WO2022259766A1 - 蓄電装置、及び、蓄電装置の異常放電検出方法 - Google Patents

蓄電装置、及び、蓄電装置の異常放電検出方法 Download PDF

Info

Publication number
WO2022259766A1
WO2022259766A1 PCT/JP2022/018004 JP2022018004W WO2022259766A1 WO 2022259766 A1 WO2022259766 A1 WO 2022259766A1 JP 2022018004 W JP2022018004 W JP 2022018004W WO 2022259766 A1 WO2022259766 A1 WO 2022259766A1
Authority
WO
WIPO (PCT)
Prior art keywords
electricity
balancer
discharged
amount
power storage
Prior art date
Application number
PCT/JP2022/018004
Other languages
English (en)
French (fr)
Inventor
佑樹 今中
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to CN202280054408.XA priority Critical patent/CN117795812A/zh
Priority to US18/567,658 priority patent/US20240275194A1/en
Priority to DE112022003004.6T priority patent/DE112022003004T5/de
Publication of WO2022259766A1 publication Critical patent/WO2022259766A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]

Definitions

  • the present invention relates to a power storage device and an abnormal discharge detection method for the power storage device.
  • Storage cells such as lithium-ion batteries are susceptible to metal contamination (foreign substances not used as raw materials are mixed in between manufacturing, packaging, and transportation; hereinafter abbreviated as metal contamination) inside the storage cell. may cause a minute internal short circuit (an example of abnormal discharge).
  • metal contamination foreign substances not used as raw materials are mixed in between manufacturing, packaging, and transportation; hereinafter abbreviated as metal contamination
  • a minute internal short circuit an example of abnormal discharge
  • a failure migration, dendrite, etc.
  • a minute discharge an example of abnormal discharge
  • the battery management system described in Patent Document 1 includes a cell balancing unit that balances a plurality of battery cells.
  • the battery management system compares the difference between the maximum value (CB_max) of the cell balancing discharge capacity of each battery cell and the cell balancing discharge capacity (CB_n) of each battery cell with a reference value (REF), A battery cell whose difference is greater than the reference value is determined to be a short-circuited battery cell.
  • Patent Document 1 In the case of the battery management system described in Patent Document 1 mentioned above, it is necessary to appropriately determine the reference value (REF) in order to accurately determine whether an internal short circuit has occurred. However, Patent Document 1 does not disclose how to determine the reference value, and there is room for improvement in determining an appropriate reference value.
  • This specification discloses a technique that can appropriately determine a reference value for determining whether or not abnormal discharge occurs in the storage cell with the smallest balancer discharge quantity of electricity.
  • a power storage device includes a plurality of power storage cells, a balancer circuit that discharges each power storage cell individually, and a management unit.
  • the management unit discharges storage cells having a relatively high voltage or remaining amount of electricity by the balancer circuit to reduce a difference in voltage or a difference in remaining amount of electricity between the plurality of storage cells; By comparing the difference between the balancer discharged electricity quantity of the specific storage cell having the smallest balancer discharged quantity of electricity discharged by the balancer circuit and the balancer discharged quantity of electricity of the other storage cells with a reference value, the abnormality of the specific storage cell is detected.
  • Determination processing for determining whether or not discharge is occurring, variation in the amount of electricity discharged by the balancer of the plurality of storage cells during the predetermined period, and variation in the amount of self-discharged electricity of the plurality of storage cells during the predetermined period. and a determination process of determining the reference value based on at least one of them.
  • FIG. 4A Block diagram showing the electrical configuration of a power storage device Schematic diagram for explaining the operation of the balancer circuit Flowchart of internal short-circuit judgment processing Schematic diagram for explaining the plateau region Schematic diagram for explaining variations in the amount of electricity in a storage cell
  • a power storage device includes a plurality of power storage cells, a balancer circuit that discharges each power storage cell individually, and a management unit.
  • the management unit discharges storage cells having a relatively high voltage or remaining amount of electricity by the balancer circuit to reduce a difference in voltage or a difference in remaining amount of electricity between the plurality of storage cells; By comparing the difference between the balancer discharged electricity quantity of the specific storage cell having the smallest balancer discharged quantity of electricity discharged by the balancer circuit and the balancer discharged quantity of electricity of the other storage cells with a reference value, the abnormality of the specific storage cell is detected.
  • Determination processing for determining whether or not discharge is occurring, variation in the amount of electricity discharged by the balancer of the plurality of storage cells during the predetermined period, and variation in the amount of self-discharged electricity of the plurality of storage cells during the predetermined period. and a determination process of determining the reference value based on at least one of them.
  • the above-mentioned “amount of electricity discharged from the balancer of the other storage cells” may be the amount of electricity discharged from the balancer of any one of the other storage cells, or the amount of electricity discharged from the balancer of any one of the other storage cells. It may be the average value of the balancer discharged quantity of electricity, or the median value of the balancer discharged quantity of electricity of the other two or more storage cells. In the case of any one of the other storage cells, even if the other one of the storage cells is the storage cell with the smallest balancer-discharged quantity of electricity in the predetermined period after the storage cell with the smallest balancer-discharged quantity of electricity. Alternatively, it may be the storage cell that discharges the largest amount of electricity from the balancer in a predetermined period.
