging capacity can be further improved and the temperature rise during charging can be reduced.
  • the present application is explained by taking the lithium-ion battery as an example of the electrochemical device, but the electrochemical device of the present application is not limited to the lithium-ion battery. It should be understood by those skilled in the art that the following description is only for illustration and does not limit the protection scope of the present application.
  • the first aspect of the present application provides an electrochemical device, which includes a positive electrode, a negative electrode, and an electrolyte, wherein the electrolyte includes an organic solvent, a lithium salt, and an additive; the organic solvent includes an acetate compound and a carbonate compound , the carbonate compound comprises ethylene carbonate and propylene carbonate, based on the total mass of the electrolyte, the mass percentage A of the acetate compound is 4% to 50%, for example, the acetate compound
  • the mass percentage content A can be 4%, 10%, 12%, 20%, 28%, 36%, 50% or any range therebetween;
  • the mass percentage content B of described ethylene carbonate is 5% to 20%, for example, the content B of the ethylene carbonate may be 5%, 8%, 11%, 14%, 17%, 20% or any range therebetween.
  • the inventors of the present application have found through research that by regulating the organic solvent to include acetate compounds and carbonate compounds, controlling the content of acetate compounds and ethylene carbonate in the above-mentioned range, in the electrochemical device cycle process, contributes to Improve lithium salt dissociation rate and solid electrolyte interface (SEI) film stability. Therefore, the kinetic performance of the electrochemical device is improved, the cycle performance is improved, and the charging temperature rise is reduced.
  • SEI solid electrolyte interface
  • the acetate compound includes at least one of methyl acetate, ethyl acetate, and propyl acetate.
  • the inventors of the present application found that the above-mentioned acetate compounds have lower viscosity, which is conducive to improving the transmission of lithium ions during charging, reducing the transmission impedance, and thus reducing the charging temperature rise of the electrochemical device.
  • the electrolyte also includes polynitrile compounds, which include succinonitrile (SN), adiponitrile (AND), 1,3,6-hexanetrinitrile ( HTCN), 1,2,3-tris(2-cyanooxy)propane (TCEP), ethylene glycol (dipropionitrile) ether (DENE) and 1,4-dicyano-2-butene (HEDN)
  • polynitrile compounds include succinonitrile (SN), adiponitrile (AND), 1,3,6-hexanetrinitrile ( HTCN), 1,2,3-tris(2-cyanooxy)propane (TCEP), ethylene glycol (dipropionitrile) ether (DENE) and 1,4-dicyano-2-butene (HEDN)
  • the mass percentage C of the polynitrile compound is 0.1% to 10%, for example, the mass percentage C of the polynitrile compound can be 0.1%, 1% , 2%, 4%, 6%, 8%, 10%, or any range therebetween.
  • the content C of the polynitrile compound and the content A of the acetate compound satisfy the relationship: 0.1 ⁇ C/A ⁇ 0.8.
  • the value of C/A can be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 or any range therebetween.
  • the inventors of the present application have found that when the value of C/A is too low, such as lower than 0.1, the cycle performance and charging temperature rise of the electrochemical device are not significantly improved; when the value of C/A is too high, such as higher than 0.8, if the content of polynitrile compounds is too high or the content of acetate is too low, the viscosity of the electrolyte will increase, and the polarization during the cycle will be large, which will affect the charging temperature rise and cycle performance of the electrochemical device.
  • the value of C/A within the above range, it is beneficial to further improve the cycle performance of the electrochemical device and reduce the charging temperature rise.
  • the additive comprises fluoroethylene carbonate (FEC), the mass percentage of the fluoroethylene carbonate is D, and the content D of the fluoroethylene carbonate is equal to
  • FEC fluoroethylene carbonate
  • D mass percentage of the fluoroethylene carbonate
  • D of the fluoroethylene carbonate is equal to
  • the content E of the propylene carbonate satisfies the relationship: 0.2 ⁇ D/E ⁇ 1.
  • D/E can be 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 or any range therebetween.
  • the inventors of the present application have found that when the ratio of the content of FEC to the content of propylene carbonate is too low, for example, when D/E is less than 0.2, due to the high viscosity of the solvent, the internal capacity of the lithium-ion battery is increased. At the same time, the protection of the anode is insufficient and the cycle performance is poor; when the ratio of the content of FEC to the content of propylene carbonate is too high, for example, when D/E is greater than 1, the lithium salt dissociation is insufficient, and the temperature At the same time, the FEC content is too high, the high temperature stability is poor, and the cycle becomes poor.
  • the ratio of the content of fluoroethylene carbonate to the content of propylene carbonate in the above range, it is beneficial to improve the cycle performance of the electrochemical device and reduce the temperature rise of charging.
  • the mass percentage E of the propylene carbonate is 5% to 30% or the mass percentage D of the fluoroethylene carbonate is 0.1% to 15%, for example, E can be 5%, 10%, 12%, 14%, 16%, 18%, 20%, 30% or any range in between, D can be 0.1%, 1%, 3%, 5%, 7% , 9%, 11%, 15%, or any range in between.
  • the lithium salt is LiPF 6
  • the content of the lithium salt is 10% to 20% based on the total mass of the electrolyte.
  • the lithium salt content can be 10%, 12%, 14%, 16%, 18%, 20%, or any range therebetween.
  • the inventors of the present application found that by adjusting the lithium salt content in the above range, it is beneficial to improve the electrical conductivity during the cycle of the electrochemical device, thereby improving the cycle performance of the electrochemical device.
  • the electrolyte solution may also include other non-aqueous solvents.
  • This application has no special restrictions on other non-aqueous solvents, as long as the purpose of this application can be achieved, for example, it may include but not limited to carboxylate compounds, ether compounds Or at least one of other organic solvents.
  • the above carboxylate compounds may include, but are not limited to, methyl formate, ethyl formate, methyl propionate, ethyl propionate, propyl propionate, ⁇ -butyrolactone, decanolactone, valerolactone or caprolactone at least one of the
  • the aforementioned ether compounds may include, but are not limited to, dibutyl ether, tetraglyme, diglyme, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1- At least one of ethoxy-1-methoxyethane, 2-methyltetrahydrofuran or tetrahydrofuran.
  • the above-mentioned other organic solvents may include but not limited to dimethyl sulfoxide, 1,2-dioxolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone, At least one of dimethylformamide, trimethyl phosphate, triethyl phosphate, and trioctyl phosphate. Based on the total mass of the electrolyte, the total content of the above-mentioned other non-aqueous solvents is 5% to 60%, such as 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50% %, 55%, 60%, or any range therebetween.
  • the electrolyte solution may further include other additives, and the present application has no particular limitation on other additives, as long as the purpose of the present application can be achieved, for example, it may include but not limited to lithium tetrafluoroborate (LiBF 4 ), ethylene sulfate At least one of ester (DTD), vinylene carbonate (VC), vinyl sulfite (PS) or lithium dioxalate borate (LiBOB).
  • LiBF 4 lithium tetrafluoroborate
  • DTD ethylene sulfate At least one of ester
  • VC vinylene carbonate
  • PS vinyl sulfite
  • LiBOB lithium dioxalate borate
  • the negative electrode active material in the negative electrode has a compacted density of 1.40 g/cm 3 to 1.70 g/cm 3
  • the negative electrode active material may have a compacted density of 1.40 g /cm 3 , 1.45g /cm 3 , 1.50g/cm 3 , 1.55g/cm 3 , 1.60g/cm 3 , 1.65g/cm 3 , 1.70g/cm 3 or any range therebetween.
  • the inventors of the present application found that when the compacted density of the negative electrode active material is too low, for example, less than 1.40g/cm 3 , the contact between the negative electrode materials in the electrochemical device is poor, and the electron conduction and ion conduction are hindered, and the charging Temperature rise and poor cycle performance; when the compaction density of the negative electrode active material is too high, for example, higher than 1.70g/cm 3 , the negative electrode is prone to overvoltage, poor charging ability, high charging temperature and poor cycle performance, and at the same time Risk of material particle breakage due to pressure.
  • the cycle performance of the electrochemical device can be improved and the charging temperature rise thereof can be reduced.
  • the negative electrode material in the negative electrode includes at least one of carbon materials, silicon, silicon-oxygen materials, and silicon-carbon materials, and the carbon materials include natural graphite, artificial graphite, and mesophase microcarbon. At least one of spheres (MCMB), hard carbon, and soft carbon.
  • MCMB spheres
