WO2017047277A1 - 二次電池システム - Google Patents

二次電池システム Download PDF

Info

Publication number
WO2017047277A1
WO2017047277A1 PCT/JP2016/073218 JP2016073218W WO2017047277A1 WO 2017047277 A1 WO2017047277 A1 WO 2017047277A1 JP 2016073218 W JP2016073218 W JP 2016073218W WO 2017047277 A1 WO2017047277 A1 WO 2017047277A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
battery
battery cell
cell
capacity
Prior art date
Application number
PCT/JP2016/073218
Other languages
English (en)
French (fr)
Inventor
耕平 本蔵
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2017047277A1 publication Critical patent/WO2017047277A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery system.
  • the battery part is constituted by an assembled battery in which a plurality of battery cells are connected in series.
  • the assembled battery can obtain a high voltage required in the power supply system by connecting battery cells in series.
  • it becomes possible to take out a large current from the assembled battery by connecting a plurality of battery cells connected in series in parallel.
  • the amount of heat generated by charging / discharging differs from the amount of heat released by cooling system or natural cooling depending on the arrangement position of each battery cell, resulting in nonuniformity in the temperature of each battery cell. .
  • the characteristic deterioration of the secondary battery such as a lithium ion battery becomes large when the temperature is high. For this reason, variations occur in the capacity and internal resistance of each battery cell.
  • the internal resistance of a secondary battery such as a lithium ion battery varies with temperature. Furthermore, there are variations in the capacity and internal resistance of each battery cell in the initial state. As described above, voltage variation occurs in each battery cell due to the difference in capacity and internal resistance of each battery cell.
  • Patent Document 1 discloses a voltage equalization technique considering a correction voltage corresponding to the internal resistance of each battery cell.
  • Patent Document 2 discloses a voltage equalization technique for discharging each battery cell based on the voltage of the battery cell having the minimum full charge capacity.
  • the temperature of each battery cell is not considered. Therefore, when the voltages are equalized in a state where the temperature is not uniform, the characteristic deterioration of the battery cell having a relatively high temperature becomes the largest, and the characteristic deterioration of the battery cell having a relatively low temperature becomes the smallest.
  • the deterioration of the battery cells whose characteristic deterioration has progressed relatively is promoted, and the deterioration of the battery cells whose characteristic deterioration has not progressed relatively is suppressed. Therefore, there has been a problem that the variation of the capacity and internal resistance of each battery cell constituting the assembled battery continues to increase, and the life of the assembled battery as a whole is shortened.
  • a secondary battery system includes an assembled battery in which a plurality of battery cells are connected in series, a battery cell monitoring unit that monitors at least voltages of a plurality of battery cells that form the assembled battery, and a battery cell monitoring unit.
  • Battery cell characteristic determination unit that determines characteristic deterioration of each battery cell based on information on each battery cell to be monitored, and adjustment of each battery cell based on information on characteristic deterioration of each battery cell determined by the battery cell characteristic determination unit
  • a battery cell voltage determining unit that determines a subsequent voltage; and a battery cell voltage adjusting unit that adjusts the voltage of each battery cell based on the adjusted voltage of each battery cell.
  • the present invention it is possible to extend the life of the assembled battery as a whole by suppressing the spread of variations in capacity and internal resistance of each battery cell constituting the assembled battery.
  • FIG. 1 It is a block diagram of a secondary battery system. It is a flowchart of voltage control. It is a graph which shows the relationship between the charge amount of a battery cell, and a battery voltage. It is the graph which expanded a part of FIG. It is a data table which shows the relationship between the reduction
  • FIG. 1 is a configuration diagram of a secondary battery system.
  • the battery cells 11 and 12 constituting the assembled battery 1 are connected in series.
  • a temperature sensor 13 that detects the temperature of the assembled battery 1 is provided in the assembled battery 1.
  • the assembled battery 1 has terminals 1a and 1b, and supplies power to a device (not shown) connected between the terminals 1a and 1b.
  • the assembled battery 1 is supplied with charging power from an external power source (not shown) appropriately connected between the terminals 1a and 1b.
  • an external power source not shown
  • the battery controller 2 receives the voltage across the battery cell 11 via the cell voltage detection lines 111 and 112 and detects the voltage of the battery cell 11. Furthermore, the battery controller 2 receives the voltage across the battery cell 12 via the cell voltage detection lines 121 and 122 and detects the voltage of the battery cell 12.
  • a balancing switch 113 and a balancing resistor 114 are connected between the cell voltage detection line 111 and the cell voltage detection line 112. The balancing switch 113 is controlled by an ON / OFF signal 115 from the battery controller 2.
  • a balancing switch 123 and a balancing resistor 124 are connected between the cell voltage detection line 121 and the cell voltage detection line 122. The balancing switch 123 is controlled by an ON / OFF signal 125 from the battery controller 2.
  • the balancing switch 113 is turned on by the ON / OFF signal 115 to energize the balancing resistor 114 and the battery cell 11 is charged until the battery cell 11 reaches a predetermined voltage.
  • the discharge process of the cell 11 is executed.
  • the balancing switch 113 is turned on by the ON / OFF signal 115 in the state where the external power source is connected between the terminal 1a and the terminal 1b of the assembled battery 1.
  • the battery cell 11 is charged until the battery cell 11 reaches a predetermined voltage.
  • the battery cell 11 may be charged by a so-called active method in which power discharged from the battery cell 12 is charged.
  • the battery controller 2 receives the signal of the temperature sensor 13 via the temperature detection line 131 and detects the temperature of the assembled battery 1.
  • the voltage control in this embodiment is started by a start signal from a higher-level control device (not shown).
  • the voltage control is preferably started when the assembled battery 1 is in a state where it can be charged by an external power source and there is no output request to the assembled battery 1 to the outside.
  • the secondary battery system of the present embodiment is used as a power source for a vehicle, it is preferable that the secondary battery system is started when the engine is in an idling stop state.
  • the battery controller 2 includes a battery cell monitoring unit 21, a battery cell characteristic determination unit 22, a battery cell voltage determination unit 23, and a battery cell voltage adjustment unit 24 as functional blocks.
  • the battery controller 2 implements these functional blocks, for example, by executing a predetermined program by the CPU.
  • the battery cell monitoring unit 21 monitors the voltage and the like of each of the battery cells 11 and 12 constituting the assembled battery 1.
  • the battery cell characteristic determination unit 22 determines characteristic deterioration of the battery cells 11 and 12 based on information on the battery cells 11 and 12 monitored by the battery cell monitoring unit 21.
  • the battery cell voltage determination unit 23 determines the voltage of each of the battery cells 11 and 12 based on the characteristic deterioration information of the battery cells 11 and 12 determined by the battery cell characteristic determination unit 22.
  • the battery cell voltage adjustment unit 24 outputs the ON / OFF signals 115 and 125 based on the determined voltages and controls the balancing switches 113 and 123, thereby performing the above-described charging process and discharging process. The voltage of each of the battery cells 11 and 12 is adjusted.
  • the battery cell characteristic determination unit 22 determines the characteristics of the battery cells 11 and 12, that is, the deterioration state. However, the capacity or internal resistance of the battery cells 11 and 12 measured separately may be used as an index for determination. . In the present embodiment, an example will be described in which the deterioration state is determined based on variations in the voltages of the battery cells 11 and 12.
  • FIG. 2 is a flowchart of voltage control executed by the battery controller 2.
  • the battery cell voltage adjustment unit 24 of the battery controller 2 sets a predetermined voltage (secondary voltage; V2) as a target voltage of the battery cells 11 and 12 constituting the assembled battery 1.
