WO2024090338A1 - 蓄電装置、複数セルの制御方法及び蓄電装置の制御方法 - Google Patents

蓄電装置、複数セルの制御方法及び蓄電装置の制御方法 Download PDF

Info

Publication number
WO2024090338A1
WO2024090338A1 PCT/JP2023/037972 JP2023037972W WO2024090338A1 WO 2024090338 A1 WO2024090338 A1 WO 2024090338A1 JP 2023037972 W JP2023037972 W JP 2023037972W WO 2024090338 A1 WO2024090338 A1 WO 2024090338A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
time
cells
capacity
elapsed
Prior art date
Application number
PCT/JP2023/037972
Other languages
English (en)
French (fr)
Inventor
信 ▲徳▼坂
悟 成本
敦史 福島
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Publication of WO2024090338A1 publication Critical patent/WO2024090338A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • One aspect of the present invention relates to a storage battery (secondary battery), in particular a power storage device in which multiple lithium-ion batteries are connected in series.
  • a power storage device that has a function of eliminating the variation in discharge capacity (the difference between the fully charged capacity and the remaining capacity of the storage battery) between the storage batteries and maintaining the balance between the storage batteries.
  • Storage batteries are installed in vehicles such as automobiles, trains, ships and aircraft, and are used as a power source for passenger cabin lighting, air conditioning, communication means, instruments and control devices required for operation, and as a power source for power equipment.
  • Storage batteries can store electricity from power generation facilities and generators and supply power when needed, so they are also used as a buffer for industrial electricity supply and demand.
  • Energy storage devices that combine multiple storage batteries (hereafter also referred to as cells) are used for mobile or industrial purposes.
  • Patent Document 1 discloses related technology.
  • One aspect of the present invention provides a technology that suppresses capacity variations among multiple cells.
  • the energy storage device includes a number of cells connected in series, a balancer that adjusts the variation in discharge capacity of the cells, and a control unit.
  • the control unit calculates the discharge capacity of each cell based on the full charge capacity of each cell after a predetermined time has elapsed since the time of cell manufacture and the remaining capacity of each cell after the predetermined time has elapsed since the time of cell manufacture, and adjusts the variation in the discharge capacity of each cell after the predetermined time has elapsed since the time of cell manufacture using the balancer.
  • the power storage device includes a plurality of cells connected in series, a voltage measuring unit that measures the voltage of each of the cells, a balancer that adjusts the variation in the state of charge of the plurality of cells, and a control unit.
  • the control unit calculates the full charge capacity of each cell after a predetermined time has elapsed since the time of cell manufacture, calculates the state of charge of each cell after the predetermined time has elapsed since the time of cell manufacture based on the cell voltage measured by the voltage measuring unit, calculates the difference in the state of charge of each cell after the predetermined time has elapsed from the time of cell manufacture from the state of charge of each cell, and adjusts the variation in the state of charge of the plurality of cells using the balancer based on the difference between the full charge capacity of each cell and the state of charge of each cell.
  • the method of controlling multiple cells connected in series calculates the discharge capacity of each cell based on the full charge capacity of each cell after a predetermined time has elapsed since the time of cell manufacture and the remaining capacity of each cell after the predetermined time has elapsed since the time of cell manufacture, and adjusts the variation in the discharge capacity of each cell after the predetermined time has elapsed since the time of cell manufacture using the balancer.
  • a method for controlling an energy storage device having multiple cells connected in series calculates the full charge capacity of each cell after a predetermined time has elapsed since the time of cell manufacture, obtains the remaining capacity of each cell after the predetermined time has elapsed since the time of cell manufacture from the cell voltage, calculates the discharge capacity of each cell after the predetermined time has elapsed since the time of cell manufacture from the full charge capacity and remaining capacity of each cell, and equalizes the variation in discharge capacity between each cell.
  • This technology eliminates the variations in discharge capacity and charge state between cells that occur over time from the time of cell manufacture, preventing cells from becoming overcharged or over-discharged, allowing the cells to fully demonstrate their inherent performance.
  • FIG. 13 is a diagram showing the relationship between the full charge capacity at the time of cell manufacture, the initial value of the full charge capacity of the cell at the time of completion of assembly of the energy storage device, and the initial value of the remaining capacity. Changes in discharge capacity Diagram showing capacity change after charging A functional block diagram of a CPU (showing input and output for data processing)
  • An energy storage device includes a plurality of cells connected in series, a balancer that adjusts the variation in discharge capacity of the plurality of cells, and a control unit.
  • the control unit calculates the discharge capacity of each cell based on the full charge capacity of each cell after a predetermined time has elapsed since the time of cell manufacture and the remaining capacity of each cell after the predetermined time has elapsed since the time of cell manufacture, and adjusts the variation in the discharge capacity of each cell after the predetermined time has elapsed since the time of cell manufacture using the balancer.
  • the energy storage device can eliminate the variation in discharge capacity between cells that occurs over time from the time of cell manufacture. By eliminating the variation in discharge capacity between cells, it is possible to prevent the cells from becoming overcharged or overdischarged, and by minimizing excessive safety controls that prevent overcharging or overdischarging, it is possible to fully utilize the performance of the cells.
  • the energy storage device includes a plurality of cells connected in series, a voltage measuring unit that measures the voltage of each of the cells, a balancer that adjusts the variation in the state of charge of the plurality of cells, and a control unit.
  • the control unit calculates the full charge capacity of each cell after a predetermined time has elapsed since the time of cell manufacture, calculates the state of charge of each cell after the predetermined time has elapsed since the time of cell manufacture based on the cell voltage measured by the voltage measuring unit, calculates the difference in the state of charge of each cell after the predetermined time has elapsed from the time of cell manufacture from the state of charge of each cell, and adjusts the variation in the state of charge of the plurality of cells using the balancer based on the difference between the full charge capacity of each cell and the state of charge of each cell.
  • the energy storage device described in (2) above can eliminate variations in the state of charge between cells that occur over time from the time of cell manufacture. Eliminating variations in the state of charge between cells can prevent cells from becoming overcharged or overdischarged, and by minimizing excessive safety controls that prevent overcharging or overdischarging, the performance of the cells can be fully demonstrated.
  • control unit may calculate the full charge capacity of each cell after a predetermined time has elapsed since the time of cell manufacture based on the full charge capacity of the cell at the time of cell manufacture and the amount of decrease in the full charge capacity over time since the time of cell manufacture.
  • the energy storage device described in (3) above can accurately determine the full charge capacity and discharge capacity of each cell after a predetermined time has elapsed since the time of cell manufacture. Therefore, the accuracy of estimating the difference in discharge capacity between cells after the predetermined time has elapsed since the time of cell manufacture is high, and the variation in discharge capacity of the cells can be accurately equalized.
  • the amount of decrease in full charge capacity due to the elapsed time after cell manufacture may be calculated based on information on the elapsed time after cell manufacture and temperature history.
  • the energy storage device described in (4) above can accurately determine the full charge capacity and discharge capacity of each cell after a predetermined time has elapsed since the time of cell manufacture. Therefore, the accuracy of estimating the difference in discharge capacity between cells after the predetermined time has elapsed since the time of cell manufacture is high, and the variation in discharge capacity of the cells can be accurately equalized.
  • a method for controlling multiple cells calculates the discharge capacity of each cell based on the full charge capacity of each cell after a predetermined time has elapsed since the time of cell manufacture and the remaining capacity of each cell after the predetermined time has elapsed since the time of cell manufacture, and adjusts the variation in the discharge capacity of each cell after the predetermined time has elapsed since the time of cell manufacture using a balancer.
  • the multiple cell control method described in (5) above can eliminate the variation in discharge capacity between cells that occurs over time from the time of cell manufacture. By eliminating the variation in discharge capacity between cells, it is possible to prevent cells from becoming overcharged or overdischarged, and by minimizing excessive safety control that prevents overcharging or overdischarging, it is possible to fully utilize the performance of the cells.
  • a method for controlling an energy storage device calculates the full charge capacity of each cell after a predetermined time has elapsed since the time of cell manufacture, obtains the remaining capacity of each cell after the predetermined time has elapsed since the time of cell manufacture from the cell voltage, calculates the discharge capacity of each cell after the predetermined time has elapsed since the time of cell manufacture from the full charge capacity and remaining capacity of each cell, and equalizes the calculated variation in discharge capacity between each cell.
  • the control method for the power storage device described in (6) above can eliminate the variation in discharge capacity between cells that occurs over time from the time of cell manufacture. By eliminating the variation in discharge capacity between cells, it is possible to prevent the cells from becoming overcharged or overdischarged, and by minimizing excessive safety control that prevents overcharging or overdischarging, it is possible to fully utilize the performance of the cells.
  • a vehicle 10 is equipped with an engine 20 and a power storage device 50 used for starting the engine 20, etc.
  • the vehicle 10 may be equipped with a motor and a power storage device as a power source for the motor.
  • the energy storage device 50 includes a battery pack 60, a circuit board unit 105, and a housing 71.
  • the housing 71 includes a main body 73 and a lid 74 made of a synthetic resin material.
  • the main body 73 is cylindrical with a bottom, and includes a bottom portion 75 and four side portions 76. The four side portions 76 form an opening 77 at the upper end of the main body 73.
  • the housing 71 houses the battery pack 60 and the circuit board unit 105.
  • the circuit board unit 105 is a board unit that has various components (such as the current interruption device, current detection unit, balancer, and management device shown in FIG. 5, which will be described later) mounted on a circuit board 100, and is disposed adjacent to, for example, the upper part of, the battery pack 60, as shown in FIG. 2. Alternatively, the circuit board unit 105 may be disposed adjacent to the side of the battery pack 60.
  • the lid 74 closes the opening 77 of the main body 73.
  • An outer peripheral wall 78 is provided around the lid 74.
  • the lid 74 has a protruding portion 79 that is generally T-shaped in plan view.
  • the positive external terminal 51 is fixed to one corner of the front of the lid 74, and the negative external terminal 52 is fixed to the other corner.
  • the circuit board unit 105 may be housed within the lid 74 (e.g., within the protruding portion 79) instead of the main body 73 of the container 71.
  • the battery pack 60 is composed of multiple cells 62. As shown in FIG. 3, each cell 62 is a rectangular parallelepiped case 82 that houses an electrode body 83 together with a non-aqueous electrolyte.
  • the cell 62 is, for example, a lithium-ion secondary battery cell.
  • the case 82 has a case body 84 and a lid 85 that closes the upper opening.