  • the negative electrode includes a channel, and the channel satisfies at least one of the following: (a) the pore diameter of the channel is 20 ⁇ m to 100 ⁇ m, for example, the pore diameter of the channel can be 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m , 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m or any range therebetween; (b) the hole depth ranges from 5 ⁇ m to 50 ⁇ m, for example, the hole depth can be 5 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m or Any range in between; (c) the number of holes per unit area is 0.5/mm 2 to 100/mm 2 , for example, the number of holes per unit area can be 0.5/mm 2 , 1/mm 2 , 10/mm 2 , 20 pieces/mm 2 , 30
  • the inventors of the present application have found that by controlling the intensity of the infrared laser, drilling holes on the surface of the negative electrode sheet, controlling the hole diameter, hole depth, and the number of holes per unit area within the above range is beneficial to the electrolyte between materials.
  • the infiltration of lithium ions and the transmission of lithium ions reduce the transmission impedance, thereby improving the cycle performance of the electrochemical device and reducing the temperature rise of charging.
  • the positive electrode sheet in this application is not particularly limited, as long as the purpose of this application can be achieved.
  • the positive pole piece generally includes a positive current collector and a positive active material.
  • the above-mentioned positive electrode current collector is not particularly limited, and may be any positive electrode current collector known in the art, such as copper foil, aluminum foil, aluminum alloy foil, composite current collector, and the like.
  • the above-mentioned positive electrode active material is not particularly limited, and may be any positive electrode active material in the prior art, for example, may include lithium nickel cobalt manganate, lithium nickel cobalt aluminate, lithium iron phosphate, lithium cobaltate, lithium manganate or ferromanganese phosphate at least one of lithium.
  • the thicknesses of the positive electrode current collector and the positive electrode active material are not particularly limited, as long as the purpose of the present application can be achieved.
  • the thickness of the positive electrode current collector is 8 ⁇ m to 12 ⁇ m
  • the thickness of the positive electrode active material is 30 ⁇ m to 120 ⁇ m.
  • a conductive agent may also be included in the positive electrode active material layer.
  • the present application has no special limitation on the conductive agent, as long as the purpose of the application can be realized, for example, it may include but not limited to conductive carbon black (Super P), carbon nano At least one of CNTs, carbon fibers, graphite flakes, Ketjen Black, graphene, metallic materials, or conductive polymers.
  • the aforementioned carbon nanotubes may include, but are not limited to, single-walled carbon nanotubes and/or multi-walled carbon nanotubes.
  • the aforementioned carbon fibers may include, but are not limited to, vapor grown carbon fibers (VGCF) and/or carbon nanofibers.
  • the above metal material may include but not limited to metal powder and/or metal fiber, specifically, the metal may include but not limited to at least one of copper, nickel, aluminum or silver.
  • the aforementioned conductive polymer may include but not limited to at least one of polyphenylene derivatives, polyaniline, polythiophene, polyacetylene or polypyrrole.
  • the positive electrode active material layer may also include a binder.
  • the present application has no special restrictions on the binder, as long as the purpose of the application can be achieved, for example, it may include but not limited to polyvinyl alcohol, hydroxypropyl fiber Polyvinyl chloride, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymers containing ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene 1,1-bis Vinyl fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylic (ester) styrene-butadiene rubber, epoxy resin, nylon, etc.
  • the positive electrode may further include a conductive layer located between the positive electrode current collector and the positive electrode material layer.
  • the present application has no particular limitation on the composition of the conductive layer, which may be a commonly used conductive layer in the field, for example, may include but not limited to the above-mentioned conductive agent and the above-mentioned binder.
  • the negative electrode current collector in the present application is not particularly limited, as long as the purpose of the present application can be achieved, materials such as metal foil or porous metal plate, such as copper, nickel, titanium or iron, or foils of metals such as copper, nickel, titanium or iron, or their alloys can be used. Perforated plates such as copper foil.
  • the negative active material layer includes a negative active material, a conductive agent, a binder, and a thickener.
  • the binder can be styrene-butadiene rubber (SBR), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl butyral (PVB), water-based acrylic resin (water-based acrylic resin) or carboxylate At least one of methyl cellulose (CMC); the thickener may be sodium carboxymethyl cellulose (CMC).
  • SBR styrene-butadiene rubber
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PVB polyvinyl butyral
  • water-based acrylic resin water-based acrylic resin
  • carboxylate At least one of methyl cellulose (CMC)
  • the thickener may be sodium carboxymethyl cellulose (CMC).
  • the thickness of the current collector of the negative electrode there is no particular limitation on the thickness of the current collector of the negative electrode, as long as the purpose of the present application can be achieved, for example, the thickness is 4 ⁇ m
  • a conductive agent may also be included in the negative electrode material layer, and the present application has no special limitation on the conductive agent, as long as the purpose of the present application can be achieved.
  • a binder may also be included in the negative electrode material layer, and the present application has no special limitation on the binder, as long as the purpose of the present application can be achieved.
  • the negative electrode may further include a conductive layer located between the negative electrode current collector and the negative electrode material layer.
  • the present application has no particular limitation on the composition of the conductive layer, which may be a commonly used conductive layer in the field.
  • the separator in the present application is not particularly limited, as long as the purpose of the present application can be achieved.
  • the isolation film may include a substrate layer and a surface treatment layer.
  • the present application has no particular limitation on the material of the substrate layer, such as but not limited to polyethylene (PE), polypropylene (PP), and polytetrafluoroethylene.
  • PE polyethylene
  • PP polypropylene
  • PO polyolefin
  • PET polyethylene terephthalate
  • PI polyimide
  • PA polyamide
  • the type of substrate layer can include but not limited to at least one of woven film, nonwoven film, microporous film, composite film, separator paper, laminated film or spinning film, and the material of substrate layer is preferably PP.
  • the separator of the present application may have a porous structure, and the pore size is not particularly limited as long as the purpose of the present application can be achieved, for example, the pore size may be 0.01 ⁇ m to 1 ⁇ m.
  • the thickness of the isolation film is not particularly limited, as long as the purpose of the present application can be achieved, for example, the thickness may be 5 ⁇ m to 500 ⁇ m.
  • At least one surface of the substrate layer may also be provided with a surface treatment layer.
  • the present application has no special limitation on the surface treatment layer, which may be a polymer layer or an inorganic layer, or a mixed polymer and A layer formed of inorganic substances.
  • the inorganic material layer may include but not limited to inorganic particles and inorganic material layer binder, and the present application has no special limitation on inorganic particles, for example, may include but not limited to aluminum oxide, silicon oxide, magnesium oxide, titanium oxide, hafnium dioxide, At least one of tin oxide, cerium oxide, nickel oxide, zinc oxide, calcium oxide, zirconium oxide, yttrium oxide, silicon carbide, boehmite, aluminum hydroxide, magnesium hydroxide, calcium hydroxide or barium sulfate.
  • the present application has no particular limitation on the inorganic layer binder, for example, it may include but not limited to polyvinylidene fluoride, copolymer of vinylidene fluoride-hexafluoropropylene, polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, At least one of polyacrylate, polyvinylpyrrolidone, polyvinyl ether, polymethylmethacrylate, polytetrafluoroethylene or polyhexafluoropropylene.
  • polyvinylidene fluoride copolymer of vinylidene fluoride-hexafluoropropylene
  • polyamide polyacrylonitrile
  • polyacrylate polyacrylic acid
  • the polymer layer contains a polymer, and the polymer material may include but not limited to polyamide, polyacrylonitrile, acrylate polymer, polyacrylic acid, polyacrylate, polyvinyl pyrrolidone, polyvinyl ether, polyvinylidene fluoride At least one of ethylene or poly(vinylidene fluoride-hexafluoropropylene).
  • electrochemical device of the present application is not particularly limited, and it may include any device that undergoes an electrochemical reaction.
