WO2016113791A1 - 電池装置、充電制御装置および充電制御方法 - Google Patents

電池装置、充電制御装置および充電制御方法 Download PDF

Info

Publication number
WO2016113791A1
WO2016113791A1 PCT/JP2015/005989 JP2015005989W WO2016113791A1 WO 2016113791 A1 WO2016113791 A1 WO 2016113791A1 JP 2015005989 W JP2015005989 W JP 2015005989W WO 2016113791 A1 WO2016113791 A1 WO 2016113791A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
voltage
current
threshold voltage
charging current
Prior art date
Application number
PCT/JP2015/005989
Other languages
English (en)
French (fr)
Inventor
裕人 鹿又
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US15/538,272 priority Critical patent/US10553913B2/en
Priority to JP2016569128A priority patent/JP6500911B2/ja
Publication of WO2016113791A1 publication Critical patent/WO2016113791A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a battery device, a charge control device, and a charge control method that can rapidly charge, for example, a lithium ion secondary battery.
  • Lithium ion secondary batteries are widely used as power sources for smartphones, for example.
  • quick charge which can charge a battery in a short time is mentioned.
  • Achieving rapid charging requires charging with a large current, but there is a concern that large current charging may affect the capacity degradation due to the passage of cycles.
  • Patent Documents 1 to 4 Conventionally, a rapid charging apparatus as described in the following Patent Documents 1 to 4 has been proposed.
  • Patent Document 1 in order to solve the problem that the cycle characteristics deteriorate when charging current is increased or charging is performed in a high temperature atmosphere for rapid charging, a constant current at the first stage with a large current is disclosed. Charging is performed, and when the specified charging voltage is reached, the charging current is immediately reduced, and the second stage charging process is repeated with the reduced current.
  • Patent Document 2 describes that charging is performed with a charging current exceeding the nominal capacity of the lithium ion secondary battery, charging is performed within half of the maximum charging capacity, and thereafter charging is performed with a rated charging current. If the charge is within half of the maximum charge capacity, the cycle characteristics are not significantly degraded.
  • Patent Document 3 describes that, similar to Patent Document 1, when the measured voltage reaches around the prescribed charging voltage of the secondary battery, control is performed to reduce the charging current.
  • Patent Document 4 relates to a configuration of a charger composed of a combination of a primary side power supply control circuit and a secondary side charge control circuit.
  • the object is to control the charging voltage and the charging current even when the number of parts is reduced from the conventional circuit configuration.
  • the same control as the charge control before parts reduction is possible.
  • Patent Document 3 since the state close to the specified charge voltage of the secondary battery continues for a long time, deterioration of cycle characteristics (that is, deterioration of capacity due to the passage of cycles) appears remarkably. There is a fear. Furthermore, in the case of Patent Document 3, because of the control to gradually increase the charging current according to the battery voltage measured at the start of charging, there is a time loss until the charging current reaches the upper limit when aiming at rapid charging. End up.
  • Patent Document 2 at the start of charging, in a state where the charging capacity of the secondary battery exceeds half of the maximum charging capacity, a transition to the second charging control with a low charging current occurs, so that rapid charging cannot be performed.
  • the present disclosure provides a battery device, a charge control device, and a charge control method capable of performing rapid charging while preventing deterioration of cycle characteristics. It is in.
  • the present disclosure includes a secondary battery, A measurement unit for measuring the voltage and current of the secondary battery; A measurement voltage and a measurement current from the measurement unit are supplied, and a control unit that controls the charging voltage and the charging current of the secondary battery,
  • the control unit In order to charge the secondary battery, a current value exceeding its nominal capacity is set as the first charging current, While performing constant current charging with the set first charging current, the measured voltage of the secondary battery is compared with a first threshold voltage smaller than the specified charging voltage, When the measured voltage is greater than the first threshold voltage, the first charging current is decreased to the second charging current, and the first threshold voltage is increased by a predetermined amount to the second threshold voltage, While performing constant current charging with the set second charging current, the measured voltage of the secondary battery is compared with a second threshold voltage smaller than the specified charging voltage, When the measured voltage becomes larger than the second threshold voltage, the second charging current is decreased to the third charging current, and the second threshold voltage is increased by a predetermined amount to be the third threshold voltage.
  • the comparison between the measured voltage and the threshold voltage and the change of the charging current and the threshold voltage are repeated, and when the nth charging current decreases to a predetermined value and the measured voltage becomes larger than the predetermined value, the quick charge is finished. It is a battery device that performs control.
  • the present disclosure is a charge control device that is supplied with a measurement voltage and a measurement current of a secondary battery to be charged and controls a charging voltage and a charging current of the secondary battery,
  • a current value exceeding its nominal capacity is set as the first charging current
  • the measured voltage of the secondary battery is compared with a first threshold voltage smaller than the specified charging voltage
  • the first charging current is decreased to the second charging current
  • the first threshold voltage is increased by a predetermined amount to the second threshold voltage
  • the measured voltage of the secondary battery is compared with a second threshold voltage smaller than the specified charging voltage
  • the second charging current is decreased to the third charging current
  • the second threshold voltage is increased by a predetermined amount to be the third threshold voltage.
  • the comparison between the measured voltage and the threshold voltage, the change of the charging current and the change of the threshold voltage are repeated, and when the nth charging current decreases to a predetermined value and the measured voltage becomes larger than the predetermined value, rapid charging is performed. It is the charge control apparatus which performs control which complete
  • the present disclosure is a charge control method for receiving a measurement voltage and a measurement current of a secondary battery to be charged and controlling a charging voltage and a charging current of the secondary battery,
  • a current value exceeding its nominal capacity is set as the first charging current
  • the measured voltage of the secondary battery is compared with a first threshold voltage smaller than the specified charging voltage
  • the first charging current is decreased to the second charging current
  • the first threshold voltage is increased by a predetermined amount to the second threshold voltage
  • the measured voltage of the secondary battery is compared with a second threshold voltage smaller than the specified charging voltage
  • the second charging current is decreased to the third charging current
  • the second threshold voltage is increased by a predetermined amount to be the third threshold voltage.
  • the comparison between the measured voltage and the threshold voltage, the change of the charging current and the change of the threshold voltage are repeated, and when the nth charging current decreases to a predetermined value and the measured voltage becomes larger than the predetermined value, rapid charging is performed.
  • This is a charge control method for performing control to end the process.
  • the present disclosure can perform rapid charging by setting a current value exceeding the nominal capacity of the secondary battery as the charging current.
  • cycle characteristics can be prevented from being deteriorated by performing rapid charging in a voltage range smaller than a specified charging voltage. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
