WO2012143996A1 - 蓄電装置 - Google Patents

蓄電装置 Download PDF

Info

Publication number
WO2012143996A1
WO2012143996A1 PCT/JP2011/059537 JP2011059537W WO2012143996A1 WO 2012143996 A1 WO2012143996 A1 WO 2012143996A1 JP 2011059537 W JP2011059537 W JP 2011059537W WO 2012143996 A1 WO2012143996 A1 WO 2012143996A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
soc
voltage
discharge
full charge
Prior art date
Application number
PCT/JP2011/059537
Other languages
English (en)
French (fr)
Inventor
洋平 河原
亮平 中尾
彰彦 工藤
江守 昭彦
大川 圭一朗
芳成 青嶋
Original Assignee
日立ビークルエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ビークルエナジー株式会社 filed Critical 日立ビークルエナジー株式会社
Priority to PCT/JP2011/059537 priority Critical patent/WO2012143996A1/ja
Priority to US14/112,455 priority patent/US9293937B2/en
Priority to JP2013510752A priority patent/JP5668136B2/ja
Publication of WO2012143996A1 publication Critical patent/WO2012143996A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage device provided with an assembled battery including a plurality of unit cells (secondary batteries) connected in series.
  • a battery management device for optimally managing a secondary battery is mounted on a power supply device, a distributed power storage device, an electric vehicle or the like using a battery pack composed of a plurality of secondary batteries.
  • a state of the secondary battery managed by the battery management device a state of charge (SOC) which is representative of how much the battery is charged up or how much the amount of charge that can be discharged remains is representative. It is an example.
  • an SOC equalization function is implemented in order to maintain SOC variation resulting from individual differences in self-discharge of secondary batteries within a certain range. .
  • the power storage device estimates the magnitude relation between the internal resistance of the plurality of single cells and the internal resistance of the plurality of single cells, and the assembled battery including the plurality of single cells connected in series.
  • the unit cell with larger internal resistance estimated by the resistance estimation means and the internal resistance estimation means, or the unit cell estimated to be larger by the internal resistance estimation means with respect to the magnitude relationship of the internal resistance, the SOC after single cell discharge A discharge amount calculating unit that calculates a low discharge amount for each unit cell, and a discharge circuit that respectively discharges a plurality of unit cells based on the discharge amount calculated by the discharge amount calculation unit.
  • voltage measurement is performed to measure the voltage before and after the current flowing to the assembled battery changes, for each of the plurality of unit cells.
  • the internal resistance estimating means estimates the magnitude relation of the internal resistance from the difference between the voltage before the current change measured by the voltage measuring unit and the voltage after the current change, for each of the plurality of unit cells. It is something like that.
  • a voltage measurement unit that measures voltages of a plurality of single cells, and current measurement that measures current values flowing to a plurality of cells connected in series.
  • the internal resistance estimating means estimates internal resistances of the plurality of unit cells based on the voltage value measured by the voltage measuring unit and the current value measured by the current measuring unit.
  • the power storage device estimates the magnitude relationship between the battery pack including the plurality of cells connected in series and the full charge capacity of the plurality of cells or the full charge capacity of the plurality of cells The smaller the full charge capacity estimated by the full charge capacity estimation means and the full charge capacity estimation means, or the single cell estimated to be smaller than the full charge capacity estimation means with respect to the full charge capacity relationship, A discharge circuit for discharging a plurality of single cells on the basis of the discharge amount calculated by the discharge amount calculation means for calculating the discharge amount for each cell so as to decrease the SOC after the single cell discharge And.
  • the voltage and the charge / discharge in a no-load state before the charge / discharge of the assembled battery is completed for each of the plurality of unit cells.
  • the fully charged capacity estimating means is provided with a voltage measurement unit for measuring the voltage of the subsequent no-load state, and the full charge capacity estimation means measures the voltage before charge and discharge measured by the voltage measurement unit and the charge and discharge for each of the plurality of unit cells. Estimate the magnitude relationship of the full charge capacity from the difference with the voltage after termination, or convert the voltage before charging and discharging to SOC for each of the multiple cells and convert the voltage after charging and discharging to SOC The magnitude relationship of the full charge capacity is estimated from the difference between the two SOCs.
  • a voltage measurement unit that measures the voltages of the plurality of single cells, and a current measurement that measures the current value flowing to the plurality of single cells connected in series.
  • the full charge capacity estimation means estimates the full charge capacities of the plurality of unit cells based on the voltage value measured by the voltage measurement section and the current value measured by the current measurement section. is there.
  • the storage unit in which the initial value of each full charge capacity of the plurality of unit cells is stored in advance is estimated by the full charge capacity estimation means Rewriting means for rewriting the corresponding initial full charge capacity stored in the storage unit to the calculated full charge capacity when the full charge capacity is smaller than the corresponding initial full charge capacity stored in the storage unit
  • the discharge amount calculation means calculates, for each unit cell, a discharge amount such that the SOC after the single cell discharge decreases as the unit battery stored in the storage unit has a larger full charge capacity. .
  • the amount of discharge is a discharge amount at which the SOC difference after single cell discharge is equal to or greater than the SOC error due to the measurement error of the voltage measurement unit. is there.
  • the discharge amount estimation means comprises a plurality of single units according to the magnitude of the voltage difference calculated by the calculation means. The batteries are classified into a plurality of groups, and the SOC after single cell discharge is set for each group, and the discharge amounts of the plurality of single cells are estimated based on the set values.
  • the amount of discharge by the discharge circuit increases as the temperature of the battery pack increases, or as the SOC of the battery pack increases. It is an enlarged one.
  • a current value flowing through a battery assembly including a plurality of cells connected in series, a voltage measurement unit that measures voltages of the plurality of cells, and a plurality of cells connected in series
  • SOC estimation means for estimating SOC based on the voltage value measured by the current measurement portion and voltage measurement portion
  • the predetermined charge amount is set such that the respective cells match at the upper limit SOC of the battery use range when charged by the predetermined charge amount. It is according to the thirteenth aspect of the present invention, in the power storage device of the eleventh aspect, the predetermined charge amount is set to be larger as the temperature of the assembled battery is higher. According to a fourteenth aspect of the present invention, in the power storage device according to any one of the first to thirteenth aspects, there is provided a rapid charge determination unit that determines whether or not charging when charging an assembled battery from an external power source is rapid charge. The discharge circuit does not discharge when the rapid charge determination unit determines that the rapid charge is performed.
  • the temperature determination is performed to determine whether the temperature rise of one or more cells constituting the assembled battery is equal to or higher than a threshold.
  • the discharge circuit does not discharge when the temperature determination unit determines that the threshold value is exceeded.
  • the allowable current value and the allowable power value when charging and discharging the assembled battery are It further comprises limiting means for limiting to smaller values.
  • the upper limit SOC or the lower limit SOC at the time of charging and discharging the assembled battery is lower. It further comprises changing means for changing to a value.
  • FIG. 6 is a diagram for describing a configuration of a unit cell control unit 121.
  • FIG. 3 is a block diagram showing a configuration of a battery pack control unit 150.
  • FIG. 6 is an equivalent circuit diagram of a unit cell 111. It is a diagram which shows the relationship between OCV and SOC. It is a diagram which shows the relationship between the temperature of a cell, and internal impedance. It is a flowchart explaining operation
  • FIG. 3 is a block diagram showing a configuration of a battery pack control unit 150. It is a figure which shows the influence at the time of the individual difference of full charge capacity arising in a cell. It is explanatory drawing of the detection method of the voltage change of several cell.
  • FIG. 7 is a diagram showing a method of determining the magnitude relation of full charge capacities of a plurality of single cells 111 and an example of control of single cell voltage and SOC by a capacity equalizing unit 155. It is a figure which shows the example of control of SOC of the cell by the capacity
  • FIG. Change of individual difference equalization execution value according to charge SOC It is a figure explaining the processing content according to the charge method. It is a figure explaining the storage method of full charge capacity. It is a figure explaining arrangement
  • FIG. It is a figure explaining the case where it divides into three groups.
  • HEV hybrid vehicle
  • PHEV plug-in hybrid vehicle
  • EV electric vehicle
  • the present invention is widely applicable not only to HEV, PHEV, and EV, but also to various power storage devices used for distributed power storage devices, railway vehicles, and the like.
  • FIG. 1 is a view showing a configuration example of a power storage device in the present embodiment, and shows a power storage device (battery system 100) of a plug-in hybrid vehicle.
  • a battery system 100 including a battery pack 110 as a storage unit is connected to an inverter 203 via a relay 201. Further, it is configured to be connectable to the charger 205 through the relay 202, and charging can be performed by the external power supply using the charger 205. In the case of HEV in which charging of the battery pack 110 is not performed using an external power supply, the relay 202 and the charger 205 are unnecessary.
  • the battery system 100 includes a battery assembly 110 including a plurality of single batteries 111, a single battery management unit 120 that manages the state of the single batteries 111, and a current detection unit 130 that detects a current flowing through the battery combination 110.
  • a voltage detection unit 140 for detecting the total voltage of the battery 110 and an assembled battery control unit 150 for controlling the assembled battery 110 are provided.
  • the battery assembly 110 is configured by electrically connecting in series a plurality of unit cells 111 capable of storing and releasing electric energy (charging and discharging of DC power).
  • a lithium ion battery having an output voltage in a range of 3.0 to 4.2 V (average output voltage: 3.6 V) is assumed as the unit cell 111.
  • the unit cell 111 in the present embodiment is a device capable of storing and discharging electricity, the details of which will be described later, but any device may be used as long as it has SOC dependency in the progress of deterioration.
  • the unit cells 111 are connected in series, but one in which the unit cells 111 are connected in parallel may be connected in series, or the unit cells 111 connected in series may be connected. It may be configured in parallel connection.
  • the unit cells 111 constituting the assembled battery 110 are grouped into a predetermined number of units when managing and controlling the state of the battery.
  • the grouped cells 111 are electrically connected in series to constitute a cell group 112.
  • the predetermined number of units may be, for example, one, four, six, etc., and may be equally divided, or may be a combined division in which four and six are combined.
  • the assembled battery 110 in order to simplify the description, in the assembled battery 110, four single cells 111 are electrically connected in series to form single cell groups 112a and 112b, and further, the single cell group 112a and The unit cell group 112 b is electrically connected in series, and a total of eight unit cells 111 are provided.
  • the required number of unit cells 112 are further connected in series to increase the voltage.
  • the unit cell management unit 120 monitors the state of the unit cells 111 that constitute the assembled battery 110.
  • the cell management unit 120 includes a plurality of cell control units 121a and 121b, the cell control unit 121a is assigned to the cell group 112a, and the cell control unit 121b is assigned to the cell group 112b. .
  • the single cell control units 121a and 121b operate by receiving power from the single cell groups 112a and 112b to which they are assigned, and monitor the state of the single cells 111 that constitute the single cell control units 121a and 121b. And control.
  • the battery pack control unit 150 and the unit cell management unit 120 transmit and receive signals by the signal communication unit 160 via the insulating element 170 represented by a photocoupler.
  • the insulating element 170 is provided because the assembled battery control unit 150 and the single cell management unit 120 have different operation power supplies.
  • the unit cell management unit 120 operates by receiving electric power from the assembled battery 110, whereas the assembled battery control unit 150 operates a battery (for example, 14V system battery) for an on-vehicle accessory (not shown). It is used as a power source.
  • the insulating element 170 may be mounted on a circuit board for realizing the function of the unit cell management unit 120, or the function of the unit cell management unit 120 and the function of the battery pack control unit 150 are realized on the same substrate. In the case where it is determined, the insulating element 170 is mounted on the same substrate.
  • the single cell control units 121a and 121b described above are connected in series in the descending order of the potential of the single cell groups 112a and 112b monitored by the single cell control units 121a and 121b.
  • the signal transmitted by the battery pack control unit 150 is input to the unit cell control unit 121 a via the signal communication unit 160 and the insulating element 170.
  • a signal communication unit 160 is similarly provided between the output of the unit cell control unit 121a and the input of the unit cell control unit 121b, and the signal communication unit 160 performs signal transmission.
  • the output of the unit cell control unit 121 b is transmitted to the input of the assembled battery control unit 150 via the insulating element 170 and the signal communication unit 160.
  • the battery pack control unit 150 and the single battery control units 121 a and 121 b are connected in a loop by the signal communication unit 160.
  • This loop connection is called daisy chain connection or beaded connection or chain connection.
  • connection and signal transmission / reception modes are used, other connection modes may be adopted if signal transmission / reception can be realized by connecting the battery pack control unit 150 and the single cell control units 121a and 121b. Is also possible.
  • the battery pack control unit 150 In the battery pack control unit 150, the battery voltage and temperature of the unit cell 111 transmitted from the unit cell management unit 120, the current value transmitted from the current detection unit 130, and the total of the battery pack 110 transmitted from the voltage detection unit 140. The voltage values are respectively input.
  • the battery pack control unit 150 is based on the above information and information stored in advance by the battery pack control unit 150 or information stored in advance by a controller installed outside the battery pack control unit 150.
  • the state detection and the like of the unit cell group 112 configured by the unit cells 111 or the assembled battery 110 configured by the unit cell group 112 are performed.
  • the information that the above-described cell management unit 120 outputs to the battery pack control unit 150 refers to the measured values of the voltage and temperature of the cell 111, and further, the cell 111 such as overcharge or overdischarge of the cell 111, and overtemperature. Abnormal information, etc.
  • the battery pack control unit 150 carries out charge / discharge control of the battery pack 110 in consideration of the content of the abnormality.
  • the information stored in advance by the controller installed outside the assembled battery control unit 150 or the assembled battery control unit 150 includes the internal resistance characteristics of the unit cells 111 and the unit cell group 112 constituting the assembled battery 110 and the assembled battery 110, There are a capacity at the time of charging, a polarization voltage, a deterioration characteristic, individual difference information, a correlation between an SOC and an open circuit voltage (OCV: Open Circuit Voltage), and the like. Furthermore, characteristic information of the unit cell management unit 120, the unit cell control units 121a and 121b constituting the unit cell management unit 120, and the assembled battery control unit 150 can be stored in advance.
  • the battery pack control unit 150 calculates the SOC of one or more cells 111, the current or power that can be input / output, the internal resistance or the full charge capacity, and the abnormal state based on the measured value and the information stored in advance. Or, calculations required to equalize the SOC or voltage of the cells 111 constituting the battery pack 110 are performed. Then, the calculation result is output to the unit cell management unit 120 or the vehicle control unit 200. Specific functions of the assembled battery control unit 150 will be described later.
  • the vehicle control unit 200 is an upper control device of the battery pack control unit 150.
  • Vehicle control unit 200 connects battery system 100 and inverter 203 via relay 201 based on information from battery pack control unit 150, or connects battery system 100 and charger 205 via relay 202. .
  • Vehicle control unit 200 can transmit a command to battery pack control unit 150 as necessary, and battery pack control unit 150 can execute processing based on a command from vehicle control unit 200.
  • the connection operation to the inverter 203 or the charger 205 via the relays 201 and 202 may be performed by the battery pack control unit 150.
  • the charger 205 is used to charge the battery assembly 110 from an external power source provided at a home or a desk (charge station).
  • the charger 205 controls the charging voltage, the charging current, and the like according to an instruction output from the vehicle control unit 200 based on the information from the battery pack control unit 150.
  • the configuration may be such that the battery pack control unit 150 directly transmits a command to the charger 205.
  • the charger 205 may be installed on the vehicle side according to the configuration of the vehicle, the performance of the charger 205, the purpose of use, the installation condition of the external power supply, etc., or may be installed outside the vehicle. . In the case of configuring a hybrid vehicle, the charger 205 is not required.
  • the battery system 100 when traveling, the battery system 100 is connected to the inverter 203 under the management of the vehicle control unit 200, and the motor generator 204 is driven by the energy stored in the battery pack 110. At the time of regeneration, the battery pack 110 is charged by the power generated by the motor generator 204.
  • the battery system 100 and the charger 205 are connected based on the information transmitted by the vehicle control unit 200. And the battery pack 110 is charged until it reaches a predetermined condition. The energy stored in the battery pack 110 by this charging is used when the vehicle is traveling next time, or used to operate electrical components and the like inside and outside the vehicle. Furthermore, if necessary, it may be released to an external power source represented by a household power source.
  • FIG. 2 is a diagram showing the configuration of the unit cell control units 121a and 121b and the periphery thereof (a part of the unit cell management unit 120).
  • the structure of single cell control part 121a, 121b becomes the same structure, and, below, describes it as single cell control part 121.
  • FIG. The single cell control unit 121 includes a bypass switch 123, a BSW drive circuit 125 that drives the bypass switch 123, and a voltage detection circuit 124 that measures battery voltages of a plurality of single cells 111 that form the single cell group 112 to be managed.
  • the control circuit 127 is connected to the voltage detection circuit 124, the BSW drive circuit 125, the power supply circuit 126, and the signal input / output circuit 128, performs various processes, and transmits and receives signals as needed. Further, the signal input / output circuit 128 can be separately mounted on a signal input circuit, a signal output circuit, and the like.
  • the unit cell group 112 corresponds to the unit cell groups 112 a and 112 b of FIG. 1.
  • the bypass resistor 122, the bypass switch 123, and the BSW drive circuit 125 provided outside the unit cell control unit 121 are used to equalize the SOC or voltage variation among the unit cells 111 constituting the assembled battery 110.
  • the BSW drive circuit 125 turns on the bypass switch 123 corresponding to the SOC or high voltage cell 111, the energy stored in the SOC or high voltage cell 111 is consumed by the bypass resistor 122, and as a result, the assembled battery
  • the SOC or voltage between the unit cells 111 in 110 is equalized.
  • the bypass switch 123 is installed inside the unit cell control unit 121, but may be installed outside the unit cell control unit 121.
  • the assembled battery control unit 150 estimates the degree of variation in SOC or voltage between the single cells 111, and calculates the amount of discharge necessary to eliminate the variation in the single cells 111 with high SOC or high voltage. Then, the battery pack control unit 150 sends a command on the operation time of the bypass switch 123 corresponding to the calculated discharge amount to the unit cell control unit 121. The command issued by the battery pack control unit 150 is received by the signal input / output circuit 128 and transmitted to the control circuit 127. The control circuit 127 operates the BSW drive circuit 125 to operate the bypass switch 123 provided corresponding to the instructed single cell 111.
  • the voltage of the cells 111 constituting the cell group 112 is detected by the voltage detection circuit 124.
  • one voltage detection circuit 124 is provided for one unit cell group 112.
  • the voltage detection circuit 124 acquires voltage information of all the unit cells 111 by detecting voltage values while switching the unit cells 111 to be detected.
  • the order of switching the unit cells 111 is arbitrary. For example, the order may be sequentially from top to bottom or from bottom to top in FIG. 2, or the order of switching may be randomly selected. Further, the order of switching may be changed according to the characteristics of the unit cell 111, the system using the unit cell 111, or the like.
  • the voltage detection circuit 124 may be provided for each unit cell 111, and further, the voltage detection circuit 124 may have a function of detecting temperature information of the unit cell 111 as a voltage.
  • a temperature sensor capable of transmitting temperature as voltage information is installed in the unit cell 111 (not shown). The timing at which the voltage or temperature is detected may be periodically started by the voltage detection circuit 124 or may be started by an instruction from the control circuit 127 or the assembled battery control unit 150.
  • the power supply circuit 126 that operates the unit cell control unit 121 is supplied with energy from the unit cell group 112 managed by the unit cell control unit 121.
  • the power supply circuit 126 switches between two modes, a normal mode and a low power consumption mode, based on a command from the control circuit 127. All when the single battery control unit 121 is equipped, such as when charging or discharging of the assembled battery 110 is performed and the management of the single battery 111 is required, or while a command is continuously transmitted from the assembled battery control unit 150
  • the power supply circuit 126 operates in the normal mode when the function of
  • the power supply circuit 126 operates in the normal mode. Transition to low power consumption mode.
  • the low power consumption mode is a state in which the energy supply from the unit cell group 112 can be reduced by operating only a part of the functions of the unit cell control unit 121 as compared with the normal mode.
  • the unit cell control unit 121 that has shifted to the low power consumption mode can shift to the normal mode by a command from the assembled battery control unit 150.
  • the control circuit 127 has a function of executing a process for managing the operation of the unit cell control unit 121.
  • the control circuit 127 receives information of the unit cell 111 detected by the voltage detection circuit 124 and a command from the assembled battery control unit 150 via the signal input / output circuit 128, and the voltage detection circuit 124, the BSW drive circuit 125, and the power supply Information is sent to circuit 126.
  • the control circuit 127 may be realized only by hardware, or a part of the functions may be implemented as software operating on the hardware.
  • the control circuit 127 If no signal is transmitted from the battery pack control unit 150 after a predetermined time has elapsed, or if an operation stop instruction is received from the battery pack control unit 150, the control circuit 127 causes the power supply circuit 126 to enter the low power consumption mode. Send a signal to make the transition. When the single battery control unit 121 is in the low power consumption mode, when the signal from the assembled battery control unit 150 is received, the control circuit 127 transmits a signal for transitioning to the normal mode to the power supply circuit 126.
  • the unit cell control unit 121 (unit cell control unit 121a or unit cell control for which the assembled battery control unit 150 targets voltage acquisition).