  • the electrode body 83 although not shown in detail, is made up of a negative plate made of a copper foil substrate coated with an active material, and a positive plate made of an aluminum foil substrate coated with an active material, with a separator made of a porous resin film placed between them. Both of these are in the shape of a strip, and the negative and positive plates are rolled up in a flat shape with their positions offset in the short direction relative to the separator.
  • the electrode body 83 may be of a laminated type instead of a rolled type.
  • a positive electrode terminal 87 is connected to the positive electrode plate via a positive electrode collector 86, and a negative electrode terminal 89 is connected to the negative electrode plate via a negative electrode collector 88.
  • the positive electrode collector 86 and the negative electrode collector 88 each have a flat base portion 90 and legs extending from the base portion 90. A through hole is formed in the base portion 90.
  • the positive electrode terminal 87 and the negative electrode terminal 89 each consist of a terminal body 92 and a shaft 93 that protrudes downward from the center of the bottom surface of the terminal body 92.
  • the terminal body 92 and shaft 93 of the positive electrode terminal 87 are integrally molded from aluminum (a single material).
  • the terminal body 92 is made of aluminum and the shaft 93 is made of copper, and these are assembled together.
  • the terminal body 92 of the positive electrode terminal 87 and the negative electrode terminal 89 are arranged on both ends of the lid 85 via gaskets 94 made of an insulating material, and are exposed to the outside from the gaskets 94, as shown in Figure 4.
  • the lid 85 has a pressure relief valve (safety valve) 95.
  • the pressure relief valve 95 is located, for example, between the positive terminal 87 and the negative terminal 89.
  • the pressure relief valve 95 opens to reduce the internal pressure of the case 82 when the internal pressure of the case 82 exceeds a limit.
  • FIG. 5 is a block diagram showing the electrical configuration of the power storage device 50.
  • the power storage device 50 includes a battery pack 60, a current detection unit 54, a current interruption device 53, a balancer 65, a voltage measurement unit 110, a temperature sensor 58, and a management device 130.
  • the battery pack 60 has, for example, 12 cells 62 (see FIG. 2), three connected in parallel and four in series.
  • FIG. 5 shows three cells 62 connected in parallel with one battery symbol.
  • the cells may be cylindrical cells or pouch cells with a laminated film case.
  • the battery pack 60, the current interruption device 53, and the current detection unit 54 are connected in series via power lines 55P and 55N.
  • the power lines 55P and 55N can be bus bars BSB (see Figure 2), which are plate-shaped conductors made of a metal material such as copper.
  • the power line 55P connects the positive external terminal 51 to the positive electrode of the battery pack 60.
  • the power line 55N connects the negative external terminal 52 to the negative electrode of the battery pack 60.
  • the external terminals 51 and 52 are terminals for connection to an electrical load provided in the vehicle 10.
  • the current interruption device 53 is provided on the positive power line 55P.
  • the current interruption device 53 may be a semiconductor switch such as an FET, or a relay with mechanical contacts. It is preferable that the current interruption device 53 is a self-holding switch such as a latch relay.
  • the current interruption device 53 is of a normally closed type, and is controlled to a closed state under normal circumstances. If an abnormality occurs in the storage device 50, the current I of the battery pack 60 can be interrupted by switching the current interruption device 53 from a closed state to an open state.
  • the current detection unit 54 is provided on the negative power line 55N.
  • the current detection unit 54 may be a shunt resistor.
  • the resistive current detection unit 54 can measure the current I of the battery pack 60 based on the voltage Vr across the current detection unit 54.
  • the resistive current detection unit 54 can distinguish between discharging and charging from the polarity (positive or negative) of the voltage Vr.
  • the current detection unit 54 may be a magnetic sensor.
  • the voltage measurement unit 110 can measure the voltage Vs of each cell 62A-62D and the total voltage Vab of the battery pack 60.
  • the temperature sensor 58 is attached to the battery pack 60 and detects the temperature of the battery pack 60.
  • the balancer 65 is used to equalize the voltages Vs of the cells 62, and in this embodiment, as shown in FIG. 6, consists of four cell discharge circuits 66A to 66D.
  • Each cell discharge circuit 66A-66D is connected in parallel to each cell 62A-62D.
  • Each cell discharge circuit 66A-66D is composed of a discharge resistor 67 and a switch 68. By turning on the switch 68, the corresponding cell 62 can be discharged.
  • the management device 130 is mounted on the circuit board 100 (see FIG. 2), and as shown in FIG. 5, includes a CPU 131, a memory 132, and a communication unit 133.
  • the communication unit 133 is connected to the vehicle ECU via a communication port 134.
  • the management device 130 monitors the state of the power storage device 50 based on the outputs of the voltage measurement unit 110, the current detection unit 54, and the temperature sensor 58. In other words, the management device 130 monitors the cell voltage Vs of each cell 62, the temperature of the battery pack 60, the current I, and the total voltage Vab.
  • the management device 130 corresponds to a "control unit.”
  • Memory 132 stores programs for executing equalization processes that adjust the discharge capacity DC of cells 62A-62D, as well as data required to execute these programs.
  • the data stored in memory 132 includes, for example, data on the SOC-OCV characteristics of cells 62, which will be described next, and inspection data (described later) on the full charge capacity of each cell 62 during cell manufacture.
  • the program may be distributed using telecommunications lines.
  • SOC-OCV characteristics of cell 62 Fig. 7 is a graph showing the SOC-OCV characteristics of an LFP cell 62 using an iron phosphate (LiFePO4) active material in the positive electrode and a carbon-based active material in the negative electrode, with the horizontal axis being SOC [%] and the vertical axis being OCV [V].
  • the OCV Open Circuit Voltage
  • a case where it can be considered that there is no current is when the current is equal to or less than a predetermined value (for example, when a dark current flows).
  • SOC is the ratio of remaining capacity [Ah] to full charge capacity [Ah] and is expressed by formula (1).
  • SOC (Y / X) ⁇ 100 (1)
  • X is the fully charged capacity of the cell
  • Y is the remaining capacity of the cell (the amount of electricity stored in the cell).
  • cell 62 has a plateau region F0, a first rapid change region F1, and a second rapid change region F2.
  • the SOC ranges from SOC2 (30%) to SOC1 (95%).
  • the change in OCV relative to the change in SOC is below a predetermined value, and the graph is almost flat.
  • the first rapid change region F1 is the region where the SOC is equal to or greater than SOC1
  • the second rapid change region F2 is the region where the SOC is equal to or less than SOC2.
  • the slope of the graph is steeper than in the plateau region F0, and the OCV changes rapidly in response to changes in the SOC.
  • cell 62 Since cell 62 has a first rapid change region F1, the cell voltage Vs rises rapidly near full charge at the end of charging (part A in FIG. 7). Also, since cell 62 has a second rapid change region F2, the cell voltage Vs drops rapidly at the end of discharging (part B in FIG. 7).
  • Cells 62 having such characteristics are not limited to LFP cells.
  • the manufacturing process of the energy storage device 50 includes, for example, a cell manufacturing process S1, a storage process S2, and an energy storage device assembly process S3, as shown in Fig. 8. In some cases, the storage process S2 is skipped and the process immediately proceeds to the energy storage device assembly process S3.
  • S1 is the process of manufacturing the cells 62
  • S2 is the process of moving the manufactured cells 62 to a designated temperature-controlled warehouse or the like for storage.
  • S3 is the process of assembling the parts (the battery case 20, the cover member 50, the cells 62A-62D, the circuit board unit 105, etc.) to produce the energy storage device 50.
  • Factors that cause variation in discharge capacity among a plurality of cells in an electricity storage device include the following. (1) Variation in full charge capacity between cells during cell manufacturing (due to individual differences in cells) (2) Variation in the deterioration of the full charge capacity between cells due to storage and transportation during the manufacture of the energy storage device. (3) Variation in the self-discharge between cells after the cells are manufactured (due to individual differences between cells).
  • FIG. 9 is a flowchart of the discharge capacity equalization method.
  • the discharge capacity equalization method consists of eight steps S10 to S80 to equalize the discharge capacities DC of the cells 62A to 62D connected in series.
  • equalization of discharge capacity is a process that is carried out after the energy storage device 50 is assembled and before shipping.
  • the full charge capacity X1 [Ah] of each cell 62A-62D is measured during cell manufacture (see Figure 10).
  • the measurement results of the full charge capacity X1 of each cell 62 during cell manufacture are input to the memory 132 of the management device 130 built into the energy storage device 50. This is explained in detail below.
  • the process from S20 onwards is the flow after the assembly of the energy storage device 50 is completed.
  • the management device 130 estimates the initial full charge capacity X2 [Ah] of each cell 62A-62D when the assembly of the energy storage device 50 is completed (see Figure 10).
  • the initial full charge capacity X2 is the full charge capacity at the time when the management device 130 is started up (when data processing starts) after the assembly of the energy storage device 50. The same applies to the initial remaining capacity Y2 described below.
  • the initial full charge capacity X2 can be estimated by subtracting the decrease ⁇ X due to the passage of time (a specified time or any time) after the cell is manufactured from the full charge capacity X1 at the time of cell manufacture, as shown in formula (2).
  • the step of calculating this reduction amount ⁇ X is an important step for equalizing the variation in discharge capacity.
  • the amount of decrease ⁇ X in the full charge capacity X1 is determined taking into consideration the time elapsed since the time of cell manufacture as well as the temperature history of the cell (ambient temperature during storage and transportation). By taking into consideration the temperature history of the cell in addition to the elapsed time, the amount of decrease ⁇ X in the full charge capacity X1 can be calculated with high accuracy.
  • the amount of degradation due to neglect, i.e., the amount of decrease ⁇ X depends on time (for example, the root or n-th root of time) and is proportional to a constant that depends on temperature.
  • the reaction rate of the unintended reaction mentioned above also depends on temperature.
  • the amount of degradation due to neglect i.e., the amount of decrease ⁇ X, can be considered to be the same.
  • the management device 130 determines the remaining capacity initial value Y2 [Ah] of each cell 62 at the time when the assembly of the storage device 50 is completed (see FIG. 10).
  • the time elapsed from the time of cell manufacture to the time when the assembly of the storage device 50 is completed can be obtained from some kind of time management, such as process time management using a server or the like.
  • a code (barcode or two-dimensional code) may be printed on the cell in advance to store the time when the cell was manufactured.
  • the information on the code is read with a reader or the like when the storage device 50 is assembled, and the time elapsed from the time when the cell was manufactured to the time when the assembly of the storage device 50 was completed can be calculated from the time from the time when the cell was manufactured to the time when the assembly of the storage device 50 was completed, which is stored in the code.
  • the amount of decrease ⁇ X can be calculated more accurately by taking into account the temperature change from the time the cells are manufactured until the assembly of the energy storage device 50 is completed. As described above, when a temperature change occurs, the amount of neglected deterioration at a certain temperature can be calculated by multiplying a constant by a time-dependent amount (the time the temperature is in a state near that temperature) near a certain temperature, and the amount of neglected deterioration at that temperature can be calculated by adding up the amounts of neglected deterioration at those temperatures.
