WO2012153527A1 - ステアリングダンパ制御装置及びそれを備えた鞍乗型車両 - Google Patents

ステアリングダンパ制御装置及びそれを備えた鞍乗型車両 Download PDF

Info

Publication number
WO2012153527A1
WO2012153527A1 PCT/JP2012/003035 JP2012003035W WO2012153527A1 WO 2012153527 A1 WO2012153527 A1 WO 2012153527A1 JP 2012003035 W JP2012003035 W JP 2012003035W WO 2012153527 A1 WO2012153527 A1 WO 2012153527A1
Authority
WO
WIPO (PCT)
Prior art keywords
damping force
command value
steering
control device
value
Prior art date
Application number
PCT/JP2012/003035
Other languages
English (en)
French (fr)
Inventor
泰信 原薗
匡史 松尾
延男 原
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to US14/116,184 priority Critical patent/US9233729B2/en
Priority to EP12782844.0A priority patent/EP2708459B1/en
Priority to JP2013513937A priority patent/JP5619995B2/ja
Publication of WO2012153527A1 publication Critical patent/WO2012153527A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K21/00Steering devices
    • B62K21/08Steering dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/18Suppression of vibrations in rotating systems by making use of members moving with the system using electric, magnetic or electromagnetic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/04Fluids
    • F16F2224/045Fluids magnetorheological
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/18Control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically

Definitions

  • the present invention relates to a steering damper control device that controls a damping force of a steering damper that is provided in a steering mechanism of a vehicle and adjusts the damping force of the steering, and a straddle-type vehicle including the same.
  • a steering damper control device for adjusting the damping force of the steering are increasing.
  • Examples of such a steering damper control device include the following.
  • a device including a steering, a steering damper, an adjusting mechanism, a rear stroke sensor, and a control unit (for example, see Patent Document 1).
  • the steering is rotatably supported by the vehicle body.
  • the steering damper gives a damping force to the turning force of the steering.
  • the adjusting mechanism adjusts the damping force of the steering damper.
  • the rear stroke sensor detects the stroke amount of the rear suspension. Based on the output of the rear stroke sensor, the control unit operates the adjustment mechanism so that the damping force of the steering damper is increased as compared with that during steady running when the vehicle is decelerating.
  • this first device determines that the vehicle is decelerating based on the output of the rear stroke sensor, the first device increases the damping force of the steering damper. As a result, kickback caused by the steering receiving a disturbance on the road surface against the intention of the driver can be suppressed. As a result, it is possible to suppress changes in the posture of the vehicle even during deceleration.
  • a steering damper that adjusts the damping force according to the amount of operation of the accelerator is provided.
  • the accelerator opening is small, it is determined that the vehicle is running at a low speed, and the damping force is kept low.
  • the accelerator opening is large, it is determined that the vehicle is traveling at high speed, and the damping force is increased (for example, see Patent Document 2).
  • This second device can determine the traveling state based on the amount of operation of the accelerator, and can suppress the unstable steering that is likely to occur in a situation where the front wheels tend to lift. As a result, it is possible to suppress changes in the posture of the vehicle during acceleration.
  • this type of third device there is one provided with an acceleration detector and a control unit (for example, see Patent Document 3).
  • the acceleration detector detects the acceleration of the vehicle body. Then, the control unit causes the steering damper to generate a damping force only when the acceleration exceeds the threshold value.
  • the damping force of the steering damper can be increased to suppress the kickback. As a result, it is possible to suppress changes in the posture of the vehicle during acceleration.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a steering damper control device capable of suitably suppressing steering vibration and a straddle-type vehicle including the same. .
  • the present invention has the following configuration. That is, the present invention relates to a damper that can adjust the damping force of the steering, a load information detection unit that detects information related to a load received by the front wheel, and a load that the front wheel receives based on the detection result of the load information detection unit.
  • a command value output unit that determines a damping force command value according to a change rate of the current or a value corresponding to the rate of change, and a damper drive unit that generates a damping force according to the damping force command value to the damper.
  • This is a steering damper control device.
  • the rate of change of the load on the front wheel or the value corresponding to it is somewhat related to the vibration caused by the steering disturbance.
  • the steering tends to be shaken immediately after the load applied to the front wheels increases.
  • the steering damping force is generated based on the change rate of the load on the front wheels or a value (index) corresponding thereto. Therefore, even if the steering is not actually being shaken, the damping force corresponding to the damping force command value can be generated when the steering is easily shaken. Thereby, the steering becomes difficult to move (the operational feeling of the steering becomes heavy), and the steering shake can be suppressed in advance.
  • the rate of change of the load or a value corresponding to this will be referred to as “the rate of change of the load” as appropriate.
  • the load change rate or the value corresponding to the change rate is increased in at least a part of the range where the load change rate or the value corresponding to the change rate is positive. Therefore, it is preferable that the damping force command value becomes large.
  • the rate of change of the load becomes positive.
  • the rate of change in load or the like is more positive than when it is negative, the steering tends to be easily shaken.
  • the load change rate and the like increase.
  • the rate of change of the load increases, the steering tends to be shaken with a large force.
  • the damping force can be substantially applied to the steering.
  • the greater the disturbance that causes the steering to vibrate the greater the damping force. Therefore, even if the load changes sharply, the vibration of the steering can be effectively suppressed.
  • the amount of increase in the damping force command value increases as the rate of change of the load increases in the region. Therefore, the vibration of the steering can be further effectively suppressed.
  • the damping force command value increases at a constant rate as the load change rate or a value corresponding to the change rate increases.
  • the damping force increases in proportion to the load change rate. Therefore, the vibration of the steering can be more effectively suppressed.
  • the damping force command value is preferably a constant value. Since the excessive damping force is not generated more than necessary, the rider's burden can be suitably reduced.
  • the constant value is equal to a damping force command value when a rate of change of the load or a value corresponding to the rate of change is the threshold value. Since the magnitude of the damping force is continuous in the vicinity of the threshold value, it is possible to avoid an unnatural change in steering maneuverability (ease of movement).
  • the damping force command value is preferably a minimum value.
  • the damping force command value is set to the minimum value when it is smaller than a predetermined value (predetermined value is a positive value) even if the load change rate is positive.
  • a predetermined value is a positive value
  • the damping force acting on the steering is minimized, and the steering becomes easy to move (the operational feeling of the steering becomes light).
  • the damping force is substantially applied to the steering wheel by the damping force command value larger than the minimum value.
  • the damping force command value is larger than the minimum value when the rate of change of the load or a value corresponding to the rate of change is positive.
  • the damping force is greater than the minimum.
  • the damping force command value is preferably a minimum value.
  • the damper includes a magnetic fluid and a magnetic field generating coil that applies a magnetic field to the magnetic fluid, and the damper driving unit applies a current corresponding to the damping force command value to the magnetic field. It is preferable to flow through the generating coil.
  • the damper generates a damping force by the shear force of the magnetic fluid
  • the magnetic field generating coil preferably changes a shear force of the magnetic fluid of the steering. Since the damper is a so-called “shear type”, the damping force when the damping force command value is the minimum value can be minimized. As a result, when the damping force is minimum, it is possible to further suppress the steering maneuverability from being lowered.
  • the load information detection unit is a pressure detection unit that detects the pressure of the suspension of the front wheel, and the command value output unit determines a damping force command value according to a rate of change of the suspension pressure. It is preferable.
  • the suspension pressure corresponds to the load applied to the front wheels.
  • the change rate of the suspension pressure is a value corresponding to the change rate of the load on the front wheels. Therefore, according to the pressure detection unit, the load information detection unit can be suitably realized.
  • the present invention also includes a steering damper control device, the steering damper control device including a damper capable of adjusting a steering damping force, a load information detection unit that detects information related to a load received by a front wheel, and the load Based on the detection result of the information detection unit, a command value output unit that determines a damping force command value according to a rate of change of the load received by the front wheels or a value corresponding to the rate of change, and a damping value according to the damping force command value And a damper driving unit that generates a force to the damper.
  • the steering damper control device including a damper capable of adjusting a steering damping force, a load information detection unit that detects information related to a load received by a front wheel, and the load Based on the detection result of the information detection unit, a command value output unit that determines a damping force command value according to a rate of change of the load received by the front wheels or a value corresponding to the rate of change, and a damping
  • the steering damper control device can generate a damping force corresponding to the damping force command value when the steering is easily shaken even if the steering is not actually being shaken. Thereby, it is possible to prevent the steering from being shaken in advance. Therefore, the burden on the rider who operates the steering can be suitably reduced.
  • the steering damper control device according to the present invention and the saddle riding type vehicle equipped with the steering damper control device can favorably suppress the steering and can reduce the burden on the rider who operates the steering. Therefore, the rider can run the saddle riding type vehicle comfortably.
  • FIG. 1 is a side view showing a schematic configuration of a motorcycle according to a first embodiment. It is a partially broken front view showing the configuration around the handle crown. It is a figure which shows the structure of MR damper, (a) is a longitudinal cross-sectional view which shows schematic structure of MR damper, (b) is a disassembled perspective view, (c) is a partial expanded sectional view.
  • 1 is a block diagram illustrating a schematic configuration of a steering damper control device according to Embodiment 1.
  • FIG. It is the figure which showed typically the table for damping force command value calculation according to a suspension pressure change rate. It is the figure which showed typically the damping force command value calculation table according to the absolute value of the rotation speed difference.
  • FIG. 6 is a block diagram illustrating a schematic configuration of a steering damper control device according to a second embodiment. It is the figure which showed typically the table for damping force command value calculation according to the absolute value of the rotation speed change rate. It is the flowchart which showed the operation
  • FIG. 6 is a block diagram illustrating a schematic configuration of a steering damper control device according to a third embodiment.
  • FIG. 10 is a block diagram illustrating a schematic configuration of a steering damper control device according to a fourth embodiment.
  • 7 is a flowchart illustrating an operation of a steering damper control device according to a fourth embodiment. It is the figure which showed typically the damping force command value calculation table according to the suspension pressure change rate in the modified example.
  • FIG. 19A to FIG. 19D are diagrams showing modified embodiments of the load information detection unit that detects information related to the load received by the front wheels.
  • Embodiment 1 of the present invention will be described below with reference to the drawings.
  • a motorcycle will be described as an example of the saddle riding type vehicle provided with the steering damper control device according to the present invention.
  • FIG. 1 is a side view showing a schematic configuration of a motorcycle according to a first embodiment
  • FIG. 2 is a partially broken front view showing a configuration around a handle crown.
  • the motorcycle 1 includes a front wheel 3 and a rear wheel 5.
  • the rear wheel 5 is rotationally driven by the driving force generated by the engine 7.
  • the front wheel 3 is rotatably supported by a pair of left and right front forks 9L and 9R.
  • the front forks 9L and 9R are supported with their upper ends connected to the handle crown 11. Further, intermediate portions of the front forks 9L and 9R are connected to and supported by the under bracket 13.
  • On the upper surface of the handle crown 11, a pair of left and right handle holders 15L and 15R are provided on the upper surface of the handle crown 11.
  • These handle holders 15L and 15R hold the steering bar 17 operated by the operator.
  • the handle crown 11 and the under bracket 13 are connected by a steering shaft 19.
  • the lower end of the steering shaft 19 is locked by a steering shaft receiving portion (not shown) of the under bracket 13 so as not to come out upward.
  • the upper end of the steering shaft 19 is attached to the handle crown 11 with a nut 21.
  • the steering shaft 19 is rotatably supported by the head pipe 25 via a bearing 23.
  • the head pipe 25 is connected to the vehicle body frame 27.
  • a front wheel speed sensor 31 for detecting the rotational speed of the front wheel 3 is provided in the vicinity of the disc brake 29 provided on the front wheel 3.
  • a rear wheel speed sensor 35 for detecting the rotational speed of the rear wheel 5 is provided.
  • An engine speed sensor 37 for detecting the engine speed is provided near the crankshaft (not shown) of the engine 7.
  • a throttle position sensor 39 for detecting the throttle opening is provided in the vicinity of an accelerator grip (not shown) of the steering bar 17.
  • a suspension pressure sensor 41 that detects the pressure of the front suspension 40 is provided in the front row 9L. The output of each sensor is input to a controller 43 provided at the front of the fuel tank 42.
  • FIG. 3 is a diagram showing the configuration of the MR damper, (a) is a longitudinal sectional view showing the schematic configuration of the MR damper, (b) is an exploded perspective view, and (c) is a partially enlarged section.
  • FIG. 3 is a diagram showing the configuration of the MR damper, (a) is a longitudinal sectional view showing the schematic configuration of the MR damper, (b) is an exploded perspective view, and (c) is a partially enlarged section.
  • the MR damper 45 includes an upper yoke 47, a lower yoke 49, a magnetic fluid 51, and a magnetic field generating coil 53.
  • the magnetic fluid 51 is interposed between the upper yoke 47 and the lower yoke 49.
  • the magnetic field generating coil 53 applies a magnetic field to the magnetic fluid 51.
  • the upper yoke 47 is formed with a through-hole 55 through which the steering shaft 19 passes at the center, and has an annular shape as a whole.
  • the upper yoke 47 is made of a magnetic material such as rolled steel.
  • the upper yoke 47 has an annular groove 57 formed in the bottom surface.
  • the concave groove 57 accommodates the magnetic field generating coil 53.
  • the magnetic field generating coil 53 is supplied with a current corresponding to the damping force of the steering from the controller 43.
  • the lower yoke 49 is formed with a through-hole 59 through which the steering shaft 19 passes at the center, and has a ring shape as a whole.
  • the lower yoke 49 is also formed of a magnetic material such as rolled steel.
  • the lower yoke 49 has an annular groove 61 formed on the upper surface. In this concave groove 61, the upper yoke 47 is fitted.
  • the recess 61 of the lower yoke 49 is fitted with a cylindrical collar 63 made of a metal material such as aluminum on the inner wall thereof.
  • the upper yoke 47 is rotatably held with respect to the lower yoke 49 via the collar 63.
  • a known rolling bearing may be used in place of the collar 63.
  • the MR damper 45 can be further downsized.
  • the lower yoke 49 contains the magnetic fluid 51 in the concave groove 61.
  • the bottom surface of the concave groove 61 of the lower yoke 49 and the lower surface of the upper yoke 47 are opposed to each other with the magnetic fluid 51 interposed therebetween.
  • the magnetic fluid 51 for example, one containing 40% carbonyl iron is preferably used.
  • the magnetic fluid 51 is improved in viscosity when a magnetic field is applied, and the damping force of the MR damper 45 is increased.
  • the magnetic fluid 51 has a constant viscosity even when no magnetic field is applied, and the MR damper 45 generates a minimum damping force when no magnetic field is applied.
  • O-rings 65 and 67 are fitted in inner and outer annular gaps formed between the upper yoke 47 and the lower yoke 49.
  • the O-rings 65 and 67 prevent the magnetic fluid 51 from leaking and prevent dust and the like from entering the MR damper 45.
  • the lower yoke 49 is connected to the head pipe 25, and the upper yoke 47 is connected to the handle crown 11. That is, the lower yoke 49 is connected to the vehicle body side, and the upper yoke 47 is connected to the steering bar 17.
  • the magnetic fluid 51 interposed between the upper yoke 47 and the lower yoke 49 generates a resistance force according to its viscosity, and this resistance force becomes a steering damping force. It acts on the steering bar 17.
  • the MR damper 45 described above corresponds to the “damper” in the present invention.
  • FIG. 4 is a block diagram illustrating a schematic configuration of the steering damper control device according to the first embodiment.
  • the controller 43 includes a normal control unit 71, an attitude change support control unit 73, a damping force adjustment unit 75, and a damper drive unit 77.
  • the normal control unit 71 obtains a damping force command value for controlling the MR damper 45 in a normal state where the rear wheel 5 is not idling.
  • the posture change correspondence control unit 73 obtains a damping force command value for controlling the MR damper 45 when there is a possibility that the posture of the rear wheel 5 may change due to idling.
  • the damping force adjustment unit 75 controls the damper driving unit 77 based on any one of the damping force command values given from the normal control unit 71 and the attitude change correspondence control unit 73.
  • the damper drive unit 77 outputs a drive current based on the damping force command value to the magnetic field generating coil 53 of the MR damper 45.
  • the normal control unit 69 also outputs a cancel signal that minimizes the damping force of the MR damper 45, as will be described later.
  • the normal control unit 71 includes a pressure change rate calculation unit 79, a command value output unit 81, a non-grounding determination unit 83, and a non-grounding related memory 85.
  • the pressure change rate calculation unit 79 calculates the pressure change rate of the front suspension 40 based on the pressure signal from the suspension pressure sensor 41. The calculated pressure change rate is given to the command value output unit 81.
  • the command value output unit 81 determines a damping force command value based on a pre-stored reference table 81a.
  • FIG. 5 is a diagram schematically showing a damping force command value calculation table corresponding to the suspension pressure change rate.
  • the motorcycle 1 When the pressure change rate is zero, the motorcycle 1 is traveling stably. For example, it indicates that the front suspension 40 is in a stable state in which the front suspension 40 is contracted to some extent and is neither contracted nor extended, such as when traveling on a flat road. Further, when the pressure change rate is negative, the contracted front suspension 40 is expanding. On the other hand, when the rate of change in pressure is positive, it indicates a case where the extended front suspension 40 is contracting.
  • the damping force command value calculation table 81a is set in advance as follows.
  • the damping force command value is set to the minimum value. That is, when the front suspension 40 is stable without contracting or expanding, or when the front suspension 40 is expanding from the contracted state, the damping force command value is set to the minimum value to facilitate the rotation of the steering bar 17.
  • the damping force command value is gradually increased at a constant rate. That is, when the front suspension 40 is contracting from the extended state, the damping force command value is increased to make it difficult to rotate the steering bar 17.
  • the damping force command value is made constant at the maximum value.
  • the command value output unit 81 outputs a damping force command value to the damping force adjustment unit 75 based on the suspension change rate given from the pressure change rate calculation unit 79 and the damping force command value calculation table 81a. .
  • the non-grounding determination unit 83 determines whether or not the front wheel 3 is in contact with the ground based on the output of the suspension pressure sensor 41 indicating the pressure of the front suspension 40. At that time, the non-grounding related memory 75 is referred to.
  • the non-grounding related memory 75 stores in advance a lower limit value of pressure and a predetermined time for determining non-grounding.
  • the non-grounding determination unit 83 monitors the pressure signal of the suspension pressure sensor 41 and determines that the front wheel 3 is not grounded based on whether or not the pressure signal has reached the lower limit value of the pressure over a predetermined time. This is to determine whether or not the operator of the motorcycle 1 is intentionally jumping.
  • the front wheels 3 When the motorcycle 1 is intentionally jumped, the front wheels 3 are in a floating state for a longer time than during normal driving. Then, the front suspension 40 is extended to the maximum, and the pressure of the suspension 40 is maintained at a certain value for a certain time. This is judged by the lower limit of the pressure and a predetermined time. If the non-grounding determination unit 83 determines that it is non-grounding, it outputs a cancel signal to the damping force adjustment unit 75.
  • the suspension pressure sensor 41 described above corresponds to the “pressure detecting means” in the present invention
  • the non-grounding related memory 85 corresponds to the “pressure lower limit storage means” in the present invention
  • the non-grounding determining unit 83 in the present invention This corresponds to “front wheel non-contact determination means”.
  • the attitude change correspondence control unit 73 includes a rotation speed difference calculation unit 87 and a command value output unit 89.
  • Rotational speed difference calculation unit 87 calculates the rotational speed difference between front wheel 3 and rear wheel 5 based on the outputs of front wheel speed sensor 31 and rear wheel speed sensor 35. The calculated rotation speed difference is given to the command value output unit 89.
  • the command value output unit 89 determines the damping force command value based on the absolute value of the rotation speed difference and the damping force command value calculation table 89a stored in advance.
  • FIG. 6 is a diagram schematically showing a damping force command value calculation table corresponding to the absolute value of the rotational speed difference.
  • the reason why the absolute value of the rotational speed difference is set as the determination criterion is to cope with both the case where the rear wheel 5 is idling during acceleration of the motorcycle 1 and the case where the rear wheel 5 is locked and idling. It is.
  • the absolute value of the rotational speed difference is zero, it indicates that the wheel speeds of the front wheel 3 and the rear wheel 5 are the same, and the rear wheel 5 is not idling.
  • the absolute value of the rotational speed difference reaches a certain value, the rotational speed difference between the front wheel 3 and the rear wheel 5 increases, indicating that the rear wheel 5 has started slightly idling.
  • the absolute value of the rotational speed difference is further increased, it indicates that the rear wheel 5 has started to idle greatly.
  • the damping force command value calculation table 81a is set in advance as follows.
  • the absolute value of the rotational speed difference is large, even if the rear wheel 5 starts to idle, the posture change is difficult to occur such that the rear wheel 5 moves largely laterally around the head pipe 25. Therefore, the damping force command value remains zero until the absolute value of the rotational speed difference reaches a certain value.
  • the absolute value of the rotational speed difference is further increased, idling of the rear wheel 5 greatly affects the posture change of the motorcycle 1. Specifically, the rear wheel 5 moves greatly in the lateral direction, and the driving force of the rear wheel 5 starts to deviate greatly from the traveling direction.
  • the damping force command value is increased at a constant rate from here to the second threshold value WD2.
  • the damping force of the MR damper 45 is increased.
  • the damping force command value is fixed to the maximum value. In this way, the command value output unit 89 attenuates the damping force command value based on the absolute value of the rotation speed difference given from the rotation speed difference calculation unit 87 and the damping force command value calculation table 89a. Output to the force adjustment unit 75.
  • the damping force adjustment unit 75 is given a damping force command value from the normal control unit 71, a cancel signal from the normal control unit 71, and a damping force command value from the posture change correspondence control unit 73.
  • the damping force adjusting unit 75 gives one of two damping force command values to the damper driving unit 77 based on an idling detection flag described later.
  • the damping force command value currently applied to the damper driving unit 77 is canceled and the minimum damping force command value is applied to the damper driving unit 77.
  • the damper driving unit 77 outputs a current value corresponding to the damping force command value to the magnetic field generating coil 53 of the MR damper 45.
  • the front wheel speed sensor 31, the rear wheel speed sensor 35, the rotation speed difference calculation unit 87, and the command value output unit 89 described above correspond to the “idle detection unit” in the present invention, and the damper driving unit 77.
  • the damper driving unit 77 corresponds to the “damping force adjusting means” in the present invention.
  • the front wheel speed sensor 31 corresponds to the “front wheel rotational speed detecting means” in the present invention
  • the rear wheel speed sensor 35 corresponds to the “rear wheel rotational speed detecting means” in the present invention
  • the rotational speed difference calculating section 87 corresponds to “difference calculating means” in the present invention
  • the command value output unit 89 corresponds to “discriminating means” and “storage means” in the present invention.
  • the first threshold value WD1 and the second threshold value WD2 in the damping force command value calculation table 89a described above correspond to the “first threshold value” and the “second threshold value” in the present invention.
  • FIG. 7 is a flowchart showing the operation of the steering damper control device.
  • FIG. 8 is a flowchart showing the operation of the normal control calculation, and
  • FIG. 9 is a flowchart showing the operation of the attitude change corresponding control calculation.
  • Step S1 The controller 43 is initialized. Specifically, the damping force command value given to the damping force adjustment unit 75 is set to zero, which is the minimum value. As a result, no damping force is generated in the MR damper 45.
  • Step S2 Arithmetic processing for normal control is performed.
  • Steps S21 and S22 The normal control unit 71 acquires the pressure of the front suspension 40 from the suspension pressure sensor 41. Then, the damping force command value is determined based on the pressure changing rate from the pressure change rate calculating unit 79 and the above-described damping force command value calculation table 81a.
  • Step S3 In parallel with the above normal control, the posture change corresponding control calculation is performed.
  • Steps S31 and S32 The rotational speed difference calculation unit 87 receives signals from the front wheel speed sensor 31 and the rear wheel speed sensor 35 and calculates the difference between the wheel speeds of the front wheel 3 and the rear wheel 5.
  • Steps S33 to S35 The command value output unit 89 branches the process based on the absolute value of the difference between the rotational speeds of the front and rear wheels and the damping force command value calculation table 89a. Specifically, the process branches depending on whether or not the absolute value of the rotational speed difference exceeds the first threshold WD1. If the first threshold WD1 is not exceeded, the process branches to step S4 in FIG. On the other hand, if the first threshold value WD1 is exceeded, the damping force command value is determined based on the absolute value of the rotational speed difference and the damping force command value calculation table 89a. Then, after turning on the idling detection flag indicating that idling has been detected, the process returns to step S4 in FIG.
  • Step S4 Processing branches depending on the state of the idling detection flag. Specifically, if the idling detection flag is ON, the process branches to step S7, and if the idling detection flag is OFF, the process branches to step S5.
  • the idling detection flag is ON
  • the idling detection flag is OFF the process branches to step S5.
  • a case where the idling detection flag is OFF will be described first.
  • Step S5 Since the idling detection flag is OFF, no idling occurs in the rear wheel 5 or slight idling that does not change the posture even if it occurs. Therefore, in this case, the damping force command value of the normal control unit 71 is employed.
  • Step S6 The damping force adjusting unit 75 gives the damping force command value adopted at this time to the damper driving unit 77.
  • Steps S7 and S8 Since the idling detection flag is ON, idling that affects the posture change occurs in the rear wheel 5. Therefore, in this case, the damping force command value of the posture change response control unit 73 is employed. Then, the idling detection flag is turned OFF.
  • Steps S9 and S10 When the front wheel 3 is in a non-grounding state and a cancel signal is output from the non-grounding determination unit 83, zero which is the minimum value is adopted as the damping force command value. As a result, when the operator of the motorcycle 1 is intentionally jumping, the steering bar 17 can be easily turned large. When the front wheel 3 is in a grounded state and no cancel signal is output from the non-grounded determination unit 83, the process proceeds to step S6.
  • the damper driving unit 77 uses the damping force of the MR damper 45 when the rear wheel 5 is not idling. Increase the damping force. Therefore, the rear wheel 5 can be prevented from skidding with the head pipe 25 as an axis, and the posture change of the motorcycle 1 can be suppressed. As a result, the driving force of the rear wheel 5 can be prevented from deviating from the traveling direction, and the driving force of the rear wheel 5 can be efficiently used for traveling.
