WO2023182293A1 - ポルトランドセメントクリンカー、セメント組成物及びポルトランドセメントクリンカーの製造方法 - Google Patents

ポルトランドセメントクリンカー、セメント組成物及びポルトランドセメントクリンカーの製造方法 Download PDF

Info

Publication number
WO2023182293A1
WO2023182293A1 PCT/JP2023/010955 JP2023010955W WO2023182293A1 WO 2023182293 A1 WO2023182293 A1 WO 2023182293A1 JP 2023010955 W JP2023010955 W JP 2023010955W WO 2023182293 A1 WO2023182293 A1 WO 2023182293A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
amount
cement clinker
cement
Prior art date
Application number
PCT/JP2023/010955
Other languages
English (en)
French (fr)
Inventor
将巳 大田
敬司 茶林
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2023182293A1 publication Critical patent/WO2023182293A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/26Carbonates
    • C04B14/28Carbonates of calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/02Portland cement

Definitions

  • the present invention relates to a novel cement clinker, a cement composition, and a method for producing a cement clinker. Specifically, the present invention relates to a cement clinker and a cement composition that exhibit good sinterability and cement strength development in a composition that can be sintered at a lower temperature than conventional ones.
  • Portland cement which is manufactured in the largest quantity, requires raw materials adjusted to a predetermined chemical composition to be fired at a high temperature of 1,450°C to 1,550°C to form clinker, and the firing process is the process that consumes the most energy. It is. In other words, if the clinker firing temperature can be reduced, energy can be reduced.
  • the low-temperature firing clinker can be fired at a low temperature, and the amount of waste containing Al 2 O 3 and Fe 2 O 3 can be increased.
  • the firing temperature increases, the advantage of being able to lower the firing temperature compared to the conventional method will be lost.
  • an object of the present invention is to provide a clinker that can utilize a large amount of waste and by-products, and can maintain good sinterability and cement strength development.
  • the present inventors have carried out extensive studies, and by adjusting the BaO content to less than 0.05 to 0.7% by mass in the clinker having the above composition, the clinker contains no or almost no BaO.
  • the present inventors have discovered that the present invention exhibits the same ease of firing and cement strength development as low-temperature fired clinker containing almost no BaO (hereinafter simply referred to as low-temperature fired clinker containing almost no BaO).
  • the first aspect of the present invention is that the total amount of C 3 A and C 4 AF calculated by the Borg equation is 22% by mass or more, the amount of C 3 S (3CaO ⁇ SiO 2 ) is 60% by mass or more, and the iron percentage (I. M.) is 1.3 or less and the BaO content is from 0.05 to less than 0.7% by mass. It is preferable that the amount of C 4 AF is 15% by mass or more. Further, it is preferable that the total amount of C 3 S and C 2 S is 69% by mass or more.
  • the second invention is characterized in that the total amount of C 3 A and C 4 AF calculated by the above-mentioned Borg formula is 22% by mass or more, the amount of C 3 S is 60% by mass or more, and the iron content (I.M.) is 1.3 or less and gypsum is added to Portland cement clinker having a BaO content of 0.05 to less than 0.7% by mass.
  • the cement composition contains at least one mixture selected from the group consisting of blast furnace slag, siliceous mixture, fly ash, and limestone.
  • the fired cement clinker a CaO source, a SiO 2 source, an Al 2 O 3 source, a Fe 2 O 3 source, and a BaO source
  • the composition calculated by the Borg formula is such that the total amount of C 3 A and C 4 AF is 22% by mass or more and the amount of C 3 S is 60% by mass or more, Iron rate (I.M.) becomes 1.3 or less, Blended so that the BaO content is less than 0.05 to 0.7% by mass,
  • This is a method for producing Portland cement clinker, which is fired at a temperature of 1300°C or higher and lower than 1400°C.
  • the firing temperature is preferably 1300°C or higher and 1380°C or lower.
  • the Portland cement clinker to be manufactured has a total amount of C 3 A and C 4 AF of 22 mass % or more and 32 mass % or less, a C 3 S amount of 60 mass % or more and 70 mass % or less, and a C 2 S amount is 3 mass% or more and 18 mass% or less, the total amount of C 3 A and C 4 AF, the total amount of C 3 S, and the total amount of C 2 S is 100 mass % or less, and the BaO content is 0.25 mass % % or more and 0.65% by mass or less.
  • the BaO content is 0.25% by mass or more and 0.5% by mass or less.
  • compressive strength of the mortar can be obtained at an early stage, and long-term strength is also high (see Table 3).
  • Portland cement clinker also applies to its production method and cement composition using this cement clinker.
  • percentages are used for compositions, they are, as a general rule, percentages by weight.
  • the composition is specified as A% or more and B% or less, the lower limit A and the upper limit B are included.
  • cement clinker The amounts of C 3 A, C 4 AF, C 3 S and C 2 S in the Portland cement clinker of the present invention (hereinafter simply referred to as "cement clinker") are determined by the Bogue equation.
  • the Borg formula is used in conjunction with coefficients and ratios, and is a calculation formula for calculating the approximate composition of major compounds using major chemical analysis values, and is well known to those skilled in the art. Below is a description of how to determine the amount of each mineral in cement clinker using the Borg formula.
  • C 3 S amount (4.07 x CaO) - (7.60 x SiO 2 ) - (6.72 x Al 2 O 3 ) - (1.43 x Fe 2 O 3 )
  • C 2 S amount (2.87 ⁇ SiO 2 ) ⁇ (0.754 ⁇ C 3 S)
  • a amount (2.65 x Al 2 O 3 ) - (1.69 x Fe 2 O 3 )
  • C 4 AF amount 3.04 ⁇ Fe 2 O 3
