WO2011118484A1 - 二次電池システム - Google Patents

二次電池システム Download PDF

Info

Publication number
WO2011118484A1
WO2011118484A1 PCT/JP2011/056330 JP2011056330W WO2011118484A1 WO 2011118484 A1 WO2011118484 A1 WO 2011118484A1 JP 2011056330 W JP2011056330 W JP 2011056330W WO 2011118484 A1 WO2011118484 A1 WO 2011118484A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
charging
secondary battery
battery
control
Prior art date
Application number
PCT/JP2011/056330
Other languages
English (en)
French (fr)
Inventor
智弘 川内
将司 中村
小西 大助
剛之 白石
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2012506967A priority Critical patent/JPWO2011118484A1/ja
Priority to CN2011800046870A priority patent/CN102640382A/zh
Publication of WO2011118484A1 publication Critical patent/WO2011118484A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery system for charging a secondary battery, and in particular, at least an assembled battery configured by connecting a plurality of single cells, each of which is a secondary battery, and voltage variation between the single cells.
  • the present invention relates to a secondary battery system including a voltage equalizing device that equalizes, a charging device that charges the assembled battery, and a charging control device that controls charging of the assembled battery.
  • a so-called constant current-constant voltage charging method is well known as a charging method for a secondary battery such as a lithium ion battery.
  • a secondary battery such as a lithium ion battery.
  • a discharge circuit is provided in parallel with each single cell, and a relative voltage is provided.
  • a voltage equalizing device for equalizing the battery voltage of each unit cell is provided by discharging the unit cell having a high value.
  • iron-based lithium ion battery using a lithium compound containing an iron component (for example, lithium iron phosphate) as a positive electrode active material.
  • FIG. 6 shows open-circuit voltage-charge state characteristics of an iron-based lithium ion battery and a cobalt-based lithium ion battery as an example of a non-ferrous lithium ion battery.
  • the open-circuit voltage-charge state characteristics of non-ferrous lithium-ion batteries have a relatively gradual rise characteristic from the beginning of charge until the end of charge, but the open-circuit voltage-charge state characteristics of ferrous lithium-ion batteries are Unlike this, the battery voltage hardly changes until the end of charging after the initial charging period, and has a characteristic of rapidly rising near full charge.
  • any single battery is controlled by detecting the magnitude of the voltage difference between the single cells and starting the equalization operation of the voltage equalizing device when the voltage difference increases. As a result, the voltage difference between the cells can be reduced.
  • the voltage equalizing device has a rapid equalization operation in the region where the battery voltage suddenly rises near full charge.
  • An inconvenient situation occurs in which the voltage rises up to the overvoltage region without catching up with the voltage rise and without improving the voltage variation between the single cells. In order to improve such a situation, it is conceivable to increase the discharge current of the unit cell by the voltage equalizing device.
  • the battery voltage decreases due to discharge from the assembled battery to the load. If the battery voltage falls into an area where the battery voltage hardly changes with respect to the change in the state of charge, the voltage equalization device does not function effectively, and the state of charge between the single cells varies. Will not be corrected.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to make it possible to accurately equalize the voltages of the individual cells without increasing the capability of the voltage equalizing device so much. .
  • a first characteristic configuration of a secondary battery system is a secondary battery system for charging a secondary battery, and at least a plurality of single cells each of which is a secondary battery
  • a charge control device that controls the charging current from the charging device to the assembled battery to be zero when the battery voltage of any one of the battery cells reaches a predetermined voltage rise suppression setting voltage; , Is in the point provided.
  • a second characteristic configuration of the secondary battery system according to the present invention is a secondary battery system for charging a secondary battery, and is configured by connecting a plurality of unit cells, each of which is a secondary battery.
  • the voltage equalization unit reduces the voltage variation between the unit cells by charging the charging current from the charging unit to the assembled battery.
  • a charge control device that controls the current value to be obtained.
  • the voltage equalization device operates even if the voltage variation between cells is large, and the voltage variation between each cell Will get smaller.
  • variation between each cell in a voltage equalization apparatus can be determined according to the capability of a voltage equalization apparatus.
  • the secondary battery is preferably an iron-based lithium ion battery using a lithium compound containing an iron component as a positive electrode active material
  • the set voltage for suppressing the voltage rise is It is preferably set to a voltage value in a voltage region in which the battery voltage rapidly increases as the charging of the unit cell proceeds in the vicinity of charging, and a voltage value in a voltage region higher than 3.4V and lower than 4V. More preferably, it is set to.
  • the voltage equalization apparatus includes a discharge circuit that discharges each unit cell individually, and a control unit that performs voltage equalization control that controls the discharge circuit to reduce voltage variation between the unit cells.
  • the voltage equalizing device is further configured to perform an operation of equalizing voltage variations between the cells in parallel during the control operation by the charge control device.
  • the charging device is provided as a device that contributes to the current flowing through the entire assembled battery. That is, basically, in a system composed only of an assembled battery and a charging device that charges the assembled battery, a charging current supplied from the charging device to the assembled battery is controlled to zero or a sufficiently small current value, so that a plurality of Even when the voltage of any one of the single cells rises and reaches a region where the voltage near the full charge suddenly rises, a state in which the voltage equalizing device functions effectively can be created.
  • the assembled battery, the charging device, and a current supplied from at least one of the assembled battery and the charging device are connected in parallel to detect a current flowing through the entire assembled battery.
  • a detection device is provided, and the charging control device is configured to control an output of the charging device based on detection information of the current detection device.
  • the charging device in addition to an assembled battery and a charging device for charging the assembled battery, when a secondary battery system is configured by connecting a load in parallel with the assembled battery, the charging device appropriately powers the assembled battery and the load.
  • the assembled battery is appropriately charged from the charging device and supplies power to the load.
  • the current flowing through the assembled battery varies depending on the output of the charging device. In other words, the current flowing through the entire assembled battery can be controlled by the output of the charging device.
  • the charge control device is a current detection device that detects the current flowing through the entire assembled battery when the battery voltage of any single battery reaches the set voltage for suppressing the voltage increase. Based on the detection information, the output of the charging device is controlled so that the current flowing through the entire assembled battery is zero or the current value at which the voltage variation between the individual cells can be reduced by the voltage equalizing device.
  • a third characteristic configuration of the secondary battery system is a secondary battery system for charging the secondary battery, and is configured by connecting a plurality of unit cells, each of which is a secondary battery.
  • An assembled battery a voltage equalizing device for equalizing voltage variations between the single cells, a charging device for charging the assembled battery, and any one of the plurality of single cells incorporated in the charging device.
  • the output to the assembled battery of the charging device is controlled, and the unit cell having reached the voltage rise prevention set voltage is controlled.
  • a charge control device for controlling the battery voltage so as to be maintained at the set voltage for preventing the voltage increase.
  • the “voltage rise preventing Control is performed so that the battery voltage of the unit cell that has reached the “set voltage” is maintained at the “set voltage for preventing voltage rise”.
  • constant voltage charging CV charging
  • the control element for such control is the output from the charging device to the assembled battery. For example, if the battery voltage of the cell to be controlled rises above the “set voltage for preventing voltage rise”, the charging device The feedback control is such that the voltage applied to the entire battery pack decreases.
  • the secondary battery is preferably an iron-based lithium ion battery using a lithium compound containing an iron component as a positive electrode active material.
  • the set voltage for suppressing voltage rise is preferably set to a voltage value in a voltage region in which the battery voltage rapidly increases as the charging of the unit cell proceeds in the vicinity of full charge, More preferably, the set voltage for suppressing voltage rise is set to a voltage value in a voltage region higher than 3.4V and lower than 4V.
  • the voltage equalization apparatus includes a discharge circuit that discharges each single cell individually, and a control unit that performs voltage equalization control that controls the discharge circuit to reduce voltage variation between the single cells. It is preferable that the voltage equalizing device is configured to perform an operation for equalizing voltage variations between the single cells in parallel even during the control operation by the charging control device.
  • the voltage equalization apparatus performs the equalization operation in parallel while the battery voltage of the single battery having a large voltage increase is maintained at the “set voltage for preventing voltage increase”.
  • the above “set voltage for preventing voltage rise” is set at a voltage value in a voltage region where the battery voltage suddenly rises with the progress of charging of the single cell in the vicinity of full charge. The difference in the state of charge is likely to appear as the difference in the battery voltage, and the voltage equalization apparatus is in a state where it can detect the voltage variation between the single cells and perform an accurate equalization operation.
  • the assembled battery, the charging device, and a current supplied from at least one of the assembled battery and the charging device are connected in parallel to detect a current flowing through the entire assembled battery.
  • a detection device is provided, and the charging control device is configured to control an output of the charging device based on detection information of the current detection device.
  • the battery voltage of any single cell is near the full charge. Even in the region where the voltage suddenly rises, the current flowing through the entire assembled battery is controlled to zero or a sufficiently small current value, so that the equalization operation works effectively and the voltage variation between the individual cells is small. Go. Therefore, the voltage of each unit cell can be accurately equalized without increasing the capability of the voltage equalizing device so much.
  • the current flowing through the entire assembled battery is a system that is determined solely by the charging device.
  • the charging current to be supplied is reduced to zero or a sufficiently small current value, the assembled battery can be accurately equalized.
  • a load is connected in parallel in addition to the assembled battery and the charging device, by controlling the output from the charging device to the assembled battery, it is possible to perform an accurate equalization operation of the assembled battery and also to the load. Also, necessary power can be supplied from the charging device.
  • the ability of the voltage equalization apparatus is achieved by performing the control of suppressing the battery voltage for the single cells having a large voltage increase and the operation for equalizing the voltage variation between the single cells in parallel. Even if it is not so high, the variation in the state of charge between the single cells constituting the assembled battery is accurately reduced. Therefore, the voltage of each unit cell can be accurately equalized without increasing the capability of the voltage equalizing device so much.
  • FIG. 1 is an overall block configuration diagram according to the first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of a control mode according to the embodiment of the present invention.