  • 1 is a block diagram of an embodiment of the present disclosure. It is a flowchart for demonstrating the charge control of one embodiment of this indication. It is a graph for demonstrating charge control. It is the graph which expanded a part of graph of charge control. It is a graph which shows the cycle characteristic at the time of setting a threshold voltage smaller than a regulation charge voltage. It is a graph which shows the difference in the cycle characteristic according to the presence or absence of deterioration suppression control. It is a block diagram of the 1st modification of this indication. It is a block diagram of the 2nd modification of this indication. It is a block diagram of the 3rd modification of this indication.
  • an embodiment of the present disclosure is directed to a battery pack in which a battery cell 1 of a secondary battery and an element related to the control unit 2 are housed in the same casing (case). This disclosure is applied.
  • the battery cell 1 is, for example, a lithium ion secondary battery.
  • the specified charging voltage of the battery cell 1 is set to 4.35 V, for example.
  • the battery pack is provided with connectors 3a, 3b, 3c and 3d for connection to the outside.
  • Connector 3a is connected to the positive electrode of battery cell 1
  • connector 3b is connected to the negative electrode of battery cell 1.
  • the connectors 3c and 3d are terminals for communication between the control unit 2 and the outside.
  • the control unit 2 that controls the battery pack includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an I / O (Input / Output), an AFE (Analog Front End), and the like. Microcomputer.
  • the AFE is an analog circuit arranged between the analog signal unit and the CPU of the control unit 2. Note that a switching element for turning on / off the charging current and a switching element for turning on / off the discharge current may be provided in the battery pack, and these switching elements may be controlled by the control unit 2.
  • the voltage of the battery cell 1 is supplied to the control unit 2. Further, the temperature in the battery pack is measured by a temperature detection element such as the thermistor 4, and the measured temperature information is supplied to the control unit 2. Further, the current flowing through the current path of the battery cell 1 is detected by the current detection resistor 5, and the detected current value is supplied to the control unit 2.
  • a temperature detection element such as the thermistor 4
  • the current flowing through the current path of the battery cell 1 is detected by the current detection resistor 5, and the detected current value is supplied to the control unit 2.
  • the controller 2 controls the charging operation for the battery cell 1.
  • the control performed by the control unit 2 is shown in the flowchart of FIG.
  • the charging device generates a charging voltage and a charging current having a predetermined value from a commercial power source, and the charging voltage and the charging current are set by communication with the control unit 2 of the battery pack.
  • serial communication is used as the communication method.
  • Step ST1 Charging is started.
  • Step ST2 The voltage of the battery cell 1 (battery voltage) is measured. For example, it is measured for 2 seconds and the average value is used.
  • Step ST3 It is checked whether the measured voltage is a predetermined voltage, for example, 4.1 V or higher, or whether the temperature of the battery pack is outside the normal temperature range. In step ST3, it is determined whether or not the battery has been fully charged, and whether or not the temperature environment is suitable for rapid charging.
  • a predetermined voltage for example, 4.1 V or higher
  • the normal charging is constant current constant voltage charging. That is, constant current constant voltage charging is a method in which charging is performed at a constant current up to a predetermined voltage, and charging is performed at a constant voltage when the battery voltage reaches the predetermined voltage.
  • the voltage value for switching from constant current charging to constant voltage charging is, for example, 4.24V.
  • rapid charging is not performed in order to prevent the temperature from rising further.
  • Step ST4 It is determined whether measurement data, for example, the number of cycles is equal to or less than a set value. Step ST4 determines the degree of deterioration of the battery cell 1.
  • Step ST5 When the determination result of step ST4 is affirmative, the charging voltage is set to a specified charging voltage (eg, 4.35 V) of the battery cell 1.
  • Step ST6 Constant current and constant voltage charging is performed. For example, 4.35V is used as the specified charging voltage, and the charging current is set to 0.7 ItA.
  • Step ST7 It is determined whether a full charge condition is satisfied.
  • a conventional method can be used as the full charge condition. For example, it can be detected as a full charge that the charging current is a predetermined value (for example, a value of 1/20 or less of the nominal capacity). In addition, you may detect as a full charge that the difference of the voltage of the battery cell 1 and a charging voltage becomes below a predetermined value. If the full charge condition is not satisfied, the process returns to step ST6 (constant current constant voltage charge).
  • Step ST9 The charging operation ends.
  • step ST3 If the determination result of step ST3 described above is negative, that is, if the measured voltage is lower than 4.1 V and the temperature of the battery pack is within the normal temperature range, the process moves to step ST11, and after step ST11 A quick charge is performed by this process.
  • Step ST11 The charging voltage supplied to the connectors 3a and 3b is increased to a voltage equal to or higher than a specified charging voltage, for example, +5.0 V, and the charging current is set to a value for quick charging.
  • the reason for increasing the charging voltage is to suppress the drooping of the charging current during large current charging in consideration of the voltage increase caused by the internal resistance of the battery cell 1 and the resistance by the electronic circuit.
  • the aim is to shorten the charging time.
  • Step ST12 Rapid charging is performed with the set charging voltage and charging current.
  • Step ST13 It is determined whether or not the measured battery voltage is greater than the threshold voltage A during the quick charge.
  • the threshold voltage A is a voltage having a value equal to or lower than a specified charging voltage.
  • the initial value of the threshold voltage A is set to 4.24V.
  • Step ST14 If the determination result in step ST13 is affirmative, that is, if the battery voltage is determined to be greater than the threshold voltage A, the charging current is decreased by a predetermined amount, for example, 0.1 ItA, and the threshold voltage A is increased by a predetermined amount by 10 mV. Processing is done.
  • Step ST15 It is determined whether or not the relationship of (charging current ⁇ predetermined value) and (measured voltage ⁇ predetermined value) is established. For example, the relationship is (charging current ⁇ 0.71 ItA) and (measurement voltage ⁇ charging voltage). If this condition is satisfied, it is determined that the battery is near full charge, and the charge voltage is lowered from 5.0 V to the standard charge voltage. Then, the process returns to step ST4 (determining whether the measurement data is equal to or less than the set value). After step ST4, constant current and constant voltage charging is performed until full charging.
  • constant current charging is performed with a controlled charging voltage and charging current, and charging is performed whenever the measured voltage of the secondary battery reaches the threshold voltage A (below the specified charging voltage of the battery cell 1).
  • the current is sequentially reduced by, for example, 0.1 ItA.
  • the charging current is lowered by one step, the measured voltage is also smaller than the threshold voltage A.
  • the charging current is lowered by 0.1 ItA.
  • FIG. 3 is a graph illustrating charging control according to an embodiment of the present disclosure.
  • the horizontal axis indicates the passage of time, and the vertical axis indicates voltage (mV) or current (mA) and SOC (%).
  • the rapid charging is switched to the constant current / constant voltage charging.
  • switching from rapid charging to constant current / constant voltage charging is performed in the present disclosure in which the charging current is gradually reduced. It is because there is sex.
  • FIG. 4 is an enlarged graph showing the charging voltage, charging current, and battery voltage up to time T.
  • One vertical axis indicates voltage (mV) and the other vertical axis indicates current (mA).
  • FIG. 4 shows a specified charging voltage 4350 (mV) (one-dot chain line) and an initial threshold voltage 4240 (mV) (one-dot chain line).
  • the charging voltage is set to 5000 (mV) (reference numeral 11) and the charging current is set to 5274 (mA) (reference numeral 12).
  • the charging current is reduced by 0.1 ItA (eg, 293 (mA)).
  • the charging current is reduced, the battery voltage is once reduced.
  • the charging current is reduced by 0.1 ItA.