  • the rotational speed difference calculation unit 87 calculates the difference between the rotational speeds of the front and rear wheels.
  • the command value output unit 89 can determine idling based on the difference. Further, since idling is determined based on the difference between the rotational speeds of the front and rear wheels, there is an advantage that erroneous detection of idling can be prevented even when a gear loss occurs in the engine 7.
  • the first threshold value WD1 is set in the damping force command value calculation table 89a in advance, and the command value output unit 89a determines that idling has occurred based on the first threshold value WD1 and the difference. Can do.
  • the timing for increasing the damping force of the MR damper 45 can be adjusted. Therefore, the controllability of the motorcycle 1 can be adjusted.
  • the damping force command value is increased from the first threshold value WD1 to the second threshold value WD2, and the damping force of the MR damper 45 is increased according to the rotational speed difference. While suppressing this, it is possible to make it difficult for the operator to be unnatural.
  • the timing at which the damping force of the MR damper 45 is maximized can be adjusted. Therefore, the maneuverability of the motorcycle 1 can be adjusted.
  • the damping force command value of the normal control unit 71 is adopted. That is, the MR damper 45 is controlled using the damping force command value determined based on the detection result of the suspension pressure sensor 41. Accordingly, when steering vibration such as kickback is likely to occur, a damping force is generated to make it difficult for the steering bar 17 to rotate. As a result, the vibration of the steering can be suitably suppressed. Further, even if the steering is not actually shaken, the vibration of the steering can be suppressed proactively.
  • the command value output unit 81 determines the damping force command value based on the pressure change rate, it is possible to appropriately determine the damping force command value according to the expansion and contraction of the front suspension 40. More specifically, the pressure of the front suspension 40 changes not only due to expansion and contraction of the front suspension 40 but also due to temperature fluctuations of the front suspension 40 and “air suction”. However, the temperature change of the front suspension 40 and the pressure change due to “air sucking” are slow changes taking a relatively long time. On the other hand, the pressure change due to the expansion and contraction of the front suspension 40 is an instantaneous change in a relatively short time.
  • the pressure change rate calculated by the pressure change rate calculating unit 79 is unlikely to change due to a temperature change of the front suspension 40 or a pressure change caused by “air suction”.
  • the pressure change rate is always a value that accurately reflects only the expansion and contraction of the front suspension 40.
  • the pressure change rate calculation unit 79 is based on the pressure signal of the suspension pressure sensor 41 at a high frequency (for example, at a cycle of 0.1 [msec] to 50 [msec]). Is calculated. Therefore, the command value output unit 81 can appropriately determine the damping force command value according to the expansion and contraction of the front suspension 40.
  • the temperature fluctuation of the front suspension 40 described above is caused by changes in the outside air temperature and traveling conditions.
  • the oil in the front suspension 40 is agitated by vibration during traveling and passes through the orifice, whereby the temperature of the oil rises and the temperature of the entire front suspension 40 rises.
  • the “air suction” described above is a phenomenon in which outside air is sucked into the front suspension 40.
  • the damping force command value calculation table 81a the damping force command value is larger than the minimum value when the pressure change rate is positive. For this reason, when the front suspension 40 is contracting, a damping force can be generated to suitably suppress the vibration of the steering.
  • the damping force command value increases as the pressure change rate increases. For this reason, even if the pressure of the front suspension 40 increases steeply, the vibration of the steering can be effectively suppressed.
  • the damping force command value increases at a constant rate as the pressure change rate increases. That is, the damping force increases in proportion to the pressure change rate. Therefore, the vibration of the steering can be more effectively suppressed.
  • the damping force command value is a certain value. Therefore, since an excessively large damping force is not generated, the burden on the rider can be reduced appropriately.
  • the constant value of the damping force command value is equal to the damping force command value when the pressure change rate is a threshold value. Therefore, when the pressure change rate increases from a value lower than the threshold value to a value higher than the threshold value, or when the pressure change rate decreases from a value higher than the threshold value to a value lower than the threshold value, the magnitude of the damping force does not change suddenly. Therefore, it is possible to avoid an unnatural change in steering maneuverability (ease of movement).
  • the damping force command value is the minimum value. Therefore, only when the pressure of the front suspension 40 is increasing, the damping force is made larger than the minimum value, and otherwise, the damping force is minimized and the steering bar 17 is easily rotated. Thereby, it can suppress suitably that steering controllability falls, suppressing the vibration of steering. Further, when the motorcycle 1 is jumped, the operator can easily cut the steering bar 17.
  • the MR damper 45 includes a magnetic fluid 51 and a magnetic field generating coil 53 that applies a magnetic field to the magnetic fluid 51. Therefore, if a current is passed through the magnetic field generating coil 53, the MR damper 45 can generate a damping force. Therefore, even if the steering is not actually shaken, the damping force can be suitably generated when the steering is easily shaken.
  • the MR damper 45 generates a damping force due to the shear force of the magnetic fluid 51. That is, the MR damper 45 is a so-called “shear type”. Therefore, when the damping force command value is set to the minimum value, the damping force can be minimized. Thereby, the operational feeling of the steering is further reduced, and it is possible to further suppress the deterioration of the steering performance.
  • the suspension pressure sensor 41 is more compact than a stroke sensor or the like, and can be easily disposed at an arbitrary position.
  • the suspension pressure sensor 41 has higher durability than a stroke sensor or the like.
  • the pressure of the front suspension 40 corresponds to the load that the front wheel 3 receives. That is, according to the suspension pressure sensor 41, information related to the load received by the front wheel 3 can be suitably detected.
  • the pressure change rate of the front suspension 40 corresponds to the change rate of the load applied to the front wheels.
  • FIG. 10 is a block diagram illustrating a schematic configuration of the steering damper control device according to the second embodiment.
  • the controller 43A includes a normal control unit 71, a posture change support control unit 73A, a damping force adjustment unit 75, and a damper drive unit 77.
  • the posture change correspondence control unit 73A is different from the above-described first embodiment.
  • the posture change correspondence control unit 73A includes a rotation speed change rate calculation unit 91 and a command value output unit 93.
  • the rotation speed change rate calculation unit 91 of the attitude change correspondence control unit 73A calculates the change rate of the rotation speed of the engine 7 based on the output of the engine rotation speed sensor 37. Specifically, a moving average value of engine speeds sequentially output from the engine speed sensor 37 is calculated, a difference from the current engine speed is calculated, and this is used as a change rate. The rotation rate change rate calculated in this way is given to the command value output unit 93.
  • the command value output unit 93 determines the damping force command value based on the absolute value of the rotational speed change rate and the damping force command value calculation table 93a stored in advance.
  • the command value output unit 93 is configured to be able to detect over-rotation of the engine 7.
  • the command value output unit 93 is provided with an ignition pulse signal. By monitoring the ignition pulse, it can be determined whether or not the engine 7 is over-rotating. . Specifically, when the engine 7 is over-rotated, ignition control is performed such that the ignition pulse is thinned out. Therefore, by monitoring the ignition pulse, it can be determined whether or not the engine 7 is in an overspeed state.
  • the command value output unit 93 sets the damping force command value to the maximum when an excessive rotation is detected regardless of the state of the rotation speed change rate.
  • FIG. 11 is a diagram schematically showing a damping force command value calculation table corresponding to the absolute value of the rotational speed change rate.
  • the reason why the absolute value of the rotational speed change rate is set as the determination criterion is to cope with both acceleration and deceleration of the motorcycle 1.
  • the absolute value of the rotational speed change rate is zero, it indicates that the vehicle is traveling at a constant speed.
  • the absolute value of the rotational speed change rate reaches a certain value, the grip force of the rear wheel 5 starts to be exceeded, indicating that the rear wheel 5 has started to idle slightly.
  • the absolute value of the rotational speed change rate is further increased, it indicates that the rear wheel 5 has started to idle greatly.
  • the damping force command value calculation table 93a is set in advance as follows.
  • the damping force command value remains zero until the absolute value of the rotational speed change rate reaches a certain value.
  • the absolute value of the rotational speed change rate is further increased, the idling of the rear wheel 5 greatly affects the attitude change of the motorcycle 1. Specifically, the rear wheel 5 largely moves in the lateral direction, and the driving force of the rear wheel 5 starts to greatly deviate from the traveling direction. Therefore, when the absolute value of the rotational speed change rate reaches the first threshold value RD1, the damping force command value is gradually increased from here to the second threshold value WD2.
  • the damping force command value is fixed to the maximum value.
  • the command value output unit 93 is based on the absolute value of the rotation speed change rate given from the rotation speed change rate calculation unit 91 and the damping force command value calculation table 93a. Is output to the damping force adjustment unit 75.
  • the engine speed sensor 37, the speed change rate calculation unit 91, and the command value output unit 93 described above correspond to the “idle detection means” in the present invention.
  • the engine speed sensor 37 corresponds to the “engine speed detecting means” in the present invention
  • the engine speed change rate calculating unit 91 corresponds to the “increase rate calculating means” in the present invention
  • the command value output unit 93 is It corresponds to “discriminating means” and “storage means” in the invention.
  • the first threshold value RD1 and the second threshold value RD2 in the damping force command value calculation table 93a described above correspond to the “first threshold value” and the “second threshold value” in the present invention.
  • the command value output unit 93 corresponds to “over-rotation detection means” in the present invention.
  • FIG. 12 is a flowchart showing the operation of the attitude change support control calculation.
  • the overall operation of the steering damper control device is the same as the flowchart of FIG. 7 described above, and the operation of the normal control calculation is also the same as the flowchart of FIG. 8 described above, so detailed description thereof is omitted here.
  • Steps S41 to S43 The rotational speed change rate calculation unit 91 receives the rotational speed of the engine 7 from the engine rotational speed sensor 37, calculates the moving average value, and then calculates the rotational speed change rate from the difference between the moving average value and the current rotational speed. .
  • Steps S44 to S46 The command value output unit 93 branches the process based on the absolute value of the rotational speed change rate and the damping force command value calculation table 93a. Specifically, the process branches depending on whether or not the absolute value of the rotational speed change rate exceeds the first threshold value RD1. If the first threshold value RD1 is exceeded, the damping force command value is determined based on the absolute value of the rotational speed change rate and the damping force command value calculation table 93a. Then, after turning on the idling detection flag indicating that idling has been detected, the process returns to step S4 in FIG.
  • Steps S47 and S48 On the other hand, when the absolute value of the rotational speed change rate does not exceed the first threshold value RD1, the command value output unit 93 determines whether or not the engine 7 is over-rotated and branches the process. Specifically, when it is determined that the engine is over-rotated, the damping force command value is set to the maximum, and then the process proceeds to step S46. On the other hand, if it is determined that there is no overspeed, the process returns to step S4 in FIG.
  • the driving force of the rear wheel 5 can be prevented from deviating from the traveling direction, and the driving force of the rear wheel 5 can be efficiently used for traveling, as in the first embodiment. can do.
  • the rotational speed change rate calculation unit 91 calculates the rotational speed increase rate of the engine 7. When this rotational speed increase rate is large, it indicates that the rear wheel 5 is idling, so the command value output unit 93 can determine idling based on the rotational speed increase rate.
  • the first threshold value RD1 is set in advance in the damping force command value calculation table 93a, and the command value output unit 93 is idled based on the first threshold value RD1 and the absolute value of the rotational speed increase rate. Can be determined.
  • the timing for increasing the damping force of the MR damper 45 can be adjusted. Therefore, the controllability of the motorcycle 1 can be adjusted. Further, since the damping force of the MR damper 45 is increased according to the rate of increase in the rotational speed, it is possible to make it difficult for the operator to be unnatural while suppressing a change in posture.
  • the second threshold value RD2 is set in the damping force command value calculation table 93a in advance, and when the absolute value of the rotation speed increase rate is equal to or greater than the second threshold value RD2, or the command value output unit 93 is connected to the engine 7
  • the damper drive unit 77 maximizes the damping force of the MR damper 45. Therefore, by appropriately setting the second threshold value RD2, the timing at which the damping force of the MR damper 45 is maximized can be adjusted, so that the maneuverability of the motorcycle 1 can be adjusted. Further, even if the rotational speed increase rate is less than the second threshold value RD2, if the rotational speed of the engine 7 is excessively rotated, the rear wheel 5 may be idled.
  • FIG. 13 is a block diagram illustrating a schematic configuration of the steering damper control device according to the third embodiment.
  • the controller 43B includes a normal control unit 71, an attitude change support control unit 73B, a damping force adjustment unit 75, and a damper drive unit 77.
  • the posture change correspondence control unit 73B is different from the above-described first embodiment.
  • the throttle opening change rate calculation unit 95 of the attitude change response control unit 73B calculates the change rate of the throttle opening based on the output of the throttle position sensor 39.
  • the calculated throttle opening change rate is output to the command value output unit 97.
  • the command value output unit 97 determines a damping force command value based on the absolute value of the throttle opening change rate and a damping force command value calculation table 97a stored in advance.
  • FIG. 14 is a diagram schematically showing a damping force command value calculation table corresponding to the absolute value of the throttle opening change rate.
  • the reason why the absolute value of the change rate of the throttle opening is set as the determination criterion is to deal with both the acceleration (when the throttle is opened) and the deceleration (when the throttle is closed) of the motorcycle 1.
  • the absolute value of the throttle opening change rate is zero, it indicates that the vehicle is traveling at a constant speed.
  • the absolute value of the rate of change in throttle opening reaches a certain value, the engine 7 suddenly increases the rotational speed or conversely decreases the rotational speed, so that the grip force of the rear wheel 5 begins to be exceeded, and the rear wheel 5 Indicates that there is a risk of starting slipping slightly.
  • the absolute value of the throttle opening change rate is further increased, it indicates that there is a possibility that the rear wheel 5 is likely to start idling.
  • the damping force command value calculation table 97a is set in advance as follows.
  • the damping force command value remains zero until the absolute value of the throttle opening change rate reaches a certain value.
  • the absolute value of the throttle opening change rate is further increased, the idling of the rear wheel 5 greatly affects the attitude change of the motorcycle 1. Specifically, the rear wheel 5 may move greatly in the lateral direction, and the driving force of the rear wheel 5 may start to deviate greatly from the traveling direction. Therefore, when the absolute value of the throttle opening change rate reaches the first threshold value SD1, the damping force command value is increased at a constant rate from here to the second threshold value SD2.
  • the damping force of the MR damper 45 is increased as the risk of the rear wheel 5 idling increases. As a result, it is possible to suppress the rear wheel 5 from being greatly displaced in the lateral direction.
  • the command value output unit 97 performs the damping based on the absolute value of the throttle opening change rate given from the throttle opening change rate calculation unit 95 and the damping force command value calculation table 97a described above. The force command value is output to the damping force adjustment unit 75.
  • the throttle position sensor 39, the throttle opening change rate calculation unit 95, and the command value output unit 97 described above correspond to the “idle detection means” in the present invention. Further, the throttle opening change rate calculation unit 95 corresponds to “change rate calculation unit” in the present invention, and the command value output unit 97 corresponds to “estimation unit” and “storage unit” in the present invention.
  • the first threshold value SD1 and the second threshold value SD2 in the damping force command value calculation table 97a described above correspond to the “first threshold value” and the “second threshold value” in the present invention.
  • FIG. 15 is a flowchart showing the operation of the attitude change support control calculation.
  • the overall operation of the steering damper control device is the same as the flowchart of FIG. 7 described above, and the operation of the normal control calculation is also the same as the flowchart of FIG. 8 described above, so detailed description thereof is omitted here.
  • Steps S51 and S52 The throttle opening change rate calculation unit 95 receives a signal from the throttle position sensor 39 and calculates the change rate.
  • Steps S53 to S55 The command value output unit 97 branches the process based on the absolute value of the throttle opening change rate and the damping force command value calculation table 97a. Specifically, the process branches depending on whether or not the absolute value of the throttle opening change rate exceeds the first threshold value SD1. When the absolute value of the throttle opening change rate exceeds the first threshold value SD1, the damping force command value is determined based on the absolute value of the throttle opening change rate and the damping force command value calculation table 97a. To do. Then, after turning on the idling detection flag indicating that idling has been detected, the process returns to step S4 in FIG. On the other hand, when the absolute value of the throttle opening change rate does not exceed the first threshold value SD1, the process returns to step S4 in FIG.
  • the driving force of the rear wheel 5 can be suppressed from deviating from the traveling direction, and the driving force of the rear wheel 5 can be efficiently driven, as in the first and second embodiments. Can be used.
  • the throttle opening change rate calculation unit 95 calculates the change rate.
  • the command value output unit 97 can estimate the idling of the rear wheel 5 based on the throttle opening change rate. Therefore, since the damping force of the MR damper 45 is increased before the rear wheel 5 actually starts idling, the posture change can be quickly suppressed.
  • a first threshold value SD1 is set in the damping force command value calculation table 97a in advance, and the command value output unit 97 is applied to the rear wheel 5 based on the first threshold value SD1 and the change rate of the throttle opening. It can be estimated that idling occurs.
  • the timing for increasing the damping force of the MR damper 45 can be adjusted by appropriately setting the first threshold value SD1. Therefore, the controllability of the motorcycle 1 can be adjusted. Further, since the damping force of the MR damper 45 is increased according to the rate of change of the throttle opening, it is possible to make it difficult for the operator to be unnatural while suppressing the change in posture.
  • the command value output unit 97 sets the MR damper 45. Set the maximum damping force. Therefore, the timing at which the damping force of the MR damper 45 is maximized can be adjusted by appropriately setting the second threshold value SD2. Therefore, the maneuverability of the motorcycle 1 can be adjusted.
  • FIG. 16 is a block diagram illustrating a schematic configuration of the steering damper control device according to the fourth embodiment.
  • the controller 43C according to the fourth embodiment includes a normal control unit 71A and a damper driving unit 77.
  • the normal control unit 71A is different from the first embodiment described above. Further, the controller 43C does not include the posture change correspondence control unit 73 and the damping force adjustment unit 75 described in the first embodiment.
  • the normal control unit 71A includes a pressure change rate calculation unit 79 and a command value output unit 81.
  • the pressure change rate calculation unit 79 calculates the pressure change rate of the front suspension 40 based on the pressure signal from the suspension pressure sensor 41. The calculated pressure change rate is given to the command value output unit 81.
  • the command value output unit 81 determines a damping force command value based on a pre-stored reference table 81a. The damping force command value determined by the command value output unit 81 is given to the damper drive unit 77.
  • the damper driving unit 77 outputs a current value corresponding to the damping force command value to the magnetic field generating coil 53 of the MR damper 45.
  • FIG. 17 is a flowchart showing the operation of the steering damper control device.
  • Step S61 The controller 43C is initialized. Specifically, the damping force command value given to the damper driving unit 77 is set to zero, which is the minimum value. As a result, no damping force is generated in the MR damper 45.
  • Step S62, 63 The normal control unit 71A acquires the pressure of the front suspension 40 from the suspension pressure sensor 41. Then, the damping force command value is determined based on the pressure changing rate from the pressure change rate calculating unit 79 and the above-described damping force command value calculation table 81a.
  • Step S64 The damping force adjusting unit 75 gives the determined damping force command value to the damper driving unit 77.
  • the damping force can be generated when the vibration of the steering is likely to occur, and the vibration of the steering can be suitably suppressed. Moreover, even if the steering is not actually shaken, the vibration of the steering can be suppressed proactively.
  • the present invention is not limited to the above embodiment, and can be modified as follows.
  • the damping force command value is increased in accordance with the difference in the rotational speeds of the front and rear wheels, the rotational speed increase rate, and the throttle opening change rate.
  • the present invention is not limited to such a configuration.
  • the damping force command value may be set to the maximum value when the difference between the rotational speeds of the front and rear wheels, the rotational speed increase rate, and the throttle opening change rate exceed a threshold value. Thereby, control can be simplified.
  • the MR damper 45 is used to adjust the damping force, but the present invention is not limited to this configuration.
  • the present invention is not limited to this configuration.
  • the same effect as when the MR damper 45 is used can be obtained.
  • the damping force of the MR damper 45 is set to zero, which is the minimum value in normal times, but a state in which a certain amount of damping force is applied may be set to normal time. As a result, steering force is required during normal operation, but blurring of the steering bar 17 during straight running can be suppressed.
  • FIG. 18 is a diagram schematically showing a damping force command value calculation table 81b according to the suspension pressure change rate in the modified embodiment.
  • the damping force command value calculation table 81b is set in advance as follows.
  • the damping force command value is the minimum value.
  • the predetermined value PL is positive.
  • the damping force command value increases as the pressure change rate increases.
  • the threshold PH is larger than the predetermined value PL. In this region, the amount of increase in the damping force command value increases as the load change rate increases.
  • the damping force command value is a constant value FP.
  • the constant value FP is larger than the minimum value.
  • the constant value FP is equal to the damping force command value when the pressure change rate is the threshold value PH. For this reason, the damping force command value is continuous in the vicinity of the threshold PH.
  • the damping force command value increases as the pressure change rate increases in at least a part of the range where the pressure change rate is positive (that is, a region greater than the predetermined value PL and equal to or less than the threshold value PH). Become. Therefore, even if the change in the pressure of the front fork 13 is steep, the vibration of the steering can be effectively suppressed. In particular, in this region, the amount of increase in damping force increases as the rate of change of the load increases. Therefore, the vibration of the steering can be more effectively suppressed.
  • the damping force command value is the minimum value.
  • the period (timing) in which the damping force is greater than the minimum becomes shorter, and the period (timing) in which the damping force is the minimum becomes longer. Thereby, it can suppress suitably that the controllability of steering is impaired.
  • the suspension pressure sensor 41 is provided, but the present invention is not limited to this.
  • it can be appropriately changed to a detection unit that detects information related to the load received by the front wheel 3.
  • FIGS. 19A to 19D are diagrams showing a modified embodiment of the load information detection unit that detects information related to the load received by the front wheel 3.
  • FIGS. 19A to 19D are enlarged views of a part of the front suspension 40 when the motorcycle 1 is viewed from the front.
  • strain gauges 101 and 102 for detecting the load applied to the axle 100 may be provided.
  • the strain gauges 101 and 102 are preferably arranged at the upper and lower parts of the axle 100 of the front wheel 3, respectively. Thereby, the load which axle 100 receives can be detected with sufficient accuracy. Note that the load received by the axle 100 corresponds to the load received by the front wheel 3. Therefore, the rate of change of the load that the front wheel 3 receives can be obtained from the detection results of the strain gauges 101 and 102.
  • a speed sensor 103 for detecting the expansion / contraction speed of the front suspension 40 (front fork 9R) may be provided.
  • the speed sensor 103 may be configured to include a coil or the like, and may detect an expansion / contraction speed of the front suspension 40 based on a change in magnetic flux.
  • the speed sensor 103 may be an optical surface speed sensor using a laser beam or the like.
  • the expansion / contraction speed of the front suspension 40 is a value corresponding to the rate of change of the load of the front wheel 3.
  • an acceleration sensor 105 may be provided that detects acceleration in the axial direction (stretching direction) of the front suspension 40 (front fork 9R). Note that the detection result of the acceleration sensor 105 corresponds to a time differentiation of the rate of change of the load on the front wheel 3. Therefore, a value corresponding to the rate of change of the load received by the front wheel 3 can be obtained from the detection result of the acceleration sensor 105.
  • an acceleration sensor 107 that detects the acceleration in the vertical direction of the axle 100 may be provided.
  • the detection result of the acceleration sensor 107 corresponds to a result obtained by further differentiating the change rate of the load on the front wheel 3 with respect to time. Therefore, a value corresponding to the rate of change of the load received by the front wheel 3 can be obtained from the detection result of the acceleration sensor 107.
  • a stroke sensor that detects the stroke amount of the front suspension 40 may be provided instead of the suspension pressure sensor 41.
  • the stroke amount of the front suspension 40 corresponds to the load that the front wheel 3 receives. Therefore, the rate of change of the load received by the front wheel 3 can be obtained from the detection result of the stroke sensor.
  • the various sensors 101, 102, 103, 105, 107 and the stroke sensor described above correspond to the load information detection unit in the present invention.
  • the motorcycle 1 is described as an example of the saddle riding type vehicle.
  • the present invention can be applied to any vehicle that can be mounted in a state where a person straddles it by mounting an engine such as a three-wheeled motorcycle with two front wheels or rear wheels in addition to the motorcycle 1.
  • the present invention is suitable for a steering damper control device that is provided in a steering mechanism of a vehicle and adjusts the damping force of the steering, and a straddle-type vehicle including the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)
  • Axle Suspensions And Sidecars For Cycles (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