  • the self-discharged quantity of electricity [Ah] of the storage cell varies depending on the state of charge, temperature, etc. of the storage cell, but the self-discharged quantity of electricity may vary even if the state of charge, temperature, etc. are the same. For example, consider a case where there are two storage cells and no abnormal discharge has occurred in any of the storage cells. In this case, the difference between the balancer-discharged amounts of electricity of the two storage cells in a predetermined period should ideally be 0, but in practice the difference occurs due to variations in the self-discharged amounts of electricity.
  • the control unit uses the balancer circuit to reduce the difference in the voltage or the difference in the remaining amount of electricity between the two storage cells. It corresponds to the true value of the variation in the amount of discharge electricity.
  • variations in the balancer discharged electricity amount may cause a difference in the balancer discharged electricity amount.
  • the balancer discharge quantity of electricity may vary due to the tolerance of the discharge resistance.
  • the balancer circuit discharges the storage cells in which the abnormal discharge has occurred. A large difference occurs in the quantity that cannot be explained by variations in the amount of self-discharged electricity and variations in the amount of electricity discharged by the balancer.
  • the reference value is determined based on at least one of the variation in the balancer-discharged amount of electricity of the plurality of storage cells during the predetermined period and the variation in the self-discharged amount of electricity of the plurality of storage cells during the predetermined period. Therefore, the reference value for determining whether or not an abnormal discharge has occurred in the specific storage cell can be appropriately determined in consideration of variations in the amount of electricity discharged by the balancer and variations in the amount of self-discharged electricity.
  • the case where the number of storage cells is two has been described as an example, but the number of storage cells is not limited to two, and may be three or more.
  • the management unit controls a first parameter that may occur due to the frequency with which the specific storage cell and other storage cells are discharged by the balancer circuit during the predetermined period, and the specific storage cell during the predetermined period.
  • the reference value may be determined based on a second parameter that may occur due to the amount of self-discharged electricity of the cell and other storage cells.
  • the difference between the balancer-discharged quantity of electricity of a specific storage cell and the balancer-discharged quantity of electricity of other storage cells in a predetermined period is the maximum value ( an example of the first parameter) and the maximum value of the difference in the amount of electricity discharged by the balancer that can occur due to variations in the amount of self-discharged electricity (an example of the second parameter).
  • the difference can be explained by the variation in the amount and the variation in the amount of self-discharged electricity.
  • the difference is greater than the above-mentioned total value, the difference cannot be explained by variations in the amount of electricity discharged by the balancer or in the amount of self-discharged electricity, so there is a possibility that the specific storage cell is internally short-circuited. high. Therefore, by determining the above-described summed value as the reference value, it is possible to appropriately determine the reference value for determining whether or not the specific storage cell is internally short-circuited.
  • the reference value is not limited to the sum of the maximum values described above, but may be the square root of each maximum value. Instead of using the maximum value described above, the width of the variation is determined based on the 2 ⁇ of the variation (95% confidence interval in the normal distribution of the balancer discharge quantity of electricity and the self-discharge quantity of electricity), and the sum of the determined widths or The sum of squares may be used as the reference value.
  • An average value of balancer-discharged amounts of electricity of two or more other storage cells may be used as the balancer-discharged amounts of electricity of the other storage cells.
  • the reference value can be determined more appropriately than in the case of using the balancer discharged electricity amount of any one other power storage cell.
  • a temperature measurement unit that measures the temperature of the storage cell, and the management unit associates the temperature and state of charge of the storage cell with the amount of self-discharged electricity of the storage cell for a certain period of time.
  • a recording process is performed to obtain and record variations using a table, and variations in the self-discharged electricity amounts of the plurality of storage cells are summed up among the variations recorded by the recording process during the predetermined period of time. may be asked for.
  • the inventors of the present application have found that variations in the amount of self-discharged electricity of storage cells vary depending on the state of charge (SOC: State of Charge) of the storage cells, the temperature of the storage cells, and the like.
  • SOC state of charge
  • the state of charge (SOC) can also be called the remaining amount of electricity.
  • the variation in the amount of self-discharged electricity of the storage cell is obtained from a table that associates the variation in the amount of self-discharged electricity of the storage cell for a certain period of time for each combination of the temperature of the storage cell and the SOC of the storage cell. Accordingly, it is possible to obtain the variation according to the SOC and temperature of the storage cell.
  • the plurality of storage cells may have a plateau region in which voltage changes are small with respect to changes in state of charge.