  • FIG. 3 is a flowchart according to the embodiment of the present invention.
  • FIG. 4 is a flowchart according to the embodiment of the present invention.
  • FIG. 5 is an overall block configuration diagram according to the second embodiment of the present invention.
  • FIG. 6 is a diagram showing battery voltage-charging characteristics of the secondary battery.
  • FIG. 7 is an overall block configuration diagram according to the embodiment of the present invention.
  • FIG. 8 is an explanatory diagram of a control mode according to the embodiment of the present invention.
  • FIG. 9 is a flowchart according to the embodiment of the present invention.
  • the secondary battery system BS includes the assembled battery 1 and the charging device 3 as main components, and includes only the charging device 3 as a device that contributes to the current flowing through the entire assembled battery 1. .
  • the assembled battery 1 is configured by connecting a plurality of unit cells 1a in series. In the first embodiment, a case where four unit cells 1a are connected in series will be described as an example.
  • Each unit cell 1a is a lithium ion battery using a lithium compound containing an iron component (for example, lithium iron phosphate) as a positive electrode active material, and is a so-called secondary battery.
  • the assembled battery 1 is housed in a battery pack BP together with a battery monitoring device 2 that monitors each unit cell 1a.
  • the battery monitoring device 2 includes a voltage measuring unit 2a including an A / D converter that measures the voltage (cell voltage) of each unit cell 1a, a control unit 2b that controls the operation of the battery monitoring unit 2, and each unit.
  • a program for monitoring the battery 1a, a memory 2c for storing and holding various data, and the like, and a plurality of discharge circuits 2d connected in parallel to each unit cell 1a are provided.
  • the discharge circuit 2d is configured by connecting a resistor 11 and a switch device 12 including a MOSFET in series, and the switch device 12 is turned on and off by a control signal from the control unit 2b.
  • the control unit 2b turns on and off the switch device 12 based on the measured value of the battery voltage of each unit cell 1a, and discharges the unit cell 1a having a high battery voltage by the discharge circuit 2d.
  • the voltage variation equalizing operation is performed to reduce the voltage variation between the batteries 1a. Therefore, the control unit 2b and the discharge circuit 2d constitute a voltage equalizing device BL that equalizes voltage variations between the single cells 1a.
  • the charging device 3 is configured to convert an AC voltage of a commercial AC power source or the like into a predetermined DC voltage, and to apply the DC voltage to the assembled battery 1 for charging.
  • the charging control unit 3a controls the charging operation. To do. That is, the charging control unit 3a functions as a charging control device CC that controls charging of the assembled battery 1.
  • the charging control unit 3a detects the battery voltage detection signal (detection signal from the voltage measurement unit 2a) of each unit cell 1a sent via the control unit 2b of the battery monitoring device 2. Based on the above, control is performed to determine whether to continue or stop charging the assembled battery 1.
  • FIG. 2 which shows the time change of the battery voltage of the unit cell 1a and various control signals which share the time axis with it
  • FIG. 3 which shows the processing which the control part 2b of the battery monitoring apparatus 2 performs.
  • the operation of the secondary battery system BS during charging will be described based on the flowchart and the flowchart of FIG. 4 executed by the charging control unit 3a of the charging device 3.
  • FIG. 3 shows “balancer control” executed by the control unit 2b.
  • the control part 2b is the result of measuring the battery voltage of each unit cell 1a measured by the voltage measurement unit 2a, the battery voltage of the maximum unit cell 1a is 3.4 V or more, and the unit cell 1a of the maximum voltage and the remaining voltage
  • the switch device 12 of the discharge circuit 2d connected in parallel to the unit cell 1a having the maximum voltage is turned on (ON) As a state), the battery voltage of the unit cell 1a is lowered by the discharge to the discharge circuit 2d, and the voltage variation between the unit cells 1a is reduced.
  • the “balancer control” in FIG. 3 is repeatedly executed at high speed by the control unit 2b.
  • the one having the maximum battery voltage is specified, and whether or not the cell voltage of the unit cell 1a having the maximum voltage is 3.4V or more.
  • the battery voltage of the maximum voltage cell 1a is 3.4 V or more
  • a voltage difference between the battery voltage of the maximum cell 1a and the battery voltage of the remaining cell 1a is obtained, and the voltage difference It is confirmed whether or not there is a voltage that is equal to or higher than the setting voltage for starting the balance operation (STEP # 2).
  • the setting voltage for starting the balance operation is set to “50 mV” in the present embodiment.
  • FIG. 2 shows a time change A of the battery voltage of the first unit cell 1a and a time change B of the battery voltage of the second unit cell 1a.
  • the middle part of FIG. It is shown that the control unit 2b outputs a control signal in response to the difference exceeding the setting voltage for starting the balance operation.
  • the battery voltage of the first unit cell 1a is higher than that of the second unit cell 1a, and the voltage difference between them increases gradually.
  • the balancer operation signal changes from “L” level to “H” level, and the maximum voltage of the unit cell 1a is reached.
  • the switch device 12 of the corresponding discharge circuit 2d is switched to the on state.
  • the first unit cell 1a (unit cell 1a with time variation A) in the upper part of FIG. 2 is fully loaded under the condition that the battery voltage of the second unit cell 1a (unit cell 1a with time variation B) hardly changes.
  • the battery voltage in the vicinity of charging has entered a region where the voltage suddenly rises, and even if the discharge to the discharge circuit 2d is started, the battery voltage is not sufficiently suppressed from rising.
  • the switch device 12 of the discharge circuit 2d is temporarily turned off at the timing indicated by “a2” with a gradual voltage increase of the second unit cell 1a, but the voltage change of the first unit cell 1a. Accordingly, turning on and off is repeated, and an increase in the battery voltage of the first cell 1a is suppressed (timing of “a3” and “a4”).
  • FIG. 4 shows “balancer support control” executed by the charging control unit 3a.
  • the charge control unit 3a when the battery voltage measurement result of each unit cell 1a measured by the voltage measurement unit 2a, when the battery voltage of any unit cell 1a reaches a predetermined "set voltage for suppressing voltage rise" Then, the charging of the assembled battery 1 by the charging device 3 is stopped, and the charging is restarted when the battery voltage of the unit cell 1a is reduced to some extent. By performing such control, the voltage equalization operation by the voltage equalization device BL is effectively activated.
  • the above “set voltage for suppressing voltage rise” is set to a voltage value in a voltage region in which the battery voltage rapidly increases as the charging of the unit cell 1a progresses near the full charge of the unit cell 1a. .
  • the battery voltage starts to rise from around 3.4V and rapidly rises from around 3.45V to 4V, which is the overcharge voltage. Therefore, the above “set voltage for suppressing voltage rise” is set within a voltage range exceeding 3.4V and reaching 4V.
  • the state of charge (SOC) 100% is set to be about 3.45 V at the voltage of the unit cell 1a
  • the above “set voltage for suppressing voltage rise” is set to the state of charge.
  • SOC state of charge It is set to “3.5 V” (indicated by a broken line C in FIG. 6), which is a voltage slightly higher than 100%.
  • the value of the “set voltage for suppressing voltage rise” is not limited to the above-described value, and the battery voltage rapidly increases as the voltage (3.45 V) of the state of charge (SOC) 100%.
  • the control described later can also be performed at a state of charge (SOC) of 100% or less immediately before the start.
  • “3.4 V” of STEP # 1 which is one of the conditions for starting the voltage equalization operation in “balancer control” in FIG. 3, is also set to the set state of “set voltage for suppressing voltage rise”. You may change suitably according to it.
  • the “balancer support control” of FIG. 4 is repeatedly executed at high speed by the charging control unit 3a, and is completely independent from the control unit 2b of the battery monitoring device 2 executing the process of FIG. And running. Therefore, the above-described voltage equalization operation between the cells 1a by the voltage equalization device BL is performed in parallel during the control operation by the charge control unit 3a.
  • the battery voltage measurement result of each unit cell 1 a measured by the voltage measurement unit 2 a is received from the battery monitoring device 2, and the battery voltage of the unit cell 1 a having the maximum voltage is obtained.
  • the charging current from the charging device 3 to the assembled battery 1 becomes zero (0 (A)), and the current flowing through the entire assembled battery 1 also becomes zero (0 (A)).
  • all of the current flowing through the discharge circuit 2d connected in parallel to the unit cell 1a becomes the discharge current of the unit cell 1a, and the battery voltage of the unit cell 1a is surely lowered.
  • the above control will be specifically described with reference to FIG.
  • the lower part of FIG. 2 is a signal for instructing the charge control unit 3a to stop charging and restart the charge, and the state of “H” level in the lower part of FIG.
  • the “L” level permits charging of the assembled battery 1.
  • the signal state changes to the signal state instructing to stop charging at the timing “b1”. To do.
  • the first cell 1a is in a voltage equalizing operation under the control of the control unit 2b of the battery monitoring device 2, and the charging current from the charging device 3 is stopped, so that the discharging to the discharging circuit 2d is performed. Battery voltage drops rapidly.
  • the battery voltage of the first unit cell 1a decreases to “3,45V” or less
  • charging to the assembled battery 1 is resumed at the timing “b2”
  • the cell voltage of the unit cell 1a increases again. Go.
  • the charging is stopped and the charging is restarted at the timings “b3” to “b9”.
  • the first unit cell 1a shows a voltage change as shown in FIG. 2
  • the second unit cell 1a gradually increases in voltage during the period when the charging current is supplied from the charging device 3, and the unit cell The voltage variation between 1a is reduced.
  • a load 4 is further added to the secondary battery system BS shown in the first embodiment, and the assembled battery 1, the charging device 3, and the load 4 are connected in parallel.
  • the load 4 is supplied with operating power from one or both of the assembled battery 1 and the charging device 3.
  • the configurations of the assembled battery 1 and the charging device 3 are the same as those in the first embodiment except for the control configuration and the components related thereto, which will be described later. Yes.
  • the assembled battery when the battery voltage of any single cell 1a reaches “3.5V” which is the “set voltage for suppressing voltage rise”, the assembled battery This is the same as the first embodiment in that the current flowing through the whole 1 is controlled to be zero (0 (A)).
  • the output to the assembled battery 1 cannot be stopped as in the first embodiment because power needs to be supplied to the load 4.
  • the current sensor 21 which is the current detection device CS that detects the current flowing through the entire assembled battery 1 is provided, and the charging control unit 3a detects the detection signal corresponding to the detection signal of the current sensor 21 of “0 (A)”.
  • the output to the assembled battery 1 (specifically, the applied voltage to the assembled battery 1) is controlled.
  • the charging device 3 is in a control state in which the charging current is supplied so that the current flowing through the internal resistance of the assembled battery 1 is canceled by the discharge of the assembled battery 1 itself.
  • the current flowing through the entire assembled battery 1 is substantially “0 (A)”.
  • This control state can be maintained as long as the current supply capability of the charging device 3 is greater than the load current.
  • the equalization operation of the voltage equalization apparatus BL can be effectively functioned in the second embodiment as well by the same control as the control of FIG. 4 in the first embodiment. More specifically, in STEP # 13 of the process of FIG. 4, the output to the assembled battery 1 (specifically, the detection signal of the current sensor 21 becomes a detection signal corresponding to “0 (A)”). , The voltage applied to the assembled battery 1) is controlled, and such control is stopped in STEP # 16 of FIG. 4, and substantial charging of the assembled battery 1 is resumed.
  • FIG. 3 which is the control as the voltage equalizing device BL and the configuration of the voltage equalizing device BL are completely the same as those in the first embodiment, and the output of the control signal as shown in FIG.