  • the SOC (reference numeral 14) increases. As shown in FIGS. 3 and 4, it is possible to charge up to about 41% in 15 minutes from the start of charging, about 71% in 30 minutes, and about 93% at 60 minutes.
  • FIG. 5 shows the cycle characteristics. As can be seen from a comparison between the cycle characteristic 21 when the threshold voltage A for reducing the charging current is set to the specified charge voltage of the secondary battery and the cycle characteristic 22 when set to a value lower than the specified charge voltage. A large difference in capacity due to the passage of cycles occurs. In the method of reducing the charging current after detecting the specified charging voltage, the time for the state close to the specified charging voltage is lengthened, which causes a problem that the discharge capacity is greatly reduced.
  • the charging parameters to be varied are set, for example, to values obtained by lowering the charging voltage and threshold voltage A by 10 (mV) from the specified charging voltage of the secondary battery when the charging current is reduced to 0.7 ItA of the nominal capacity by rapid charging. To do.
  • the current value at the start of charging set for quick charging is also set to a value reduced by 0.1 ItA.
  • a plurality of set values are prepared step by step, and for example, the charging voltage, threshold voltage A, and charging current can be lowered step by step whenever the number of cycles increases by a certain value. Long-term deterioration can be suppressed by such control that varies the charging parameter.
  • the quick charge control of the present disclosure may operate only when the temperature of the secondary battery measured at the start of charging is in the normal temperature region. Furthermore, the charging current and / or the charging voltage may be changed depending on whether the environmental temperature is a low temperature region or a high temperature region.
  • the above-described embodiment is an example in which the present disclosure is applied to a battery pack.
  • charging may be controlled on the electronic device side.
  • the battery pack 41 is provided with the battery cell 1 and the thermistor 4.
  • the electronic device 42 includes a control unit 43 and a current detection resistor 44.
  • a DC power source formed by the AC / DC converter 45 is used as a charging power source.
  • the control unit 43 of the electronic device 42 performs the same control (see the flowchart of FIG. 2) as the control unit 2 of the embodiment described above. The same effect can be obtained by this configuration.
  • the charging device 51 includes a control unit 53 and a current detection resistor 54, and the control unit 53 of the charging device 51 performs the same control (see the flowchart of FIG. 2) as the control unit 2 of the embodiment described above. The same effect can be obtained by this configuration.
  • the embodiment described above is an example in which the present disclosure is applied to a battery pack having one battery cell 1.
  • the present disclosure can be similarly applied to a battery pack having a battery in which a plurality of, for example, four battery cells 1 a, 1 b, 1 c, 1 d are connected in series. can get.
  • this indication can also take the following structures.
  • a secondary battery A measuring unit for measuring the voltage and current of the secondary battery; A measurement voltage and a measurement current from the measurement unit are supplied, and a control unit that controls a charging voltage and a charging current of the secondary battery,
  • the controller is In order to charge the secondary battery, a current value exceeding its nominal capacity is set as the first charging current, While performing constant current charging with the set first charging current, the measured voltage of the secondary battery is compared with a first threshold voltage smaller than a specified charging voltage, When the measured voltage becomes larger than the first threshold voltage, the first charging current is decreased to a second charging current, and the first threshold voltage is increased by a predetermined amount to increase the second threshold value.
  • the measured voltage of the secondary battery is compared with the second threshold voltage smaller than a specified charging voltage, When the measured voltage becomes larger than the second threshold voltage, the second charging current is decreased to a third charging current, and the second threshold voltage is increased by a predetermined amount to increase the third threshold voltage. Voltage, When the comparison between the measured voltage and the threshold voltage and the change of the charging current and the threshold voltage are repeated, the nth charging current decreases to a predetermined value, and the measured voltage becomes larger than the predetermined value, the rapid Battery device that performs control to end charging. (2) The battery device according to (1), wherein the predetermined value compared with the n-th charging current is a value when switching from rapid charging to constant voltage charging.
  • the battery device according to (1) or (2), wherein the predetermined value compared with the measurement voltage is a charging voltage.
  • the charging voltage is set to a voltage higher than a specified charging voltage of the secondary battery.
  • the control unit performs control so as to perform constant current constant voltage charging.
  • a charging parameter is varied according to a deterioration state of the secondary battery.
  • a charge control device for supplying a measurement voltage and a measurement current of a secondary battery to be charged and controlling the charging voltage and the charging current of the secondary battery,
  • a current value exceeding its nominal capacity is set as the first charging current
  • the measured voltage of the secondary battery is compared with a first threshold voltage smaller than a specified charging voltage, When the measured voltage becomes larger than the first threshold voltage, the first charging current is decreased to a second charging current, and the first threshold voltage is increased by a predetermined amount to increase the second threshold value.
  • the measured voltage of the secondary battery is compared with the second threshold voltage smaller than a specified charging voltage, When the measured voltage becomes larger than the second threshold voltage, the second charging current is decreased to a third charging current, and the second threshold voltage is increased by a predetermined amount to increase the third threshold voltage. Voltage, When the comparison between the measured voltage and the threshold voltage, the change of the charging current and the change of the threshold voltage are repeated, the nth charging current decreases to a predetermined value, and the measured voltage becomes larger than the predetermined value A charge control device that performs control to end quick charge. (8) The charging control device according to (7), wherein the charging voltage is set to a voltage higher than a specified charging voltage of the secondary battery.
  • a charge control method for receiving a measurement voltage and a measurement current of a secondary battery to be charged and controlling a charging voltage and a charging current of the secondary battery In order to charge the secondary battery, a current value exceeding its nominal capacity is set as the first charging current, While performing constant current charging with the set first charging current, the measured voltage of the secondary battery is compared with a first threshold voltage smaller than a specified charging voltage, When the measured voltage becomes larger than the first threshold voltage, the first charging current is decreased to a second charging current, and the first threshold voltage is increased by a predetermined amount to increase the second threshold value.
  • the measured voltage of the secondary battery is compared with the second threshold voltage smaller than a specified charging voltage, When the measured voltage becomes larger than the second threshold voltage, the second charging current is decreased to a third charging current, and the second threshold voltage is increased by a predetermined amount to increase the third threshold voltage. Voltage, When the comparison between the measured voltage and the threshold voltage, the change of the charging current and the change of the threshold voltage are repeated, the nth charging current decreases to a predetermined value, and the measured voltage becomes larger than the predetermined value The charge control method which performs control which ends quick charge.
  • Modification As mentioned above, although embodiment of this indication was described concretely, it is not limited to each above-mentioned embodiment, and various modification based on the technical idea of this indication is possible.
  • the configurations, methods, processes, shapes, materials, numerical values, and the like given in the above-described embodiments are merely examples, and different configurations, methods, processes, shapes, materials, numerical values, and the like are used as necessary. Also good.