  • the designated single cell control unit 121 transmits the voltage information of one or more of the single cells 111 to be managed to the battery pack control unit 150.
  • the voltage request signal transmitted by the battery pack control unit 150 includes an address for specifying the single battery control unit 121 (an identification number for specifying the single battery control unit 121) and the like.
  • an address for identifying itself is stored in the storage circuit in unit cell control unit 121, and whether or not the address included in the voltage request signal points to itself is stored in unit cell control unit 121. The function to judge is implemented.
  • the control circuit 127 included in the unit cell control unit 121 confirms the address included in the voltage request signal from the battery pack control unit 150 received via the signal input / output circuit 128, and matches the address set in itself. In this case, the voltage information of the unit cell 111 managed by itself is transmitted to the battery pack control unit 150 via the signal input / output circuit 128.
  • two unit cell control units 121a and 121b are provided, so when the battery pack control unit 150 wants to periodically receive the voltage information of all the unit cells 111 constituting the battery pack 110, The voltage request signal is transmitted by alternately designating the two cell control units 121a and 121b.
  • the plurality of unit cell control units 121 simultaneously operate the unit cell 111 based on a single voltage request signal from the group battery control unit 150. May be transmitted to the assembled battery control unit 150.
  • the battery pack control unit 150 consumes the energy of the single cells 111 with high SOC or high voltage by the bypass resistor 122. , And sends a bypass switch on command to the unit cell control unit 121. As a result, the SOC or voltage of the designated single cell 111 decreases, so that the variation in SOC or voltage among the plurality of single cells 111 is improved.
  • the bypass switch on command signal for turning on the bypass switch 123 transmitted by the battery pack control unit 150 includes an address for specifying the unit cell control unit 121 for turning on the bypass switch 123, and further, bypassing An address for specifying the unit cell 111 for turning on the switch 123 is also sent as additional information.
  • the method of specifying the cells 111 for turning on the bypass switch 123 may specify each one of the cells 111 in the form of an address. A data format that can be changed to the off / on state may be adopted.
  • the control circuit 127 confirms the address included in the bypass switch on command signal from the assembled battery control unit 150 received via the signal input / output circuit 128. Then, when the address matches the address set in itself, the control circuit 127 further confirms the address or data for specifying the unit cell 111 for turning on the bypass switch 123, The bypass switch 123 of the cell 111 is changed to the on state by the BSW drive circuit 125 based on the above. By the above processing, adjustment of SOC or voltage can be realized for each of the single cells 111 managed by the single cell control unit 121.
  • the battery pack control unit 150 includes an SOC estimation unit 151, an allowable power estimation unit 152, an SOC equalization unit 153, and a resistance equalization unit 154.
  • the processing in the battery pack control unit 150 is a measurement value indicating the state in which the single battery 111 is placed, such as voltage, temperature, total voltage, measured value of current, etc. of one or more single cells 111, and environmental temperature.
  • Various information such as the unit cell 111 or the battery pack 110 recorded in advance is used.
  • FIG. 4 is an equivalent circuit diagram of the unit cell 111. As shown in FIG. The SOC estimation unit 151 estimates the SOC of the single battery 111 or the assembled battery 110.
  • 401 represents the electromotive force or open circuit voltage (OCV) of the unit cell 111
  • 402 represents the internal resistance (R)
  • 403 represents the impedance (Z)
  • 404 represents the capacitance component (C).
  • a unit cell 111 is represented by a parallel connection pair of an impedance 403 and a capacitance component 404, in which an internal resistor 402 and an electromotive force 401 are connected in series.
  • Vp OCV + I ⁇ R + Vp (1)
  • OCV CCV-I-R-Vp
  • R and Vp can be obtained from the characteristic information stored in the battery pack control unit 150.
  • the values of R and Vp can be obtained according to the SOC of the unit cell 111, the temperature, the current, and the like.
  • CCV is a voltage value during charge and discharge acquired by the voltage detection unit 140 for detecting the total voltage of the voltage detection circuit 124 and the assembled battery 110.
  • the current value I can be acquired by the current detection unit 130.
  • OCV is calculated by equation (2).
  • the SOC of the unit cell 111 is estimated from the relationship between the OCV and the SOC set in advance, as shown in FIG.
  • the CCV is the total voltage of the battery pack 110 (average voltage of the unit cell 111) obtained from the voltage detection unit 140, and R, Vp, etc. are also used. An average value of the unit cell 111 is prepared in advance.
  • SOC estimation is performed for each cell 111, it is necessary for CCV to use the voltage of the cell 111 acquired by the voltage detection circuit 124, and R and Vp take into consideration the individual differences among the cells 111 and SOC It is desirable to make an estimate.
  • allowable power estimation unit 152 Permissible power estimation unit 152
  • the allowable current value and the allowable power value mean current values or power values that can be input to and output from the battery pack 110. In general, when the SOC of the battery pack 110 is high, the current value and the power value that can be output are large, and the current value and the power value that can be input are small. Conversely, when the SOC of the battery pack 110 is low, the possible output current and power values are small, and the possible input current and power values are large.
  • the allowable current value and the allowable power value are output to a vehicle control unit 200 installed outside the battery pack control unit 150.
  • the vehicle control unit 200 performs control such that the battery pack 110 is charged and discharged within the range of the received allowable current value and the allowable power value.
  • the current value that can be input to the battery pack 110 is the allowable charging current Icmax
  • the power value is the allowable charging power Pcmax
  • the current value that the battery pack 110 can output is the allowable discharging current Idmax
  • the power value is the allowable discharging power Pdmax Do.
  • the allowable charge current Icmax and the allowable discharge current Idmax are calculated by the following equations (3) and (4).
  • Icmax (Vmax-OCV) / Rz
  • Idmax (OCV-Vmin) / Rz (4)
  • Vmax is the upper limit voltage of the battery pack 110
  • Vmin is the lower limit voltage of the battery pack 110
  • OCV is the current electromotive force of the battery pack 110
  • Rz is the current of FIG. It is an equivalent impedance of R, Z, C. As shown in FIG. 6, since Rz is large at low temperature and small at high temperature, allowable current values Icmax and Idmax are small at low temperature and large at high temperature.
  • step S 701 the SOC of all the single cells 111 is acquired from the SOC estimation unit 151.
  • the SOC estimation unit 151 acquires the voltages of all the cells 111 constituting the battery pack 110, and estimates the SOC from the acquired voltages as described above.
  • the voltage acquired here is OCV
  • SOC of all the single cells 111 can be easily obtained by using the correlation of FIG. Therefore, the voltages of all the unit cells 111 are acquired at the timing when the voltage can be acquired as the OCV, and the SOCs of all the unit cells 111 are acquired using the correlation shown in FIG.
  • the timing at which the voltage can be acquired as OCV means that the battery pack 110 is not charged or discharged before the relays 201, 202 are closed, or even if the relays 201, 202 are closed, or the charging of the battery pack 110 by the charger 205 is performed. After completion, etc.
  • the battery pack 110 is charged or discharged, when the current value is weak, it is also possible to handle the voltage of the unit cell 111 at this time as the OCV.
  • step S702 the SOC equalization unit 153 calculates the lowest SOC after obtaining the SOCs of all the single cells 111, and sets this as the target SOC of equalization in all the single cells 111.
  • step S703 the difference between the target SOC and the SOC of all the unit cells 111 is calculated, and the discharge time of each unit cell 111 using the bypass resistor 122 necessary to eliminate this difference, that is, the SOC of each unit cell 111 The discharge time required to match the target SOC with the target SOC is determined as an execution value for equalization.
  • step S704 a command to turn on the bypass switch 123 for the discharge time determined in step S703 is sent to the unit cell control unit 121.
  • the unit cell control unit 121 that has received the command turns on the bypass switch 123 for the discharge time, and causes the bypass resistor 122 to consume the energy stored in the unit cell 111.
  • the discharge time of the cell 111 by the bypass resistor 122 is the degree of deviation of the cell 111 from the minimum SOC (the SOC to be discharged-the minimum SOC), the full charge capacity of the cell 111, and the resistance value of the bypass resistor And the value of the bypass current determined based on the cell 111 voltage.
  • the SOC equalization unit 153 manages the remaining discharge time to the bypass resistor 122, and the single cell control unit 121 turns on the bypass switch 123 only for the discharge time. It may be realized by continuing sending out the command to Alternatively, the discharge time may be transmitted to the unit cell control unit 121, and the control circuit 127 of the unit cell control unit 121 may manage the remaining discharge time of each unit cell 111. As described above, by transmitting the on command of the bypass switch 123 for equalizing the voltage or SOC variation for each unit cell control unit 121, as shown in FIG. It can be done.
  • the equalization of the voltage or the SOC between the unit cells 111 is performed by setting the minimum SOC as the target SOC, but the SOC error caused by the voltage measurement error of the voltage detection circuit 124 included in the unit cell control unit 121 You may secure the margin which excludes the part for equalization equally. If it is intended to discharge only the deviation from the minimum SOC exceeding this SOC error, it is possible to carry out the equalization of the voltage and SOC of the unit cell 111 taking into consideration the SOC error of the measurement error.
  • equalization was performed with the minimum SOC as a target, but the average SOC determined from the SOCs of all the unit cells 111 is targeted, and only unit cells 111 higher than this target are targeted.
  • the above-described discharge may be performed.
  • the SOC error generated due to the voltage measurement error included in the voltage detection circuit 124 is used as a margin, and only the deviation from the average SOC exceeding this SOC error is discharged It is also possible to target.
  • the resistance equalizing unit 154 starts monitoring the temperature rise degree of the unit cell 111 when detecting a state in which the assembled battery 110 represented by connection of the relays 201 and 202 can be used, and performs the process of FIG. Start.
  • the method of monitoring the degree of temperature rise records the first temperature under the condition that the assembled battery 110 is guaranteed not to be used, such as before the relay connection, and the first temperature and the current temperature (second It can be realized by finding the difference between
  • step S901 it is determined whether the calorific value of the unit cell 111 is within a predetermined range, that is, whether the rise in battery temperature is below a threshold. If it is determined in step S901 that the calorific value is within the predetermined range, the process proceeds to step S902, and if it is determined NO, the process of FIG. 9 is ended.
  • the value of the value obtained by multiplying the current value flowing in and out of the battery by the difference between CCV and OCV and integrating may be used, or other method may be used. Also good.
  • step S902 the voltage change ( ⁇ V) of each unit cell 111 is determined as shown in equation (7).
  • the voltage value of each unit cell 111 is transmitted from the battery control unit 121 to the resistance equalizing unit 154, but when the voltage change ( ⁇ V) is obtained, the current voltage value V (t) and the voltage value among the voltage values are calculated.
  • the voltage value V (t-1) acquired one before is used.
  • the symbol N is the number (cell number) of the unit cell 111.
  • ⁇ V1 V1 (t) -V1 (t-1)
  • ⁇ V2 V2 (t) -V2 (t-1) :
  • ⁇ VN VN (t) ⁇ VN (t ⁇ 1) (7)
  • step S 903 the resistance equalizing unit 154 calculates the average value ⁇ Vave of ⁇ V of each unit cell 111 obtained by the equation (7).
  • step S904 unit cells 111 with large ⁇ V and unit cells 111 with small ⁇ V are identified based on the average value ⁇ Vave.
  • FIG. 11 shows an example of the determination result of the magnitude relation of ⁇ V.
  • a unit cell 111 with a larger ⁇ V and a unit cell 111 with a smaller ⁇ V around the ⁇ Vave are set as a group with a smaller internal resistance.
  • step S901 the process after step S901 is performed when the calorific value is within a predetermined value.
  • the resistance equalizing unit 154 determines the unit cell 111 with large ⁇ V in step S905.
  • a command to reduce the voltage or the SOC of the circuit is sent to the SOC equalization unit 153.
  • the SOC equalization unit 153 that has received the command changes the operation content in the SOC equalization unit 153. That is, for the group of unit cells 111 having a large ⁇ V (large internal resistance), resistance equalization section 154 further performs the predetermined individual shown in FIG. 12 in addition to the conventional equalization control for equalizing SOC variation.
  • a command to reduce the voltage or the SOC by the difference equalization execution value is transmitted to the SOC equalization unit 153.
  • FIG. 12 shows a control example of the SOC equalization unit 153 according to the command of the resistance equalization unit 154.
  • the operation of SOC equalization section 153 described with reference to FIGS. 7 and 8 is an equalization operation conventionally performed, and the SOC of each unit cell 111 is detected under the condition of detecting SOC variation.
  • the minimum SOC is determined, and equalization control is performed so that the SOCs of all the unit cells 111 match the minimum SOC.
  • This equalization operation is an operation when the above-mentioned command is not generated from the resistance equalization unit 154.
  • SOC equalization section 153 has a large voltage change .DELTA.V (with a large internal resistance) for unit cell 111. Discharge more.
  • FIG. 8 as shown in FIG. 12, the voltage or SOC of the unit cell 111 grouped with ⁇ V as large as compared with the unit cell 111 grouped with ⁇ V as small. Is reduced by a predetermined individual difference equalization execution value.
  • the SOC level is uniform due to SOC equalization.
  • the group of unit cells 111 having a large internal resistance has a low voltage or SOC
  • the group of unit cells 111 having a small internal resistance in comparison with it has the assembled battery 110 left in a state where the voltage or the SOC is high.
  • the battery 110 will be used. Therefore, since control is always performed in a state in which the deterioration of the internal resistance is uniformed, the progress of the deterioration of the group of the single cells 111 having a large internal resistance is suppressed as compared with the single cell 111 having a small internal resistance. As a result, the battery assembly 110 can be managed in the direction in which the difference in internal resistance between the two groups is eliminated.
  • FIG. 27 illustrates the discharge process in the case of division into three groups.
  • FIG. 17A shows the SOC of each unit cell before equalization. The internal resistance is assumed to increase in the order of “o”, “ ⁇ ”, and “x”.
  • FIG. 27 (b) shows the SOC state after SOC equalization, and the SOC equalization causes a discharge to be aligned with the SOC of the unit cell with the smallest SOC. As a result, the SOCs of all the unit cells are uniform.
  • FIG. 17A shows the SOC of each unit cell before equalization. The internal resistance is assumed to increase in the order of “o”, “ ⁇ ”, and “x”.
  • FIG. 27 (b) shows the SOC state after SOC equalization, and the SOC equalization causes a discharge to be aligned with the SOC of the unit cell with the smallest SOC. As a result, the SOCs of all the unit cells are uniform.
  • FIG. 17A shows the SOC of each unit cell before equalization. The internal resistance is assumed to increase in the
  • 27C shows the SOC state after the resistance equalization processing, that is, after the additional discharge according to the magnitude of ⁇ V is performed. Further, when additional discharge is performed according to the magnitude of ⁇ V of each unit cell without grouping, “ ⁇ ” is a distribution between the line of ⁇ V small and the line in ⁇ V in FIG. And “x” will be distributed between the line in ⁇ V and the line of ⁇ V large.
  • the individual difference equalization execution value shown in FIG. 12 is preferably determined in consideration of the measurement accuracy of the voltage detection circuit 124 provided in the single cell control unit 121. For example, if the voltage or SOC is reduced by adopting the voltage measurement error or the individual difference equalization execution value more than the SOC estimation error generated according to the measurement accuracy, the voltage or SOC is reliably reduced compared to the others. It can be determined that
  • the unit cell 111 having a high voltage or SOC is likely to reach the upper limit voltage, so the allowable charging current and the allowable charging power need to be limited to a small value.
  • the unit cell 111 with low voltage or SOC tends to reach the lower limit voltage, it is necessary to limit the allowable discharge current and the allowable discharge power to a small value.
  • step S 906 resistance equalization section 154 limits allowable current and allowable power to allowable power estimation section 152 so that charge / discharge control of assembled battery 110 can be reliably performed even if voltage or SOC variation occurs.
  • the limit command value the influence of the allowable current value and the allowable power value generated from the voltage or SOC variation generated by the command of the resistance equalizing unit 154 is obtained in advance, and this is used as the limit command during the resistance equalizing unit 154 operation. It should be a value.
  • the limit command value can be set according to various conditions such as the temperature and the deterioration condition of the unit cell 111.
  • the upper limit SOC or the lower limit SOC determined when using the single cell 111 or the assembled battery 110 may be changed to a lower value. If it is desired to reduce the influence of the restriction command value only on the discharge side of the assembled battery 110, the upper limit SOC or the lower limit SOC may be changed to the higher side, contrary to the charge side. As described above, by changing the SOC range in use of the single battery 111 or the assembled battery 110 low or high, the influence of the restriction command value can be reduced even on the charging or discharging side alone.
  • ⁇ V of each unit cell 111 is monitored based on the processing content of the resistance equalizing unit 154 of FIG. 9. And, when the difference of the calculated ⁇ V, ie, the difference of the internal resistance becomes small and becomes within the allowable range, the voltage or SOC of one or more of the unit cells 111 used in the state of high voltage or SOC Is reduced by operating the SOC equalization unit 153 to equalize the voltage or the SOC. If a difference occurs in ⁇ V again, the differences in ⁇ V are equalized based on the process of FIG.
  • the resistance equalization process includes the calculation of ⁇ V and the discharge process based on the ⁇ V. If the battery pack 110 is being used, ⁇ V can be determined, but in order to determine ⁇ V more accurately, it is preferable to obtain ⁇ V when the battery state is more stable, For example, it is preferable that the vehicle be activated. In addition, even when the discharge process based on ⁇ V is performed, it is not always necessary to calculate ⁇ V at that time. For example, a method may be employed in which the discharge process is performed using ⁇ V obtained at the time of starting the vehicle, and when a new ⁇ V is acquired next, the discharge process is performed with that ⁇ V thereafter.
  • the resistance equalizing unit 154 indirectly detects the magnitude relationship of the internal resistance based on the magnitude relationship of ⁇ V, and determines the magnitude relationship of the SOC of the single battery 111 based on the magnitude relationship of ⁇ V. Then, by utilizing the function of the SOC equalizing means 153, the voltage or the SOC is controlled so that the individual difference in the internal resistance is alleviated. That is, a cell having a small internal resistance increases the voltage or SOC, and a cell having a large internal resistance decreases the voltage or SOC. Thereby, since the SOC difference corresponding to the performance difference of the plurality of unit cells 111 connected in series is provided to each unit cell 111, the battery pack 110 is always held in the direction to eliminate the performance difference. It is possible to realize the battery pack 110 in which the deterioration state is more uniform, and to facilitate the optimum management of the battery pack 110.
  • the magnitude relationship of the internal resistance is determined based on the magnitude relationship of ⁇ V.
  • the calculation of R ⁇ V / ⁇ I is performed to obtain each single unit. It is also possible to obtain the internal resistance value in the battery 111. If the internal resistance value is used, the magnitude relationship of the internal resistance can be grasped directly, and the above-described processing according to the magnitude of the internal resistance can be similarly performed. However, it is necessary to be careful about the simultaneousness of current value detection and voltage value detection.
  • the battery pack 110 is SOC-managed to maintain a central SOC located between the upper limit SOC for limiting charging and the lower limit SOC for limiting discharging. Ru. Therefore, there is a high probability that the SOC at the start and stop of the power storage device will be the central SOC. Therefore, there is a high probability that the condition that the SOC equalization unit 153 detects the SOC variation and transmits an SOC equalization command for improving this to the unit cell control unit 121 also becomes the central SOC. Therefore, as shown in FIG. 13, as a result, the possibility that the SOCs among the single cells 111 are most equalized in the vicinity of the central SOC is high.
  • FIG. 13 shows how the SOC changes with respect to two cells 1 (high resistance) and 2 (low resistance) connected in series.
  • the full charge capacity of the unit cell 111 which is deteriorated and the internal resistance is rising is also decreasing, and the full charge capacity of the unit cell 111 whose internal resistance is maintained is also maintained. Is high. Since the cells 111 are connected in series, the current value during charge and discharge is the same, and the change in SOC due to charge and discharge is a single cell in which the full charge capacity is maintained in the case of the single cell 111 having a reduced full charge capacity. It becomes larger than the battery 111.
  • the SOC is most equalized near the central SOC, but when the SOC changes from the central SOC due to the charge / discharge due to the individual difference of the full charge capacity, the SOC variation again occurs. It is happening.
  • the SOC increases on the basis of the central SOC, the SOC of the unit cell 1 (large internal resistance) is high, and the SOC of the unit cell 2 (small internal resistance) is low.
  • the SOC decreases based on the central SOC, the SOC of the unit cell 1 is low, and the SOC of the unit cell 2 is high.
  • the resistance equalizing unit 154 in order to reliably equalize the individual differences of the internal resistance described above, as shown in FIG. 14A, within the SOC use range from the upper limit SOC to the lower limit SOC, The SOC of the unit cell 111 having a large internal resistance is controlled to be always a low value with respect to the SOC of the unit cell 111 having a small internal resistance.
  • control of the resistance equalizing unit 154 is shown by taking as an example the case where two unit cells of the unit cell 1 and the unit cell 2 are connected in series. It is assumed that the full charge capacity of the unit cell 1 is Qmax1, the unit cell 2 is Qmax2, and Qmax1 ⁇ Qmax2.
  • the SOC of the unit cells 1 and 2 detected when the storage device of FIG. 1 is activated that is, the amount of charge electricity to each unit cell 1 and 2 after activation of the storage device is The SOC at the time of 0 is SOC1a and SOC2a, respectively.
  • SOC variation is detected such that SOC1a is higher than SOC2a, and the SOC equalization unit 153 sends a discharge command so that SOC1a matches SOC2a so that both SOCs match.
  • the SOC of the unit cell 1 has reached the upper limit SOC, but the unit cell 2 has not reached the upper limit SOC. Further, although the SOC of the unit cell 1 exceeds the upper limit SOC with the charge amount Q2 (SOC1b), the SOC of the unit cell 2 has reached the upper limit SOC (SOC2b). If it is possible to match the SOCs of the unit cells 1 and 2 at this upper limit SOC, as shown in FIG. 14A, the SOC of the unit cell (unit cell 1) having a large internal resistance is compared to the unit cell (unit cell) having a small internal resistance. Battery 2) It can be managed to be always smaller than SOC.
  • the SOC of each unit cell 111 is determined, and the resistance equalization unit 154 matches the SOC of each unit cell 111 when charging up to the upper limit SOC.
  • the instruction is sent to SOC equalizing unit 153.
  • the operation of the resistance equalizing unit 154 will be described by taking, as an example, a case where N unit cells 111 are connected in series.
  • the full charge capacity (Qmax1, Qmax2,..., QmaxN) of each single cell 111 is used to express the upper limit SOC as shown in the equation (8).
  • Q 1, Q 2,..., QN are the amounts of charge electricity of the unit cells 111 required to reach the upper limit SOC.
  • a full charge capacity can calculate the value for every single battery 111 if Formula (11) mentioned later is used.
  • Upper limit SOC SOC1a + 100 ⁇ Q1 / Qmax1
  • Upper limit SOC SOC2a + 100 ⁇ Q2 / Qmax2 :
  • Upper limit SOC SOCNa + 100 ⁇ QN / QmaxN (8)