  • the iron ratio (I.M.) is determined by the hydraulic ratio (H.M.), the silica ratio (S.M.), the activity coefficient (A.I.), and the lime saturation degree (L.S.D.). Therefore, it is calculated using the main chemical component values, and is used as one of the times and various ratios as a characteristic value for cement clinker production management. Although it is a coefficient well known to those skilled in the art, Therefore, the method for calculating the iron rate is described below along with other coefficient values.
  • H.M. CaO/(SiO 2 +Al 2 O 3 +Fe 2 O 3 )
  • Silicic acid ratio SiO 2 / (Al 2 O 3 + Fe 2 O 3 )
  • Iron rate Al 2 O 3 /Fe 2 O 3
  • Activity coefficient SiO 2 /Al 2 O 3
  • Lime saturation CaO/(2.8 ⁇ SiO 2 +1.2 ⁇ Al 2 O 3 +0.65 ⁇ Fe 2 O 3 )
  • the total amount of C 3 A and C 4 AF must be 22% by mass or more. If the amount of these is less than 22%, it becomes difficult to obtain cement clinker with good physical properties such as strength development by firing at a low temperature. A more preferable total amount is 24% by mass or more. Note that, as described later, in order to obtain high strength development, C 3 S is required to be 60% by mass or more. Therefore, the upper limit of the total amount of C 3 A and C 4 AF is 40%. Preferably it is 35% by mass or less, more preferably 32% by mass or less, particularly preferably 28% by mass or less. Of these two components, C 4 AF alone is preferably present in an amount of 15% by mass or more because it can be sufficiently sintered even at low temperatures and the amount of f-CaO in the cement clinker can be reduced.
  • the amount of C 3 S is extremely important for the strength development of a cement composition (hereinafter simply referred to as "cement") using the cement clinker of the present invention. If this amount is less than 60%, good strength development cannot be obtained even if the total amount of C 3 A and C 4 AF and the iron percentage described below are set within a predetermined range.
  • the amount of C 3 S is preferably 62% by mass or more, particularly preferably 63% by mass or more. Note that since the total amount of C 3 A and C 4 AF mentioned above is at least 22%, the upper limit of the amount of C 3 S is 78%.
  • the content is preferably 70% by mass or less, more preferably 65% by mass or less.
  • the cement clinker of the present invention may further contain C 2 S.
  • the amount is 18% by mass or less, preferably 15% by mass or less, and preferably 3% by mass or more. From the viewpoint of obtaining long-term strength, an amount in which the total amount including the amount of C 3 S is 69% by mass or more is particularly preferable.
  • the iron content (I.M.) of the cement clinker of the present invention is 1.3 or less. If the iron ratio exceeds 1.3, sufficient strength development (more specifically, for example, mortar strength development) cannot be obtained even if the cement clinker of the present invention satisfies other requirements. Furthermore, if the iron ratio exceeds 1.3, the time from the start to the end of solidification tends to be too long, and from this point of view as well, the iron ratio is set to 1.3 or less. A more preferable iron ratio range is 1.0 to 1.3, particularly preferably 1.14 to 1.27.
  • the hydraulic ratio and silicic acid ratio are not particularly limited, but in order to achieve an excellent balance of various physical properties, the hydraulic ratio is preferably 1.8 to 2.2, particularly preferably 1.9. ⁇ 2.1, and the silicic acid ratio is preferably 1.0 to 2.0, particularly preferably 1.1 to 1.7.
  • the BaO content is 0.05 to less than 0.7% by mass.
  • BaO in the cement clinker may be measured using a general fluorescent X-ray analyzer, and the BaO content can be measured by quantitative analysis such as a calibration curve method.
  • the cement clinker does not contain BaO or hardly contains BaO.
  • the mechanism is not clear, by adjusting the BaO content to less than 0.05 to 0.7 mass%, it is possible to achieve easy firing and strength equivalent to low-temperature firing clinker that contains almost no BaO content. Indicates expressivity. If the BaO content is less than 0.05% by mass, the advantage of promoting effective utilization of wastes, by-products, etc. with a high BaO content will be lost. On the other hand, if the BaO content is 0.7% by mass or more, the ease of sintering tends to deteriorate, which is not preferable.
  • the preferred BaO content is 0.05 to 0.65% by mass, and the more preferred BaO content is The amount is 0.25-0.65% by weight, particularly preferred BaO content is 0.25-0.5% by weight.
  • the cement clinker of the present invention containing BaO in the above range is characterized in that it exhibits easy sintering and cement strength development comparable to low-temperature firing clinker containing almost no BaO.
  • the cement clinker of the present invention can be produced by firing at a lower temperature than the conventional general Portland cement clinker. That is, conventionally, ordinary Portland cement clinker required a temperature of around 1450°C for firing, but the cement clinker of the present invention requires a temperature of 1300 to 1400°C, for example, 1300°C or more and less than 1400°C, particularly 1300°C or more and 1380°C or less. It can be obtained by firing at a temperature of .
  • the method for producing cement clinker in the present invention is not particularly limited, and the known cement (clinker) raw materials are prepared and mixed in a predetermined ratio so as to have the above-mentioned mineral ratios and coefficients, and the known method ( For example, it can be easily obtained by firing in an SP kiln, NSP kiln, etc.
  • waste, by-products, and other raw materials CaO sources such as limestone, quicklime, and slaked lime, SiO 2 sources such as silica stone, Al 2 O 3 sources such as clay, Fe materials such as copper karami, titanium karami, etc.) 2 O 3 source, etc.
  • CaO sources such as limestone, quicklime, and slaked lime
  • SiO 2 sources such as silica stone
  • Al 2 O 3 sources such as clay
  • Fe materials such as copper karami, titanium karami, etc.