  • the capacity of cells 62A to 62D is measured.
  • the cell voltage and current are measured, and the cell capacity is obtained from the relationship between the integrated current value and the SOC-OCV characteristics. This makes it possible to obtain the full charge capacity X1 of each cell 62A to 62D.
  • each of the cells 62A-62D is discharged.
  • the voltage of each of the cells 62A-62D is measured, and the initial remaining capacity value Y1 can be obtained from the relationship between the SOC-OCV characteristics.
  • time information is obtained at this point.
  • This information may be stored in the manufacturing/process management server, or may be recorded in a barcode, two-dimensional code, or the like.
  • Subsequent control steps may be performed by the manufacturing/process management server or by the management device 130. They may also be performed by a work tool (a dedicated terminal such as a personal computer or tablet) used by an operator during manufacturing.
  • the process moves to assembling the energy storage device 50.
  • Workers or production machines assemble the battery pack 62 and attach other components such as the management device 130 to complete the assembly of the energy storage device 50.
  • the time when the cell was manufactured is obtained from the server or a barcode or two-dimensional code attached to the cell, and compared with the current time to determine the time elapsed from the time when the cell was manufactured to the time when assembly of the energy storage device 50 was completed.
  • the cell voltage Vs of each cell 62A-62D is measured using the voltage measurement unit 110. From the measured value of the cell voltage Vs, the SOC [%] of each cell 62A-62D is calculated by referring to the SOC-OCV characteristics shown in FIG. 7.
  • the SOC of each of the cells 62A-62D is calculated using the characteristics (SOC-OCV) of the second rapid change region F2 shown in FIG. 7. Therefore, the SOC of each of the cells 62A-62D can be estimated with high accuracy.
  • the cell capacity at the time of cell manufacture is determined, and then the cells are discharged, and the SOC of each cell 62A-62D is determined using the characteristics (SOC-OCV) of the second rapid change region F2.
  • SOC-OCV characteristics of the second rapid change region F2.
  • the management device 130 calculates the initial remaining capacity Y2 [Ah] of each cell 62A-62D at the time when the assembly of the power storage device 50 is completed from the determined SOC.
  • the initial remaining capacity Y2 can be calculated by multiplying the SOC by the full charge capacity X2.
  • the initial remaining capacity Y2 is calculated using the SOC-OCV characteristics, but it may also be calculated using the remaining capacity Y-OCV characteristics.
  • ⁇ Y shown in Figure 10 is the difference between the initial remaining capacity values Y1 and Y2 at the time the cells are manufactured and at the time the energy storage device is assembled. ⁇ Y is due to self-discharge of cells 62A to 62D.
  • the management device 130 determines the discharge capacity DC [Ah] of each cell 62A-62D at the time of assembling the energy storage device by subtracting the initial remaining capacity Y2 calculated in S30 from the initial full charge capacity X2 calculated in S20 (see FIG. 10).
  • the management device 130 compares the discharge capacity DC of each cell 62A-62D calculated in S40 and determines the cell with the maximum discharge capacity DCmax.
  • the management device 130 subtracts the discharge capacity DC from the maximum discharge capacity DCmax as shown in formula (4) to determine the balancer discharge capacity S (the amount of electricity to be discharged by the balancer 65) of each cell 62A to 62D.
  • the management device 130 determines the discharge time T for each cell 62A-62D from the balancer discharge capacity S calculated in S60.
  • the management device 130 operates the balancer 65 to discharge each of the cells 62A-62D for the discharge time T calculated in S70. In this way, the discharge capacity DC of each of the cells 62A-62D can be equalized.
  • the processes of S20 to S80 are performed, for example, after the assembly of the energy storage device 50 is completed.
  • Figure 11 shows the change in discharge capacity DC of each cell 62A to 62D, where (1) shows the time of cell manufacture, (2) and (3) show the time points at which the discharge capacity DC is compared, and (4) shows the discharge capacity DC after equalization.
  • cell 62D is the cell with the maximum discharge capacity DCmax, and by discharging the balancer discharge capacity S calculated in S60 in cells 62A-62C, the discharge capacity DC of each of cells 62A-62C can be equalized to the maximum discharge capacity DCmax.
  • each cell 62A-62D is charged equally after shipping, so that the voltage Vs of some cells 62A-62D increases toward the end of charging, preventing overcharging. The same is true when discharging, which helps prevent overdischarge (when discharging, the SOC is equalized instead of the discharge capacity DC).
  • FIG. 13 shows data processing related to eliminating variations in discharge capacity DC using calculation blocks. This example also describes a case where the management device 130 performs a series of processes.
  • the CPU 131 has a first calculation block 131A, a second calculation block 131B, a third calculation block 131C, a fourth calculation block 131D, and a fifth calculation block 131E.
  • the first calculation block 131A calculates the amount of decrease ⁇ X in the full charge capacity X1 of each cell 62A-62D based on information about the time elapsed since cell manufacture and temperature history.
  • the second calculation block 131B calculates the initial full charge capacity X2 of each cell 62A-62D at the time of completion of assembly of the energy storage device based on the inspection data of the full charge capacity X1 at the time of cell manufacture and the amount of decrease ⁇ X in the full charge capacity X1 calculated by the first calculation block 131A.
  • the third calculation block 131C calculates the initial remaining capacity Y2 of each cell 62A-62D based on the measured cell voltage Vs at the time when the assembly of the energy storage device is completed.
  • the fourth calculation block 131D calculates the discharge capacity DC of each cell 62A-62D from the initial full charge capacity X2 calculated by the second calculation block 131B and the initial remaining capacity Y2 calculated by the third calculation block 131C.
  • the fifth calculation block 131E compares the discharge capacity DC of each cell 62A-62D calculated by the fourth calculation block 131D to determine the maximum discharge capacity DCmax, and calculates the balancer discharge capacity S of each cell 62A-62C.
  • the functional blocks in FIG. 13 show the data processing required to calculate the maximum discharge capacity DC and the balancer discharge capacity S of each cell 62, and the CPU 131 may execute these processes using a dedicated arithmetic circuit or a program.
  • the discharge capacities DC of the cells 62A to 62D can be equalized without fully charging the cells 62A to 62D, so constant voltage charging (CV charging) using a dedicated charging device is not necessary and the work time (takt time) is not lengthened. This has the advantage that the energy storage device 50 can be delivered early.
  • temperature history information is also taken into account, making it possible to accurately estimate the amount of decrease ⁇ X in the full charge capacity X1 after cell manufacture.
  • the manufacturing process of the energy storage device 50 (from cell manufacture to energy storage device assembly) is often temperature controlled, and a highly accurate temperature history can be obtained. Therefore, the estimation error in the amount of decrease ⁇ X in the full charge capacity X1 is small, and the discharge capacity DC and discharge capacity variation of the cell 62 can be accurately estimated.
  • the SOC is estimated using the low SOC rapid change region F2 (part B of FIG. 7), so the SOC of each cell 62A-62D can be estimated with high accuracy without charging cell 62 to the high SOC rapid change region F1.
  • the cell (repeatedly chargeable and dischargeable storage cell) 62 is not limited to a lithium ion secondary battery cell, but may be another non-aqueous electrolyte secondary battery cell.
  • a capacitor may be used instead of the secondary battery cell 62.
  • the SOC-OCV characteristics of the cell are not limited to those having a plateau region as shown in FIG. 7, but may be those not having a plateau region.
  • the power storage device 50 is mounted on a vehicle (automobile) 10, but it may also be mounted on a moving body other than a vehicle, such as a ship or an aircraft. In addition, it may also be used for stationary purposes, such as a power storage device for absorbing fluctuations in a distributed power generation system or a UPS (uninterruptible power supply).
  • a UPS uninterruptible power supply
  • the balancer 65 is a discharge circuit 66 using resistors, but the balancer may be any circuit as long as it can discharge the cells 62 individually.
  • the cells 62 may be discharged using circuit elements other than resistors.
  • the equalization of the discharge capacity DC discharge of the balancer discharge capacity S by the balancer was performed during the period from the completion of assembly of the power storage device 50 to its shipment. If the necessary data is stored in the memory 132, the full charge capacity X2 of each cell 62 after a predetermined time has elapsed since the time of cell manufacture can be obtained.
  • the necessary data are information such as inspection data of the full charge capacity X1 at the time of cell manufacture, the time elapsed since the cell manufacture, and temperature history.
  • the amount of decrease ⁇ X in the full charge capacity X1 of the cell 62 was calculated based on the time elapsed since the cell was manufactured and the temperature history. For example, if there is almost no temperature change after the cell is manufactured, the amount of decrease ⁇ X in the full charge capacity X1 of the cell 62 may be calculated based only on the time elapsed since the cell was manufactured.
  • the discharge capacity DC of each cell 62 is equalized by discharging each cell 62 based on the cell 62 with the maximum discharge capacity.
  • the discharge capacity DC of each cell 62 may be equalized by a method other than the above embodiment as long as the method discharges cells 62 with shallow discharge capacities DC.
  • the problem of the present invention can also be solved using the SOC (state of charge).
  • the cell voltage Vs of each cell 62 after a predetermined time has elapsed since the time of cell manufacture can be measured by the voltage measurement unit 110, and the SOC of each cell 62 after a predetermined time has elapsed since the time of cell manufacture can be calculated by referring to the SOC-OCV characteristics from the measured value of the cell voltage Vs.
  • the SOC difference between the cells can be found, and the SOC of each cell 62 can be equalized by adjusting the found SOC difference using the balancer 65.
  • the SOC is a relative value (the ratio between the full charge capacity X2 and the remaining capacity Y2), even if the SOC difference is zero, a difference in the remaining capacity Y2 may occur due to a difference in the full charge capacity X2. Therefore, when equalizing the SOC, in addition to the SOC of each cell 62 at a predetermined time after the cell is manufactured, the full charge capacity X2 at a predetermined time after the cell is manufactured may be taken into account.
  • the variation in the SOC (state of charge) of the multiple cells 62 may be adjusted based on the full charge capacity X2 of each cell 62 at a predetermined time after the cell is manufactured, in addition to the SOC difference between the cells 62.
  • the discharge time of each cell 62 calculated from the SOC difference is corrected using the full charge capacity X2.
  • the cell 62 with a large full charge capacity X2 has a longer discharge time T than the cell 62 with a small full charge capacity X2.
  • the balancer 65 discharges each cell 62 for the corrected discharge time.
  • the full charge capacity may be considered by other methods other than the correction (adjustment) of the discharge time.
  • the full charge capacity X2 at a predetermined time after the cell manufacture can be calculated based on the full charge capacity X1 at the time of cell manufacture and the decrease amount ⁇ X of the full charge capacity X1 over time from the time of cell manufacture.
  • the discharge capacity DC can be replaced with the SOC (state of charge) and the balancer can be controlled in a similar manner.
  • SOC state of charge
  • the state of charge can also be considered by replacing it with a voltage or an amount of electricity. Therefore, the discharge capacity DC can be replaced with variables such as voltage and electrical quantity and controlled in the same way.
  • REFERENCE SIGNS LIST 10 vehicle 50 power storage device 60 battery pack 62 cell 65 balancer 66 cell discharge circuit 110 voltage measurement unit 130 management device (control unit)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