  • the unknown value in the equation (8) is only the charge amount of charge (Q1, Q2,..., QN) of each unit cell 111 required to reach the upper limit SOC. Therefore, each unit cell 111 is allowed to reach the upper limit SOC by substituting the upper limit SOC, the SOC of each unit cell 111 that can be detected when the storage device in FIG. 1 is activated, and the full charge capacity of each unit cell 111 in equation (8).
  • the amount of charge electricity Q1 to QN required for the purpose is determined. Then, as shown in the equation (9), the maximum value QM in the amount of electricity is extracted. In the example shown in FIG. 14B, Q2 corresponds to this QM.
  • QM MAX (Q1, Q2, ..., QN) (9)
  • the resistance equalization unit 154 performs the above-described prediction, and sends a discharge amount corresponding to the difference between the predicted SOC of each unit cell 111 and the lowest SOC of the predicted SOC to the SOC equalization unit 153 as a discharge command.
  • the SOC is evenly distributed to eliminate the SOC variation expected when the upper limit SOC is reached. Can be implemented. Therefore, as shown in FIG. 14A, the SOC (voltage) of the unit cell 111 having a large internal resistance (small full charge capacity) is smaller than the unit cell 111 having a small internal resistance (large full charge capacity). It can be managed to be always low in the SOC use range from the upper limit SOC to the lower limit SOC.
  • FIGS. 15 and 16 are diagrams for explaining the operation of the resistance equalizing unit 154 in the third embodiment. 16 shows the cells 1 and 2 connected in series as in the case of FIGS. 13 and 14. The cell 1 has a large internal resistance, and the cell 2 has a small internal resistance. It is. In the process of step S 906 shown in FIG. 9, a limit command is issued to allowable power estimation unit 152 corresponding to the voltage or SOC variation generated by resistance equalization unit 154 to equalize individual differences in internal resistance. did.
  • Rz of the unit cell 111 changes in accordance with the temperature, and Rz is large at low temperatures and Rz is small at high temperatures.
  • the allowable current value and the allowable power value calculated using Rz as in equations (3), (4), (5), and (6) tend to be small at low temperatures and to be large at high temperatures.
  • the allowable current value and the allowable power value limit command by the above-described resistance equalization unit 154 further decrease the allowable current value and the allowable power value.
  • the impact on the performance of the battery 110 is large. On the other hand, since sufficient input / output performance can be secured on the high temperature side, the influence of the limit command is reduced.
  • the individual difference equalization execution value used by the resistance equalization unit 154 is implemented as a function or a map according to the temperature.
  • FIG. 15 shows the change in the individual difference equalization execution value according to the temperature.
  • the individual difference equalization execution value is increased as the temperature rises. I did it.
  • the temperature here is the environmental temperature, it is possible to substitute the temperature of the unit cell 111 immediately after the power storage device of FIG. 1 has been stopped for a long time and restarted as the environmental temperature.
  • the resistance equalization unit 154 transmits a command to the SOC equalization unit 153 so that the SOCs among the cells 111 are equalized at the upper limit SOC.
  • a command is sent to SOC equalizing unit 153 so that the SOC is equalized at the upper limit SOC at high temperature, and SOC equalization unit 153 is equalized at the central SOC as the temperature decreases. Sends a command to the (see (a) to (c) of FIG. 16).
  • Equalization SOC (temperature) SOC1a + 100 ⁇ Q1 / Qmax1
  • Equalization SOC (temperature) SOC2a + 100 ⁇ Q2 / Qmax2
  • Equalization SOC (temperature) SOCNa + 100 ⁇ QN / Qmax N (10)
  • the quantity of electricity Q1, Q2,..., QN reaching the equalization SOC (temperature) of each unit cell 111 is obtained from the formula (10), and the maximum charge quantity QM is obtained by the formula (9).
  • the command is sent to the SOC equalization unit 153 so that the SOC is most matched at the equalization SOC (temperature).
  • the SOC variation by the resistance equalizing unit 154 is not generated at a low temperature, there is no limit amount to the allowable power estimation unit 152 by the resistance equalizing unit 154, and the input / output performance of the assembled battery 110 Does not decline.
  • the amount of SOC variation generated by the resistance equalizing unit 154 can be changed according to the temperature of the unit cell 111, and a decrease in input / output performance of the assembled battery 110 can be prevented as much as possible. As a result, it is possible to perform battery management with less influence on the input / output performance of the assembled battery 110 while equalizing individual differences in internal resistances of the cells 111 constituting the assembled battery 110.
  • the assembled battery control unit 150 of the present embodiment includes a capacity equalizing unit 155 in place of the resistance equalizing unit 154 shown in FIG. 3.
  • the configuration other than the capacity equalizing unit 155 is the same as that of the battery pack control unit 150 of FIG. 3.
  • Capacity equalizing unit 155 detects a difference in full charge capacity among the single cells, and operates SOC equalization unit 153 in order to equalize the capacity difference.
  • FIG. 17 shows a voltage change at the time of discharge when single cells 1 and single cells 2 having different full charge capacities are connected in series. Even when the same amount of electricity is discharged, the voltage drop of cell 1 (small full charge capacity) is larger than the voltage drop of single cell 2 (large full charge capacity). Based on the difference in voltage drop when the same amount of electricity is discharged, the capacity equalizing unit 155 grasps the magnitude relationship of the full charge capacity of the plurality of cells 111 connected in series. That is, it is determined that the full charge capacity is small for the unit cell 111 (unit cell 1) whose voltage is greatly reduced, and the full charge capacity is large for the unit cell 111 (unit cell 2) whose voltage is small.
  • the voltage difference ( ⁇ V1 or ⁇ V2) shown in FIG. 19 may be used. That is, the difference between the voltage (OCV) before discharging (or charging) the cell 111 and the voltage (OCV) after discharging (or charging) the cell 111 is defined as ⁇ V, and the magnitude relationship of ⁇ V is satisfied. There is a correlation with the magnitude relationship of charge capacity.
  • the capacity equalizing unit 155 can grasp the magnitude relationship of the full charge capacity more reliably.
  • the SOC difference between the SOC before charge and discharge and the SOC after charge and discharge may be used.
  • FIG. 20 shows a procedure of detecting the SOC difference for grasping the magnitude relation of the full charge capacity, which is performed by the capacity equalizing unit 155.
  • step S1801 the power storage device of FIG. 1 is activated.
  • step S1802 the voltage of each unit cell 111 is acquired before closing the relay 201 or 202, and the SOC is estimated from the voltage (OCV) of each unit cell 111 based on the relationship shown in FIG.
  • step S1803 the relay 201 or 202 is closed and the battery pack 110 is used. That is, the battery pack 110 is charged and discharged.
  • step S1804 it is determined whether the battery pack 110 is in a no-load state. For example, when the relay 201 or 202 is opened again, it is desirable that the relay 201 or 202 is opened again and a minute current which may be determined to be no load when a sufficient time for the polarization voltage Vp to disappear is detected. It is determined that there is no load when charging and discharging in If it is determined in step S1804 that there is no load, the process proceeds to step S1805, the voltage of each unit cell 111 is acquired again, and the SOC is estimated from the voltage of each unit cell 111 based on the relationship of FIG. In step S1806, the SOC difference between the SOC detected in step S1802 and the SOC acquired in step S1805 is calculated. The magnitude relationship of the SOC difference is regarded as the magnitude relationship of the full charge capacity.
  • the capacity equalizing unit 155 indirectly grasps the magnitude relationship of the full charge capacity based on the voltage difference and the SOC difference, it is possible to directly grasp the magnitude relationship of the full charge capacity as follows. good. That is, based on the integrated value ( ⁇ Idt) of the current calculated during use of the battery pack 110 (during charging and discharging) and the SOC difference ( ⁇ SOC1, ⁇ SOC2,..., ⁇ SOCN) obtained for each unit cell 111 between them.
  • the full charge capacity (Qmax1, Qmax2,..., QmaxN) of each single battery 111 is obtained as shown in equation (11), and the magnitude relationship of the full charge capacity is grasped directly by comparing them.
  • Qmax1 100 ⁇ ⁇ Idt / ⁇ SOC1
  • Qmax2 100 ⁇ ⁇ Idt / ⁇ SOC2
  • Qmax N 100 ⁇ ⁇ Idt / ⁇ SOCN (11)
  • the capacity equalizing unit 155 determines the magnitude relationship of the full charge capacity by comparing the ⁇ V, the ⁇ SOC, or the Qmax described above.
  • FIG. 21 (a) shows an example in the case of determining the magnitude relation of the full charge capacity by ⁇ SOC
  • FIG. 21 (b) is a diagram for explaining the operation of the SOC equalization unit 153 performed after the determination. It is.
  • FIG. 21A it is determined that the single battery 111 with ⁇ SOC larger than the average ⁇ SOC is smaller than the full charge capacity, and the single battery 111 with ⁇ SOC smaller than the average ⁇ SOC is determined as the large full charge capacity. .
  • the magnitude relationship of the full charge capacity is determined by comparing ⁇ V.
  • the minimum value and the maximum value of ⁇ SOC are detected, and the widths of the minimum value and the maximum value are divided into arbitrary numbers and grouped, and a single battery having a smaller capacity as it belongs to a group closer to the maximum value. It can also be determined as 111. Such grouping can also be applied to the case of FIG. Furthermore, without grouping, determination of capacity may be performed for each of the single cells 111, and an equalization execution value may be set.
  • the capacity equalizing unit 155 of the unit cell 111 ( ⁇ SOC is small) of which the voltage or SOC of the unit cell 111 ( ⁇ SOC is large) that is determined to be small is shown in FIG.
  • An instruction to reduce the voltage or the SOC is sent to SOC equalizing unit 153.
  • the SOC equalization unit 153 operates to match the voltage or the SOC between the unit cells 111, the execution can be made to match the voltage or the SOC when the command from the capacity equalization unit 155 is received.
  • An additional execution value (for example, a predetermined time for turning on the bypass switch 123 extra) is added to the value (time to turn on the bypass switch 123, etc.) only for the unit cell 111 determined to have a small capacity.
  • the battery pack 110 When the power storage device of FIG. 1 is used for PHEV or EV, the battery pack 110 is connected to the charger 205 via the relay 202, and the battery pack 110 is charged by the charger 205 to near full charge. Since the battery pack 110 is left at a high SOC near full charge until the vehicle is started, the vehicle capacity is left unchanged by executing the voltage or SOC variation among the single cells 111 by the capacity equalizing unit 155 described above. In the inside, the equalization effect of the said capacity
  • SOC equalization section 153 performs the SOC equalization process of FIG. 7 at the time of high SOC after charging assembled battery 110 or at the time of high SOC such as before the vehicle travels after charging, and thus the high SOC At the same time, equalization control is performed so that the voltage or SOC between the unit cells 111 is matched. Further, capacity equalizing unit 155 makes SOC uniform so that single battery 111 with large ⁇ SOC (small full charge capacity) has a lower voltage or SOC distribution than single battery 111 with small ⁇ SOC (large full charge capacity). The control unit 153 sends a command. By such an operation, the positional relationship of the voltage or the SOC as shown in FIG. 21B can be realized at the time of high SOC, so that the effect of capacity equalization can be expected during the leaving period.
  • the SOC equalization unit 153 executes the processing content of FIG. 7 near the high SOC, and sends to the SOC equalization unit 153 a command according to the magnitude relationship of the full charge capacity transmitted by the capacity equalization unit 155. By transmitting, the positional relationship of the voltage or SOC shown in FIG. 21 (b) is realized.
  • the capacity equalizing unit 155 uses the equations (8) and (9) to set the upper limit SOC.
  • the execution value of the cell 111 may be corrected so that the SOC is lower than that of the cell 111 with a small ⁇ SOC (a large full charge capacity), and the corrected value may be transmitted to the SOC equalization unit 153.
  • the SOC equalization unit 153 operates the bypass switch 123 of the single cell control unit 121 using the execution value corrected by the capacity equalization unit 155, the position of the voltage or SOC of FIG. Relationships can be realized. In this way, even if the processing of FIG. 7 can not be executed at a high SOC such as near full charge, for example, the power storage device of FIG. 1 is frequently activated at a central SOC or low SOC. Even when the high SOC is reached, the positional relationship between the voltage and the SOC as shown in FIG. 21 (b) can be realized.
  • FIG. 22 shows the SOC management method in the case where voltage or SOC variation occurs between the unit cells 111 at a predetermined execution value in order to equalize the full charge capacity.
  • 22 shows the cells 1 and 2 connected in series as in the case of FIGS. 13 and 14. The cell 1 has a small full charge capacity and the cell 2 has a full charge capacity. Is large. In the PHEV and the EV, the battery pack 110 is charged to near the full charge by the charger 205.
  • a cell 111 (a cell with a large ⁇ SOC, ie, a cell with a small full charge capacity) with a low voltage or SOC after the voltage or SOC is dispersed at a predetermined execution value is the upper limit at the time of charging.
  • Charge control is performed to match the SOC.
  • a single battery 111 with a high voltage or SOC (a single battery with a small ⁇ SOC, ie, a large full charge capacity) is used beyond the upper limit SOC, a normal usage that does not exceed the upper limit SOC Deterioration is accelerated more and, as a result, individual differences in full charge capacity among single cells are equalized.
  • FIG. 22 (b) shows the case where charge control is applied in which charging is performed until the average SOC of the unit cell 111 arranged low in voltage or SOC and the unit cell 111 arranged high in voltage or SOC reaches the upper limit SOC. Is shown.
  • the degree to which the single battery 111 arranged with a high voltage or SOC exceeds the upper limit SOC is smaller than in the case of FIG. 22A, and the progress of deterioration is slower than in the case of FIG. Therefore, the unit cell 111 arranged with a low voltage or SOC is not charged up to the upper limit SOC, so the deterioration is hardly progressed, and as a result, individual differences in full charge capacity are equalized.
  • charge control is performed on the unit cell 111 in which the voltage or SOC is high to reach the upper limit SOC, and the unit cell 111 in which the voltage or SOC is low is significantly lower than the upper limit SOC.
  • the unit cell 111 with high voltage or SOC is deteriorated as usual, while the unit cell 111 with low voltage or SOC is deteriorated more than usual, resulting in an individual having a full charge capacity. The difference is equalized.
  • deterioration of the unit cell 111 arranged with a high voltage or SOC accelerates more than usual, and unit cells 111 arranged with a low voltage or SOC degrade as usual. Management to reduce the life span.
  • the battery pack 110 is used by charging up to the upper limit SOC the single battery 111 in which the full charge capacity is small and the voltage or SOC is arranged relatively low, the capacity performance is excellent compared to other examples.
  • the single battery 111 with a large full charge capacity is The deterioration progresses as described above, and the deterioration of the single battery 111 arranged with a low voltage or SOC and a small full charge capacity is suppressed.
  • the capacity performance is inferior to that of the other examples because of the usage method in which the single battery 111 arranged with a low voltage or SOC and having a small full charge capacity is not charged up to the upper limit SOC.
  • FIG. 22A As a method of selecting the above three types of management methods, for example, when it is desired to secure the capacity of the assembled battery 110 to perform EV travel to a long distance, FIG. 22A is employed. Further, when importance is not placed on the capacity of the battery pack 110 for near field EV travel, FIG. 22C is adopted, and the life performance of the battery pack 110 is increased accordingly. As described above, it is preferable that switching be possible according to the usage of the battery pack 110.
  • the switching method is realized by providing a switching switch on the screen of the car navigation system or at any other place in the vehicle compartment.
  • the capacity performance of the unit cell 111 constituting the assembled battery 110 is reduced at low temperature, and the capacity performance is improved at high temperature.
  • the influence of the capacity performance to the assembled battery 110 by varying the voltage or SOC of the unit cell 111 at any of the above-described execution values is particularly significant at low temperatures. In this case, it is possible to solve the problem by varying the execution value for varying the voltage or the SOC according to the environmental temperature in which the battery assembly 110 is placed.
  • FIG. 23 shows an example of the execution value of the voltage or SOC variation for equalizing the full charge capacity.
  • the execution value is changed according to the SOC that has been charged and reached, or according to the environmental temperature. Therefore, the assembled battery 110 can be managed so that the full charge capacity among the cells 111 is equalized without reducing the capacity performance of the assembled battery 110 as much as possible.
  • FIG. 24 is a diagram for explaining another example of switching the process content of the capacity equalizing unit 155 according to the SOC reached at the time of charging.
  • the case of charging with a relatively large current called quick charging (FIG. 24 (a)) and the case of charging with a relatively small current such as household power supply Can be considered (FIG. 24 (b)).
  • quick charging there is a high possibility that the SOC value will be low compared to the SOC reached and reached by the household power supply.
  • a relatively small current such as a household power supply
  • the capacity equalizing unit 155 is provided with a first threshold set higher than the SOC reached by rapid charging, and when the battery pack 110 is charged up to the upper limit when the SOC exceeding the first threshold is reached. to decide. Then, the capacity equalizing unit 155 sends a command to the SOC equalizing means 153 to generate the aforementioned voltage or SOC variation. If the battery pack 110 is charged to the upper limit, then the second threshold is reached, and charging of the battery pack 110 ends. On the other hand, FIG. 24A shows the case where it is determined that the SOC does not exceed the first threshold and rapid charging is performed, and in this case, the capacity equalizing unit 155 is not operated.
  • the method of identifying the type of charge according to the SOC reached after charge and switching the operation of the capacity equalizing unit 155 has been described.
  • a threshold may be provided for the SOC change, and the capacity equalizing unit 155 may be operated in the case of the SOC change below the threshold.
  • whether the rapid charging or the general charging is performed may be distinguished according to the magnitude of the charging current, and it may be determined whether to operate the capacity equalizing unit 155 or not.
  • the capacity equalizing unit 155 of the present embodiment described above detects the magnitude relation of the full charge capacity of the unit cell 111 by ⁇ V or ⁇ SOC, and sends a command to the SOC equalization section 153 based on the magnitude relation of the full charge capacity. By doing this, we will equalize the full charge capacity.
  • the degree of progress of the deterioration of the cell 111 is different. , To eliminate individual differences in full charge capacity.
  • the processing content of the capacity equalizing unit 155 described in the fourth embodiment is changed.
  • the magnitude relationship of the full charge capacity is grasped based on the difference in voltage in the no-load state of each unit cell 111 or the difference in SOC or the calculation result of the full charge capacity.
  • the SOC equalization unit 153 By operating the SOC equalization unit 153 based on the magnitude relationship of the charge capacity, the voltage or the SOC of the single battery 111 was managed so as to equalize the difference between the full charge capacities.
  • the value of the full charge capacity is measured at the time of production of the unit cell 111 or the like, and this is stored as a table in the storage means in the assembled battery control unit 150.
  • FIG. 25 is an example of a table of measured full charge capacities.
  • the full charge capacity measured according to the arrangement of unit cells 111 (the horizontal direction is the X axis and the depth is the Y axis) when constructing the assembled battery 110 is stored in the storage means as a table Qmax (M, N) .
  • the capacity equalizing unit 155 does not measure the magnitude relation of the full charge capacity, but obtains the full charge capacity value by searching the table Qmax (M, N) to grasp the magnitude relation of the full charge capacity. .
  • the determination as to whether or not the difference in the full charge capacity has been eliminated by the arrangement of the voltages or the SOCs in the capacity equalizing unit 155 can be made by actual measurement of the magnitude relation of the full charge capacity described above.
  • the full charge capacity may be calculated using the above-described equation (11), and the contents of the table may be rewritten. That is, at first, the table Qmax (M, N) is used to grasp the magnitude relation of the full charge capacity to perform an operation to eliminate the difference between the full charge capacities, and to determine whether the difference is eliminated. Is calculated, the table Qmax (M, N) is updated with the calculated Qmax.
  • FIG. 25 shows an example in which the full charge capacity is mounted in a two-dimensional table
  • the single cells 111 when the single cells 111 are connected in series, for example, 100 single cells 111 are connected in series to configure the assembled battery 110.
  • it may be implemented as a one-dimensional table such as a series number of 1st, ..., 100th, etc.
  • a method may be implemented as a function instead of implementing the full charge capacity as a table .
  • the mounting method of the full charge capacity value described in the fifth embodiment is changed.
  • the value of the measured full charge capacity is stored and used in the assembled battery control unit 150, but in the present embodiment, the assembled battery is arranged by arranging the unit cell 111 according to the value of the full charge capacity.
  • Configure 110 That is, the battery pack 110 can be applied from the initial state when the full charge capacity of the single cells 111 varies. Then, the capacity equalizing unit 155 grasps the magnitude relationship of the full charge capacity from the place where the unit cell 111 is disposed.
  • FIG. 26 shows an example of an arrangement method of the cells 111 according to the value of the full charge capacity in the present embodiment.
  • the battery pack 110 is configured by arranging the single cells 111 in order from the ones with the smallest full charge capacity (Qmax), and arranging the single cells 111 such that the full charge capacity is the largest at the end. .
  • the result of actually measuring the full charge capacity for each unit cell 111 is divided into ranks with a predetermined step width (here, Qmax is small, medium and large), and one row is the rank of full charge capacity Are arranged so as to coincide with each other.
  • Capacity equalization section 155 grasps magnitude relation of full charge capacity from arrangement of unit cell 111, in order to make voltage SOC variation in order to eliminate the difference of full charge capacity, order to SOC equalization section 153 send.
  • the determination of whether or not the difference in the full charge capacity has been eliminated by the voltage or SOC variation realized by the capacity equalizing unit 155 can be made, for example, by actual measurement of the magnitude relation of the full charge capacity described above.
  • the present invention it is possible to execute processing for flexibly eliminating individual differences in performance according to the size relationship of the performance and the state in which the battery is placed.
  • the management method of the voltage or SOC of the unit cell 111 of the power storage device is widely applicable to the field in which the unit cell 111 is connected in series.
  • the present invention is not limited to this configuration, and the present invention includes the cells 111 connected in series. Can be applied. For example, even if a plurality of battery groups connected in parallel are connected in series, or even a battery in which a plurality of unit cells are connected in series is connected in parallel, And the above control may be applied.
  • the SOC equalization unit 153 is operated based on the magnitude relationship of the internal resistance. However, according to the detection of the magnitude relationship of the full charge capacity, the first to third The operation of SOC equalization section 153 described in the embodiment may be realized. Furthermore, in the fourth to sixth embodiments, the SOC equalization unit 153 is operated based on the magnitude relationship of the full charge capacity, but the magnitude relationship of the internal resistance is similarly detected, and the fourth to sixth according to this. It is also possible to realize the operation of the SOC equalization unit 153 described in the sixth embodiment. The present invention is not limited to the above embodiment as long as the features of the present invention are not impaired. Other embodiments considered within the scope of the technical idea of the present invention are also included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 蓄電装置100は、直列接続された複数の単電池111を含む組電池110と、複数の単電池の内部抵抗または複数の単電池111の内部抵抗の大小関係を推定する組電池制御部150と、組電池制御部150で推定された内部抵抗が大きい単電池111ほど、または、内部抵抗の大小関係に関して組電池制御部150により大きいと推定された単電池111ほど、単電池放電後のSOCが低くなるような放電量を単電池111毎に算出する組電池制御部150と、組電池制御部150で算出された放電量に基づいて、複数の単電池をそれぞれ放電する単電池制御部121a,121bと、を備える。