  • 2 O 3 source etc.
  • raw materials used in the production of the cement clinker of the present invention are the same as those used in the production of conventional cement clinkers, and are not particularly limited. Of course, it is also possible to use waste materials, by-products, etc.
  • wastes and byproducts that can be used include blast furnace slag, steelmaking slag, nonferrous slag, coal ash, sewage sludge, purified water sludge, papermaking sludge, construction soil, foundry sand, dust, incinerated fly ash, and molten waste.
  • wastes and byproducts include blast furnace slag, steelmaking slag, nonferrous slag, coal ash, sewage sludge, purified water sludge, papermaking sludge, construction soil, foundry sand, dust, incinerated fly ash, and molten waste.
  • fly ash chlorine bypass dust, wood chips, waste white clay, bottons, waste tires, shells, municipal waste and its incineration ash (note that some of these can be used as raw materials for cement and as sources of thermal energy). be).
  • the cement clinker of the present invention contains a large amount of minerals having Al 2 O 3 as a constituent element, C 3 A and C 4 AF. Therefore, compared to conventional cement clinker, it has the advantage that it can be manufactured using a larger amount of waste and by-products containing 3 % Al 2 O.
  • the BaO content in cement clinker obtained after firing will not reach 0.05%. . Therefore, the BaO content in cement clinker can be adjusted by analyzing the BaO raw materials in addition to the above-mentioned wastes, by-products, and natural raw materials, and adjusting the blending ratio of each raw material to achieve the desired BaO content. good. From the viewpoint of promoting effective utilization of waste materials, by-products, etc., it is preferable to use waste materials and by-products with a high BaO content in a slightly larger amount than before.
  • barium sulfate, barium carbonate, barium chloride, barium hydroxide, etc. industrial waste containing these, general waste, and soil contaminated with barium can be used.
  • cathode ray tube panels Examples include glass and sewage sludge incineration ash.
  • the cement clinker of the present invention can be made into cement by being crushed together with gypsum or separately crushed and then mixed.
  • Examples of the cement include ordinary Portland cement, early strength Portland cement, and ultra early strength Portland cement. In addition to using it as Portland cement, it can also be used as a component of various mixed cements and solidifying agents such as soil solidifying agents.
  • any gypsum known as a raw material for producing cement such as dihydrate gypsum, hemihydrate gypsum, anhydrous gypsum, etc.
  • the amount of gypsum added is preferably such that the amount of SO3 in it is 1.5 to 5.0% by mass, and the amount added is such that the amount of SO3 in it is 1.8 to 3% by mass. is more preferable.
  • known techniques can be used without any particular restrictions.
  • the cement composition may be mixed and pulverized by appropriately adding admixtures and grinding aids such as blast furnace slag, siliceous admixture, fly ash, calcium carbonate, and limestone, or mixed with the admixture after pulverization. Good too. Further, chlorine bypass dust or the like may be mixed.
  • the fineness of the cement composition is not particularly limited, but it is preferably adjusted to a Blaine specific surface area of 2,800 to 4,500 cm 2 /g.
  • blast furnace slag fly ash, etc. after pulverization to make blast furnace slag cement, fly ash cement, etc.
  • a cement clinker raw material was prepared using industrial raw materials including waste and reagent BaCO 3 and fired at 1360° C. for 100 minutes to obtain cement clinker.
  • Table 1 shows the chemical composition of the clinker obtained after firing
  • Table 2 shows the f-CaO, mineral composition according to the Borg equation, and coefficients and ratios.
  • 2.2 parts by mass of dihydrate gypsum and 1.8 parts by mass of hemihydrate gypsum were mixed with 100 parts by mass of this cement clinker, and the mixture was pulverized to a Blaine specific surface area of 3200 ⁇ 50 cm 2 /g. Manufactured.
  • Table 3 shows the measurement results of the mortar compressive strength of each cement.
  • Measurement of chemical compositions other than BaO of cement clinker raw materials and cement clinker Measured by fluorescent X-ray analysis method based on JIS R 5204.
  • Measurement of BaO content in cement clinker Measurement was performed by quantitative analysis using a calibration curve method using a scanning fluorescent X-ray analyzer (manufactured by Rigaku Corporation, ZSX Primus 1V).
  • Measurement of f-CaO Measured in accordance with Cement Association Standard Test Method I-01 Quantification method for free calcium oxide.
  • Measurement of mortar compressive strength Measured by a method based on JIS R 5201.
  • Comparative Example 1 is a low temperature fired clinker that does not contain BaO. That is, the quality of the results of each Example/Comparative Example will be discussed based on the results of Comparative Example 1.
  • Examples 1 and 2 are according to the present invention, and the BaO content is in the range of 0.05 to less than 0.7% by mass. Similar to Comparative Example 1, f-CaO has a value of less than 1.00%, which is a standard for easy firing of general cement clinker, indicating that easy firing is good. Further, the mortar compressive strength after 3 days, 7 days, and 28 days after cementing showed values equivalent to those of Comparative Example 1. In particular, in Example 1 with a BaO content of 0.31% by mass, the mortar compressive strength is high at any time from the 3rd day to the 28th day, mortar strength can be obtained early, and the long-term strength is also high.
  • Comparative Example 2 has a BaO content of 0.7% by mass or more, and f-CaO has a value of 1.00% by mass or more, making the ease of firing worse than Comparative Example 1.