  • the resulting time variation of the battery voltage is also the same as in the first embodiment.
  • the current that can be released to the discharge circuit 2d is about 90 mA, and the current that flows through the entire assembled battery 1 is less than the current value that can be released to the discharge circuit 2d. If it is smaller, the voltage equalizing device BL can be made to function, although the voltage equalizing capability is high or low.
  • the current value of the control target can be lowered in accordance with the required capacity for the voltage equalization operation within a current value range smaller than the current value that can be released to the discharge circuit 2d.
  • the difference in battery voltage between the maximum voltage unit cell 1a and the remaining unit cell 1a is "50 mV" or more.
  • the case is illustrated, it may be a case where the difference in battery voltage between the single cell 1a having the maximum voltage and the single cell 1a having the minimum voltage becomes “50 mV” or more, and the voltage equalization operation is started.
  • the setting voltage for starting the balance operation can be changed as appropriate.
  • the assembled battery 1 is described by exemplifying the case where four unit cells 1a are connected in series. However, the number and connection form of the unit cells 1a constituting the assembled battery 1 are described. Can be variously changed.
  • the secondary battery system BS of the present embodiment mainly includes an assembled battery 1 and a charging device 3, and a load 4 is applied to the assembled battery 1 and the charging device 3. Connected in parallel. That is, the assembled battery 1, the charging device 3, and the load 4 are connected in parallel.
  • the charging device 3 supplies charging power to the assembled battery 1 and also supplies operating power to the load 4.
  • the assembled battery 1 is supplied with electric power for charging from the charging device 3 when the state of charge is reduced by discharging, and appropriately supplies electric power for operation to the load 4.
  • the assembled battery 1 is configured by connecting a plurality of unit cells 1a in series.
  • Each unit cell 1a is a lithium ion battery using a lithium compound containing an iron component (for example, lithium iron phosphate) as a positive electrode active material, and is a so-called secondary battery.
  • the assembled battery 1 is housed in a battery pack BP together with a battery monitoring device 2 that monitors each unit cell 1a.
  • the battery monitoring device 2 includes an A / D converter and the like, a voltage measuring unit 2a that measures the voltage (cell voltage) of each unit cell 1a, a battery monitoring control unit 2b that controls the operation of the battery monitoring device 2, A program for monitoring each unit cell 1a, a memory 2c for storing and holding various data, and the like are provided, and a discharge circuit 2d is further provided in parallel with each unit cell 1a.
  • the discharge circuit 2d is configured by connecting a resistor 11 and a switch device 12 including a MOSFET in series, and the switch device 12 is turned on and off by a control signal from the battery monitoring control unit 2b. .
  • the battery monitoring control unit 2b turns on and off the switch device 12 based on the measured value of the battery voltage of each unit cell 1a, and discharges the unit cell 1a having a high battery voltage by the discharge circuit 2d.
  • the voltage variation equalizing operation is performed to reduce the voltage variation between the single cells 1a. Therefore, the battery monitoring controller 2b and the discharge circuit 2d constitute a voltage equalizing device BL that equalizes voltage variations between the single cells 1a.
  • the charging device 3 is configured to convert an AC voltage of a commercial AC power source or the like into a predetermined DC voltage, and apply the DC voltage to the assembled battery 1 for charging, and a charging control unit 3a that controls a charging operation; A charging output circuit 3b that outputs electric power to the assembled battery 1 or the like in accordance with a control instruction of the charging control unit 3a is provided.
  • the charging control unit 3a functions as a charging control device CC that controls charging of the assembled battery 1.
  • the charging control unit 3a is configured to detect the battery voltage detection signal (the detection signal from the voltage measurement unit 2a) of each unit cell 1a sent via the battery monitoring control unit 2b of the battery monitoring device 2. ), The output to the assembled battery 1 is controlled.
  • FIG. 9 shows “balancer control” executed by the battery monitoring controller 2b.
  • the battery monitoring control unit 2b uses the measurement result of the battery voltage of each unit cell 1a measured by the voltage measurement unit 2a, and the difference between the battery voltages of the maximum voltage unit cell 1a and the minimum voltage unit cell 1a to start the balance operation.
  • the switch device 12 of the discharge circuit 2d connected in parallel to the unit cell 1a of the maximum voltage is switched to the ON state (ON state), and the unit cell 1a is discharged by discharging to the discharge circuit 2d.
  • the battery voltage is reduced, and the voltage variation between the single cells 1a is reduced.
  • the setting voltage difference for starting the balance operation is set to “25 mV”.
  • the “balancer control” of FIG. 9 is repeatedly executed at high speed by the control unit 2b.
  • the maximum voltage unit cell 1a is measured. It is confirmed whether or not the battery voltage (Vc) is equal to or higher than “3.4 V” (STEP # 1).
  • the battery voltage (Vc) is specified as the maximum and the minimum, and the voltage difference ( ⁇ V) is obtained, and it is confirmed whether or not the voltage difference is equal to or larger than the balance operation start setting voltage difference (STEP # 2).
  • the battery voltage (Vc) of the single cell 1a having the maximum voltage is less than “3.4V” or the voltage difference ( ⁇ V) is the set voltage difference for starting the balance operation.
  • Vc battery voltage
  • ⁇ V voltage difference
  • the charging control unit 3a performs control that combines constant current charging and constant voltage charging for the assembled battery 1.
  • the constant voltage charging is not a general control that keeps the voltage applied to the entire assembled battery 1 constant, but the battery voltage of the single cell 1a is maintained at a constant voltage ("set voltage for preventing voltage rise"). It is control to make it.
  • the charging control unit 3a performs such control on the data of the battery voltage of each unit cell 1a sent from the battery monitoring device 2 and the current sensor 21 which is a current detection unit for detecting the current flowing in the assembled battery 1. Based on the detected data, it is executed by digital control by software processing.
  • the control operation of the charge control unit 3a will be described with reference to FIG. 8 schematically represented in the form of a virtual control circuit.
  • the amplifiers 22, 23, 24, and 25 subtract the positive potential of the single cell 1a on the low potential side from the positive potential of each single cell 1a to detect the battery voltage of each single cell 1a and amplify it to a predetermined signal level.
  • the product of the input value and a predetermined voltage correction value (details will be described later) is obtained. Calculate.
  • the OR circuit 26 selects and outputs the maximum voltage among the output signals of the amplifiers 22, 23, 24, 25. This is the same process in digital processing.
  • the amplifier 27 amplifies the detection signal of the current sensor 21 to a predetermined signal level. Also in digital processing, the product of the detection data of the current sensor 21 and a predetermined current correction value is calculated.
  • the output of the OR circuit 26 and the output of the amplifier 27 are input to the operational amplifier 28, and the operational amplifier 28 performs feedback control so that the higher voltage of the two inputs matches the reference voltage 28a.
  • a signal is sent to the charging output circuit 3b to apply.
  • the larger value of the data on the highest battery voltage of each unit cell 1a and the data on the charging current detected by the current sensor 21 is a value corresponding to the reference voltage 28a.
  • Control to match Specifically, the larger one of the data on the highest battery voltage of each unit cell 1a and the data on the charging current detected by the current sensor 21 is greater than the value corresponding to the reference voltage 28a. Becomes larger, the output voltage of the charging output circuit 3b is decreased. Conversely, when the output voltage is smaller than the value corresponding to the reference voltage 28a, the output voltage of the charging output circuit 3b is decreased. To control.
  • the voltage correction corresponding to the amplification function of the amplifiers 22, 23, 24, and 25 is set so that the value of the reference voltage 28a corresponds to “3.45V” as the value of the battery voltage of the unit cell 1a. .
  • this “3.45 V” is the above “set voltage for preventing voltage rise”.
  • the current correction value corresponding to the amplification function of the amplifier 27 is such that the value of the reference voltage 28a corresponds to “50 A” which is the current value of constant current charging. Is set.
  • control is performed so as to maintain a state in which the charging current to the assembled battery 1 is “50 A” or the maximum voltage that has reached the “set voltage for preventing voltage rise” is reached.
  • the control is performed to maintain the battery voltage of the voltage cell 1a at "3.45V".
  • the above-mentioned “set voltage for preventing voltage rise” is set to a voltage value in a voltage region where the battery voltage rapidly increases as the charging of the unit cell 1a progresses near the full charge of the unit cell 1a.
  • the battery voltage starts to rise from around 3.4V and rapidly rises from around 3.45V to 4V, which is the overcharge voltage. Therefore, the above “set voltage for preventing voltage rise” is set in a voltage range exceeding 3.4V and reaching 4V.
  • the state of charge (SOC) 100% is set to be about 3.45 V as the voltage of the unit cell 1a, charging is performed as the above “set voltage for preventing voltage rise”.
  • the state (SOC) is set to “3.45 V” (indicated by a broken line C in FIG. 6) which is the same as the voltage of 100%.
  • the charging output is performed so that the charging current to the assembled battery 1 becomes “50A”.
  • the output of the circuit 3b (that is, the output from the charging device 3 to the assembled battery 1) is controlled. While the constant current charging is being performed, the battery voltage of any single cell 1a increases to reach “3.45V”, and if further increased, the output of the charging output circuit 3b is decreased. On the contrary, if the battery voltage of the unit cell 1a is smaller than “3.45V” in the state where the charging current to the assembled battery 1 is smaller than “50A”, the output of the charging output circuit 3b is increased. As a result, the battery voltage of the unit cell 1a is maintained at “3.45V”, that is, “set voltage for preventing voltage rise”.
  • the voltage variation equalization operation by the control of the battery monitoring control unit 2b of the battery monitoring device 2 is executed in parallel and independently of the control of the charging control unit 3a.
  • the voltage equalizing device BL The switch device 12 of the discharge circuit 2d connected in parallel to the unit cell 1a that has reached the “set voltage for preventing voltage rise” is turned on and discharged to the discharge circuit 2d.
  • the fact that the battery voltage of the unit cell 1a is maintained at the above “set voltage for preventing voltage rise” by the control of the charge control unit 3a means that, as a rule, no charging current flows through the unit cell 1a.
  • the charging current from the charging device 3 to the assembled battery 1 all flows to the discharge circuit 2d in which the switch device 12 is in the on state, and the other single unit in which the switch device 12 of the discharge circuit 2d is in the off state.
  • the battery 1a flows as a charging current. Due to this charging current, the battery voltage of the other cells 1a rises, and the voltage variation between the cells 1a becomes smaller.
  • the assembled battery 1 is described by exemplifying the case where four unit cells 1a are connected in series. However, the number and connection form of the unit cells 1a constituting the assembled battery 1 are described. Can be variously changed.
  • the charge control unit 3a exemplifies a configuration for receiving the measurement data of the battery voltage of each unit cell 1a from the battery monitoring device 2, but the charge control unit 3a directly receives each unit cell. You may comprise so that the battery voltage of 1a may be measured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 充電装置で組電池を充電する場合において、電圧均等化装置の能力をそれほど高くすることなく、的確に各単電池の電圧を均等化できるようにする。 少なくとも、夫々が二次電池である複数の単電池1aを接続して構成される組電池1と、単電池1a間の電圧ばらつきを均等化する電圧均等化装置BLと、充電装置3と、充電制御装置CCとが備えられた二次電池システムにおいて、充電制御装置CCは、複数の単電池1aのうちのいずれかの単電池1aの電池電圧が、電圧上昇抑制用の設定電圧に達したときに、組電池1全体に流れる電流を零又は前記電圧均等化装置にて各単電池間の電圧ばらつきが小さくなり得る電流値となるように制御するように構成され、電圧均等化装置BLは、充電制御装置CCによる制御動作の間も、並行して単電池間の電圧ばらつきの均等化動作を行うように構成されている。