  • Storage cells such as lithium-ion secondary batteries may be overcharged or overdischarged due to failure of peripheral devices such as chargers and electrical loads, or variations in the amount of electricity between multiple storage cells. For this reason, in general, when an energy storage device detects an abnormal state of a storage cell, a current interrupting device such as a relay or semiconductor switch connected between the storage cell and the charger (or between the storage cell and the electrical load) is activated. It protects the storage cell by putting it in the interrupted state (open, open, off).
  • a current interrupting device such as a relay or semiconductor switch connected between the storage cell and the charger (or between the storage cell and the electrical load) is activated. It protects the storage cell by putting it in the interrupted state (open, open, off).
  • some storage cells have a plateau region in which the change in open circuit voltage (OCV) of the storage cell with respect to changes in SOC is small.
  • the plateau region is, for example, a region in which the amount of change in OCV with respect to the amount of change in SOC is 2 [mV/%] or less.
  • an LFP/Gr-based (so-called iron-based) lithium-ion battery containing LiFePO4 (lithium iron phosphate) as a positive electrode active material and Gr (graphite) as a negative electrode active material is used.
  • a secondary battery is exemplified.
  • a temperature measurement unit that measures the temperature of the storage cell, and the management unit performs the determination process based on either variation in the amount of electricity discharged by the balancer or variation in the amount of self-discharged electricity Whether to determine the reference value may be determined based on the temperature measured by the temperature measurement unit.
  • the temperature of the storage cell when the temperature of the storage cell is low (when the temperature is low), the variation in the self-discharged electricity amount of the storage cell becomes negligible.
  • a reference value may be determined.
  • the temperature of the storage cell is high (high temperature)
  • the influence of the self-discharged electricity quantity is sufficiently dominant over the balancer discharged electricity quantity, so the variation in the balancer discharged electricity quantity is not used.
  • a reference value may be determined.
  • the reference value When the temperature is between the low temperature and the high temperature (normal temperature), the reference value may be determined based on both the variation in the amount of self-discharged electricity and the variation in the amount of balancer-discharged electricity.
  • inventions disclosed in this specification can be implemented in various forms such as devices, methods, computer programs for realizing the functions of these devices or methods, and recording media recording the computer programs.
  • Embodiment 1 will be described with reference to FIGS. 2 to 7.
  • FIG. 1 the reference numerals in the drawings may be omitted except for some of the same constituent members.
  • FIG. 1 a power storage device 1 is mounted in a vehicle such as an automobile. As shown in FIG. 2, the power storage device 1 supplies power to an engine starter 10 (starter motor) and various accessories 12 (power steering, brakes, headlights, air conditioner, car navigation, etc.) provided in the vehicle. The power storage device 1 is charged by a vehicle generator 13 (alternator).
  • engine starter 10 starter motor
  • accessories 12 power steering, brakes, headlights, air conditioner, car navigation, etc.
  • the power storage device 1 is charged by a vehicle generator 13 (alternator).
  • the power storage device 1 includes a container 71 .
  • the container 71 includes a main body 73 and a lid 74 made of synthetic resin material.
  • the main body 73 has a cylindrical shape with a bottom.
  • the main body 73 has a bottom portion 75 and four side portions 76 .
  • An upper opening 77 is formed at the upper end portion by the four side portions 76 .
  • the housing body 71 houses the assembled battery 30 composed of a plurality of storage cells 30 ⁇ /b>A and the circuit board unit 72 .
  • the circuit board unit 72 is arranged above the assembled battery 30 .
  • a lid 74 closes an upper opening 77 of the body 73 .
  • An outer peripheral wall 78 is provided around the lid body 74 .
  • the lid 74 has a projecting portion 79 that is substantially T-shaped in plan view.
  • a positive external terminal 80P is fixed to one corner of the front portion of the lid 74, and a negative external terminal 80N is fixed to the other corner.
  • the storage cell 30A is a secondary battery that can be repeatedly charged and discharged, specifically a lithium ion secondary battery. More specifically, the storage cell 30A is a lithium ion secondary battery having a plateau region in which the change in OCV with respect to the change in SOC is small. As a lithium ion secondary battery having a plateau region, an iron-based lithium ion secondary battery in which iron is contained in the positive electrode active material is exemplified. Examples of iron-based lithium-ion secondary batteries include LFP/Gr-based lithium-ion secondary batteries containing LiFePO4 (lithium iron phosphate) as a positive electrode active material and Gr (graphite) as a negative electrode active material.
  • LiFePO4 lithium iron phosphate
  • Gr graphite
  • the storage cell 30A includes a rectangular parallelepiped case 82 containing an electrode body 83 together with a non-aqueous electrolyte.
  • the case 82 has a case body 84 and a lid 85 that closes the upper opening.
  • the electrode body 83 is porous between a negative electrode element in which a negative electrode active material is applied to a base material made of copper foil and a positive electrode element in which a positive electrode active material is applied to a base material made of aluminum foil.
  • a separator made of a resin film is arranged. Both of these are belt-shaped, and are wound flat so as to be accommodated in the case main body 84 with the negative electrode element and the positive electrode element shifted to the opposite sides in the width direction with respect to the separator.