  • a lower voltage primary voltage; V1
  • the secondary voltage V2 is preferably a voltage corresponding to a state where 40% or more of the battery capacity is charged, and more preferably a voltage corresponding to a state where 70% or more is charged.
  • the primary voltage V1 is preferably a voltage corresponding to a charged state that is 10% or more lower than the charged state corresponding to the secondary voltage V2.
  • the voltage corresponding to the charging state of 80% is the secondary voltage V2 is shown.
  • the balancing switches 113 and 123 are controlled by ON / OFF control.
  • step S ⁇ b> 2 the battery cell voltage adjustment unit 24 of the battery controller 2 charges until the overall voltage of the assembled battery 1 reaches a voltage of (2 ⁇ V2).
  • This voltage is a value obtained by multiplying the series number 2 of the battery cells 11 and 12 constituting the assembled battery 1 by the secondary voltage V2. Charging is performed until an external power source is connected between the terminal 1a and the terminal 1b of the assembled battery 1 and the entire voltage of the assembled battery 1 reaches a voltage of (number of series ⁇ secondary voltage V2).
  • FIG. 3 shows the relationship between the amount of charge of the battery cells 11 and 12 and the battery voltage when the voltage of the battery cells 11 and 12 is charged and discharged from the state of the primary voltage V1 when the degree of deterioration of the battery cells 11 and 12 is different. Show the relationship.
  • a battery cell 11 with a small degree of deterioration and a battery capacity of 1020 mAh a battery cell 12 with a large degree of deterioration and a battery capacity of 981 mAh, and the average value of the battery cells 11 and 12 are shown.
  • FIG. 4 is an enlarged graph of a part of FIG. 3 and 4, the battery cell 11 is indicated by a one-dot chain line, the battery cell 12 is indicated by a dotted line, and the average value of the battery cells 11 and 12 is indicated by a solid line.
  • the battery voltage corresponding to 0% charge state is 2.700V
  • the battery voltage corresponding to 30% charge state is 3.207V
  • the battery voltage corresponding to 80% charge state Shows an example in which a battery cell with a battery voltage of 4.100 V corresponding to a state of charge of 3.874 V and 100% is used.
  • the primary voltage V1 is 3.207V
  • the secondary voltage V2 is 3.874V. *
  • the average voltage of the battery cells 11 and 12 matches the secondary voltage V2.
  • the voltage of the battery cell 11 having a small degree of deterioration and a large battery capacity is lower than the secondary voltage V2.
  • the battery voltage V3 of the battery cell 11 in this embodiment is 3.862V.
  • the voltage of the battery cell 12 having a large degree of deterioration and a small battery capacity is higher than the secondary voltage V2.
  • the battery voltage V3 of the battery cell 12 in the present embodiment is 3.886V.
  • step S ⁇ b> 3 of FIG. 2 the battery cell voltage determination unit 23 of the battery controller 2 sets the adjusted voltage set values of the battery cells 11 and 12 constituting the assembled battery 1 to the current battery cells 11. , 12 based on the difference (V3 ⁇ V2) between the voltage V3 and the secondary voltage V2. In this determination, it is determined so that the voltage of the assembled battery 1 does not change.
  • the battery cell characteristic determination unit 22 includes a data table or an internal function indicating the deterioration rate with respect to the voltage of the battery cells 11 and 12, and whether the deterioration of each battery cell 11 and 12 progresses at a higher voltage or a low voltage. The speed of characteristic deterioration for determining whether or not the process proceeds further is calculated.
  • FIG. 5 is a data table showing the relationship between the battery voltage and the decrease rate of the battery capacity.
  • the battery cell characteristic determination unit 22 includes the data table illustrated in FIG. 5, and it is determined that battery capacity deterioration further proceeds at a high voltage with reference to the data table. To do. Specifically, the determination as to whether or not the deterioration proceeds refers to a data table to obtain the capacity reduction rate a31 corresponding to the current battery voltage V3.
  • a capacity reduction rate a32 corresponding to the battery voltage V3 + ⁇ V obtained by adding ⁇ V (> 0) to the battery voltage V3 is obtained. Further, a capacity reduction rate a33 corresponding to the battery voltage V3- ⁇ V obtained by subtracting ⁇ V (> 0) from the battery voltage V3 is obtained. From these capacity reduction rates, if a31> a33, it is determined that the capacity reduction proceeds at a high voltage.
  • the data table shown in FIG. 5 can be a data table indicating the rate of change of battery characteristics with respect to parameters such as battery temperature and current, and indicators of characteristic deterioration include capacity reduction rate and internal resistance. One or more indicators can be selected based on the rate of increase.
  • the data table shown in FIG. 5 is provided for each battery temperature, and the battery controller 2 generates a data table corresponding to the temperature of the assembled battery 1 detected by the signal from the temperature sensor 13. Select to determine progress of degradation.
  • the method of expressing the capacity decrease rate and the internal resistance increase rate is an example, and other methods may be used. In the present embodiment, an example is shown in which the relationship between the operating center voltage during the usage period and the rate of decrease of the battery capacity with respect to the square root of the usage period at a predetermined temperature is used.
  • V4 V2 + k (V3-V2) (1)
  • V2 is a secondary voltage
  • V3 is a voltage before adjustment of each of the battery cells 11 and 12
  • k is a constant. If the constant k is a value larger than 1, the voltage variation of the battery cells 11 and 12 occurring at the present time is enlarged, and the adjusted voltage V4 of the battery cell 12 having a relatively small battery capacity (deterioration is large). Is higher than the voltage V3 before adjustment, and the voltage V4 after adjustment of the battery cell 11 having a relatively large battery capacity (deterioration is large) is lower than the voltage V3 before adjustment. Moreover, if the constant k is 1, the voltage of each battery cell 11 and 12 currently generated does not change. If the constant k is 0, the voltages of the battery cells 11 and 12 are uniform.
  • the constant k is a negative value
  • the correspondence relationship between the capacity of each of the battery cells 11 and 12 and the adjusted voltage V4 is reversed, and the adjustment of the battery cell 12 having a relatively small battery capacity (large deterioration).
  • the voltage V4 after the adjustment is lower than the voltage V3 before the adjustment, and the voltage V4 after the adjustment of the battery cell 11 having a relatively large battery capacity (small deterioration) is higher than the voltage V3 before the adjustment.
  • variation in battery capacity can be reduced.
  • the constant k is set to -7
  • the battery cell voltage determination unit 23 adjusts the voltage V4 after adjustment of the battery cells 11 and 12 so that the voltage of the entire assembled battery 1 in which the battery cells 11 and 12 are connected in series is maintained at the value before adjustment. To decide.
  • the constant k in the above equation (1) can be determined as described below, for example.
  • the battery cell characteristic determination unit 22 determines the internal resistance of each of the battery cells 11 and 12 in advance. For example, the open circuit voltage of each battery cell 11, 12 is temporarily held while the assembled battery 1 is stopped, and then the absolute value after flowing a predetermined current value through each battery cell 11, 12 for a certain time The value divided by the value is stored as the internal resistance of each battery cell 11, 12. Moreover, the upper limit value V_max and the lower limit value V_min of the voltage of each battery cell 11 and 12 are set.
  • the battery cell voltage determination unit 23 subtracts the value IR obtained by multiplying the internal resistance R of the battery cells 11 and 12 and the predetermined current value I from the upper limit value V_max, and sets the allowable voltage V4.
  • the maximum value V4_max is calculated, the value IR is added to the lower limit value V_min, and the minimum allowable value V4_min of the voltage V4 is calculated.
  • the maximum value V4_max and the minimum value V4_min may be calculated as different values in the battery cells 11 and 12, respectively, or a value common to the battery cells 11 and 12 using the maximum value of the internal resistance R. May be calculated as
  • a voltage V4_opt having the smallest capacity reduction rate is obtained in the region where the battery voltage is not less than the minimum value V4_min and not more than the maximum value V4_max.