蓄電装置50は、直列に接続された複数セル62と、前記複数セルについて放電容量のばらつきを調整するバランサ65と、制御部130と、を備える。前記制御部130は、セル製造時点から所定の時間経過後の各セル62の満充電容量X2と、セル製造時点から前記所定の時間経過後の各セル62の残存容量Y2とに基づいて、各セル62の放電容量DCを算出し、セル製造時点から前記所定の時間経過後の各セル62の放電容量DCのばらつきを、前記バランサ62により調整する。

Description

蓄電装置、複数セルの制御方法及び蓄電装置の制御方法
 本発明の一態様は、蓄電池(二次電池)、特にリチウムイオン電池を直列に複数接続した蓄電装置に関する。本発明の一態様は、蓄電池間の放電容量(蓄電池の満充電容量と残存容量の差)のばらつきを取り除き、蓄電池間のバランスを維持する機能を有する蓄電装置に関する。
 蓄電池は自動車や鉄道、船舶や航空機等の輸送手段に搭載され、客室内照明・エアコン・通信手段・運行上必要な計器類や制御機器への電力源として、また動力機器への電力源として用いられている。蓄電池は、発電施設や発電機からの電力を溜め込んでおき、必要な時に電力を供給できるため、産業用の電力需給バッファーとしても用いられる。
 移動体用又は産業用に、複数の蓄電池(以降はセルとも称す)を組み合わせた蓄電装置が用いられている。
 蓄電装置に備わる各セルの容量(満充電容量、及び/又は、残存容量)には、個々の内部抵抗やその他の要因により、ばらつきが生じることが知られている。
 容量がばらついている状態で充電すると、複数セルの何れかが過充電に至る可能性がある。この対策として、電池管理装置は、バランサと呼ばれる機能・回路を備えている。例えば、電圧の高いセルをバランサにより放電して、複数のセル間のばらつきを解消する。特許文献1は、関連する技術を開示する。
特開2006-353010号公報
 上述の通り、従来のバランサは、電圧の高いセルを放電して複数のセル間のばらつきを解消する。
 従来のバランサでは、容量のばらつきを解消しにくい場合がある。例えば、正極にリン酸鉄系(LiFePO4)の活物質、負極に炭素系の活物質を用いたリチウムイオン電池(以降はLFPセルとも称す)を複数組み合わせた蓄電装置の場合、各セルの充電状態(SOC)が変化しても電圧値がほぼ一定である領域(プラトー領域)が広範囲にわたる。プラトー領域では、各セルの電圧値から複数セル間の容量のばらつきを検出することができない。
 LFPセルを複数組み合わせた蓄電装置を満充電近くの領域(定電圧充電の領域)まで充電することで、複数セル間の容量ばらつきを検出できる。しかし、このような充電は時間とコストを要する。本発明の一態様は、複数セル間の容量ばらつきを抑制する技術を提供する。
 蓄電装置は、直列に接続された複数のセルと、前記複数のセルについて放電容量のばらつきを調整するバランサと、制御部と、を備える。前記制御部は、セル製造時点から所定の時間経過後の各セルの満充電容量と、セル製造時点から前記所定の時間経過後の各セルの残存容量とに基づいて、各セルの放電容量を算出し、セル製造時点から前記所定の時間経過後の各セルの放電容量のばらつきを、前記バランサにより調整する。
 蓄電装置は、直列に接続された複数のセルと、前記セルの各々の電圧を計測する電圧計測部と、前記複数のセルについて充電状態のばらつきを調整するバランサと、制御部と、を備える。前記制御部は、セル製造時点から所定の時間経過後の各セルの満充電容量を算出し、前記セル製造時点から前記所定の時間経過後における各セルの充電状態を、前記電圧計測部によるセル電圧の計測値に基づいて算出し、前記セル製造時点から前記所定の時間経過後における各セルの前記充電状態の差を、各セルの前記充電状態から算出し、複数セルの充電状態のばらつきを、前記各セルの満充電容量と前記各セルの充電状態の差に基づいて、前記バランサにより調整する。
 直列に接続された複数セルの制御方法は、セル製造時点から所定の時間経過後の各セルの満充電容量と、セル製造時点から前記所定の時間経過後の各セルの残存容量とに基づいて、各セルの放電容量を算出し、セル製造時点から前記所定の時間経過後の各セルの放電容量のばらつきを、前記バランサにより調整する。
 直列に接続された複数のセルを有する蓄電装置の制御方法は、各セルについて、セル製造時点から所定の経過時間後の満充電容量を算出し、各セルについて、セル製造時点から前記所定の経過時間後の残存容量をセル電圧から取得し、各セルの満充電容量と残存容量から、セル製造時点から前記所定の経過時間後の各セルの放電容量を算出し、各セル間の放電容量のばらつきを均等化する。
 本技術により、セル製造時点からの時間経過で発生するセル間の放電容量や充電状態のばらつきを解消することで、セルが過充電や過放電に至ることを抑制することができ、セルが持つ性能(パフォーマンス)を十分に発揮させることができる。
車両の側面図 蓄電装置の分解斜視図 セルの断面図 セルの平面図 蓄電装置の電気的構成を示すブロック図 バランサの回路図 セルのSOC-OCVの相関性を示すグラフ 蓄電装置の製造工程を示す図 放電容量均等化処理のフローチャート セル製造時の満充電容量、蓄電装置組立完了時のセルの満充電容量初期値、残存容量初期値の関係を示す図 放電容量の変化を示す図 充電後の容量変化を示す図 CPUを機能ブロックで示した図(データ処理の入出力を示す図)
 (1)本発明の一実施形態に係る蓄電装置は、直列に接続された複数のセルと、前記複数のセルについて放電容量のばらつきを調整するバランサと、制御部と、を備える。前記制御部は、セル製造時点から所定の時間経過後の各セルの満充電容量と、セル製造時点から前記所定の時間経過後の各セルの残存容量とに基づいて、各セルの放電容量を算出し、セル製造時点から前記所定の時間経過後の各セルの放電容量のばらつきを、前記バランサにより調整する。
 本発明の一実施形態に係る蓄電装置によれば、セル製造時点からの時間経過で発生するセル間の放電容量ばらつきを解消することができる。セル間の放電容量ばらつきを解消することにより、セルが過充電や過放電に至ることを抑制でき、また、過充電や過放電を起こさせないような過度の安全制御を最小限にできることで、セルが持つ性能(パフォーマンス)を十分に発揮させることができる。
 (2)蓄電装置は、直列に接続された複数のセルと、前記セルの各々の電圧を計測する電圧計測部と、前記複数のセルについて充電状態のばらつきを調整するバランサと、制御部と、を備える。前記制御部は、セル製造時点から所定の時間経過後の各セルの満充電容量を算出し、前記セル製造時点から前記所定の時間経過後における各セルの充電状態を、前記電圧計測部によるセル電圧の計測値に基づいて算出し、前記セル製造時点から前記所定の時間経過後における各セルの前記充電状態の差を、各セルの前記充電状態から算出し、複数セルの充電状態のばらつきを、前記各セルの満充電容量と前記各セルの充電状態の差に基づいて、前記バランサにより調整する。
 上記(2)に記載の蓄電装置によれば、セル製造時点からの時間経過で発生するセル間の充電状態ばらつきを解消することができる。セル間の充電状態ばらつきを解消することにより、セルが過充電や過放電に至ることを抑制でき、また、過充電や過放電を起こさせないような過度の安全制御を最小限にできることで、セルが持つ性能(パフォーマンス)を十分に発揮させることができる。
 (3)上記(1)又は(2)に記載の蓄電装置において、前記制御部は、セル製造時点のセルの満充電容量と、セル製造時点からの時間経過に伴う満充電容量の減少量とに基づいて、セル製造時点から所定の時間経過後の各セルの満充電容量を算出してもよい。
 上記(3)に記載の蓄電装置によれば、セル製造時点から所定の時間経過後の各セルの満充電容量及び放電容量を精度よく求めることができる。そのため、セル製造時点から前記所定の時間経過後のセル間の放電容量差の推定精度が高く、セルの放電容量ばらつきを精度よく均等化できる。
 (4)上記(3)に記載の蓄電装置において、セル製造後の経過時間と温度履歴の情報に基づいて、セル製造後の経過時間に伴う満充電容量の減少量を算出してもよい。
 上記(4)に記載の蓄電装置によれば、セル製造時点から所定の時間経過後の各セルの満充電容量及び放電容量を精度よく求めることができる。そのため、セル製造時点から前記所定の時間経過後のセル間の放電容量差の推定精度が高く、セルの放電容量ばらつきを精度よく均等化できる。
 (5)本発明の一実施形態に係る複数セルの制御方法は、セル製造時点から所定の時間経過後の各セルの満充電容量と、セル製造時点から前記所定の時間経過後の各セルの残存容量とに基づいて、各セルの放電容量を算出し、セル製造時点から前記所定の時間経過後の各セルの放電容量のばらつきを、バランサにより調整する。
 上記(5)に記載の複数セルの制御方法によれば、セル製造時点からの時間経過で発生するセル間の放電容量ばらつきを解消することができる。セル間の放電容量ばらつきを解消することにより、セルが過充電や過放電に至ることを抑制でき、また、過充電や過放電を起こさせないような過度の安全制御を最小限にできることで、セルが持つ性能(パフォーマンス)を十分に発揮させることができる。