  • a positive terminal 87 is connected to the positive element through a positive current collector 86
  • a negative terminal 89 is connected to the negative element through a negative current collector 88
  • the positive electrode current collector 86 and the negative electrode current collector 88 are composed of a flat plate-shaped pedestal portion 90 and leg portions 91 extending from the pedestal portion 90 .
  • a through hole is formed in the base portion 90 .
  • Leg 91 is connected to the positive or negative element.
  • the positive electrode terminal 87 and the negative electrode terminal 89 are composed of a terminal main body portion 92 and a shaft portion 93 projecting downward from the center portion of the lower surface thereof. Among them, the terminal body portion 92 and the shaft portion 93 of the positive electrode terminal 87 are integrally formed of aluminum (single material).
  • the terminal body portion 92 is made of aluminum and the shaft portion 93 is made of copper, and these are assembled together.
  • the terminal body portions 92 of the positive electrode terminal 87 and the negative electrode terminal 89 are arranged at both ends of the lid 85 via gaskets 94 made of an insulating material and are exposed to the outside through the gaskets 94 .
  • the lid 85 has a pressure release valve 95, as shown in FIG. 4A.
  • a pressure relief valve 95 is located between the positive terminal 87 and the negative terminal 89 .
  • the pressure release valve 95 is opened to lower the internal pressure of the case 82 when the internal pressure of the case 82 exceeds the limit value.
  • the assembled battery 30 is connected to a positive external terminal 80P by a power line 34P, and is connected to a negative external terminal 80N by a power line 34N.
  • the assembled battery 30 has 12 storage cells 30A connected in 3 parallel and 4 series. In FIG. 5, three storage cells 30A connected in parallel are represented by one battery symbol.
  • the BMU 31 includes a current sensor 33 , a voltage measurement circuit 35 , a temperature sensor 36 (an example of a temperature measurement section), a balancer circuit 38 , a current interrupter 39 and a management section 37 .
  • the current sensor 33 is positioned on the negative electrode side of the assembled battery 30 and provided on the negative power line 34N.
  • the current sensor 33 measures the charge/discharge current [A] of the assembled battery 30 and outputs it to the management unit 37 .
  • the voltage measurement circuit 35 is connected to both ends of each storage cell 30A by signal lines.
  • the voltage measurement circuit 35 measures the battery voltage [V] of each storage cell 30A and outputs it to the management unit 37 .
  • the total voltage [V] of the assembled battery 30 is the total voltage of the four storage cells 30A connected in series.
  • the temperature sensor 36 is of a contact type or a non-contact type, measures the temperature [° C.] of the storage cell 30A, and outputs it to the management unit 37 . Although omitted in FIG. 5, two or more temperature sensors 36 are provided. Each temperature sensor 36 measures the temperature of the storage cell 30A different from each other.
  • the balancer circuit 38 is a passive balancer circuit 38 that reduces the voltage difference between the storage cells 30A by discharging the storage cells 30A with relatively high voltages.
  • the balancer circuit 38 has a discharge resistor 38A and a switch element 38B for each storage cell 30A.
  • the discharge resistor 38A and the switch element 38B are connected in series and connected in parallel with the corresponding storage cell 30A. When the switch element 38B is turned on, the power of the corresponding storage cell 30A is discharged by the discharge resistor 38A.
  • a current interrupting device 39 is provided on the power line 34P.
  • a contact switch mechanical type such as a relay, a semiconductor switch such as a FET (Field Effect Transistor), or the like can be used.
  • the current interrupting device 39 is switched between an energized state (closed state, on state, closed state) and a cutoff state (open state, off state, open state) by the management unit 37 .
  • the management unit 37 includes a microcomputer 37A in which a CPU, RAM, etc. are integrated into one chip, a storage unit 37B, and a communication unit 37C.
  • the storage unit 37B is a data rewritable storage medium, and stores various programs and data (including tables described later).
  • Microcomputer 37A manages power storage device 1 by executing a program stored in storage unit 37B.
  • 37 C of communication parts are circuits for BMU31 to communicate with vehicle ECU14 (Engine Control Unit).
  • the communication connector 32 is a connector to which a communication cable for communicating between the BMU 31 and the vehicle ECU 14 is connected.
  • (4-1) SOC Estimation Processing Management unit 37 estimates the SOC of power storage device 1 by the current integration method.
  • the current value of the charging/discharging current of the power storage device 1 is measured at predetermined time intervals (10 milliseconds or the like) by the current sensor 33, and the measured current value is adjusted to the initial value, thereby increasing or decreasing the current value of the power storage device 1. It is a method of estimating SOC.
  • the current integration method is an example, and the method of estimating the SOC is not limited to this.
  • the four storage cells 30A are labeled 1 to 4 in FIG.
  • the management unit 37 controls the balancer circuit 38 so that the voltage of the storage cell 30A changes to the storage cell 30A having the lowest voltage among the other storage cells 30A.