Description

二次電池システム
 本発明は、二次電池を充電する二次電池システムに関し、特に、少なくとも、夫々が二次電池である複数の単電池を接続して構成される組電池と、前記単電池間の電圧ばらつきを均等化する電圧均等化装置と、前記組電池に充電する充電装置と、前記組電池への充電を制御する充電制御装置とが備えられた二次電池システムに関する。
 リチウムイオン電池等の二次電池の充電方式として、いわゆる定電流-定電圧充電方式がよく知られており、夫々が二次電池である単電池を複数個接続して構成する組電池に対して、このような充電方式を採用して充電すると、各単電池間で充電状態がばらついてしまうこともよく知られている。
 特許文献1に記載されているように、定電流-定電圧充電方式による充電時の単電池間の電圧ばらつきを抑制するために、各単電池と並列に放電回路を備えて、相対的に電圧の高い単電池を放電させることで、各単電池の電池電圧を均等化する電圧均等化装置が備えられる場合が多い。
 ところが、近年、このような電圧均等化装置を用いても、単電池間の電圧ばらつきを十分に小さく抑えるのが容易ではない二次電池も出現している。具体的には、鉄成分を含むリチウム化合物(例えば、リン酸鉄リチウム)を正極活物質に使用した、いわゆる鉄系リチウムイオン電池である。
 図6には、鉄系リチウムイオン電池と、非鉄系リチウムイオン電池の例としてコバルト系のリチウムイオン電池の開路電圧-充電状態特性がそれぞれ示されている。
 非鉄系リチウムイオン電池の開路電圧-充電状態特性は、充電初期を経過後、充電末期まで比較的緩やかな上昇特性を有しているが、鉄系リチウムイオン電池の開路電圧-充電状態特性は、これとは異なり、充電初期を経過後、充電末期まで電池電圧に殆ど変化が見られず、満充電付近で急激に立ち上がる特性を有している。
 このため、非鉄系リチウムイオン電池では、単電池間の電圧差の大きさを検知して、その電圧差が大きくなると電圧均等化装置の均等化動作を開始させるという制御によって、いずれかの単電池の突出した電圧上昇を抑制できると共に、単電池間の電圧差を小さくすることができる。
 しかし、鉄系リチウムイオン電池に対して上記の非鉄系リチウムイオン電池と同様な制御を適用すると、満充電付近における急激な電池電圧の立ち上がり領域で、電圧均等化装置の均等化動作が急激な電池電圧の上昇に追いつかず、単電池間の電圧ばらつきが全く改善されないまま、過電圧領域まで電圧上昇してしまうという不都合な事態が発生する。
 このような状況を改善するには、電圧均等化装置による単電池の放電電流を大きくすることが考えられる。
特開2008-123868号公報
 しかしながら、上述の電圧均等化装置で、相対的に電圧の高い単電池の放電電流を大きくすると、その大電流に耐えうるために放電用の抵抗器や制御用のスイッチ装置が大型化して装置の大型化を招く上に、単電池の放電による発熱や電力の無駄な消費という問題が生じる。
 更に、充電装置及び組電池と並列に負荷が接続されているような二次電池システムでは、組電池からの負荷への放電によって電池電圧が低下する。この電池電圧の低下によって、充電状態の変化に対して電池電圧がほとんど変化しない領域に入ってしまうと、電圧均等化装置が有効に機能しない状態となって、各単電池間の充電状態のばらつきが是正されなくなってしまう。
 すなわち、充電状態の変化に対して電池電圧がほとんど変化しない領域では、各単電池間で充電状態にばらつきがあっても、それが電池電圧の差となって現れにくいので、有効な均等化動作を行えないのである。
 本発明は、かかる実情に鑑みてなされたものであって、その目的は、電圧均等化装置の能力をそれほど高くすることなく、的確に各単電池の電圧を均等化できるようにする点にある。
 上述の目的を達成するため、本発明による二次電池システムの第一の特徴構成は、二次電池を充電する二次電池システムであって、少なくとも、夫々が二次電池である複数の単電池を接続して構成される組電池と、前記単電池間の電圧ばらつきを均等化する電圧均等化装置と、前記組電池に充電する充電装置と、前記充電装置に組み込まれ、前記複数の単電池のうちのいずれかの単電池の電池電圧が所定の電圧上昇抑制用の設定電圧に達したときに、前記充電装置から前記組電池への充電電流を零となるように制御する充電制御装置と、が備えられた点にある。
 また、本発明による二次電池システムの第二の特徴構成は、二次電池を充電する二次電池システムであって、少なくとも、夫々が二次電池である複数の単電池を接続して構成される組電池と、前記単電池間の電圧ばらつきを均等化する電圧均等化装置と、前記組電池に充電する充電装置と、前記充電装置に組み込まれ、前記複数の単電池のうちのいずれかの単電池の電池電圧が所定の電圧上昇抑制用の設定電圧に達したときに、前記充電装置から前記組電池への充電電流を前記電圧均等化装置にて各単電池間の電圧ばらつきが小さくなり得る電流値となるように制御する充電制御装置と、が備えられた点にある。
 すなわち、複数の単電池のうちの何れかの単電池の電圧が上昇し、満充電付近の電圧が急激に上昇する領域に達すると、充電制御装置によって、組電池全体に流れる電流が零又は電圧均等化装置が有効に機能する程度に十分に小さい電流値に制限されるので、単電池間で電圧ばらつきが大きくなっていても、電圧均等化装置が動作して、各単電池間の電圧ばらつきが小さくなって行く。尚、電圧均等化装置にて各単電池間の電圧ばらつきが小さくなり得る電流値は、電圧均等化装置の能力に応じて決定することができる。
 上述の特徴構成に加えて、前記二次電池は、鉄成分を含むリチウム化合物を正極活物質に使用した鉄系のリチウムイオン電池であることが好ましく、前記電圧上昇抑制用の設定電圧は、満充電付近において前記単電池への充電の進行に伴って電池電圧が急激に上昇する電圧領域内の電圧値に設定されていることが好ましく、3.4Vより高く4V未満の電圧領域内の電圧値に設定されていることが更に好ましい。
 又、前記電圧均等化装置は、各単電池を個別に放電させる放電回路と、前記放電回路を制御して単電池間の電圧ばらつきを小さくする電圧均等化制御を行なう制御部と、を備えていることが好ましく、前記電圧均等化装置は、前記充電制御装置による制御動作の間も、並行して前記単電池間の電圧ばらつきの均等化動作を行うように構成されていることが更に好ましい。
 又、前記組電池全体に流れる電流に寄与する装置として前記充電装置のみが備えられていることが好ましい。すなわち、基本的に、組電池とその組電池に充電する充電装置のみで構成されるシステムでは、充電装置から組電池に供給する充電電流を零又は十分小さい電流値に制御するだけで、複数の単電池のうちの何れかの単電池の電圧が上昇し、満充電付近の電圧が急激に上昇する領域に達しても、電圧均等化装置が効果的に機能する状態を作り出せる。
 更に、前記組電池と、前記充電装置と、前記組電池と前記充電装置の少なくとも一つから電力供給される負荷とが並列に接続されて構成され、前記組電池全体に流れる電流を検出する電流検出装置が備えられ、前記充電制御装置は、前記電流検出装置の検出情報に基づいて、前記充電装置の出力を制御するように構成されていることが好ましい。
 すなわち、組電池とその組電池に充電する充電装置に加えて、それらと並列に負荷が接続されて二次電池システムが構成されている場合、充電装置は組電池及び負荷に対して適宜に電力を供給し、組電池は充電装置から適宜に充電を受けると共に、負荷に対して電力を供給する。
 充電装置から組電池に電力を供給する際、組電池に流れる電流は充電装置の出力によって変化する。換言すると、充電装置の出力によって組電池全体に流れる電流を制御できる。
 このような関係を利用して、充電制御装置は、いずれかの単電池の電池電圧が前記電圧上昇抑制用の設定電圧に達したときに、組電池全体に流れる電流を検出する電流検出装置の検出情報に基づいて、組電池全体に流れる電流を零又は前記電圧均等化装置にて各単電池間の電圧ばらつきが小さくなり得る電流値となるように充電装置の出力を制御する。
 この際、組電池に全体に流れる電流を上記にように制御している出力状態で、充電装置から負荷へ電力が供給され、充電装置の電流供給能力が負荷電流よりも大である限り、上記のような制御状態が維持される。
 更に、本発明による二次電池システムの第三の特徴構成は、二次電池を充電する二次電池システムであって、少なくとも、夫々が二次電池である複数の単電池を接続して構成される組電池と、前記単電池間の電圧ばらつきを均等化する電圧均等化装置と、前記組電池に充電する充電装置と、前記充電装置に組み込まれ、前記複数の単電池のうちのいずれかの単電池の電池電圧が、所定の電圧上昇阻止用の設定電圧に達したときに、前記充電装置の組電池への出力を制御して、前記電圧上昇阻止用の設定電圧に達した単電池の電池電圧を前記電圧上昇阻止用の設定電圧に維持させるように制御する充電制御装置と、が備えられた点にある。
 すなわち、充電の進行によって組電池を構成する各単電池の電圧が上昇し、いずれかの単電池の電池電圧が上記の「電圧上昇阻止用の設定電圧」に達すると、その「電圧上昇阻止用の設定電圧」に達した単電池の電池電圧が、「電圧上昇阻止用の設定電圧」に維持されるように制御する。換言すると、その単電池についてのみの定電圧充電(CV充電)を行うのである。
 このような制御のための制御要素は充電装置から組電池への出力であり、例えば、制御対象の単電池の電池電圧が上記「電圧上昇阻止用の設定電圧」より上昇すれば、充電装置が組電池全体に印加する電圧が下がるというようなフィードバック制御になる。
 上述の第一及び第二の特徴構成と同様に、前記二次電池は、鉄成分を含むリチウム化合物を正極活物質に使用した鉄系のリチウムイオン電池であることが好ましい。
 また、前記電圧上昇抑制用の設定電圧は、満充電付近において前記単電池への充電の進行に伴って電池電圧が急激に上昇する電圧領域内の電圧値に設定されていることが好ましく、前記電圧上昇抑制用の設定電圧は、3.4Vより高く4V未満の電圧領域内の電圧値に設定されていることが更に好ましい。
 更に、前記電圧均等化装置は、各単電池を個別に放電させる放電回路と、前記放電回路を制御して単電池間の電圧ばらつきを小さくする電圧均等化制御を行なう制御部と、を備えていることが好ましく、前記電圧均等化装置は、前記充電制御装置による制御動作の間も、並行して前記単電池間の電圧ばらつきの均等化動作を行うように構成されていることが好ましい。
 すなわち、電圧上昇の大きい単電池の電池電圧が上記「電圧上昇阻止用の設定電圧」に維持されている間も、電圧均等化装置は並行して均等化動作を実行している。上記「電圧上昇阻止用の設定電圧」は、満充電付近において単電池への充電の進行に伴って電池電圧が急激に上昇する電圧領域内の電圧値で設定されているので、単電池間の充電状態の差が電池電圧の差として現われやすい状況にあり、電圧均等化装置が、単電池間の電圧ばらつきを検知して的確な均等化動作を行える状況にある。
 このような、単電池の電池電圧の抑制制御と単電池間の電圧ばらつきの均等化動作とを並行して行わせることで、組電池を構成する単電池間の充電状態のばらつきが的確に小さくなって行く。
 更に、前記組電池と、前記充電装置と、前記組電池と前記充電装置の少なくとも一つから電力供給される負荷とが並列に接続されて構成され、前記組電池全体に流れる電流を検出する電流検出装置が備えられ、前記充電制御装置は、前記電流検出装置の検出情報に基づいて、前記充電装置の出力を制御するように構成されていることが好ましい。
 上記第1または第2の特徴構成によれば、電圧均等化装置にて各単電池間の電圧ばらつきを抑制する均等化動作を行う際に、いずれかの単電池の電池電圧が満充電付近の電圧が急激に立ち上がる領域にあっても、組電池全体に流れる電流が零又は十分に小さい電流値に制御されているので、均等化動作が有効に機能し、各単電池間の電圧ばらつきが小さくなって行く。従って、電圧均等化装置の能力をそれほど高くすることなく、的確に各単電池の電圧を均等化できるようものとなった。
 又、組電池全体に流れる電流に寄与する装置として前記充電装置のみが備えられている場合には、組電池全体に流れる電流は、充電装置のみよって決まるシステムであるため、充電装置から組電池に供給する充電電流を零又は十分小さい電流値に絞るだけの簡素な構成で、的確に組電池の均等化動作を行える。
 又、組電池と充電装置とに加えて、負荷も並列接続されているシステムでは、充電装置から組電池への出力を制御することで、的確な組電池の均等化動作を行えると共に、負荷に対しても充電装置から必要な電力を供給することができる。
 上記第3の特徴構成によれば、電圧上昇の大きい単電池に対する電池電圧の抑制制御と単電池間の電圧ばらつきの均等化動作とを並行して行わせることで、電圧均等化装置の能力がそれほど高くなくても、組電池を構成する単電池間の充電状態のばらつきが的確に小さくなって行く。従って、電圧均等化装置の能力をそれほど高くすることなく、的確に各単電池の電圧を均等化できるようものとなった。
図1は、本発明の第1実施形態にかかる全体ブロック構成図である。 図2は、本発明の実施の形態にかかる制御態様の説明図である。 図3は、本発明の実施の形態にかかるフローチャートである。 図4は、本発明の実施の形態にかかるフローチャートである。 図5は、本発明の第2実施形態にかかる全体ブロック構成図である。 図6は、二次電池の電池電圧-充電特性を示す図である。 図7は、本発明の実施の形態にかかる全体ブロック構成図である。 図8は、本発明の実施の形態にかかる制御態様の説明図である。 図9は、本発明の実施の形態にかかるフローチャートである。
 以下、本発明による第一または及び第二の特徴構成を備えた二次電池システムの実施の形態を図面に基づいて説明する。
<第1実施形態>
 図1に示すように、二次電池システムBSは、組電池1と充電装置3とを主要構成としており、組電池1全体に流れる電流に寄与する装置として、充電装置3のみが備えられている。