Description

蓄電装置
 本発明は、直列接続された複数の単電池(二次電池)を含む組電池を備えた蓄電装置に関する。
 複数の二次電池で構成される組電池を用いた電源装置、分散型電力貯蔵装置、電気自動車等では、二次電池を最適に管理する電池管理装置が搭載されている。電池管理装置が管理する二次電池の状態としては、どの程度まで充電されているか、あるいはどの程度放電可能な電荷量が残っているのかを示す充電状態(State Of Charge:SOC)が代表的な例である。
 複数個の二次電池を直列接続して用いる電源装置の場合、二次電池の自己放電の個体差等から生じるSOCばらつきをある一定の範囲に維持するために、SOC均等化機能が実装される。又、二次電池の内部抵抗や満充電容量にも個体差があり、それらは環境状況や使用状況によっても変化する。組電池を構成する複数の二次電池間でこれらの性能が大きくばらつくと、最も劣化した二次電池によって組電池の寿命が決まってしまう。
 そこで、充放電時の各電池の満充電容量に対する残容量割合を、充放電時の温度が高い電池ほど低くすることで、性能を均一に保つような方法が提案されている(例えば、特許文献1参照)。
日本国特開2007-242400号公報
 ところで、温度以外の要因で内部抵抗や満充電容量等の個体差が生じている場合、温度差に基づいて残容量割合を制御する上述した装置では、温度がほぼ同じであれば劣化もほぼ同じと判断される。このため、温度による影響以外での個体差の解消という点では適切に機能しないおそれがある。
 本発明の第1の態様によると、蓄電装置は、直列接続された複数の単電池を含む組電池と、複数の単電池の内部抵抗または複数の単電池の内部抵抗の大小関係を推定する内部抵抗推定手段と、内部抵抗推定手段で推定された内部抵抗が大きい単電池ほど、または、内部抵抗の大小関係に関して内部抵抗推定手段により大きいと推定された単電池ほど、単電池放電後のSOCが低くなるような放電量を単電池毎に算出する放電量算出手段と、放電量算出手段で算出された放電量に基づいて、複数の単電池をそれぞれ放電する放電回路と、を備えた。
 本発明の第2の態様によると、第1の態様の蓄電装置において、複数の単電池のそれぞれに対して、組電池に流れる電流が変化する前と変化した後の電圧を各々測定する電圧測定部を備え、内部抵抗推定手段は、複数の単電池のそれぞれに対して、電圧測定部で測定された電流変化前の電圧と電流変化後の電圧との差から内部抵抗の大小関係を推定するようにしたものである。
 本発明の第3の態様によると、第1の態様の蓄電装置において、複数の単電池の電圧を測定する電圧測定部と、直列接続された複数の単電池に流れる電流値を測定する電流測定部と、を備え、内部抵抗推定手段は、電圧測定部で測定された電圧値および電流測定部で測定された電流値に基づいて、複数の単電池の内部抵抗をそれぞれ推定する。
 本発明の第4の態様によると、蓄電装置は、直列接続された複数の単電池を含む組電池と、複数の単電池の満充電容量または複数の単電池の満充電容量の大小関係を推定する満充電容量推定手段と、満充電容量推定手段で推定された満充電容量が小さい単電池ほど、または、満充電容量の大小関係に関して満充電容量推定手段により小さいと推定された単電池ほど、単電池放電後のSOCが低くなるような放電量を単電池毎に算出する放電量算出手段と、放電量算出手段で算出された放電量に基づいて、複数の単電池をそれぞれ放電する放電回路と、を備えた。
 本発明の第5の態様によると、第4の態様の蓄電装置において、複数の単電池のそれぞれに対して、組電池の充放電が行われる前の無負荷状態の電圧および充放電が終了した後の無負荷状態の電圧を各々の測定する電圧測定部を備え、満充電容量推定手段は、複数の単電池のそれぞれに対して、電圧測定部で測定された充放電前の電圧と充放電終了後の電圧との差から満充電容量の大小関係を推定、若しくは複数の単電池のそれぞれに対して、充放電前の電圧をSOCに変換して充放電終了後の電圧をSOCに変換して2つのSOC差から満充電容量の大小関係を推定するようにしたものである。
 本発明の第6の態様によると、第4の態様の蓄電装置において、複数の単電池の電圧を測定する電圧測定部と、直列接続された複数の単電池に流れる電流値を測定する電流測定部と、を備え、満充電容量推定手段は、電圧測定部で測定された電圧値および電流測定部で測定された電流値に基づいて、複数の単電池の満充電容量をそれぞれ推定するものである。
 本発明の第7の態様によると、第6の態様の蓄電装置において、複数の単電池の各満充電容量の初期値が予め記憶された記憶部を備え、満充電容量推定手段により推定された満充電容量が記憶部に記憶されている対応する初期満充電容量より小さい場合に、記憶部に記憶されている対応する初期満充電容量を、算出された満充電容量に書き換える書き換え手段と、を備え、放電量算出手段は、記憶部に記憶されている満充電容量が大きい単電池ほど、単電池放電後のSOCが低くなるような放電量を単電池毎に算出するようにしたものである。
 本発明の第8の態様によると、第2または5の態様の蓄電装置において、放電量は、単電池放電後のSOC差が電圧測定部の測定誤差に起因するSOC誤差以上となる放電量である。
 本発明の第9の態様によると、第2、5および8のいずれか一の態様の蓄電装置において、放電量推定手段は、算出手段で算出された電圧差の大きさに応じて複数の単電池を複数群に分類するとともに、各群毎に単電池放電後のSOCを設定し、それらの設定値に基づいて複数の単電池の放電量を推定するようにしたものである。
 本発明の第10の態様によると、第1乃至9のいずれか一の態様の蓄電装置において、放電回路による放電量を、組電池の温度が高温になるほど、または、組電池のSOCが高いほど大きくしたものである。
 本発明の第11の態様によると、直列接続された複数の単電池を含む組電池と、複数の単電池の電圧を測定する電圧測定部と、直列接続された複数の単電池に流れる電流値を測定する電流測定部と、電圧測定部で測定された電圧値に基づいてSOCを推定するSOC推定手段と、SOC推定手段によるSOC推定時から所定充電量だけ複数の単電池を各々充電したときの到達SOCをそれぞれ推定する到達SOC推定手段と、電圧測定部で測定された電圧値および電流測定部で測定された電流値に基づいて、複数の単電池の満充電容量をそれぞれ推定する満充電容量推定手段と、SOC推定手段で推定されたSOC、到達SOC推定手段で推定された到達SOCおよび満充電容量推定手で推定された満充電容量に基づいて、複数の単電池の各々を所定充電量だけ充電したときに各単電池のSOCが一致するような放電量をそれぞれ算出する放電量算出手段と、を備えた。
 本発明の第12の態様によると、第11の態様の蓄電装置において、所定充電量は、該所定充電量だけ充電したときに各単電池が電池使用範囲の上限SOCで一致するように設定されているものである。
 本発明の第13の態様によると、第11の態様の蓄電装置において、組電池の温度が高いほど、所定充電量を大きく設定するようにしたものである。
 本発明の第14の態様によると、第1乃至13のいずれか一の態様の蓄電装置において、組電池を外部電源から充電する際の充電が急速充電か否かを判定する急速充電判定部を備え、放電回路は、急速充電判定部が急速充電と判定すると放電を行わない。
 本発明の第15の態様によると、第1乃至13のいずれか一の態様の蓄電装置において、組電池を構成する一つ以上の単電池の温度上昇が閾値以上か否かを判定する温度判定部を備え、放電回路は、温度判定部が閾値以上と判定すると放電を行わない。
 本発明の第16の態様によると、第1乃至13のいずれか一の態様の蓄電装置において、放電回路による放電が行われると、組電池を充放電する際の許容電流値および許容電力値をより小さな値に制限する制限手段を、さらに備えたものである。
 本発明の第17の態様によると、第1乃至13のいずれか一の態様の蓄電装置において、放電回路による放電が行われると、組電池を充放電する際の上限SOC若しくは下限SOCをより低い値に変更する変更手段を、さらに備えたものである。
 本発明によれば、内部抵抗や満充電容量といった単電池の性能に個体差が発生した場合、これを均等化でき、複数備える単電池の管理を容易に行うことができる。
本実施形態における蓄電装置の構成例を示す図である。 単電池制御部121の構成を説明するための図である。 組電池制御部150の構成を示すブロック図である。 単電池111の等価回路図である。 OCVとSOCの関係を示す線図である。 単電池の温度と内部インピーダンスとの関係を示す線図である。 SOC均等化部の動作を説明するフローチャートである。 均等化の効果を説明する図である。 抵抗均等化部の動作を説明するフローチャートである。 直列接続された単電池の電圧変化の検知方法を説明する図である。 ΔVの大小関係の判定結果の一例を示す図である。 抵抗均等化部154の指令に応じた、SOC均等化部153の制御例を示す図である。 従来のSOC管理を説明する図である。 第2の実施の形態におけるSOC管理を説明する図である。 SOC50%付近における個体差均等化実行値を説明する図である。 第3の実施の形態におけるSOC管理を説明する図である。 組電池制御部150の構成を示すブロック図である。 単電池に満充電容量の個体差が生じた場合の影響を示す図である。 複数の単電池の電圧変化の検知方法の説明図である。 容量均等化部155が行う、満充電容量の大小関係を把握するためのSOC差の検出手順を示すフローチャートである。 複数の単電池111の満充電容量の大小関係判定方法と、容量均等化部155による単電池電圧やSOCの制御例を示す図である。 容量均等化部155による単電池のSOCの制御例を示す図である。 充電SOCに応じた個体差均等化実行値の変化 充電方法に応じた処理内容を説明する図である。 満充電容量の記憶方法を説明する図である。 組電池110内における性能に応じた単電池111の配置を説明する図である。 3つのグループに分ける場合を説明する図である。
 以下、図を参照して本発明を実施するための形態について説明する。本実施形態では、本発明を、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)、電気自動車(EV)の電源を構成する蓄電装置に適用した場合を例に説明する。尚、本発明はHEVやPHEVやEVに限らず、分散型電力貯蔵装置や、鉄道車両などに用いられる各種蓄電装置に対して幅広く適用可能である。
-第1の実施の形態-
 本発明の第1実施形態を図1から図12に基づいて説明する。図1は、本実施形態における蓄電装置の構成例を示す図であり、プラグインハイブリッド自動車の蓄電装置(電池システム100)を示す。蓄電手段としての組電池110を備える電池システム100は、リレー201を介してインバータ203に接続される。また、リレー202を介して充電器205に接続可能な構成となっており、充電器205を用いて外部電源により充電を行うことができる。なお、外部電源を用いて組電池110の充電を行わないHEVの場合では、リレー202及び充電器205が不要である。
 まず、電池システム100の構成について説明する。電池システム100は、複数の単電池111から構成される組電池110と、単電池111の状態を管理する単電池管理部120と、組電池110に流れる電流を検知する電流検知部130と、組電池110の総電圧を検知する電圧検知部140と、組電池110の制御を行う組電池制御部150と、を備えている。
 組電池110は、電気エネルギーの蓄積及び放出(直流電力の充放電)が可能な複数の単電池111を電気的に直列に接続して構成される。ここでは、単電池111として、出力電圧が3.0~4.2V(平均出力電圧:3.6V)の範囲に電圧を持つリチウムイオン電池を想定している。ただし、本実施形態における単電池111としては、電気を蓄え放電可能なデバイスであって、詳細は後述するが、劣化の進行にSOC依存性があるものであればなんでも良い。また、図1に示す組電池110では、単電池111を直列に接続して構成しているが、単電池111を並列接続したものを直列接続しても良いし、直列接続した単電池111を並列接続して構成しても良い。
 組電池110を構成する単電池111は、電池の状態の管理・制御を行う上で、所定の単位数にグループ分けが行われている。グループ分けされた単電池111は、電気的に直列に接続され、単電池群112を構成する。所定の単位数は、例えば1個、4個、6個・・・というような数で等区分とする場合もあれば、4個と6個とを組み合わせるような複合区分とする場合もある。
 本実施の形態では、説明を簡単にするために、組電池110は、4個の単電池111を電気的に直列に接続して単電池群112a及び112bを構成し、さらに単電池群112aと単電池群112bとを電気的に直列に接続し、合計8個の単電池111を備えるものとした。ただし、実際は必要な数だけ単電池群112が更に直列に接続されて高電圧化される。
 単電池管理部120は、組電池110を構成する単電池111の状態を監視する。単電池管理部120は複数の単電池制御部121a、121bから構成されており、単電池制御部121aは単電池群112aに割り当てられ、単電池制御部121bは単電池群112bに割り当てられている。各単電池制御部121a、121bは、各々が割り当てられている単電池群112a,112bからの電力を受けて動作し、各単電池制御部121a、121bを構成する各単電池111の状態を監視及び制御する。
 組電池制御部150と単電池管理部120は、フォトカプラに代表される絶縁素子170を介して信号通信部160により信号の送受信を行う。絶縁素子170を設けるのは、組電池制御部150と単電池管理部120とで、動作電源が異なるためである。本実施形態においては、単電池管理部120は組電池110から電力を受けて動作するのに対して、組電池制御部150は、不図示の車載補機用のバッテリ(例えば14V系バッテリ)を電源として用いている。絶縁素子170は、単電池管理部120の機能を実現するための回路基板上に実装しても良いし、単電池管理部120の機能と組電池制御部150の機能とが同一基板上で実現された場合には、前記同一基板上に絶縁素子170が実装される。
 上述した単電池制御部121a,121bは、それぞれが監視する単電池群112a,112bの電位の高い順に従って直列に接続されている。組電池制御部150が送信した信号は、信号通信部160および絶縁素子170を介して単電池制御部121aに入力される。単電池制御部121aの出力と単電池制御部121bの入力との間にも、同様に信号通信部160が設けられ、信号通信部160により信号の伝送が行われる。単電池制御部121bの出力は、絶縁素子170および信号通信部160を介して、組電池制御部150の入力に伝送される。
 このように、組電池制御部150と単電池制御部121a,121bとは、信号通信部160によりループ状に接続されている。このループ接続は、デイジーチェーン接続あるいは数珠繋ぎ接続もしくは芋づる式接続と呼ばれる。本実施形態では上記接続及び信号の送受信形態をとっているが、組電池制御部150と単電池制御部121a,121bとを接続して信号の送受信を実現できれば、他の接続形態を採用することも可能である。
 組電池制御部150には、単電池管理部120から送信される単電池111の電池電圧や温度、電流検知部130から送信される電流値、電圧検知部140から送信される組電池110の総電圧値が、それぞれ入力される。組電池制御部150は、これらの情報と、組電池制御部150が予め記憶する情報若しくは組電池制御部150の外部に設置されたコントローラが予め記憶する情報等とに基づいて、単電池111若しくは単電池111で構成される単電池群112、若しくは単電池群112で構成される組電池110の状態検知などを行う。
 上述した単電池管理部120が組電池制御部150に出力する情報とは、単電池111の電圧や温度の計測値、更には単電池111の過充電もしくは過放電、過温度などの単電池111の異常情報等である。この場合、組電池制御部150は前記異常内容も踏まえて組電池110の充放電制御を実施する。
 組電池制御部150若しくは組電池制御部150の外部に設置されたコントローラが予め記憶する情報には、組電池110や組電池110を構成する単電池111や単電池群112の内部抵抗特性、満充電時の容量、分極電圧、劣化特性、個体差情報、SOCと開回路電圧(OCV:Open Circuit Voltage)の相関関係などがある。更に、単電池管理部120や、単電池管理部120を構成する単電池制御部121a,121bや、組電池制御部150などの特性情報についても、予め記憶させることができる。
 組電池制御部150は前述した計測値や予め記憶した情報に基づいて、一つ以上の単電池111のSOCや入出力可能な電流や電力、内部抵抗や満充電容量、異常状態の演算を行ったり、組電池110を構成する単電池111のSOC若しくは電圧を均等化するために必要な演算を行う。そして、演算結果を単電池管理部120や車両制御部200へと出力する。組電池制御部150の具体的な機能は後述する。
 車両制御部200は、組電池制御部150の上位の制御装置である。車両制御部200は、組電池制御部150からの情報に基づいてリレー201を介して電池システム100とインバータ203とを接続し、若しくはリレー202を介して電池システム100と充電器205とを接続する。なお、車両制御部200は必要に応じて組電池制御部150に対して指令を発信することができ、組電池制御部150は車両制御部200からの指令に基づいて処理を実行することができる。更に、リレー201、202を介したインバータ203若しくは充電器205への接続動作は、組電池制御部150によって実施されても良いものとする。
 充電器205は、家庭若しくは電気スタンド(充電ステーション)に設けられた外部の電源から組電池110を充電する際に用いられる。本実施形態では、充電器205は、組電池制御部150からの情報に基づいて車両制御部200から出力される指令により充電電圧や充電電流などの制御を行うものとする。ただし、充電器205への指令を、組電池制御部150が直接送信するような構成でも良い。また、充電器205は車両の構成、充電器205の性能、使用目的、外部の電源の設置条件などに応じて車両側に設置しても良いし、車両の外部に設置することも可能である。なお、ハイブリッド自動車を構成する場合は、充電器205は不要な構成となる。
 図1の車両システムにおいて、走行時には、車両制御部200の管理のもと、電池システム100がインバータ203に接続され、組電池110に蓄えられているエネルギーによりモータジェネレータ204が駆動される。回生時には、モータジェネレータ204の発電電力により組電池110が充電される。
 また、図1の蓄電装置を備える車両が家庭用若しくは電気スタンドに代表される外部の電源と接続された際は、車両制御部200が発信する情報に基づき電池システム100と充電器205とが接続され、組電池110が所定の条件になるまで充電される。この充電によって組電池110に蓄えられたエネルギーは、次回の車両走行時に利用されたり、車両内外の電装品等を動作させるために利用されたりする。さらには、、必要に応じては家庭用の電源に代表される外部電源へ放出する場合もある。
 以下では、本実施形態における単電池管理部120に設けられた単電池制御部121a,121bの詳細な構成を説明した後、単電池制御部121a,121bと組電池制御部150の詳細な処理内容を説明する。
 図2は、単電池制御部121a,121bおよびその周辺の構成(単電池管理部120の一部)を示す図である。なお、単電池制御部121a,121bの構成は同一構成となっており、以下では単電池制御部121と記載する。単電池制御部121は、バイパススイッチ123と、バイパススイッチ123を駆動するBSW駆動回路125と、管理対象の単電池群112を構成する複数の単電池111の電池電圧を計測する電圧検出回路124と、単電池制御部121を動作させるための電源回路126と、組電池制御部150からの情報をもとに単電池制御部121の制御を行う制御回路127と、組電池制御部150または隣り合う単電池制御部121との信号の送受信を行う信号入出力回路128とを備えている。
 制御回路127は、電圧検出回路124とBSW駆動回路125と電源回路126と信号入出力回路128とに接続され、各種処理を行い、必要に応じて信号の送受信を行う。また、信号入出力回路128は信号入力回路、信号出力回路など分けて実装することもできる。なお、単電池群112は、図1の単電池群112a,112bに対応している。