  • electrochemical devices may include, but are not limited to, lithium-ion batteries.
  • the preparation process of electrochemical devices is well known to those skilled in the art, and the present application is not particularly limited.
  • it may include but not limited to the following steps: stack the positive electrode sheet, separator and negative electrode sheet in sequence, and as required Winding, folding, etc. to obtain an electrode assembly with a winding structure, put the electrode assembly into a packaging bag, inject electrolyte into the packaging bag and seal it to obtain an electrochemical device; or, put the positive electrode, separator and negative electrode in order Stacking, and then fixing the four corners of the entire laminated structure with adhesive tape to obtain the electrode assembly of the laminated structure, putting the electrode assembly into a packaging bag, injecting electrolyte into the packaging bag and sealing it to obtain an electrochemical device.
  • overcurrent prevention elements, guide plates, etc. can also be placed in the packaging bag as needed, so as to prevent pressure rise and overcharge and discharge inside the electrochemical device.
  • the second aspect of the present application provides an electronic device, comprising the electrochemical device in any one of the foregoing embodiments of the present application.
  • the electrochemical device provided by the application has good cycle performance and low charging temperature rise, so the electronic device provided by the application has a long service life and good performance.
  • the electronic device in this application is not particularly limited, and it may be any electronic device known in the prior art.
  • Examples of display devices include, but are not limited to, notebook computers, pen-based computers, mobile computers, e-book players, cellular phones, portable fax machines, portable copiers, portable printers, headsets, VCRs, LCD televisions, portable Cleaners, portable CD players, mini discs, transceivers, electronic organizers, calculators, memory cards, portable recorders, radios, backup power supplies, electric motors, automobiles, motorcycles, power-assisted bicycles, bicycles, lighting appliances, toys, game consoles , clocks, electric tools, flashlights, cameras, large household batteries and lithium-ion capacitors, etc.
  • the cell After the cell is discharged, it is centrifuged, and the liquid obtained after centrifugation is tested by GC-MS; the percentage of each component (acetate, EC, PC, additive) is detected.
  • the compacted density of the negative electrode active material is measured by the following method:
  • negative electrode active material compaction density (the weight of small disc-the weight of base material) /(1540.25 ⁇ (thickness of both sides of the small disc-substrate thickness)) ⁇ 1000, taking the average value of the test is the negative electrode compaction in the embodiment.
  • the weight and thickness of the base material (copper foil): it is obtained by weighing and measuring the area without active substances;
  • Double-sided thickness and substrate thickness of small wafer unit ( ⁇ m).
  • the channel characteristic data (pore diameter, hole depth, and number of holes per unit area) on the negative electrode sheet are obtained through tunnel scanning microscope testing.
  • the negative pole piece the negative active material artificial graphite, styrene-butadiene rubber (SBR) and sodium carboxymethyl cellulose (CMC) are mixed in a mass ratio of 97.4:1.2:1.4, then deionized water is added as a solvent, Prepare a slurry with a solid content of 70 wt%, and stir evenly. The slurry is evenly coated on one surface of a copper foil with a thickness of 8 ⁇ m, dried at 110° C., and cold-pressed to obtain a negative electrode sheet with a negative active material layer coated on one side with a negative active material layer thickness of 150 ⁇ m. Then repeat the above coating steps on the other surface of the negative electrode sheet to obtain a negative electrode sheet coated with negative active material layers on both sides. Cut the negative pole piece into a size (74mm ⁇ 867mm) and weld the tabs for use.
  • SBR styrene-butadiene rubber
  • CMC sodium carboxymethyl cellulose
  • the positive electrode slurry is uniformly coated on the positive electrode current collector aluminum foil with a thickness of 12 ⁇ m, dried at 85 ° C, and cold pressed to obtain a positive electrode sheet with a positive electrode active material layer thickness of 100 ⁇ m, and then on the other side of the positive electrode sheet Repeat the above steps on one surface to obtain a positive electrode sheet coated with a positive electrode active material layer on both sides. Cut the positive pole piece into a size of 74mm ⁇ 867mm and weld the tabs for use.
  • the mass percentage content of lithium salt is 10%
  • the contents of EC, PC, EA, and FEC are respectively 10%, 15%, 4%, and 7.5%
  • the rest of the electrolyte is ethyl propionate, of which fluorocarbonic acid
  • the ratio of the ethylene content to the ethylene carbonate content was 0.5.
  • Isolation membrane PE porous polymer film is used as the isolation membrane.
  • Preparation of lithium-ion battery stack the positive electrode sheet, separator, and negative electrode sheet in order, so that the separator is between the positive electrode sheet and the negative electrode sheet to play the role of isolation, and then wind up to obtain a bare battery;
  • the bare battery is placed in the outer packaging foil, the above-mentioned prepared electrolyte is injected into the dried battery, and the preparation of the lithium-ion battery is completed through processes such as vacuum packaging, standing, formation, and shaping.
  • Example 2 to Example 21 the preparation steps of the preparation of the negative electrode sheet, the preparation of the positive electrode sheet, the preparation of the electrolyte, the preparation of the separator and the preparation of the lithium-ion battery are all the same as in Example 1, and the relevant preparation parameters and performance parameters The changes are shown in Table 1.
  • embodiment 46 except adding polynitrile compound on the electrolytic solution basis of embodiment 3, adjust the kind and content of polynitrile compound, polynitrile compound total content and polynitrile compound as shown in table 2 Except the ratio of the content of compound and acetate compound content, all the other are identical with embodiment 3.
  • embodiment 45 except adding polynitrile compound on the electrolyte basis of embodiment 10, adjust the type and content of polynitrile compound, the total content of polynitrile compound and the content of polynitrile compound and acetate compound as shown in table 2 Except the ratio of content, all the other are identical with embodiment 10.
  • Example 11 to Example 13, Comparative Example 4 and Comparative Example 5 it can be seen that when the EC content is low, due to the dissociation of the lithium salt, the interface stability is improved, and the kinetic performance is improved. Therefore, The cycle performance is improved; when the EC content is too high, the viscosity increases and the stability also deteriorates; however, when the EC content is too low, the cycle performance is poor and lithium precipitation is serious; when the EC content is too high, the cycle performance is poor and lithium precipitation is serious.
  • Example 2 From Example 2, Example 3, Example 10, and Example 22 to Example 46, it can be seen that with the addition of polynitrile compounds, the stability of the SEI film is further improved during the cycle, thereby improving the cycle performance.
  • Example 40 and Example 47 to Example 49 From Example 40 and Example 47 to Example 49, it can be seen that with the increase of the pore size of the hole on the negative electrode sheet, the situation of lithium deposition and the temperature rise of charging are improved.
  • Example 48 From Example 48, Example 50, and Example 51, it can be seen that when the hole depth range of the pores on the negative electrode sheet is within the scope of the present application, the obtained lithium ion battery has a slight or no lithium precipitation, and the charging temperature rise temperature is relatively low. Low, high cycle capacity retention rate, indicating that the lithium-ion battery has good cycle performance and the problem of charging temperature rise is improved, and it is not easy to decompose lithium during the cycle.
  • Example 48 From Example 48, Example 52 and Example 53, it can be seen that when the number of pores per unit area on the negative electrode sheet is within the scope of the present application, the obtained lithium ion battery has a slight or no lithium precipitation, and the charging temperature rise temperature is relatively low. Low, high cycle capacity retention rate, indicating that the lithium-ion battery has good cycle performance and the problem of charging temperature rise is improved, and it is not easy to decompose lithium during the cycle.
  • Example 47 As can be seen from Example 47, Example 54 and Example 55, when the compaction density of the negative electrode active material in the negative pole sheet is within the scope of the present application, the obtained lithium ion battery has slight or no lithium separation, and the charging temperature The low temperature rise and high cycle capacity retention rate indicate that the lithium-ion battery has good cycle performance and the problem of charging temperature rise has been improved, and it is not easy to decompose lithium during the cycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