  • a constant k corresponding to the voltage V4_opt is obtained by the following equation (2) using the maximum value V3_max of the voltages V3 among the battery cells 11 and 12.
  • the voltage V3 indicated by the battery cell that is most degraded is the maximum value V3_max.
  • V4_opt V2 + k (V3_max- V2) (2)
  • the voltage V4 of all the battery cells is determined by equation (1).
  • all the differences from the average value V2 of the battery cells 11 and 12 are multiplied by a constant, so that the overall voltage of the assembled battery 1 at the end of step S2 and the battery cells 11 and 12 at the end of step S3.
  • the total voltage of the series part (the number of series ⁇ V2) becomes equal.
  • step S ⁇ b> 4 of FIG. 2 the battery cell voltage adjustment unit 24 adjusts the battery cells 11 and 12 constituting the assembled battery 1 to the voltage V ⁇ b> 4.
  • the balancing switch 113 is OFF-controlled while the external power source is connected between the terminal 1a and the terminal 1b of the assembled battery 1, and the balancing switch This is performed by controlling 123 to ON.
  • the voltage of the battery cell 12 is discharged and adjusted to the voltage V4 by controlling the balancing switch 123 to be ON.
  • ⁇ Usage example according to this embodiment> Consider the characteristics of the battery cell 11, the battery cell 12, and the assembled battery 1 when the voltage V4 described above is used and the voltage V4 is used as a central voltage for 9 days.
  • the center voltage is an average value of the battery voltage over 9 days.
  • the capacity reduction of the battery cell having a relatively small battery capacity is suppressed, and the capacity reduction of the battery cell having a relatively large battery capacity is promoted.
  • the variation in the battery capacity of each battery cell constituting the assembled battery is reduced.
  • Comparative Example 1 a case where the assembled battery 1 is used with the voltage V3 after the processing of Step S1 and Step S2 of FIG.
  • the voltage V3 of the battery cell is higher as the battery cell has a smaller battery capacity and lower as the battery cell has a larger battery capacity.
  • the battery voltage V3 of the battery cell 11 is 3.862V.
  • the battery voltage V3 of the battery cell 12 is 3.886V. Therefore, according to FIG. 5, in this state, the capacity of the battery cell having a relatively small battery capacity decreases relatively quickly, and the capacity of the battery cell having a relatively large battery capacity decreases relatively slowly. The variation in battery capacity in each battery cell increases.
  • the variation in battery capacity does not decrease.
  • the expansion of the capacity variation is suppressed, but the capacity variation cannot be reduced.
  • FIG. 6 summarizes the results of the embodiment, Comparative Example 1, and Comparative Example 2.
  • the center voltage of the assembled battery 1 is substantially the same in the embodiment, Comparative Example 1 and Comparative Example 2.
  • the capacity of the battery cell 11 after being used for 9 days at the center voltage shown in FIG. 6 is the smallest in the embodiment and the largest in the comparative example 1.
  • the capacity of the battery cell 12 after being used for 9 days at the center voltage shown in FIG. 6 is the largest in the embodiment and the smallest in the comparative example 1.
  • the capacity of the assembled battery 1 composed of battery cells connected in series is determined by the battery cell having the smallest capacity among the battery cells constituting the series connection. Therefore, the capacity of the assembled battery 1 after being used for 9 days at the center voltage shown in FIG.
  • the difference in the capacity of the battery cells with respect to the average capacity of the battery cells that is, the degree of variation in capacity, is the smallest in the embodiment, the largest in the comparative example 1, and the larger in the comparative example 2 than in the embodiment.
  • the secondary battery system includes an assembled battery 1 in which a plurality of battery cells 11 and 12 are connected in series, and a battery cell monitoring unit that monitors at least voltages of the plurality of battery cells 11 and 12 constituting the assembled battery 1.
  • a battery cell characteristic determination unit 22 that determines characteristic deterioration of the battery cells 11 and 12 based on information on the battery cells 11 and 12 monitored by the battery cell monitoring unit 21, and a battery that is determined by the battery cell characteristic determination unit 22 Based on the information on the characteristic deterioration of the cells 11 and 12, the battery cell voltage determination unit 23 that determines the adjusted voltage V4 of the battery cells 11 and 12, and based on the determined adjusted voltage V4 of the battery cells 11 and 12 And a battery cell voltage adjusting unit 24 for adjusting the voltage of the battery cells 11 and 12.
  • the battery cell voltage determination unit 23 relatively increases the voltage of the battery cell 11 or 12, which is less deteriorated, based on the characteristic deterioration information of the battery cells 11 and 12.
  • the voltage of the battery cell having a large deterioration among the battery cells 11 and 12 is determined to be a relatively low voltage.
  • the battery cell characteristic determination unit 22 includes a data table that indicates the speed of characteristic deterioration of the battery cells 11 and 12 with respect to the temperature of the battery cells 11 and 12 and the voltage of the battery cells 11 and 12. The speed of characteristic deterioration is calculated based on the data table. Thereby, based on the characteristic deterioration according to temperature, it becomes possible to extend the lifetime as the whole assembled battery.
  • the battery cell characteristic determination unit 22 equalizes the voltages of the battery cells 11 and 12 to the first voltage V1, and then sets the assembled battery in which the battery cells are connected in series to the second voltage.
  • the third voltage V3 of the battery cells 11 and 12 when charged to a predetermined voltage corresponding to the voltage V2 is used as an index of the characteristics of the battery cells 11 and 12.
  • the predetermined voltage is a value (2 ⁇ V2) obtained by multiplying the second voltage V2 by the series number 2 of the battery cells 11 and 12 in the assembled battery 1.
  • the battery cell characteristic determination unit 22 determines whether the battery cells 11 and 12 are based on the internal resistance R of the battery cells 11 and 12 and the predetermined voltage upper limit value V_max and voltage lower limit value V_min. The maximum value V4_max and the minimum value V4_min of the adjusted voltage V4 are calculated. Then, the multiplier k is determined so that the adjusted voltage V4 of the battery cells 11 and 12 is not less than the calculated minimum value V4_min and not more than the maximum value V4_max. As a result, the capacity decrease of the battery cell having a relatively small battery capacity is suppressed, the capacity decrease of the battery cell having a relatively large battery capacity is promoted, and the variation in the battery capacity of each battery cell constituting the assembled battery is reduced. To do.
  • the battery cell voltage determination unit 23 determines the adjusted voltage V4 of the battery cells 11 and 12 so as to keep the voltage of the assembled battery 1 at a predetermined voltage before adjustment. Thereby, an appropriate voltage can be set for each battery cell without changing the overall voltage of the assembled battery.
  • the present invention can be implemented by modifying the embodiment described above as follows.
  • the voltage of the battery cells 11 and 12 is set to a target predetermined voltage (secondary voltage; V2 )
  • a target predetermined voltage secondary voltage; V1
  • step S2 To a lower voltage (primary voltage; V1), and in step S2, charging is performed until the total voltage of the assembled battery 1 reaches a voltage of (2 ⁇ V2).
  • the example in which the voltage V3 is obtained has been described.
  • step S1 the voltage (primary voltage; V1) higher than a predetermined voltage (secondary voltage; V2) is set, and in step S2, the total voltage of the assembled battery 1 becomes a voltage of (2 ⁇ V2).
  • the voltage V3 of the battery cells 11 and 12 may be obtained by discharging the battery.
  • the voltage of the battery cell 11 having a small degree of deterioration and a large battery capacity is higher than the secondary voltage V2
  • the voltage of the battery cell 12 having a large degree of deterioration and a small battery capacity is lower than the secondary voltage V2.
  • the assembled battery in which a plurality of battery cells are connected in series has been described.
  • the assembled battery may have a configuration in which a plurality of battery cells connected in series are provided in parallel.
  • the present invention is not limited to the above-described embodiment, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention as long as the characteristics of the present invention are not impaired. . Moreover, it is good also as a structure which combined the above-mentioned embodiment and a modification.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

