WO2012144497A1 - セメントクリンカー、その製造方法、およびセメント組成物 - Google Patents

セメントクリンカー、その製造方法、およびセメント組成物 Download PDF

Info

Publication number
WO2012144497A1
WO2012144497A1 PCT/JP2012/060367 JP2012060367W WO2012144497A1 WO 2012144497 A1 WO2012144497 A1 WO 2012144497A1 JP 2012060367 W JP2012060367 W JP 2012060367W WO 2012144497 A1 WO2012144497 A1 WO 2012144497A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
mass
cement clinker
amount
clinker
Prior art date
Application number
PCT/JP2012/060367
Other languages
English (en)
French (fr)
Inventor
宏志 永田
中村 明則
弘義 加藤
敬司 茶林
大八 北山
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to AU2012246525A priority Critical patent/AU2012246525B2/en
Priority to SG2013072723A priority patent/SG193985A1/en
Priority to US14/003,674 priority patent/US8864902B2/en
Priority to EP12773761.7A priority patent/EP2700622B1/en
Publication of WO2012144497A1 publication Critical patent/WO2012144497A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B11/00Calcium sulfate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/02Portland cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • C04B7/147Metallurgical slag
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a cement clinker, a method for producing the same, and a cement composition. Specifically, the present invention relates to a cement clinker having a novel composition that exhibits good physical properties even when fired at a lower temperature than conventional ones, and a cement composition containing the clinker.
  • the cement industry is a mass-production / mass-consumption industry, and resource conservation and energy conservation are and will continue to be the most important issues.
  • Portland cement which is produced in the largest quantities
  • the energy cost to obtain is enormous.
  • effective use of waste, by-products, etc. has become an important issue. Taking advantage of the characteristics of the cement industry and cement production equipment, and effectively using or treating waste as raw materials and fuels during cement production is effective from the viewpoint of safe and mass disposal (Patent Document 1).
  • waste and by-products Municipal waste incineration ash, blast furnace granulated slag, blast furnace slow-cooled slag, etc., especially coal ash, etc., have a content of aluminum oxide (Al 2 O 3 ) as compared with ordinary cement clinker composition. Many.
  • Al 2 O 3 aluminum oxide
  • the C 3 A content of the minerals constituting the cement clinker is increased.
  • the C 3 A is called the interstitial phase along with C 4 AF, and there is an advantage that the calcination temperature of the clinker can be lowered when the amount increases, but on the other hand, it constitutes an important clinker for the strength of the cement.
  • the amount of other minerals (C 3 S, C 2 S) is affected, and cement properties are affected.
  • the present invention can increase the amount of waste used compared to conventional cement, and can reduce the firing temperature during production without using a mineralizer such as calcium fluoride.
  • An object of the present invention is to provide a cement clinker having a novel composition which can be reduced and has good strength development characteristics as in the conventional one.
  • the inventors of the present invention have made extensive studies to solve the above problems, and when the iron ratio (Iron Modulu: I.M.) of the clinker is set to a certain value or less, good strength can be obtained even when C 3 A and C 4 AF are large. As a result of further finding out that it is expressed, the present invention was completed.
  • I.M. Iron Modulu: I.M.
  • the total amount of tricalcium aluminate (C 3 A) and iron tetracalcium aluminate (C 4 AF) calculated by the Borg formula is 22% by mass or more, and tricalcium silicate (C 3 S).
  • a cement clinker is provided in which the amount is 60% by mass or more and the iron ratio (IM) is 1.3 or less.
  • the amount of C 4 AF is 15% by mass or more.
  • the total amount of C 3 S and dicalcium silicate (C 2 S) is preferably 69% by mass or more.
  • the present invention also provides a cement composition
  • a cement composition comprising the cement clinker described above and gypsum. It is preferable that the cement composition further includes at least one mixed material selected from the group consisting of blast furnace slag, siliceous mixed material, fly ash and limestone. Further, according to the present invention, the total amount of C 3 A and C 4 AF calculated by the Borg formula is 22% by mass or more, the C 3 S amount is 60% by mass or more, and the iron ratio (IM) is 1.
  • a method for producing a cement clinker characterized in that a raw material is prepared to be 3 or less and the raw material is fired at 1300 to 1400 ° C.
  • the amount of waste used as a raw material can be increased as compared with conventional cement clinker, and the firing temperature can be lowered to about 1300 to 1400 ° C. Furthermore, even when compared with a conventionally known cement clinker that is fired at a high temperature, a strength development characteristic comparable to that of a cement clinker can be obtained.
  • the amounts of C 3 A, C 4 AF, and C 3 S in the present invention are values calculated by the Bogue equation, and are managed and manufactured by clinker along with coefficients and various ratios (Modulus) described later. It is a value indicating the composition (content) of the main mineral used as a management characteristic value in the process.
  • the Borg formula is a calculation formula that approximates the composition of the main mineral using the composition value (unit: mass%) of the main chemical component, and is a formula well known to those skilled in the art. The following describes how to determine the amount of each mineral in the clinker by the Borg formula. All units are mass%.
  • C 3 S amount (4.07 ⁇ CaO) ⁇ (7.60 ⁇ SiO 2 ) ⁇ (6.72 ⁇ Al 2 O 3 ) ⁇ (1.43 ⁇ Fe 2 O 3 )
  • C 2 S amount (2.87 ⁇ SiO 2 ) ⁇ (0.754 ⁇ C 3 S)
  • a content (2.65 ⁇ Al 2 O 3 ) ⁇ (1.69 ⁇ Fe 2 O 3 )
  • C 4 AF amount 3.04 ⁇ Fe 2 O 3
  • Iron ratio Iron ratio
  • HM hydraulic modulus
  • SM silicic acid ratio
  • AI activity coefficient
  • LSD Lime Saturation Degree
  • the coefficients and various ratios are characteristic values used for production management of clinker, and are obtained using composition values of main chemical components in the same manner as the mineral composition according to the Borg formula.
  • the iron ratio and its calculation method are well known to those skilled in the art, but will be described below together with other coefficient and ratio calculation methods.
  • HM Hydraulic modulus
  • SM SiO 2 / Al 2 O 3 + Fe 2 O 3
  • AI SiO 2 / Al 2 O 3 Iron ratio
  • IM Al 2 O 3 / Fe 2 O 3
  • LSD Lime saturation
  • JI R5202 Carbon analysis method of Portland cement
  • JI R5204 X-ray fluorescence of cement
  • the cement clinker of the present invention contains CaO, SiO 2 , Al 2 O 3 and Fe 2 O 3 as main chemical components and contains trace amounts of oxides such as MgO, NaO and K 2 O as other components. However, it is characterized by the mineral composition and iron ratio (IM) calculated by the Borg equation shown below.
  • IM mineral composition and iron ratio
  • the total amount of C 3 A and C 4 AF needs to be 22% by mass or more. When these amounts are less than 22% by mass, it becomes difficult to obtain a cement clinker having excellent physical properties such as strength development characteristics by firing at a temperature of 1300 to 1400 ° C., which is lower than the conventional temperature. A more preferable total amount is 24% by mass or more. As will be described later, C 3 S needs to be 60% by mass or more in order to obtain high strength development characteristics. Therefore, the upper limit of the total amount of C 3 A and C 4 AF is 40% by mass. Preferably it is 35 mass% or less, More preferably, it is 32 mass% or less, Most preferably, it is 28 mass% or less.
  • C 4 AF is present alone in an amount of 15% by mass or more from the viewpoint of being able to be sufficiently sintered even at a low temperature and reducing the amount of free calcium oxide (f-CaO) in the cement clinker. It is preferable.
  • the amount of C 3 S is extremely important for the strength development characteristics of a cement composition using the cement clinker of the present invention (hereinafter also simply referred to as “cement”). If this amount is less than 60% by mass, good strength development characteristics cannot be obtained even if the total amount of C 3 A and C 4 AF and the iron ratio described below are within a predetermined range.