Abstract

 公称容量を超えた電流値を第1の充電電流に設定し、設定した第1の充電電流による定電流充電を行いながら、二次電池の測定電圧を規定充電電圧より小の第1の閾値電圧と比較し、測定電圧が第1の閾値電圧より大となると、第1の充電電流を減少させて第2の充電電流にすると共に、第1の閾値電圧を所定量上昇させて第2の閾値電圧とし、設定した第2の充電電流による定電流充電を行いながら、二次電池の測定電圧を規定充電電圧より小の第2の閾値電圧と比較し、測定電圧が第2の閾値電圧より大となると、第2の充電電流を減少させて第3の充電電流にすると共に、第2の閾値電圧を所定量上昇させて第3の閾値電圧とし、第nの充電電流が所定値まで低下し、且つ測定電圧が所定値より大となる場合に、急速充電を終了する制御を行う。

Description

電池装置、充電制御装置および充電制御方法
 本開示は、例えばリチウムイオン二次電池を急速充電することができる電池装置、充電制御装置および充電制御方法に関する。
 リチウムイオン二次電池は、例えばスマートフォンの電源として広く使用されている。スマートフォンのユーザの要望として、電池を短時間で充電することができる急速充電が挙げられる。急速充電の達成には大電流による充電が必要とされるが、大電流充電はサイクル経過による容量の劣化への影響が懸念される。従来から下記の特許文献1乃至特許文献4に記載されているような急速充電装置が提案されている。
 特許文献1には、急速充電のために、充電電流を大きくしたり、充電を高温雰囲気下で行った場合にサイクル特性が劣化する問題を解決するために、大電流で1段目の定電流充電を行い、規定充電電圧に達した時点で直ちに充電電流を低減させて低減後の電流によって2段目の充電を行う処理を繰り返して行うものである。
 特許文献2には、リチウムイオン二次電池の公称容量を超えた充電電流によって充電を行い、最大充電容量の半分以内まで充電を行い、その後は、定格充電電流によって充電を行うことが記載されている最大充電容量の半分以内の充電であれば、サイクル特性の著しい劣化を生じないものとされている。
 特許文献3には、特許文献1と同様に、二次電池の規定の充電電圧付近に測定電圧が達した時、充電電流を下げる制御を行うことが記載されている。
 特許文献4は、一次側電源制御回路と二次側充電制御回路の組み合わせからなる、充電機の構成に関するものである。充電器の小型化対応のため、従来の回路構成から部品削減をした場合でも充電電圧および充電電流を制御することを目的としている。一次側と二次側にそれぞれ別の充電制御を組み込むことで、部品削減前の充電制御と同様の制御を可能としている。
特開平7-296853号公報 特開2002-135990号公報 特開2013-13258号公報 特開2013-51819号公報
 特許文献1および特許文献3の充電制御方法では、二次電池の規定充電電圧に近い状態が長く続いてしまうので、サイクル特性の劣化(すなわち、サイクル経過による容量の劣化)が顕著に現れてしまうおそれがある。さらに、特許文献3の場合、充電開始時に測定した電池電圧に応じて徐々に充電電流を上げる制御のため、急速充電を目的とした場合、充電電流が上限まで到達するまでのタイムロスが発生してしまう。
 特許文献2の場合、充電開始時、二次電池の充電容量が最大充電容量の半分を超えた状態では、低い充電電流による第2充電制御に遷移してしまうので、急速充電を行うことができない。
 特許文献4に記載のものでは、ある閾電圧に達すると定電圧充電へと移行している。また、充電電流に関しても、特許文献4では、緩やかに低下させている。このような制御の結果、急速充電を行うことが不十分である。
 本開示は、これらの特許文献1乃至4に記載の問題点を考慮して、サイクル特性の劣化を防止して急速充電を行うことができる電池装置、充電制御装置および充電制御方法を提供することにある。
 本開示は、二次電池と、
 二次電池の電圧および電流を測定する測定部と、
 測定部からの測定電圧および測定電流が供給され、二次電池の充電電圧および充電電流を制御する制御部とを有し、
 制御部は、
 二次電池を充電するために、その公称容量を超えた電流値を第1の充電電流に設定し、
 設定した第1の充電電流による定電流充電を行いながら、二次電池の測定電圧を規定充電電圧より小の第1の閾値電圧と比較し、
 測定電圧が第1の閾値電圧より大となると、第1の充電電流を減少させて第2の充電電流にすると共に、第1の閾値電圧を所定量上昇させて第2の閾値電圧とし、
 設定した第2の充電電流による定電流充電を行いながら、二次電池の測定電圧を規定充電電圧より小の第2の閾値電圧と比較し、
 測定電圧が第2の閾値電圧より大となると、第2の充電電流を減少させて第3の充電電流にすると共に、第2の閾値電圧を所定量上昇させて第3の閾値電圧とし、
 測定電圧と閾値電圧との比較と、充電電流および閾値電圧の変更とを繰り返し、第nの充電電流が所定値まで低下し、且つ測定電圧が所定値より大となる場合に、急速充電を終了する
 制御を行う電池装置である。
 本開示は、充電対象の二次電池の測定電圧および測定電流が供給され、二次電池の充電電圧および充電電流を制御する充電制御装置であって、
 二次電池を充電するために、その公称容量を超えた電流値を第1の充電電流に設定し、
 設定した第1の充電電流による定電流充電を行いながら、二次電池の測定電圧を規定充電電圧より小の第1の閾値電圧と比較し、
 測定電圧が第1の閾値電圧より大となると、第1の充電電流を減少させて第2の充電電流にすると共に、第1の閾値電圧を所定量上昇させて第2の閾値電圧とし、
 設定した第2の充電電流による定電流充電を行いながら、二次電池の測定電圧を規定充電電圧より小の第2の閾値電圧と比較し、
 測定電圧が第2の閾値電圧より大となると、第2の充電電流を減少させて第3の充電電流にすると共に、第2の閾値電圧を所定量上昇させて第3の閾値電圧とし、
 測定電圧と閾値電圧との比較と、充電電流の変更および閾値電圧の変更とを繰り返し、第nの充電電流が所定値まで低下し、且つ測定電圧が所定値より大となる場合に、急速充電を終了する
 制御を行う充電制御装置である。
 本開示は、充電対象の二次電池の測定電圧および測定電流を受け取り、二次電池の充電電圧および充電電流を制御する充電制御方法であって、
 二次電池を充電するために、その公称容量を超えた電流値を第1の充電電流に設定し、
 設定した第1の充電電流による定電流充電を行いながら、二次電池の測定電圧を規定充電電圧より小の第1の閾値電圧と比較し、
 測定電圧が第1の閾値電圧より大となると、第1の充電電流を減少させて第2の充電電流にすると共に、第1の閾値電圧を所定量上昇させて第2の閾値電圧とし、
 設定した第2の充電電流による定電流充電を行いながら、二次電池の測定電圧を規定充電電圧より小の第2の閾値電圧と比較し、
 測定電圧が第2の閾値電圧より大となると、第2の充電電流を減少させて第3の充電電流にすると共に、第2の閾値電圧を所定量上昇させて第3の閾値電圧とし、
 測定電圧と閾値電圧との比較と、充電電流の変更および閾値電圧の変更とを繰り返し、第nの充電電流が所定値まで低下し、且つ測定電圧が所定値より大となる場合に、急速充電を終了する
 制御を行う充電制御方法である。
 少なくとも一つの実施形態によれば、本開示は、二次電池の公称容量を超えた電流値を充電電流に設定することで急速充電を行なうことができる。加えて、本開示では、規定充電電圧より小の電圧の範囲で急速充電を行うことによって、サイクル特性の劣化を防止することができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であっても良い。
本開示の一実施の形態のブロック図である。 本開示の一実施の形態の充電制御を説明するためのフローチャートである。 充電制御を説明するためのグラフである。 充電制御のグラフの一部を拡大したグラフである。 閾値電圧を規定充電電圧より小に設定した場合のサイクル特性を示すグラフである。 劣化抑制制御の有無に応じたサイクル特性の相違を示すグラフである。 本開示の第1の変形例のブロック図である。 本開示の第2の変形例のブロック図である。 本開示の第3の変形例のブロック図である。
 以下に説明する実施の形態は、この発明の好適な具体例であり、技術的に好ましい種々の限定が付されているが、この発明の範囲は、以下の説明において、特にこの発明を限定する旨の記載がない限り、これらの実施の形態に限定されないものとする。
 なお、本開示の説明は、下記の順序にしたがってなされる。
<1.一実施の形態>
<2.変形例>
<1.一実施の形態>
「バッテリパック」
 本開示の一実施の形態は、図1に示すように、二次電池の電池セル1と制御部2と関連する素子とが同一の筐体(ケース)内に収納されているバッテリパックに対して本開示を適用したものである。電池セル1は、例えばリチウムイオン二次電池である。電池セル1の規定充電電圧が例えば4.35Vに設定されている。
 バッテリパックには、外部との接続用のコネクタ3a、3b、3cおよび3dが設けられている。コネクタ3aと電池セル1の正極とが接続され、コネクタ3bが電池セル1の負極とが接続される。コネクタ3cおよび3dは、制御部2と外部との通信用端子である。
 バッテリパックを制御する制御部2は、例えばCPU(Central Processing Unit )、RAM(Random Access Memory)、ROM(Read Only Memory)、I/O(Input/Output)、AFE(Analog Front End)等で構成されるマイクロコンピュータである。AFEは、アナログ信号部と制御部2のCPUとの間に配されるアナログ回路である。なお、バッテリパック内に充電電流をオン/オフするスイッチング素子、並びに放電電流をオン/オフするスイッチング素子を設けて、これらのスイッチング素子を制御部2によって制御するようにしても良い。