組電池を構成する各電池セルの容量および内部抵抗のばらつきが拡大し続けるという課題があった。各電池セル11、12の電圧は、以下の式で求めた値V4をそれぞれ設定する。V4 = V2 + k(V3-V2)。V2は二次電圧、V3は各電池セル11、12のそれぞれの電圧、kは定数である。定数kが負の値である場合、各電池セル11、12の容量と電圧V4の対応関係が逆転し、相対的に電池容量が小さい電池セル12の電圧が低くなり、相対的に電池容量が大きい電池セル11の電圧が高くなる。この場合、電池容量のばらつきを減少させることが可能である。

Description

二次電池システム
 本発明は、二次電池システムに関する。
 近年、リチウムイオン電池などの二次電池が車両の電源システムや家庭用の電源システムなどに使用されている。このような用途の電源システムおいては、電池部分は複数の電池セルを直列に接続された組電池によって構成されている。組電池は、電池セルを直列接続することにより、電源システムにおいて必要な高電圧が得られる。また、直列に接続された複数の電池セルを並列に接続することにより、組電池から大電流を取り出すことが可能になる。
 このような組電池では、各電池セルの配置位置に応じて、充放電による発熱量と冷却システムあるいは自然冷却による放熱量とが電池セルごとに異なるため、各電池セルの温度に不均一が生じる。また、リチウムイオン電池などの二次電池の特性劣化は温度が高い場合に大きくなる。このため、各電池セルの容量および内部抵抗にばらつきが生じる。また、リチウムイオン電池などの二次電池の内部抵抗は温度によって変化する。さらに、各電池セルが初期状態で有する容量および内部抵抗にはばらつきが存在する。このように、各電池セルの容量および内部抵抗の差異により、各電池セルに電圧のばらつきが生じる。この場合、例えば一つの電池セルの電圧が他の電池セルの電圧よりも大幅に低くなり、駆動可能な閾値を下回った場合に、組電池全体の動作を止めたり抑制したりする必要が生じる。したがって、組電池を構成する各電池セルの電圧をそれぞれ制御することが要求される。
 組電池を構成する電池セルの電圧を制御する従来技術として、組電池と接続されたバランス回路を用いて、電池セルの電圧を均等にする技術が知られている。例えば、特許文献1には、各電池セルの内部抵抗に対応する補正電圧を考慮した電圧均等化技術が開示されている。また、特許文献2には、満充電容量が最小の電池セルの電圧に基づいて各電池セルを放電する電圧均等化技術が開示されている。
特開2013-102592号公報 特開2010-220380号公報
 上述の特許文献に記載の電圧均等化技術では、各電池セルの温度については考慮されていない。したがって、温度が不均一の状態で電圧を均一化した場合、相対的に温度が高くなる電池セルの特性劣化が最も大きくなり、相対的に温度が低くなる電池セルの特性劣化は最も小さくなる。その結果、組電池を構成する電池セルのうち、相対的に特性劣化が進んだ電池セルの劣化が促進され、相対的に特性劣化が進んでいない電池セルの劣化が抑制される。そのため、組電池を構成する各電池セルの容量および内部抵抗のばらつきが拡大し続け、組電池全体としての寿命が短くなるという課題があった。
 本発明による二次電池システムは、複数の電池セルが直列に接続された組電池と、組電池を構成する複数の各電池セルの少なくとも電圧を監視する電池セル監視部と、電池セル監視部が監視する各電池セルの情報に基づいて各電池セルの特性劣化を判定する電池セル特性判定部と、電池セル特性判定部が判定した各電池セルの特性劣化の情報に基づいて各電池セルの調整後の電圧を決定する電池セル電圧決定部と、決定した各電池セルの調整後の電圧に基づいて各電池セルの電圧を調整する電池セル電圧調整部とを備える。
 本発明によれば、組電池を構成する各電池セルの容量および内部抵抗のばらつきの拡大を抑制し、組電池全体としての寿命を延長することが可能となる。
二次電池システムの構成図である。 電圧制御のフローチャートである。 電池セルの充電量と電池電圧との関係を示すグラフである。 図3の一部を拡大したグラフである。 電池電圧と電池容量の減少速度の関係を示すデータテーブルである。 実施形態と比較例1と比較例2の結果をまとめた図である。
(第1の実施形態)
 図1は、二次電池システムの構成図である。
 組電池1を構成する電池セル11、12は、直列に接続される。組電池1内には、組電池1の温度を検出する温度センサ13が設けられている。組電池1は、端子1a、1bを有し、端子1a及び端子1bの間に接続された装置(図示省略)に対して電力を供給する。また、組電池1は、端子1a及び端子1bの間に適宜接続された外部電源(図示省略)より充電電力が組電池1に供給される。なお、説明を簡単にするため、本実施形態では、電池セル11、12が2個の場合を例に説明するが、電池セルが3個以上の場合も同様に実施することができる。
 バッテリコントローラ2は、セル電圧検出線111、112を介して電池セル11の両端の電圧が入力され、電池セル11の電圧を検出する。更に、バッテリコントローラ2は、セル電圧検出線121、122を介して電池セル12の両端の電圧が入力され、電池セル12の電圧を検出する。セル電圧検出線111とセル電圧検出線112の間には、バランシングスイッチ113とバランシング抵抗114が接続されている。バランシングスイッチ113は、バッテリコントローラ2からのON/OFF信号115によって制御される。更に、セル電圧検出線121とセル電圧検出線122の間には、バランシングスイッチ123とバランシング抵抗124が接続されている。バランシングスイッチ123は、バッテリコントローラ2からのON/OFF信号125によって制御される。
 例えば、バッテリコントローラ2によって電池セル11の放電が必要と判断されたときには、ON/OFF信号115によってバランシングスイッチ113をONにしてバランシング抵抗114に通電し、電池セル11が所定の電圧になるまで電池セル11の放電処理を実行する。また、バッテリコントローラ2によって電池セル11の充電が必要と判断されたときには、組電池1の端子1a及び端子1bの間に外部電源が接続された状態で、ON/OFF信号115によってバランシングスイッチ113をOFFにして、電池セル11が所定の電圧になるまで電池セル11の充電処理を実行する。あるいは、電池セル12から放電される電力を電池セル11に充電させる、いわゆるアクティブ方式で充電してもよい。
 バッテリコントローラ2は、温度検出線131を介して温度センサ13の信号が入力され、組電池1の温度を検出する。
 次に、本実施形態における組電池1の電圧制御の動作を具体的に説明する。
 本実施形態における電圧制御は、上位の制御装置(図示省略)からの開始信号によって開始される。なお電圧制御は、組電池1が外部電源により充電可能な状態であり、かつ組電池1に対して外部への出力要求がない状態のときに開始されることが望ましい。例えば、本実施形態の二次電池システムを車両の電源として使用した場合には、アイドリングストップの状態にあるときに開始されることが望ましい。