  • the amount of C 3 S is preferably 62% by mass or more, and particularly preferably 63% by mass or more. Incidentally, since the total amount of C 3 A and C 4 AF described above is at least 22 wt%, the upper limit of the C 3 S content becomes 78 mass%.
  • the cement clinker of the present invention may further contain C 2 S.
  • the amount is preferably 3% by mass or more and 18% by mass or less. From the viewpoint of obtaining long-term strength, it is particularly preferable that the total amount of the C 2 S and C 3 S amount be 69% by mass or more.
  • the most important thing in the cement clinker of the present invention is to set the iron ratio (IM) to 1.3 or less.
  • IM iron ratio
  • the iron ratio exceeds 1.3, sufficient strength development characteristics (specifically, for example, mortar strength development) cannot be obtained even if the other requirements in the cement clinker of the present invention are satisfied.
  • the iron ratio exceeds 1.3, the setting time tends to be too long. From this point, the iron ratio needs to be 1.3 or less.
  • a more preferable range of the iron ratio is 1.0 to 1.3, and particularly preferably 1.14 to 1.27.
  • the hydraulic modulus and silicic acid rate are not particularly limited, but the hydraulic modulus is preferably 1.8 to 2.2, particularly preferably 1.9, in order to achieve an excellent balance of various physical properties.
  • the silicic acid ratio is preferably 1.0 to 2.0, and particularly preferably 1.1 to 1.7.
  • the method for producing the cement clinker of the present invention is not particularly limited, and a known cement raw material is prepared and mixed at a predetermined ratio so as to have each mineral composition and coefficient specified in the present invention. It can be manufactured by firing by a known method such as a method or a new suspension preheater method.
  • a known method may be appropriately employed for preparing and mixing the cement raw material. For example, in advance, waste, by-products and other raw materials (CaO sources such as limestone, quicklime and slaked lime, SiO 2 sources such as silica, Al 2 O 3 sources such as clay and coal ash, copper calami, blast furnace slag, etc.
  • the chemical composition of the Fe 2 O 3 source, etc.) is analyzed, the blending ratio of each raw material is calculated from the ratio of each component in these raw materials so as to satisfy the above-mentioned requirements specified in the present invention, and the raw material is blended at that ratio do it.
  • the raw material used with the manufacturing method of this invention can use the same thing as the raw material conventionally used in manufacture of a cement clinker without a restriction
  • wastes from wastes, by-products and the like from the viewpoint of promoting effective utilization of wastes, by-products and the like.
  • usable waste and by-products include blast furnace slag, steelmaking slag, non-ferrous iron slag, coal ash, sewage sludge, purified water sludge, paper sludge, construction generated soil, foundry sand, dust, incineration fly ash, molten fly ash Examples include ash, chlorine bypass dust, wood chips, waste white clay, waste, tires, shells, municipal waste and incinerated ash. Some of these materials become cement raw materials and heat energy sources.
  • the cement clinker of the present invention contains a large amount of C 3 A and C 4 AF minerals whose constituent elements are aluminum. Therefore, compared with the conventional cement clinker, it has the advantage that it can manufacture using more waste and by-products with much aluminum content.
  • the cement clinker produced by the production method of the present invention can be made into a cement by pulverizing with gypsum or by individually pulverizing and mixing after mixing with a gypsum as in the known cement clinker.
  • the cement include ordinary Portland cement, early-strength Portland cement, and ultra-early-strength Portland cement.
  • Portland cement it can also be used as a constituent of various mixed cements and solidifying materials such as soil solidifying materials.
  • gypsum to be used can be used without particular limitation as a gypsum known as a raw material for producing cement such as dihydrate gypsum, semi-water gypsum, and anhydrous gypsum.
  • the amount of gypsum added is preferably such that the amount of SO 3 is 1.5 to 5.0% by mass, such that the amount is 1.8 to 3% by mass. Is more preferable.
  • known techniques can be used without any particular limitation.
  • the cement may be appropriately mixed with a blast furnace slag, a siliceous mixed material, fly ash, calcium carbonate, limestone, or a pulverization aid and mixed or pulverized, or may be mixed with the mixed material after pulverization. Further, chlorine bypass dust or the like may be mixed. Further, if necessary, blast furnace slag, fly ash and the like can be mixed after pulverization to obtain blast furnace slag cement, fly ash cement and the like.
  • the fineness of the cement is not particularly limited, but is preferably adjusted to 2800 to 4500 cm 2 / g in terms of the specific surface area of branes.
  • Example 1 75.98 parts by mass of limestone as the CaO source, 4.41 parts by mass of silica as the SiO 2 source, 14.75 parts by mass of coal ash as the Al 2 O 3 source, and 4.85 of copper calami as the Fe 2 O 3 source After mixing in parts by mass, the mixture was baked at 1350 ° C. for 90 minutes to obtain a cement clinker.
  • the chemical composition of the obtained cement clinker, the mineral composition according to the Borg formula, coefficients and various ratios ⁇ hydraulic modulus (HM), silicic acid rate (SM), iron rate (IM) ⁇ are: As shown in Table 1.
  • Gypsum was added to this cement clinker so as to be 2 ⁇ 0.2% in terms of SO 3 , and mixed and ground so that the specific surface area by the Blaine method was 3200 ⁇ 50 cm 2 / g to produce a cement.
  • the mortar compressive strength and setting time were measured by the following methods. The results are shown in Table 2.
  • Measurement of mortar compressive strength It was measured by a method based on JIS R 5201.
  • Setting time measured by a method based on JIS R 5201.
  • Examples 2 to 12 Comparative Examples 1 to 8 Cement clinker and cement were produced in the same manner as in Example 1 except that the blending amount of each raw material and the firing temperature were changed.
  • Table 1 shows the mineral composition and other properties of the obtained cement clinker according to the Borg formula
  • Table 2 shows the physical properties of the cement.
  • a conventional cement clinker having a standard composition that has been fired at a standard temperature is shown as a reference example. The results of each example and comparative example are discussed on the basis of this reference example.
  • Examples 1 to 12 are related to the present invention, and the raw materials were fired at 1350 ° C. and 100 ° C. lower than the clinker having the composition of the reference example. In any case, the mortar compressive strength after 7 days shows a value exceeding the reference example.
  • Comparative Example 1 is an example in which a raw material having the same composition as Reference Example 1 was fired at 1350 ° C. As shown in Table 2, it can be seen that the cement clinker having a conventional standard composition has a small expression of mortar strength up to 7 days when the firing temperature is lowered. Comparative Examples 2 and 3 are examples in which the iron ratio (IM) is 1.4 or more. As shown in Table 2, the expression of mortar strength up to 7 days is small. It can also be seen that the setting time is longer than the reference example from the first start to the end. Comparative Examples 4 to 6 are examples in which the total amount of C 3 A and C 4 AF is less than 22% by mass. Also in this case, the expression of mortar strength up to 7 days is small.
  • Comparative Example 7 is an example in which the amount of C 3 S is 51% by mass and the content is smaller than 60% by mass defined in the present invention. Also in this case, the expression of mortar strength up to 7 days is small.
  • Comparative Example 8 although the total amount of C 3 A and C 4 AF was 22% by mass or more, M.M. This is an example where the content exceeds 1.3 and the amount of C 3 S is as small as 31% by mass.
  • the firing temperature of 1400 ° C. and 50 ° C. higher than the other examples and comparative examples the mortar strength development up to 7 days is small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)