一种电化学装置及电子装置,电化学装置包括正极、负极和电解液,其中,电解液包含有机溶剂、锂盐和添加剂;有机溶剂包含乙酸酯化合物和碳酸酯化合物,碳酸酯化合物包含碳酸亚乙酯和碳酸亚丙酯,基于电解液的总质量,乙酸酯化合物的质量百分含量为4%至50%,碳酸亚乙酯的质量百分含量为5%至20%。通过对电解液中溶剂的含量及种类进行优化,利用添加剂的界面修饰作用提升电化学装置的充电能力,降低充电时的温度升高。

Description

一种电化学装置及电子装置
本申请要求于2021年10月25日提交中国专利局、申请号为202111243754.6、发明名称为“一种电化学装置及电子装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及储能技术领域,特别是涉及一种电化学装置及电子装置。
背景技术
电化学装置,如锂离子电池,因其具有工作电压高、能量密度高、环境友好、循环稳定、安全等优点,被广泛应用于穿戴设备、智能手机、无人机,笔记本电脑等领域;随着现代信息技术的发展及电化学装置应用的拓展,对电化学装置的充电能力及充电温升要求越来越高。
有鉴于此,在储能技术领域,提升电化学装置的充电能力,降低其充电温升,成为了亟待解决的问题。
发明内容
本申请的目的在于提供一种电化学装置及电子装置,以降低充电温升。
本申请第一方面提供了一种电化学装置,其包括正极、负极和电解液,其中,所述电解液包含有机溶剂、锂盐和添加剂;所述有机溶剂包含乙酸酯化合物和碳酸酯化合物,所述碳酸酯化合物包含碳酸亚乙酯(EC)和碳酸亚丙酯(PC),基于所述电解液总质量,所述乙酸酯化合物的质量百分含量A为4%至50%,所述碳酸亚乙酯的质量百分含量B为5%至20%。通过深入研究,发明人发现,在有机溶剂中包含上述含量的乙酸酯化合物和碳酸酯化合物,能够提升电化学装置的循环性能,降低充电温升。
在本申请第一方面的一些实施方案中,所述乙酸酯化合物包括乙酸甲酯、乙酸乙酯、乙酸丙酯中的至少一种。
在本申请第一方面的一些实施方案中,所述电解液还包含多腈化合物,所述多腈化合物包括丁二腈、己二腈、1,3,6-己烷三腈、1,2,3-三(2-氰氧基)丙烷、乙二醇(双丙腈)醚和1,4-二氰基-2-丁烯中的至少两种。通过选择上述多腈化合物,可以进一步提升电化学装置的循环性能,降低充电温升。
在本申请第一方面的一些实施方案中,所述多腈化合物的质量百分含量C为0.1%至 10%。
在本申请第一方面的一些实施方案中,所述多腈化合物的质量百分含量C与所述乙酸酯化合物的质量百分含量A满足关系:0.1≤C/A≤0.8。通过控制C/A的值在上述范围内,能够提升电化学装置的循环性能。
在本申请第一方面的一些实施方案中,所述添加剂包含氟代碳酸亚乙酯(FEC),所述氟代碳酸亚乙酯的质量百分含量D与所述碳酸亚丙酯的质量百分含量E满足关系:0.2≤D/E≤1。
在本申请第一方面的一些实施方案中,所述碳酸亚丙酯的质量百分含量E为5%至30%或所述氟代碳酸亚乙酯的质量百分含量D为0.1%至15%,通过调控氟代碳酸亚乙酯的含量与碳酸亚丙酯的含量在上述范围内,可以提升电化学装置的循环性能。
在本申请第一方面的一些实施方案中,所述锂盐为LiPF 6,基于电解液总质量,锂盐含量为10%至20%。
在本申请第一方面的一些实施方案中,所述负极中的负极活性材料压实密度为1.40g/cm 3至1.70g/cm 3。通过控制负极活性材料压实密度为上述范围内,可以进一步提高电化学装置的循环性能,降低充电温升。
在本申请第一方面的一些实施方案中,所述负极包含孔道,所述孔道满足如下至少一者:(a)为20μm至100μm,(b)孔深范围为5μm至50μm,(c)单位面积孔数量为0.5个/mm 2至100个/mm 2。通过调控负极孔道的孔道孔径、孔深、单位面积孔数量在上述范围,可以进一步提高电化学装置的循环性能,降低充电温升。
本申请第二方面提供了一种电子装置,其包含本申请第一方面提供的电化学装置。
本申请的电化学装置及电子装置,通过对电解液中溶剂含量及种类进行优化,可以改善电化学装置的动力学特性,提升充电能力,降低充电温升。通过在电解液中加入合适的添加剂,可以进一步提升充电能力,降低充电温升。
当然,实施本申请的任一产品或方法并不一定需要同时达到以上所述的所有优点。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请的发明内容中,以锂离子电池作为电化学装置的例子来解释本申请,但是本申请的电化学装置并不仅限于锂离子电池。本领域技术人员应当理解,以下说明仅为举例说明,并不限定本申请的保护范围。
以下,举出实施例及对比例来对本申请的实施方式进行更具体地说明。各种的试验及评价按照下述的方法进行。另外,只要无特别说明,“份”、“%”为质量基准。
本申请第一方面提供了一种电化学装置,其包括正极、负极和电解液,其中,所述电解液包含有机溶剂、锂盐和添加剂;所述有机溶剂包含乙酸酯化合物和碳酸酯化合物,所述碳酸酯化合物包含碳酸亚乙酯和碳酸亚丙酯,基于电解液总质量,所述乙酸酯化合物的质量百分含量A为4%至50%,例如,所述乙酸酯化合物的质量百分含量A可以为4%、10%、12%、20%、28%、36%、50%或为其间的任何范围;所述碳酸亚乙酯的质量百分含量B为5%至20%,例如,所述碳酸亚乙酯的含量B可以为5%、8%、11%、14%、17%、20%或为其间的任何范围。
本申请的发明人经研究发现,通过调节有机溶剂包含乙酸酯化合物和碳酸酯化合物,控制乙酸酯化合物和碳酸亚乙酯的含量在上述范围,在电化学装置循环过程中,有助于提高锂盐解离速率和固体电解质界面(SEI)膜的稳定性。从而提高电化学装置的动力学性能,提高循环性能,降低充电温升。
在本申请一些实施方案中,所述乙酸酯化合物包括乙酸甲酯、乙酸乙酯、乙酸丙酯中的至少一种。不限于任何理论,本申请的发明人发现,由于上述乙酸酯化合物均具有较低的粘度,有利于提升充电过程中锂离子的传输,降低传输阻抗,从而降低电化学装置的充电温升。
在本申请的一些实施方案中,所述电解液还包含多腈化合物,所述多腈化合物包括丁二腈(SN)、己二腈(AND)、1,3,6-己烷三腈(HTCN)、1,2,3-三(2-氰氧基)丙烷(TCEP)、乙二醇(双丙腈)醚(DENE)和1,4-二氰基-2-丁烯(HEDN)中的至少两种。不限于任何理论,本申请的发明人发现,当选择上述多腈化合物中的至少两种组合时,有利于在电化学装置循环过程中,提高SEI膜的稳定性,从而有利于提高电化学装置的循环性能、降低充电温升。
在本申请第一方面的一些实施方案中,所述多腈化合物的质量百分含量C为0.1%至10%,例如,所述多腈化合物的质量百分含量C可以为0.1%、1%、2%、4%、6%、8%、10%或为其间的任何范围。
在本申请第一方面的一些实施方案中,所述多腈化合物的含量C与所述乙酸酯化合物的含量A满足关系:0.1≤C/A≤0.8。例如,C/A的值可以为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8或为其间的任何范围。本申请的发明人发现,当C/A的值过低时,例如低于0.1,对电化学装置的循环性能和充电温升改善不明显;当C/A的值过高时,例如高于0.8,多腈化合物含量过高或乙酸酯含量过低,电解液粘度增加,循环过程极化大,会影响电化学装置的充电温升及循环性能。通过调控C/A的值在上述范围内,有利于进一步提高电化学装置的循环性能、降低充电温升。
在本申请一些实施方案中,所述添加剂包含氟代碳酸亚乙酯(FEC),所述氟代碳酸亚乙酯的质量百分含量为D,所述氟代碳酸亚乙酯的含量D与所述碳酸亚丙酯的含量E满足关系:0.2≤D/E≤1。例如,D/E的值可以为0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1或为其间的任何范围。不限于任何理论,本申请的发明人发现,当FEC的含量与碳酸亚丙酯的含量比值过低时,例如D/E小于0.2时,由于溶剂粘度较大,从而增大锂离子电池的内阻,充电温升升高,同时,对阳极保护不足,循环性能差;当FEC的含量与碳酸亚丙酯的含量比值过高时,例如D/E大于1时,锂盐解离不足,温升增加,同时,FEC含量过高,高温稳定性差,循环变差。通过调控氟代碳酸亚乙酯的含量与碳酸亚丙酯的含量比值在上述范围,有利于提高电化学装置的循环性能、降低充电温升。
在本申请一些实施方案中,所述碳酸亚丙酯的质量百分含量E为5%至30%或所述氟代碳酸亚乙酯的质量百分含量D为0.1%至15%,例如,E可以为5%、10%、12%、14%、16%、18%、20%、30%或为其间的任何范围,D可以为0.1%、1%、3%、5%、7%、9%、11%、15%或为其间的任何范围。
在本申请的一些实施方案中,锂盐为LiPF 6,基于电解液总质量,锂盐含量为10%至20%。例如,锂盐的含量可以为10%、12%、14%、16%、18%、20%或为其间的任何范围。不限于任何理论,本申请的发明人发现,通过调控锂盐含量在上述范围,在电化学装置循环过程中,有利于提高电导率,从而提高电化学装置的循环性能。