 バッテリコントローラ2は、図1に示すように、機能ブロックとして、電池セル監視部21、電池セル特性判定部22、電池セル電圧決定部23、電池セル電圧調整部24を有する。バッテリコントローラ2は、たとえばCPUにより所定のプログラムを実行することで、これらの機能ブロックを実現する。
 電池セル監視部21は、組電池1を構成する電池セル11、12の各々の電圧等を監視する。電池セル特性判定部22は、電池セル監視部21が監視する電池セル11、12の情報に基づいて電池セル11、12の特性劣化を判定する。電池セル電圧決定部23は、電池セル特性判定部22が判定した電池セル11、12の特性劣化の情報に基づいて電池セル11、12の各々の電圧を決定する。電池セル電圧調整部24は、決定した各々の電圧に基づいて、ON/OFF信号115、125を出力してバランシングスイッチ113、123を制御することにより、前述のような充電処理や放電処理を行い、電池セル11、12の各々の電圧を調整する。
 なお、電池セル特性判定部22は、電池セル11、12の特性、すなわち劣化状態を判定するが、判定の指標には、別途測定した電池セル11、12の容量あるいは内部抵抗を用いてもよい。本実施形態では、電池セル11、12の電圧のばらつきによって劣化状態を判定する例で説明する。
 図2は、バッテリコントローラ2が実行する電圧制御のフローチャートである。
<ステップS1>
 図2に示すフローチャートのステップS1で、バッテリコントローラ2の電池セル電圧調整部24は、組電池1を構成する電池セル11、12の電圧を、目標とする所定の電圧(二次電圧;V2)よりも低い電圧(一次電圧;V1)に揃える。以下、満充電状態から全放電状態に至るまでの電池容量を百分割して、満充電状態を100%、全放電状態を0%とする。二次電圧V2としては、電池容量の40%以上を充電した状態に対応する電圧が望ましく、70%以上を充電した状態に対応する電圧がさらに望ましい。一次電圧V1としては、二次電圧V2に対応する充電状態よりも10%以上低い充電状態に対応する電圧が望ましい。本実施形態では、30%の充電状態に対応する電圧を一次電圧V1とし、80%の充電状態に対応する電圧を二次電圧V2とした場合を示す。なお、電池セル11、12の各々の電圧を一次電圧V1に揃えるには、バランシングスイッチ113、123をON/OFF制御することによって行う。
<ステップS2>
 次に、ステップS2において、バッテリコントローラ2の電池セル電圧調整部24は、組電池1の全体の電圧が(2×V2)の電圧になるまで充電する。この電圧は、組電池1を構成する電池セル11、12の直列数2に、二次電圧V2を乗じた値である。充電は、組電池1の端子1a及び端子1bの間に外部電源を接続し、組電池1の全体の電圧が(直列数×二次電圧V2)の電圧になるまで行う。
 以上のステップS1およびステップS2の処理を終えた段階で、組電池1の電池セル11、12の各電圧V3は、電池セルの劣化の程度に応じて異なる。図3は、電池セル11、12の劣化の程度が異なる場合に、電池セル11、12の電圧が一次電圧V1の状態から充放電したときの電池セル11、12の充電量と電池電圧との関係を示す。図3では、一例として、劣化の程度が小さく電池容量が1020 mAhである電池セル11と、劣化の程度が大きく電池容量が981 mAhである電池セル12と、電池セル11、12の平均値について、充電量と電池電圧との関係を示している。図4は、図3の一部を拡大したグラフである。図3、4において、電池セル11は一点鎖線で、電池セル12は点線で、電池セル11、12の平均値は実線で示す。本実施形態では、電池セル11、12として、0%の充電状態に対応する電池電圧が2.700V、30%の充電状態に対応する電池電圧が3.207V、80%の充電状態に対応する電池電圧が3.874V、100%の充電状態に対応する電池電圧が4.100Vである電池セルを用いた場合の例を示す。本実施形態では、一次電圧V1は3.207Vであり、二次電圧V2は3.874Vである。 
 ステップS2の処理を終えた段階では、図3および図4に示すように、電池セル11、12の平均電圧は二次電圧V2に一致する。一方で、劣化の程度が小さく電池容量が大きい電池セル11の電圧は二次電圧V2よりも低くなる。例えば、本実施形態における電池セル11の電池電圧V3は3.862Vである。また、劣化の程度が大きく電池容量が小さい電池セル12の電圧は二次電圧V2よりも高くなる。例えば、本実施形態における電池セル12の電池電圧V3は3.886Vである。このように、本実施形態におけるステップS1およびステップS2の処理を終えた段階における、各電池セルの電圧は、各電池セルの劣化の程度を相対的に示す指標として使用することができる。
<ステップS3>
 次に、図2のステップS3において、バッテリコントローラ2の電池セル電圧決定部23は、組電池1を構成する電池セル11、12の調整後の電圧の設定値を、現時点での各電池セル11、12の電圧V3と二次電圧V2との差(V3-V2)に基づいて決定する。この決定に際して、組電池1の電圧が変化しないように決定する。また、電池セル特性判定部22は、電池セル11、12の電圧に対する劣化速度を示すデータテーブルあるいは内部関数を備え、各電池セル11、12の劣化が、高電圧でより進行するのか、低電圧でより進行するのかを判定するための特性劣化の速度を計算する。この判定結果に基づいて、電池セル電圧決定部23は、電池セル11、12の調整後の電圧の設定値を決定する。図5は、電池電圧と電池容量の減少速度の関係を示すデータテーブルである。本実施形態では、電池セル特性判定部22が、図5に示すデータテーブルを備えており、このデータテーブルを参照して、高電圧で電池容量の劣化がより進行すると判定した場合を例に説明する。劣化が進行するかの判定は、具体的には、データテーブルを参照し、現時点での電池電圧V3に対応する容量減少率a31を求める。次に、電池電圧V3にΔV(>0)を加えた電池電圧V3+ΔVに対応する容量減少率a32を求める。更に、電池電圧V3からΔV(>0)を引いた電池電圧V3-ΔVに対応する容量減少率a33を求める。これらの容量減少率からa31>a33であれば高電圧で容量減少が進行すると判定する。
 なお、図5に示すデータテーブルは、電池電圧以外にも電池温度や電流などのパラメータに対する電池特性の変化速度を示すデータテーブルとすることができ、特性劣化の指標は、容量減少率や内部抵抗上昇率などから1つ以上の指標を選択することができる。例えば、電池温度に対するデータテーブルの場合は、電池温度毎に図5に示すデータテーブルを各々備え、バッテリコントローラ2は、温度センサ13からの信号により検出した組電池1の温度に対応したデータテーブルを選択して劣化の進行を判定する。また、容量減少率や内部抵抗上昇率の表し方は一例であり、その他の表し方でもよい。本実施形態では、所定の温度における、使用期間の作動中心電圧と使用期間の平方根に対する電池容量の減少速度との関係を用いた場合の例を示す。
 本実施形態では、各電池セル11、12の調整後の電圧は、以下の式(1)で求めた値V4をそれぞれ設定する。
(数1)
  V4 = V2 + k(V3-V2)   ・・・(1)