 ステアリングダンパ制御装置は、ステアリングの減衰力を調整可能なMRダンパ45と、フロントサスペンションの圧力を検出するサスペンション圧力センサ41と、サスペンション圧力センサ41の検出結果に基づいて、フロントサスペンション40の圧力変化率に応じて減衰力指令値を決定する指令値出力部81と、減衰力指令値に応じた減衰力をMRダンパ45に発生させるダンパ駆動部77と、を備えている。ステアリングが振られやすい状況になった時点で、減衰力指令値に応じた減衰力を発生させることができ、ステアリングの振れを予め抑制することができる。

Description

ステアリングダンパ制御装置及びそれを備えた鞍乗型車両
 本発明は、車両のステアリング機構に設けられ、ステアリングの減衰力を調整するためのステアリングダンパについて、その減衰力を制御するステアリングダンパ制御装置及びそれを備えた鞍乗型車両に関する。
 最近では、鞍乗型車両の姿勢変化を安定させて操縦者の負担を軽減するために、ステアリングの減衰力を調節するためのステアリングダンパ制御装置を備えたものが増加している。このようなステアリングダンパ制御装置として、以下のようなものがある。
 この種の第1の装置として、ステアリングと、ステアリングダンパと、調節機構と、リアストロークセンサと、制御部とを備えたものがある(例えば、特許文献1参照)。ステアリングは、車体に回動自在に支持されている。ステアリングダンパは、ステアリングの回動力に対して減衰力を与える。調節機構は、ステアリングダンパの減衰力を調節する。リアストロークセンサは、リアサスペンションのストローク量を検出する。制御部は、リアストロークセンサの出力に基づき、車両が減速中である場合には、定常走行時に比べてステアリングダンパの減衰力を大きくするように調節機構を操作する。
 この第1の装置は、リアストロークセンサの出力に基づき減速中であると判断した場合には、ステアリングダンパの減衰力を増大させる。これにより、操縦者の意思に反してステアリングが路面の外乱を受ける等によって生じるキックバックを抑制することができる。その結果、減速中であっても車両の姿勢変化を抑制することができる。
 また、この種の第2装置として、アクセルの操作量に応じて、減衰力を調節するステアリングダンパを備え、アクセルの開度が小さい場合には低速走行と判断して、減衰力を低く抑え、アクセルの開度が大きい場合には高速走行と判断して、減衰力を増大させるものがある(例えば、特許文献2参照)。
 この第2の装置は、アクセルの操作量に基づいて走行状態を判断し、前輪が浮き上がりやすい状況で生じやすいステアリングが不安定になることを抑制することができる。その結果、加速中における車両の姿勢変化を抑制することができる。
 また、この種の第3の装置として、加速度検出器と、制御部と、を備えているものがある(例えば、特許文献3参照)。加速度検出器は、車体の加速度を検知する。そして、制御部は、加速度が閾値を超えた場合にのみ、ステアリングダンパに減衰力を発生させる。
 この第3の装置は、加速度が閾値以上となると前輪の荷重が低減してキックバックが生じ易くなるが、その際にステアリングダンパの減衰力を増大させてキックバックを抑制することができる。その結果、加速中における車両の姿勢変化を抑制することができる。
特開2009-126432号公報 特開2001-301682号公報 特開2002-302085号公報
 本発明は、このような事情に鑑みてなされたものであって、ステアリングの振動を好適に抑制することができるステアリングダンパ制御装置及びそれを備えた鞍乗型車両を提供することを目的とする。
 本発明は、このような目的を達成するために、次のような構成をとる。
 すなわち、本発明は、ステアリングの減衰力を調整可能なダンパと、前輪が受ける荷重に関連する情報を検出する荷重情報検出部と、前記荷重情報検出部の検出結果に基づいて、前輪が受ける荷重の変化率または前記変化率に相当する値に応じて減衰力指令値を決定する指令値出力部と、前記減衰力指令値に応じた減衰力を前記ダンパに発生させるダンパ駆動部と、を備えているステアリングダンパ制御装置である。
 [作用・効果]前輪の荷重の変化率またはこれに相当する値は、ステアリングの外乱による振動と、ある程度関連性がある。たとえば、前輪にかかる荷重が大きくなった直後に、ステアリングが振られやすい傾向がある。上述の構成では、前輪の荷重の変化率、または、これに相当する値(指標)に基づいて、ステアリングの減衰力を発生させる。よって、現実にステアリングが振られていなくても、ステアリングが振られやすい状況になった時点で、減衰力指令値に応じた減衰力を発生させることができる。これにより、ステアリングは動きにくくなり(ステアリングの操作感は重くなり)、ステアリングの振れを予め抑制することができる。
 以下では、荷重の変化率、または、これに相当する値を、適宜、「荷重の変化率等」と呼ぶ。
 また、本発明において、前記荷重の変化率または前記変化率に相当する値が正である範囲の少なくとも一部の領域においては、前記荷重の変化率または前記変化率に相当する値が大きくなるにしたがって、前記減衰力指令値は大きくなることが好ましい。
 前輪に対して略上向きに働く荷重が増大するとき、荷重の変化率等が正となる。荷重の変化率等が負であるときに比べて正であるときに、ステアリングは振られやすい傾向がある。また、荷重の増大が急峻であるほど、荷重の変化率等が大きくなる。荷重の変化率等が大きくほど、ステアリングは大きな力で振られやすい傾向がある。上述の構成によれば、ステアリングが振動しやすいときに、減衰力をステアリングに実質的に作用させることができる。また、ステアリングを振動させる外乱が大きいほど、減衰力を大きくすることができる。よって、荷重の変化が急峻な場合であっても、ステアリングの振動を効果的に抑制することができる。
 また、本発明において、前記領域において、前記荷重の変化率が大きくなるにしたがって、減衰力指令値の増大量が大きくなることが好ましい。これにより、ステアリングの振動を一層効果的に抑制することができる。
 また、本発明において、前記領域において、前記荷重の変化率または前記変化率に相当する値が大きくなるにしたがって、前記減衰力指令値は一定の割合で大きくなることが好ましい。荷重の変化率等に比例して減衰力が大きくなる。よって、ステアリングの振動を一層効果的に抑制することができる。
 また、本発明において、前記荷重の変化率または前記変化率に相当する値が正である閾値より大きいときは、前記減衰力指令値は一定値であることが好ましい。必要以上に過大な減衰力が発生することがないので、ライダーの負担を好適に軽減することができる。
 また、本発明において、前記一定値は、前記荷重の変化率または前記変化率に相当する値が前記閾値であるときの減衰力指令値と等しいことが好ましい。閾値の近傍において減衰力の大きさが連続しているので、ステアリングの操縦性(動きやすさ)が不自然に変化することを回避できる。
 また、本発明において、前記荷重の変化率または前記変化率に相当する値が正である所定値より小さいときは、前記減衰力指令値は最小値であることが好ましい。
 前輪が受ける荷重は、前輪が路面から衝撃を受けた瞬間に最も急峻に増大し、その後、荷重の変化が緩やかになり、やがて荷重が減少する傾向がある。上述した構成では、荷重の変化率等が正であっても、所定値(所定値は正の値とする)より小さいときには、減衰力指令値を最小値とする。減衰力指令値が最小値であるとき、ステアリングに作用する減衰力は最小となり、ステアリングは動きやすくなる(ステアリングの操作感が軽くなる)。言い換えれば、前輪が受ける上向きの荷重が急峻に増大しているときのみ、最小値より大きな減衰力指令値によってステアリングに減衰力を実質的に作用させる。これにより、ステアリングの振動を抑制しつつ、ステアリングの操縦性が損なわれることを抑制することができる。
 また、本発明は、前記荷重の変化率または前記変化率に相当する値が正であるとき、前記減衰力指令値は最小値より大きいことが好ましい。前輪が受ける荷重が増大しているときには、減衰力は最小より大きい。これにより、ステアリングの振動を好適に抑制することができる。
 また、本発明において、前記荷重の変化率または前記変化率に相当する値が負であるときは、前記減衰力指令値は最小値であることが好ましい。
 ステアリングが比較的に振られにくいときには、減衰力を最小とする。これにより、ステアリングの操作感を軽くすることができ、ステアリングの操縦性が低下することを好適に抑制できる。
 また、本発明において、前記ダンパは、磁性流体と、前記磁性流体に対して磁場を与える磁場発生用コイルと、を備え、前記ダンパ駆動部は、前記減衰力指令値に応じた電流を前記磁場発生用コイルに流すことが好ましい。
 磁性流体に対して磁場を与えると、磁性流体の粘性が変化し、減衰力が実質的に発生する。このため、ステアリングが現実に動いていなくても(振動していなくても)、ダンパはステアリングに減衰力を作用させることができる。
 また、本発明において、前記ダンパは、磁性流体のせん断力によって減衰力を発生し、
 前記磁場発生用コイルは、前記ステアリングの前記磁性流体のせん断力を変化させることが好ましい。ダンパはいわゆる「せん断型」であるので、減衰力指令値が最小値であるときの減衰力を極力小さくすことができる。これにより、減衰力が最小であるときには、ステアリング操縦性が低下することをより一層抑制することができる。
 また、本発明において、前記荷重情報検出部は、前輪のサスペンションの圧力を検出する圧力検出手段であり、前記指令値出力部は、サスペンションの圧力の変化率に応じて減衰力指令値を決定することが好ましい。サスペンションの圧力は、前輪が受ける荷重に相当する。サスペンションの圧力の変化率は、前輪の荷重の変化率に相当する値である。よって、圧力検出部によれば、荷重情報検出部を好適に実現することができる。
 また、本発明は、ステアリングダンパ制御装置を備え、前記ステアリングダンパ制御装置は、ステアリングの減衰力を調整可能なダンパと、前輪が受ける荷重に関連する情報を検出する荷重情報検出部と、前記荷重情報検出部の検出結果に基づいて、前輪が受ける荷重の変化率または前記変化率に相当する値に応じて減衰力指令値を決定する指令値出力部と、前記減衰力指令値に応じた減衰力を前記ダンパに発生させるダンパ駆動部と、を備えている鞍乗型車両である。
 [作用・効果]ステアリングダンパ制御装置は、現実にステアリングが振られていなくても、ステアリングが振られやすい状況になった時点で、減衰力指令値に応じた減衰力を発生させることができる。これにより、ステアリングが振られることを予め抑制することができる。よって、ステアリングを操作するライダーの負担を好適に軽減することができる。
 本発明に係るステアリングダンパ制御装置及びそれを備えた鞍乗型車両によれば、ステアリングが振られることを好適に抑制することができ、ステアリングを操縦するライダーの負担を軽減することができる。よって、ライダーは、鞍乗型車両を快適に走行させることができる。
実施例1に係る自動二輪車の概略構成を示した側面図である。 ハンドルクラウン周辺の構成を示した一部破断正面図である。 MRダンパの構成を示す図であり、(a)はMRダンパの概略構成を示す縦断面図であり、(b)は分解斜視図であり、(c)は部分拡大断面図である。 実施例1に係るステアリングダンパ制御装置の概略構成を示したブロック図である。 サスペンション圧力変化率に応じた減衰力指令値算出用テーブルを模式的に示した図である。 回転数差分の絶対値に応じた減衰力指令値算出用テーブルを模式的に示した図である。 ステアリングダンパ制御装置の動作を示したフローチャートである。 通常制御演算の動作を示したフローチャートである。 姿勢変化対応制御演算の動作を示したフローチャートである。 実施例2に係るステアリングダンパ制御装置の概略構成を示したブロック図である。 回転数変化率の絶対値に応じた減衰力指令値算出用テーブルを模式的に示した図である。 姿勢変化対応制御演算の動作を示したフローチャートである。 実施例3に係るステアリングダンパ制御装置の概略構成を示したブロック図である。 スロットル開度変化率の絶対値に応じた減衰力指令値算出用テーブルを模式的に示した図である。 姿勢変化対応制御演算の動作を示したフローチャートである。 実施例4に係るステアリングダンパ制御装置の概略構成を示したブロック図である。 実施例4に係るステアリングダンパ制御装置の動作を示したフローチャートである。 変形実施例におけるサスペンション圧力変化率に応じた減衰力指令値算出用テーブルを模式的に示した図である。 図19(a)乃至図19(d)はそれぞれ、前輪が受ける荷重に関連する情報を検出する荷重情報検出部の変形実施例を示す図である。
 以下、図面を参照して本発明の実施例1を説明する。
 ここでは、本発明に係るステアリングダンパ制御装置を備えた鞍乗型車両として、自動二輪車を例にとって説明する。
 (1)全体概略構成
 図1は、実施例1に係る自動二輪車の概略構成を示した側面図であり、図2は、ハンドルクラウン周辺の構成を示した一部破断正面図である。
 自動二輪車1は、前輪3と後輪5とを備えている。後輪5は、エンジン7が発生する駆動力によって回転駆動される。前輪3は、左右一対のフロントフォーク9L,9Rで回転可能に支持されている。フロントフォーク9L,9Rは、それらの上端部がハンドルクラウン11に連結されて支持されている。また、フロントフォーク9L,9Rの中間部は、アンダーブラケット13に連結されて支持されている。ハンドルクラウン11の上面には、左右一対のハンドルホルダ15L,15Rが設けられている。これらのハンドルホルダ15L,15Rによって、操縦者が操作するステアリングバー17が保持されている。ハンドルクラウン11とアンダーブラケット13とは、ステアリングシャフト19で連結されている。ステアリングシャフト19の下端は、アンダーブラケット13のステアリングシャフト受け部(不図示)によって、上方向に抜けないように係止されている。また、ステアリングシャフト19の上端は、ナット21でハンドルクラウン11に取り付けられている。
 ステアリングシャフト19は、軸受23を介してヘッドパイプ25に回動自在に支持されている。ヘッドパイプ25は、車体フレーム27に連結されている。操縦者がステアリングバー17を操作すると、その操舵力がステアリングシャフト19を介して、フロントフォーク9L,9Rに伝達されて、前輪3が操舵される。
 前輪3に設けられているディスクブレーキ29の近傍には、前輪3の回転数を検出する前輪車輪速センサ31が設けられている。後輪5に設けられているドリブンスプロケット33の近傍には、後輪5の回転数を検出する後輪車輪速センサ35が設けられている。また、エンジン7のクランクシャフト(不図示)付近には、エンジンの回転数を検出するエンジン回転数センサ37が設けられている。また、ステアリングバー17のアクセルグリップ(不図示)付近には、スロットル開度を検出するスロットルポジションセンサ39が設けられている。フロントローク9Lには、フロントサスペンション40の圧力を検出するサスペンション圧力センサ41が設けられている。各センサの出力は、燃料タンク42の前部に設けられたコントローラ43に入力される。
 (2)MRダンパの構成
 ハンドルクラウン11の下側に、MRダンパ45が設けられている。このMRダンパ45は、操舵に伴うステアリングシャフト19の回転に対して減衰力を発生するものであり、磁性流体を用いたものである。ここで、図3を参照して、MRダンパ45の構成を説明する。なお、図3は、MRダンパの構成を示す図であり、(a)はMRダンパの概略構成を示す縦断面図であり、(b)は分解斜視図であり、(c)は部分拡大断面図である。
 MRダンパ45は、アッパヨーク47と、ロアヨーク49と、磁性流体51と、磁場発生用コイル53とを備えている。磁性流体51は、アッパヨーク47とロアヨーク49との間に介在する。磁場発生用コイル53は、磁性流体51に対して磁場を与える。アッパヨーク47は、中心部にステアリングシャフト19が通る貫通孔55が形成されており、全体として環状になっている。このアッパヨーク47は、圧延鋼などの磁性材料で形成されている。
 アッパヨーク47は、その底面に環状の凹溝57が穿たれている。この凹溝57は、磁場発生用コイル53を収容している。磁場発生用コイル53は、ステアリングの減衰力に応じた電流をコントローラ43から供給される。
 ロアヨーク49は、アッパヨーク47と同様に、中心部にステアリングシャフト19が通る貫通孔59が形成されており、全体として環状になっている。ロアヨーク49も、アッパヨーク47と同様に圧延鋼などの磁性材料で形成されている。ロアヨーク49は、上面に環状の凹溝61が形成されている。この凹溝61は、アッパヨーク47が嵌め込まれる。
 ロアヨーク49の凹部61は、その内側壁に、アルミニウム等の金属材料からなる円筒状のカラー63が嵌め付けられている。アッパヨーク47は、カラー63を介してロアヨーク49に対して回転可能に保持されている。なお、このカラー63に代えて、周知のころがり軸受を使用してもよいが、カラー63を用いると、MRダンパ45をより小型化することができる。
 ロアヨーク49は、その凹溝61内に磁性流体51が収容されている。ロアヨーク49の凹溝61の底面と、アッパヨーク47の下面とが、磁性流体51を介在した状態で対向している。磁性流体51としては、例えば、カルボニル鉄を40%含むものが好適に用いられる。磁性流体51は、磁界を印加されると粘度が向上し、MRダンパ45の減衰力は大きくなる。なお、磁性流体51は、磁界を印加されない状態においても一定の粘度を有しており、MRダンパ45は、磁界を印加されない状態において最小の減衰力を発生する。
 アッパヨーク47とロアヨーク49との間に形成される内外の環状の各隙間には、Oリング65,67が嵌め付けられている。Oリング65,67は、磁性流体51の漏れを防ぐとともに、MRダンパ45内への塵埃などの侵入を防止する。
 ロアヨーク49は、ヘッドパイプ25に連結され、アッパヨーク47は、ハンドルクラウン11に連結されている。つまり、ロアヨーク49が車体側に連結され、アッパヨーク47がステアリングバー17に連結されている。その結果、ステアリングバー17が操作されると、アッパヨーク47とロアヨーク49との間に介在する磁性流体51が、その粘度に応じた抵抗力を発生し、この抵抗力がステアリングの減衰力となってステアリングバー17に作用する。
 なお、上述したMRダンパ45が本発明における「ダンパ」に相当する。
 (3)コントローラの構成