在本申请中,电解液还可以包括其他非水溶剂,本申请对其他非水溶剂没有特别限制,只要能实现本申请的目的即可,例如可以包括但不限于羧酸酯类化合物、醚化合物或其它有机溶剂中的至少一种。上述羧酸酯化合物可以包括但不限于甲酸甲酯、甲酸乙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、γ-丁内酯、癸内酯、戊内酯或己内酯中的至少一种。上述醚化合物可以包括但不限于二丁醚、四甘醇二甲醚、二甘醇二甲醚、1,2-二甲氧基乙烷、1,2- 二乙氧基乙烷、1-乙氧基-1-甲氧基乙烷、2-甲基四氢呋喃或四氢呋喃中的至少一种。上述其它有机溶剂可以包括但不限于二甲亚砜、1,2-二氧戊环、甲基环丁砜、1,3-二甲基-2-咪唑烷酮、N-甲基-2-吡咯烷酮、二甲基甲酰胺、磷酸三甲酯、磷酸三乙酯、磷酸三辛酯中的至少一种。基于电解液的总质量,上述其他非水溶剂的总含量5%至60%,例如5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%或其间的任何范围。
在本申请中,电解液还可以进一步包括其他添加剂,本申请对其他添加剂没有特别限制,只要能实现本申请的目的即可,例如可以包括但不限于四氟硼酸锂(LiBF 4)、硫酸乙烯酯(DTD)、碳酸亚乙烯酯(VC)、亚硫酸乙烯酯(PS)或二乙二酸硼酸锂(LiBOB)中的至少一种。
在本申请的一些实施方案中,其包含负极,所述负极中的负极活性材料压实密度为1.40g/cm 3至1.70g/cm 3,例如,负极活性材料的压实密度可以为1.40g/cm 3、1.45g/cm 3、1.50g/cm 3、1.55g/cm 3、1.60g/cm 3、1.65g/cm 3、1.70g/cm 3或为其间的任何范围。不限于任何理论,本申请的发明人发现,当负极活性材料压实密度过低时,例如低于1.40g/cm 3,电化学装置中负极材料间接触不良,电子传导及离子传导受阻,充电温升高及循环性能差;当负极活性材料压实密度过高时,例如高于1.70g/cm 3,负极易过压,充电能力差,充电温升高及循环性能差,同时有过压导致材料颗粒破碎风险。通过调控负极活性材料压实密度在上述范围内,可以提高电化学装置的循环性能和降低其充电温升。
在本申请的一些实施方案中,所述负极中的负极材料包括碳材料、硅、硅氧材料、硅碳材料中的至少一种,所述碳材料包括天然石墨、人造石墨、中间相微碳球(MCMB)、硬碳、软碳中的至少一种。
在本申请的一些实施方案中,所述负极包含孔道,所述孔道满足如下至少一者:(a)所述孔道孔径为20μm至100μm,例如孔道孔径可以为20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm、100μm或为其间的任何范围;(b)孔深范围为5μm至50μm,例如孔深可以为5μm、15μm、20μm、25μm、30μm、35μm、40μm、45μm、50μm或为其间的任何范围;(c)单位面积孔数量为0.5个/mm 2至100个/mm 2,例如,单位面积孔数量可以为0.5个/mm 2、1个/mm 2、10个/mm 2、20个/mm 2、30个/mm 2、40个/mm 2、50个/mm 2、60个/mm 2、70个/mm 2、80个/mm 2、90个/mm 2、100个/mm 2或为其间的任何范围。不限于任何理论,本申请的发明人发现,通过控制红外激光强度,在负极极片表面进行打孔,控制孔道孔径、孔深、单位面积孔数量在上述范围内,有利于电解液在材料间的浸润及锂 离子的传输,降低传输阻抗,从而提高电化学装置的循环性能,降低充电温升。
本申请中的正极极片没有特别限制,只要能够实现本申请目的即可。所述正极极片通常包含正极集流体和正极活性材料。上述正极集流体没有特别限制,可以为本领域公知的任何正极集流体,例如铜箔、铝箔、铝合金箔以及复合集电体等。上述正极活性材料没有特别限制,可以为现有技术的任何正极活性材料,例如,可以包括镍钴锰酸锂、镍钴铝酸锂、磷酸铁锂、钴酸锂、锰酸锂或磷酸锰铁锂中的至少一种。
在本申请中,正极集流体和正极活性材料的厚度没有特别限制,只要能够实现本申请目的即可。例如,正极集流体的厚度为8μm至12μm,正极活性材料的厚度为30μm至120μm。
在本申请中,正极活性材料层中还可以包括导电剂,本申请对导电剂没有特别限制,只要能够实现本申请目的即可,例如可以包括但不限于导电炭黑(Super P)、碳纳米管(CNTs)、碳纤维、鳞片石墨、科琴黑、石墨烯、金属材料或导电聚合物中的至少一种。上述碳纳米管可以包括但不限于单壁碳纳米管和/或多壁碳纳米管。上述碳纤维可以包括但不限于气相生长碳纤维(VGCF)和/或纳米碳纤维。上述金属材料可以包括但不限于金属粉和/或金属纤维,具体地,金属可以包括但不限于铜、镍、铝或银中的至少一种。上述导电聚合物可以包括但不限于聚亚苯基衍生物、聚苯胺、聚噻吩、聚乙炔或聚吡咯中的至少一种。
在本申请中,正极活性材料层中还可以包括粘合剂,本申请对粘合剂没有特别限制,只要能够实现本申请目的即可,例如可以包括但不限于聚乙烯醇、羟丙基纤维素、二乙酰基纤维素、聚氯乙烯、羧化的聚氯乙烯、聚氟乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚偏1,1-二氟乙烯、聚乙烯、聚丙烯、丁苯橡胶、丙烯酸(酯)化的丁苯橡胶、环氧树脂、尼龙等。
任选地,正极还可以包括导电层,导电层位于正极集流体和正极材料层之间。本申请对导电层的组成没有特别限制,可以是本领域常用的导电层,例如可以包括但不限于上述导电剂和上述粘结剂。
本申请中的负极集流体没有特别限制,只要能够实现本申请目的即可,可以使用金属箔材或多孔金属板等材料,例如铜、镍、钛或铁等金属或它们的合金的箔材或多孔板,如铜箔。负极活性材料层包括负极活性材料、导电剂、粘结剂和增稠剂。粘结剂可以是丁苯橡胶(SBR)、聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚乙烯醇缩丁醛(PVB)、水性丙烯酸树脂(water-basedacrylic resin)或羧甲基纤维素(CMC)中的至少一种;增稠剂可以是羧甲基 纤维素钠(CMC)。在本申请中,对负极的集流体的厚度没有特别限制,只要能够实现本申请目的即可,例如厚度为4μm至12μm。
在本申请中,负极材料层中还可以包括导电剂,本申请对导电剂没有特别限制,只要能够实现本申请目的即可。
在本申请中,负极材料层中还可以包括粘结剂,本申请对粘结剂没有特别限制,只要能够实现本申请目的即可。
任选地,负极还可以包括导电层,导电层位于负极集流体和负极材料层之间。本申请对导电层的组成没有特别限制,可以是本领域常用的导电层。
本申请中的隔离膜没有特别限制,只要能够实现本申请目的即可。所述隔离膜可包括基材层和表面处理层,本申请对基材层的材料没有特别限制,例如可以包括但不限于聚乙烯(PE)、聚丙烯(PP)、聚四氟乙烯为主的聚烯烃(PO)、聚酯(例如聚对苯二甲酸二乙酯(PET))、纤维素、聚酰亚胺(PI)、聚酰胺(PA)、氨纶、芳纶中的至少一种;基材层的类型可以包括但不限于织造膜、非织造膜、微孔膜、复合膜、隔膜纸、碾压膜或纺丝膜中的至少一种,基材层的材料优选为PP。本申请的隔离膜可以具有多孔结构,孔径的尺寸没有特别限制,只要能实现本申请的目的即可,例如,孔径的尺寸可以为0.01μm至1μm。在本申请中,隔离膜的厚度没有特别限制,只要能实现本申请的目的即可,例如厚度可以为5μm至500μm。
在本申请中,所述基材层的至少一个表面上还可以设置有表面处理层,本申请对表面处理层没有特别限制,可以是聚合物层或无机物层,也可以是混合聚合物与无机物所形成的层。无机物层可以包括但不限于无机颗粒和无机物层粘结剂,本申请对无机颗粒没有特别限制,例如,可以包括但不限于氧化铝、氧化硅、氧化镁、氧化钛、二氧化铪、氧化锡、二氧化铈、氧化镍、氧化锌、氧化钙、氧化锆、氧化钇、碳化硅、勃姆石、氢氧化铝、氢氧化镁、氢氧化钙或硫酸钡中的至少一种。本申请对无机物层粘结剂没有特别限制,例如,可以包括但不限于聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯或聚六氟丙烯中的至少一种。聚合物层中包含聚合物,聚合物的材料可以包括但不限于聚酰胺、聚丙烯腈、丙烯酸酯聚合物、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚偏氟乙烯或聚(偏氟乙烯-六氟丙烯)中的至少一种。
本申请的电化学装置没有特别限制,其可以包括发生电化学反应的任何装置。在一些 实施例中,电化学装置可以包括但不限于锂离子电池。