 ここで、V2は二次電圧、V3は各電池セル11、12のそれぞれの調整前の電圧、kは定数である。定数kが1より大きい値であれば、現時点で生じている各電池セル11、12の電圧ばらつきが拡大し、相対的に電池容量が小さい(劣化が大きい)電池セル12の調整後の電圧V4は調整前の電圧V3よりも高く、相対的に電池容量が大きい(劣化が大きい)電池セル11の調整後の電圧V4は調整前の電圧V3よりも低くなる。また、定数kが1であれば、現時点で生じている各電池セル11、12の電圧は変化しない。また、定数kが0であれば各電池セル11、12の電圧は均一になる。一方、定数kが負の値である場合、各電池セル11、12の容量と調整後の電圧V4の対応関係が逆転し、相対的に電池容量が小さい(劣化が大きい)電池セル12の調整後の電圧V4は調整前の電圧V3よりも低くなり、相対的に電池容量が大きい(劣化が小さい)電池セル11の調整後の電圧V4は調整前の電圧V3よりも高くなる。この場合、電池容量のばらつきを減少させることが可能である。例えば定数kを-7にした場合、図4に示すように、電池セル11の調整後の電圧V4は 3.874 - 7 * (3.862 - 3.874) = 3.958 V となり、電池セル12の調整後の電圧V4は 3.874 -7 * (3.886 - 3.874) = 3.790 Vとなる。なお、いずれの場合であっても、電池セル11の電圧と電池セル12の電圧とを合計した組電池1全体の電圧は、調整の前後で変化せず、(2×V2)のままである。このように、電池セル電圧決定部23は、各電池セル11、12を直列に接続した組電池1全体の電圧を調整前の値に保つように、電池セル11、12の調整後の電圧V4を決定する。
 上記式(1)の定数kは、例えば以下に説明するように決めることができる。この場合、電池セル特性判定部22は、各電池セル11、12の内部抵抗を予め判定しておく。例えば、組電池1の休止中に各電池セル11、12の開回路電圧を一時的に保持し、その後、各電池セル11、12に所定の電流値を一定時間流した後の絶対値を電流値で割った値を各電池セル11、12の内部抵抗として記憶しておく。また、各電池セル11、12の電圧の上限値V_maxと下限値V_minを設定しておく。そして、定数kを決める際には、まず電池セル電圧決定部23は、電池セル11、12の内部抵抗Rと所定の電流値Iを乗じた値IRを上限値V_maxから引いて電圧V4の許容される最大値V4_maxを算出し、値IRを下限値V_minに加えて電圧V4の許容される最小値V4_minを算出する。この際、最大値V4_maxと最小値V4_minは各電池セル11、12で別々の値としてそれぞれ計算してもよいし、内部抵抗Rの最大値を用いて、各電池セル11、12に共通の値として計算してもよい。
 次に、図5に示すデータテーブルを参照し、電池電圧が最小値V4_min以上、かつ最大値V4_max以下の領域において、最も容量減少率が小さい電圧V4_optを求める。次に、電池セル11、12のうち、電圧V3のうちの最大値V3_maxを用いて、電圧V4_optに対応する定数kを次式(2)によって求める。なお、本実施形態では、最も劣化が進行している電池セルが示す電圧V3が最大値V3_maxになる。
(数2)
  V4_opt= V2+k(V3_max- V2)    ・・・(2)
  この式(2)により求めた定数kを用いて、すべての電池セルの電圧V4を、式(1)によって定める。その結果、電池セル11、12の平均値V2からの差分が全て定数倍されるので、ステップS2の終了時点における組電池1の全体の電圧と、ステップS3の終了時点における電池セル11、12の直列部分の全体の電圧(直列数×V2)は等しくなる。
<ステップS4>
 次に、図2のステップS4において、電池セル電圧調整部24は、組電池1を構成する各電池セル11、12をそれぞれ電圧V4に調整する。例えば、電池セル11の電圧を充電して電圧V4に調整するには、組電池1の端子1a及び端子1bの間に外部電源が接続された状態で、バランシングスイッチ113をOFF制御し、バランシングスイッチ123をON制御することによって行う。電池セル12の電圧を放電して電圧V4に調整するには、バランシングスイッチ123をON制御することによって行う。
<本実施形態による使用例>
 以上説明した電圧制御の実行後、電圧V4を中心電圧として9日間使用した場合の電池セル11と電池セル12と組電池1の特性について考える。なお、中心電圧とは、9日間における電池電圧の平均値である。このとき、図5によれば、9日間保存した場合の電池セル11の容量減少は3.78*√9 = 11.3 mAhであり、電池セル11の容量は1020 - 11.3 = 1008.7 mAhとなる。また、9日間保存した場合の電池セル12の容量減少は2.74*√9 = 8.22 mAhであり、電池セル12の容量は981 - 8.22 = 972.8 mAhとなる。この場合の電池セル11と電池セル12の容量ばらつきの平均容量に対する割合は(1008.7 - 972.8)/(1008.7 + 972.8)/2 *100 = 3.62%となる。このように、本実施形態によれば、相対的に電池容量が小さい電池セルの容量減少は抑制され、相対的に電池容量が大きい電池セルの容量減少は促進される。結果として、組電池を構成する各電池セルの電池容量のばらつきは減少する。
<比較例1による使用例>
 次に、比較例1として、図2のステップS1とステップS2の処理の後の電圧V3を中心電圧として組電池1を使用した場合を示す。
 図3および図4に示したように、電池セルの電圧V3は電池容量が小さい電池セルほど高く、電池容量が大きい電池セルほど低くなっている。電池セル11の電池電圧V3は3.862Vである。また、電池セル12の電池電圧V3は3.886Vである。したがって図5によれば、この状態では、相対的に電池容量が小さい電池セルの容量は相対的に早く減少し、相対的に電池容量の大きな電池セルの容量は相対的に緩やかに減少するため、各電池セルにおける電池容量のばらつきは拡大する。
 例えば、電池セル11を電圧V3 = 3.862 Vで9日間使用した場合、電池セル11の容量減少は3.19*√9 = 9.57 mAhであり、容量は1020 - 9.57 = 1010.4 mAhとなる。また、電池セル12を電圧V3で9日間使用した場合、電池セル12の容量減少は3.34*√9 = 10.0 mAhであり、容量は981 - 10.0 = 971.0 mAhとなる。この場合、元々の電池セル11と電池セル12の容量ばらつきの平均容量に対する割合が (1020 - 981)/[(1020 + 981)/2 *100 = 3.90%であったのに対して、9日間使用した場合の電池セル11と電池セル12の容量ばらつきの平均容量に対する割合は(1010.4 - 971)/(1010.4 + 971)/2 *100 = 3.98%となり、容量ばらつきの程度が拡大する。
<比較例2による使用例>
 次に、比較例2として、図2に示したステップS1の操作において、電池セルの電圧をV2に均一化させ、電圧V2を中心電圧として組電池1を使用した場合を示す。