 (6)本発明の一実施形態に係る蓄電装置の制御方法は、各セルについて、セル製造時点から所定の経過時間後の満充電容量を算出し、各セルについて、セル製造時点から前記所定の経過時間後の残存容量をセル電圧から取得し、各セルの満充電容量と残存容量から、セル製造時点から前記所定の経過時間後の各セルの放電容量を算出し、算出した各セル間の放電容量のばらつきを均等化する。
 上記(6)に記載の蓄電装置の制御方法によれば、セル製造時点からの時間経過で発生するセル間の放電容量ばらつきを解消することができる。セル間の放電容量ばらつきを解消することにより、セルが過充電や過放電に至ることを抑制でき、また、過充電や過放電を起こさせないような過度の安全制御を最小限にできることで、セルが持つ性能(パフォーマンス)を十分に発揮させることができる。
 <実施形態>
1.蓄電装置50の説明
 図1に示すように、車両10には、エンジン20と、エンジン20の始動等に用いられる蓄電装置50とが搭載されている。車両10には、エンジン20(内燃機関)に加えて、またはエンジン20に代えて、車両にモーターが搭載され、そのモーターの電力源として蓄電装置が搭載されていてもよい。
 図2に示すように、蓄電装置50は、組電池60と、回路基板ユニット105と、収容体71を備える。収容体71は、合成樹脂材料からなる本体73と蓋体74とを備える。本体73は有底筒状であり、底面部75と、4つの側面部76と、を備える。4つの側面部76によって、本体73の上端に開口部77が形成されている。
 収容体71は、組電池60と回路基板ユニット105を収容する。回路基板ユニット105は、回路基板100上に各種部品(後述する図5の電流遮断装置、電流検出部、バランサや管理装置等)を搭載した基板ユニットであり、図2に示すように組電池60の、例えば上方に隣接して配置されている。代替的に、回路基板ユニット105は、組電池60の側方に隣接して配置されていてもよい。
 蓋体74は、本体73の開口部77を閉鎖する。蓋体74の周囲には外周壁78が設けられている。蓋体74は、平面視略T字形の突出部79を有する。蓋体74の前部のうち、一方の隅部に正極の外部端子51が固定され、他方の隅部に負極の外部端子52が固定されている。回路基板ユニット105は、収容体71の本体73に代えて、蓋体74内に(例えば突出部79内に)収容されていてもよい。
 組電池60は、複数のセル62から構成されている。図3に示すように、セル62は、直方体形状のケース82に電極体83を非水電解質と共に収容したものである。セル62は、例えばリチウムイオン二次電池セルである。ケース82は、ケース本体84と、その上方の開口部を閉鎖する蓋85とを有している。
 電極体83は、詳細は図示しないが、銅箔からなる基材に活物質を塗布した負極板と、アルミニウム箔からなる基材に活物質を塗布した正極板との間に、多孔性の樹脂フィルムからなるセパレータを配置する。これらはいずれも帯状をなしており、セパレータに対して負極板と正極板とを短手方向でそれぞれ位置を反対にずらした状態で、扁平状に巻回されている。電極体83は、巻回タイプのものに代えて、積層タイプのものであってもよい。
 正極板には正極集電体86を介して正極端子87が、負極板には負極集電体88を介して負極端子89がそれぞれ接続されている。正極集電体86及び負極集電体88は、平板状の台座部90と、この台座部90から延びる脚部とを有する。台座部90には貫通孔が形成されている。
 正極端子87及び負極端子89は、端子本体部92と、その下面中心部分から下方に突出する軸部93とからなる。正極端子87の端子本体部92と軸部93とは、アルミニウム(単一材料)によって一体成形されている。負極端子89においては、端子本体部92がアルミニウム製で、軸部93が銅製であり、これらが組み付けられている。正極端子87及び負極端子89の端子本体部92は、蓋85の両端部に絶縁材料からなるガスケット94を介して配置され、図4に示すように、このガスケット94から外方へ露出されている。
 蓋85は、圧力開放弁(安全弁)95を有している。圧力開放弁95は、例えば正極端子87と負極端子89の間に位置している。圧力開放弁95は、ケース82の内圧が制限を超えた場合に、開放してケース82の内圧を下げる。
 図5は、蓄電装置50の電気的構成を示すブロック図である。蓄電装置50は、組電池60と、電流検出部54と、電流遮断装置53と、バランサ65と、電圧計測部110と、温度センサ58と、管理装置130と、を備える。
 組電池60のセル62は、例えば12個あり(図2参照)、3並列で4直列に接続されている。図5は、並列に接続された3つのセル62を1つの電池記号で表している。セルは、円筒型セルであってもよいし、ラミネートフィルムケースを有するパウチセルであってもよい。
 組電池60、電流遮断装置53及び電流検出部54は、パワーライン55P、パワーライン55Nを介して、直列に接続されている。パワーライン55P、55Nは、銅などの金属材料からなる板状導体であるバスバーBSB(図2参照)を用いることが出来る。
 図5に示すように、パワーライン55Pは、正極の外部端子51と組電池60の正極とを接続する。パワーライン55Nは、負極の外部端子52と組電池60の負極とを接続する。外部端子51、52は、車両10に備わる電気負荷との接続用端子である。
 電流遮断装置53は、正極のパワーライン55Pに設けられている。電流遮断装置53は、FETなどの半導体スイッチでも、機械式の接点を有するリレーでもよい。電流遮断装置53はラッチリレーなどの自己保持型スイッチであることが好ましい。電流遮断装置53はノーマリクローズタイプであり、正常時、クローズ状態に制御される。蓄電装置50に異常が生じた場合、電流遮断装置53をクローズ状態からオープン状態に切り換えることで、組電池60の電流Iを遮断できる。
 電流検出部54は、負極のパワーライン55Nに設けられている。電流検出部54は、シャント抵抗でもよい。抵抗式の電流検出部54は、電流検出部54の両端電圧Vrに基づいて、組電池60の電流Iを計測することができる。抵抗式の電流検出部54は、電圧Vrの極性(正負)から放電と充電を判別できる。代替的に、電流検出部54は、磁気センサでもよい。
 電圧計測部110は、各セル62A~62Dの電圧Vsと、組電池60の総電圧Vabを計測することができる。温度センサ58は、組電池60に取り付けられており、組電池60の温度を検出する。
 バランサ65は、セル62の電圧Vsの均等化に用いられ、図6に示すように、本実施形態では4つのセル放電回路66A~66Dからなる。
 各セル放電回路66A~66Dは、各セル62A~62Dに対して並列に接続されている。各セル放電回路66A~66Dは、放電抵抗67とスイッチ68から構成されている。スイッチ68をオンすることで、対応するセル62を放電することができる。
 管理装置130は、回路基板100(図2参照)上に実装されており、図5に示すように、CPU131と、メモリ132と、通信部133を備える。通信部133は、通信ポート134を介して車両ECUと接続する。
 管理装置130は、電圧計測部110、電流検出部54、温度センサ58の出力に基づいて、蓄電装置50の状態を監視する。つまり、管理装置130は、各セル62のセル電圧Vs、組電池60の温度、電流I、総電圧Vabを監視する。管理装置130は、「制御部」に相当する。
 メモリ132には、セル62A~62Dの放電容量DCを調整する均等化処理の実行プログラム、並びに、これらプログラムの実行に必要なデータが記憶されている。メモリ132に記憶されたデータには、例えば、次に説明するセル62のSOC-OCV特性のデータや、セル製造時における各セル62の満充電容量の検査データ(後述)等が含まれている。
 プログラムは、電気通信回線を用いて配信されてもよい。
2.セル62のSOC-OCV特性
 図7は、一例として、正極にリン酸鉄系(LiFePO4)の活物質、負極に炭素系の活物質を用いたLFPセル62の、横軸をSOC[%]、縦軸をOCV[V]とした、SOC-OCV特性を示すグラフである。OCV(Open Circuit Voltage)は、分極の影響が無い、無電流時のセル電圧、又は無電流とみなせる時のセル電圧Vsであってもよい。無電流とみなせる場合とは、電流が所定値以下の場合(例えば、暗電流が流れる場合)である。
 SOCは、満充電容量[Ah]に対する残存容量[Ah]の比率であり、(1)式にて表される。
 SOC=(Y/X)×100・・・・・・・・・・(1)
 ここで、Xはセルの満充電容量、Yはセルの残存容量(セルに蓄えられている電気量)である。
 SOC-OCV特性において、セル62は、プラトー領域F0、第1急変化領域F1及び第2急変化領域F2を有している。プラトー領域F0は、SOCがSOC2(30%)~SOC1(95%)の範囲である。プラトー領域F0は、SOC変化に対するOCV変化が所定値以下であり、グラフがほぼ平坦な領域である。
 第1急変化領域F1は、SOCがSOC1以上の領域、第2急変化領域F2は、SOCがSOC2以下の領域である。第1急変化領域F1と第2急変化領域F2はいずれも、プラトー領域F0と比較してグラフの傾きが大きく、SOC変化に対してOCVが急激に変化する。
 セル62は第1急変化領域F1を有しているため、充電末期の満充電付近(図7のA部)において、セル電圧Vsが急激に上昇する。また、セル62は、第2急変化領域F2を有しているため、放電終期(図7のB部)において、セル電圧Vsが急激に低下する。