 単電池制御部121の外部に設けられたバイパス抵抗122、バイパススイッチ123およびBSW駆動回路125は、組電池110を構成する単電池111間のSOC若しくは電圧ばらつきを均等化するために使用される。SOC若しくは電圧が高い単電池111に該当するバイパススイッチ123をBSW駆動回路125がオンにすることで、SOC若しくは電圧が高い単電池111が蓄えたエネルギーがバイパス抵抗122で消費され、結果として組電池110内の単電池111間のSOC若しくは電圧が均等化される。本実施形態では、バイパススイッチ123を単電池制御部121の内部に設置しているが、単電池制御部121の外部に設置しても良い。
 組電池制御部150は、単電池111間のSOC若しくは電圧のばらつき度合いを推定し、SOC若しくは電圧が高い単電池111に関して前記ばらつきを解消するために必要な放電量を計算する。そして、組電池制御部150は、計算された放電量に対応するバイパススイッチ123の動作時間に関する指令を単電池制御部121に発信する。組電池制御部150が発信した指令は、信号入出力回路128により受信され制御回路127まで伝達される。制御回路127は、BSW駆動回路125を動作させて、指令された単電池111に対応して設けられたバイパススイッチ123を動作させる。
 単電池群112を構成する単電池111の電圧は、電圧検出回路124によって検出される。本実施形態では、一つの単電池群112に対して一つの電圧検出回路124を備える構成としている。電圧検出回路124は、検出対象とする単電池111を切り替えながら電圧値を検出することで、全ての単電池111の電圧情報を取得する。単電池111を切り替える順番は任意であり、例えば、図2の上から下若しくは下から上へと順次行っても良いし、切替る順番をローテーション若しくは切替る順番をランダムに選択しても良い。また、単電池111の特性や単電池111を用いるシステムなどに応じて、切替る順番を変更しても良い。
 なお、電圧検出回路124を単電池111毎に備えても良いし、さらには、電圧検出回路124が単電池111の温度情報を電圧として検出する機能を備えるものであっても良い。この場合、単電池111には温度を電圧情報として送信可能な温度センサーが設置される(図示せず)。電圧若しくは温度の検出を行うタイミングは、電圧検出回路124が定期的に開始しても良いし、制御回路127若しくは組電池制御部150からの指令によって開始しても良い。
 単電池制御部121を動作させる電源回路126は、単電池制御部121の管理対象である単電池群112からエネルギーが供給される。電源回路126は制御回路127からの指令に基づき、通常モードと低消費電力モードの2つのモードに切替る。組電池110の充電や放電が行われていて単電池111の管理が必要な場合や、組電池制御部150から指令が発信され続けている間などのように、単電池制御部121が備える全ての機能が必要な場合には、電源回路126は通常モードとして動作する。
 一方、組電池110の未使用時や、組電池制御部150から所定の時間以上指令が発信されない場合、若しくは組電池制御部150から動作停止命令を受信した場合には、電源回路126は通常モードから低消費電力モードに移行する。低消費電力モードは、単電池制御部121の機能の一部だけ動作させることで、通常モードと比較して単電池群112からのエネルギー供給を小さくできる状態である。なお、低消費電力モードに移行した単電池制御部121は、組電池制御部150からの指令によって通常モードに移行できる。
 制御回路127は、単電池制御部121の動作を管理するための処理を実行する機能を有するものである。制御回路127は、電圧検出回路124が検出した単電池111の情報や、信号入出力回路128を経由した組電池制御部150からの指令を受信し、電圧検出回路124、BSW駆動回路125および電源回路126に対して情報を送信する。制御回路127はハードウェアだけで実現しても良く、機能の一部をハードウェア上で動作するソフトウェアとして実装しても良い。
 所定の時間が経過しても組電池制御部150から信号が発信されない場合、若しくは組電池制御部150から動作停止命令を受信した場合には、制御回路127は電源回路126に低消費電力モードに移行させる信号を発信する。なお、単電池制御部121が低消費電力モードの場合に、組電池制御部150からの信号を受信すると、制御回路127は電源回路126に通常モードに移行する信号を発信する。
 組電池制御部150が単電池制御部121から単電池111の電圧情報を取得する際は、組電池制御部150が電圧取得対象とする単電池制御部121(単電池制御部121aまたは単電池制御部121b)を指定する。指定された単電池制御部121は、管理対象である単電池111の一つ以上の電圧情報を組電池制御部150に送信する。この場合、組電池制御部150が送信する電圧要求信号には、単電池制御部121を指定するためのアドレス(単電池制御部121を特定するための識別番号)などが含まれる。また、単電池制御部121内の記憶回路には自身を特定するためのアドレスが記憶されており、単電池制御部121には、電圧要求信号に含まれるアドレスが自身を指しているか否かを判断するための機能が実装されている。
 単電池制御部121が備える制御回路127は、信号入出力回路128を経由して受信した組電池制御部150からの電圧要求信号に含まれるアドレスを確認し、自身に設定されているアドレスと一致した場合は、自身が管理する単電池111の電圧情報を信号入出力回路128を経由して組電池制御部150に送信する。図1に示す構成では2つの単電池制御部121a,121bが備えられているため、組電池制御部150が定期的に組電池110を構成する全ての単電池111の電圧情報を受信したい場合は、2つの単電池制御部121a,121bを交互に指定する形で電圧要求信号を送信する。なお、組電池110を構成する単電池111の電圧を取得する他の方法として、組電池制御部150からの一回の電圧要求信号に基づいて、複数の単電池制御部121がいっせいに単電池111の電圧を組電池制御部150に送信するようにしても良い。
 単電池制御部121が管理する複数の単電池111間にSOC若しくは電圧ばらつきが発生した場合、組電池制御部150は、SOC若しくは電圧が高い単電池111のエネルギーをバイパス抵抗122で消費させるために、バイパススイッチオン指令を単電池制御部121に発信する。これにより、指定された単電池111のSOC若しくは電圧が低下するため、複数の単電池111間のSOC若しくは電圧のばらつきが改善される。
 組電池制御部150が送信するバイパススイッチ123をオンするためのバイパススイッチオン指令信号には、バイパススイッチ123をオン状態とする単電池制御部121を指定するためのアドレスが含まれ、さらに、バイパススイッチ123をオン状態とする単電池111を指定するためのアドレスも追加情報として送付される。なお、バイパススイッチ123をオン状態とする単電池111の指定方法は、単電池111の一つ一つをアドレス形態で指定しても良いし、また、単電池群112単位で一括にバイパススイッチ123をオフ・オン状態に変更可能なデータ形式を採用しても良い。
 制御回路127は、信号入出力回路128を経由して受信した組電池制御部150からのバイパススイッチオン指令信号に含まれるアドレスを確認する。そして、そのアドレスが自身に設定されているアドレスと一致した場合には、制御回路127は、更に、バイパススイッチ123をオン状態にする単電池111を指定するためのアドレス若しくはデータを確認し、これに基づき単電池111のバイパススイッチ123をBSW駆動回路125でオン状態に変更する。以上の処理によって、単電池制御部121が管理する単電池111の一つ一つに対してSOC若しくは電圧の調整が実現できる。
 次に、図3を参照して、組電池制御部150の詳細な処理内容を説明する。組電池制御部150は、SOC推定部151と、許容電力推定部152と、SOC均等化部153と、抵抗均等化部154とを備えている。なお、組電池制御部150における処理には、一つ以上の単電池111の電圧や温度、総電圧、電流などの計測値、環境温度などの単電池111が置かれている状態を示す計測値、予め記録した単電池111若しくは組電池110等の、各種情報が用いられる。
(SOC推定部151)
 図4は単電池111の等価回路図である。SOC推定部151は単電池111若しくは組電池110のSOC推定を行う。図4において、401は単電池111の起電力すなわち開回路電圧(OCV)を表し、402は内部抵抗(R)を表し、403はインピーダンス(Z)を表し、404はキャパシタンス成分(C)を表す。単電池111は、インピーダンス403とキャパシタンス成分404との並列接続対に、内部抵抗402および起電力401を直列接続したもので表される。この単電池111に電流Iを印加した場合の単電池111の端子間電圧(CCV)は、次式(1)で表される。式(1)において、Vpは分極電圧であり、ZとCの並列接続対の電圧に相当する。
    CCV=OCV+I・R+Vp  …(1)
 OCVはSOCの演算に用いられるが、単電池111が充放電されている状況では、OCVを直接測定することは不可能である。そのため、次式(2)で示すように、CCVからIRドロップとVpとを差し引くことにより、OCVを算出する。
    OCV=CCV-I・R-Vp  …(2)
 式(2)において、RとVpは組電池制御部150に格納された特性情報から求めることができる。RとVpの値は、単電池111のSOCや温度、電流などに応じて求められる。一方、CCVは、電圧検出回路124や組電池110の総電圧を検出するための電圧検知部140が取得した充放電中の電圧値である。電流値Iは、電流検知部130で取得可能である。このCCVとIとRとVpとを用いて、式(2)でOCVを算出する。そして、図5に示すような、予め設定されたOCVとSOCとの関係から、単電池111のSOCを推定する。
 なお、組電池110の平均的なSOCを推定する場合、CCVは電圧検知部140から取得される組電池110の総電圧(単電池111の平均的な電圧)が用いられ、RやVpなども単電池111の平均的な値を予め用意する。単電池111毎にSOC推定を行う場合は、CCVは電圧検出回路124が取得した単電池111の電圧を用いる必要があり、また、RやVpは単電池111間の個体差も考慮してSOC推定を行うのが望ましい。
(許容電力推定部152)
 次に、許容電力推定部152について説明する。許容電流値および許容電力値は、組電池110が入出力可能な電流値または電力値を意味する。一般的に、組電池110のSOCが高い場合は、出力可能な電流値および電力値は大きく、入力可能な電流値および電力値は小さくなる。逆に、組電池110のSOCが低い場合には、出力可能な電流値および電力値は小さく、入力可能な電流値および電力値は大きくなる。この許容電流値および許容電力値は、組電池制御部150の外部に設置された車両制御部200に出力される。
 車両制御部200は、受信した許容電流値および許容電力値の範囲内で組電池110が充放電されるように制御を行う。以下では、組電池110が入力可能な電流値を許容充電電流Icmax、電力値を許容充電電力Pcmaxとし、組電池110が出力可能な電流値を許容放電電流Idmax、電力値を許容放電電力Pdmaxとする。許容充電電流Icmax、許容放電電流Idmaxは次式(3)、(4)により計算される。
   Icmax=(Vmax-OCV)/Rz   …(3)
   Idmax=(OCV-Vmin)/Rz   …(4)
 式(3)、(4)において、Vmaxは組電池110の上限電圧、Vminは組電池110の下限電圧、OCVは組電池110の現在の起電力、Rzは現在の組電池110における図4のR、Z、Cの等価インピーダンスである。図6に示すように、Rzは低温で大きく、高温で小さくなるため、許容電流値Icmax及びIdmaxは低温で小さく、高温で大きくなる。
 式(3)で表される許容充電電流Icmaxに、その許容充電電流Icmaxが得られる時の組電池110の電圧Vchgを乗算することで、式(5)に示すように許容充電電力Pcmaxが得られる。また、式(4)で表される許容放電電流Idmaxに、その許容放電電流Idmaxが得られる時の組電池110の電圧Vdisを乗算することで、式(6)に示すように許容放電電力Pdmaxが得られる。このIcmax若しくはPcmax、Idmax若しくはPdmaxを車両制御部200に送信することで、Vmax及びVminの範囲から逸脱しないように組電池110の充放電制御が行われる。
   Pcmax=Vchg×Icmax       …(5)
   Pdmax=Vdis×Idmax       …(6)
(SOC均等化部153)
 次に、図7のフローチャートを用いて、単電池111の電圧やSOCばらつきを改善するためのSOC均等化部153の動作を説明する。ステップS701では、SOC推定部151から全単電池111のSOCを取得する。なお、SOC推定部151では、組電池110を構成する単電池111全ての電圧を取得し、取得した電圧から上述したようにSOCを推定する。
 なお、ここで取得される電圧がOCVであれば、図5の相関関係を用いることで、容易に全単電池111のSOCを得ることができる。そこで、OCVとして電圧を取得できるタイミングで全単電池111の電圧を取得し、図5の相関関係を用いて全単電池111のSOCを得るものとする。OCVとして電圧を取得できるタイミングとは、リレー201、202が閉じる前、若しくはリレー201、202が閉じられていても組電池110が充放電されない状況下、若しくは充電器205による組電池110の充電が完了した後などがある。なお、組電池110を充電若しくは放電しているが、その電流値が微弱な場合はこのときの単電池111の電圧をOCVとして扱うことも可能である。
 ステップS702では、SOC均等化部153は、全単電池111のSOCを得た後に最低SOCを算出し、これを全単電池111における均等化の目標SOCとして設定する。ステップS703では、目標SOCと全単電池111のSOCとの差を計算し、この差を解消するために必要なバイパス抵抗122を用いた各単電池111の放電時間、すなわち各単電池111のSOCを目標SOCと一致させるために必要な放電時間を、均等化のための実行値として求める。
 ステップS704では、ステップS703で求めた放電時間だけバイパススイッチ123をオン状態とする指令を、単電池制御部121に発信する。その指令を受信した単電池制御部121は、前記放電時間だけバイパススイッチ123をオン状態とし、単電池111が蓄えたエネルギーをバイパス抵抗122で消費させる。バイパス抵抗122による単電池111の放電時間は、単電池111の最低SOCからの外れ度合い(放電対象のSOC-基準とする最低SOC)と、単電池111の満充電容量と、バイパス抵抗の抵抗値および単電池111電圧に基づいて決定されるバイパス電流の値とで定まる。
 なお、SOC均等化部153による電圧若しくはSOC均等化動作は、SOC均等化部153がバイパス抵抗122への残り放電時間を管理し、放電時間だけ単電池制御部121にバイパススイッチ123をオン状態とする指令を発信し続けて実現しても良い。また、前記放電時間を単電池制御部121に送信し、単電池制御部121が備える制御回路127が各単電池111の残り放電時間を管理する方法でも良い。このように、単電池制御部121毎に、電圧若しくはSOCばらつきを均等化するためのバイパススイッチ123のオン指令を発信することで、図8に示すように単電池111間の電圧若しくはSOCを一致させることができる。
 上述した説明では、単電池111間の電圧若しくはSOCの均等化を、最低SOCを目標SOCとして設定して行ったが、単電池制御部121が備える電圧検出回路124の電圧測定誤差から生じるSOC誤差分は均等化対象外とするマージンを確保しても良い。このSOC誤差分を超える最低SOCからの外れのみ放電対象とすれば、測定誤差分のSOC誤差を考慮に入れた単電池111の電圧、SOC均等化が実施可能になる。
 また、単電池111の電圧若しくはSOC均等化する際に、最低SOCを目標として均等化を行ったが、全単電池111のSOCから求められる平均SOCを目標とし、この目標より高い単電池111のみ前述した放電を実施するようにしても良い。また、全単電池111の中で最高SOCと最低SOCから求められる平均SOCを目標として、これを超える単電池111だけ放電を実施することも可能である。さらに、前述と同様に、これらSOC平均値を用いた場合でも、電圧検出回路124に含まれる電圧測定誤差により発生するSOC誤差分をマージンとし、このSOC誤差分を超える平均SOCからの外れのみ放電対象とすることも可能である。
(抵抗均等化部154)
 次に組電池制御部150に設けられた抵抗均等化部154の動作内容について、図9のフローチャートを用いて説明する。抵抗均等化部154は、リレー201、202の接続等に代表される組電池110が使用され得る状況を検知した場合、単電池111の温度上昇度合いの監視を開始するとともに、図9の処理を開始する。温度上昇度合いの監視方法は、リレー接続前などの組電池110が未使用と保証される状況下で第一の温度を記録し、リレー接続後において前記第一の温度と現在の温度(第二の温度)との差を求めることで実現できる。
 ステップS901では、単電池111の発熱量が所定以内か否か、すなわち、電池温度の上昇が閾値を下回っているか否かを判定する。ステップS901において発熱量が所定以内と判定されるとステップS902へ進み、NOと判定されると図9の処理を終了する。なお、電池温度の上昇を検知する方法としては、電池に出入りする電流値にCCVとOCVとの差を乗算して積分した値の大きさで検知しても良いし、その他の方法を用いても良い。
 ステップS902では、各単電池111の電圧変化(ΔV)を式(7)に示すようにそれぞれ求める。抵抗均等化部154には電池制御部121から各単電池111の電圧値が送信されるが、電圧変化(ΔV)を求める際はその電圧値の内、現在の電圧値V(t)とそれよりも一つ前に取得された電圧値V(t-1)とを用いる。式(7)において記号Nは、単電池111の番号(セル番号)である。
  ΔV1=V1(t)-V1(t-1)
  ΔV2=V2(t)-V2(t-1)
       :
  ΔVN=VN(t)-VN(t-1)   …(7)
 ここで、組電池110を構成する単電池111の劣化の進行に個体差が生じた場合、各単電池111が持つ内部抵抗に違いが生じる。劣化が進んだ単電池111は内部抵抗が大きくなっており、劣化が進んでいない単電池111は劣化が進んだ単電池111よりも内部抵抗が小さい。そのため、図10に示すように、直列接続された各単電池111を流れる電流は同一であるため、内部抵抗の個体差は、上述した電圧変化ΔVの大小関係として現れる。すなわち、内部抵抗が大きい単電池111はΔVが大きく、内部抵抗が小さい単電池111はΔVが小さい。なお、図10では、電流が流れていない状態から電流が流れている状態(充電状態)に変化した場合の電圧変化、および、電流の流れが変化したときの変化前(充電状態)と変化後(放電状態)との電圧変化を示している。
 ステップS903では、抵抗均等化部154は、式(7)で求めた各単電池111のΔVの平均値ΔVaveを算出する。ステップS904では、平均値ΔVaveを基準にしてΔVが大きい単電池111、ΔVが小さい単電池111を特定する。
 図11は、ΔVの大小関係の判定結果の一例を示したものである。ΔVaveを中心に、それよりも大きいΔVの単電池111を内部抵抗大のグループ、小さいΔVの単電池111を内部抵抗小のグループとした。
 なお、ステップS901で組電池110を構成する単電池111の温度上昇の有無を確認しているが、これは、図11に示した内部抵抗の大小関係が真に劣化進行の個体差によるものか特定したいためである。充放電により温度上昇が起きると、単電池111間に温度ばらつきが生じる可能性があり、この温度ばらつきが内部抵抗差を生じさせる一因になるからである。ここでは、温度ばらつきに起因する内部抵抗差による影響を抑えるために、発熱量が所定以内の場合にステップS901以降の処理を行うようにしている。