 図4を参照して、コントローラ43について詳細に説明する。なお、図4は、実施例1に係るステアリングダンパ制御装置の概略構成を示したブロック図である。
 コントローラ43は、通常制御部71と、姿勢変化対応制御部73と、減衰力調整部75と、ダンパ駆動部77とを備えている。
 通常制御部71は、後輪5が空転を起こしていない通常状態においてMRダンパ45の制御を行うための減衰力指令値を求める。姿勢変化対応制御部73は、後輪5が空転を生じて姿勢が変化する恐れがある場合においてMRダンパ45の制御を行うための減衰力指令値を求める。減衰力調整部75は、通常制御部71と姿勢変化対応制御部73とから与えられる減衰力指令値のいずれか一方の指令値に基づいて、ダンパ駆動部77を制御する。ダンパ駆動部77は、減衰力指令値に基づく駆動電流をMRダンパ45の磁場発生用コイル53に対して出力する。なお、通常制御部69は、後述するように、MRダンパ45の減衰力を最小値にするキャンセル信号も出力する。
 通常制御部71は、圧力変化率算出部79と、指令値出力部81と、非接地判断部83と、非接地関連メモリ85とを備えている。
 圧力変化率算出部79は、サスペンション圧力センサ41からの圧力信号に基づいて、フロントサスペンション40の圧力変化率を算出する。算出された圧力変化率は、指令値出力部81に与えられる。指令値出力部81は、予め記憶された参照テーブル81aに基づいて、減衰力指令値を決定する。
 ここで、図5を参照する。なお、図5は、サスペンション圧力変化率に応じた減衰力指令値算出用テーブルを模式的に示した図である。
 圧力変化率がゼロである場合には、自動二輪車1が安定して走行している場合を示す。例えば、平坦な道路を走行している場合など、フロントサスペンション40がある程度収縮した状態で、かつ、収縮も伸長もしないような安定した状態であることを示す。また、圧力変化率が負である場合は、収縮したフロントサスペンション40が伸長しつつある場合を示す。一方、圧力変化率が正である場合は、伸長したフロントサスペンション40が収縮しつつある場合を示す。
 減衰力指令値算出用テーブル81aは、予め次のように設定されている。サスペンション変化率が負から0までの範囲においては、減衰力指令値を最小値に設定する。つまり、フロントサスペンション40が収縮も伸長もせず安定している場合や、収縮した状態から伸長しつつある場合には、減衰力指令値を最小値にして、ステアリングバー17を回転させ易くする。また、サスペンション変化率が0を超える正の範囲においては、減衰力指令値を一定の割合で徐々に高める。つまり、フロントサスペンション40が伸長した状態から収縮しつつある場合には、減衰力指令値を大きくして、ステアリングバー17を回転させにくくする。サスペンション変化率が一定値を超える場合には、減衰力指令値が最大値で一定にする。指令値出力部81は、圧力変化率算出部79から与えられたサスペンション変化率と、上記の減衰力指令値算出用テーブル81aとに基づいて、減衰力指令値を減衰力調整部75に出力する。
 非接地判断部83は、フロントサスペンション40の圧力を示すサスペンション圧力センサ41の出力に基づいて、前輪3が地面に接地しているか否かを判断する。その際には、非接地関連メモリ75を参照する。この非接地関連メモリ75は、圧力の下限値と、非接地を判断するための所定時間とを予め記憶されている。非接地判断部83は、サスペンション圧力センサ41の圧力信号を監視し、その圧力信号が、所定時間にわたって圧力の下限値に達しているか否かで前輪3の非接地を判断する。これは、自動二輪車1の操縦者が意図的にジャンプを行っているか否かを判断するためである。意図的に自動二輪車1をジャンプさせると、通常走行時に比べて長時間にわたり前輪3が浮いた状態になる。すると、フロントサスペンション40が最大限に伸長した状態となって、サスペンション40の圧力がある値を一定時間維持する。これを圧力の下限値と、所定時間とで判断する。非接地判断部83は、非接地であると判断すると、キャンセル信号を減衰力調整部75に対して出力する。
 なお、上述したサスペンション圧力センサ41が本発明における「圧力検出手段」に相当し、非接地関連メモリ85が本発明における「圧力下限値記憶手段」に相当し、非接地判断部83が本発明における「前輪非接地判断手段」に相当する。
 姿勢変化対応制御部73は、回転数差分算出部87と、指令値出力部89とを備えている。
 回転数差分算出部87は、前輪車輪速センサ31と後輪車輪速センサ35との出力に基づいて前輪3と後輪5の回転数の差分を算出する。算出された回転数差分は、指令値出力部89に与えられる。指令値出力部89は、その回転数差分の絶対値と、予め記憶された減衰力指令値算出用テーブル89aとに基づいて、減衰力指令値を決定する。
 ここで、図6を参照する。なお、図6は、回転数差分の絶対値に応じた減衰力指令値算出用テーブルを模式的に示した図である。
 判断基準を回転数差分の「絶対値」としたのは、自動二輪車1の加速中に後輪5が空転した場合と、後輪5がロックして空転している場合の両方に対応するためである。回転数差分の絶対値がゼロである場合は、前輪3と後輪5との車輪速が同じであり、後輪5に空転が生じていないことを示す。回転数差分の絶対値がある大きさになると、前輪3と後輪5の回転数差が大きくなって、後輪5が僅かに空転を始めたことを示す。回転数差分の絶対値がさらに大きくなると、後輪5が大きく空転を始めたことを示す。
 減衰力指令値算出用テーブル81aは、予め次のように設定されている。回転数差分の絶対値がある大きさまでは、後輪5が空転を始めても、後輪5がヘッドパイプ25を中心にして大きく横方向へ移動するような姿勢の変化は生じにくい。したがって、回転数差分の絶対値がある大きさになるまでは、減衰力指令値をゼロのままにする。そして、回転数差分の絶対値がさらに大きくなると、後輪5の空転が自動二輪車1の姿勢変化に大きく影響を与えることになる。具体的には、後輪5が大きく横方向へ移動してしまい、後輪5の駆動力が進行方向に対して大きくズレ始めることになる。そこで、回転数差分の絶対値が第1の閾値WD1に達すると、ここから第2の閾値WD2まで一定の割合で減衰力指令値を高くしてゆく。これにより、後輪5の空転が大きくなるにつれて、MRダンパ45の減衰力が大きくされる。その結果、後輪5が大きく横方向へずれてゆくのを抑制することができる。そして、回転数差分の絶対値が第2の閾値WD2以上になると、減衰力指令値を最大値に固定する。このようにして指令値出力部89は、回転数差分算出部87から与えられた回転数差分の絶対値と、上記の減衰力指令値算出用テーブル89aとに基づいて、減衰力指令値を減衰力調整部75に出力する。
 減衰力調整部75は、通常制御部71からの減衰力指令値と、通常制御部71からのキャンセル信号と、姿勢変化対応制御部73からの減衰力指令値とを与えられる。減衰力調整部75は、後述する空転検出フラグに基づき、二つの減衰力指令値のいずれか一方をダンパ駆動部77に与える。一方、キャンセル信号を受けた場合には、現時点でダンパ駆動部77に与えている減衰力指令値をキャンセルして、最小の減衰力指令値をダンパ駆動部77に与える。ダンパ駆動部77は、MRダンパ45の磁場発生用コイル53に対して、減衰力指令値に応じた電流値を出力する。
 なお、上述した前輪車輪速センサ31と、後輪車輪速センサ35と、回転数差分算出部87と、指令値出力部89とが本発明における「空転検出手段」に相当し、ダンパ駆動部77が本発明における「減衰力調節手段」に相当する。また、前輪車輪速センサ31が本発明における「前輪回転数検出手段」に相当し、後輪車輪速センサ35が本発明における「後輪回転数検出手段」に相当し、回転数差分算出部87が本発明における「差分算出手段」に相当し、指令値出力部89が本発明における「判別手段」及び「記憶手段」に相当する。また、上述した減衰力指令値算出用テーブル89aにおける第1の閾値WD1と第2の閾値WD2とが本発明における「第1の閾値」と「第2の閾値」に相当する。
 (4)ステアリングダンパ制御装置の動作
 図7~図9を参照して動作について説明する。なお、図7は、ステアリングダンパ制御装置の動作を示したフローチャートである。また、図8は、通常制御演算の動作を示したフローチャートであり、図9は、姿勢変化対応制御演算の動作を示したフローチャートである。
 ステップS1
 コントローラ43の初期化を行う。具体的には、減衰力調整部75に与える減衰力指令値を最小値のゼロにする。これにより、MRダンパ45には減衰力が生じない状態とされる。
 ステップS2
 通常制御のための演算処理を行う。
 ここで、図8を参照する。
 ステップS21,S22
 通常制御部71は、フロントサスペンション40の圧力をサスペンション圧力センサ41から取得する。そして、圧力変化率算出部79からの圧力変化率と、上述した減衰力指令値算出用テーブル81aとに基づいて減衰力指令値を決定する。
 ステップS3
 上記の通常制御と並行して、姿勢変化対応制御演算を行う。
 ここで、図9を参照する。
 ステップS31,S32
 回転数差分算出部87は、前輪車輪速センサ31と後輪車輪速センサ35とから信号を受け取り、前輪3と後輪5の車輪速の差分を算出する。
 ステップS33~S35
 指令値出力部89は、前後輪の回転数の差分の絶対値と、減衰力指令値算出用テーブル89aとに基づいて処理を分岐する。具体的には、回転数差分の絶対値が第1の閾値WD1を超えているか否かで処理を分岐する。第1の閾値WD1を超えていない場合には、図7のステップS4に分岐する。一方、第1の閾値WD1を超えている場合には、回転数差分の絶対値と、減衰力指令値算出用テーブル89aとに基づいて、減衰力指令値を決定する。そして、空転を検出したことを示す空転検出フラグをONにした後、図7のステップS4に戻る。
 ここで図7に戻る。
 ステップS4
 空転検出フラグの状態に応じて処理を分岐する。具体的には、空転検出フラグがONである場合には、ステップS7に分岐し、空転検出フラグがOFFである場合には、ステップS5に分岐する。ここでは、まず空転検出フラグがOFFである場合について説明する。
 ステップS5
 空転検出フラグがOFFであるので、後輪5に空転は生じていないか、生じていても姿勢に変化を与えない僅かな空転である。そこで、この場合には、通常制御部71の減衰力指令値を採用する。
 ステップS6
 減衰力調整部75は、この時点で採用されている減衰力指令値をダンパ駆動部77に与える。
 次に、空転検出フラグがONである場合について説明する。
 ステップS7,S8
 空転検出フラグがONであるので、姿勢変化に影響を与える空転が後輪5に生じている。そこで、この場合には、姿勢変化対応制御部73の減衰力指令値を採用する。そして、空転検出フラグをOFFにする。
 ステップS9,S10
 前輪3が非接地の状態であり、非接地判断部83からキャンセル信号が出力されている場合には、減衰力指令値として最小値であるゼロを採用する。これにより、自動二輪車1の操縦者が意図的にジャンプを行っている際には、ステアリングバー17を大きく切りやすくすることができる。前輪3が接地の状態であり、非接地判断部83からキャンセル信号が出力されていない場合には、ステップS6に移行する。
 本実施例に係るステアリングダンパ制御装置は、指令値出力部89が後輪5の空転を検出すると、ダンパ駆動部77により、後輪5が空転していないときのMRダンパ45の減衰力よりも減衰力を高くする。したがって、ヘッドパイプ25を軸として後輪5が横滑りすることを抑制することができ、自動二輪車1の姿勢変化を抑制することができる。その結果、後輪5の駆動力が進行方向からずれるのを抑制でき、後輪5の駆動力を効率的に走行に利用することができる。
 また、前輪3と後輪5からの回転数に基づいて回転数差分算出部87が前後輪の回転数の差分を算出する。この差分が大きい場合には、後輪5が空転していることを示すので、指令値出力部89は差分に基づいて空転を判別することができる。また、前後輪の回転数差に基づき空転を判別するので、エンジン7においてギア抜けが生じた場合であっても空転の誤検出を防止できる利点がある。
 また、予め減衰力指令値算出用テーブル89aに第1の閾値WD1を設定しておき、この第1の閾値WD1と差分とに基づいて指令値出力部89aは空転が生じたことを判別することができる。第1の閾値WD1を適宜設定することにより、MRダンパ45の減衰力を高くするタイミングを調節することができる。したがって、自動二輪車1の操縦性を調整することができる。
 また、減衰力指令値算出用テーブル89aに示すように、第1の閾値WD1から第2の閾値WD2まで減衰力指令値を回転数差分に応じてMRダンパ45の減衰力を高めるので、姿勢変化を抑制しつつも、操縦者に不自然さを与えにくくすることができる。
 また、減衰力指令値算出用テーブル89aにおける第2の閾値WD2を適宜に設定することにより、MRダンパ45の減衰力を最大値にするタイミングを調節することができる。したがって、自動二輪車1の操縦性を調節することができる。
 また、後輪5の空転を検出しない場合には、通常制御部71の減衰力指令値を採用する。すなわち、サスペンション圧力センサ41の検出結果に基づいて決定された減衰力指令値を用いてMRダンパ45を制御する。これにより、キックバック等のようなステアリングの振動が発生し易いときに減衰力を発生させて、ステアリングバー17を回転しにくくする。この結果、ステアリングの振動を好適に抑制することができる。また、ステアリングが実際に振られていなくても、ステアリングの振動を予防的に抑制することができる。
 また、指令値出力部81は、圧力変化率に基づいて減衰力指令値を決定するので、フロントサスペンション40の伸縮に応じた減衰力指令値を適切に決定することができる。より詳しく説明すると、フロントサスペンション40の圧力は、フロントサスペンション40の伸縮のみならず、フロントサスペンション40の温度変動や「エア吸い」によっても変化する。しかしながら、フロントサスペンション40の温度変動や「エア吸い」による圧力変化は、比較的に長い時間をかけた、ゆっくりとした変化である。これに対し、フロントサスペンション40の伸縮による圧力変化は、比較的に短い時間の、瞬間的な変化である。よって、圧力変化率算出部79が算出する圧力変化率は、フロントサスペンション40の温度変動や「エア吸い」による圧力変化によって変動しにくい。換言すれば、圧力変化率は、常にフロントサスペンション40の伸縮のみを的確に反映した値となる。ちなみに、本実施例1では、圧力変化率算出部79は、サスペンション圧力センサ41の圧力信号に基づき、高頻度に(例えば、0.1[msec]~50[msec]の周期で)圧力変化率を算出する。よって、指令値出力部81は、フロントサスペンション40の伸縮に応じた減衰力指令値を適切に決定することができる。
 なお、上述したフロントサスペンション40の温度変動は、外気温の変化や走行状況によって生じる。例えば、フロントサスペンション40内のオイルが走行中の振動によって攪拌され、また、オリフィスを通過することにより、オイルの温度が上昇し、フロントサスペンション40全体の温度が上昇する。また、上述した「エア吸い」とは、フロントサスペンション40内に外気が吸い込まれる現象である。
 減衰力指令値算出用テーブル81aでは、圧力変化率が正であるときに減衰力指令値は最小値より大きい。このため、フロントサスペンション40が収縮しつつあるときに減衰力を発生させて、ステアリングの振動を好適に抑制することができる。
 また、圧力変化率が0から一定値までの領域においては、圧力変化率が大きくなるにしたがって、減衰力指令値が大きくなる。このため、フロントサスペンション40の圧力が急峻に増大した場合であっても、ステアリングの振動を効果的に抑制することができる。
 また、上述した領域では、圧力変化率が大きくなるにしたがって、減衰力指令値は一定の割合で大きくなる。すなわち、圧力変化率に比例して減衰力が大きくなる。よって、ステアリングの振動を一層効果的に抑制することができる。
 また、圧力変化率が一定値(閾値)を超えるときは、減衰力指令値は一定値である。よって、必要以上に過大な減衰力が発生することがないので、ライダーの負担を好適に軽減することができる。
 また、減衰力指令値の一定値は、圧力変化率が閾値であるときの減衰力指令値と等しい。よって、圧力変化率が閾値より低い値から閾値より高い値に増加するときや、閾値より高い値から閾値より低い値に減少するとき、減衰力の大きさが急に変わることがない。よって、ステアリングの操縦性(動きやすさ)が不自然に変化することを回避できる。
 また、圧力変化率が負であるときは、減衰力指令値は最小値である。よって、フロントサスペンション40の圧力が増加しているときのみに、減衰力を最小値より大きくさせ、それ以外では減衰力を最小にし、ステアリングバー17を回転し易くさせる。これにより、ステアリングの振動を抑制しつつ、ステアリングの操縦性が低下することを好適に抑制できる。また、自動二輪車1をジャンプさせているとき、操縦者はステアリングバー17を容易に切ることができる。
 また、MRダンパ45は、磁性流体51と、磁性流体51に対して磁場を与える磁場発生用コイル53を備えている。よって、磁場発生用コイル53に電流を流せば、MRダンパ45に減衰力を発生させることができる。よって、現実にステアリングが振られていなくても、ステアリングが振られやすくなった時点で、減衰力を好適に発生させることができる。
 MRダンパ45は、磁性流体51のせん断力によって減衰力を発生する。すなわち、MRダンパ45は、いわゆる「せん断型」である。よって、減衰力指令値を最小値にしたときには減衰力を極力小さくすことができる。これにより、ステアリングの操作感は一層軽くなり、ステアリングの操縦性が低下することをより一層抑制することができる。
 サスペンション圧力センサ41は、ストロークセンサ等に比べて、コンパクトであり、任意の位置に容易に配置することができる。また、サスペンション圧力センサ41は、ストロークセンサ等に比べて耐久性が高い。また、フロントサスペンション40の圧力は、前輪3が受ける荷重に相当する。すなわち、サスペンション圧力センサ41によれば、前輪3が受ける荷重に関連する情報を好適に検出することができる。ちなみに、フロントサスペンション40の圧力変化率は前輪が受ける荷重の変化率に相当する。
 次に、図面を参照して本発明の実施例2を説明する。
 図10は、実施例2に係るステアリングダンパ制御装置の概略構成を示したブロック図である。なお、上述した実施例1と同じ構成については同符号を付すことにより詳細な説明については省略する。
 (1)コントローラの構成