Abstract

従来のセメントクリンカーに比べ、製造する際の焼成温度を低減することが可能であり、廃棄物使用量を増やすことが可能であり、かつ、良好な易焼成およびセメント強度発現性を示すことができるセメントクリンカーを提供する。ボーグ式により算出されるC3AおよびC4AFの合計量が22質量%以上、 C3S量が60質量%以上、鉄率(I.M.)が1.3以下のセメントクリンカーであり、該セメントクリンカーのBaO含有量を0.05~0.7質量%未満に調整することで、良好な易焼成およびセメント強度発現性を示すことができる。

Description

ポルトランドセメントクリンカー、セメント組成物及びポルトランドセメントクリンカーの製造方法
 本発明は、新規なセメントクリンカー、セメント組成物、及びセメントクリンカーの製造方法に係る。詳しくは従来よりも低温で焼成可能な組成において、良好な易焼成およびセメント強度発現性を示すセメントクリンカーおよびセメント組成物に係る。
 セメント産業は、大量生産・大量消費型産業であり、近年のCO排出量などの環境問題から省資源・省エネルギーは最重要課題となっている。例えば、最も大量に製造されているポルドランドセメントは所定の化学組成に調整された原料を1450℃~1550℃もの高温で焼成してクリンカーとする必要があり、焼成工程が最もエネルギー消費の大きい工程である。すなわち、クリンカーの焼成温度を低減することができればエネルギー削減につながる。クリンカーの焼成温度低減には、低温焼成クリンカーとしてクリンカーの主要鉱物であるCAF(4CaO・Al・Fe)を増加させる技術が開発されている(特許文献1参照)。
 また、資源循環の観点からも廃棄物・副産物等の有効利用は重要な課題となっている。セメント産業、セメント製造設備の特徴を生かし、セメント製造時に原料や熱エネルギー源として廃棄物を有効利用あるいは処理を行なうことは、安全かつ大量処分が可能という観点から有効とされている。廃棄物、副産物はAl含有量が高いものが多く、上記したCAFを増やす系においては、該セメントクリンカーのAl含有量が従来のポルトランドセメントクリンカーよりも増加することから、廃棄物・副産物を従来のポルトランドセメントクリンカーよりも多く使用することが可能となる。この点においても特許文献1記載の低温焼成クリンカー(以下、単に低温焼成クリンカーともいう。)は優れている。
 クリンカー鉱物のうちCA(3CaO・Al)やCAFを多くしたクリンカーは、AlやFeの含有量が多くなるため、これら成分を含む廃棄物・副産物を多く使用可能であるという点でも有利である(例えば、特許文献2)。
 一方で廃棄物・副産物を活用することで、廃棄物・副産物に含有する成分がセメントクリンカー中に持ち込まれる。セメントクリンカーの主要成分であるCaO、SiO、Al、Feだけでなく、その他の少量成分もクリンカーの易焼成および実鉱物組成やセメントの物性に影響するため、少量成分の適切な管理が求められる。例えば、ポルトランドセメントに係わるJIS規格(JIS R 5210)では、酸化マグネシウム量、全アルカリ量、塩化物イオン量などが規定されている。他にも、廃棄物・副産物の使用量増加を目的として、それらに含有する少量成分の影響についての検討も行われており、例えば、セメントクリンカー中のPの含有量の増加に伴い、f-CaOは直線的に増加し、易焼成が悪化するという結果も開示されている(非特許文献1)。
特開2012-224504号公報 特開2004-352515号公報
金谷宗輝ほか,セメント・コンクリート論文集,Vol.53,p.p.10-15(1999)
 低温焼成クリンカーは低温で焼成でき、AlやFeを含有する廃棄物の使用量も多くできる。しかしながら、廃棄物・副産物に含有する少量成分により易焼成が悪化し、その結果として焼成温度を増加させるようであれば、従来よりも焼成温度を低減することができるという利点を損なってしまう。また当然、その少量成分により強度発現性などのセメント物性に影響を受けるようでは意味がない。そこで本発明は廃棄物・副産物を多く利用することが可能であり、かつ易焼成およびセメント強度発現性を共に良好に維持可能なクリンカーを提供することを目的とする。
 本発明者等は上記課題を解決するため鋭意検討を進め、前記組成のクリンカーにおいて、BaO含有量を0.05~0.7質量%未満に調整することで、BaOを含まないか、ほとんど含まない低温焼成クリンカー(以下、単にBaOをほとんど含まない低温焼成クリンカーとも称す。)と同等の易焼成およびセメント強度発現性を示すことを見出し、本発明の完成に至った。
 第一の本発明は、ボーグ式により算出されたCAおよびCAFの合計量が22質量%以上、CS(3CaO・SiO)量が60質量%以上、鉄率(I.M.)が1.3以下であり、かつBaO含有量が0.05~0.7質量%未満であるポルトランドセメントクリンカーである。CAF量が15質量%以上であることが好ましい。また、CSおよびCSの合計量が69質量%以上であることが好ましい。