 このような特性を有するセル62は、LFPセルに限定はされない。
3.製造工程での放電容量均等化方法
 蓄電装置50の製造工程は、例えば、図8に示すように、セルの製造工程S1と、保管工程S2と、蓄電装置組立工程S3とを含む。保管工程S2をスキップして、直ぐに蓄電装置組立工程S3に進む場合もある。
 S1はセル62を製造する工程、S2は製造したセル62を温度管理された所定の倉庫等に移動して保管する工程である。S3は、部品(電槽20、蓋部材50、セル62A~62D及び回路基板ユニット105等)の組み立てを行って、蓄電装置50を生産する工程である。
 蓄電装置における、複数セル間の放電容量ばらつきの要因には、次のものがある。
(1)セル製造時におけるセル間の満充電容量ばらつき(セルの個体差に起因)
(2)蓄電装置製造時の保管や輸送に伴うセル間の満充電容量の劣化ばらつき
(3)セル製造後におけるセル間のセル自己放電ばらつき(セルの個体差に起因)
 以下、蓄電装置製造工程(セル製造から蓄電装置組立まで)において、発生する各セル間の放電容量ばらつきを解消する方法について開示する。
 図9は、放電容量均等化方法のフローチャートである。放電容量均等化方法は、直列に接続されたセル62A~62Dの放電容量DCを均等化するために、S10~S80の8つのステップから構成されている。
 放電容量の均等化(S20~S80)は、図8に示すように、蓄電装置50の組立後、かつ出荷前に実施される工程である。
 セル製造時に各セル62A~62Dの満充電容量X1[Ah]を計測する(図10参照)。S10において、蓄電装置組立後、蓄電装置50に内蔵される管理装置130のメモリ132に対して、セル製造時の各セル62の満充電容量X1の計測結果を入力する。以下で、詳しく説明する。
 S20以降は、蓄電装置50組立完了時点以降の流れである。S20において、管理装置130は、蓄電装置50の組立完了時点における、各セル62A~62Dの満充電容量初期値X2[Ah]を推定する(図10参照)。満充電容量初期値X2は、蓄電装置50組立後、管理装置130の起動時点(データ処理開始時)の満充電容量である。後述する残存容量初期値Y2も同様である。
 満充電容量初期値X2は、(2)式に示すように、セル製造時の満充電容量X1からセル製造後の時間経過(所定の時間経過、或いは任意の時間経過を指す)に伴う減少量ΔXを減じることにより、推定することが出来る。
 X2=X1-ΔX・・・・(2)
 セルは放置していても自然に劣化する(放置劣化、或いは経時劣化とも呼ぶ)ため、満充電容量は減少量ΔXだけ減ってしまう。これは意図しない不可逆反応であり、満充電容量減少の要因のひとつである。
 本この減少量ΔXを算出するステップは、放電容量のばらつきを均等化するための重要なステップである。
 本実施形態では、満充電容量X1の減少量ΔXを、セル製造時点からの時間経過に加え、セルの温度履歴(保管時や輸送時の環境温度)を考慮して、決定する。経過時間に加え、セルの温度履歴を考慮することで、満充電容量X1の減少量ΔXを精度よく算出することが出来る。放置劣化量、すなわち減少量ΔXは時間(例えば、時間のルート、又はn乗根ルート)に依存するとともに、温度に依存する定数に比例する関係にある。
 上述の意図しない反応も、反応速度は温度に依存する。
 したがって、温度も減少量ΔXに影響を与える重要な要素である。なお、厳密には各セルに固有の劣化現象が進行するが、材料(関係する物質)と構成が同一であれば、ΔXは略一致することが多い。
 各セルに対して上述した(2)の劣化のばらつきについては、材料(関係する物質)と構成が同一であれば、無いものと考えてよい。
 以降では、セル製造時点から蓄電装置50組立完了時点までの各セルの温度は、同じ変化をするものとする。
 さらに、各セルの温度履歴と、セル製造時点から蓄電装置50組立完了時点までの時間経過が同じであれば(同一条件で保管されていれば)、放置劣化量、すなわち減少量ΔXは同一であると見なすことができる。
 S30において、管理装置130は、蓄電装置50の組立完了時点における、各セル62の残存容量初期値Y2[Ah]を決定する(図10参照)。なお、セル製造時点から蓄電装置50組立完了時点までの時間経過は、サーバー等を利用した工程の時間管理など、何らかの時間管理から求めることが出来る。セルに予めコード(バーコードや2次元コード)をプリントし、セル製造時点での時刻を記憶させてもよい。つまり、蓄電装置50の組立時にコードの情報をリーダ等で読み取り、コードに記憶したセル製造時点の時刻から蓄電装置50組立完了時点までの時刻より、セル製造時点から蓄電装置50組立完了時点までの時間経過を算出することができる。それにより、放置劣化量でもある減少量ΔXを求めることができる。
 セル製造時点から蓄電装置50組立完了時点までの温度変化を加味すると、より精度よく減少量ΔXを求めることができる。上述のように、温度変化が生じた場合、ある温度近傍では定数に時間依存する量(その温度近傍の状態である時間)を掛けることで、ある温度における区間放置劣化量が求まり、その区間放置劣化量を足し合わせて、全体の放置劣化量、すなわち減少量ΔXを求めることができる。
 以下に、具体的な例を述べるが、あくまでも一例であって、この方法以外でも構わない。先ず、エージング・蓋取り付け終了後、セル62A~62Dの容量を測定する。セルの電圧、および電流を測定し、電流積算値とSOC-OCV特性の関係からセルの容量を取得する。これで各セル62A~62Dの満充電容量X1を取得することができる。
 測定後、各セル62A~62Dを、放電させる。この時点で、各セル62A~62Dの電圧を測定し、SOC-OCV特性の関係から残存容量初期値Y1を取得することができる。上述のように、この時点で時刻情報を入手する。その情報を製造・工程管理サーバーに保存してもよく、バーコードや2次元コード等に情報を記録してもよい。以降の制御ステップは、製造・工程管理サーバーが行ってもよく、管理装置130が行ってもよい。また、製造時に作業員が用いる作業ツール(パソコン、タブレットなどの専用端末)でもよい。
 次に、蓄電装置50の組立工程に移る。作業員、あるいは製作機械は組電池62を組み上げ、管理装置130など、他の部位を取り付けて、蓄電装置50を組立完了する。
 その後、上述のように、セル製造時点の時刻をサーバーやセルに添付されてあるバーコードや2次元コード等から取得し、現在の時刻と比較してセル製造時点から蓄電装置50組立完了時点までの時間経過を求める。
 その経過時間から、セル製造時点から蓄電装置50組立完了時点までに各セル62A~62Dが劣化した劣化量、すなわち、放置劣化量でもある減少量ΔXを求めることができる。次に、各セル62A~62Dのセル電圧Vsを、電圧計測部110を用いて計測する。セル電圧Vsの計測値から、図7に示すSOC-OCV特性を参照して、各セル62A~62DのSOC[%]を求める。
 この実施形態では、例えば、蓄電装置50の組立完了時、図7に示す、第2急変化領域F2の特性(SOC-OCV)を用いて、各セル62A~62DのSOCを求める。そのため、各セル62A~62DのSOCを高精度に推定することが出来る。
 ここでは、セル製造時点でのセル容量を求めた後に放電を行い、第2急変化領域F2の特性(SOC-OCV)を用いて、各セル62A~62DのSOCを求めるためである。セルを低SOCにすることで、安全に組み立てを行うことができ、または電池劣化進行を抑えることができる。
 そして、管理装置130は、求めたSOCから、蓄電装置50の組立完了時点における、各セル62A~62Dの残存容量初期値Y2[Ah]を算出する。残存容量初期値Y2は、SOCに満充電容量X2を乗算して求めることが出来る。この実施形態では、残存容量初期値Y2を、SOC-OCV特性を利用して求めたが、残存容量Y-OCV特性を利用して算出してもよい。
 図10に示すΔYは、セル製造時点と蓄電装置組立完了時点における残存容量初期値Y1、Y2の差分である。ΔYは、セル62A~62Dの自己放電によるものである。
 S40において、管理装置130は、S20で算出した満充電容量初期値X2から、S30で算出した残存容量初期値Y2を減算することで、蓄電装置組立時点における各セル62A~62Dの放電容量DC[Ah]を決定する(図10参照)。
 DC=X2-Y2・・・・・(3)
 S50において、管理装置130は、S40で算出した各セル62A~62Dの放電容量DCを比較し、最大放電容量DCmaxのセルを決定する。
 その後、S60において、管理装置130は、(4)式で示すように、最大放電容量DCmaxから放電容量DCを減算して、各セル62A~62Dのバランサ放電容量(バランサ65によって放電すべき電気量)Sを決定する。
 S=DCmax-DC・・・・(4)
 S70において、管理装置130は、S60で算出したバランサ放電容量Sから、各セル62A~62Dの放電時間Tを決定する。
 S80において、管理装置130は、バランサ65を動作させて、S70で算出した放電時間T、各セル62A~62Dを放電する。以上により、各セル62A~62Dの放電容量DCを均等化することが出来る。S20~S80の処理は、例えば、蓄電装置50の組立完了後に行われる。