 本実施例2におけるコントローラ43Aは、通常制御部71と、姿勢変化対応制御部73Aと、減衰力調整部75と、ダンパ駆動部77とを備えている。上述した実施例1とは、姿勢変化対応制御部73Aが相違する。
 姿勢変化対応制御部73Aは、回転数変化率算出部91と、指令値出力部93とを備えている。
 姿勢変化対応制御部73Aの回転数変化率算出部91は、エンジン回転数センサ37の出力に基づいてエンジン7の回転数の変化率を算出する。具体的には、エンジン回転数センサ37から逐次出力されてくるエンジン回転数の移動平均値を算出し、現在のエンジン回転数との差分を算出し、これを変化率とする。このようにして算出された回転数の変化率は、指令値出力部93に与えられる。指令値出力部93は、その回転数変化率の絶対値と、予め記憶された減衰力指令値算出用テーブル93aとに基づいて、減衰力指令値を決定する。
 また、指令値出力部93は、エンジン7の過回転も検出可能に構成されている。例えば、指令値出力部93には、点火パルスの信号が与えられており、この点火パルスを監視することにより、エンジン7が過回転であるか否かを判断することができるようになっている。具体的には、エンジン7が過回転となった場合、点火パルスが間引かれる等の点火制御が行われる。したがって、点火パルスを監視することにより、エンジン7が過回転状態となったか否かを判断することができる。指令値出力部93は、回転数変化率がどのような状態であっても、過回転を検出した場合には、減衰力指令値を最大に設定する。
 ここで、図11を参照する。なお、図11は、回転数変化率の絶対値に応じた減衰力指令値算出用テーブルを模式的に示した図である。
 判断基準を回転数変化率の「絶対値」としたのは、自動二輪車1の加速中と減速中との両方に対応するためである。回転数変化率の絶対値がゼロである場合には、一定速度で走行していることを示す。回転数変化率の絶対値がある大きさになると、後輪5のグリップ力を超え始め、後輪5が僅かに空転を始めたことを示す。回転数変化率の絶対値がさらに大きくなると、後輪5が大きく空転を始めたことを示す。
 減衰力指令値算出用テーブル93aは、予め次のように設定されている。
 回転数変化率の絶対値がある大きさまでは、後輪5が空転を始めても、後輪5がヘッドパイプ25を中心にして大きく横方向へ移動するような姿勢変化が生じ難い。したがって、回転数変化率の絶対値がある大きさになるまでは、減衰力指令値をゼロのままにする。そして、回転数変化率の絶対値がさらに大きくなると、後輪5の空転が自動二輪車1の姿勢変化に大きく影響を与えることになる。具体的には、後輪5が大きく横方向へ移動して、後輪5の駆動力が進行方向から大きくズレ始めることになる。そこで、回転数変化率の絶対値が第1の閾値RD1に達すると、ここから第2の閾値WD2まで徐々に減衰力指令値を高くしてゆく。これにより、後輪5の空転が大きくなるしたがって、MRダンパ45の減衰力が大きくされる。その結果、後輪5が大きく横方向へずれてゆくのを抑制することができる。そして、回転数変化率の絶対値が第2の閾値RD2以上になると、減衰力指令値を最大値に固定する。このようにして指令値出力部93は、回転数変化率算出部91から与えられた回転数変化率の絶対値と、上記の減衰力指令値算出用テーブル93aとに基づいて、減衰力指令値を減衰力調整部75に対して出力する。
 なお、上述したエンジン回転数センサ37と、回転数変化率算出部91と、指令値出力部93とが本発明における「空転検出手段」に相当する。また、エンジン回転数センサ37が本発明における「エンジン回転数検出手段」に相当し、回転数変化率算出部91が本発明における「上昇率算出手段」に相当し、指令値出力部93が本発明における「判別手段」及び「記憶手段」に相当する。また、上述した減衰力指令値算出用テーブル93aにおける第1の閾値RD1と第2の閾値RD2とが本発明における「第1の閾値」と「第2の閾値」に相当する。また、指令値出力部93が本発明における「過回転検出手段」に相当する。
 (2)ステアリングダンパ制御装置の動作
 図12を参照して動作について説明する。なお、図12は、姿勢変化対応制御演算の動作を示したフローチャートである。ステアリングダンパ制御装置の全体動作については、上述した図7のフローチャートと同じであり、通常制御演算の動作も上述した図8のフローチャートと同じであるので、ここでの詳細な説明については省略する。
 ステップS41~S43
 回転数変化率算出部91は、エンジン回転数センサ37からエンジン7の回転数を受け取り、移動平均値を算出した後、移動平均値と現在の回転数との差分から回転数変化率を算出する。
 ステップS44~S46
 指令値出力部93は、回転数変化率の絶対値と、減衰力指令値算出用テーブル93aとに基づいて処理を分岐する。具体的には、回転数変化率の絶対値が第1の閾値RD1を超えているか否かで処理を分岐する。第1の閾値RD1を超えている場合には、回転数変化率の絶対値と、減衰力指令値算出用テーブル93aとに基づいて、減衰力指令値を決定する。そして、空転を検出したことを示す空転検出フラグをONにした後、図7のステップS4に戻る。
 ステップS47,S48
 一方、回転数変化率の絶対値が第1の閾値RD1を超えていない場合には、指令値出力部93は、エンジン7の過回転であるか否かを判断して処理を分岐する。具体的には、過回転であると判断した場合は、減衰力指令値を最大に設定した後、ステップS46へ移行する。一方、過回転でないと判断した場合は、図7のステップS4に戻る。
 本実施例に係るステアリンダンパ制御装置によると、上述した実施例1と同様に、後輪5の駆動力が進行方向からずれるのを抑制でき、後輪5の駆動力を効率的に走行に利用することができる。
 また、エンジン回転数センサ37からのエンジン7の回転数に基づいて、回転数変化率算出部91がエンジン7の回転数上昇率を算出する。この回転数上昇率が大きい場合には、後輪5が空転していることを示すので、指令値出力部93は回転数上昇率に基づいて空転を判別することができる。
 また、予め減衰力指令値算出用テーブル93aに第1の閾値RD1を設定しておき、この第1の閾値RD1と回転数上昇率の絶対値とに基づいて指令値出力部93は空転が生じたことを判別することができる。第1の閾値RD1を適宜設定することにより、MRダンパ45の減衰力を高くするタイミングを調節することができる。したがって、自動二輪車1の操縦性を調整することができる。また、回転数上昇率に応じてMRダンパ45の減衰力を高めるので、姿勢変化を抑制しつつも、操縦者に不自然さを与えにくくすることができる。
 さらに、予め減衰力指令値算出用テーブル93aに第2の閾値RD2を設定しておき、回転数上昇率の絶対値が第2の閾値RD2以上である場合、または指令値出力部93がエンジン7の過回転を検出した場合にはダンパ駆動部77はMRダンパ45の減衰力を最大値にする。したがって、第2の閾値RD2を適宜に設定することにより、MRダンパ45の減衰力を最大値にするタイミングを調節することができるので、自動二輪車1の操縦性を調節することができる。また、回転数上昇率が第2の閾値RD2未満であったとしても、エンジン7の回転数が過回転となった場合には、後輪5の空転を伴うことがある。そこで、回転数上昇率が第2の閾値RD2未満であったとしても、指令値出力部91がエンジン7の過回転を検出した場合には、MRダンパ45の減衰力を最大値にするので、後輪5の空転に起因する自動二輪車1の姿勢変化を確度高く抑制することができる。
 次に、図面を参照して本発明の実施例3を説明する。
 図13は、実施例3に係るステアリングダンパ制御装置の概略構成を示したブロック図である。なお、上述した実施例1と同じ構成については同符号を付すことにより詳細な説明については省略する。
 (1)コントローラの構成
 本実施例3におけるコントローラ43Bは、通常制御部71と、姿勢変化対応制御部73Bと、減衰力調整部75と、ダンパ駆動部77とを備えている。上述した実施例1とは、姿勢変化対応制御部73Bが相違する。
 姿勢変化対応制御部73Bのスロットル開度変化率算出部95は、スロットルポジションセンサ39の出力に基づいてスロットル開度の変化率を算出する。算出されたスロットル開度変化率は、指令値出力部97に出力される。指令値出力部97は、そのスロットル開度変化率の絶対値と、予め記憶された減衰力指令値算出用テーブル97aとに基づいて、減衰力指令値を決定する。
 ここで図14を参照する。なお、図14は、スロットル開度変化率の絶対値に応じた減衰力指令値算出用テーブルを模式的に示した図である。
 判断基準をスロットル開度変化率の「絶対値」としたのは、自動二輪車1の加速中(スロットル開時)と減速中(スロットル閉時)との両方に対応するためである。スロットル開度変化率の絶対値がゼロである場合には、一定速度で走行していることを示す。スロットル開度変化率の絶対値がある大きさになると、エンジン7が急激に回転数を増すか、逆に急激に回転数を落とすので、後輪5のグリップ力を超え始め、後輪5が僅かに空転を始める恐れがあることを示す。スロットル開度変化率の絶対値がさらに大きくなると、後輪5が大きく空転を始める恐れがあることを示す。
 減衰力指令値算出用テーブル97aは、予め次のように設定されている。
 スロットル開度変化率がある大きさまでは、後輪5が空転を始めても、後輪5がヘッドパイプ25を中心にして大きく横方向へ移動するような姿勢変化が生じがたい。したがって、スロットル開度変化率の絶対値がある大きさになるまでは、減衰力指令値をゼロのままとする。そして、スロットル開度変化率の絶対値がさらに大きくなると、後輪5の空転が自動二輪車1の姿勢変化に大きく影響を与えることになる。具体的には、後輪5が大きく横方向へ移動して、後輪5の駆動力が進行方向から大きくズレ始める恐れがある。そこで、スロットル開度変化率の絶対値が第1の閾値SD1に達すると、ここから第2の閾値SD2まで一定の割合で減衰力指令値を高くしてゆく。これにより、後輪5が空転する恐れが大きくなるにしたがって、MRダンパ45の減衰力が大きくされる。その結果、後輪5が大きく横方向へずれてゆくのを抑制することができる。そして、スロットル開度変化率の絶対値が第2の閾値SD2以上になると、減衰力指令値を最大値に固定する。こののようにして指令値出力部97は、スロットル開度変化率算出部95から与えられたスロットル開度変化率の絶対値と、上述した減衰力指令値算出用テーブル97aとに基づいて、減衰力指令値を減衰力調整部75に対して出力する。
 なお、上述したスロットルポジションセンサ39と、スロットル開度変化率算出部95と、指令値出力部97とが本発明における「空転検出手段」に相当する。また、スロットル開度変化率算出部95が本発明における「変化率算出手段」に相当し、指令値出力部97が本発明における「推定手段」及び「記憶手段」に相当する。また、上述した減衰力指令値算出用テーブル97aにおける第1の閾値SD1と第2の閾値SD2とが本発明における「第1の閾値」と「第2の閾値」に相当する。
 (2)ステアリングダンパ制御装置の動作
 図15を参照して動作について説明する。なお、図15は、姿勢変化対応制御演算の動作を示したフローチャートである。ステアリングダンパ制御装置の全体動作については、上述した図7のフローチャートと同じであり、通常制御演算の動作も上述した図8のフローチャートと同じであるので、ここでの詳細な説明については省略する。
 ステップS51,S52
 スロットル開度変化率算出部95は、スロットルポジションセンサ39からの信号を受け取り、変化率を算出する。
 ステップS53~S55
 指令値出力部97は、スロットル開度変化率の絶対値と、減衰力指令値算出用テーブル97aとに基づいて処理を分岐する。具体的には、スロットル開度変化率の絶対値が第1の閾値SD1を超えているか否かで処理を分岐する。スロットル開度変化率の絶対値が第1の閾値SD1を超えている場合は、スロットル開度変化率の絶対値と、減衰力指令値算出用テーブル97aとに基づいて、減衰力指令値を決定する。そして、空転を検出したことを示す空転検出フラグをONにした後、図7のステップS4に戻る。また、スロットル開度変化率の絶対値が第1の閾値SD1を超えてない場合は、図7のステップS4に戻る。
 本実施例に係るステアリンダンパ制御装置によると、上述した実施例1,2と同様に、後輪5の駆動力が進行方向からずれるのを抑制でき、後輪5の駆動力を効率的に走行に利用することができる。
 また、スロットルポジションセンサ39からのスロットル開度に基づいてスロットル開度変化率算出部95がその変化率を算出する。このスロットル開度変化率が大きい場合には、後輪5が空転する確率が極めて高いので、指令値出力部97はスロットル開度変化率に基づいて後輪5の空転を推定することができる。したがって、実際に後輪5の空転が始まる前にMRダンパ45の減衰力を高めるので、迅速に姿勢変化を抑制することができる。
 また、予め減衰力指令値算出用テーブル97aに第1の閾値SD1を設定しておき、この第1の閾値SD1とスロットル開度の変化率とに基づいて指令値出力部97は後輪5に空転が生じることを推定することができる。第1の閾値SD1を適宜設定することにより、MRダンパ45の減衰力を高くするタイミングを調節することができる。したがって、自動二輪車1の操縦性を調整することができる。また、スロットル開度の変化率に応じてMRダンパ45の減衰力を高めるので、姿勢変化を抑制しつつも、操縦者に不自然さを与えにくくすることができる。
 また、予め減衰力指令値算出用テーブル97aに第2の閾値SD2を設定しておき、スロットル開度の変化率が第2の閾値SD2以上である場合には指令値出力部97はMRダンパ45の減衰力を最大値にする。したがって、第2の閾値SD2を適宜に設定することにより、MRダンパ45の減衰力を最大値にするタイミングを調節することができる。したがって、自動二輪車1の操縦性を調節することができる。
 次に、図面を参照して本発明の実施例4を説明する。
 図16は、実施例4に係るステアリングダンパ制御装置の概略構成を示したブロック図である。なお、上述した実施例1と同じ構成については同符号を付すことにより詳細な説明については省略する。
 (1)コントローラの構成
 本実施例4におけるコントローラ43Cは、通常制御部71Aとダンパ駆動部77を備えている。上述した実施例1とは、通常制御部71Aが相違する。また、コントローラ43Cは、実施例1で説明した姿勢変化対応制御部73や減衰力調整部75を備えていない。
 通常制御部71Aは、圧力変化率算出部79と、指令値出力部81とを備えている。圧力変化率算出部79は、サスペンション圧力センサ41からの圧力信号に基づいて、フロントサスペンション40の圧力変化率を算出する。算出された圧力変化率は、指令値出力部81に与えられる。指令値出力部81は、予め記憶された参照テーブル81aに基づいて、減衰力指令値を決定する。指令値出力部81で決定された減衰力指令値は、ダンパ駆動部77に与えられる。ダンパ駆動部77は、この減衰力指令値に応じた電流値を、MRダンパ45の磁場発生用コイル53に対して出力する。
 (2)ステアリングダンパ制御装置の動作
 図17を参照して動作について説明する。図17は、ステアリングダンパ制御装置の動作を示したフローチャートである。
 ステップS61
 コントローラ43Cの初期化を行う。具体的には、ダンパ駆動部77に与える減衰力指令値を最小値のゼロにする。これにより、MRダンパ45には減衰力が生じない状態とされる。
 ステップS62、63
 通常制御部71Aは、フロントサスペンション40の圧力をサスペンション圧力センサ41から取得する。そして、圧力変化率算出部79からの圧力変化率と、上述した減衰力指令値算出用テーブル81aとに基づいて減衰力指令値を決定する。
 ステップS64
 減衰力調整部75は、決定された減衰力指令値をダンパ駆動部77に与える。
 本実施例に係るステアリンダンパ制御装置によると、上述した実施例1と同様に、ステアリングの振動が発生し易いときに減衰力を発生させて、ステアリングの振動を好適に抑制することができる。また、ステアリングが実際に振られていなくても、ステアリングの振動を予防的に抑制することができる。
 本発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。
 (1)上述した各実施例1~3では、前輪3が非接地か否かの判断を行って、非接地である場合にはMRダンパ45の減衰力をゼロにするようにした。しかし、本発明はこのような構成を必ずしも備える必要はなく、省略することでコストを抑制するようにしてもよい。
 (2)上述した各実施例1~3では、前後輪の回転数の差分、回転数上昇率、スロットル開度変化率に応じて減衰力指令値を高めてゆく構成としている。しかし、本発明は、このような構成に限定されるものではない。例えば、前後輪の回転数の差分、回転数上昇率、スロットル開度変化率が閾値を超えた時点で減衰力指令値を最大値にするようにしてもよい。これにより制御を簡易化することができる。
 (3)上述した各実施例1~4では、減衰力を調整するためにMRダンパ45を用いたが、本発明はこの構成に限定されるものではない。例えば、油圧式のダンパを用いて、減衰力指令値に応じてオリフィス経を調整することにより、MRダンパ45を用いた場合と同様の効果を奏する。
 (4)上述した各実施例1~4では、MRダンパ45の減衰力を通常時に最小値であるゼロとしたが、ある程度の大きさの減衰力を与えた状態を通常時としてもよい。これにより、通常時には操舵力が必要となるが、直線走行時におけるステアリングバー17のブレを抑制することができる。
 (5)上述した実施例1~4では、図5に示すような減衰力指令値算出用テーブル81aを例示したが、減衰力指令値算出用テーブル81aを適宜に変更してもよい。
 図18を参照する。図18は、変形実施例におけるサスペンション圧力変化率に応じた減衰力指令値算出用テーブル81bを模式的に示した図である。減衰力指令値算出用テーブル81bは、予め次のように設定されている。圧力変化率が所定値PL以下のときは、減衰力指令値は最小値である。所定値PLは正である。圧力変化率が所定値PLより大きく、閾値PH以下の領域では、圧力変化率が大きくなるにしたがって減衰力指令値が大きくなる。なお、閾値PHは所定値PLより大きい。この領域では、荷重変化率が大きくなるにしたがって、減衰力指令値の増大量が大きくなる。圧力変化率が閾値PHより大きいときは、減衰力指令値は一定値FPである。一定値FPは、最小値より大きい。一定値FPは、圧力変化率が閾値PHであるときの減衰力指令値と等しい。このため、閾値PHの近傍において減衰力指令値は連続している。