电化学装置的制备过程为本领域技术人员所熟知的,本申请没有特别的限制,例如,可以包括但不限于以下步骤:将正极极片、隔离膜和负极极片按顺序堆叠,并根据需要将其卷绕、折叠等操作得到卷绕结构的电极组件,将电极组件放入包装袋内,将电解液注入包装袋并封口,得到电化学装置;或者,将正极、隔离膜和负极按顺序堆叠,然后用胶带将整个叠片结构的四个角固定好得到叠片结构的电极组件,将电极组件置入包装袋内,将电解液注入包装袋并封口,得到电化学装置。此外,也可以根据需要将防过电流元件、导板等置于包装袋中,从而防止电化学装置内部的压力上升、过充放电。
本申请的第二方面提供了一种电子装置,包含本申请前述任一实施方案中的电化学装置。本申请提供的电化学装置具有良好的循环性能和较低的充电温升,从而本申请提供的电子装置具有较长的使用寿命和良好的性能。
本申请的电子装置没有特别限定,其可以是现有技术中已知的任何电子装置。例如,显示装置包括但不限于笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
测试方法和设备:
析锂测试:
将电池在25℃下以3C充电至4.45V,4.45V下恒压充电至0.05C,再以1.0C恒流放电至3.0V,循环10圈,拆解观察析锂程度。未发现析锂或析锂面积<2%在此称为不析锂;析锂面积在2%至20%之间称为轻微析锂;析锂面积>20%称为严重析锂。
温升测试:
在25℃测试温度下,以0.5C的电流恒流充电至4.45V,再恒压充电至0.05C,静置60min;然后以0.5C的电流将锂离子电池恒流放电至3V,静置60min;6C的电流将锂离子电池恒流充电至4.45V,再恒压充电至0.05C,监控该大电流充电过程中的温度,减去测试温度25℃,得到6C充电温升。
高温循环测试:
将电池放至45℃恒温箱中,以恒定电流1.5C充电至4.45V,4.45V下恒压充电至0.05C,再以1.0C恒流放电至3.0V,此次为一个充放电循环过程,按上述方式进行800次循环充放电测试,监控容量保持率,45℃循环容量保持率=(第800次循环的放电容量/初始放电容量)×100%。
电解液中成分含量测试:
将电芯放电后离心,离心后得到的液体进行GC-MS测试;检测出各组分(乙酸酯,EC,PC,添加剂)百分比。
负极活性材料的压实密度测试:
负极活性材料的压实密度通过以下方法测得:
取负极双面极片制成面积为1540.25mm 2的小圆片,取20片小圆片进行称重及测厚,负极活性材料压实密度=(小圆片的重量-基材的重量)/(1540.25×(小圆片的双面厚度-基材厚度))×1000,取测试平均值即为实施例中的负极压密。
基材(铜箔)的重量和厚度:取无活性物质区域进行称重和测厚得到;
小圆片的重量和基材重量:单位(mg)
小圆片的双面厚度和基材厚度:单位(μm)。
负极极片上孔道特征测试:
负极极片上孔道特征数据(孔道孔径、孔深、单位面积孔数量)通过隧道扫描显微镜测试得到。
实施例1
(1)负极极片的制备:将负极活性材料人造石墨、丁苯橡胶(SBR)及羧甲基纤维素钠(CMC)按质量比97.4:1.2:1.4混合,然后加入去离子水作为溶剂,调配成固含量为70wt%的浆料,并搅拌均匀。将浆料均匀涂布在厚度为8μm的铜箔的一个表面上,110℃条件下烘干,冷压后得到负极活性材料层厚度为150μm的单面涂布负极活性材料层的负极极片,然后在该负极极片的另一个表面上重复以上涂布步骤,得到双面涂布有负极活性材料层的负极极片。将负极极片裁切成(74mm×867mm)的规格并焊接极耳后待用。
(2)正极极片的制备:将正极活性物质钴酸锂(LiCoO 2)、导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)按照质量比96:2:2进行混合,加入N-甲基吡咯烷酮(NMP)作为溶剂,在真空搅拌机作用下搅拌至体系成均一状、固含量为75wt%的正极浆料。将正极浆料均匀涂覆于厚度为12μm的正极集流体铝箔上,在85℃条件下烘干,冷压后得到正极活性 材料层厚度为100μm的正极极片,然后在该正极极片的另一个表面上重复以上步骤,得到双面涂布有正极活性材料层的正极极片。将正极极片裁切成74mm×867mm的规格并焊接极耳后待用。
(3)电解液的制备:在含水量<10ppm的氩气气氛手套箱中,将碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、乙酸乙酯(EA)以及丙酸乙酯(EP)混合均匀,再将充分干燥的锂盐LiPF 6溶解于上述非水溶剂,加入添加剂氟代碳酸亚乙酯,最终配成基础电解液。其中,锂盐质量百分含量为10%,EC、PC、EA、FEC的含量分别为10%、15%、4%、7.5%,电解液中其余部分为丙酸乙酯,其中氟代碳酸亚乙酯的含量与碳酸亚乙酯含量的比值为0.5。
(4)隔离膜:以PE多孔聚合物薄膜作为隔离膜。
(5)锂离子电池的制备:将正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于正极片和负极片之间起到隔离的作用,然后卷绕得到裸电池;将裸电池置于外包装箔中,将上述制备好的电解液注入到干燥后的电池中,经过真空封装、静置、化成、整形等工序,即完成锂离子电池的制备。
实施例2至实施例21中,负极极片的制备、正极极片的制备、电解液的制备、隔离膜及锂离子电池的制备的制备步骤均与实施例1相同,相关制备参数和性能参数的变化如表1中所示。
实施例22至实施例43、实施例46中,除了在实施例3的电解液基础上加入多腈化合物,如表2所示调整多腈化合物的种类和含量、多腈化合物总含量及多腈化合物的含量与乙酸酯化合物含量的比值以外,其余与实施例3相同。
实施例44中,除了在实施例2的电解液基础上加入多腈化合物,如表2所示调整多腈化合物的种类及含量、多腈化合物总含量及多腈化合物的含量与乙酸酯化合物含量的比值以外,其余与实施例2相同。
实施例45中,除了在实施例10的电解液基础上加入多腈化合物,如表2所示调整多腈化合物的种类及含量、多腈化合物总含量及多腈化合物的含量与乙酸酯化合物含量的比值以外,其余与实施例10相同。
实施例47至实施例55中,除了在实施例23至31的电解液基础上,如表3所示调整负极活性材料的压实密度,以及负极极片上的孔道孔径、孔深和单位面积孔数量以外,其余与实施例23至31相同。
对比例1至对比例7中,负极极片的制备、正极极片的制备、电解液的制备、隔离膜 及锂离子电池的制备的制备步骤均与实施例1相同,相关制备参数及性能的变化如表1所示。
各实施例和对比例的制备参数和性能测试如表1至表3所示。
表1
Figure PCTCN2022122425-appb-000001
表1中,“/”表示不存在相应制备参数。
表2
Figure PCTCN2022122425-appb-000002
表3
Figure PCTCN2022122425-appb-000003
从实施例1至实施例10和对比例1至对比例3可以看出,随着乙酸乙酯含量的增加,析锂情况和充电温升都有改善,但乙酸乙酯含量较高时循环性能有所降低;当不含有乙酸酯化合物时析锂恶化,循环性能变差,充电温升明显提高;当乙酸酯化合物含量过低时,严重析锂,循环恶化,充电温升提高;当乙酸酯化合物含量过高时,无法循环,发生产气跳水。
从实施例3、实施例11至实施例13、对比例4和对比例5可以看出,EC含量较低时,由于锂盐的解离,提升了界面稳定性,动力学性能得到改善,因此循环性能提升;EC含量过高时粘度增加,稳定性也变差;但是,当EC含量过低时,循环性能差,严重析锂;当EC含量过高时,循环性能差,严重析锂。
从实施例3、实施例14和实施例21、对比例6、对比例7可以看出,当FEC/PC的值在本申请范围内时,较低时析锂情况和充电温升都有所改善,当FEC/PC过小时,循环性能降低,当FEC/PC过高时,严重析锂。
从实施例2、实施例3、实施例10和实施例22至实施例46可以看出,随着多腈化合物的加入,在循环过程中进一步提升SEI膜的稳定性,从而提升循环性能。
从实施例40和实施例47至实施例49可以看出,随着负极极片上孔道的孔径的增加,析锂情况和充电温升都有改善。
从实施例48、实施例50和实施例51可以看出,当负极极片上孔道的孔深范围在本申请的范围内,得到的锂离子电池轻微析锂或者不析锂、充电温升温度较低、循环容量保持 率较高,说明锂离子电池具有良好的循环性能且充电温升问题得到改善,在循环过程中也不易析锂。
从实施例48、实施例52和实施例53可以看出,当负极极片上单位面积孔的数量在本申请的范围内,得到的锂离子电池轻微析锂或者不析锂、充电温升温度较低、循环容量保持率较高,说明锂离子电池具有良好的循环性能且充电温升问题得到改善,在循环过程中也不易析锂。
从实施例47、实施例54和实施例55可以看出,当负极极片中负极活性材料的压实密度在本申请的范围内,得到的锂离子电池轻微析锂或者不析锂、充电温升温度较低、循环容量保持率较高,说明锂离子电池具有良好的循环性能且充电温升问题得到改善,在循环过程中也不易析锂。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (10)