 制御部2には、電池セル1の電圧が供給される。さらに、バッテリパック内の温度が温度検出素子例えばサーミスタ4によって測定され、測定された温度情報が制御部2に供給される。さらに、電池セル1の電流経路を流れる電流が電流検出抵抗5によって検出され、検出された電流値が制御部2に供給される。
「充電制御」
 制御部2によって電池セル1に対する充電動作が制御される。制御部2によってなされる制御は、図2のフローチャートで示される。なお、充電時には、充電装置の正負の出力端子とバッテリパックのコネクタ3a、3bとが接続され、充電装置の通信端子とコネクタ3c、3dとが接続される。充電装置は、一例として商用電源から所定の値の充電電圧と充電電流とを生成するものであり、バッテリパックの制御部2との通信によって、充電電圧および充電電流が設定される。通信方式としては、例えばシリアル通信が使用される。
 本開示の一実施の形態では、電池セル1の公称容量を超えた電流値を充電電流として設定するようになされる。その結果、急速充電が行われる。加えて、サイクル特性の劣化を抑えるために、電池セル1の測定データに応じて充電パラメータを変化させる。測定データは、サイクル数、総動作時間、高電圧放置時間、高温放置時間、充放電時間、容量値、電池セルの内部インピーダンス等である。これら測定データは、電池セルの劣化に関係するデータであり、例えば制御部2内の不揮発性メモリに測定データが記憶されている。
 図2のフローチャートを参照して充電制御について説明する。
 ステップST1:充電が開始される。
 ステップST2:電池セル1の電圧(電池電圧)が測定される。例えば2秒間測定され、その平均値が使用される。
 ステップST3:測定電圧が所定の電圧例えば4.1V以上であるか、またはバッテリパックの温度が常温領域外であるか否かが調べられる。ステップST3は、満充電付近まで充電されているかどうかの判定と、急速充電を行うのに適した温度環境であるかどうかの判定とを行うものである。
 測定電圧が4.1V以上であれば、満充電に近いので、本開示の急速充電を行う必要性が低いので、ステップST4以降の通常充電が行われる。通常充電は、定電流定電圧充電である。すなわち、定電流定電圧充電は、所定電圧まで定電流で充電を行い、所定電圧に電池電圧が達すると、定電圧で充電する方法である。定電流充電から定電圧充電に切り換わる電圧値は、例えば4.24Vである。さらに、バッテリパックの温度が常温領域外の場合には、より温度を上昇させることを防ぐために、急速充電がなされない。
 ステップST4:測定データ例えばサイクル数が設定値以下かどうかが判定される。ステップST4は、電池セル1の劣化の程度を判定するものである。
 ステップST5:ステップST4の判定結果が肯定の場合では、充電電圧が電池セル1の規定充電電圧(例えば4.35V)に設定される。
 ステップST6:定電流定電圧充電が行われる。例えば規定の充電電圧として4.35Vが使用され、充電電流が0.7ItAに設定される。なお、電流ItAは、(ItA=定格容量(Ah)/1(h))と定義され、1Cと等しい値である。
 ステップST7:満充電条件が成立するかどうかが判定される。満充電条件としては、従来の方法を使用できる。例えば充電電流が所定値(例えば公称容量の1/20以下の値)となることを満充電として検出するようになれる。なお、電池セル1の電圧と充電電圧との差が所定値以下となることを満充電として検出しても良い。満充電条件が成立しない場合には、ステップST6(定電流定電圧充電)に処理が戻る。
 ステップST8:満充電条件が成立することによって満充電が検出される。
 ステップST9:そして、充電動作が終了する。
 ステップST10:ステップST4において、測定データが設定値以下でないと判定されると、測定データに合わせて充電電圧が設定される。例えば充電電圧が規定充電電圧より小さい値に設定される。そして、ステップST6の定電流定電圧充電がなされる。以降の処理は、上述したのと同様である。
 上述したステップST3の判定結果が否定の場合、すなわち、測定電圧が4.1Vより小であり、且つバッテリパックの温度が常温領域内である場合には、ステップST11に処理が移り、ステップST11以降の処理によって急速充電が行われる。
 ステップST11:コネクタ3a、3bに供給される充電電圧を規定充電電圧以上の電圧例えば+5.0Vに上昇させると共に、充電電流を急速充電用の値に設定する。充電電圧を上げる理由は、電池セル1の内部抵抗や電子回路による抵抗によって生じる電圧上昇を考慮して、大電流充電時の充電電流の垂下を抑制させるためである。また、充電電流を急速充電に合わせた大きい電流値に設定することで、充電時間の短縮を狙う。急速充電に合わせた電流値は、電池セル1の公称容量を超えた電流値であり、例えば1.8ItAに設定される。例えば1.8ItA=5274mAとされる。
 ステップST12:設定された充電電圧および充電電流によって急速充電を行う。
 ステップST13:急速充電中に、測定した電池電圧が閾値電圧Aより大となるかどうかが判定されてる。電池電圧が閾値電圧A以下の場合には、充電電圧および充電電流を変更しないでステップST12の急速充電が続行される。閾値電圧Aは、規定充電電圧以下の値の電圧である。一例として、閾値電圧Aの初期値が4.24Vに設定される。
 ステップST14:ステップST13の判定結果が肯定の場合、すなわち、電池電圧が閾値電圧Aより大と判定されると、充電電流が所定量例えば0.1ItA低下させると共に閾値電圧Aを所定量10mV上昇させる処理がなされる。
 ステップST15:(充電電流<所定値)で且つ(測定電圧≧所定値)の関係が成立するかどうかが判定される。例えば(充電電流<0.71ItA)で且つ(測定電圧≧充電電圧)の関係とされる。この条件が成立すると、満充電付近であると判定し、充電電圧を5.0Vから規格充電電圧へと下げる。そして、処理がステップST4(測定データが設定値以下かどうかの判定)に戻る。ステップST4以降、満充電まで定電流定電圧充電が行われる。
 このように急速充電時では、制御された充電電圧および充電電流による定電流充電がなされる、二次電池の測定電圧が閾値電圧A(電池セル1の規定充電電圧以下)に達する度に、充電電流が例えば0.1ItAずつ逐次低減される。充電電流が1段階下がったことで、測定電圧も閾値電圧Aより小さくなり、次に、測定電圧が10mV上昇された閾値電圧Aよりも小となると、充電電流が0.1ItA下げられる。このように充電電流を逐次低減させながら段階的に充電を行うと、閾値電圧Aへの到達と電圧降下が繰り返される。かかる制御によって、大電流による充電にもかかわらず、充電中に電池セル1の規定充電電圧に近い状態にある時間を短く抑えることができ、サイクル経過による容量の劣化に対する影響を小さくすることができる。
「充電制御のグラフ」
 図3は、本開示の一実施の形態の充電制御を示すグラフである。図3の横軸が時間経過を示し、縦軸が電圧(mV)または電流(mA)とSOC(%)とを示す。このグラフでは、時刻Tにおいて、急速充電から定電流定電圧充電に切り換わっている。なお、急速充電から定電流定電圧充電に切り換えずに、満充電まで急速充電を行うようにしても良い。本開示の一実施の形態のように、急速充電から定電流定電圧充電に切り換えるのは、充電電流を次第に小とする本開示の場合では、急速充電のみでは、充電にかかる時間が長くなる可能性があるためである。
 さらに、図4は、時刻Tまでの充電電圧、充電電流、電池電圧のそれぞれを拡大して示すグラフであり、一方の縦軸が電圧(mV)を示し、他方の縦軸が電流(mA)を示す。図4には、規定充電電圧4350(mV)(1点鎖線)および最初の閾値電圧4240(mV)(1点鎖線)がそれぞれ示されている。
 最初は、充電電圧が5000(mV)(参照符号11)に設定されると共に、充電電流が5274(mA)(参照符号12)に設定される。電池電圧が急速に上昇し、閾値電圧を超えると、充電電流が0.1ItA(例えば293(mA))減少される。充電電流が減少されると、電池電圧が一旦小さくなる。そして、再び電圧が上昇して、次の閾値電圧(4240(mV)+10(mV)=4250(mV))を電圧が超えると、充電電流が0.1ItA減少される。
 そして、充電電流が0.7ItA(2051(mA))を超え、且つ電圧が規定充電電圧(4350(mV))を超える時刻Tで急速充電から定電流定電圧充電に切り換わる。なお、充電電流および電流は、時刻Tまでは、同様に変化し、時刻T以降は、充電電流が一定であるのに対して、電流が一旦上昇した後は、徐々に小さくなる。
 充電が進むにしたがって、SOC(参照符号14)が上昇する。図3および図4に示すように、充電開始から15分で約41%、30分で約71%、60分時点で約93%まで充電することが可能である。
 上述した本開示の一実施の形態においては、充電電流が1.8ItAから0.1ItAのステップでもって段階的に0.7ItAまで減少される。この関係から充電電流が減少するステップ数が求められる。すなわち、(1.8-0.7)/0.1=11(ステップ)である。さらに、最初の電圧変化は、(4350(mV)-4240(mV)=110(mV))であるので、110(mV)/11=10(mV)となる。したがって、閾値電圧を上昇させる単位が10(mV)と設定されている。