  • the voltage difference between the storage cells 30A is reduced by discharging the storage cells 30A so that the voltages of the storage cells 30A become substantially the same as the voltages of the storage cells 30A (reduction process).
  • the difference in SOC (an example of the amount of remaining electricity) between the storage cells 30A may be reduced.
  • the management unit 37 measures the SOC of each storage cell 30A, and when the SOC of one of the storage cells 30A rises to a predetermined SOC, controls the balancer circuit 38 so that the SOC of that storage cell 30A , the storage cell 30A may be discharged so that the SOC of the storage cell 30A having the lowest SOC among the other storage cells 30A becomes substantially the same.
  • the management unit 37 measures the amount of electricity discharged (the amount of electricity discharged by the balancer [Ah]). Specifically, when the management unit 37 discharges a certain storage cell 30A, the voltage measurement circuit 35 measures the voltage of the storage cell 30A. Based on the voltage of the storage cell 30A and the resistance value of the discharge resistor 38A corresponding to the storage cell 30A, the management unit 37 calculates the current value of the current discharged by the balancer circuit 38 every predetermined period according to Ohm's law. do. The management unit 37 measures the amount of electricity discharged from the balancer by integrating the current values calculated for each predetermined period.
  • the management unit 37 stores the measured amount of electricity discharged from the balancer, the variation in the amount of electricity discharged from the balancer described below, and the date and time of discharge. 30A and recorded in the storage unit 37B. Variations in the amount of electricity discharged from the balancer will be described. Since the balancer circuit 38 discharges the storage cell 30A through the discharge resistor 38A, the balancer discharge quantity of electricity varies due to the tolerance of the discharge resistor 38A. For example, it is assumed that the discharge resistance 38A used for discharging the storage cell 30A has an allowable error of ⁇ 1% and the measured balancer discharge electric quantity is 10 mAh.
  • the variation in the amount of electricity actually discharged by the balancer circuit 38 is ⁇ 0.1 mAh with respect to the measured amount of electricity discharged by the balancer, according to Equations 1 and 2 below. 10 ⁇ (100/101) ⁇ (0.01) ⁇ +0.1mAh Expression 1 10 ⁇ (100/99) ⁇ ( ⁇ 0.01) ⁇ 0.1 mAh Expression 2
  • the variation in the amount of electricity discharged by the balancer can also be said to be the magnitude of the variation component included in the measured amount of electricity discharged by the balancer, or the range of the magnitude of variation included in the amount of balancer discharge electricity.
  • the management unit 37 Since it is difficult to actually measure the self-discharged electricity quantity of the storage cell 30A, the management unit 37 The self-discharge electricity amount of each storage cell 30A is estimated based on the combination with the SOC. Specifically, as shown in Table 1 below, the storage unit 37B stores the standard temperature of the storage cell 30A for each temperature of the storage cell 30A and for each SOC of the storage cell 30A for a certain period of time (for example, one hour). A table is stored in which typical self-discharged electricity amounts and variations in the self-discharged electricity amounts are associated with each other.
  • the management unit 37 acquires the variation in the amount of self-discharged electricity corresponding to the SOC and temperature of the storage cell 30A from the table at regular time intervals, and records it in the storage unit 37B in association with the date and time. For example, when the temperature is 50° C. and the SOC is 100%, ⁇ 0.1 mA is recorded as the variation in the amount of self-discharged electricity.
  • the recording process is performed only for one of the storage cells 30A, and for the other storage cells 30A, the variations in the amount of self-discharged electricity recorded for the one storage cell 30A are commonly used. do. Therefore, the variation in the amount of self-discharged electricity in a predetermined period is the same value for all storage cells 30A.
  • the SOC may be estimated and the temperature may be measured for each storage cell 30A, and the recording process may be individually performed for each storage cell 30A.
  • the variation in the amount of self-discharge electricity can be said to be the magnitude of the variation component included in the estimated value of the self-discharge electricity amount, or the range of the magnitude of the variation included in the estimated value of the self-discharge electricity amount. can.
  • the management unit 37 determines the amount of balancer discharge of the storage cell 30A (specific storage cell 30A) with the smallest balancer discharge amount of electricity during a predetermined period, and the balancer discharge amount of electricity of the other storage cells 30A during the predetermined period. is compared with the reference value to determine whether or not the specific storage cell 30A is internally short-circuited (whether or not abnormal discharge occurs in the specific storage cell 30A).
  • the reference value described above is the maximum value ( an example of the first parameter), and the maximum value of the difference in the amount of electricity discharged by the balancer that can occur due to the self-discharged amount of electricity of the specific storage cell 30A and the other storage cells 30A in a predetermined period (an example of the second parameter). , is used.
  • the most recent month will be taken as an example of the predetermined period described above.
  • the predetermined period is not limited to the most recent one month, and can be determined as appropriate.
  • This processing is executed, for example, when the engine of the vehicle is started. This process may be repeatedly executed at predetermined time intervals, such as 10-minute intervals, after the engine of the vehicle is started.