Abstract

1300~1400℃と従来に比べて低い温度で焼成可能であり、かつ、良好なモルタル圧縮強度などの強度特性を発現するセメントクリンカーを提供する。 ボーグ式により算出されたCAおよびCAFの合計量が22質量%以上、CS量が60質量%以上であり、かつ、鉄率(I.M.)が1.3以下、好ましくは1.0~1.3であるセメントクリンカーとする。CAおよびCAFの合計量が22質量%以上であるため低温で焼成でき、かつ、鉄率を低くすることにより、セメント組成物にして硬化させた場合の強度低下を防止できる。

Description

セメントクリンカー、その製造方法、およびセメント組成物
 本発明は、セメントクリンカーおよびその製造方法、並びにセメント組成物に関する。詳しくは、従来よりも低温で焼成しても良好な物性を発現する新規組成のセメントクリンカー、該クリンカーを含有するセメント組成物に関する。
 セメント産業は、大量生産・大量消費型産業であり、省資源・省エネルギーは、これまでも、そしてこれからも最重要課題であり続けると考えられる。例えば、最も大量に製造されているポルトランドセメントを製造するためには、所定の化学組成に調製された原料を、1450℃~1550℃もの高温で焼成してクリンカーとする必要があり、この温度を得るためのエネルギーコストは膨大なものとなる。
 一方、近年の地球環境問題と関連して、廃棄物、副産物等の有効利用は重要な課題となっている。セメント産業、セメント製造設備の特徴を生かし、セメント製造時に原料や燃料として廃棄物を有効利用あるいは処理を行うことは、安全かつ大量処分が可能という観点から有効とされている(特許文献1)。
特開2004-352515号公報
 廃棄物、副産物等の中で、都市ごみ焼却灰、高炉水砕スラグ、高炉徐冷スラグ等、特に石炭灰等は、通常のセメントクリンカー組成に比べ、酸化アルミニウム(Al)含有量が多い。Al含有量が多い廃棄物、副産物等の使用量を増加させた場合、セメントクリンカーを構成する鉱物のうちCA含有量が増加することになる。当該CAは、CAFと並び間隙相と呼ばれ、その量が多くなるとクリンカーの焼成温度を低くできるという利点があるが、一方で、セメントの強度に対して重要なクリンカーを構成する他の鉱物(CS、CS)の量に影響を与え、セメント物性に影響が生じる。
 そこで、本発明は、従来のセメントに比べ、廃棄物の使用量を増やすことが可能であり、しかも、フッ化カルシウム等の鉱化剤(Mineralizer)を使用することなく、製造時の焼成温度を低減することができ、かつ、従来のものと同様に良好な強度発現特性を有する、新規な組成のセメントクリンカーを提供することを目的とする。
 本発明者等は上記課題を解決するため鋭意検討を進め、クリンカーの鉄率(Iron Modulu:I.M.)を一定値以下にすると、CAやCAFが多い場合でも良好な強度を発現することを見出し、さらに検討を進めた結果、本発明を完成した。
 即ち、本発明により、ボーグ式により算出されるアルミン酸三カルシウム(CA)および鉄アルミン酸四カルシウム(CAF)の合計量が22質量%以上、ケイ酸三カルシウム(CS)量が60質量%以上であり、かつ、鉄率(I.M.)が1.3以下であることを特徴とするセメントクリンカーが提供される。
 上記セメントクリンカーの発明において、
1)CAF量が、15質量%以上であること
2)CSおよびケイ酸二カルシウム(CS)の合計量が、69質量%以上であること
が好適である。
 本発明により、また、上記記載のセメントクリンカー、およびセッコウを含有することを特徴とするセメント組成物が提供される。当該セメント組成物は、更に、高炉スラグ、シリカ質混合材、フライアッシュ及び石灰石からなる群から選ばれる少なくも1種の混合材を含むことが好適である。
 本発明により、更に、ボーグ式により算出されるCAおよびCAFの合計量が22質量%以上、CS量が60質量%以上、かつ鉄率(I.M.)が1.3以下となるように原料を調製し、該原料を1300~1400℃で焼成することを特徴とするセメントクリンカーの製造方法が提供される。
 本発明によれば、従来のセメントクリンカーよりも、原料としての廃棄物の使用量を増量することができ、かつ、焼成温度を1300~1400℃程度まで低下させることが可能となる。さらに、高温で焼成する従来公知の組成のセメントクリンカーに比べても、遜色のない強度発現特性が得られる。
 本発明におけるCA、CAFおよびCSの各量は、ボーグ(Bogue)式によって算出される値であり、後述する係数・諸比率(Modulus)とならんでクリンカーの製品管理ならびに製造工程における管理特性値として利用される、主要鉱物の組成(含有量)を示す値である。
 ボーグ式は、主要化学成分の組成値(単位:質量%)を用いて主要鉱物の組成を近似的に算出する計算式であり、当業者には周知の式である。以下に、ボーグ式によるクリンカー中の各鉱物量の求め方を記す。単位は、何れも質量%である。
S量 = (4.07×CaO)-(7.60×SiO2)-(6.72×Al2O3)-(1.43×Fe2O3)
S量 = (2.87×SiO2)-(0.754×C3S)
A量 = (2.65×Al2O3)-(1.69×Fe2O3)
AF量= 3.04×Fe2O3