「本開示の効果」
 図4のグラフから分かるように、本開示の一実施の形態では、大電流で充電される期間において、閾値電圧が規定充電電圧(4350(mV))より小さい範囲に設定されている。本開示の発明者の実験等によると、サイクル経過による容量劣化には、二次電池の高電圧時間の他、高電圧状態での大電流による充電も関係があることが判明した。そのため、充電電流を逐次低減させていく制御では、初回の大電流充電時は閾値電圧Aを低く設定しておき、充電電流の低下に伴って閾値電圧Aを逐次上げていく制御を行なっている。この制御により、目標である急速充電と容量劣化の抑制を両立させている。
 図5は、サイクル特性を示している。充電電流を低減させる際の閾値電圧Aを二次電池の規定充電電圧に設定した場合のサイクル特性21と、規定充電電圧よりも低い値に設定した場合のサイクル特性22とを比較すると分かるように、サイクル経過による容量の差が大きく生じる。規定充電電圧を検出してから充電電流を低減させる方法では、規定充電電圧に近い状態の時間が長くなってしまうため、放電容量の低下が大きくなる問題が生じる。
<2.変形例>
 二次電圧の様々な測定データ(サイクル数、総動作時間、高電圧放置時間、高温放置時間、充放電時間、容量値、インピーダンス等)を参照して、測定データの値が設定した値以上になったと判定される場合、容量劣化が進んでいると判断して、充電パラメータを可変する。
 可変させる充電パラメータは、例えば急速充電で充電電流が公称容量の0.7ItAまで低減した際の充電電圧および閾値電圧Aを、二次電池の規定充電電圧から10(mV)下げた値にそれぞれ設定する。また、サイクル経過による内部抵抗の上昇も考慮して、急速充電用に設定している充電開始時の電流値も0.1ItA下げた値に設定する。この制御では複数の設定値を段階的に用意しておき、例えばサイクル数が一定値増加する毎に段階的に充電電圧、閾値電圧A、充電電流を下げることができる。このような充電パラメータを可変する制御によって、より長期的な劣化を抑制することが可能である。
 図6に示すグラフは、二次電池のサイクル数に応じて急速充電後の定電流定電圧充電での充電電圧および急速充電から移行する際の閾値電圧Aを10(mV)ずつ下げる制御を導入した二次電池と、規定充電電圧まで充電させた二次電池のサイクル試験の結果である。サイクルが進むたびに充電電圧が10(mV)ずつ低下していくので、短期的に見れば制御ありの二次電池の方が容量低下している。しかしながら、充電中の電圧が規定充電電圧を超えることがなくなるので、長期的に見れば規定充電電圧まで充電した二次電池よりも容量低下を抑えることができる。
 二次電圧の容量低下には環境温度も大きく影響するため、本開示の急速充電制御において、充電開始時に測定した二次電池の温度が常温領域の場合のみ動作する、としても良い。さらに、環境温度が低温領域か、高温領域かに応じて充電電流および/または充電電圧を変更するとしても良い。
 上述した一実施の形態は、本開示をバッテリパックに対して適用した例である。しかしながら、図7に示すように、電子機器の側で充電を制御するようにしても良い。バッテリパック41には、電池セル1およびサーミスタ4が設けられている。電子機器42が制御部43および電流検出抵抗44を備えている。AC/DC変換装置45により形成される直流電源が充電電源として使用される。電子機器42の制御部43が上述した一実施の形態の制御部2と同様の制御(図2のフローチャート参照)を行う。かかる構成によっても同様の効果が得られる。
 図8に示すように、バッテリパック41を充電する充電装置51側で制御する構成も可能である。充電装置51は、制御部53および電流検出抵抗54を備えており、充電装置51の制御部53が上述した一実施の形態の制御部2と同様の制御(図2のフローチャート参照)を行う。かかる構成によっても同様の効果が得られる。
 上述した一実施の形態は、本開示を一つの電池セル1を有するバッテリパックに対して適用した例である。しかしながら、図9に示すように、複数例えば4個の電池セル1a、1b、1c、1dが直列接続された電池を有するバッテリパックに対しても、本開示を同様に適用でき、同様の効果が得られる。
 なお、本開示は、以下のような構成も取ることができる。
(1)
 二次電池と、
 前記二次電池の電圧および電流を測定する測定部と、
 前記測定部からの測定電圧および測定電流が供給され、前記二次電池の充電電圧および充電電流を制御する制御部とを有し、
 前記制御部は、
 前記二次電池を充電するために、その公称容量を超えた電流値を第1の充電電流に設定し、
 設定した第1の充電電流による定電流充電を行いながら、前記二次電池の測定電圧を規定充電電圧より小の第1の閾値電圧と比較し、
 前記測定電圧が前記第1の閾値電圧より大となると、前記第1の充電電流を減少させて第2の充電電流にすると共に、前記第1の閾値電圧を所定量上昇させて第2の閾値電圧とし、
 設定した第2の充電電流による定電流充電を行いながら、前記二次電池の測定電圧を規定充電電圧より小の前記第2の閾値電圧と比較し、
 前記測定電圧が前記第2の閾値電圧より大となると、前記第2の充電電流を減少させて第3の充電電流にすると共に、前記第2の閾値電圧を所定量上昇させて第3の閾値電圧とし、
 前記測定電圧と閾値電圧との比較と、前記充電電流および閾値電圧の変更とを繰り返し、第nの充電電流が所定値まで低下し、且つ前記測定電圧が所定値より大となる場合に、急速充電を終了する
 制御を行う電池装置。
(2)
 前記第nの充電電流と比較される所定値は、急速充電から定電圧充電に切り換わる場合の値とされる(1)に記載の電池装置。
(3)
 前記測定電圧と比較される所定値は、充電電圧とされる(1)または(2)に記載の電池装置。
(4)
 前記充電電圧を二次電池の規定充電電圧よりも高い電圧に設定するようにした(1)乃至(3)の何れかに記載の電池装置。
(5)
 前記急速充電が終了すると、定電流定電圧充電を行うように前記制御部が制御を行う(1)乃至(4)の何れかに記載の電池装置。
(6)
 前記二次電池の劣化状態に応じて充電パラメータを可変する(1)乃至(5)の何れかに記載の電池装置。
(7)
 充電対象の二次電池の測定電圧および測定電流が供給され、前記二次電池の充電電圧および充電電流を制御する充電制御装置であって、
 前記二次電池を充電するために、その公称容量を超えた電流値を第1の充電電流に設定し、
 設定した第1の充電電流による定電流充電を行いながら、前記二次電池の測定電圧を規定充電電圧より小の第1の閾値電圧と比較し、
 前記測定電圧が前記第1の閾値電圧より大となると、前記第1の充電電流を減少させて第2の充電電流にすると共に、前記第1の閾値電圧を所定量上昇させて第2の閾値電圧とし、
 設定した第2の充電電流による定電流充電を行いながら、前記二次電池の測定電圧を規定充電電圧より小の前記第2の閾値電圧と比較し、
 前記測定電圧が前記第2の閾値電圧より大となると、前記第2の充電電流を減少させて第3の充電電流にすると共に、前記第2の閾値電圧を所定量上昇させて第3の閾値電圧とし、
 前記測定電圧と閾値電圧との比較と、前記充電電流の変更および閾値電圧の変更とを繰り返し、第nの充電電流が所定値まで低下し、且つ前記測定電圧が所定値より大となる場合に、急速充電を終了する
 制御を行う充電制御装置。
(8)
 前記充電電圧を二次電池の規定充電電圧よりも高い電圧に設定するようにした(7)に記載の充電制御装置。
(9)
 前記急速充電が終了すると、定電流定電圧充電を行うように制御する(7)または(8)に記載の充電制御装置。
(10)
 前記二次電池の劣化状態に応じて充電パラメータを可変する(7)乃至(9)の何れかに記載の充電制御装置。
(11)
 充電対象の二次電池の測定電圧および測定電流を受け取り、前記二次電池の充電電圧および充電電流を制御する充電制御方法であって、
 前記二次電池を充電するために、その公称容量を超えた電流値を第1の充電電流に設定し、
 設定した第1の充電電流による定電流充電を行いながら、前記二次電池の測定電圧を規定充電電圧より小の第1の閾値電圧と比較し、
 前記測定電圧が前記第1の閾値電圧より大となると、前記第1の充電電流を減少させて第2の充電電流にすると共に、前記第1の閾値電圧を所定量上昇させて第2の閾値電圧とし、
 設定した第2の充電電流による定電流充電を行いながら、前記二次電池の測定電圧を規定充電電圧より小の前記第2の閾値電圧と比較し、
 前記測定電圧が前記第2の閾値電圧より大となると、前記第2の充電電流を減少させて第3の充電電流にすると共に、前記第2の閾値電圧を所定量上昇させて第3の閾値電圧とし、
 前記測定電圧と閾値電圧との比較と、前記充電電流の変更および閾値電圧の変更とを繰り返し、第nの充電電流が所定値まで低下し、且つ前記測定電圧が所定値より大となる場合に、急速充電を終了する
 制御を行う充電制御方法。
「変形例」
 以上、本開示の実施形態について具体的に説明したが、上述の各実施形態に限定されるものではなく、本開示の技術的思想に基づく各種の変形が可能である。例えば、上述の実施形態において挙げた構成、方法、工程、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値などを用いても良い。
 また、上述の実施形態の構成、方法、工程、形状、材料および数値などは、本開示の主旨を逸脱しない限り、互いに組み合わせることが可能である。
1,1a~1d  電池セル
2,43,53  制御部
5,44,54  電流検出抵抗