 また第二の本発明は、上記、ボーグ式により算出されたCAおよびCAFの合計量が22質量%以上、CS量が60質量%以上、鉄率(I.M.)が1.3以下であり、かつBaO含有量が0.05~0.7質量%未満であるポルトランドセメントクリンカーに対して石こうが加えられたセメント組成物である。該セメント組成物は高炉スラグ、シリカ質混合材、フライアッシュおよび石灰石からなる群から選ばれるいずれか1種以上の混合材を含むことが好ましい。
 さらに、第三の本発明は、焼成後のセメントクリンカーに関して、CaO源とSiO源、Al源、Fe源、及びBaO源を、
  ボーグ式により算出される組成が、CAおよびCAFの合計量が22質量%以上、CS量が60質量%以上となり、
  鉄率(I.M.)が1.3以下となり、
  BaO含有量が0.05~0.7質量%未満となるように配合し、
 1300℃以上1400℃未満で焼成する、ポルトランドセメントクリンカーの製造方法である。焼成温度は好ましくは、1300℃以上1380℃以下とする。
 好ましくは、製造するポルトランドセメントクリンカーは、CAおよびCAFの合計量が22質量%以上で32質量%以下、CS量が60質量%以上で70質量%以下、CS量が3質量%以上で18質量%以下、CAおよびCAFの合計量と、CS量と、CS量の合計が100質量%以下で、BaO含有量が0.25質量%以上0.65質量%以下である。特に好ましくは、BaO含有量が0.25質量%以上0.5質量%以下である。BaO含有量が0.25質量%以上0.5質量%以下とすると、早期にモルタルの圧縮強さが得られ、しかも長期強度も高い(表3参照)。
 この明細書で、ポルトランドセメントクリンカーに関する記載は、その製造方法及びこのセメントクリンカーを用いたセメント組成物にもそのまま当てはまる。組成に関して%を用いる場合、原則として質量%である。組成をA%以上でB%以下のように指定した場合、下限のAと上限のBを含むものとする。
 本発明によれば、従来のセメントクリンカーよりも低温で焼成することが可能であり、かつ廃棄物使用量を増大させることが可能であり、さらにはBaOがほとんど含まれない低温焼成クリンカーと同等の易焼成およびセメント強度発現性を示すクリンカーが得られる。
 本発明のポルトランドセメントクリンカー(以下、単に「セメントクリンカー」と記す)におけるCA、CAF、CSおよびCS量は、ボーグ(Bogue)式によって求められるものである。
 ボーグ式は、係数・諸比率とならんで利用され、主要化学分析値を用いておよその主要化合物組成を算出する計算式であり、当業者には周知の式であるが、念のため、以下にボーグ式によるセメントクリンカー中の各鉱物量の求め方を記しておく。
S量  = (4.07×CaO)-(7.60×SiO)-(6.72×Al)-(1.43×Fe
S量  = (2.87×SiO)-(0.754×CS)
A量 = (2.65×Al)-(1.69×Fe
AF量 = 3.04×Fe
 また鉄率(I.M.)は、水硬率(H.M.)ケイ率(S.M.)、活動係数(A.I.)および石灰飽和度(L.S.D.)とならんで、主要化学成分値を用いて求められ、セメントクリンカー製造管理のための特性値として、回数・諸比率の一つとして利用されており、当業者には周知の係数であるが、念のため、以下に当該鉄率の計算方法を他の係数値と併せて記しておく。
水硬率(H.M.)    = CaO/(SiO+Al+Fe
ケイ酸率(S.M.)   = SiO/(Al+Fe
鉄率(I.M.)     = Al/Fe
活動係数(A.I.)   = SiO/Al
石灰飽和度(L.S.D.) = CaO/(2.8×SiO+1.2×Al+0.65×Fe
 なお、上記中の「CaO」、「SiO」、「Al」および「Fe」は、それぞれJIS R 5202「ポルトランドセメントの化学分析法」やJIS R 5 204「セメントの蛍光X線分析法」などに準拠した方法により測定できる。
 上述の通り、本発明のセメントクリンカーにおいては、CA、CAFの量はその合計が22質量%以上でなくてはならない。これらの量が22%を下回ると強度発現性などの物性の良好なセメントクリンカーを低温の温度で焼成して得ることが困難になる。より好ましい合計量は24質量%以上である。なお、後述するように高い強度発現性を得るためにはCSが60質量%以上必要である。よって、CAおよびCAFの合計量は40%が上限となる。好ましくは35質量%以下、より好ましくは32質量%以下、特に好ましくは28質量%以下である。またこの両成分のうち、CAFは、低温でも十分に焼結させることができ、かつセメントクリンカー中のf-CaO量を少なくできる点で、単独で15質量%以上存在することが好ましい。