 組電池1は複数の単電池1aを直列に接続して構成されており、本第1実施形態では、単電池1aを4個直列接続する場合を例示して説明する。
 各単電池1aは鉄成分を含むリチウム化合物(例えば、リン酸鉄リチウム)を正極活物質に使用したリチウムイオン電池であり、いわゆる二次電池である。
 この組電池1は、各単電池1aを監視する電池監視装置2と共に電池パックBP内に収納されている。
 電池監視装置2には、各単電池1aの電圧(セル電圧)を測定するA/Dコンバータ等を備えた電圧測定部2aと、電池監視装置2の動作を制御する制御部2bと、各単電池1aの監視のためのプログラムや各種のデータを記憶保持するメモリ2c等が備えられ、更に、各単電池1aに並列接続された複数の放電回路2dが備えられている。
 放電回路2dは、抵抗器11とMOSFETにより構成されるスイッチ装置12とを直列接続して構成されており、制御部2bからの制御信号にてスイッチ装置12が入り切り(ON/OFF)する。
 詳しくは後述するが、制御部2bは、各単電池1aの電池電圧の測定値に基づいてスイッチ装置12を入り切りして、電池電圧の高い単電池1aを放電回路2dで放電させることで、単電池1a間の電圧ばらつきを小さくする電圧ばらつきの均等化動作を行う。
 従って、制御部2bと放電回路2dとで単電池1a間の電圧ばらつきを均等化する電圧均等化装置BLを構成している。
 充電装置3は、商用交流電源等の交流電圧を所定の直流電圧に変換し、その直流電圧を充電のために組電池1に印加するように構成され、充電制御部3aがその充電動作を制御する。すなわち、充電制御部3aは組電池1への充電を制御する充電制御装置CCとして機能する。
 本第1実施形態に関連する部分では、充電制御部3aは、電池監視装置2の制御部2bを経て送られてくる各単電池1aの電池電圧の検出信号(電圧測定部2aによる検出信号)に基づいて、組電池1への充電を継続するか、あるいは停止するかの制御を行う。
 次に、単電池1aの電池電圧の時間変化、及び、それと時間軸を共通にする各種の制御信号を示す図2、並びに、電池監視装置2の制御部2bが実行する処理を示す図3のフローチャート、及び、充電装置3の充電制御部3aが実行する図4のフローチャートに基づいて、充電時における二次電池システムBSの動作を説明する。
 先ず、電池監視装置2の制御部2bの動作について説明する。
 図3には、制御部2bにより実行される「バランサ制御」が示されている。制御部2bは、電圧測定部2aで測定した各単電池1aの電池電圧の測定結果、最大電圧の単電池1aの電池電圧が3.4V以上で、且つ、最大電圧の単電池1aと残余の単電池1aとの電池電圧の差がバランス動作開始用設定電圧を超えているものがあるときに、最大電圧の単電池1aに並列接続されている放電回路2dのスイッチ装置12を入り状態(ON状態)として、放電回路2dへの放電によってその単電池1aの電池電圧を低下させ、単電池1a間の電圧ばらつきを小さくする。
 図3の「バランサ制御」は、制御部2bによって高速に繰り返し実行される。先ず、電圧測定部2aで測定した各単電池1aの電池電圧の測定結果から、電池電圧が最大のものを特定し、その最大電圧の単電池1aの電池電圧が3.4V以上であるか否かを確認する(STEP#1)。
 最大電圧の単電池1aの電池電圧が3.4V以上である場合は、更に、その最大電圧の単電池1aの電池電圧と残余の単電池1aの電池電圧との電圧差を求め、その電圧差が上記バランス動作開始用設定電圧以上となっているものがあるか否かを確認する(STEP#2)。
 このバランス動作開始用設定電圧は、本実施の形態では、「50mV」に設定している。
 上記電圧差が「50mV」以上となったものがあるときは、その時点で最大電圧の単電池1aが既に放電回路2dのスイッチ装置12を入り操作してバランス動作の対象となっているか否かを確認し(STEP#3)、バランス動作の対象となっていなければ、その最大電圧の単電池1aに並列接続されている放電回路2dのスイッチ装置12を入り操作(ON操作)する信号を出力する(STEP#4)。尚、この際、既に他の単電池1aと対応する放電回路2dがバランス動作の対象となっている場合は、それのスイッチ装置12を切り操作(OFF操作)する。
 一方、STEP#1において、最大電圧の単電池1aの電池電圧が3.4V未満であるとき、あるいは、STEP#2において、上記電圧差が「50mV」以上となったものがないときは、何れかの単電池1aに対応する放電回路2dのスイッチ装置12が入り状態になっているか否かを確認し(STEP#5)、入り状態になっているスイッチ装置12があれば、それを切り操作する(STEP#6)。
 図2に基づいて、単電池1aの電池電圧の時間変化に伴なって変化する制御信号の出力状態の変化を具体的に説明する。
 図2の上段には、第1の単電池1aの電池電圧の時間変化Aと、第2の単電池1aの電池電圧の時間変化Bとが示され、図2の中段には、両者の電圧差がバランス動作開始用設定電圧を超えたことに対応して、制御部2bが制御信号を出力していることが示されている。
 前記第1の単電池1aは前記第2の単電池1aに比べて電池電圧の上昇が早く、両者の電圧差が次第に大きくなって行く。この過程で、図2中段の「a1」で示すタイミングで、電圧差が「50mV」以上となると、バランサ動作信号が「L」レベルから「H」レベルとなって、最大電圧の単電池1aに対応する放電回路2dのスイッチ装置12が入り状態に切り替わる。
 尚、図2上段の第1の単電池1a(時間変化Aの単電池1a)は、第2の単電池1a(時間変化Bの単電池1a)の電池電圧が殆ど変化しない状況下で、満充電付近の電池電圧が急激に上昇する領域に入ってきており、放電回路2dへの放電が開始されても電池電圧の上昇を十分に抑制する状況にはなっていない。
 この後、第2の単電池1aの緩やかな電圧上昇に伴って、「a2」で示すタイミングで、一旦放電回路2dのスイッチ装置12が切り状態となるが、第1の単電池1aの電圧変化に伴って、入り切りが繰り返されて、第1の単電池1aの電池電圧の上昇が抑制される(「a3」及び「a4」のタイミング)。
 次に、充電装置3の充電制御部3aの動作について説明する。
 図4には、充電制御部3aにより実行される「バランサ支援制御」が示されている。充電制御部3aは、電圧測定部2aで測定した各単電池1aの電池電圧の測定結果、いずれかの単電池1aの電池電圧が所定の「電圧上昇抑制用の設定電圧」に達したときに、充電装置3による組電池1への充電を停止し、その単電池1aの電池電圧がある程度低下したときに充電を再開する制御を行なう。このような制御を行うことによって、電圧均等化装置BLによる電圧均等化動作が有効に機能する状態とする。
 上記の「電圧上昇抑制用の設定電圧」は、単電池1aの満充電付近において、単電池1aへの充電の進行に伴って電池電圧が急激に上昇する電圧領域内の電圧値に設定される。
 図6に示す例では、電池電圧で、3.4V付近から立ち上がり始め、3.45V付近から、過充電電圧である4Vまで一気に上昇している。
 従って、上記の「電圧上昇抑制用の設定電圧」は、3.4Vを超えて、4Vに至るまでの電圧領域内で設定することになる。
 本実施形態では、充電状態(SOC)100%が、単電池1aの電圧で約3.45Vとなるように設定している関係で、上記の「電圧上昇抑制用の設定電圧」を、充電状態(SOC)100%の電圧よりも若干高い電圧である「3.5V」(図6において、破線Cで示す)に設定している。
 しかし、上記の「電圧上昇抑制用の設定電圧」の値は、上述した値に制限されるものではなく、充電状態(SOC)100%の電圧(3.45V)として、電池電圧が急激に上昇する直前の充電状態(SOC)100%以下で、後述する制御を行うこともできる。尚、この場合、図3の「バランサ制御」における電圧均等化動作の開始条件の一つであるSTEP#1の「3.4V」についても、「電圧上昇抑制用の設定電圧」の設定状態に応じて適宜に変更しても良い。
 図4の「バランサ支援制御」は、充電制御部3aによって高速に繰り返し実行されており、電池監視装置2の制御部2bが図3の処理を実行するのとは完全に独立し、且つ、並行して実行されている。従って、上述の電圧均等化装置BLによる単電池1a間の電圧ばらつきの均等化動作は、充電制御部3aによる制御動作の間も並行して実行されている。
 図4の「バランサ支援制御」では、先ず、電圧測定部2aにて測定した各単電池1aの電池電圧の測定結果を電池監視装置2から受けって、最大電圧の単電池1aの電池電圧が「電圧上昇抑制用の設定電圧」である「3.5V」を超えているか否かを確認し(STEP#11)、超えている場合は、その時点で既に充電停止しているか否かを確認して(STEP#12)、充電停止の状態でなければ充電停止を指示する信号を出力する(STEP#13)。
 これによって、充電装置3から組電池1への充電電流は零(0(A))となり、組電池1全体に流れる電流も零(0(A))となる。
 その結果、単電池1aに並列接続されている放電回路2dに流れる電流は、全て単電池1aの放電電流となり、確実にその単電池1aの電池電圧を低下させて行く。
 一方、第1の単電池1aの電池電圧が低下し、「3.45V」以下となったときは(STEP#14)、その時点で既に充電停止しているか否かを確認して(STEP#15)、充電停止の状態であれば充電の再開を指示する信号を出力する(STEP#16)。
 上記の制御を、図2に基づいて具体的に説明する。
 図2の下段が、充電制御部3aが充電停止と充電再開とを指示する信号であり、図2の下段において「H」レベルとなっている状態が、充電停止の信号を出力している状態であり、「L」レベルが組電池1への充電を許可している状態である。
 第1の単電池1aの電池電圧(図2上段の時間変化Aで示す電圧)が上昇して「3.5V」を超えると、その「b1」のタイミングで充電停止を指示する信号状態に変化する。
 この時、前記第1の単電池1aは電池監視装置2の制御部2bの制御によって電圧均等化動作中であり、充電装置3からの充電電流が停止することで、放電回路2dへの放電によって電池電圧が急速に低下する。
 その後、前記第1の単電池1aの電池電圧が「3,45V」以下にまで低下すると、「b2」のタイミングで組電池1への充電が再開され、単電池1aの電池電圧が再び上昇して行く。この後、第1の単電池1aの電池電圧の変化に応じて、「b3」~「b9」のタイミングで、充電停止と充電の再開とを繰り返す。
 前記第1の単電池1aが図2に示すような電圧変化を示す一方で、第2の単電池1aは、充電装置3から充電電流が供給されている期間に徐々に電圧上昇し、単電池1a間の電圧ばらつきが縮小して行く。
<第2実施形態>
 次ぎに、本発明の第2実施形態について図5を用いて説明する。
 本第2実施形態では、上記第1実施形態に示す二次電池システムBSに、更に負荷4を加えたものであり、組電池1と充電装置3と負荷4とが並列に接続されている。
 負荷4は、組電池1あるいは充電装置3の一方から、又は、双方から動作電力の供給を受ける。組電池1及び充電装置3の構成は、後述する制御構成及びそれに関連する構成部品以外については、上記第1実施形態と同一構成であり、図5においても同一の符号を付して記載している。
 本第2実施形態の二次電池システムBSにおいても、何れかの単電池1aの電池電圧が上記の「電圧上昇抑制用の設定電圧」である「3.5V」に達したときに、組電池1全体に流れる電流が零(0(A))となるように制御する点で、上記第1実施形態と共通する。
 ただし、本第2実施形態では、負荷4に電力を供給する必要がある関係で、上記第1実施形態のように、組電池1への出力を停止してしまうことはできない。
 このため、組電池1全体に流れる電流を検出する電流検出装置CSである電流センサ21を備えて、充電制御部3aは、電流センサ21の検出信号が「0(A)」に相当する検出信号となるように、組電池1への出力(具体的には、組電池1への印加電圧)を制御する。
 この状態では、重ね合わせの原理で考えて、組電池1自身の放電によって組電池1の内部抵抗に流れる電流を打ち消すように、充電装置3が充電電流を供給する制御状態となっており、制御結果として組電池1全体に流れる電流はほぼ「0(A)」となる。この制御状態は、充電装置3の電流供給能力が負荷電流より大きい限り維持することができる。
 この制御によって、本第2実施形態でも、上記第1実施形態における図4の制御と同一の制御によって、電圧均等化装置BLの均等化動作を有効に機能させることができる。
 より具体的には、図4の処理のSTEP#13で、電流センサ21の検出信号が「0(A)」に相当する検出信号となるように、組電池1への出力(具体的には、組電池1への印加電圧)を制御し、図4のSTEP#16においてそのような制御を停止して、組電池1への実質的な充電を再開させる。
 電圧均等化装置BLとしての制御である図3の処理や電圧均等化装置BLの構成についても上記第1実施形態と全く共通であり、図2で示すような制御信号の出力と、その制御の結果である電池電圧の時間変化についても、上記第1実施形態と同一である。
 以下、第1及び第2実施形態に関連する別実施形態を列記する。
(1)上記各実施形態では、何れかの単電池1aの電池電圧が「電圧上昇抑制用の設定電圧」である「3.5V」に達したときに、組電池1全体に流れる電流が零(0(A))となるように制御する場合を例示しているが、電圧均等化装置BLによって各単電池1a間の電圧ばらつきが小さくなり得る電流値を制御目標としてもよい。
 放電回路2dの抵抗器11の抵抗値が例えば「39Ω」である場合、放電回路2dに逃がせる電流は約90mA程度となり、組電池1全体に流れる電流がその放電回路2dに逃がせる電流値よりも小さければ、電圧均等化能力の高低はあるものの、電圧均等化装置BLを機能させ得る状態とすることができる。