 この場合でも、電池容量のばらつきは減少することはない。例えば、電池セル11と電池セル12の電圧をともに3.874Vにして9日間使用した場合、電池セル11と電池セル12の容量減少は図5より3.27*√9 = 9.81 mAhであり、容量はそれぞれ 1020 - 9.81 = 1010.2 mAhと 981 - 9.81 = 971.2 mAhとなる。この場合の電池セル11と電池セル12の容量ばらつきの平均容量に対する割合は(1010.2 - 971.2)/(1010.2 + 971.2)/2 *100 = 3.94%となる。この場合、電圧を均一化しない場合に比べて、容量ばらつきの拡大は抑制されているものの、容量ばらつきを縮小することはできない。
 図6に、実施形態と比較例1と比較例2の結果をまとめて示す。組電池1の中心電圧は実施形態と比較例1と比較例2でほぼ同じである。また、図6に示した中心電圧で9日間使用した後の電池セル11の容量は、実施形態で最も小さく、比較例1で最も大きい。一方で、図6に示した中心電圧で9日間使用した後の電池セル12の容量は、実施形態で最も大きく、比較例1で最も小さい。電池セルの直列接続からなる組電池1の容量は、直列接続を構成する各電池セルのうち、容量が最小になる電池セルによって決まる。したがって、図6に示した中心電圧で9日間使用した後の組電池1の容量は、実施形態で最も大きく、比較例1で最も小さく、比較例2においても実施形態よりも小さい。また、電池セルの平均容量に対する電池セルの容量の差、すなわち容量のばらつきの程度は、実施形態で最も小さく、比較例1で最も大きく、比較例2においても実施形態よりも大きい。
 以上のように、本実施形態に基づく組電池の電圧制御によれば、組電池1の直列接続部分を構成する各電池セル11、12の特性劣化のばらつきを抑制し、結果として組電池1の特性劣化を抑制して寿命を延長することができる。
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)二次電池システムは、複数の電池セル11、12が直列に接続された組電池1と、組電池1を構成する複数の電池セル11、12の少なくとも電圧を監視する電池セル監視部21と、電池セル監視部21が監視する電池セル11、12の情報に基づいて電池セル11、12の特性劣化を判定する電池セル特性判定部22と、電池セル特性判定部22が判定した電池セル11、12の特性劣化の情報に基づいて電池セル11、12の調整後の電圧V4を決定する電池セル電圧決定部23と、決定した電池セル11、12の調整後の電圧V4に基づいて電池セル11、12の電圧を調整する電池セル電圧調整部24とを備える。これにより、組電池を構成する各電池セルの容量および内部抵抗のばらつきの拡大を抑制することができ、組電池全体としての寿命を延長することが可能となる。
(2)二次電池システムにおいて、電池セル電圧決定部23は、電池セル11、12の特性劣化の情報に基づいて、電池セル11、12のうち劣化が小さい電池セルの電圧を相対的に高い電圧に、電池セル11、12のうち劣化が大きい電池セルの電圧を相対的に低い電圧に決定する。これにより、組電池を構成する各電池セルの容量および内部抵抗のばらつきの拡大を抑制することができる。
(3)二次電池システムにおいて、電池セル特性判定部22は、電池セル11、12の温度と電池セル11、12の電圧に対する電池セル11、12の特性劣化の速度を示すデータテーブルを備え、データテーブルに基づいて特性劣化の速度を計算する。これにより、温度に応じた特性劣化に基づいて、組電池全体としての寿命を延長することが可能となる。
(4)二次電池システムにおいて、電池セル特性判定部22は、電池セル11、12の電圧を第1の電圧V1に均一化し、その後に各電池セルが直列接続された組電池を第2の電圧V2に応じた所定の電圧まで充電したときの電池セル11、12の第3の電圧V3を電池セル11、12の特性の指標として用いる。これにより、各電池セルの特性劣化を求めるための指標を得ることができる。
(5)二次電池システムにおいて、上記の所定の電圧は、第2の電圧V2に、組電池1における電池セル11,12の直列数2を乗じた値(2×V2)である。電池セル電圧決定部23は、各電池セル11、12の第3の電圧V3と第2の電圧V2との電圧差に定数kを乗じて、更に第2の電圧V2を加えた値を、各電池セルの調整後の電圧V4として決定する。すなわち、V4 = V2 + k(V3-V2)により決定する。これにより、相対的に電池容量が小さい電池セルの容量減少は抑制され、相対的に電池容量が大きい電池セルの容量減少は促進され、組電池を構成する各電池セルの電池容量のばらつきは減少する。
(6)二次電池システムにおいて、電池セル特性判定部22は、電池セル11、12の内部抵抗Rと、所定の電圧上限値V_maxおよび電圧下限値V_minとに基づいて、電池セル11、12の調整後の電圧V4の最大値V4_maxおよび最小値V4_minを算出する。そして、電池セル11、12の調整後の電圧V4が算出した最小値V4_min以上かつ最大値V4_max以下となるように、乗数kを決定する。これにより、相対的に電池容量が小さい電池セルの容量減少は抑制され、相対的に電池容量が大きい電池セルの容量減少は促進され、組電池を構成する各電池セルの電池容量のばらつきは減少する。
(7)二次電池システムにおいて、電池セル電圧決定部23は、組電池1の電圧を調整前の所定の電圧に保つように、電池セル11、12の調整後の電圧V4を決定する。これにより、組電池の全体の電圧を変えることなく、各電池セルへ適切な電圧を設定することができる。
(変形例)
 本発明は、以上説明した実施形態を次のように変形して実施することができる。
(1)本実施形態では、電池セルの劣化の程度を調べるために、図2に示すフローチャートのステップS1で、電池セル11、12の電圧を、目標とする所定の電圧(二次電圧;V2)よりも低い電圧(一次電圧;V1)に揃え、ステップS2において、組電池1の全体の電圧が(2×V2)の電圧になるまで充電して、この際の電池セル11、12の各電圧V3を求める例で説明した。しかし、ステップS1で、所定の電圧(二次電圧;V2)よりも高い電圧(一次電圧;V1)に揃え、ステップS2において、組電池1の全体の電圧が(2×V2)の電圧になるまで放電して電池セル11、12の各電圧V3を求めてもよい。この場合、劣化の程度が小さく電池容量が大きい電池セル11の電圧は二次電圧V2よりも高くなり、劣化の程度が大きく電池容量が小さい電池セル12の電圧は二次電圧V2よりも低くなる。
(2)本実施形態では、複数の電池セルが直列に接続された組電池の例で説明した。しかし、組電池は、直列に接続された複数の電池セルを並列に複数設けた構成であってもよい。
 本発明は、上記の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の実施形態と変形例を組み合わせた構成としてもよい。
1 組電池
2 バッテリコントローラ
11、12 電池セル
13 温度センサ
113、123 バランシングスイッチ
114、124 バランシング抵抗