 CS量は本発明のセメントクリンカーを用いたセメント組成物(以下、単に「セメント」)の強度発現性に対して極めて重要である。この量が60%を下回るとCAおよび CAFの合計量および後述する鉄率を所定の範囲にしても良好な強度発現性を得られない。CS量は62質量%以上であることが好ましく、63質量%以上であることが特に好ましい。なお上述したCAおよびCAFの合計量は少なくとも22%であるから、CS量の上限は78%となる。凝結の開始から終結までの時間をある程度確保するために、70質量%以下が好ましく、65質量%以下がより好ましい。
 本発明のセメントクリンカーにはさらにCSが含まれていてもよい。その量は18質量%以下で、15質量%以下であることが好ましく、また3質量%以上であることが好ましい。長期強度を得るという観点から、特に好ましくはCS量との合計量が69質量%以上となる量である。
 本発明のセメントクリンカーの鉄率(I.M.)は1.3以下である。鉄率が1.3を超えると、本発明のセメントクリンカーにおける他の要件を満足していても十分な強度発現性(より具体的には、例えばモルタル強さ発現)を得ることができない。さらに鉄率が1.3を超える場合、凝結開始から終結までの時間が長くなりすぎる傾向にあり、この点からも鉄率は1.3以下とする。より好ましい鉄率の範囲は1.0~1.3であり、特に好ましくは1.14~1.27である。
 水硬率およびケイ酸率は特に限定されるものではないが、各種物性のバランスに優れたものとするために、水硬率は好ましくは1.8~2.2、特に好ましくは1.9~2.1であり、またケイ酸率は好ましくは1.0~2.0、特に好ましくは1.1~1.7である。
 本発明のセメントクリンカーにおいて最も重要なことは、BaOの含有量を0.05~0.7質量%未満とすることである。なお、セメントクリンカー中のBaOは、一般的な蛍光X線分析装置を用いて測定を行えばよく、例えば検量線法などの定量分析により、BaOの含有量を測定することができる。
 上記組成のセメントクリンカーを一般的な原料で調製すると、該セメントクリンカーはBaOを含まないか、ほとんど含まない。それに対し、その機構は明らかでないはないが、BaOが0.05~0.7質量%未満となるように調整することにより、BaO含有量をほとんど含まない低温焼成クリンカーと同等の易焼成および強度発現性を示す。BaO含有量が0.05質量%未満の場合には、BaO含有率が高い廃棄物や副産物等の有効利用を促進するという利点を損なってしまう。逆に、BaO含有量が0.7質量%以上の場合には、易焼成が悪化するという傾向があり、好ましくない。BaO含有率が高い廃棄物や副産物をより多く使用するという観点並びに易焼成およびセメント強度発現性の観点から、好ましいBaO含有量は0.05~0.65質量%であって、より好ましいBaO含有量は0.25~0.65質量%であり、特に好ましいBaO含有量は、0.25~0.5質量%である。
 上記範囲でBaOを含む本発明のセメントクリンカーは、BaOをほとんど含まない低温焼成クリンカーと同等の易焼成およびセメント強度発現性を示すという特徴を有する。
 本発明のセメントクリンカーは、従来の一般的なポルトランドランドセメントクリンカーに比べて低温での焼成で製造できる。即ち、従来、普通ポルトランドセメントクリンカーは焼成に1450℃前後の温度を必要としたが、本発明のセメントクリンカーは1300~1400℃、例えば1300℃以上で1400℃未満、特に1300℃以上で1380℃以下、の温度で焼成して得ることが可能である。
 本発明でのセメントクリンカーを製造する方法は特に限定されることがなく、公知のセメント(クリンカー)原料を、上記各鉱物比率および係数となるように所定の割合で調製混合し、公知の方法(例えば、SPキルンやNSPキルン等)で焼成することにより容易に得ることができる。
 当該セメント原料の調製混合方法も公知の方法を適宜採用すればよい。例えば、事前に廃棄物、副産物およびその他の原料(石灰石、生石灰、消石灰等のCaO源、珪石等のSiO源、粘土等のAl源、銅カラミ、チタンカラミ等のカラミ等のFe源など)の組成を測定し、これら原料中の各成分割合から上記範囲になるように各原料の調合割合を計算し、その割合で原料を調合すればよい。
 なお、本発明のセメントクリンカーの製造に用いる原料は、従来セメントクリンカーの製造において使用される原料と同様なものが特に制限なく使用される。廃棄物、副産物等を利用することも、無論可能である。
 本発明のセメントクリンカーの製造において、廃棄物、副産物等から一種以上を使用することは、廃棄物、副産物等の有効利用を促進する観点から好ましいことである。使用可能な廃棄物・副産物をより具体的に例示すると、高炉スラグ、製鋼スラグ、非鉄鉱滓、石炭灰、下水汚泥、浄水汚泥、製紙スラッジ、建設発生土、鋳物砂、ばいじん、焼却飛灰、溶融飛灰、塩素バイパスダスト、木屑、廃白土、ボタ、廃タイヤ、貝殻、都市ごみやその焼却灰等が挙げられる(なお、これらの中には、セメント原料になるとともに熱エネルギー源となるものもある)。