 このように、圧力変化率が正である範囲の少なくとも一部の領域(すなわち、所定値PLより大きく、閾値PH以下の領域)において、圧力変化率が大きくなるにしたがって、減衰力指令値が大きくなる。よって、フロントフォーク13の圧力の変化が急峻である場合であっても、ステアリングの振動を効果的に抑制することができる。特に、この領域では、前記荷重の変化率が大きくなるにしたがって、減衰力の増大量が大きくなる。よって、ステアリングの振動を一層効果的に抑制することができる。

 また、圧力変化率が所定値PLより小さいときは、減衰力指令値は最小値である。これにより、減衰力が最小より大きい期間(タイミング)はより短くなり、減衰力が最小である期間(タイミング)がより長くなる。これにより、ステアリングの操縦性が損なわれることを好適に抑制することができる。
 (6)上述した実施例1~4では、サスペンション圧力センサ41を備えていたが、これに限られない。例えば、前輪3が受ける荷重に関連する情報を検出する検出部に適宜に変更することができる。
 図19を参照する。図19(a)乃至(d)は、前輪3が受ける荷重に関連する情報を検出する荷重情報検出部の変形実施例を示す図である。図19(a)乃至(d)は、自動二輪車1を正面から見たときのフロントサスペンション40の一部を拡大した図である。
 図19(a)に示すように、車軸100が受ける荷重を検出する歪みゲージ101、102を備えてもよい。各歪みゲージ101、102は、それぞれ前輪3の車軸100の上部および下部に配置されることが好ましい。これにより、車軸100が受ける荷重を精度良く検出することができる。なお、車軸100が受ける荷重は、前輪3が受ける荷重に相当する。よって、歪みゲージ101、102の検出結果から、前輪3が受ける荷重の変化率を得ることができる。
 図19(b)に示すように、フロントサスペンション40(フロントフォーク9R)の伸縮速度を検出する速度センサ103を備えてもよい。速度センサ103は、コイル等を含んで構成され、磁束の変化に基づいてフロントサスペンション40の伸縮速度を検出するものであってもよい。あるいは、速度センサ103は、レーザー光等による光学式の表面速度センサであってもよい。なお、フロントサスペンション40の伸縮速度は、前輪3の荷重の変化率に相当する値である。
 図19(c)に示すように、フロントサスペンション40(フロントフォーク9R)の軸方向(伸縮方向)の加速度を検出する加速度センサ105を備えてもよい。なお、加速度センサ105の検出結果は、前輪3の荷重の変化率をさらに時間微分したものに相当する。よって、加速度センサ105の検出結果から、前輪3が受ける荷重の変化率に相当する値を得ることができる。
 図19(d)に示すように、車軸100の上下方向の加速度を検出する加速度センサ107を備えてもよい。なお、加速度センサ107の検出結果は、前輪3の荷重の変化率をさらに時間微分したものに相当する。よって、加速度センサ107の検出結果から、前輪3が受ける荷重の変化率に相当する値を得ることができる。
 また、図示を省略するが、サスペンション圧力センサ41に代えて、フロントサスペンション40のストローク量を検出するストロークセンサを備えてもよい。なお、フロントサスペンション40のストローク量は、前輪3が受ける荷重に相当する。よって、ストロークセンサの検出結果から、前輪3が受ける荷重の変化率を得ることができる。
 上述した各種センサ101、102、103、105、107、及び、ストロークセンサは、それぞれ、この発明における荷重情報検出部に相当する。
 (7)上述した各実施例1~4では、鞍乗型車両として自動二輪車1を例にとって説明した。しかし、本発明は、自動二輪車1の他に、例えば、前輪または後輪が2輪の三輪バイクなどのエンジンを搭載して人がまたがった状態で乗車可能な車両であれば適用可能である。
 以上のように、本発明は、車両のステアリング機構に設けられ、ステアリングの減衰力を調整するためのステアリングダンパ制御装置及びそれを備えた鞍乗型車両に適している。
 1 … 自動二輪車
 3 … 前輪
 5 … 後輪
 7 … エンジン
 9,9R … フロントフォーク
 17 … ステアリングバー
 25 … ヘッドパイプ
 31 … 前輪車輪速センサ
 35 … 後輪車輪速センサ
 37 … エンジン回転数センサ
 39 … スロットルポジションセンサ
 40 … フロントサスペンション
 41 … サスペンション圧力センサ
 43 … コントローラ
 45 … MRダンパ
 71 … 通常制御部
 73 … 姿勢変化対応制御部
 75 … 減衰力調整部
 77 … ダンパ駆動部
 79 … 圧力変化率算出部
 81 … 指令値出力部
 81a … 減衰力指令値算出用テーブル
 83 … 非接地判断部
 85 … 非接地関連メモリ
 87 … 回転数差分算出部
 89 … 指令値出力部
 89a … 減衰力指令値算出用テーブル
 WD1 … 第1の閾値
 WD2 … 第2の閾値

Claims (13)