 従って、放電回路2dに逃がせる電流値よりも小さい電流値の範囲で、電圧均等化動作への要求能力に応じて、制御目標の電流値を下げて行くようにすることもできる。
(2)上記各実施形態では、電圧均等化装置BLが均等化動作を行う動作条件として、最大電圧の単電池1aと残余の単電池1aとの電池電圧の差が「50mV」以上となった場合を例示しているが、最大電圧の単電池1aと最小電圧の単電池1aとの電池電圧の差が「50mV」以上になった場合であってもよく、電圧均等化動作を開始させる上記バランス動作開始用設定電圧も適宜変更可能である。
(3)上記各実施形態では、上記の「電圧上昇抑制用の設定電圧」を「3.5V」に設定する場合を例示しているが、単電池1aの満充電付近における電圧上昇の程度や、電圧均等化装置BLの均等化能力に応じて、適宜に設定変更可能である。同様に、「電圧上昇抑制用の設定電圧」に達したことによって組電池1全体に流れる電流を零(0(A))とする制御を停止させて充電を再開させる電圧である「3.45V」についても適宜に変更可能である。
(4)上記各実施形態では、組電池1として、4個の単電池1aが直列接続されたものを例示して説明しているが、組電池1を構成する単電池1aの個数や接続形態は種々に変更可能である。
 以下、本発明による第三の特徴構成を備えた二次電池システムの実施の形態を図面に基づいて説明する。
<第3実施形態>
 本実施の形態の二次電池システムBSは、図7に概略的に示すように、組電池1と充電装置3とを主要構成としており、その組電池1及び充電装置3に対して負荷4が並列に接続されている。すなわち、組電池1と充電装置3と負荷4とが並列に接続されている。
 充電装置3は、組電池1に対して充電電力を供給すると共に、負荷4に対しても動作用電力を供給する。組電池1は、放電により充電状態が低下したときは充電装置3から充電用の電力供給を受け、適宜に負荷4に対して動作用電力を供給する。
 組電池1は複数の単電池1aを直列に接続して構成されており、本実施の形態では、単電池1aを4個直列接続する場合を例示して説明する。
 各単電池1aは鉄成分を含むリチウム化合物(例えば、リン酸鉄リチウム)を正極活物質に使用したリチウムイオン電池であり、いわゆる二次電池である。
 この組電池1は、各単電池1aを監視する電池監視装置2と共に電池パックBP内に収納されている。
 電池監視装置2には、A/Dコンバータ等を備えて各単電池1aの電圧(セル電圧)を測定する電圧測定部2aと、電池監視装置2の動作を制御する電池監視制御部2bと、各単電池1aの監視のためのプログラムや各種のデータを記憶保持するメモリ2c等が備えられ、更に、各単電池1aに並列接続する形態で放電回路2dが備えられている。
 放電回路2dは、抵抗器11とMOSFETにより構成されるスイッチ装置12とを直列接続して構成されており、電池監視制御部2bからの制御信号にてスイッチ装置12が入り切り(ON/OFF)する。
 電池監視制御部2bは、詳しくは後述するが、各単電池1aの電池電圧の測定値に基づいてスイッチ装置12を入り切りして、電池電圧の高い単電池1aを放電回路2dで放電させることで、単電池1a間の電圧ばらつきを小さくする電圧ばらつきの均等化動作を行う。
 従って、電池監視制御部2bと放電回路2dとで単電池1a間の電圧ばらつきを均等化する電圧均等化装置BLを構成している。
 充電装置3は、商用交流電源等の交流電圧を所定の直流電圧に変換し、その直流電圧を充電のために組電池1に印加するように構成され、充電動作を制御する充電制御部3aと、その充電制御部3aの制御指示に従って組電池1等への電力を出力する充電出力回路3bとが備えられている。
 従って、充電制御部3aは組電池1への充電を制御する充電制御装置CCとして機能する。本実施の形態に関連する部分では、充電制御部3aは、電池監視装置2の電池監視制御部2bを経て送られてくる各単電池1aの電池電圧の検出信号(電圧測定部2aによる検出信号)に基づいて、組電池1への出力の制御を行う。
 次に、充電制御部3aの制御態様を制御回路形式で模式的に示す図8、及び、電池監視装置2の電池監視制御部2bが実行する処理を示す図9のフローチャートに基づいて、二次電池システムBSの動作を説明する。
 先ず、電池監視装置2の電池監視制御部2bの動作について説明する。
 図9には、電池監視制御部2bにより実行される「バランサ制御」が示されている。電池監視制御部2bは、電圧測定部2aで測定した各単電池1aの電池電圧の測定結果、最大電圧の単電池1aと最小電圧の単電池1aとの電池電圧の差が、バランス動作開始用設定電圧差を超えたときに、最大電圧の単電池1aに並列接続されている放電回路2dのスイッチ装置12を入り状態(ON状態)に切り替えて、放電回路2dへの放電によってその単電池1aの電池電圧を低下させ、単電池1a間の電圧ばらつきを小さくする。本実施の形態では、このバランス動作開始用設定電圧差は、「25mV」に設定している。
 図9の「バランサ制御」は、制御部2bによって高速に繰り返し実行されており、先ず、電圧測定部2aにて測定した各単電池1aの電池電圧の測定結果から、最大電圧の単電池1aの電池電圧(Vc)が「3.4V」以上となっているか否かを確認し(STEP#1)、次に、電池電圧が最大のものと最小のものとを特定してそれらの電圧差(ΔV)を求め、その電圧差が上記バランス動作開始用設定電圧差以上となっているか否かを確認する(STEP#2)。
 最大電圧の単電池1aの電池電圧(Vc)が「3.4V」以上で、且つ、上記電圧差(ΔV)が上記バランス動作開始用設定電圧差以上となったときは、その時点で最大電圧の単電池1aが既に放電回路2dのスイッチ装置12を入り操作してバランス動作を行っているか否かを確認し(STEP#3)、バランス動作を行っていなければ、その最大電圧の単電池1aに並列接続されている放電回路2dのスイッチ装置12を入り操作(ON操作)する信号を出力する(STEP#4)。
 尚、この際、既に他の単電池1aと対応する放電回路2dがバランス動作を行っている場合は、それのスイッチ装置12を切り操作(OFF操作)する。尚、図9の「バランサ制御」における電圧均等化動作の開始条件の一つであるSTEP#1の「3.4V」については、具体的な電圧値は適宜に変更しても良い。
 一方、STEP#1,#2において、最大電圧の単電池1aの電池電圧(Vc)が「3.4V」未満であるか、あるいは、上記電圧差(ΔV)が上記バランス動作開始用設定電圧差未満となっているときは、何れかの単電池1aに対応する放電回路2dのスイッチ装置12が入り状態になっているか否かを確認し(STEP#5)、入り状態になっているスイッチ装置12があれば、それを切り操作する(STEP#6)。
 次に、充電装置3の充電制御部3aの動作について説明する。
 充電制御部3aは、組電池1に対して定電流充電と定電圧充電とを組み合わせた制御を行っている。
 但し、定電圧充電は、組電池1全体に印加する電圧を一定に保つ一般的な制御ではなく、単電池1aの電池電圧が一定の電圧(「電圧上昇阻止用の設定電圧」)に維持されるようにする制御である。
 充電制御部3aは、このような制御を、電池監視装置2から送られてくる各単電池1aの電池電圧のデータと、組電池1に流れる電流を検出する電流検出手段である電流センサ21の検出データとに基づいて、ソフトウェア処理によるデジタル制御により実行する。
 上記の充電制御部3aの制御動作を、模式的に仮想的な制御回路の形式で表記した図8に基づいて説明する。
 アンプ22,23,24,25は、各単電池1aの正極電位から低電位側の単電池1aの正極電位を減算して各単電池1aの電池電圧を検出すると共に、所定の信号レベルに増幅する処理を示しており、デジタル処理上では、電池監視制御部2bから各単電池1aの電池電圧が入力されるので、その入力値と所定の電圧補正値(詳しくは後述する)との積を演算する。
 OR回路26は、各アンプ22,23,24,25の出力信号のうちの最大電圧を選択して出力する。デジタル処理上においてもそれと同一の処理である。
 アンプ27は、電流センサ21の検出信号を所定の信号レベルに増幅する。デジタル処理上でも、電流センサ21の検出データと所定の電流補正値との積を演算する。
 OR回路26の出力とアンプ27の出力とは演算増幅器28に入力され、演算増幅器28は、その2つの入力のうちの信号レベルの高い方の電圧が基準電圧28aに一致するようにフィードバック制御をかけるべく充電出力回路3bに信号を送る。デジタル処理上では、各単電池1aの電池電圧のうちの最も高いものについてのデータと、電流センサ21が検出する充電電流のデータとのうちの大きい方の値が基準電圧28aに相当する値に一致するように制御する。具体的には、各単電池1aの電池電圧のうちの最も高いものについてのデータと、電流センサ21が検出する充電電流のデータとのうちの大きい方の値が基準電圧28aに相当する値よりも大となると、充電出力回路3bの出力電圧を低下させ、逆に、基準電圧28aに相当する値よりも小となると、充電出力回路3bの出力電圧を低下させる形で、充電装置3の出力を制御する。
 上記基準電圧28aの値は、単電池1aの電池電圧の値で「3.45V」に相当するように、アンプ22,23,24,25の増幅機能に相当する上記電圧補正が設定されている。本実施の形態では、この「3.45V」が上述の「電圧上昇阻止用の設定電圧」である。
 また、組電池1への充電電流に関しては、上記基準電圧28aの値は、定電流充電の電流値である「50A」に相当するように、アンプ27の増幅機能に相当する上記電流補正値が設定されている。
 従って、充電制御部3aの制御状態としては、組電池1への充電電流が「50A」となる状態を維持する制御をしているか、あるいは、「電圧上昇阻止用の設定電圧」に達した最大電圧の単電池1aの電池電圧を「3.45V」に維持する制御をしているかのどちらかになる。
 上記の「電圧上昇阻止用の設定電圧」は、単電池1aの満充電付近において、単電池1aへの充電の進行に伴って電池電圧が急激に上昇する電圧領域内の電圧値に設定する。
 図6に示す例では、電池電圧で、3.4V付近から立ち上がり始め、3.45V付近から、過充電電圧である4Vまで一気に上昇している。
 従って、上記の「電圧上昇阻止用の設定電圧」は、3.4Vを超えて、4Vに至るまでの電圧領域内で設定することになる。
 本実施の形態では、充電状態(SOC)100%が、単電池1aの電圧で約3.45Vとなるように設定している関係で、上記の「電圧上昇阻止用の設定電圧」として、充電状態(SOC)100%の電圧と同一の「3.45V」(図6において、破線Cで示す)に設定している。
 充電制御部3aによる上述のような制御構成によって、各単電池1aの何れもが「3.45V」に達していない状態では、組電池1への充電電流が「50A」となるように充電出力回路3bの出力(すなわち、充電装置3から組電池1への出力)が制御される。
 その定電流充電を行っている間に、何れかの単電池1aの電池電圧が上昇して「3.45V」に到達し、更に上昇しようとすると、充電出力回路3bの出力を低下させる。逆に、組電池1への充電電流が「50A」より小さくなっている状態で、上記の単電池1aの電池電圧が「3.45V」より小さくなると、充電出力回路3bの出力を上昇させて、結果として、単電池1aの電池電圧が「3.45V」、すなわち、「電圧上昇阻止用の設定電圧」に維持される。
 このような充電制御部3aの制御の間も、電池監視装置2の電池監視制御部2bの制御による電圧ばらつきの均等化動作は、充電制御部3aの制御とは別個独立に並行して実行されており、電池電圧が上記の「電圧上昇阻止用の設定電圧」に達した単電池1aと最小電圧の単電池1aの電池電圧との差が「25mV」以上となると、電圧均等化装置BLが、「電圧上昇阻止用の設定電圧」に達した単電池1aに並列接続されている放電回路2dのスイッチ装置12が入り状態となり、放電回路2dへ放電される。
 充電制御部3aの制御によって単電池1aの電池電圧が上記の「電圧上昇阻止用の設定電圧」に維持されるということは、原則としてその単電池1aには充電電流が流れないということであり、充電装置3から組電池1への充電電流は、全てスイッチ装置12が入り状態となっている放電回路2dへ流れ、更に、放電回路2dのスイッチ装置12が切り状態となっている他の単電池1aには充電電流として流れる。この充電電流によって、他の単電池1aの電池電圧が上昇し、単電池1a間の電圧ばらつきが小さくなって行く。
 以下、第3実施形態に関連する別実施形態を列記する。
(1)上記実施の形態では、図8で模式的に示す制御回路の機能をソフトウェア等のデジタル制御で実現する場合を例示しているが、図8の構成をアナログ制御回路として実装するように構成しても良い。
(2)上記実施の形態では、組電池1及び充電装置3に対して、負荷4が並列に接続されている場合を例示しているが、組電池1及び充電装置3のみからなる二次電池システムBSにも本発明を適用できる。
(3)上記実施の形態では、組電池1として、4個の単電池1aが直列接続されたものを例示して説明しているが、組電池1を構成する単電池1aの個数や接続形態は種々に変更可能である。
(4)上記実施の形態では、上記の「電圧上昇阻止用の設定電圧」を「3.45V」に設定した場合を例示しているが、具体的な電圧値は適宜に変更可能である。
 また、同様に、電圧均等化装置BLの動作条件である「バランス動作開始用設定電圧差」についても、上記実施の形態の「25mV」以外の値に設定しても良い。定電流充電の電流値「50A」についても同様である。
(5)上記実施の形態では、充電制御部3aが、電池監視装置2から各単電池1aの電池電圧の測定データを受け取る構成を例示しているが、充電制御部3aが直接に各単電池1aの電池電圧を測定するように構成しても良い。
 1  組電池
 1a 単電池
 3  充電装置
 4  負荷
 BL 電圧均等化装置
 CC 充電制御装置
 CS 電流検出装置