Claims (7)

  1.  複数の電池セルが直列に接続された組電池と、
     前記組電池を構成する前記複数の各電池セルの少なくとも電圧を監視する電池セル監視部と、
     前記電池セル監視部が監視する前記各電池セルの情報に基づいて前記各電池セルの特性劣化を判定する電池セル特性判定部と、
     前記電池セル特性判定部が判定した前記各電池セルの特性劣化の情報に基づいて前記各電池セルの調整後の電圧を決定する電池セル電圧決定部と、
     前記決定した各電池セルの調整後の電圧に基づいて前記各電池セルの電圧を調整する電池セル電圧調整部と、
     を備える二次電池システム。
  2.  請求項1に記載の二次電池システムにおいて、
     前記電池セル電圧決定部は、前記各電池セルの特性劣化の情報に基づいて、前記各電池セルのうち劣化が小さい前記電池セルの電圧を相対的に高い電圧に、前記各電池セルのうち劣化が大きい前記電池セルの電圧を相対的に低い電圧に決定する二次電池システム。
  3.  請求項1または2に記載の二次電池システムにおいて、
     前記電池セル特性判定部は、前記電池セルの温度と前記電池セルの電圧に対する前記電池セルの特性劣化の速度を示すデータテーブルを備え、前記データテーブルに基づいて特性劣化の速度を計算する二次電池システム。
  4.  請求項1から3の何れか一項に記載の二次電池システムにおいて、
     前記電池セル特性判定部は、前記各電池セルの電圧を第1の電圧に均一化し、その後に前記組電池を第2の電圧に応じた所定の電圧まで充電または放電したときの前記各電池セルの第3の電圧を、前記各電池セルの特性の指標として用いる二次電池システム。
  5.  請求項4に記載の二次電池システムにおいて、
     前記所定の電圧は、前記第2の電圧に、前記組電池における前記電池セルの直列数を乗じた値であり、
     前記電池セル電圧決定部は、前記各電池セルの前記第3の電圧と前記第2の電圧との電圧差に定数を乗じて、更に前記第2の電圧を加えた値を、前記調整後の電圧として決定する二次電池システム。
  6.  請求項5に記載の二次電池システムにおいて、
     電池セル特性判定部は、前記各電池セルの内部抵抗を判定し、
     電池セル電圧決定部は、前記内部抵抗と、所定の電圧上限値および電圧下限値とに基づいて、前記各電池セルの前記調整後の電圧の最大値および最小値を算出し、前記各電池セルの前記調整後の電圧が前記最小値以上かつ前記最大値以下となるように、前記定数を決定する二次電池システム。
  7.  請求項4から6の何れか一項に記載の二次電池システムにおいて、
     前記電池セル電圧決定部は、前記組電池の電圧を前記所定の電圧に保つように、前記各電池セルの前記調整後の電圧を決定する二次電池システム。
PCT/JP2016/073218 2015-09-18 2016-08-08 二次電池システム WO2017047277A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015185706A JP2017060364A (ja) 2015-09-18 2015-09-18 二次電池システム
JP2015-185706 2015-09-18

Publications (1)

Publication Number Publication Date
WO2017047277A1 true WO2017047277A1 (ja) 2017-03-23

Family

ID=58288967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073218 WO2017047277A1 (ja) 2015-09-18 2016-08-08 二次電池システム

Country Status (2)

Country Link
JP (1) JP2017060364A (ja)
WO (1) WO2017047277A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023068406A (ja) 2021-11-02 2023-05-17 Fdk株式会社 充電方法、及びバックアップ電源装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124883A (ja) * 2005-09-27 2007-05-17 Matsushita Electric Ind Co Ltd 蓄電装置
WO2012143996A1 (ja) * 2011-04-18 2012-10-26 日立ビークルエナジー株式会社 蓄電装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124883A (ja) * 2005-09-27 2007-05-17 Matsushita Electric Ind Co Ltd 蓄電装置
WO2012143996A1 (ja) * 2011-04-18 2012-10-26 日立ビークルエナジー株式会社 蓄電装置

Also Published As

Publication number Publication date
JP2017060364A (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
WO2016113791A1 (ja) 電池装置、充電制御装置および充電制御方法
US20110133697A1 (en) Battery pack capable of calculating relative remaining capacity
USRE45919E1 (en) Control device and method and power supply device
WO2011118484A1 (ja) 二次電池システム
US9077184B2 (en) Control device to control deterioration of batteries in a battery stack
WO2013121721A1 (ja) 電圧バランス制御装置
JP2007325324A (ja) 充電システム、電池パックおよびその充電方法
KR20130098611A (ko) 전지충전장치 및 그 방법
WO2019024787A1 (zh) 动力电池的放电控制方法、装置、控制器及汽车
WO2019172353A1 (ja) セルバランス制御装置およびセルバランス制御システム
WO2015178075A1 (ja) 電池制御装置
JP2019187027A (ja) 蓄電装置
KR20170122063A (ko) 연료전지 차량의 시동 제어방법
JP2018129958A (ja) 充電率均等化装置
US20130176001A1 (en) Method for charging a battery of a motor vehicle
JP6643923B2 (ja) 電池システムの電池パック交換方法及び電池パック
WO2017047277A1 (ja) 二次電池システム
KR102254088B1 (ko) 잠수함 및 잠수함의 구동 시스템을 동작시키기 위한 방법
JP2015195653A (ja) 電池システム、充放電制御プログラム、充放電制御方法
JP5974882B2 (ja) 電圧バランス制御装置
WO2017169127A1 (ja) 二次電池システム
JP6384728B2 (ja) 電力管理システム及び電力管理方法
JP6221697B2 (ja) 電圧差補正装置、電圧差補正プログラムならびに方法
US20150229142A1 (en) Battery control device, electric storage device, method for operating electric storage device, and program
JP2000023388A (ja) 二次電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846150

Country of ref document: EP

Kind code of ref document: A1