 ステップS904において各単電池111のΔVの大小を特定し、ΔV大小関係で内部抵抗の大小関係を間接的に認識したならば、抵抗均等化部154は、ステップS905において、ΔVが大きい単電池111の電圧若しくはSOCを低下させる指令をSOC均等化部153に発信する。指令を受信したSOC均等化部153は、SOC均等化部153における動作内容を変更する。すなわち、抵抗均等化部154は、ΔVが大きい(内部抵抗が大きい)単電池111のグループについては、SOCばらつきを均等化する従来の均等化制御に加えて、更に、図12に示す所定の個体差均等化実行値だけ電圧若しくはSOCを低下させる指令をSOC均等化部153に送信する。
 図12に、抵抗均等化部154の指令に応じた、SOC均等化部153の制御例を示す。なお、図7,8を用いて説明したSOC均等化部153の動作は、従来から行われている均等化動作であって、SOCばらつきを検知する条件において各単電池111のSOCを検出して最低SOCを求め、全単電池111のSOCが最低SOCに一致するよう均等化制御を実施するものである。この均等化動作は、抵抗均等化部154から上述の指令が発生されていない場合の動作である。
 一方、抵抗均等化部154からの指令が有った場合には、SOC均等化部153は、図7に示した動作に加えて、電圧変化ΔVが大きい(内部抵抗が大きい)単電池111について放電をさらに行う。その結果、図8に示すように揃った状態から、図12に示すように、ΔVが小とグルーピングされた単電池111と比較して、ΔVが大とグルーピングされた単電池111の電圧若しくはSOCが所定の個体差均等化実行値だけ低下した状態となる。なお、ΔVが同じグループ内では、SOC均等化によってSOCレベルが揃っている。
 これにより、内部抵抗が大きい単電池111のグループは電圧若しくはSOCが低く、それと比較して内部抵抗が小さい単電池111のグループは電圧若しくはSOCが高くなった状態で組電池110を放置、若しくは組電池110を使用することになる。そのため、内部抵抗の劣化が揃うような状態で常に管理されるため、内部抵抗が小さい単電池111に比して、内部抵抗が大きい単電池111のグループは劣化の進行が抑制される。その結果、両グループの内部抵抗の差が解消される方向に、組電池110を管理することができる。
 なお、グループ分けは2つに限らず、3以上であっても良く、また、単電池111毎にΔVの大きさに応じて個体差均等化実行値を設定しても良い。図27は、3グループに分ける場合の放電処理を図示したものである。図17(a)は均等化前の各単電池のSOCを示したものである。内部抵抗は「○」、「▲」、「×」の順に大きいとする。図27(b)はSOC均等化後のSOC状態を示しており、SOC均等化により、最もSOCの小さな単電池のSOCと揃うような放電が行われる。その結果、全ての単電池のSOCが揃っている。図27(c)は抵抗均等化処理後、すなわち、ΔVの大きさに応じた追加放電を行った後のSOC状態を示したものである。また、グループ分けをせずに各単電池のΔVの大きさに応じて追加の放電を行った場合、「▲」は図27(c)のΔV小のラインとΔV中のラインの間に分布し、「×」はΔV中のラインとΔV大のラインの間に分布することになる。
 図12に示した個体差均等化実行値は、単電池制御部121が備える電圧検出回路124の測定精度も考慮して決定するのが好ましい。例えば、測定精度に応じて発生する電圧測定誤差若しくはSOC推定誤差以上の個体差均等化実行値を採用して電圧若しくはSOCを低下させれば、確実に電圧若しくはSOCが他と比較して低下していると判断できる。
 なお、抵抗均等化部154により、電圧若しくはSOCばらつきを生じさせると、電圧若しくはSOCが高い単電池111は上限電圧に到達し易いため、許容充電電流および許容充電電力を小さく制限する必要が生じる。逆に、電圧若しくはSOCが低い単電池111は下限電圧に到達し易いため、許容放電電流および許容放電電力を小さく制限する必要が生じる。
 そこで、電圧若しくはSOCばらつきが生じていても確実に組電池110の充放電制御が実施できるように、ステップS906において、抵抗均等化部154は、許容電力推定部152に許容電流および許容電力の制限指令を発信する。制限指令値としては、抵抗均等化部154の指令により生じさせた電圧若しくはSOCばらつきから生じる許容電流値および許容電力値の影響を予め求めておき、これを抵抗均等化部154動作時の制限指令値とすれば良い。なお、前記制限指令値は単電池111の温度や劣化状態など、各種状態に応じて設定することができる。
 また、組電池110の充電側だけでも前記制限指令値の影響を低減したい場合は、単電池111若しくは組電池110を使用する際に決定されている上限SOC若しくは下限SOCを低く変更すれば良い。組電池110の放電側だけでも前記制限指令値の影響を低減したい場合は、充電側とは逆に上限SOC若しくは下限SOCを高くする方向へ変更すれば良い。このように、単電池111若しくは組電池110の使用上のSOC範囲を低く若しくは高く変更することで、充電若しくは放電側だけでも前記制限指令値の影響を低減できる。
 図1の蓄電装置が起動されて組電池110が使用される毎に、図9の抵抗均等化部154の処理内容に基づき各単電池111のΔVを監視する。そして、算出されるΔVの差、即ち、内部抵抗の差が小さくなって許容範囲となった場合には、電圧若しくはSOCが高い状態で使用している1つ以上の単電池111の電圧若しくはSOCを、SOC均等化部153を動作させることによって低下させ、電圧若しくはSOCを均等化する。再びΔVに差が生じた場合は、図9の処理に基づき、ΔVの差を均等化する。
 上述したように抵抗均等化処理は、ΔVの算出と、そのΔVに基づく放電処理とから成る。組電池110が使用されている状況であればΔVを求めることができるが、より正確にΔVを求めるためには、電池状態がより安定しているときにΔVを取得するのがこのましく、例えば、車両起動時などが好ましい。また、ΔVに基づく放電処理を行う場合も、その際に必ずΔVの算出を行う必要もない。例えば、車両起動時に得られたΔVを用いて放電処理を行い、次に新たなΔVが取得されたら、それ以後はそのΔVで放電処理を行う、という方法を採用しても良い。また、SOCのばらつきが所定量を超えるとSOC均等化が行われるが、それによって全ての単電池111のSOCが揃うことになる。そのため、SOC均等化が行われた場合には、抵抗均等化部154の指令による放電処理も合わせて行うのが良い。
 以上のように、本実施形態では、抵抗均等化部154がΔVの大小関係で内部抵抗の大小関係を間接的に検知し、ΔVの大小関係で単電池111のSOCの大小関係を決定する。そして、SOC均等化手段153の機能を利用することで、内部抵抗の個体差が緩和するように電圧若しくはSOCを制御する。すなわち、内部抵抗が小さい単電池は電圧若しくはSOCを高くし、内部抵抗が大きい単電池は電圧若しくはSOCを低くする。これにより、直列接続された複数の単電池111の性能差に応じたSOC差が各単電池111に付与されるため、常に性能差を解消する方向に組電池110が保持され、単電池111の劣化状態がより揃った組電池110を実現でき、組電池110の最適な管理が容易となる。
 なお、本実施形態ではΔVの大小関係で内部抵抗の大小関係を判断したが、ΔVを得たタイミングで電流変化ΔIを検知することで、R=ΔV/ΔIという演算を行うことで、各単電池111における内部抵抗値を得ることも可能である。内部抵抗値を用いれば、直接的に内部抵抗の大小関係を把握することができ、内部抵抗の大きさに応じた上述の処理を同様に実行することができる。ただし、電流値検出と電圧値検出との同時性に注意する必要がある。
-第2の実施の形態-
 図1の蓄電装置がHEVに適用された場合、一般的に、組電池110は充電を制限する上限SOCと放電を制限する下限SOCとの中間に位置する中央SOCを維持するようにSOC管理される。したがって、蓄電装置の起動時および停止時のSOCは中央SOCになる確率が高い。そのため、SOC均等化部153がSOCばらつきを検知し、これを改善するSOC均等化指令を単電池制御部121に送信する条件も、中央SOCになる確率が高い。そのため、図13に示すように、結果として、中央SOC付近で単電池111間のSOCが最も均等化する可能性が高くなる。図13は、直列接続された2つの単電池1(抵抗大)および単電池2(抵抗小)に関して、SOCの変化する様子を示したものである。
 ところで、劣化して内部抵抗が上昇している単電池111は満充電容量も減少している可能性が高く、内部抵抗が維持されている単電池111は満充電容量も維持されている可能性が高い。単電池111は直列接続されているので充放電時の電流値は同一であり、充放電によるSOCの変化は、満充電容量が減少した単電池111の方が満充電容量が維持されている単電池111よりも大きくなる。
 図13に示す例では、中央SOC付近で最もSOCが均等化されているが、満充電容量の個体差の影響により、充放電に伴ってSOCが中央SOCから変化したときに、再びSOCばらつきが生じている。中央SOCを基準にSOCが上昇すると、単電池1(内部抵抗大)のSOCが高く、単電池2(内部抵抗小)のSOCが低くなる。逆に、中央SOCを基準にSOCが低下すると、単電池1のSOCが低く、単電池2のSOCが高くなる。
 従来は、各単電池111の内部抵抗の大小関係とは無関係にSOC均等化制御を実行するため、図13に示すように、中央SOCを基準にSOCの大小関係が逆転する可能性が高いSOC管理方法であった。ところで、内部抵抗に個体差が生じている場合に、内部抵抗が小さい単電池111のSOCに対して、内部抵抗が大きい単電池111のSOCを常に低く制御できれば、内部抵抗が小さい単電池111に対して内部抵抗が大きい単電池111の劣化を抑制できるようになる。そのため、単電池111間の内部抵抗の個体差を常に均等化させる方向に管理することができる。
 本実施形態における抵抗均等化部154では、前述した内部抵抗の個体差を確実に均等化させるために、図14(a)に示すように、上限SOCから下限SOCにかけてのSOC使用範囲内で、内部抵抗が小さい単電池111のSOCに対して内部抵抗が大きい単電池111のSOCが常に低い値になるように制御するようにした。
 図14では、単電池1と単電池2の2つの単電池を直列接続した場合を例に、抵抗均等化部154の制御を示したものである。単電池1の満充電容量はQmax1、単電池2はQmax2とし、Qmax1<Qmax2であるものとする。図14(b)に示すように、図1の蓄電装置が起動された時に検知した単電池1,2のSOCを、すなわち、蓄電装置起動後の各単電池1,2への充電電気量が0の時のSOCをそれぞれSOC1aとSOC2aとする。なお、従来は、SOC1aがSOC2aよりも高いといったSOCばらつきを検知し、両SOCが一致するように、SOC1aがSOC2aと一致するだけの放電指令をSOC均等化部153が発信していた。
 しかしながら、単電池1と単電池2の満充電容量にはQmax1<Qmax2の関係があるため、単電池1及び単電池2を同じ電気量だけ充電したときのSOCの変化、すなわちSOCの傾きは(単電池1のSOC傾き)>(単電池2のSOC傾き)となる。そのため、SOCが高くなるに応じて、単電池1,2のSOCばらつきは拡大する。
 例えば、充電量Q1では単電池1のSOCが上限SOCに到達しているが、単電池2では上限SOCには到達していない。また、充電量Q2では単電池1のSOCが上限SOCを超えている状況となっているが(SOC1b)、単電池2のSOCでは上限SOCに到達した状況である(SOC2b )。この上限SOCで単電池1,2のSOCを一致させることができれば、図14(a)のように、内部抵抗が大きい単電池(単電池1)のSOCを、内部抵抗が小さい単電池(単電池2)SOCよりも常に小さい状態に管理することができる。
 そこで、本実施形態では、図1の蓄電装置が起動された場合に各単電池111のSOCを求め、抵抗均等化部154は、上限SOCまで充電した場合に各単電池111のSOCが一致するように、SOC均等化部153に指令を発信する。以下では、N個の単電池111を直列接続した場合を例に、抵抗均等化部154の動作を説明する。
 まず、図1の蓄電装置若しくは蓄電装置の外部に予め設定されている上限SOCと、図1の蓄電装置の起動時に検知できる各単電池111のSOC(SOC1a、SOC2a、・・・、SOCNa)と、各単電池111の満充電容量(Qmax1、Qmax2、・・・、QmaxN)とを用いて、式(8)のように上限SOCを表現する。Q1、Q2、・・・、QNは、上限SOCに到達するために必要な各単電池111の充電電気量である。なお、満充電容量は、後述する式(11)を用いれば単電池111毎の値を計算できる。
  上限SOC=SOC1a+100×Q1/Qmax1
  上限SOC=SOC2a+100×Q2/Qmax2
       :
  上限SOC=SOCNa+100×QN/QmaxN  …(8)
 式(8)における未知の値は、上限SOCに到達させるために必要となる各単電池111の充電電気量(Q1、Q2、・・・、QN)のみである。そのため、上限SOCと図1の蓄電装置起動時に検知できる各単電池111のSOCと各単電池111の満充電容量を式(8)に代入することで、各単電池111を上限SOCに到達させるために必要となる充電電気量Q1~QNが求まる。そして、式(9)に示すように、この電気量の中での最大値QMを抽出する。図14(b)に示す例では、Q2がこのQMに相当する。
   QM=MAX(Q1、Q2、・・・、QN)   …(9)
 すなわち、図14(b)の充電電気量Q2のところで、単電池2が上限SOCに到達し、単電池1は上限SOCを超えたように、各単電池111を電気量QMで充電すれば、全ての単電池111は上限SOC以上になるはずである。そのため、式(8)の各単電池111の電気量Q1、Q2、・・・、QNにQMを代入すれば、SOCが最も低い単電池111が上限SOCに到達した場合の、他の全ての単電池111のSOCを予測することができる。
 抵抗均等化部154は、上述した予測を行い、各単電池111の予測SOCと予測SOCの中の最低SOCとの差に相当する放電量を、放電指令としてSOC均等化部153に発信する。図14(b)に示す例においては、SOC1b-SOC2bに相当する放電量を、すなわち充電電気量=Q2において単電池1に関する直線と単電池2に関する直線とが一致するように、単電池1に関する放電指令として発信する。
 このように、本実施の形態では、図1の蓄電装置が備える組電池110が中央SOC付近で起動された場合でも、上限SOCに到達した際に予想されるSOCばらつきを解消するようにSOC均等化制御を実行することができる。そのため、図14(a)に示すように、内部抵抗が小さい(満充電容量が大きい)単電池111に対して、内部抵抗が大きい(満充電容量が小さい)単電池111のSOC(電圧)が、上限SOCから下限SOCにかけてのSOC使用範囲において常に低くなるように管理できる。その結果、内部抵抗が小さい単電池111に対して内部抵抗が大きい単電池111の劣化の進行を抑制し、組電池110を構成する単電池111の内部抵抗の個体差を均等化できる。
-第3の実施の形態-
 図15,16は、第3の実施の形態における抵抗均等化部154の動作を説明する図である。なお、図16は、図13,14の場合と同様に、直列接続された単電池1,2について示したものであり、単電池1は内部抵抗が大で、単電池2は内部抵抗が小である。図9に示したステップS906の処理では、抵抗均等化部154が内部抵抗の個体差を均等化するために発生させた電圧若しくはSOCばらつきに対応して、許容電力推定部152に制限指令を発信した。
 図6に示したように、単電池111のRzは温度に応じて変化するものであり、低温ではRzが大きく、高温ではRzが小さくなる。これに伴い、式(3)(4)(5)(6)のようにRzを用いて計算される許容電流値および許容電力値は、低温で小さく、高温で大きくなる傾向にある。許容電流値および許容電力値が小さくなる低温においては、前述した抵抗均等化部154による許容電流値および許容電力値の制限指令は、更に許容電流値および許容電力値を下げることになるため、組電池110性能への影響が大きい。一方、高温側では十分な入出力性能を確保できるため、制限指令による影響は小さくなる。
 このようなことを考慮して、第3の実施の形態では、抵抗均等化部154が用いる個体差均等化実行値を、温度に応じた関数やマップとして実装する。図15に、温度に応じた個体差均等化実行値の変化を示す。上述したように、温度が高くなると許容電流値および許容電力値が増加して前述の制限値増加による影響が小さいことを考慮し、温度が高くなるに応じて個体差均等化実行値を大きくするようにした。これにより、組電池110の温度に応じた性能変化を考慮して抵抗個体差を均等化することが可能な電池管理装置を実現することができる。なお、ここでの温度を環境温度とする場合、図1の蓄電装置が長時間停止して再起動を行った直後の単電池111の温度を環境温度として代用することも可能である。
 また、第2実施形態に記載の抵抗均等化部154の動作内容を変更することで、温度に応じた抵抗均等化部154の処理内容を実現することも可能である。すなわち、第2実施形態では上限SOCで単電池111間のSOCが均等化されるように、抵抗均等化部154がSOC均等化部153に指令を発信していた。一方、本実施形態では、高温時に上限SOCでSOCが均等化するようにSOC均等化部153に指令を発信し、低温になるほど、中央SOCでSOCが均等化するように、SOC均等化部153に指令を発信する(図16(a)~(c)を参照)。
 具体的には、式(8)における左辺の上限SOCを、次式(10)に示すように、上限SOCから中央SOCへと温度に応じて変化する関数(均等化SOC(温度))で置き換えることで、最も均等化するSOC条件を温度に応じたものに変更する。
 均等化SOC(温度)=SOC1a+100×Q1/Qmax1
 均等化SOC(温度)=SOC2a+100×Q2/Qmax2
      :
 均等化SOC(温度)=SOCNa+100×QN/QmaxN…(10)
 そして、式(10)から各単電池111の均等化SOC(温度)に到達する電気量Q1、Q2、・・・、QNを求め、さらに式(9)によって最大充電量QMを求め、指定した均等化SOC(温度)で最もSOCが合うようSOC均等化部153に指令を発信する。図16(a)に示すように、低温では抵抗均等化部154によるSOCばらつきを生じさせないため、抵抗均等化部154による許容電力推定部152への制限量がなく、組電池110の入出力性能は低下しない。
 以上のように、本実施形態では、単電池111の温度に応じて、抵抗均等化部154によるSOCばらつき発生量を変更でき、組電池110の入出力性能の低下を極力防ぐことができる。その結果、組電池110を構成する単電池111の内部抵抗の個体差を均等化しながら、組電池110の入出力性能への影響が少ない電池管理を行うことができる。
-第4の実施の形態-
 本実施の形態の組電池制御部150は、図17に示すように、図3に示した抵抗均等化部154に代えて容量均等化部155を備える。なお、容量均等化部155以外の構成は、図3の組電池制御部150と同様である。容量均等化部155は、単電池間における満充電容量の差を検出し、この容量差を均等化するためにSOC均等化部153を動作させる。
 図17は、満充電容量が異なる単電池1と単電池2を直列接続した場合の、放電時における電圧変化を示したものである。同じ電気量を放出した場合でも、単電池1(満充電容量が小さい)の電圧低下は、単電池2(満充電容量が大きい)の電圧低下よりも大きくなる。容量均等化部155は、この同じ電気量を放出した際の電圧低下の違いに基づいて、直列接続された複数の単電池111の、満充電容量の大小関係を把握する。すなわち、電圧が大きく低下した単電池111(単電池1)は満充電容量が小さく、電圧が小さく低下した単電池111(単電池2)は満充電容量が大きいと判定する。
 ところで、図18のように放電中の電圧低下の違いにより満充電容量の大小関係を把握しても良いが、放電中の電圧の違いは単電池111間の内部抵抗の違いなど、他の要因による影響が含まれる。そこで、より確実に満充電容量の大小関係を把握するために、図19に示す電圧差(ΔV1やΔV2)を用いるようにしても良い。すなわち、単電池111を放電(若しくは充電)する前の電圧(OCV)と、単電池111を放電(若しくは充電)した後の電圧(OCV)との差をΔVとし、このΔVの大小関係は満充電容量の大小関係と相関がある。