  1. 一种电化学装置,其包括正极、负极和电解液,其中,所述电解液包含有机溶剂、锂盐和添加剂;所述有机溶剂包含乙酸酯化合物和碳酸酯化合物,所述碳酸酯化合物包含碳酸亚乙酯和碳酸亚丙酯,基于所述电解液总质量,所述乙酸酯化合物的质量百分含量A为4%至50%,所述碳酸亚乙酯的质量百分含量B为5%至20%。
  2. 根据权利要求1所述的电化学装置,其中,所述乙酸酯化合物包括乙酸甲酯、乙酸乙酯、乙酸丙酯中的至少一种。
  3. 根据权利要求1所述的电化学装置,其中,所述电解液还包含多腈化合物,所述多腈化合物包括丁二腈、己二腈、1,3,6-己烷三腈、1,2,3-三(2-氰氧基)丙烷、乙二醇(双丙腈)醚和1,4-二氰基-2-丁烯中的至少两种。
  4. 根据权利要求3所述的电化学装置,其中,所述多腈化合物的质量百分含量C为0.1%至10%。
  5. 根据权利要求3所述的电化学装置,其中,所述多腈化合物的质量百分含量C与所述乙酸酯化合物的质量百分含量A满足关系:0.1≤C/A≤0.8。
  6. 根据权利要求1所述的电化学装置,其中,所述添加剂包含氟代碳酸亚乙酯,所述氟代碳酸亚乙酯的质量百分含量D与所述碳酸亚丙酯的质量百分含量E满足关系:0.2≤D/E≤1。
  7. 根据权利要求6所述的电化学装置,其中,所述碳酸亚丙酯的质量百分含量E为5%至30%或所述氟代碳酸亚乙酯的质量百分含量D为0.1%至15%。
  8. 根据权利要求1所述的电化学装置,其中,所述负极中负极活性材料压实密度为1.40g/cm3至1.70g/cm3。
  9. 根据权利要求1所述的电化学装置,其中,所述负极包含孔道,所述孔道满足如下至少一者:(a)孔径为20μm至100μm;(b)孔深范围为5μm至50μm;(c)单位面积孔数量为0.5个/mm2至100个/mm2。
  10. 一种电子装置,其包含权利要求1-9的任一项所述的电化学装置。
PCT/CN2022/122425 2021-10-25 2022-09-29 一种电化学装置及电子装置 WO2023071691A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22885576.3A EP4421938A1 (en) 2021-10-25 2022-09-29 Electrochemical device and electronic device
KR1020247014302A KR20240067966A (ko) 2021-10-25 2022-09-29 전기화학 디바이스 및 전자 디바이스
US18/645,936 US20240283029A1 (en) 2021-10-25 2024-04-25 Electrochemical device and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111243754.6A CN113964375A (zh) 2021-10-25 2021-10-25 一种电化学装置及电子装置
CN202111243754.6 2021-10-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/645,936 Continuation US20240283029A1 (en) 2021-10-25 2024-04-25 Electrochemical device and electronic device