Claims (23)

  1.  二次電池を充電する二次電池システムであって、
     少なくとも、夫々が二次電池である複数の単電池を接続して構成される組電池と、
     前記単電池間の電圧ばらつきを均等化する電圧均等化装置と、
     前記組電池に充電する充電装置と、
     前記充電装置に組み込まれ、前記複数の単電池のうちのいずれかの単電池の電池電圧が所定の電圧上昇抑制用の設定電圧に達したときに、前記充電装置から前記組電池への充電電流を零となるように制御する充電制御装置と、
    が備えられた二次電池システム。
  2.  前記二次電池は、鉄成分を含むリチウム化合物を正極活物質に使用した鉄系のリチウムイオン電池である請求項1記載の二次電池システム。
  3.  前記電圧上昇抑制用の設定電圧は、満充電付近において前記単電池への充電の進行に伴って電池電圧が急激に上昇する電圧領域内の電圧値に設定されている請求項1または2記載の二次電池システム。
  4.  前記電圧上昇抑制用の設定電圧は、3.4Vより高く4V未満の電圧領域内の電圧値に設定されている請求項3記載の二次電池システム。
  5.  前記電圧均等化装置は、各単電池を個別に放電させる放電回路と、前記放電回路を制御して単電池間の電圧ばらつきを小さくする電圧均等化制御を行なう制御部と、を備えている請求項1から4の何れかに記載の二次電池システム。
  6.  前記電圧均等化装置は、前記充電制御装置による制御動作の間も、並行して前記単電池間の電圧ばらつきの均等化動作を行うように構成されている請求項1から5の何れかに記載の二次電池システム。
  7.  前記組電池全体に流れる電流に寄与する装置として前記充電装置のみが備えられている請求項1から6の何れかに記載の二次電池システム。
  8.  前記組電池と、前記充電装置と、前記組電池と前記充電装置の少なくとも一つから電力供給される負荷とが並列に接続されて構成され、
     前記組電池全体に流れる電流を検出する電流検出装置が備えられ、
     前記充電制御装置は、前記電流検出装置の検出情報に基づいて、前記充電装置の出力を制御するように構成されている請求項1から7の何れかに記載の二次電池システム。
  9.  二次電池を充電する二次電池システムであって、
     少なくとも、夫々が二次電池である複数の単電池を接続して構成される組電池と、
     前記単電池間の電圧ばらつきを均等化する電圧均等化装置と、
     前記組電池に充電する充電装置と、
     前記充電装置に組み込まれ、前記複数の単電池のうちのいずれかの単電池の電池電圧が所定の電圧上昇抑制用の設定電圧に達したときに、前記充電装置から前記組電池への充電電流を前記電圧均等化装置にて各単電池間の電圧ばらつきが小さくなり得る電流値となるように制御する充電制御装置と、
    が備えられた二次電池システム。
  10.  前記二次電池は、鉄成分を含むリチウム化合物を正極活物質に使用した鉄系のリチウムイオン電池である請求項9記載の二次電池システム。
  11.  前記電圧上昇抑制用の設定電圧は、満充電付近において前記単電池への充電の進行に伴って電池電圧が急激に上昇する電圧領域内の電圧値に設定されている請求項9または10記載の二次電池システム。
  12.  前記電圧上昇抑制用の設定電圧は、3.4Vより高く4V未満の電圧領域内の電圧値に設定されている請求項11記載の二次電池システム。
  13.  前記電圧均等化装置は、各単電池を個別に放電させる放電回路と、前記放電回路を制御して単電池間の電圧ばらつきを小さくする電圧均等化制御を行なう制御部と、を備えている請求項9から12の何れかに記載の二次電池システム。
  14.  前記電圧均等化装置は、前記充電制御装置による制御動作の間も、並行して前記単電池間の電圧ばらつきの均等化動作を行うように構成されている請求項9から13の何れかに記載の二次電池システム。
  15.  前記組電池全体に流れる電流に寄与する装置として前記充電装置のみが備えられている請求項9から14の何れかに記載の二次電池システム。
  16.  前記組電池と、前記充電装置と、前記組電池と前記充電装置の少なくとも一つから電力供給される負荷とが並列に接続されて構成され、
     前記組電池全体に流れる電流を検出する電流検出装置が備えられ、
     前記充電制御装置は、前記電流検出装置の検出情報に基づいて、前記充電装置の出力を制御するように構成されている請求項9から15の何れかに記載の二次電池システム。
  17.  二次電池を充電する二次電池システムであって、
     少なくとも、夫々が二次電池である複数の単電池を接続して構成される組電池と、
     前記単電池間の電圧ばらつきを均等化する電圧均等化装置と、
     前記組電池に充電する充電装置と、
     前記充電装置に組み込まれ、前記複数の単電池のうちのいずれかの単電池の電池電圧が、所定の電圧上昇阻止用の設定電圧に達したときに、前記充電装置の組電池への出力を制御して、前記電圧上昇阻止用の設定電圧に達した単電池の電池電圧を前記電圧上昇阻止用の設定電圧に維持させるように制御する充電制御装置と、
    が備えられた二次電池システム。
  18.  前記二次電池は、鉄成分を含むリチウム化合物を正極活物質に使用した鉄系のリチウムイオン電池である請求項17記載の二次電池システム。
  19.  前記電圧上昇抑制用の設定電圧は、満充電付近において前記単電池への充電の進行に伴って電池電圧が急激に上昇する電圧領域内の電圧値に設定されている請求項17または18記載の二次電池システム。
  20.  前記電圧上昇抑制用の設定電圧は、3.4Vより高く4V未満の電圧領域内の電圧値に設定されている請求項19記載の二次電池システム。
  21.  前記電圧均等化装置は、各単電池を個別に放電させる放電回路と、前記放電回路を制御して単電池間の電圧ばらつきを小さくする電圧均等化制御を行なう制御部と、を備えている請求項17から20の何れかに記載の二次電池システム。
  22.  前記電圧均等化装置は、前記充電制御装置による制御動作の間も、並行して前記単電池間の電圧ばらつきの均等化動作を行うように構成されている請求項17から21の何れかに記載の二次電池システム。
  23.  前記組電池と、前記充電装置と、前記組電池と前記充電装置の少なくとも一つから電力供給される負荷とが並列に接続されて構成され、
     前記組電池全体に流れる電流を検出する電流検出装置が備えられ、
     前記充電制御装置は、前記電流検出装置の検出情報に基づいて、前記充電装置の出力を制御するように構成されている請求項17から22の何れかに記載の二次電池システム。
PCT/JP2011/056330 2010-03-24 2011-03-17 二次電池システム WO2011118484A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012506967A JPWO2011118484A1 (ja) 2010-03-24 2011-03-17 二次電池システム
CN2011800046870A CN102640382A (zh) 2010-03-24 2011-03-17 二次电池系统