 図11は、各セル62A~62Dの放電容量DCの変化を示す図であり、(1)はセル製造時点、(2)、(3)は放電容量DCの比較時点、(4)は均等化後の放電容量DCを示している。
 図11の例では、セル62Dが最大放電容量DCmaxを持つセルであり、セル62A~62Cにおいて、S60で算出したバランサ放電容量Sを放電することにより、各セル62A~62Cの放電容量DCを、最大放電容量DCmaxに均等化することが出来る。
 各セル62A~62Dの放電容量DCを均等化することにより、図12に示すように、出荷後、各セル62A~62Dは均等に充電されるため、充電末期に一部のセル62A~62Dの電圧Vsが上昇して、過充電になることを抑制することが出来る。放電時も同じであり、過放電の防止に繋がる(放電の場合、放電容量DCではなくSOCを揃える)。
 また、一部のセル62A~62Dに異常(例えば、内部短絡など)がある場合、蓄電装置製造後、時間経過に伴い、セル電圧Vsに差が生じ、異常セルのセル電圧Vsが低くなる。
 そのため、セル62A~62Dを、所定時間放置し、セル電圧Vsを比較することで、出荷前に、セル62A~62Dの異常を検出することも出来る。また、異常劣化しているセル等、正常なセルよりも満充電容量が少ないセルを検出することができる。
 図13は、放電容量DCのばらつき解消に関するデータ処理を、演算ブロックにより示したものである。また、この例では、管理装置130が一連の処理を行う場合を説明する。図13の演算ブロックにおいて、CPU131は、第1演算ブロック131A、第2演算ブロック131B、第3演算ブロック131C、第4演算ブロック131D、第5演算ブロック131Eを有している。
 第1演算ブロック131Aは、セル製造後の経過時間と温度履歴の情報に基づいて、各セル62A~62Dの満充電容量X1の減少量ΔXを算出する。第2演算ブロック131Bは、セル製造時における満充電容量X1の検査データと、第1演算ブロック131Aにより算出される満充電容量X1の減少量ΔXに基づいて、蓄電装置組立完了時点における各セル62A~62Dの満充電容量初期値X2を算出する。
 第3演算ブロック131Cは、蓄電装置組立完了時点におけるセル電圧Vsの計測値に基づいて、各セル62A~62Dの残存容量初期値Y2を算出する。第4演算ブロック131Dは、第2演算ブロック131Bの算出した満充電容量初期値X2と第3演算ブロック131Cの算出した残存容量初期値Y2から、各セル62A~62Dの放電容量DCを算出する。
 そして、第5演算ブロック131Eは、第4演算ブロック131Dにて算出した各セル62A~62Dの放電容量DCを比較して、最大放電容量DCmaxを決定すると共に、各セル62A~62Cのバランサ放電容量Sを算出する。
 図13の機能ブロックは、最大放電容量DCや各セル62のバランサ放電容量Sを算出するために必要なデータ処理を示したものであり、CPU131は、これらの処理を専用の演算回路で実行してもよいし、プログラムで実行してもよい。
4.効果
 本開示によれば、セル製造時点から発生するセル間の放電容量DCのばらつきを解消することにより、過充電や過放電に至ることを抑制することができ、セル62が持つ性能(パフォーマンス)を十分に発揮させる。
 また、蓄電装置製造後、セル62A~62Dを満充電まで充電しなくても、セル62A~62Dの放電容量DCを均等化できるから、専用の充電装置を用いた定電圧充電(CV充電)が不要であり、作業時間(タクトタイム)が長くなることもない。そのため、蓄電装置50の早期納品が可能な点で、メリットがある。
 本開示によれば、セル製造後の経過時間に加えて、温度履歴の情報を加味するから、セル製造後の満充電容量X1の減少量ΔXを精度よく推定できる。特に、蓄電装置50の製造工程(セル製造から蓄電装置組立まで)は温度管理されている場合が多く、確度の高い温度履歴が得られる。そのため、満充電容量X1の減少量ΔXの推定誤差が小さく、セル62の放電容量DC及び放電容量ばらつきを精度よく推定できる。
 本開示によれば、S30において、低SOCの急変化領域F2(図7B部)を利用して、SOCを推定するから、セル62を高SOCの急変化領域F1まで充電しなくても、各セル62A~62DのSOCを高精度に推定できる。
 本開示によれば、セル62の満充電容量初期値X2を高精度に推定することが出来るから、セル62の寿命予測の精度改善も期待できる。
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 (1)セル(繰り返し充放電可能な蓄電セル)62は、リチウムイオン二次電池セルに限らず、他の非水電解質二次電池セルでもよい。二次電池セル62に代えて、キャパシタを用いることも出来る。また、セルのSOC―OCV特性は、図7に示すようなプラトー領域を有する特性に限らず、プラトー領域を有さない特性でもよい。
 (2)上記実施形態では、蓄電装置50を車両(自動車)10に搭載したが、船舶や航空機など車両以外の移動体に搭載してもよい。また、移動体に限らず、分散型発電システムにおける変動吸収用の蓄電装置やUPS(無停電電源装置)など、定置用途に用いてもよい。
 (3)上記実施形態では、バランサ65を、抵抗を用いた放電回路66としたが、セル62を個別に放電可能であれば、バランサはどのような回路でもよい。抵抗以外の回路素子を用いて、セル62を放電してよい。
 (4)上記実施形態では、放電容量DCの均等化(バランサによるバランサ放電容量Sの放電)を、蓄電装置50の組立完了から出荷までの期間に実施した。必要なデータをメモリ132に記憶しておけば、セル製造時点から所定の時間経過後の各セル62の満充電容量X2を求めることが出来る。そのため、セル製造時点から前記所定の時間経過後の各セル62の満充電容量X2と、セル製造時点から前記所定の時間経過後の各セル62の残存容量Y2とに基づいて各セル62の放電容量DCを算出し、セル製造時から所定の時間が経過した時点(出荷後や車載後)において、セル間の放電容量DCの均等化を実施することも可能である。必要なデータは、セル製造時の満充電容量X1の検査データ、セル製造後の経過時間、温度履歴等の情報である。
 (5)上記実施形態では、セル62の満充電容量X1の減少量ΔXを、セル製造後の経過時間と温度履歴に基づいて算出した。例えば、セル製造後、温度変化がほとんどない場合、セル62の満充電容量X1の減少量ΔXを、セル製造後の経過時間のみに基づいて算出してもよい。
 (6)上記実施形態では、最大放電容量のセル62を基準として、各セル62を放電することにより、各セル62の放電容量DCを均一化した。放電容量DCの浅いセル62を放電する方法であれば、実施形態以外の方法で、各セル62の放電容量DCを均一化してもよい。
 (7)また、上記実施形態では放電容量DCを用いて、セル62の放電容量バラツキを解消する技術を説明したが、SOC(充電状態)を用いても、本願発明の課題を解決することができる。例えば、セル製造時点から所定の時間経過後における各セル62のセル電圧Vsを電圧計測部110により計測し、セル電圧Vsの計測値からSOC-OCV特性を参照して、セル製造時点から所定の時間経過後における各セル62のSOCを算出することが出来る。算出した各セル62のSOCを比較することで、セル間のSOC差を求めることが出来、求めたSOC差をバランサ65により調整することにより、各セル62のSOCを均等化することが出来る。
 SOCは相対値(満充電容量X2と残存容量Y2の比率)であることから、SOC差がゼロでも、満充電容量X2の違いにより、残存容量Y2の差が生じる場合がある。そのため、SOCを均等化する際に、セル製造時から所定の時間経過時点の各セル62のSOCに加えて、セル製造時から所定の時間経過時点の満充電容量X2を考慮してもよい。
 つまり、複数セル62のSOC(充電状態)のばらつきを、各セル62のSOC差に加えて、セル製造時から所定の時間経過時点の各セル62の満充電容量X2に基づいて、調整してもよい。
 例えば、SOC差から算出した各セル62の放電時間を、満充電容量X2を用いて補正する。満充電容量X2の多いセル62は、満充電容量X2の少ないセル62よりも、放電時間Tを長くする。そして、バランサ65により、各セル62を補正後の放電時間、放電する。このようにすることで、満充電容量X2の違いを考慮しつつ、セル間の残存容量差、SOC差を高精度に均等化できる。放電時間の補正(調整)に限らず、他の方法で、満充電容量を考慮しても勿論よい。セル製造時から所定の時間経過時点の満充電容量X2は、セル製造時の満充電容量X1と、セル製造時点からの時間経過に伴う満充電容量X1の減少量ΔXとに基づいて算出できる点は、実施形態1に記載した通りである。このように、放電容量DCをSOC(state of charge:充電状態)に置き換えて、同様にバランサを制御することができる。さらに、SOCを充電状態と定義したが、これは定義の問題であり、充電状態を電圧や電気量に置き換えて考えることもできる。したがって、放電容量DCを電圧や電気量等の変数に置き換えて、同様に制御できる。
 10 車両
 50 蓄電装置
 60 組電池
 62 セル
 65 バランサ
 66 セル放電回路
 110 電圧計測部
 130 管理装置(制御部)