 具体的には、図1の蓄電装置が起動されてリレー201若しくは202を閉じる前に、単電池111の電圧を検出する。そして、リレー201若しくは202を閉じて組電池110を充放電した後、リレー201若しくは202が開けられ、図4に示した分極電圧Vpが解消する時間が経過した後に、再び単電池111の電圧を検出する。この2つの単電池111の電圧から求めた電圧差には、内部抵抗の違いによる影響は含まれないため、容量均等化部155はより確実に満充電容量の大小関係を把握できる。なお、容量均等化部155が満充電容量の大小関係を把握する他の方法として、充放電前のSOCと充放電後のSOCとのSOC差を用いても良い。
 図20に、容量均等化部155が行う、満充電容量の大小関係を把握するためのSOC差の検出手順を示す。まず、ステップS1801において、図1の蓄電装置が起動される。ステップS1802では、リレー201若しくは202を閉じる前に各単電池111の電圧を取得し、図5の関係に基づいて各単電池111の電圧(OCV)からSOCを推定する。ステップS1803では、リレー201若しくは202を閉じて組電池110が使用される。すなわち、組電池110が充放電される。
 ステップS1804では、組電池110が無負荷状態か否かを判定する。例えば、再びリレー201若しくは202が開かれた場合、望ましくは、再びリレー201若しくは202が開かれ分極電圧Vpが解消する十分な時間を検知した場合、若しくは無負荷と判断して差し支えない微小な電流で充放電している場合などである場合に、無負荷状態にあると判定する。ステップS1804で無負荷状態にあると判定されると、ステップS1805へ進んで、再び各単電池111の電圧を取得し、図5の関係に基づいて各単電池111の電圧からSOCを推定する。ステップS1806では、ステップS1802で検出したSOCとステップS1805で取得したSOCとのSOC差を計算する。このSOC差の大小関係を、満充電容量の大小関係とみなす。
 容量均等化部155は、電圧差やSOC差に基づいて満充電容量の大小関係を間接的に把握していたが、次のようにして直接的に満充電容量の大小関係を把握しても良い。すなわち、組電池110使用中(充放電中)に計算した電流の積分値(∫Idt)と、その間の単電池111毎に得られるSOC差(ΔSOC1、ΔSOC2、・・・、ΔSOCN)とに基づいて、式(11)のように単電池111毎の満充電容量(Qmax1、Qmax2、・・・、QmaxN)を求め、これを比較することで直接的に満充電容量の大小関係を把握する。
   Qmax1=100×∫Idt/ΔSOC1
   Qmax2=100×∫Idt/ΔSOC2
        :
   QmaxN=100×∫Idt/ΔSOCN   …(11)
 容量均等化部155は、前述したΔV、若しくはΔSOC、若しくはQmaxを比較することで満充電容量の大小関係を判定する。図21(a)は、ΔSOCで満充電容量の大小関係を判定する場合の一例を示したものであり、図21(b)は、判定後に行わせるSOC均等化部153の動作の説明する図である。図21(a)では、平均ΔSOCよりも大きいΔSOCとなった単電池111を満充電容量小と判定し、平均ΔSOCよりも小さいΔSOCとなった単電池111を満充電容量大と判定している。ΔVを比較して満充電容量の大小関係を判定する場合も同様である。
 その他の判定方法としては、ΔSOCの最小値と最大値を検知し、最小値と最大値の幅を任意の数で分割してグループ分けし、最大値に近いグループに属するほど容量小の単電池111と判定することもできる。なお、このようなグループ分けは、図11の場合にも適用できる。さらに、グループ分けせずに、単電池111毎に容量大小の判定を行い、均等化実行値を設定するようにしても良い。
 容量均等化部155は、図21(a)に示した容量小と判定された単電池111(ΔSOCは大)の電圧若しくはSOCを、容量大と判定された単電池111(ΔSOCは小)の電圧若しくはSOCよりも小さくするための指令を、SOC均等化部153に発信する。SOC均等化部153は、単電池111間の電圧若しくはSOCを一致させるために動作するものであるが、容量均等化部155からの前記指令を受信すると、電圧若しくはSOCを一致させることができる実行値(バイパススイッチ123をオン状態とする時間など)に、容量小と判定された単電池111のみ追加の実行値(余分にバイパススイッチ123をオン状態とする所定の時間など)を加える。
 上述の動作により、図21(b)の容量の大小関係に応じた電圧若しくはSOCばらつきを実現する。図21(b)の電圧若しくはSOCの関係を維持し続けると、ΔSOCが小(満充電容量が大)の単電池111は、ΔSOCが大(満充電容量が小)の単電池111と比較して劣化の進行が大きいため、それにより、単電池111間の容量差が均等化するように組電池110を管理することができる。
 図1の蓄電装置がPHEVやEV用として用いられる場合、組電池110はリレー202を介して充電器205へと接続され、組電池110は充電器205で満充電付近まで充電される。車両を発進するまでは、組電池110は満充電付近の高SOCで放置されるため、ここで前述した容量均等化部155による単電池111間の電圧若しくはSOCばらつきを実行することで、車両放置中に前記容量の均等化効果を得ることができる。
 そこで、SOC均等化部153は、組電池110を充電した後の高SOC時に、若しくは充電してから車両が走行する前などの高SOC時に、図7のSOC均等化処理を実施し、高SOC時に単電池111間の電圧若しくはSOCが一致するよう均等化制御を行う。さらに、容量均等化部155は、ΔSOCが大きい(満充電容量が小さい)単電池111が、ΔSOCが小さい(満充電容量が大きい)単電池111よりも電圧若しくはSOCが低く分布するよう、SOC均等化部153に指令を発信する。このような動作により、高SOC時に図21(b)に示すような電圧若しくはSOCの位置関係が実現できるため、放置期間中に容量均等化の効果が期待できる。
上述では、高SOC付近にてSOC均等化部153が図7の処理内容を実行し、且つ、容量均等化部155が発信した満充電容量の大小関係に応じた指令をSOC均等化部153に送信することで、図21(b)に示す電圧若しくはSOCの位置関係を実現した。しかし、図1の蓄電装置の起動時の現在SOCが、中央SOCや下限SOCなどのように上限SOC以外の状況でも、容量均等化部155が式(8)(9)を用いて上限SOCに到達した際のSOCばらつきを予測し、予測したSOCばらつきに基づいて上限SOCで最も均等化するための実行値(バイパススイッチ123のオン時間等)を求め、ΔSOCが大きい(満充電容量が小さい)単電池111はΔSOCが小さい(満充電容量が大きい)単電池111に比してSOCが低くなるよう実行値を補正して、それをSOC均等化部153に送信するようにしても良い。
 容量均等化部155が補正した実行値を用いて、SOC均等化部153が単電池制御部121のバイパススイッチ123を動作させることで、高SOC付近で図21(b)の電圧若しくはSOCの位置関係を実現することができる。このようにすれば、満充電付近などの高SOCで図7の処理が実行できない状態であっても、例えば、頻繁に中央SOCや低SOCで図1の蓄電装置を起動するような状態であっても、高SOCに到達した際には図21(b)のような電圧やSOCの位置関係を実現できる。
 図22は、満充電容量を均等化させるために所定の実行値で単電池111間に電圧若しくはSOCばらつきを生じさせた場合の、SOC管理方法を示したものである。なお、図22は、図13,14の場合と同様に、直列接続された単電池1,2について示したものであり、単電池1は満充電容量が小で、単電池2は満充電容量が大である。PHEVやEVにおいては充電器205で組電池110を満充電付近まで充電する。
 図22(a)では、電圧若しくはSOCを所定の実行値でばらつかせた後の電圧若しくはSOCが低い単電池111(ΔSOCが大きい、即ち満充電容量が小さい単電池)が、充電時の上限SOCと一致するように充電制御している。このような充電制御では、電圧若しくはSOCが高い単電池111(ΔSOCが小さい、即ち満充電容量が大きい単電池)が上限SOCを超えて使用されるため、上限SOCを超えることがない通常の使い方よりも劣化が加速され、結果として単電池間の満充電容量の個体差が均等化する。
 一方、図22(b)は、電圧若しくはSOCを低く配置した単電池111と電圧若しくはSOCを高く配置した単電池111との平均SOCが、上限SOCに到達するまで充電する充電制御を適用した場合を示している。この場合は、電圧若しくはSOCを高く配置した単電池111が上限SOCを超える度合いは図22(a)の場合よりも小さくなり、図22(a)の場合よりは劣化の進行が遅くなる。そのため、電圧若しくはSOCを低く配置した単電池111は、上限SOCまでは充電されないため若干劣化が進行し難くなり、結果として満充電容量の個体差が均等化する。
 図22(c)の場合には、電圧若しくはSOCを高く配置した単電池111は上限SOCに到達するよう充電制御され、電圧若しくはSOCを低く配置した単電池111は上限SOCよりも大きく下回る。この場合は、電圧若しくはSOCを高く配置した単電池111は通常通り劣化が進行し、一方、電圧若しくはSOCを低く配置した単電池111は通常よりも劣化が抑制され、結果として満充電容量の個体差が均等化する。
 図22(a)、図22(b)、図22(c)を比較すると、満充電容量の個体差が均等化する点では共通の効果があるが、組電池110としての寿命や容量性能としては若干の違いがある。
 例えば、図22(a)のように、電圧若しくはSOCを高く配置した単電池111は通常よりも劣化が加速し、電圧若しくはSOCを低く配置した単電池111は通常通りに劣化するため、総合的には寿命を短くする管理となっている。ただし、満充電容量が小さく電圧若しくはSOCを比較的低く配置した単電池111を上限SOCまで充電して組電池110を使用するため、他の例と比較して容量性能は優れる。
 図22(b)は、電圧若しくはSOCを高く配置した単電池111と低く配置した単電池111との平均値を充電時の上限電圧若しくはSOCとするため、高く配置した単電池111は若干劣化が加速し、低く配置した単電池111は若干劣化が抑制される。そのため、図22(a)の場合よりも若干寿命性能が優れ、容量性能は劣る。
 図22(c)の場合は、満充電容量が大きく、電圧若しくはSOCを高く配置した単電池111を上限SOCまで充電して組電池110を使用するため、満充電容量が大きい単電池111は通常通り劣化が進行し、電圧若しくはSOCを低く配置した満充電容量が小さい単電池111は劣化が抑制される。この場合、満充電容量が小さい単電池111の劣化抑制効果で満充電容量の個体差を均等化するため、寿命性能は最も優れる。その反面、電圧若しくはSOCを低く配置した満充電容量が小さい単電池111を上限SOCまで最も充電しない使用方法のため、容量性能としては他の例よりも劣ってしまう。
 上記3種類の管理方法の選択の仕方としては、例えば、遠方までEV走行したいために組電池110の容量を確保したい場合は図22(a)を採用する。また、近場でのEV走行のため組電池110の容量を重視しない場合は図22(c)を採用し、その分、組電池110の寿命性能を上げる。このように、組電池110の使い方に応じて切替え可能とすると良い。切替え方法は、カーナビの画面上や、それ以外では車室内の任意の場所に切替えスイッチを設ける等で実現する。
 また、組電池110を完全に充電しない状態で頻繁に使用する場合では、電圧若しくはSOCばらつきが与える組電池110の容量性能への影響が大きくなる。この場合、SOCがあまり高くない状態での頻繁な使用を検知した場合は、電圧若しくはSOCをばらつかせるための実行値を小さくすることで解消できる。
 さらに、組電池110を構成する単電池111は、低温では容量性能が低下し、高温では容量性能が向上する。上記の任意の実行値で単電池111の電圧若しくはSOCをばらつかせたことによる組電池110への容量性能の影響は、特に低温において影響が大きい。この場合は、組電池110が置かれた環境温度に応じて、上記電圧若しくはSOCをばらつかせるための実行値を可変とすることで解決可能である。
 図23に、満充電容量を均等化するための、電圧若しくはSOCばらつきの実行値の一例を示す。ここでは、充電して到達したSOCに応じて、若しくは環境温度に応じて実行値を変化させている。そのため、組電池110の容量性能を極力低下させずに、単電池111間の満充電容量が均等化するように組電池110を管理できる。
 図24は、充電時に到達したSOCに応じて、容量均等化部155の処理内容を切り替える他の例を説明する図である。図1の蓄電装置を、特にEV用として使用した場合、急速充電と呼ばれる比較的大電流で充電する場合と(図24(a))、家庭用電源などの比較的小電流で充電される場合とが考えられる(図24(b))。急速充電では、家庭用電源で充電されて到達するSOCと比較して低いSOC値となる可能性が高い。一方、家庭用電源などの比較的小電流で充電する場合では、組電池110が上限まで充電される可能性が高い。
 容量均等化部155には、急速充電で到達するSOCよりも高く設定した第一閾値が設けられており、この第一閾値を超えるSOCに到達した場合は組電池110が上限まで充電されると判断する。そして、容量均等化部155は、前述した電圧若しくはSOCばらつきを発生させるべくSOC均等化手段153に指令を発信する。組電池110が上限まで充電される場合は、その後、第二閾値へと到達し、組電池110の充電は終了する。一方、図24(a)はSOCが第一閾値を超えずに急速充電と判定される場合であって、この場合には容量均等化部155を動作させない。
 前述では、充電後に到達したSOCに応じて充電の種類を特定し、容量均等化部155の動作を切替える方法を述べたが、図24で比較したように、急速充電や一般の充電ではSOC変化の傾きが異なる。そのため、このSOC変化に閾値を設けて、閾値を下回るSOC変化の場合に容量均等化部155を動作させても良い。また、充電電流の大きさによって急速充電か一般充電かを区別し、容量均等化部155を動作させるか否かを判断しても良い。
 以上述べた本実施形態の容量均等化部155は、単電池111の満充電容量の大小関係をΔVやΔSOCで検知し、満充電容量の大小関係に基づいてSOC均等化部153に指令を発信することで満充電容量の均等化を行う。満充電容量が大きい単電池111を電圧若しくはSOCを高く配置し、満充電容量が小さい単電池111を電圧若しくはSOCを低く配置することで、単電池111の劣化の進行度合いに違いを生じさせて、満充電容量の個体差を解消するようにしている。
 さらに、充電電流や充電時のSOC変化、到達するSOCの高さに応じて容量均等化部155の動作を切替えることで、組電池110の容量性能への影響を考慮した電池管理装置を実現できる。
-第5の実施の形態-
 以下に説明する第5の実施の形態では、第4実施形態に記載の容量均等化部155の処理内容を変更する。上述した第4実施形態による蓄電装置では、各単電池111の無負荷状態における電圧の差、若しくはSOCの差、満充電容量の演算結果に基づいて満充電容量の大小関係を把握し、その満充電容量の大小関係に基づいてSOC均等化部153を動作させることで、満充電容量の差が均等化するように単電池111の電圧もしくはSOCを管理した。
 本実施形態では、満充電容量の値を、単電池111製造時などに測定し、これをテーブルとして組電池制御部150内の記憶手段に記憶する。図25は、実測した満充電容量のテーブルの一例である。
 組電池110を構築した際の単電池111の配置(横方向をX軸、奥行きをY軸)に応じて実測した満充電容量を、テーブルQmax(M、N)として記憶手段に記憶しておく。容量均等化部155は満充電容量の大小関係を測定するのではなく、本テーブルQmax(M、N)を検索して満充電容量値を取得することで、満充電容量の大小関係を把握する。容量均等化部155における、電圧若しくはSOCの配置によって満充電容量の差が解消したか否かの判断は、前述した満充電容量の大小関係の実測によって行うことができる。
 また、前述した式(11)を用いて満充電容量を算出し、テーブルの内容を書き換えるようにしても良い。すなわち、最初はテーブルQmax(M、N)を用いて満充電容量の大小関係を把握して満充電容量の差が解消する動作を行い、差が解消したか否かの判断を行うためにQmaxを算出した際に、算出したQmaxでテーブルQmax(M、N)の更新をする。
 なお、図25では、満充電容量を2次元テーブルで実装する例を示したが、単電池111を直列接続した場合、例えば、100個の単電池111を直列接続して組電池110を構成する場合は、直列数1個目、・・・、100個目などのように1次元テーブルとして実装しても良いし、満充電容量をテーブルとして実装するのではなく、関数として実装する方法でも良い。
 本実施形態では、満充電容量を予め実測してテーブル若しくは関数として組電池制御部150に備えさせることによって、満充電容量の大小関係を簡単に把握でき、満充電容量の差を解消する組電池110の管理方法を実現できる。
-第6の実施の形態-
 以下に説明する第6の実施の形態では、第5実施形態に記載の満充電容量値の実装方法を変更している。第5実施形態では、実測した満充電容量の値を組電池制御部150に記憶して用いたが、本実施形態では、満充電容量の値に応じて単電池111を配置することで組電池110を構成する。すなわち、組電池110は初期状態から、単電池111間に満充電容量にばらつきがある場合に適用できる。そして、容量均等化部155は、単電池111が配置してある場所から満充電容量の大小関係を把握する。
 図26に、本実施形態における満充電容量の値に応じた単電池111の配置方法例を示す。図26(a)では、満充電容量(Qmax)が小さいものから順に単電池111を配置し、最後が最も満充電容量が大きくなるよう単電池111を配置して組電池110を構成している。図26(b)では、単電池111毎に満充電容量を実測した結果を、所定の刻み幅でランク分けし(ここではQmax小、中、大とした)、一列分は満充電容量のランクが一致するように単電池111を配置している。
 容量均等化部155は、単電池111の配置から満充電容量の大小関係を把握し、満充電容量の差を解消するための電圧SOCばらつきを発生させるために、SOC均等化部153に指令を発信する。容量均等化部155が実現した電圧若しくはSOCばらつきによって満充電容量の差が解消したか否かの判断は、例えば、前述した満充電容量の大小関係の実測によって行うことができる。
 以上述べたように、本発明では、性能の大小関係と電池が置かれている状態に応じて柔軟に性能個体差を解消する処理を実行できる。この蓄電装置の単電池111の電圧若しくはSOCの管理方法は、単電池111を直列接続して用いる分野に幅広く適用可能である。
 なお、上述した実施の形態では、組電池110を構成する複数の単電池111は全て直列接続されてるが、この構成に限らず、本発明は直列接続されている単電池111を含むものであれば、適用することができる。例えば、並列接続されている電池群を複数直列接続したものや、複数の単電池を直列接続した単電池群を並列接続したものであっても、直列関係にある単電池または電池群に対して、上述の制御を適用すれば良い。
 上記では、種々の実施の形態および変形例を説明したが、各実施形態はそれぞれ単独に、あるいは組み合わせて用いても良い。それぞれの実施形態での効果を単独あるいは相乗して奏することができるからである。また、第1から第3の実施の形態では内部抵抗の大小関係に基づきSOC均等化部153を動作させたが、満充電容量の大小関係を検知してこれに応じて第1から第3の実施の形態で記述したSOC均等化部153の動作を実現しても良い。更に、第4から第6の実施の形態では満充電容量の大小関係に基づきSOC均等化部153を動作させたが、同様に内部抵抗の大小関係を検知してこれに応じて第4から第6の実施の形態で記述したSOC均等化部153の動作を実現することも可能である。本発明の特徴を損なわない限り、本発明は上記実施の形態に何ら限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。