  • the management unit 37 obtains the amount of electricity discharged from the balancer and the variation in the amount of electricity discharged from the balancer in the most recent month for each storage cell 30A. Specifically, for each storage cell 30A, the management unit 37 stores the balancer discharged electricity amount recorded in the storage unit 37B and the balancer discharged electricity amount recorded in the most recent month among variations in the balancer discharged electricity amount and the variations in the amount of electricity discharged from the balancer are totaled. In the following description, the total value of variations in the amount of balancer discharge electricity recorded in the most recent month is simply referred to as "variation in the amount of balancer discharge in the most recent month".
  • Table 2 shows an example of the result of obtaining the amount of electricity discharged from the balancer and the variation in the amount of electricity discharged from the balancer in the most recent month for each storage cell 30A.
  • the four storage cells 30A are numbered 1 to 4 in Table 2.
  • the variation shown in Table 2 will be described as an example.
  • the management unit 37 specifies the storage cell 30A (here, the storage cell 4) with the smallest balancer discharged amount of electricity in the most recent month from the balancer discharged amount of electricity of each storage cell 30A obtained in S101.
  • the storage cell 4 is an example of a specific storage cell.
  • the management unit 37 calculates the amount of electricity discharged from the balancer of the specific storage cell 30A (storage cell 4) in the most recent month and the amount of electricity discharged from the balancer of the other storage cells 30A (storage cells 1 to 3) in the most recent month.
  • the management unit 37 calculates the average of the balancer discharged quantity of electricity of the specific storage cell 30A in the most recent month and the balancer discharged quantity of electricity of all the other storage cells 30A in the most recent month by the following formula 3. Find the difference between values.
  • 70mAh Expression 3
  • the management unit 37 calculates the maximum value of the difference in the amount of electricity discharged from the balancer that can occur due to the frequency with which the specific storage cell 30A and the other storage cells 30A are discharged by the balancer circuit 38 in the most recent month (the 1 parameter) is obtained. Specifically, the management unit 37 obtains the average value of variations in the balancer-discharged quantity of electricity of all the other storage cells 30A according to Equation 4 below. (
  • )/3 5.0 mAh Equation 4
  • the management unit 37 sums the variation in the amount of electricity discharged from the balancer of the specific storage cell 30A and the average value of the variations in the amount of electricity discharged from the balancer of all the other storage cells 30A according to the following equation 5.
  • the maximum value of the difference in balancer discharge capacity that can occur due to the frequency with which the cell 30A and the other storage cells 30A are discharged by the balancer circuit 38 is determined.
  • +5.0mAh 6.5mAh
  • the management unit 37 determines the maximum value of the difference in the amount of electricity discharged by the balancer that can occur due to the self-discharged amount of electricity of the specific storage cell 30A and the other storage cells 30A in the most recent month (an example of the second parameter ). As described above, the management unit 37 executes the process of recording the variation in the amount of self-discharged electricity only for one of the storage cells 30A, and for the other storage cells 30A, records the amount of self-discharged electricity recorded for the one storage cell. are used in common, the variation in the amount of self-discharged electricity of each storage cell 30A in the most recent month is the same value.
  • the maximum value of the difference described above is the absolute value of the value obtained by doubling the variation in the amount of self-discharged electricity of any one of the storage cells 30A in the most recent month. For example, if the total value of variations in the amount of self-discharged electricity is ⁇ 0.16 mAh, the maximum difference is 0.32 mAh.
  • the variation in the amount of self-discharged electricity of each storage cell 30A in the most recent month was ⁇ 20 mAh.
  • the balancer discharged amount of electricity of the specific storage cell 30A and the other A maximum difference of 40 mAh can occur between the average value of the balancer-discharged quantity of electricity of all the storage cells 30A and the average value, due to variations in the self-discharged quantity of electricity.
  • the management unit 37 calculates the maximum value of the difference in the amount of electricity discharged by the balancer circuit 38 (an example of the first parameter ) and the maximum value (an example of the second parameter) of the difference in the amount of electricity discharged by the balancer that can occur due to the amount of self-discharged electricity obtained in S106, to determine the reference value.
  • 6.5 mAh + 40 mAh 46.5 mAh
  • the management unit 37 compares the difference obtained in S103 with a reference value to determine whether or not the storage cell 30A with the smallest balancer discharge quantity of electricity is internally short-circuited (an example of determination processing).
  • the difference (70 mAh) obtained in S103 is larger than the reference value (46.5 mAh), as shown in Equation 7 below.
  • the management unit 37 determines that the specific storage cell 30A is internally short-circuited. 46.5 mAh ⁇ 70 mAh Expression 7
  • the management unit 37 determines that the storage cell 30A is not internally short-circuited. If the management unit 37 determines that there is an internal short circuit, the process proceeds to S109, and if it determines that there is no internal short circuit, this process ends.
  • the management unit 37 notifies the vehicle ECU 14 that the storage cell 30A has an internal short circuit.