Publications (1)

Publication Number Publication Date
WO2023071691A1 true WO2023071691A1 (zh) 2023-05-04

Family

ID=79466846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122425 WO2023071691A1 (zh) 2021-10-25 2022-09-29 一种电化学装置及电子装置

Country Status (5)

Country Link
US (1) US20240283029A1 (zh)
EP (1) EP4421938A1 (zh)
KR (1) KR20240067966A (zh)
CN (1) CN113964375A (zh)
WO (1) WO2023071691A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113964375A (zh) * 2021-10-25 2022-01-21 东莞新能源科技有限公司 一种电化学装置及电子装置
CN115380415A (zh) * 2022-01-28 2022-11-22 宁德新能源科技有限公司 电化学装置及电子装置
CN114614212B (zh) * 2022-05-11 2022-08-19 宁德新能源科技有限公司 一种电化学装置和电子装置
CN115882073A (zh) * 2022-12-28 2023-03-31 东莞新能源科技有限公司 一种电化学装置和电子装置
CN118016982A (zh) * 2024-04-09 2024-05-10 宁波容百新能源科技股份有限公司 一种固态电解质膜、制备方法及锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013218967A (ja) * 2012-04-11 2013-10-24 Panasonic Corp 非水電解質および非水電解質二次電池
CN105845984A (zh) * 2016-06-23 2016-08-10 东莞市杉杉电池材料有限公司 锂离子电池电解液及使用该电解液的锂离子电池
CN107910586A (zh) * 2017-11-07 2018-04-13 广州天赐高新材料股份有限公司 一种电解液以及包括该电解液的锂二次电池
CN109346772A (zh) * 2018-09-26 2019-02-15 东莞市杉杉电池材料有限公司 一种锂离子电池非水电解液及锂离子电池
CN111525089A (zh) * 2020-07-06 2020-08-11 长沙宝锋能源科技有限公司 一种兼顾能量密度和安全的低温锂离子电池
CN113964375A (zh) * 2021-10-25 2022-01-21 东莞新能源科技有限公司 一种电化学装置及电子装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203967182U (zh) * 2014-06-30 2014-11-26 益阳科力远电池有限责任公司 冲孔镀镍钢带
CN104766995B (zh) * 2015-03-31 2017-03-15 宁德时代新能源科技股份有限公司 一种电解液添加剂及其在锂离子电池中的应用
CN109037590A (zh) * 2018-07-24 2018-12-18 安普瑞斯(无锡)有限公司 一种打孔锂离子电池极片和锂离子二次电池
CN112909319B (zh) * 2018-09-19 2022-04-22 宁德时代新能源科技股份有限公司 锂离子二次电池与包含其的电子产品、电动交通工具及机械设备
CN112310483B (zh) * 2019-07-30 2021-09-17 宁德时代新能源科技股份有限公司 一种锂离子电池
WO2021223093A1 (zh) * 2020-05-06 2021-11-11 宁德新能源科技有限公司 电解液、电化学装置和电子装置
CN113424348B (zh) * 2020-11-30 2022-12-27 宁德新能源科技有限公司 一种电化学装置和电子装置
CN112838191A (zh) * 2021-01-08 2021-05-25 珠海冠宇电池股份有限公司 负极片及锂离子电池
CN113086978B (zh) * 2021-03-30 2023-08-15 宁德新能源科技有限公司 负极材料及包含其的电化学装置和电子设备
CN115050923A (zh) * 2021-03-31 2022-09-13 宁德新能源科技有限公司 电化学装置和电子装置
CN113285053A (zh) * 2021-05-06 2021-08-20 路华置富电子(深圳)有限公司 负极片及其制造方法、电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013218967A (ja) * 2012-04-11 2013-10-24 Panasonic Corp 非水電解質および非水電解質二次電池
CN105845984A (zh) * 2016-06-23 2016-08-10 东莞市杉杉电池材料有限公司 锂离子电池电解液及使用该电解液的锂离子电池
CN107910586A (zh) * 2017-11-07 2018-04-13 广州天赐高新材料股份有限公司 一种电解液以及包括该电解液的锂二次电池
CN109346772A (zh) * 2018-09-26 2019-02-15 东莞市杉杉电池材料有限公司 一种锂离子电池非水电解液及锂离子电池
CN111525089A (zh) * 2020-07-06 2020-08-11 长沙宝锋能源科技有限公司 一种兼顾能量密度和安全的低温锂离子电池
CN113964375A (zh) * 2021-10-25 2022-01-21 东莞新能源科技有限公司 一种电化学装置及电子装置

Also Published As

Publication number Publication date
CN113964375A (zh) 2022-01-21
KR20240067966A (ko) 2024-05-17
US20240283029A1 (en) 2024-08-22
EP4421938A1 (en) 2024-08-28

Similar Documents

Publication Publication Date Title
CN113809399B (zh) 一种电解液、包含该电解液的电化学装置和电子装置
JP5166356B2 (ja) リチウム電池
WO2023071691A1 (zh) 一种电化学装置及电子装置
WO2022267534A1 (zh) 锂金属负极极片、电化学装置及电子设备
WO2022174550A1 (zh) 电化学装置及包括其的电子装置
WO2023087937A1 (zh) 一种电化学装置及电子装置
WO2022267535A1 (zh) 锂金属负极极片、电化学装置及电子设备
CN116154108B (zh) 一种二次电池以及包括该二次电池的用电装置
WO2023070989A1 (zh) 电化学装置和包含其的电子装置
WO2023039750A1 (zh) 一种负极复合材料及其应用
WO2024067287A1 (zh) 锂电池及用电设备
CN112005418A (zh) 一种电解液及电化学装置
WO2023122966A1 (zh) 一种电化学装置及包含其的电子装置
US20220223915A1 (en) Electrolyte, electrochemical device including same, and electronic device
CN113921909B (zh) 一种电化学装置和电子装置
CN114221034A (zh) 一种电化学装置及包含该电化学装置的电子装置
CN116666732A (zh) 一种二次电池及电子装置
WO2023098268A1 (zh) 一种电解液、包含该电解液的电化学装置及电子装置
WO2023184232A1 (zh) 一种电化学装置及电子装置
CN114094188B (zh) 一种电化学装置及包含该电化学装置的电子装置
WO2024020974A1 (zh) 电解液、二次电池及用电装置
WO2021134279A1 (zh) 电化学装置及包含所述电化学装置的电子装置
WO2023184228A1 (zh) 一种电化学装置及电子装置
CN116830340A (zh) 电化学装置和电子装置
WO2022165678A1 (zh) 电解液、电化学装置和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247014302

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024008031

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2022885576

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022885576

Country of ref document: EP

Effective date: 20240522

ENP Entry into the national phase

Ref document number: 112024008031

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240424