 鉄率(I.M.)は、水硬率(Hydraulic Modulu:H.M.)、ケイ酸率(Silica Modulu:S.M.)、活動係数(Activity Index:A.I.)および石灰飽和度(Lime Saturation Degree:L.S.D.)とともに、係数・諸比率の一つである。該係数・諸比率は、クリンカーを製造管理するために使用されている特性値であり、前記ボーグ式による鉱物組成と同様に、主要化学成分の組成値を用いて求められる。鉄率及びその計算方法は当業者には周知であるが、以下に、他の係数・諸比率の計算方法と併せて記す。
水硬率(H.M.) =CaO/(SiO2+Al2O3+Fe2O3
ケイ酸率(S.M.)=SiO2/(Al2O3+Fe2O3
活動係数(A.I.)=SiO2/Al2O3
鉄率(I.M.)  =Al2O3/Fe2O3
石灰飽和度(L.S.D.)
    =CaO/(2.8×SiO2+1.18×Al2O3+0.65×Fe2O3
 なお、上記式中の「CaO」、「SiO2」、「Al2O3」および「Fe2O3」は、それぞれJI R5202「ポルトランドセメントの化学分析法」やJI R5204「セメントの蛍光X線分析法」などに準拠した方法により得られる、各化学成分の組成を質量%で表した値である。
 本発明のセメントクリンカーは、CaO、SiO2、Al2O3およびFe2O3を主要化学成分とし、その他の成分として、MgO、NaO,KO等の酸化物を微量含有しているものであるが、以下に示すボーグ式で算出される鉱物組成並びに鉄率(I.M.)に特徴がある。
 本発明のセメントクリンカーは、CA、およびCAFの量はその合計が22質量%以上であることが必要である。これらの量が22質量%を下回ると、強度発現特性などの物性が良好なセメントクリンカーを、1300~1400℃の、従来より低い温度で焼成して得ることが困難になる。より好ましい合計量は24質量%以上である。
 なお、後述するように高い強度発現特性を得るためにはCSが60質量%以上必要である。従って、CAおよびCAFの合計量は40質量%が上限となる。好ましくは35質量%以下、より好ましくは32質量%以下、特に好ましくは28質量%以下である。
 これら両成分のうち、CAFは、低温でも十分に焼結させることができ、かつセメントクリンカー中の遊離酸化カルシウム(f-CaO)量を少なくできる観点から、単独で15質量%以上存在することが好ましい。
 CS量は、本発明のセメントクリンカーを用いたセメント組成物(以下、単に「セメント」ともいう)の強度発現特性に対して極めて重要である。この量が60質量%を下回ると、CAおよびCAFの合計量および後述する鉄率を所定の範囲にしたとしても良好な強度発現特性が得られない。CS量は62質量%以上であることが好ましく、63質量%以上であることが特に好ましい。なお、上述したCAおよびCAFの合計量は少なくとも22質量%であるから、CS量の上限は78質量%となる。凝結の開始から終結までの時間(以下、凝結時間ともいう)を確保するために、70質量%以下が好ましく、65質量%以下がより好ましい。
 本発明のセメントクリンカーにはさらにCSが含まれていてもよい。その量は3質量%以上18質量%以下であることが好ましい。長期強度を得るという観点から、該CSとCS量との合計量が69質量%以上となることが、特に好ましい。
 本発明のセメントクリンカーにおいて最も重要なことは鉄率(I.M.)を1.3以下とすることにある。鉄率が1.3を超えると、本発明のセメントクリンカーにおける他の要件を満足していても十分な強度発現特性(具体的には、例えばモルタル強さ発現)を得ることができない。さらに鉄率が1.3を超える場合、凝結時間が長くなりすぎる傾向にあり、この点からも鉄率は1.3以下とする必要がある。より好ましい鉄率の範囲は1.0~1.3であり、特に好ましくは1.14~1.27である。
 水硬率及びケイ酸率は特に限定されるものではないが、各種物性のバランスに優れたものとするために、水硬率は好ましくは1.8~2.2、特に好ましくは1.9~2.1であり、またケイ酸率は好ましくは1.0~2.0、特に好ましくは1.1~1.7である。
 本発明のセメントクリンカーを製造する方法は特に限定されることがなく、公知のセメント原料を、前記本発明に特定した各鉱物組成及び係数となるように所定の割合で調製混合し、サスペンションプレヒーター方式、ニューサスペンションプレヒーター方式等の公知の方法で焼成することにより製造することができる。
 当該セメント原料の調製、混合方法も公知の方法を適宜採用すればよい。例えば、事前に、廃棄物、副産物およびその他の原料(石灰石、生石灰、消石灰等のCaO源、珪石等のSiO源、粘土、石炭灰等のAl源、銅カラミ、高炉スラグ等のFe源など)の化学成分を分析し、これら原料中の各成分割合から本発明に特定した前記各要件を満たすように、各原料の調合割合を計算し、その割合で原料を調合すればよい。なお、本発明の製造方法で用いる原料は、従来セメントクリンカーの製造において使用される原料と同様なものが特に制限なく使用される。廃棄物、副産物等を利用することも無論可能である。
 本発明の製造方法において、廃棄物、副産物等から一種以上の廃棄物を使用することは、廃棄物、副産物等の有効利用を促進する観点から好ましいことである。