Claims (17)

  1.  直列接続された複数の単電池を含む組電池と、
     前記複数の単電池の内部抵抗または前記複数の単電池の内部抵抗の大小関係を推定する内部抵抗推定手段と、
     前記内部抵抗推定手段で推定された内部抵抗が大きい単電池ほど、または、内部抵抗の大小関係に関して前記内部抵抗推定手段により大きいと推定された単電池ほど、単電池放電後のSOCが低くなるような放電量を前記単電池毎に算出する放電量算出手段と、
     前記放電量算出手段で算出された放電量に基づいて、前記複数の単電池をそれぞれ放電する放電回路と、を備えた蓄電装置。
  2.  請求項1に記載の蓄電装置において、
     前記複数の単電池のそれぞれに対して、前記組電池に流れる電流が変化する前と変化した後の電圧を各々測定する電圧測定部を備え、
     前記内部抵抗推定手段は、前記複数の単電池のそれぞれに対して、前記電圧測定部で測定された電流変化前の電圧と電流変化後の電圧との差から内部抵抗の大小関係を推定する蓄電装置。
  3.  請求項1に記載の蓄電装置において、
     前記複数の単電池の電圧を測定する電圧測定部と、
     前記直列接続された複数の単電池に流れる電流値を測定する電流測定部と、を備え、
     前記内部抵抗推定手段は、前記電圧測定部で測定された電圧値および前記電流測定部で測定された電流値に基づいて、前記複数の単電池の内部抵抗をそれぞれ推定する蓄電装置。
  4.  直列接続された複数の単電池を含む組電池と、
     前記複数の単電池の満充電容量または前記複数の単電池の満充電容量の大小関係を推定する満充電容量推定手段と、
     前記満充電容量推定手段で推定された満充電容量が小さい単電池ほど、または、満充電容量の大小関係に関して前記満充電容量推定手段により小さいと推定された単電池ほど、単電池放電後のSOCが低くなるような放電量を前記単電池毎に算出する放電量算出手段と、
     前記放電量算出手段で算出された放電量に基づいて、前記複数の単電池をそれぞれ放電する放電回路と、を備えた蓄電装置。
  5.  請求項4に記載の蓄電装置において、
     前記複数の単電池のそれぞれに対して、前記組電池の充放電が行われる前の無負荷状態の電圧および前記充放電が終了した後の無負荷状態の電圧を各々の測定する電圧測定部を備え、
     前記満充電容量推定手段は、前記複数の単電池のそれぞれに対して、前記電圧測定部で測定された充放電前の電圧と充放電終了後の電圧との差から満充電容量の大小関係を推定、若しくは前記複数の単電池のそれぞれに対して、前記充放電前の電圧をSOCに変換して前記充放電終了後の電圧をSOCに変換して2つのSOC差から満充電容量の大小関係を推定する蓄電装置。
  6.  請求項4に記載の蓄電装置において、
     前記複数の単電池の電圧を測定する電圧測定部と、
     前記直列接続された複数の単電池に流れる電流値を測定する電流測定部と、を備え、
     前記満充電容量推定手段は、前記電圧測定部で測定された電圧値および前記電流測定部で測定された電流値に基づいて、前記複数の単電池の満充電容量をそれぞれ推定する蓄電装置。
  7.  請求項6に記載の蓄電装置において、
     前記複数の単電池の各満充電容量の初期値が予め記憶された記憶部を備え、
     前記満充電容量推定手段により推定された満充電容量が前記記憶部に記憶されている対応する初期満充電容量より小さい場合に、前記記憶部に記憶されている前記対応する初期満充電容量を、前記算出された満充電容量に書き換える書き換え手段と、を備え、
     前記放電量算出手段は、前記記憶部に記憶されている満充電容量が小さい単電池ほど、単電池放電後のSOCが低くなるような放電量を前記単電池毎に算出する蓄電装置。
  8.  請求項2または5に記載の蓄電装置において、
     前記放電量は、単電池放電後のSOC差が前記電圧測定部の測定誤差に起因するSOC誤差以上となる放電量である蓄電装置。
  9.  請求項2、5および8のいずれか一項に記載の蓄電装置において、
     前記放電量推定手段は、前記算出手段で算出された電圧差の大きさに応じて前記複数の単電池を複数群に分類するとともに、各群毎に単電池放電後のSOCを設定し、それらの設定値に基づいて前記複数の単電池の放電量を推定する蓄電装置。
  10.  請求項1乃至9のいずれか一項に記載の蓄電装置において、
     前記放電回路による放電量を、前記組電池の温度が高温になるほど、または、前記組電池のSOCが高いほど大きくした蓄電装置。
  11.  直列接続された複数の単電池を含む組電池と、
     前記複数の単電池の電圧を測定する電圧測定部と、
     前記直列接続された複数の単電池に流れる電流値を測定する電流測定部と、
     前記電圧測定部で測定された電圧値に基づいてSOCを推定するSOC推定手段と、
     前記SOC推定手段によるSOC推定時から所定充電量だけ前記複数の単電池を各々充電したときの到達SOCをそれぞれ推定する到達SOC推定手段と、
     前記電圧測定部で測定された電圧値および前記電流測定部で測定された電流値に基づいて、前記複数の単電池の満充電容量をそれぞれ推定する満充電容量推定手段と、
     前記SOC推定手段で推定されたSOC、前記到達SOC推定手段で推定された到達SOCおよび前記満充電容量推定手で推定された満充電容量に基づいて、前記複数の単電池の各々を所定充電量だけ充電したときに各単電池のSOCが一致するような放電量をそれぞれ算出する放電量算出手段と、を備えた蓄電装置。
  12.  請求項11に記載の蓄電装置において、
     前記所定充電量は、該所定充電量だけ充電したときに各単電池が電池使用範囲の上限SOCで一致するように設定されている蓄電装置。
  13.  請求項11に記載の蓄電装置において、
     前記組電池の温度が高いほど、前記所定充電量を大きく設定するようにした蓄電装置。
  14.  請求項1乃至13のいずれか一項に記載の蓄電装置において、
     前記組電池を外部電源から充電する際の充電が急速充電か否かを判定する急速充電判定部を備え、
     前記放電回路は、前記急速充電判定部が急速充電と判定すると放電を行わない蓄電装置。
  15.  請求項1乃至13のいずれか一項に記載の蓄電装置において、
     前記組電池を構成する一つ以上の前記単電池の温度上昇が閾値以上か否かを判定する温度判定部を備え、
     前記放電回路は、前記温度判定部が閾値以上と判定すると放電を行わない蓄電装置。
  16.  請求項1乃至13のいずれか一項に記載の蓄電装置において、
     前記放電回路による放電が行われると、前記組電池を充放電する際の許容電流値および許容電力値をより小さな値に制限する制限手段を、さらに備えた蓄電装置。
  17.  請求項1乃至13のいずれか一項に記載の蓄電装置において、
     前記放電回路による放電が行われると、前記組電池を充放電する際の上限SOC若しくは下限SOCをより低い値に変更する変更手段を、さらに備えた蓄電装置。
PCT/JP2011/059537 2011-04-18 2011-04-18 蓄電装置 WO2012143996A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2011/059537 WO2012143996A1 (ja) 2011-04-18 2011-04-18 蓄電装置
US14/112,455 US9293937B2 (en) 2011-04-18 2011-04-18 Electric storage device
JP2013510752A JP5668136B2 (ja) 2011-04-18 2011-04-18 蓄電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/059537 WO2012143996A1 (ja) 2011-04-18 2011-04-18 蓄電装置

Publications (1)

Publication Number Publication Date
WO2012143996A1 true WO2012143996A1 (ja) 2012-10-26

Family

ID=47041149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059537 WO2012143996A1 (ja) 2011-04-18 2011-04-18 蓄電装置

Country Status (3)

Country Link
US (1) US9293937B2 (ja)
JP (1) JP5668136B2 (ja)
WO (1) WO2012143996A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087451A1 (ja) * 2012-12-04 2014-06-12 日本電気株式会社 電池制御装置、蓄電装置、及び蓄電方法
JP2014226029A (ja) * 2013-04-05 2014-12-04 リニアー テクノロジー コーポレイションLinear Technology Corporation モニタリング装置、システム、およびir補償アクティブセルバランシング方法
CN104237795A (zh) * 2013-06-11 2014-12-24 福特全球技术公司 通过相同电压传感器测量多个电池单元的失衡探测
JP2016220445A (ja) * 2015-05-22 2016-12-22 住友電気工業株式会社 蓄電モジュールの電圧制御装置および電圧制御方法
WO2017047277A1 (ja) * 2015-09-18 2017-03-23 株式会社日立製作所 二次電池システム
JP2017085876A (ja) * 2015-10-22 2017-05-18 パナソニックIpマネジメント株式会社 蓄電システム、および、蓄電システムの制御方法
JP2017163822A (ja) * 2016-03-08 2017-09-14 パナソニックIpマネジメント株式会社 蓄電システム、および、蓄電システムの制御方法
EP3097626A4 (en) * 2014-01-23 2017-10-11 Gogoro Inc. Systems and methods for utilizing an array of power storage devices, such as batteries
JP2017212832A (ja) * 2016-05-27 2017-11-30 三菱電機株式会社 バッテリーマネジメント装置
JP2018054521A (ja) * 2016-09-30 2018-04-05 日立オートモティブシステムズ株式会社 二次電池モジュール
JP2018057137A (ja) * 2016-09-28 2018-04-05 株式会社デンソー 満充電容量算出装置
JP2018132318A (ja) * 2017-02-13 2018-08-23 ファナック株式会社 バッテリ残量アラーム装置、数値制御装置および工作機械システム
JP2019020310A (ja) * 2017-07-20 2019-02-07 東京電力ホールディングス株式会社 蓄電池劣化診断方法
JP2020109731A (ja) * 2019-01-07 2020-07-16 トヨタ自動車株式会社 車両用電池制御装置
CN112034355A (zh) * 2020-09-04 2020-12-04 中国南方电网有限责任公司超高压输电公司曲靖局 蓄电池状态的评估方法及评估装置
KR20210044029A (ko) 2019-10-14 2021-04-22 주식회사 엘지화학 운행하기 전 개별 팩간 에너지 차이를 이용한 병렬 전지팩 밸런싱 방법 및 시스템
CN113655395A (zh) * 2021-08-17 2021-11-16 星恒电源股份有限公司 一种评估电动自行车用锂电池使用状态的方法
KR20220147686A (ko) * 2020-03-12 2022-11-03 위스크 에어로 엘엘씨 실시간 배터리 고장 검출 및 건강 상태 모니터링
WO2023195548A1 (ja) * 2022-04-07 2023-10-12 ビークルエナジージャパン株式会社 電池制御装置および電池システム
WO2024090338A1 (ja) * 2022-10-27 2024-05-02 株式会社Gsユアサ 蓄電装置、複数セルの制御方法及び蓄電装置の制御方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2490315A1 (en) * 2011-02-15 2012-08-22 austriamicrosystems AG Cell balancing module, voltage balancer device, and method for voltage balancing, particularly for voltage balancing of a stack of batteries
US10536007B2 (en) 2011-03-05 2020-01-14 Powin Energy Corporation Battery energy storage system and control system and applications thereof
DE102011077270A1 (de) * 2011-06-09 2012-12-13 Robert Bosch Gmbh Energiespeichereinrichtung, System mit Energiespeichereinrichtung und Verfahren zum Erzeugen einer Versorgungsspannung einer Energiespeichereinrichtung
JPWO2015072061A1 (ja) * 2013-11-13 2017-03-16 パナソニックIpマネジメント株式会社 均等化処理装置
US9915243B2 (en) * 2014-02-24 2018-03-13 General Electric Company System and method for automatic generation control in wind farms
US10263436B2 (en) * 2014-10-20 2019-04-16 Powin Energy Corporation Electrical energy storage unit and control system and applications thereof
US10153521B2 (en) 2015-08-06 2018-12-11 Powin Energy Corporation Systems and methods for detecting a battery pack having an operating issue or defect
US10254350B2 (en) 2015-08-06 2019-04-09 Powin Energy Corporation Warranty tracker for a battery pack
US10122186B2 (en) 2015-09-11 2018-11-06 Powin Energy Corporation Battery management systems (BMS) having isolated, distributed, daisy-chained battery module controllers
US9923247B2 (en) 2015-09-11 2018-03-20 Powin Energy Corporation Battery pack with integrated battery management system
JP6419046B2 (ja) * 2015-09-15 2018-11-07 本田技研工業株式会社 蓄電システムの故障形態判定装置
JP6387940B2 (ja) * 2015-10-22 2018-09-12 株式会社オートネットワーク技術研究所 車載用電源装置
US9882401B2 (en) 2015-11-04 2018-01-30 Powin Energy Corporation Battery energy storage system
US9975446B2 (en) * 2016-02-25 2018-05-22 Ford Global Technologies, Llc Vehicle charge system
US10699278B2 (en) 2016-12-22 2020-06-30 Powin Energy Corporation Battery pack monitoring and warranty tracking system
JP6834757B2 (ja) * 2017-04-28 2021-02-24 トヨタ自動車株式会社 電池システム
DE102017213020B4 (de) * 2017-07-28 2024-10-02 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung und verfahren zur symmetrierung eines energiespeichermoduls
JP6928347B2 (ja) * 2017-08-02 2021-09-01 NExT−e Solutions株式会社 管理装置、蓄電装置、蓄電システム、及び、電気機器
CN111742461B (zh) * 2018-03-13 2024-07-19 松下知识产权经营株式会社 管理装置、蓄电系统
KR102530940B1 (ko) * 2018-04-23 2023-05-11 현대자동차주식회사 차량용 에너지저장장치 시스템
WO2020021889A1 (ja) * 2018-07-25 2020-01-30 パナソニックIpマネジメント株式会社 管理装置、及び電源システム
KR102645052B1 (ko) * 2019-03-05 2024-03-08 현대자동차주식회사 하이브리드 차량의 주행모드 제어 장치 및 그 방법
CN109888828B (zh) * 2019-03-15 2023-08-11 中南大学 一种基于pd调制的级联h桥单元soc均衡方法
JP7494452B2 (ja) * 2019-08-30 2024-06-04 株式会社Gsユアサ 蓄電素子の管理装置、蓄電装置、蓄電素子の入出力制御方法
CN113728487B (zh) * 2021-06-29 2023-06-20 东莞新能安科技有限公司 电池模组、应用其的电子装置以及电池模组的组装方法
US20230393217A1 (en) * 2022-06-03 2023-12-07 TotalEnergies OneTech SAS State-of-health estimation pipeline for li-ion battery packs with heterogeneous cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312443A (ja) * 1999-04-27 2000-11-07 Shin Kobe Electric Mach Co Ltd モジュール電池制御装置、モジュール電池ユニット及びモジュール電池制御方法
JP2004187399A (ja) * 2002-12-03 2004-07-02 Nissan Motor Co Ltd 組電池の制御装置
JP2004215322A (ja) * 2002-12-26 2004-07-29 Ntt Data Corp バッテリの放電制御回路、充電制御回路および充放電制御回路
JP2008154317A (ja) * 2006-12-14 2008-07-03 Matsushita Electric Ind Co Ltd 組電池制御方法、組電池制御回路、及びこれを備えた充電回路、電池パック
JP2010141956A (ja) * 2008-12-09 2010-06-24 Denso Corp 組電池の容量調整装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3503414B2 (ja) * 1997-05-12 2004-03-08 日産自動車株式会社 組電池の単電池間充電率調整装置
JP4967362B2 (ja) * 2006-02-09 2012-07-04 トヨタ自動車株式会社 二次電池の残存容量推定装置
JP4967382B2 (ja) 2006-03-08 2012-07-04 日産自動車株式会社 組電池
KR100859688B1 (ko) * 2006-10-12 2008-09-23 삼성에스디아이 주식회사 배터리 관리 시스템 및 그의 구동 방법
KR100839385B1 (ko) * 2006-11-01 2008-06-19 삼성에스디아이 주식회사 배터리 관리 시스템 및 그의 구동 방법
US7652448B2 (en) * 2007-04-12 2010-01-26 International Truck Intellectual Property Company, Llc Vehicle battery state of charge indicator
JP5319134B2 (ja) * 2007-04-19 2013-10-16 プライムアースEvエナジー株式会社 蓄電装置の充電状態検出装置及び方法並びにプログラム
JP5319903B2 (ja) * 2007-09-18 2013-10-16 三菱重工業株式会社 電力貯蔵システム
JP5279261B2 (ja) * 2007-12-27 2013-09-04 三洋電機株式会社 充電状態均等化装置及びこれを具えた組電池システム
US20090187359A1 (en) * 2008-01-18 2009-07-23 General Electric Company System and method for estimating battery state of charge
JP5045816B2 (ja) * 2009-01-08 2012-10-10 トヨタ自動車株式会社 非水電解液型二次電池システム及び車両
JP5463810B2 (ja) 2009-09-09 2014-04-09 日産自動車株式会社 組電池の容量調整装置
JP5482056B2 (ja) * 2009-09-28 2014-04-23 日産自動車株式会社 組電池の容量調整装置
US20140015469A1 (en) * 2010-03-11 2014-01-16 Virgil L. Beaston Battery Management System For A Distributed Energy Storage System, and Applications Thereof
US20110234167A1 (en) * 2010-03-24 2011-09-29 Chin-Hsing Kao Method of Predicting Remaining Capacity and Run-time of a Battery Device
EP2579059B1 (en) * 2010-06-07 2014-04-02 Mitsubishi Electric Corporation Charge status estimation apparatus
JP5715694B2 (ja) * 2011-06-10 2015-05-13 日立オートモティブシステムズ株式会社 電池制御装置、電池システム
EP2535729A1 (en) * 2011-06-16 2012-12-19 ST-Ericsson SA Battery charge determination
US9075090B2 (en) * 2011-08-11 2015-07-07 Qualcomm Incorporated Battery monitoring circuit
WO2013035183A1 (ja) * 2011-09-08 2013-03-14 日立ビークルエナジー株式会社 電池システム監視装置
KR102240717B1 (ko) * 2014-04-01 2021-04-15 더 리젠츠 오브 더 유니버시티 오브 미시건 전기 차량을 위한 실시간 배터리 열 관리

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312443A (ja) * 1999-04-27 2000-11-07 Shin Kobe Electric Mach Co Ltd モジュール電池制御装置、モジュール電池ユニット及びモジュール電池制御方法
JP2004187399A (ja) * 2002-12-03 2004-07-02 Nissan Motor Co Ltd 組電池の制御装置
JP2004215322A (ja) * 2002-12-26 2004-07-29 Ntt Data Corp バッテリの放電制御回路、充電制御回路および充放電制御回路
JP2008154317A (ja) * 2006-12-14 2008-07-03 Matsushita Electric Ind Co Ltd 組電池制御方法、組電池制御回路、及びこれを備えた充電回路、電池パック
JP2010141956A (ja) * 2008-12-09 2010-06-24 Denso Corp 組電池の容量調整装置

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087451A1 (ja) * 2012-12-04 2014-06-12 日本電気株式会社 電池制御装置、蓄電装置、及び蓄電方法
JP2014226029A (ja) * 2013-04-05 2014-12-04 リニアー テクノロジー コーポレイションLinear Technology Corporation モニタリング装置、システム、およびir補償アクティブセルバランシング方法
CN104237795A (zh) * 2013-06-11 2014-12-24 福特全球技术公司 通过相同电压传感器测量多个电池单元的失衡探测
EP3097626A4 (en) * 2014-01-23 2017-10-11 Gogoro Inc. Systems and methods for utilizing an array of power storage devices, such as batteries
US9837842B2 (en) 2014-01-23 2017-12-05 Gogoro Inc. Systems and methods for utilizing an array of power storage devices, such as batteries
JP2016220445A (ja) * 2015-05-22 2016-12-22 住友電気工業株式会社 蓄電モジュールの電圧制御装置および電圧制御方法
WO2017047277A1 (ja) * 2015-09-18 2017-03-23 株式会社日立製作所 二次電池システム
JP2017085876A (ja) * 2015-10-22 2017-05-18 パナソニックIpマネジメント株式会社 蓄電システム、および、蓄電システムの制御方法
JP2017163822A (ja) * 2016-03-08 2017-09-14 パナソニックIpマネジメント株式会社 蓄電システム、および、蓄電システムの制御方法
JP2017212832A (ja) * 2016-05-27 2017-11-30 三菱電機株式会社 バッテリーマネジメント装置
JP2018057137A (ja) * 2016-09-28 2018-04-05 株式会社デンソー 満充電容量算出装置
JP2018054521A (ja) * 2016-09-30 2018-04-05 日立オートモティブシステムズ株式会社 二次電池モジュール
JP2018132318A (ja) * 2017-02-13 2018-08-23 ファナック株式会社 バッテリ残量アラーム装置、数値制御装置および工作機械システム
JP2019020310A (ja) * 2017-07-20 2019-02-07 東京電力ホールディングス株式会社 蓄電池劣化診断方法
JP7003471B2 (ja) 2017-07-20 2022-01-20 東京電力ホールディングス株式会社 蓄電池劣化診断方法
JP2020109731A (ja) * 2019-01-07 2020-07-16 トヨタ自動車株式会社 車両用電池制御装置
JP7067490B2 (ja) 2019-01-07 2022-05-16 トヨタ自動車株式会社 車両用電池制御装置
KR20210044029A (ko) 2019-10-14 2021-04-22 주식회사 엘지화학 운행하기 전 개별 팩간 에너지 차이를 이용한 병렬 전지팩 밸런싱 방법 및 시스템
KR20220147686A (ko) * 2020-03-12 2022-11-03 위스크 에어로 엘엘씨 실시간 배터리 고장 검출 및 건강 상태 모니터링
JP2023510025A (ja) * 2020-03-12 2023-03-10 ウィスク アエロ エルエルシー リアルタイム電池故障検出及び健全性状態監視
JP7352035B2 (ja) 2020-03-12 2023-09-27 ウィスク アエロ エルエルシー リアルタイム電池故障検出及び健全性状態監視
KR102666408B1 (ko) 2020-03-12 2024-05-20 위스크 에어로 엘엘씨 실시간 배터리 고장 검출 및 건강 상태 모니터링
US12055596B2 (en) 2020-03-12 2024-08-06 Wisk Aero Llc Real-time battery fault detection and state-of-health monitoring
CN112034355A (zh) * 2020-09-04 2020-12-04 中国南方电网有限责任公司超高压输电公司曲靖局 蓄电池状态的评估方法及评估装置
CN112034355B (zh) * 2020-09-04 2023-09-05 中国南方电网有限责任公司超高压输电公司曲靖局 蓄电池状态的评估方法及评估装置
CN113655395A (zh) * 2021-08-17 2021-11-16 星恒电源股份有限公司 一种评估电动自行车用锂电池使用状态的方法
WO2023195548A1 (ja) * 2022-04-07 2023-10-12 ビークルエナジージャパン株式会社 電池制御装置および電池システム
WO2024090338A1 (ja) * 2022-10-27 2024-05-02 株式会社Gsユアサ 蓄電装置、複数セルの制御方法及び蓄電装置の制御方法

Also Published As

Publication number Publication date
US20140042973A1 (en) 2014-02-13
JP5668136B2 (ja) 2015-02-12
US9293937B2 (en) 2016-03-22
JPWO2012143996A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
WO2012143996A1 (ja) 蓄電装置
JP5610652B2 (ja) 蓄電器制御回路
JP5546370B2 (ja) 蓄電器制御回路及び蓄電装置
JP6445190B2 (ja) 電池制御装置
CN106842034B (zh) 估计电动车辆中的电池容量
JP5715694B2 (ja) 電池制御装置、電池システム
JP5734370B2 (ja) 電池制御回路
JP6084225B2 (ja) 電池制御装置、二次電池システム
WO2013094057A1 (ja) 電池制御装置、電池システム
JP2015040832A (ja) 蓄電システム及び蓄電装置の満充電容量推定方法
JP2001218376A (ja) 組電池を構成する単電池の充電状態を制御する装置、方法、該装置を用いた電池モジュールおよび電動車両
JP2014036497A (ja) 蓄電システムおよび均等化方法
JP2018050416A (ja) バッテリシステム
JP6428086B2 (ja) 電源システムおよび自動車
JP5477366B2 (ja) 電池充電量制御装置および方法
JP5561268B2 (ja) 電池充電量制御装置および方法
WO2013084663A1 (ja) 電池充電量制御装置および方法
JP2016067142A (ja) 電源システムおよび自動車
JP6337596B2 (ja) 電源システムおよび自動車
JP6327046B2 (ja) 電源システムおよび自動車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863758

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013510752

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14112455

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11863758

Country of ref document: EP

Kind code of ref document: A1