Claims (11)

  1.  二次電池と、
     前記二次電池の電圧および電流を測定する測定部と、
     前記測定部からの測定電圧および測定電流が供給され、前記二次電池の充電電圧および充電電流を制御する制御部とを有し、
     前記制御部は、
     前記二次電池を充電するために、その公称容量を超えた電流値を第1の充電電流に設定し、
     設定した第1の充電電流による定電流充電を行いながら、前記二次電池の測定電圧を規定充電電圧より小の第1の閾値電圧と比較し、
     前記測定電圧が前記第1の閾値電圧より大となると、前記第1の充電電流を減少させて第2の充電電流にすると共に、前記第1の閾値電圧を所定量上昇させて第2の閾値電圧とし、
     設定した第2の充電電流による定電流充電を行いながら、前記二次電池の測定電圧を規定充電電圧より小の前記第2の閾値電圧と比較し、
     前記測定電圧が前記第2の閾値電圧より大となると、前記第2の充電電流を減少させて第3の充電電流にすると共に、前記第2の閾値電圧を所定量上昇させて第3の閾値電圧とし、
     前記測定電圧と閾値電圧との比較と、前記充電電流および閾値電圧の変更とを繰り返し、第nの充電電流が所定値まで低下し、且つ前記測定電圧が所定値より大となる場合に、急速充電を終了する
     制御を行う電池装置。
  2.  前記第nの充電電流と比較される所定値は、急速充電から定電圧充電に切り換わる場合の値とされる請求項1に記載の電池装置。
  3.  前記測定電圧と比較される所定値は、充電電圧とされる請求項1に記載の電池装置。
  4.  前記充電電圧を二次電池の規定充電電圧よりも高い電圧に設定するようにした請求項1に記載の電池装置。
  5.  前記急速充電が終了すると、定電流定電圧充電を行うように前記制御部が制御を行う請求項1に記載の電池装置。
  6.  前記二次電池の劣化状態に応じて充電パラメータを可変する請求項1に記載の電池装置。
  7.  充電対象の二次電池の測定電圧および測定電流が供給され、前記二次電池の充電電圧および充電電流を制御する充電制御装置であって、
     前記二次電池を充電するために、その公称容量を超えた電流値を第1の充電電流に設定し、
     設定した第1の充電電流による定電流充電を行いながら、前記二次電池の測定電圧を規定充電電圧より小の第1の閾値電圧と比較し、
     前記測定電圧が前記第1の閾値電圧より大となると、前記第1の充電電流を減少させて第2の充電電流にすると共に、前記第1の閾値電圧を所定量上昇させて第2の閾値電圧とし、
     設定した第2の充電電流による定電流充電を行いながら、前記二次電池の測定電圧を規定充電電圧より小の前記第2の閾値電圧と比較し、
     前記測定電圧が前記第2の閾値電圧より大となると、前記第2の充電電流を減少させて第3の充電電流にすると共に、前記第2の閾値電圧を所定量上昇させて第3の閾値電圧とし、
     前記測定電圧と閾値電圧との比較と、前記充電電流の変更および閾値電圧の変更とを繰り返し、第nの充電電流が所定値まで低下し、且つ前記測定電圧が所定値より大となる場合に、急速充電を終了する
     制御を行う充電制御装置。
  8.  前記充電電圧を二次電池の規定充電電圧よりも高い電圧に設定するようにした請求項7に記載の充電制御装置。
  9.  前記急速充電が終了すると、定電流定電圧充電を行うように制御する請求項7に記載の充電制御装置。
  10.  前記二次電池の劣化状態に応じて充電パラメータを可変する請求項7に記載の充電制御装置。
  11.  充電対象の二次電池の測定電圧および測定電流を受け取り、前記二次電池の充電電圧および充電電流を制御する充電制御方法であって、
     前記二次電池を充電するために、その公称容量を超えた電流値を第1の充電電流に設定し、
     設定した第1の充電電流による定電流充電を行いながら、前記二次電池の測定電圧を規定充電電圧より小の第1の閾値電圧と比較し、
     前記測定電圧が前記第1の閾値電圧より大となると、前記第1の充電電流を減少させて第2の充電電流にすると共に、前記第1の閾値電圧を所定量上昇させて第2の閾値電圧とし、
     設定した第2の充電電流による定電流充電を行いながら、前記二次電池の測定電圧を規定充電電圧より小の前記第2の閾値電圧と比較し、
     前記測定電圧が前記第2の閾値電圧より大となると、前記第2の充電電流を減少させて第3の充電電流にすると共に、前記第2の閾値電圧を所定量上昇させて第3の閾値電圧とし、
     前記測定電圧と閾値電圧との比較と、前記充電電流の変更および閾値電圧の変更とを繰り返し、第nの充電電流が所定値まで低下し、且つ前記測定電圧が所定値より大となる場合に、急速充電を終了する
     制御を行う充電制御方法。
PCT/JP2015/005989 2015-01-16 2015-12-02 電池装置、充電制御装置および充電制御方法 WO2016113791A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/538,272 US10553913B2 (en) 2015-01-16 2015-12-02 Battery apparatus, charging control apparatus, and charging control method
JP2016569128A JP6500911B2 (ja) 2015-01-16 2015-12-02 電池装置、充電制御装置および充電制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015007214 2015-01-16
JP2015-007214 2015-01-16

Publications (1)

Publication Number Publication Date
WO2016113791A1 true WO2016113791A1 (ja) 2016-07-21

Family

ID=56405361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005989 WO2016113791A1 (ja) 2015-01-16 2015-12-02 電池装置、充電制御装置および充電制御方法

Country Status (3)