  • vehicle ECU 14 urges the driver to replace power storage device 1 with a normal power storage device 1 by, for example, turning on a warning lamp for power storage device 1 .
  • the reference value is calculated based on both the variation in the amount of electricity discharged by the balancer of the storage cell 30A in a predetermined period and the variation in the amount of self-discharged electricity in the storage cell 30A in a predetermined period. to decide. Therefore, the reference value for determining whether or not the specific storage cell 30A is internally short-circuited during a predetermined period can be appropriately determined in consideration of variations in the amount of electricity discharged by the balancer and variations in the amount of self-discharged electricity.
  • the reference value is the maximum value of the difference in the amount of balancer discharge caused by the variation in the balancer discharge amount of electricity between the specific storage cell 30A and the other storage cells 30A in a predetermined period, and and the maximum value of the difference in the amount of electricity discharged by the balancer caused by the variation in the amount of self-discharged electricity between the specific storage cell 30A and the other storage cells 30A, so that the internal short circuit of the specific storage cell 30A It is possible to appropriately determine a reference value for judging whether or not
  • the balancer-discharged amount of electricity of the other storage cells 30A is the average value of the balancer-discharged amounts of electricity of the two or more other storage cells 30A.
  • the reference value can be determined more appropriately than when the amount of discharge electricity is used.
  • the variation in the amount of self-discharged electricity of the storage cell 30A is determined from a table in which variations in the amount of self-discharged electricity of the storage cell 30A are associated with each combination of the temperature of the storage cell 30A and the SOC of the storage cell 30A. , it is possible to obtain the variation in the amount of self-discharged electricity according to the SOC and temperature of the storage cell 30A.
  • the power storage device 1 it is possible to determine whether or not the storage cell 30A is internally short-circuited, which is particularly useful in the case of the power storage device 1 having a plateau region.
  • the maximum value of the difference between the balancer discharged electric quantity (first parameter ) and the maximum value (second parameter) of the difference in the amount of electricity discharged by the balancer that can occur due to the amount of self-discharged electricity of the specific storage cell 30A and the other storage cells 30A in a predetermined period. was explained as an example.
  • the temperature measured by the temperature sensor 36 determines whether the reference value is determined based on the variation in the amount of electricity discharged by the balancer of each storage cell 30A or the variation in the amount of self-discharged electricity in each storage cell 30A. may be determined based on For example, when the temperature of the storage cell 30A is low (when the temperature is low), self-discharge becomes difficult, so the variation in the amount of self-discharged electricity of the storage cell 30A becomes negligible. Therefore, when the temperature is low, the reference value may be determined based only on the variation in the amount of electricity discharged by the balancer without using the variation in the amount of self-discharged electricity.
  • the reference value may be determined from Between the low temperature and the high temperature (normal temperature), the reference value may be determined based on both variations in the amount of self-discharged electricity and variations in the amount of balancer-discharged electricity.
  • the tolerance of the discharge resistor 38A is very small, the variation in the amount of electricity discharged by the balancer can be ignored.
  • a plurality of storage cells 30A may be discharged by one discharge resistor 38A. In this case, the balancer discharge quantity of electricity does not vary due to the tolerance of the discharge resistor 38A, so the reference value may be determined only from the variation of the self-discharge quantity of electricity.
  • the reference value is not limited to the sum of the maximum values described above, but may be the square root of each maximum value.
  • the width of the variation is determined based on 2 ⁇ of the variation (95% confidence interval in the normal distribution of the balancer discharge quantity of electricity and the self-discharge quantity of electricity), and the sum of the determined widths Alternatively, the sum of squares may be used as the reference value.
  • the average value of the balancer discharged amounts of electricity of all the other storage cells 30A has been described as an example of the balancer discharged amounts of electricity of the other storage cells 30A.
  • the amount of electricity discharged by the balancer of the other storage cell 30A is not limited to this.
  • the balancer-discharged quantity of electricity of the other storage cells 30A may be the median value of the balancer-discharged quantities of electricity of all the other storage cells 30A.
  • the amount of electricity discharged from the balancer of any one other storage cell 30A may be used. Any one other storage cell 30A may be the storage cell 30A with the next smallest balancer discharged quantity of electricity after the specific storage cell 30A, or may be the storage cell 30A with the largest balancer discharged quantity of electricity.
  • the variation in the amount of self-discharged electricity of the storage cell 30A is obtained by totaling the variations in the amount of self-discharged electricity recorded in the storage unit 37B has been described as an example.
  • the method for determining the variation in the amount of self-discharged electricity of the storage cell 30A is not limited to this.
  • the width of the 95% confidence interval in the normal distribution of the self-discharge quantity of electricity of the storage cell 30A in a predetermined period may be used as the variation in the self-discharge quantity of electricity.
  • the variation in the amount of self-discharged electricity of the storage cell 30A during a predetermined period may be a predetermined fixed value.
  • the passive balancer circuit 38 has been described as an example of the balancer circuit 38 .