 使用可能な廃棄物・副産物を具体的に例示すると、高炉スラグ、製鋼スラグ、非鉄鉱滓、石炭灰、下水汚泥、浄水汚泥、製紙スラッジ、建設発生土、鋳物砂、ばいじん、焼却飛灰、溶融飛灰、塩素バイパスダスト、木屑、廃白土、ボタ、廃タイヤ、貝殻、都市ごみやその焼却灰等が挙げられる。なお、これらの中には、セメント原料になるとともに熱エネルギー源となるものもある。
 特に本発明のセメントクリンカーは、CAおよびCAFというアルミニウムをその構成元素とする鉱物を多く含む。そのため、従来のセメントクリンカーに比べて、アルミニウム分の多い廃棄物・副産物をより多く使用して製造できるという利点を有する。
 本発明の製造方法で製造されたセメントクリンカーは、従来公知のセメントクリンカーと同様、セッコウと共に粉砕、或いは個別に粉砕した後混合することにより、セメントとすることができる。当該セメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメントが挙げられる。またポルトランドセメントとする以外にも、各種混合セメントや、土壌固化材等の固化材の構成成分として使用することも可能である。
 セッコウを加えてセメントとする場合、使用するセッコウとしては、二水セッコウ、半水セッコウ、無水セッコウ等のセメント製造原料として公知のセッコウが特に制限なく使用できる。セッコウの添加量は、ポルトランドセメントの場合、そのなかのSO量が1.5~5.0質量%となるように添加することが好ましく、1.8~3質量%となるような添加量がより好ましい。上記セメントクリンカーおよびセッコウの粉砕方法については、公知の技術が特に制限なく使用できる。
 上記セメントには、高炉スラグ、シリカ質混合材、フライアッシュ、炭酸カルシウム、石灰石等の混合材や粉砕助剤を適宜添加して混合粉砕するか、粉砕後に混合材と混合してもよい。また塩素バイパスダスト等を混合してもよい。
 さらに必要に応じ、粉砕後に高炉スラグ、フライアッシュ等を混合し、各々、高炉スラグセメント、フライアッシュセメント等にすることも可能である。
 セメントの粉末度は、特に制限されないが、ブレーン比表面積で2800~4500cm/gに調整されることが好ましい。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。また、実施例の中で説明されている特徴の組み合わせすべてが本発明の解決手段に必須のものとは限らない。
実施例1
 CaO源として石灰石を75.98質量部、SiO源として珪石を4.41質量部、Al源として石炭灰を14.75質量部、Fe源として銅カラミを4.85質量部で混合した後、1350℃で90分間焼成し、セメントクリンカーを得た。得られたセメントクリンカーの化学組成、ボーグ式による鉱物組成、係数・諸比率{水硬率(H.M.)、ケイ酸率(S.M.)、鉄率(I.M.)}は表1に示すとおりである。このセメントクリンカーにSO換算で2±0.2%となるようにセッコウを添加し、Blaine法による比表面積が3200±50cm/gとなるように混合粉砕してセメントを製造した。
 上記セメントを用いて、モルタル圧縮強さ及び凝結時間を、以下の方法で測定した。結果を表2に示す。
〔各種測定方法〕
(1)原料およびセメントクリンカーの化学組成の測定:JIS R 5204に準拠する蛍光X線分析法により分析した。
(2)モルタル圧縮強さの測定:JIS R 5201に準拠する方法により測定した。
(3)凝結時間:JIS R 5201に準拠する方法により測定した。
実施例2~12、比較例1~8
 各原料の配合量、焼成温度を変えた以外は、実施例1と同様にしてセメントクリンカー並びにセメントを製造した。得られたセメントクリンカーのボーグ式による鉱物組成その他を表1に、セメントの物性を表2に示す。
 なお、表1および2において、従来から存在する標準的な組成のセメントクリンカーを標準的な温度で焼成したものを参考例として示した。各実施例、比較例の結果は、この参考例を基準として論じる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1~12は、本発明に関わるものであり、原料を1350℃と、参考例の組成のクリンカーよりも100℃低温で焼成している。いずれの場合にも、7日後のモルタル圧縮強度が参考例を超える値を示している。
 比較例1は、参考例1と同じ組成の原料を1350℃で焼成した例である。表2に示されているように、従来からある標準的な組成のセメントクリンカーでは、焼成温度を低くすると7日までのモルタル強さ発現が小さいことがわかる。
 比較例2および3は、鉄率(I.M.)が1.4以上の場合の例である。表2に示すとおり7日までのモルタル強さ発現が小さい。また、凝結時間が、始発から終結まで参考例に比べて長くなってしまっていることもわかる。
 比較例4~6は、CAおよびCAFの合計量が22質量%を下回った場合の例である。この場合にも、7日までのモルタル強さ発現が小さい。
 比較例7は、CS量が51質量%であって、本発明で規定する60質量%よりもその含有量が小さい例である。この場合にもやはり、7日までのモルタル強さ発現が小さい。
 比較例8は、CAおよびCAFの合計量が22質量%以上となっているものの、I.M.が1.3を越え、CS量が31質量%とその含有量が小さい例である。焼成温度を1400℃にして、他の実施例、比較例よりも50℃高くしたにも係わらず、7日までのモルタル強さ発現が小さい。