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-068993 2010-03-24
JP2010068993 2010-03-24
JP2010070296 2010-03-25
JP2010-070296 2010-03-25

Publications (1)

Publication Number Publication Date
WO2011118484A1 true WO2011118484A1 (ja) 2011-09-29

Family

ID=44673041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056330 WO2011118484A1 (ja) 2010-03-24 2011-03-17 二次電池システム

Country Status (3)

Country Link
JP (1) JPWO2011118484A1 (ja)
CN (1) CN102640382A (ja)
WO (1) WO2011118484A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102868199A (zh) * 2012-10-17 2013-01-09 北京川江源科技有限公司 电池组平衡方法、电池组平衡装置以及包括该装置的系统
CN102868196A (zh) * 2012-09-24 2013-01-09 宋秋 一种电池管理均衡系统
KR101401721B1 (ko) 2013-03-14 2014-06-02 (주)에너펄스 에너지 저장장치의 전압 균등화 모듈
JP2014166060A (ja) * 2013-02-26 2014-09-08 Toshiba Mitsubishi-Electric Industrial System Corp 蓄電装置
WO2015040779A1 (ja) * 2013-09-17 2015-03-26 ソニー株式会社 蓄電装置および蓄電装置の制御方法
CN104659874A (zh) * 2013-11-22 2015-05-27 余仲哲 电池平衡控制电路及其系统
JP2016129478A (ja) * 2014-12-25 2016-07-14 寧徳時代新能源科技股▲分▼有限公司 リン酸鉄リチウム電池パックの受動的等化方法及びシステム
TWI701889B (zh) * 2020-02-27 2020-08-11 天揚精密科技股份有限公司 多節電池組充電平衡裝置、系統及其方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6101039B2 (ja) * 2012-10-18 2017-03-22 矢崎総業株式会社 均等化装置
CN106410893B (zh) * 2016-09-22 2018-12-21 中国运载火箭技术研究院 一种空间飞行器锂电池自动充电控制方法
CN107492924B (zh) * 2017-08-04 2023-06-23 杰华特微电子股份有限公司 电池均衡电路及控制方法
JP6913050B2 (ja) * 2018-03-13 2021-08-04 矢崎総業株式会社 高電圧系と低電圧系とを備えた電源系
EP3796508B1 (en) * 2018-05-14 2024-04-03 SANYO Electric Co., Ltd. Management device and power storage system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008123868A (ja) * 2006-11-13 2008-05-29 Gs Yuasa Corporation:Kk 二次電池のセル電圧バランス装置
US20090136838A1 (en) * 2007-11-23 2009-05-28 Takeshi Abe Lithium-ion secondary battery, assembled battery, hybrid automobile, and battery system
JP2010277839A (ja) * 2009-05-28 2010-12-09 Nissan Motor Co Ltd リチウムイオン電池の充電方法、電池システム、充電制御装置、リチウムイオン電池、組電池、車両

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2676428Y (zh) * 2003-10-30 2005-02-02 天津力神电池股份有限公司 多芯片控制锂离子电池组保护模块
JP4006458B2 (ja) * 2006-03-30 2007-11-14 株式会社パワーシステム キャパシタの特性検査装置
JP5306582B2 (ja) * 2006-06-14 2013-10-02 株式会社Nttファシリティーズ 電池管理装置及び電池管理方法
US7965061B2 (en) * 2008-02-01 2011-06-21 O2Micro, Inc. Conversion systems with balanced cell currents
JP4499164B2 (ja) * 2008-02-25 2010-07-07 岩崎電気株式会社 充電装置及び充電方法
US20110025272A1 (en) * 2008-03-25 2011-02-03 Takeaki Nagashima Charging method, charging device, and battery pack
JP2010032261A (ja) * 2008-07-25 2010-02-12 Panasonic Corp 不均衡判定回路、電源装置、及び不均衡判定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008123868A (ja) * 2006-11-13 2008-05-29 Gs Yuasa Corporation:Kk 二次電池のセル電圧バランス装置
US20090136838A1 (en) * 2007-11-23 2009-05-28 Takeshi Abe Lithium-ion secondary battery, assembled battery, hybrid automobile, and battery system
JP2010277839A (ja) * 2009-05-28 2010-12-09 Nissan Motor Co Ltd リチウムイオン電池の充電方法、電池システム、充電制御装置、リチウムイオン電池、組電池、車両

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102868196A (zh) * 2012-09-24 2013-01-09 宋秋 一种电池管理均衡系统
CN102868199A (zh) * 2012-10-17 2013-01-09 北京川江源科技有限公司 电池组平衡方法、电池组平衡装置以及包括该装置的系统
JP2014166060A (ja) * 2013-02-26 2014-09-08 Toshiba Mitsubishi-Electric Industrial System Corp 蓄電装置
KR101401721B1 (ko) 2013-03-14 2014-06-02 (주)에너펄스 에너지 저장장치의 전압 균등화 모듈
WO2015040779A1 (ja) * 2013-09-17 2015-03-26 ソニー株式会社 蓄電装置および蓄電装置の制御方法
JP2015061335A (ja) * 2013-09-17 2015-03-30 ソニー株式会社 蓄電装置および蓄電装置の制御方法
US10069311B2 (en) 2013-09-17 2018-09-04 Murata Manufacturing Co., Ltd. Power storage device and method of controlling power storage device
CN104659874A (zh) * 2013-11-22 2015-05-27 余仲哲 电池平衡控制电路及其系统
JP2016129478A (ja) * 2014-12-25 2016-07-14 寧徳時代新能源科技股▲分▼有限公司 リン酸鉄リチウム電池パックの受動的等化方法及びシステム
US10291038B2 (en) 2014-12-25 2019-05-14 Contemporary Amperex Technology Co., Limited Passive equalization method and system for lithium iron phosphate battery pack
TWI701889B (zh) * 2020-02-27 2020-08-11 天揚精密科技股份有限公司 多節電池組充電平衡裝置、系統及其方法

Also Published As

Publication number Publication date
CN102640382A (zh) 2012-08-15
JPWO2011118484A1 (ja) 2013-07-04

Similar Documents

Publication Publication Date Title
WO2011118484A1 (ja) 二次電池システム
US9013147B2 (en) Circuit and method for cell balancing
TWI460962B (zh) 充電電池模組與電池充電方法
JP5230563B2 (ja) 制御可能なアダプタ出力を備えたバッテリ管理システム
JP3832660B2 (ja) 充電装置
JP6179407B2 (ja) 組電池の均等化装置及び方法
JP4967162B2 (ja) 二次電池パック
JP5509152B2 (ja) 蓄電システム
TWI424656B (zh) 充電電流控制方法
JP2009247195A (ja) 充電電流を調節できるバッテリ管理システム
US20150035492A1 (en) Adjusting device, battery pack, and adjusting method
WO2015079607A1 (ja) 電池パック
US10003108B2 (en) Storage battery, method of controlling storage battery, and non-transitory storage medium
US8324864B2 (en) Battery fast charging current control algorithm
KR102342202B1 (ko) 배터리 장치 및 그 제어 방법
CN114801883A (zh) 电池均衡控制方法、系统、存储介质、电子设备和车辆
JP5644691B2 (ja) セルバランス制御装置およびセルバランス制御方法
JP2019041497A (ja) 電源管理装置
JP2012182915A (ja) 電力貯蔵装置、電源装置、バッテリユニット、および制御装置
KR101925113B1 (ko) 복수의 배터리 유닛들을 포함하는 전지팩의 충전량을 향상시키기 위한 전지팩 충전기
JP7027860B2 (ja) 電源システム
WO2013008396A1 (ja) 電池パック、充電制御システムおよび充電方法
JP6727532B2 (ja) 蓄電状態調整装置、電池パック、負荷システム及び蓄電状態調整方法
JPH0787673A (ja) 充電制御方式
JPWO2015029568A1 (ja) 蓄電システム、蓄電池の制御方法及びプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004687.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759290

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012506967

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759290

Country of ref document: EP

Kind code of ref document: A1