Claims (6)

  1.  直列に接続された複数のセルと、
     前記複数のセルについて放電容量のばらつきを調整するバランサと、
     制御部と、を備え、
     前記制御部は、
     セル製造時点から所定の時間経過後の各セルの満充電容量と、セル製造時点から前記所定の時間経過後の各セルの残存容量とに基づいて、各セルの放電容量を算出し、
     セル製造時点から前記所定の時間経過後の各セルの放電容量のばらつきを、前記バランサにより調整する、蓄電装置。
  2.  直列に接続された複数のセルと、
     前記セルの各々の電圧を計測する電圧計測部と、
     前記複数のセルについて充電状態のばらつきを調整するバランサと、
     制御部と、を備え、
     前記制御部は、
     セル製造時点から所定の時間経過後の各セルの満充電容量を算出し、
     前記セル製造時点から前記所定の時間経過後における各セルの充電状態を、前記電圧計測部によるセル電圧の計測値に基づいて算出し、
     前記セル製造時点から前記所定の時間経過後における各セルの前記充電状態の差を、各セルの前記充電状態から算出し、
     複数セルの充電状態のばらつきを、前記各セルの満充電容量と前記各セルの充電状態の差に基づいて、前記バランサにより調整する、蓄電装置。
  3.  請求項1又は請求項2に記載の蓄電装置であって、
     前記制御部は、セル製造時点のセルの満充電容量と、セル製造時点からの時間経過に伴う満充電容量の減少量とに基づいて、セル製造時点から前記所定の時間経過後の各セルの満充電容量を算出する、蓄電装置。
  4.  請求項3に記載の蓄電装置であって、
     前記制御部は、セル製造後の経過時間と温度履歴の情報に基づいて、セル製造後の経過時間に伴う満充電容量の減少量を算出する、蓄電装置。
  5.  直列に接続された複数セルについて放電容量のばらつきをバランサにより調整する複数セルの制御方法であって、
     セル製造時点から所定の時間経過後の各セルの満充電容量と、セル製造時点から前記所定の時間経過後の各セルの残存容量とに基づいて、各セルの放電容量を算出し、
     セル製造時点から前記所定の時間経過後の各セルの放電容量のばらつきを、前記バランサにより調整することにより、各セルの放電容量を均等化する、複数セルの制御方法。
  6.  直列に接続された複数のセルを有する蓄電装置の制御方法であって、
     各セルについて、セル製造時から所定の経過時間後の満充電容量を算出し、
     各セルについて、セル製造時から前記所定の経過時間後の残存容量をセル電圧から取得し、
     各セルの満充電容量と残存容量から、セル製造時から前記所定の経過時間後の各セルの放電容量を算出し、各セルの放電容量のばらつきを調整する、蓄電装置の制御方法。
PCT/JP2023/037972 2022-10-27 2023-10-20 蓄電装置、複数セルの制御方法及び蓄電装置の制御方法 WO2024090338A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-172183 2022-10-27
JP2022172183A JP2024063964A (ja) 2022-10-27 2022-10-27 蓄電装置、複数セルの制御方法及び蓄電装置の制御方法

Publications (1)

Publication Number Publication Date
WO2024090338A1 true WO2024090338A1 (ja) 2024-05-02

Family

ID=90830841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037972 WO2024090338A1 (ja) 2022-10-27 2023-10-20 蓄電装置、複数セルの制御方法及び蓄電装置の制御方法

Country Status (2)

Country Link
JP (1) JP2024063964A (ja)
WO (1) WO2024090338A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010220380A (ja) * 2009-03-17 2010-09-30 Nissan Motor Co Ltd 組電池の容量調整装置
WO2012143996A1 (ja) * 2011-04-18 2012-10-26 日立ビークルエナジー株式会社 蓄電装置
CN102969772A (zh) * 2012-12-12 2013-03-13 山东省科学院自动化研究所 基于绝对可充放容量的全阶段动力锂电池均衡方法及装置
JP2013121242A (ja) * 2011-12-07 2013-06-17 Toyota Industries Corp Soc推定装置及び電池パック
JP2019062695A (ja) * 2017-09-27 2019-04-18 トヨタ自動車株式会社 組電池の制御システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010220380A (ja) * 2009-03-17 2010-09-30 Nissan Motor Co Ltd 組電池の容量調整装置
WO2012143996A1 (ja) * 2011-04-18 2012-10-26 日立ビークルエナジー株式会社 蓄電装置
JP2013121242A (ja) * 2011-12-07 2013-06-17 Toyota Industries Corp Soc推定装置及び電池パック
CN102969772A (zh) * 2012-12-12 2013-03-13 山东省科学院自动化研究所 基于绝对可充放容量的全阶段动力锂电池均衡方法及装置
JP2019062695A (ja) * 2017-09-27 2019-04-18 トヨタ自動車株式会社 組電池の制御システム

Also Published As

Publication number Publication date
JP2024063964A (ja) 2024-05-14

Similar Documents

Publication Publication Date Title
US20210098998A1 (en) Battery system and method for controlling battery system
EP2700966B1 (en) Apparatus and method for estimating battery state
US20200094707A1 (en) Estimation device, energy storage apparatus, estimation method
US10800261B2 (en) Battery state estimation apparatus, assembled battery, energy storage system, and methods of using the same
WO2017122758A1 (ja) 蓄電素子管理装置、蓄電素子モジュール、車両および蓄電素子管理方法
US20180041054A1 (en) Energy storage apparatus for engine start-up, method for controlling the same, and vehicle
JP2007244142A (ja) 電池群制御装置及び電池電源システム
EP3605125A1 (en) Stored electricity amount estimating device, electricity storage module, stored electricity amount estimating method, and computer program
CN114096433A (zh) 用于管理电池的设备和用于管理电池的方法
WO2022249943A1 (ja) 推定装置、蓄電装置、推定方法
JP2003243042A (ja) 組電池を構成するリチウム電池の劣化度検知装置および方法
WO2022259766A1 (ja) 蓄電装置、及び、蓄電装置の異常放電検出方法
WO2024090338A1 (ja) 蓄電装置、複数セルの制御方法及び蓄電装置の制御方法
US20240162512A1 (en) Energy storage apparatus, and method of controlling energy storage apparatus
JP7375473B2 (ja) 蓄電量推定装置、蓄電量推定方法及びコンピュータプログラム
JP2020053202A (ja) 蓄電素子の管理装置、蓄電装置、及び、蓄電素子の管理方法
WO2024043044A1 (ja) 検出装置、蓄電装置、及び、検出方法
WO2023139973A1 (ja) 推定装置、蓄電装置、推定方法及びプログラム
WO2022249784A1 (ja) 補正装置、蓄電装置、補正方法
WO2022264698A1 (ja) 蓄電装置、及び、蓄電装置の制御方法
WO2023286503A1 (ja) 蓄電装置、電流遮断装置の故障診断方法
JP6969307B2 (ja) 管理装置、蓄電システム、蓄電素子の残存容量を均等化する方法、蓄電素子の内部状態を推定する方法
WO2023238697A1 (ja) 管理装置、蓄電装置及び電圧シミュレーション方法
JP2023008149A (ja) 蓄電装置、組電池の異常検出方法
WO2024004780A1 (ja) 推定装置、蓄電装置、推定方法及びコンピュータプログラム