Claims (6)

  1.  ボーグ式により算出されるアルミン酸三カルシウム(3CaO・Al:CA)および鉄アルミン酸四カルシウム(4CaO・Al・Fe:CAF)の合計量が22質量%以上、ケイ酸三カルシウム(3CaO・SiO:CS)量が60質量%以上であり、かつ、鉄率(I.M.)が1.3以下であることを特徴とするセメントクリンカー。
  2.  CAF量が、15質量%以上であることを特徴とする請求項1記載のセメントクリンカー。
  3.  CSおよびケイ酸二カルシウム(2CaO・SiO:CS)の合計量が、69質量%以上であることを特徴とする請求項1または2に記載のセメントクリンカー。
  4.  請求項1~3の何れか一項に記載のセメントクリンカー、およびセッコウを含有することを特徴とするセメント組成物。
  5.  更に、高炉スラグ、シリカ質混合材、フライアッシュ及び石灰石からなる群から選ばれる少なくも1種の混合材を含むことを特徴とする請求項4に記載のセメント組成物。
  6.  ボーグ式により算出されるCAおよびCAFの合計量が22質量%以上、CS量が60質量%以上、かつ鉄率(I.M.)が1.3以下となるように原料を調製し、該原料を1300~1400℃で焼成することを特徴とするセメントクリンカーの製造方法。
PCT/JP2012/060367 2011-04-19 2012-04-17 セメントクリンカー、その製造方法、およびセメント組成物 WO2012144497A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2012246525A AU2012246525B2 (en) 2011-04-19 2012-04-17 Cement clinker, method for manufacturing same and cement composition
SG2013072723A SG193985A1 (en) 2011-04-19 2012-04-17 Cement clinker, method for manufacturing same and cement composition
US14/003,674 US8864902B2 (en) 2011-04-19 2012-04-17 Cement clinker, method of manufacturing the same and cement composition
EP12773761.7A EP2700622B1 (en) 2011-04-19 2012-04-17 Methods for manufacturing a cement clinker and a cement composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-093396 2011-04-19
JP2011093396A JP5665638B2 (ja) 2011-04-19 2011-04-19 セメントクリンカーの製造方法

Publications (1)

Publication Number Publication Date
WO2012144497A1 true WO2012144497A1 (ja) 2012-10-26

Family

ID=47041603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060367 WO2012144497A1 (ja) 2011-04-19 2012-04-17 セメントクリンカー、その製造方法、およびセメント組成物

Country Status (6)