 特に本発明のセメントクリンカーは、CAおよびCAFというAlをその構成元素とする鉱物を多く含む。そのため、従来のセメントクリンカーに比べて、Al分の多い廃棄物・副産物をより多く使用して製造できるという利点を有する。
 上記のような天然原料、廃棄物・副産物原料を用いてボーグ式による化合物組成や諸比率を調整すると、そのままでは焼成後に得られるセメントクリンカー中のBaO含有率は0.05%に達することがない。そのため、セメントクリンカー中のBaO含有量の調整は、上記した廃棄物、副産物や天然原料に加えてBaO原料をそれぞれ分析し、所定のBaO含有量となるように各原料の配合比率を調整すればよい。廃棄物、副産物等の有効利用を促進する観点からは、BaO含有率が高い廃棄物や副産物を従来より若干多めに使用して製造することが好ましい。BaO原料としては、硫酸バリウム、炭酸バリウム、塩化バリウム、水酸化バリウム等や、これらを含む産業廃棄物、一般廃棄物およびバリウムで汚染された土壌を使用することができ、具体的にはブラウン管パネルガラスや下水汚泥焼却灰等が挙げられる。
 ただし、クリンカーの焼成条件によっては若干のズレが生じることもあるから、最終的には焼成後のクリンカーを分析して化学組成を決定する必要がある。
 本発明のセメントクリンカーは、従来公知のセメントクリンカーと同様、石こうと共に粉砕または個別に粉砕した後、混合することにより、セメントとすることができる。当該セメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメントが挙げられる。またポルトランドセメントとする以外にも、各種混合セメントや、土壌固化材等の固化材の構成成分として使用することも可能である。
 石こうを加えてセメント組成物とする場合、使用する石こうについては、二水石こう、半水石こう、無水石こう等のセメント製造原料として公知の石こうが特に制限なく使用できる。石こうの添加量は、ポルトランドセメントの場合、そのなかのSO量が1.5~5.0質量%となるように添加することが好ましく、1.8~3質量%となるような添加量がより好ましい。上記セメントクリンカーおよび石こうの粉砕方法については、公知の技術が特に制限なく使用できる。
 また、当該セメント組成物には、高炉スラグ、シリカ質混合材、フライアッシュ、炭酸カルシウム、石灰石等の混合材や粉砕助剤を適宜添加して混合粉砕するか、粉砕後に混合材と混合してもよい。また塩素バイパスダスト等を混合してもよい。
 セメント組成物の粉末度は、特に制限されないが、ブレーン比表面積で2800~4500cm/gに調整されることが好ましい。
 さらに必要に応じ、粉砕後に高炉スラグ、フライアッシュ等を混合し、高炉スラグセメント、フライアッシュセメント等にすることも可能である。
 以下、実施例により本発明の構成および効果を説明するが、本発明はこれらの実施例に限定されるものではない。
(比較例1、2および実施例1、2)
 廃棄物を含む工業原料および試薬のBaCOを用いて、セメントクリンカー原料を調整し、1360℃で100分間焼成し、セメントクリンカーを得た。焼成後に得られたクリンカーの化学組成を表1に、f-CaO、ボーグ式による鉱物組成および係数・諸比率を表2に示す。このセメントクリンカー100質量部に対して2水石こう2.2質量部、半水石こう1.8質量部を混合し、ブレーン比表面積が3200±50cm/gとなるように粉砕し、各セメントを製造した。各セメントのモルタル圧縮強さの測定結果を表3に示す。
 なお、各種測定方法は以下の方法による。
(1)セメントクリンカー原料およびセメントクリンカーのBaO以外の化学組成の測定:JIS R 5204に準拠する蛍光X線分析法により測定した。
(2)セメントクリンカーのBaO量の測定:走査型蛍光X線分析装置(株式会社リガク製、ZSX Primus 1V)を用いて、検量線法による定量分析により測定した。
(3)f-CaOの測定:セメント協会標準試験方法I-01 遊離酸化カルシウムの定量方法に準拠して測定した。
(4)モルタル圧縮強さの測定:JIS R 5201に準拠する方法により測定した。
 比較例1は、BaOを含んでいない低温焼成クリンカーである。即ち、各実施例・比較例の結果の良否は、この比較例1の結果を基準として論じることになる。
 実施例1および2は本発明に係るものであり、BaO含有量を0.05~0.7質量%未満の範囲としたものである。f-CaOは比較例1と同様に、一般的なセメントクリンカーの易焼成の目安とされる1.00%未満の値となっており、易焼成が良好であることを示している。また、セメントの3日後、7日後、28日後のいずれのモルタル圧縮強さも比較例1と同等の値を示している。特にBaO含有量が0.31質量%の実施例1は、3日目~28日目のいずれの時点でもモルタル圧縮強さが大きく、早期にモルタル強度が得られ、しかも長期強度も高い。
 比較例2は、BaO含有量が0.7質量%以上のものであり、f-CaOは1.00質量%以上の値となっており、比較例1より易焼成が悪化している。