  1.  ステアリングの減衰力を調整可能なダンパと、
     前輪が受ける荷重に関連する情報を検出する荷重情報検出部と、
     前記荷重情報検出部の検出結果に基づいて、前輪が受ける荷重の変化率または前記変化率に相当する値に応じて減衰力指令値を決定する指令値出力部と、
     前記減衰力指令値に応じた減衰力を前記ダンパに発生させるダンパ駆動部と、
     を備えているステアリングダンパ制御装置。
  2.  請求項1に記載のステアリングダンパ制御装置において、
     前記荷重の変化率または前記変化率に相当する値が正である範囲の少なくとも一部の領域においては、前記荷重の変化率または前記変化率に相当する値が大きくなるにしたがって、前記減衰力指令値は大きくなるステアリングダンパ制御装置。
  3.  請求項2に記載のステアリングダンパ制御装置において、
     前記領域において、前記荷重の変化率が大きくなるにしたがって、減衰力指令値の増大量が大きくなるステアリングダンパ制御装置。
  4.  請求項2に記載のステアリングダンパ制御装置において、
     前記領域において、前記荷重の変化率または前記変化率に相当する値が大きくなるにしたがって、前記減衰力指令値は一定の割合で大きくなるステアリングダンパ制御装置。
  5.  請求項1から4のいずれかに記載のステアリングダンパ制御装置において、
     前記荷重の変化率または前記変化率に相当する値が正である閾値より大きいときは、前記減衰力指令値は一定値であるステアリングダンパ制御装置。
  6.  請求項5に記載のステアリングダンパ制御装置において、
     前記一定値は、前記荷重の変化率または前記変化率に相当する値が前記閾値であるときの減衰力指令値と等しいステアリングダンパ制御装置。
  7.  請求項1から6のいずれかに記載のステアリングダンパ制御装置において、
     前記荷重の変化率または前記変化率に相当する値が正である所定値より小さいときは、前記減衰力指令値は最小値であるステアリングダンパ制御装置。
  8.  請求項1から6のいずれかに記載のステアリングダンパ制御装置において、
     前記荷重の変化率または前記変化率に相当する値が正であるとき、前記減衰力指令値は最小値より大きいステアリングダンパ制御装置。
  9.  請求項1から8のいずれかに記載のステアリングダンパ制御装置において、
     前記荷重の変化率または前記変化率に相当する値が負であるときは、前記減衰力指令値は最小値であるステアリングダンパ制御装置。
  10.  請求項1から9のいずれかに記載のステアリングダンパ制御装置において、
     前記ダンパは、
      磁性流体と、
      前記磁性流体に対して磁場を与える磁場発生用コイルと、
     を備え、
     前記ダンパ駆動部は、前記減衰力指令値に応じた電流を前記磁場発生用コイルに流すステアリングダンパ制御装置。
  11.  請求項10に記載のステアリングダンパ制御装置において、
     前記ダンパは、磁性流体のせん断力によって減衰力を発生し、
     前記磁場発生用コイルは、前記ステアリングの前記磁性流体のせん断力を変化させるステアリングダンパ制御装置。
  12.  請求項1から11のいずれかに記載のステアリングダンパ制御装置において、
     前記荷重情報検出部は、前輪のサスペンションの圧力を検出する圧力検出手段であり、
     前記指令値出力部は、サスペンションの圧力の変化率に応じて減衰力指令値を決定するステアリングダンパ制御装置。
  13.  ステアリングダンパ制御装置を備え、
     前記ステアリングダンパ制御装置は、
      ステアリングの減衰力を調整可能なダンパと、
      前輪が受ける荷重に関連する情報を検出する荷重情報検出部と、
      前記荷重情報検出部の検出結果に基づいて、前輪が受ける荷重の変化率または前記変化率に相当する値に応じて減衰力指令値を決定する指令値出力部と、
      前記減衰力指令値に応じた減衰力を前記ダンパに発生させるダンパ駆動部と、
     を備えている鞍乗型車両。
PCT/JP2012/003035 2011-05-10 2012-05-09 ステアリングダンパ制御装置及びそれを備えた鞍乗型車両 WO2012153527A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/116,184 US9233729B2 (en) 2011-05-10 2012-05-09 Steering damper control apparatus, and a saddle riding type vehicle having the same
EP12782844.0A EP2708459B1 (en) 2011-05-10 2012-05-09 Steering-damper control device and straddled vehicle provided therewith
JP2013513937A JP5619995B2 (ja) 2011-05-10 2012-05-09 ステアリングダンパ制御装置及びそれを備えた鞍乗型車両

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011105114 2011-05-10
JP2011-105114 2011-05-10

Publications (1)

Publication Number Publication Date
WO2012153527A1 true WO2012153527A1 (ja) 2012-11-15

Family

ID=47139014

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/003034 WO2012153526A1 (ja) 2011-05-10 2012-05-09 ステアリングダンパ制御装置及びそれを備えた鞍乗型車両
PCT/JP2012/003035 WO2012153527A1 (ja) 2011-05-10 2012-05-09 ステアリングダンパ制御装置及びそれを備えた鞍乗型車両

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003034 WO2012153526A1 (ja) 2011-05-10 2012-05-09 ステアリングダンパ制御装置及びそれを備えた鞍乗型車両

Country Status (4)

Country Link
US (2) US9233729B2 (ja)
EP (2) EP2708458B1 (ja)
JP (2) JP5619995B2 (ja)
WO (2) WO2012153526A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189113A (ja) * 2013-03-27 2014-10-06 Kayaba Ind Co Ltd フロントフォーク
JPWO2021059856A1 (ja) * 2019-09-27 2021-04-01

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013212606A1 (de) * 2013-06-28 2014-12-31 Robert Bosch Gmbh Verfahren zur querdynamischen Stabilisierung eines einspurigen Kraftfahrzeugs
JP6140569B2 (ja) * 2013-08-08 2017-05-31 本田技研工業株式会社 鞍乗り型車両
DE202014006806U1 (de) * 2014-08-26 2015-12-03 Canyon Bicycles Gmbh Fahrradelement
ES1173933Y (es) * 2016-03-15 2017-04-04 Donoso Emilio Aranda Tricicleta deportiva.
JP6265349B2 (ja) * 2016-03-15 2018-01-24 本田技研工業株式会社 前輪センサ支持構造およびフォークガード
US20190126913A1 (en) * 2016-03-30 2019-05-02 Kawasaki Jukogyo Kabushiki Kaisha Setting assist system of straddle vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311492A (ja) * 1986-07-01 1988-01-18 カヤバ工業株式会社 二輪車のステアリングダンパの減衰力制御装置
JPH05201377A (ja) * 1992-01-27 1993-08-10 Honda Motor Co Ltd 自動2輪車の操向装置
JP2001301682A (ja) 2000-04-26 2001-10-31 Kayaba Ind Co Ltd ステアリングダンパシステム
JP2002302085A (ja) 2001-04-06 2002-10-15 Honda Motor Co Ltd ステアリングダンパ装置
JP2009126432A (ja) 2007-11-27 2009-06-11 Denso Corp ステアリングダンパ制御装置及びステアリングダンパ制御システム
JP2009292258A (ja) * 2008-06-04 2009-12-17 Yamaha Motor Co Ltd ステアリングダンパシステム及びそれを備えた鞍乗り型車両

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396973A (en) * 1991-11-15 1995-03-14 Lord Corporation Variable shock absorber with integrated controller, actuator and sensors
JP2001334982A (ja) * 2000-05-26 2001-12-04 Kayaba Ind Co Ltd ステアリングダンパシステム
JP4640905B2 (ja) * 2001-04-06 2011-03-02 本田技研工業株式会社 ステアリングダンパ装置
US6637558B2 (en) * 2001-11-07 2003-10-28 Delphi Technologies, Inc. Magnetorheological steering damper
JP4197592B2 (ja) * 2001-12-28 2008-12-17 本田技研工業株式会社 ステアリングダンパ装置
JP4197591B2 (ja) * 2001-12-28 2008-12-17 本田技研工業株式会社 ステアリングダンパ装置
JP4702946B2 (ja) * 2003-10-29 2011-06-15 ボッシュ株式会社 アンチロック・ブレーキ制御装置、該アンチロック・ブレーキ制御装置を備えたアンチロック・ブレーキ・システム
JP4493074B2 (ja) * 2004-02-05 2010-06-30 本田技研工業株式会社 自動2輪車のステアリングダンパ装置
JP4234045B2 (ja) * 2004-03-23 2009-03-04 本田技研工業株式会社 ステアリングダンパ装置
JP2005349927A (ja) 2004-06-09 2005-12-22 Yamaha Motor Co Ltd 鞍乗り型車両
JP4555750B2 (ja) * 2004-09-28 2010-10-06 本田技研工業株式会社 ステアリングダンパ装置
US20070017758A1 (en) * 2005-07-20 2007-01-25 Or Siu W Magnetorheological damper and use thereof
US20070032913A1 (en) * 2005-08-04 2007-02-08 Ghoneim Youssef A Method and system for dynamic automotive vehicle moding
US7871091B2 (en) * 2006-02-14 2011-01-18 Honda Motor Co., Ltd. Steering damper apparatus and damper apparatus
US7874279B2 (en) * 2006-03-16 2011-01-25 Kawasaki Jukogyo Kabushiki Kaisha Vehicle and motor controller for vehicle
US7753156B2 (en) * 2006-10-06 2010-07-13 Yamaha Hatsudoki Kabushiki Kaisha Control system and vehicle including the same
JP5335188B2 (ja) * 2006-12-05 2013-11-06 ヤマハ発動機株式会社 サスペンション制御装置および自動二輪車
US7958979B2 (en) * 2007-01-05 2011-06-14 Honda Motor Co., Ltd. Variable damper
JP4693790B2 (ja) * 2007-01-09 2011-06-01 ヤマハ発動機株式会社 自動二輪車、その制御装置および制御方法、並びに自動二輪車のスリップ量検出装置およびスリップ量検出方法
JP2010516556A (ja) * 2007-01-25 2010-05-20 本田技研工業株式会社 車両の安定性を改善するための車両システムの制御方法
US7793957B2 (en) * 2007-06-29 2010-09-14 Kayaba Industry Co., Ltd. Steering damping device
JP4567034B2 (ja) * 2007-08-08 2010-10-20 本田技研工業株式会社 減衰力可変ダンパの制御装置
JP5261758B2 (ja) * 2007-08-31 2013-08-14 本田技研工業株式会社 車両の自動変速制御装置
EP2138366B1 (en) * 2008-06-26 2013-03-20 Kawasaki Jukogyo Kabushiki Kaisha Slip suppression control system for vehicle
EP2138367B1 (en) * 2008-06-26 2015-05-13 Kawasaki Jukogyo Kabushiki Kaisha Slip suppression control system for vehicle
ITSA20080021A1 (it) * 2008-08-06 2010-02-06 Gerardo Acocella Metodo ed apparato per controllare un sistema di sospensione semi-attivo per motociclo
JP5191057B2 (ja) * 2009-03-27 2013-04-24 本田技研工業株式会社 ステアリングダンパ装置
JP2010254117A (ja) * 2009-04-24 2010-11-11 Yamaha Motor Co Ltd 鞍乗型車両
IT1396906B1 (it) * 2009-05-21 2012-12-20 Piaggio & C Spa Metodo di controllo di un ammortizzatore di sterzo elettronicamente modulabile per un veicolo a due ruote ed apparato implementante lo stesso
US20110036656A1 (en) * 2009-08-12 2011-02-17 Reginald Leonard Nicoson Electric Front Wheel Drive System for Motorcycle
US20120065825A1 (en) * 2009-08-12 2012-03-15 Reginald Leonard Nicoson Electric Front Wheel Drive System for Motorcycle
US9233672B2 (en) * 2009-12-28 2016-01-12 Kawasaki Jukogyo Kabushiki Kaisha Control system in vehicle and method of controlling vehicle
JP5779325B2 (ja) * 2010-07-21 2015-09-16 川崎重工業株式会社 車両用減速制御装置
JP5749902B2 (ja) * 2010-07-21 2015-07-15 川崎重工業株式会社 車両用トラクション制御装置
JP5755003B2 (ja) * 2011-03-29 2015-07-29 本田技研工業株式会社 自動二輪車

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311492A (ja) * 1986-07-01 1988-01-18 カヤバ工業株式会社 二輪車のステアリングダンパの減衰力制御装置
JPH05201377A (ja) * 1992-01-27 1993-08-10 Honda Motor Co Ltd 自動2輪車の操向装置
JP2001301682A (ja) 2000-04-26 2001-10-31 Kayaba Ind Co Ltd ステアリングダンパシステム
JP2002302085A (ja) 2001-04-06 2002-10-15 Honda Motor Co Ltd ステアリングダンパ装置
JP2009126432A (ja) 2007-11-27 2009-06-11 Denso Corp ステアリングダンパ制御装置及びステアリングダンパ制御システム
JP2009292258A (ja) * 2008-06-04 2009-12-17 Yamaha Motor Co Ltd ステアリングダンパシステム及びそれを備えた鞍乗り型車両

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189113A (ja) * 2013-03-27 2014-10-06 Kayaba Ind Co Ltd フロントフォーク
JPWO2021059856A1 (ja) * 2019-09-27 2021-04-01
WO2021059856A1 (ja) * 2019-09-27 2021-04-01 本田技研工業株式会社 鞍乗型車両及び制御装置
JP7266694B2 (ja) 2019-09-27 2023-04-28 本田技研工業株式会社 鞍乗型車両及び制御装置
US11939025B2 (en) 2019-09-27 2024-03-26 Honda Motor Co., Ltd. Straddle type vehicle and control device

Also Published As

Publication number Publication date
EP2708458B1 (en) 2017-08-09
EP2708458A1 (en) 2014-03-19
EP2708459A4 (en) 2014-08-13
WO2012153526A1 (ja) 2012-11-15
US9120527B2 (en) 2015-09-01
JPWO2012153526A1 (ja) 2014-07-31
US20140058626A1 (en) 2014-02-27
JP5572759B2 (ja) 2014-08-13
EP2708459A1 (en) 2014-03-19
US20140058627A1 (en) 2014-02-27
JP5619995B2 (ja) 2014-11-05
JPWO2012153527A1 (ja) 2014-07-31
EP2708459B1 (en) 2019-08-14
US9233729B2 (en) 2016-01-12
EP2708458A4 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5619995B2 (ja) ステアリングダンパ制御装置及びそれを備えた鞍乗型車両
EP2923937B1 (en) Vehicle height adjusting device, control device for vehicle height adjusting device, and program
JP5671306B2 (ja) サスペンション装置
JP5255329B2 (ja) ステアリングダンパシステム及びそれを備えた鞍乗り型車両
WO2014192122A1 (ja) 車両用サスペンションシステム
JP5922230B2 (ja) ステアリングダンパ制御装置及びそれを備えた鞍乗型車両
JP5191057B2 (ja) ステアリングダンパ装置
JP5078076B2 (ja) 車両のステアリング緩衝方法
US20190084639A1 (en) Straddled vehicle having handlebar
US8694210B2 (en) Saddle riding type vehicle and steering damper device for use in saddle riding type vehicle
JP2008238923A (ja) 減衰力可変ダンパの制御装置
JP2009126432A (ja) ステアリングダンパ制御装置及びステアリングダンパ制御システム
JP5798682B2 (ja) ステアリングダンパおよびそれを備えた鞍乗型車両
JP5144289B2 (ja) 減衰力可変ダンパの制御装置
JP5255331B2 (ja) ステアリングダンパシステム及びそれを備えた鞍乗り型車両
JP4831611B2 (ja) 鞍乗型車両のステアリング緩衝装置
EP4368423A1 (en) Straddled vehicle
JP2024066039A (ja) 鞍乗型車両
JP2012111300A (ja) 車両に用いられる懸架装置、及び懸架装置を備えた鞍乗り型車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782844

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013513937

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14116184

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012782844

Country of ref document: EP