Country Link
US (1) US8864902B2 (ja)
EP (1) EP2700622B1 (ja)
JP (1) JP5665638B2 (ja)
AU (1) AU2012246525B2 (ja)
SG (1) SG193985A1 (ja)
WO (1) WO2012144497A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201479A (ja) * 2013-04-04 2014-10-27 宇部興産株式会社 低温焼成セメントクリンカーの製造方法
JP5751503B1 (ja) * 2014-03-26 2015-07-22 住友大阪セメント株式会社 セメントクリンカ及びセメント組成物
JP5751504B1 (ja) * 2014-03-26 2015-07-22 住友大阪セメント株式会社 セメントクリンカ及びセメント組成物
JP5751505B1 (ja) * 2014-03-26 2015-07-22 住友大阪セメント株式会社 セメントクリンカ及びセメント組成物
JP5751506B1 (ja) * 2014-03-26 2015-07-22 住友大阪セメント株式会社 セメントクリンカ及びセメント組成物
JP5907439B1 (ja) * 2014-11-13 2016-04-26 住友大阪セメント株式会社 セメントクリンカ及びセメント組成物
CN112341015A (zh) * 2020-11-10 2021-02-09 攀枝花钢城集团有限公司 一种增加转炉钢渣中硅铝含量的烧结水泥的制备方法
CN113603375A (zh) * 2021-08-27 2021-11-05 中铝郑州有色金属研究院有限公司 一种氧化铝和其生产用混合熟料及其制备方法
CN115838250A (zh) * 2022-12-01 2023-03-24 济南大学 一种赤泥基掺合料、熟料及其制备方法与应用
WO2023182293A1 (ja) * 2022-03-25 2023-09-28 株式会社トクヤマ ポルトランドセメントクリンカー、セメント組成物及びポルトランドセメントクリンカーの製造方法
WO2023182292A1 (ja) * 2022-03-25 2023-09-28 株式会社トクヤマ ポルトランドセメントクリンカー、セメント組成物、及びポルトランドセメントクリンカーの製造方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5800387B2 (ja) * 2011-09-16 2015-10-28 株式会社デイ・シイ 土質改良材
JP6282408B2 (ja) * 2012-10-15 2018-02-21 株式会社トクヤマ 水硬性組成物
JP6045328B2 (ja) * 2012-12-18 2016-12-14 太平洋セメント株式会社 セメントおよびその製造方法
WO2014097938A1 (ja) * 2012-12-18 2014-06-26 太平洋セメント株式会社 セメント及び混合セメント
JP6021753B2 (ja) * 2013-06-27 2016-11-09 太平洋セメント株式会社 混合セメント
JP6080570B2 (ja) * 2013-01-31 2017-02-15 住友大阪セメント株式会社 長期高強度発現性及び高ひび割れ抵抗性を有する低炭素型3成分混合系結合材及び当該結合材を用いたコンクリート
JP2014189439A (ja) * 2013-03-27 2014-10-06 Tokuyama Corp セメントクリンカーの製造方法
JP6516658B2 (ja) * 2015-11-24 2019-05-22 株式会社トクヤマ セメントクリンカー
JP6579928B2 (ja) * 2015-11-25 2019-09-25 株式会社トクヤマ セメントクリンカーの製造方法
JP6676355B2 (ja) * 2015-12-07 2020-04-08 株式会社トクヤマ 水硬性組成物
JP6622595B2 (ja) * 2016-01-08 2019-12-18 株式会社トクヤマ セメントクリンカーの製造方法
JP6629632B2 (ja) * 2016-02-29 2020-01-15 株式会社デイ・シイ フライアッシュセメント組成物
JP6579977B2 (ja) * 2016-02-29 2019-09-25 株式会社デイ・シイ セメント組成物
RU2724864C1 (ru) * 2017-02-22 2020-06-25 Халлибертон Энерджи Сервисез, Инк. Известково-кремнеземные цементы с низким содержанием портландцемента
JP2018158850A (ja) * 2017-03-22 2018-10-11 株式会社トクヤマ セメントクリンカーの製造方法
EP3950635A4 (en) 2019-03-27 2022-12-28 Tokuyama Corporation CLINKER MANUFACTURING PROCESS AND CLINKER POWDER
JP6825171B1 (ja) * 2019-05-31 2021-02-03 株式会社トクヤマ 水硬性組成物の製造方法
JP2021143097A (ja) * 2020-03-12 2021-09-24 株式会社トクヤマ ポルトランドセメントクリンカーの製造方法
JP6780796B1 (ja) * 2020-03-27 2020-11-04 住友大阪セメント株式会社 セメントクリンカ及びセメント組成物
CN111675498B (zh) * 2020-05-18 2022-05-13 南阳中联卧龙水泥有限公司 一种利用湿粉煤灰制备水泥熟料的方法及高强度水泥的制备方法
CN111646720B (zh) * 2020-06-29 2022-02-11 常熟理工学院 一种干法制备免烧结水泥的方法及其产品
CN113929324B (zh) * 2021-10-28 2022-09-27 中国建筑材料科学研究总院有限公司 一种熔融钢渣制备高铁高硅硫铝酸盐水泥熟料及其制备方法
CN114180863B (zh) * 2021-12-18 2022-09-06 济南山水水泥有限公司 一种高强度水泥及其生产工艺
CN115650607A (zh) * 2022-10-31 2023-01-31 西安建筑科技大学 一种利用石煤提钒尾矿制备矿渣硅酸盐水泥熟料及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330135A (ja) * 1997-05-27 1998-12-15 Sumitomo Osaka Cement Co Ltd セメントクリンカー及びセメント組成物
JP2004352515A (ja) 2003-05-27 2004-12-16 Mitsubishi Materials Corp 高間隙相型セメント組成物
JP2012091992A (ja) * 2010-09-28 2012-05-17 Tokyo Institute Of Technology 高活性セメントクリンカ、高活性セメント及び早強セメント組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1403586A (en) * 1971-11-13 1975-08-28 Onoda Cement Co Ltd Expansive cement additives and process for producing the same
DE2611889C3 (de) * 1976-03-20 1978-11-02 Ferdinand Dr.Rer.Mont. 6374 Steinbach Fink Verfahren zur Herstellung von Bindemitteln aus Hüttenabfallen
SU1498731A1 (ru) * 1987-12-02 1989-08-07 Московский химико-технологический институт им.Д.И.Менделеева Цементный клинкер
DE4204227C1 (en) * 1992-02-13 1993-02-11 Ivan Prof. Dr. 3380 Goslar De Odler Portland cement clinker prepn. - by firing mixt. of calcium oxide, silica, aluminium@ and ferric oxide in presence of additive contg. sulphate and fluorine ions
DK0666930T3 (da) * 1993-09-07 1997-10-13 Holderbank Financ Glarus Fremgangsmåde til fremstilling af stål og og hydraulisk aktive bindemidler
US6419741B1 (en) 1997-05-27 2002-07-16 Sumitomo Osaka Cement Co., Ltd. Cement clinker and cement containing the same
JP4135743B2 (ja) * 2005-11-18 2008-08-20 宇部興産株式会社 セメント組成物
JP4775495B1 (ja) * 2010-03-08 2011-09-21 宇部興産株式会社 セメント組成物及びその製造方法
JP5791927B2 (ja) * 2011-03-22 2015-10-07 株式会社デイ・シイ 高活性セメントクリンカの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330135A (ja) * 1997-05-27 1998-12-15 Sumitomo Osaka Cement Co Ltd セメントクリンカー及びセメント組成物
JP2004352515A (ja) 2003-05-27 2004-12-16 Mitsubishi Materials Corp 高間隙相型セメント組成物
JP2012091992A (ja) * 2010-09-28 2012-05-17 Tokyo Institute Of Technology 高活性セメントクリンカ、高活性セメント及び早強セメント組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAPAN CONCRETE INSTITUTE, CONCRETE BINRAN, 15 February 1996 (1996-02-15), pages 33, XP008172125 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201479A (ja) * 2013-04-04 2014-10-27 宇部興産株式会社 低温焼成セメントクリンカーの製造方法
JP5751503B1 (ja) * 2014-03-26 2015-07-22 住友大阪セメント株式会社 セメントクリンカ及びセメント組成物
JP5751504B1 (ja) * 2014-03-26 2015-07-22 住友大阪セメント株式会社 セメントクリンカ及びセメント組成物
JP5751505B1 (ja) * 2014-03-26 2015-07-22 住友大阪セメント株式会社 セメントクリンカ及びセメント組成物
JP5751506B1 (ja) * 2014-03-26 2015-07-22 住友大阪セメント株式会社 セメントクリンカ及びセメント組成物
JP2016094310A (ja) * 2014-11-13 2016-05-26 住友大阪セメント株式会社 セメントクリンカ及びセメント組成物
JP5907439B1 (ja) * 2014-11-13 2016-04-26 住友大阪セメント株式会社 セメントクリンカ及びセメント組成物
CN112341015A (zh) * 2020-11-10 2021-02-09 攀枝花钢城集团有限公司 一种增加转炉钢渣中硅铝含量的烧结水泥的制备方法
CN113603375A (zh) * 2021-08-27 2021-11-05 中铝郑州有色金属研究院有限公司 一种氧化铝和其生产用混合熟料及其制备方法
WO2023182293A1 (ja) * 2022-03-25 2023-09-28 株式会社トクヤマ ポルトランドセメントクリンカー、セメント組成物及びポルトランドセメントクリンカーの製造方法
WO2023182292A1 (ja) * 2022-03-25 2023-09-28 株式会社トクヤマ ポルトランドセメントクリンカー、セメント組成物、及びポルトランドセメントクリンカーの製造方法
CN115838250A (zh) * 2022-12-01 2023-03-24 济南大学 一种赤泥基掺合料、熟料及其制备方法与应用
CN115838250B (zh) * 2022-12-01 2023-10-27 济南大学 一种赤泥基掺合料、熟料及其制备方法与应用