Claims (8)

  1.  ボーグ式により算出されたCAおよびCAFの合計量が22質量%以上、CS量が60質量%以上、鉄率(I.M.)が1.3以下であり、かつBaO含有量が0.05質量%以上で0.7質量%未満のポルトランドセメントクリンカー。
  2.  CAF量が15質量%以上であることを特徴とする、請求項1記載のポルトランドセメントクリンカー。
  3.  CSおよびCSの合計量が69質量%以上であることを特徴とする、請求項1または2記載のポルトランドセメントクリンカー。
  4.  CAおよびCAFの合計量が22質量%以上で32質量%以下、CS量が60質量%以上で70質量%以下、CS量が3質量%以上で18質量%以下、CAおよびCAFの合計量と、CS量と、CS量の合計が100質量%以下で、
     BaO含有量が0.25質量%以上0.65質量%以下であることを特徴とする、請求項1記載のポルトランドセメントクリンカー。
  5.  請求項1~4のいずれか記載のポルトランドセメントクリンカーに、石こうが加えられていることを特徴とする、セメント組成物。
  6.  高炉スラグ、シリカ質混合材、フライアッシュおよび石灰石からなる群から選ばれるいずれか1種以上の混合材を含むことを特徴とする、請求項5記載のセメント組成物。
  7.  焼成後のセメントクリンカーに関して、CaO源とSiO源、Al源、Fe源、及びBaO源を、
      ボーグ式により算出される組成が、CAおよびCAFの合計量が22質量%以上、CS量が60質量%以上となり、
      鉄率(I.M.)が1.3以下となり、
      BaO含有量が0.05~0.7質量%未満となるように配合し、
     1300℃以上1400℃未満で焼成する、ポルトランドセメントクリンカーの製造方法。
  8.  CaO源とSiO源、Al源、Fe源、及びBaO源を、
      CAおよびCAFの合計量が22質量%以上で32質量%以下、CS量が60質量%以上で70質量%以下、CS量が3質量%以上で18質量%以下、CAおよびCAFの合計量と、CS量と、CS量の合計が100質量%以下で、
      BaO含有量が0.25質量%以上0.65質量%以下となるように配合し、
     1300℃以上1380℃以下で焼成することを特徴とする、請求項7記載のポルトランドセメントクリンカーの製造方法。 
PCT/JP2023/010955 2022-03-25 2023-03-20 ポルトランドセメントクリンカー、セメント組成物及びポルトランドセメントクリンカーの製造方法 WO2023182293A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022049398 2022-03-25
JP2022-049398 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023182293A1 true WO2023182293A1 (ja) 2023-09-28

Family

ID=88101017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010955 WO2023182293A1 (ja) 2022-03-25 2023-03-20 ポルトランドセメントクリンカー、セメント組成物及びポルトランドセメントクリンカーの製造方法

Country Status (1)

Country Link
WO (1) WO2023182293A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079710A (ja) * 2009-10-08 2011-04-21 Taiheiyo Cement Corp セメント添加材及びセメント組成物
WO2012144497A1 (ja) * 2011-04-19 2012-10-26 株式会社トクヤマ セメントクリンカー、その製造方法、およびセメント組成物
JP2015067490A (ja) * 2013-09-30 2015-04-13 太平洋セメント株式会社 セメントクリンカ及びセメント
JP2016190752A (ja) * 2015-03-31 2016-11-10 住友大阪セメント株式会社 セメントクリンカ及びセメント組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079710A (ja) * 2009-10-08 2011-04-21 Taiheiyo Cement Corp セメント添加材及びセメント組成物
WO2012144497A1 (ja) * 2011-04-19 2012-10-26 株式会社トクヤマ セメントクリンカー、その製造方法、およびセメント組成物
JP2015067490A (ja) * 2013-09-30 2015-04-13 太平洋セメント株式会社 セメントクリンカ及びセメント
JP2016190752A (ja) * 2015-03-31 2016-11-10 住友大阪セメント株式会社 セメントクリンカ及びセメント組成物

Similar Documents

Publication Publication Date Title
US8864902B2 (en) Cement clinker, method of manufacturing the same and cement composition
JP5818579B2 (ja) 中性化抑制型早強セメント組成物
JP6021753B2 (ja) 混合セメント
JP5750011B2 (ja) 高炉セメント組成物
KR20120107834A (ko) 고활성 시멘트 클링커 및 고활성 시멘트
JP7218083B2 (ja) セメント組成物の製造方法
JP2010222171A (ja) セメントクリンカ、その製造方法および水硬性セメント
JP2009190904A (ja) 固化材
JP6282408B2 (ja) 水硬性組成物
JP2017095312A (ja) セメントクリンカーの製造方法
JP6516658B2 (ja) セメントクリンカー
JP6980552B2 (ja) セメント組成物
JP5932478B2 (ja) セメント組成物およびその製造方法
WO2015037594A1 (ja) ポルトランドセメントクリンカーの製造方法
WO2023182293A1 (ja) ポルトランドセメントクリンカー、セメント組成物及びポルトランドセメントクリンカーの製造方法
JP7007213B2 (ja) セメント組成物及びセメント組成物の製造方法
WO2023182292A1 (ja) ポルトランドセメントクリンカー、セメント組成物、及びポルトランドセメントクリンカーの製造方法
JP2010195601A (ja) セメント組成物
JP7436249B2 (ja) セメントクリンカー
JP7450826B2 (ja) 水硬性組成物及びその製造方法
JP2008222475A (ja) 焼成物、セメント添加材及びセメント組成物
JP2018158850A (ja) セメントクリンカーの製造方法
JP5976069B2 (ja) セメントクリンカー
JP2011079710A (ja) セメント添加材及びセメント組成物
JP2022120892A (ja) セメントクリンカー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774888

Country of ref document: EP

Kind code of ref document: A1