Country Link
US (1) US10553913B2 (ja)
JP (1) JP6500911B2 (ja)
WO (1) WO2016113791A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018110506A (ja) * 2017-01-03 2018-07-12 飛宏科技股▲ふん▼有限公司Phihong Technology Co., Ltd. 定電流モードの充電システム及び方法
EP3496228A1 (en) * 2017-12-07 2019-06-12 Samsung Electronics Co., Ltd. Method and apparatus for charging battery
CN110199452A (zh) * 2016-11-23 2019-09-03 罗伯特·博世有限公司 用于对锂离子电池进行快速充电的方法
JP2021097553A (ja) * 2019-12-19 2021-06-24 株式会社Gsユアサ 充電制御装置、蓄電装置、充電制御方法
US11575272B2 (en) 2020-01-30 2023-02-07 Samsung Sdi Co., Ltd. Method for charging battery

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022292A1 (ja) * 2015-08-06 2017-02-09 ソニー株式会社 二次電池の充電方法、充電制御装置及び二次電池
JP6220904B2 (ja) * 2016-01-14 2017-10-25 本田技研工業株式会社 蓄電装置
JP5973106B1 (ja) * 2016-04-06 2016-08-23 本田技研工業株式会社 電源装置、該電源装置を有する輸送機器、電流値を検出するセンサの状態を判定する判定方法、および該状態を判定するためのプログラム
JP6348929B2 (ja) * 2016-05-23 2018-06-27 本田技研工業株式会社 動力システム及び輸送機器、並びに、電力伝送方法
CN107994622A (zh) * 2016-10-26 2018-05-04 宁德时代新能源科技股份有限公司 电池供电电路
DE112018002239T5 (de) * 2017-04-28 2020-01-16 Gs Yuasa International Ltd. Verwaltungsvorrichtung, energiespeichervorrichtung und energie-speichersystem
CN107204493B (zh) * 2017-04-28 2020-09-29 宁德时代新能源科技股份有限公司 电池充电方法、装置和设备
EP3641093B1 (en) 2018-10-18 2020-12-02 3M Innovative Properties Company A method of charging a battery and a system having a dental light irradiation device and a battery charging device
CN109738819A (zh) * 2018-12-10 2019-05-10 上海艾为电子技术股份有限公司 电池转换电压计算系统、方法、电池及电池充电装置
CN112039147A (zh) * 2020-08-20 2020-12-04 Tcl通力电子(惠州)有限公司 充电方法、充电装置及计算机可读存储介质
US20220089054A1 (en) * 2020-09-18 2022-03-24 Cummins Inc. Estimation of charging duration for electric vehicles
US11565605B2 (en) * 2020-10-29 2023-01-31 Wing Aviation Llc Systems and methods for battery capacity management in a fleet of UAVs

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062905A (ja) * 2011-09-12 2013-04-04 Panasonic Eco Solutions Power Tools Co Ltd 充電器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3517293A (en) * 1967-01-31 1970-06-23 Mcculloch Corp Rapid charging of batteries
JPS5116326B2 (ja) 1971-08-02 1976-05-24
JP2599333B2 (ja) 1992-10-07 1997-04-09 株式会社タムラ製作所 二次電池の充電方法
JP3692547B2 (ja) 1994-04-22 2005-09-07 ソニー株式会社 充電方法
JPH1197074A (ja) 1997-09-19 1999-04-09 Zip Charge:Kk 充電方法及び充電装置
JPH09331636A (ja) 1996-06-11 1997-12-22 Oki Electric Ind Co Ltd 二次電池の充電装置
JP4221636B2 (ja) 2000-10-19 2009-02-12 ソニー株式会社 リチウムイオン二次電池の充電方法および充電装置
JP4093205B2 (ja) * 2003-12-05 2008-06-04 松下電器産業株式会社 充電制御装置
JP2008035674A (ja) 2006-07-31 2008-02-14 Mitsumi Electric Co Ltd 充電用電源装置
JP2010207074A (ja) 2009-02-09 2010-09-16 Nec Corp 無接点充電制御システム、無接点充電制御装置および無接点充電制御方法
US8643342B2 (en) * 2009-12-31 2014-02-04 Tesla Motors, Inc. Fast charging with negative ramped current profile
JP5506498B2 (ja) 2010-03-30 2014-05-28 パナソニック株式会社 二次電池の充電装置および充電方法
US8513919B2 (en) * 2010-07-28 2013-08-20 Apple Inc. Swelling management in batteries for portable electronic devices
JP5774388B2 (ja) 2011-06-29 2015-09-09 三洋電機株式会社 二次電池の充電方法、充電制御装置及びパック電池
JP5816814B2 (ja) 2011-08-31 2015-11-18 パナソニックIpマネジメント株式会社 充電器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062905A (ja) * 2011-09-12 2013-04-04 Panasonic Eco Solutions Power Tools Co Ltd 充電器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110199452A (zh) * 2016-11-23 2019-09-03 罗伯特·博世有限公司 用于对锂离子电池进行快速充电的方法
CN110199452B (zh) * 2016-11-23 2023-08-18 罗伯特·博世有限公司 用于对锂离子电池进行快速充电的方法
JP2018110506A (ja) * 2017-01-03 2018-07-12 飛宏科技股▲ふん▼有限公司Phihong Technology Co., Ltd. 定電流モードの充電システム及び方法
EP3496228A1 (en) * 2017-12-07 2019-06-12 Samsung Electronics Co., Ltd. Method and apparatus for charging battery
US10862325B2 (en) 2017-12-07 2020-12-08 Samsung Electronics Co., Ltd. Method and apparatus for charging battery
US11444475B2 (en) 2017-12-07 2022-09-13 Samsung Electronics Co., Ltd. Method and apparatus for charging battery
JP2021097553A (ja) * 2019-12-19 2021-06-24 株式会社Gsユアサ 充電制御装置、蓄電装置、充電制御方法
JP7437605B2 (ja) 2019-12-19 2024-02-26 株式会社Gsユアサ 充電制御装置、蓄電装置、充電制御方法
US11575272B2 (en) 2020-01-30 2023-02-07 Samsung Sdi Co., Ltd. Method for charging battery

Also Published As

Publication number Publication date
US20170352926A1 (en) 2017-12-07
JP6500911B2 (ja) 2019-04-17
US10553913B2 (en) 2020-02-04
JPWO2016113791A1 (ja) 2017-10-19

Similar Documents

Publication Publication Date Title
WO2016113791A1 (ja) 電池装置、充電制御装置および充電制御方法
US8896272B2 (en) Systems and methods of battery charging with dynamic float voltage
JP4865103B2 (ja) 充電装置及び充電方法
JP5618986B2 (ja) 充電装置
US8344700B2 (en) Charging method and charger
US10236702B2 (en) Method and apparatus for rapidly charging battery
JP2020511737A (ja) バッテリーの内部抵抗を最適化するためのバッテリー管理システム及び方法
JP6196466B2 (ja) 電源装置
JP2015171275A (ja) 二次電池の充電装置および充電方法
JP2011082158A (ja) バッテリーパックの充電制御方法
JP2005151683A (ja) 電池パックの充電装置
US20180067167A1 (en) Storage system, storage control method, and storage control program
WO2015178075A1 (ja) 電池制御装置
CN108075533B (zh) 电池充电电路以及电池充电方法
JP2019506829A (ja) 蓄電池充電のための制御装置および蓄電池を充電する方法
KR20170062133A (ko) 배터리 충전방법
JP2007259632A (ja) 充電回路及び充電制御方法
JP6690584B2 (ja) 電池状態推定装置
GB2489088A (en) Energy Storage Charging Method Using Cell Voltage Differences
JP2020520624A (ja) バッテリーの内部抵抗を最適化するためのバッテリー管理システム及び方法
WO2015141003A1 (ja) 二次電池充電システムおよび二次電池充電方法
JP6311616B2 (ja) 充電電流制御装置及び充電電流制御方法
TW201807919A (zh) 充電電流控制方法及其系統
KR20170059802A (ko) 이차 전지의 충전 시스템 및 충전 방법
KR20170142451A (ko) 배터리 관리 시스템, 배터리 팩 및 배터리 충전 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016569128

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15538272

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877748

Country of ref document: EP

Kind code of ref document: A1