Also Published As

Publication number Publication date
US20130340652A1 (en) 2013-12-26
US8864902B2 (en) 2014-10-21
SG193985A1 (en) 2013-11-29
EP2700622B1 (en) 2019-08-14
AU2012246525A1 (en) 2013-10-31
EP2700622A4 (en) 2014-10-15
JP5665638B2 (ja) 2015-02-04
EP2700622A1 (en) 2014-02-26
AU2012246525B2 (en) 2016-06-16
JP2012224504A (ja) 2012-11-15

Similar Documents

Publication Publication Date Title
WO2012144497A1 (ja) セメントクリンカー、その製造方法、およびセメント組成物
JP6021753B2 (ja) 混合セメント
JP2013103865A (ja) セメントペーストの製造方法
JP6579928B2 (ja) セメントクリンカーの製造方法
JP6282408B2 (ja) 水硬性組成物
JP5705021B2 (ja) セメントクリンカーの製造方法
JP6516658B2 (ja) セメントクリンカー
JP5122316B2 (ja) セメント添加材及びセメント組成物
JP4842211B2 (ja) セメント添加材用焼成物、セメント添加材及びセメント組成物
JP5932478B2 (ja) セメント組成物およびその製造方法
JP2009035451A (ja) セメント添加材及びセメント組成物
WO2015037594A1 (ja) ポルトランドセメントクリンカーの製造方法
JP5976069B2 (ja) セメントクリンカー
JP2018158850A (ja) セメントクリンカーの製造方法
JP2008222475A (ja) 焼成物、セメント添加材及びセメント組成物
JP7436249B2 (ja) セメントクリンカー
JP6825171B1 (ja) 水硬性組成物の製造方法
JP5501705B2 (ja) セメント添加材及びセメント組成物
JP5355339B2 (ja) セメント添加材及びセメント組成物
JP2011079710A (ja) セメント添加材及びセメント組成物
JP7450826B2 (ja) 水硬性組成物及びその製造方法
WO2023182293A1 (ja) ポルトランドセメントクリンカー、セメント組成物及びポルトランドセメントクリンカーの製造方法
JP2022120892A (ja) セメントクリンカー
WO2023182292A1 (ja) ポルトランドセメントクリンカー、セメント組成物、及びポルトランドセメントクリンカーの製造方法
JP2018158861A (ja) ポルトランドセメントクリンカー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12773761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14003674

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012246525

Country of ref document: AU

Date of ref document: 20120417

Kind code of ref document: A