  • the balancer circuit 38 may be an active balancer circuit that reduces the difference by charging the storage cell 30A with a high voltage with the storage cell 30A with a low voltage.
  • the current discharged by the balancer circuit 38 is calculated every predetermined period according to Ohm's law.
  • the balancer discharge quantity of electricity is calculated by accumulating the balancer discharge quantity of electricity
  • the method of measuring the balancer discharge quantity of electricity is not limited to this.
  • the management unit 37 measures the voltage of the storage cell 30A by the voltage measurement circuit 35, and when the voltage of the storage cell 30A drops to the same voltage as the voltage of the storage cell 30A with the lowest voltage, the voltage before discharging is equal to the voltage before discharging.
  • the voltage difference from the voltage after discharge may be converted into the amount of discharged electricity [Ah] by a predetermined calculation formula (or table).
  • the current amount of electricity [Ah] of the storage cell 30A is estimated from the voltage before discharge
  • the current amount of electricity of the storage cell 30A is estimated from the voltage after discharge
  • the difference between them is used as the balancer discharge amount of electricity. good.
  • the resistance value of the discharge resistor 38A of the balancer circuit 38 may be stored in the management unit 37, and the voltage change may be measured sequentially to integrate the amount of discharged electricity.
  • the balancer discharge quantity of electricity may be calculated from Equations 8 to 10 below.
  • Balancer current I1 at time t1 cell voltage/discharge resistance value at time t1 Equation 8
  • Balancer current I2 at time t2 cell voltage/discharge resistance value at time t2 Equation 9
  • Balancer discharge electric quantity in the interval between time t1 and time t2 (I2-I1) x (t2-t1) ⁇ Formula 10
  • the average value of the balancer current may be stored from the normal voltage (for example, 3.5V) at which the balancer circuit 38 operates and the discharge resistor 38A. Then, the management unit 37 may calculate the balancer discharged electricity amount by multiplying the balancer operation time by the average value of the balancer current.
  • the case of determining whether or not the storage cell 30A is internally short-circuited has been described as an example.
  • the internal short circuit there are also cases where minute discharge occurs due to a failure of the BMU 31 (corresponding to a management system). Therefore, when the difference obtained in S103 is larger than the reference value, the management unit 37 does not determine that there is an internal short circuit, but rather that at least one of an internal short circuit and a minute discharge due to a failure of the BMU 31 is occurring. can be judged.
  • the management unit 37 controls the balancer circuit 38 so that the voltage of that storage cell 30A changes to that of the other storage cells 30A.
  • the case where the storage cell 30A is discharged so as to be substantially the same as the voltage of the storage cell 30A with the lowest voltage has been described as an example.
  • the management unit 37 uses the storage cell 30A with the lowest voltage as a reference, and sets all the other storage cells 30A so that the voltages of all the other storage cells 30A are substantially the same as the voltages of the reference storage cell 30A. You may discharge 30 A of electrical storage cells, respectively.
  • the storage cell 30A with the lowest remaining amount of electricity is used as a reference, and the remaining amounts of electricity of all the other storage cells 30A are substantially the same as the remaining amounts of electricity of the reference storage cell 30A.
  • Each cell 30A may be discharged.
  • the method of reducing the voltage difference is not limited to this.
  • the storage cell 30A with the highest voltage is 18 mAh
  • the storage cell 30A with the second highest voltage is 12 mAh
  • the storage cell 30A with the third highest voltage is 6 mAh. It may be decided.
  • the power storage device 1 mounted on a vehicle such as an automobile was described as an example, but the power storage device 1 is not limited to being mounted on a vehicle, and can be used for any purpose. can.
  • a lithium ion secondary battery was described as an example of the storage cell 30A, but the storage cell 30A may be a capacitor that involves an electrochemical reaction.
  • Reference Signs List 1 Power storage device 30A
  • Power storage cell 36 Temperature sensor (an example of a temperature measuring unit)
  • Management unit 38 Balancer circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

蓄電装置1であって、複数の蓄電セル30Aと、各蓄電セル30Aを個別に放電させるバランサ回路38と、管理部37と、を備え、管理部37は、相対的に電圧または残存電気量が高い蓄電セル30Aをバランサ回路38によって放電させて複数の蓄電セル30Aの電圧の差または残存電気量の差を低減する低減処理と、所定期間にバランサ回路38によって放電されたバランサ放電電気量が最も小さい特定蓄電セル30Aのバランサ放電電気量と他の蓄電セル30Aのバランサ放電電気量との差を基準値と比較することにより、特定蓄電セル30Aに異常放電が生じているか否かを判断する判断処理と、所定期間における複数の蓄電セル30Aのバランサ放電電気量のばらつき、及び、所定期間における複数の蓄電セル30Aの自己放電電気量のばらつきの少なくとも一方に基づいて基準値を決定する決定処理と、を実行する、蓄電装置1。

Description

蓄電装置、及び、蓄電装置の異常放電検出方法
 本発明は、蓄電装置、及び、蓄電装置の異常放電検出方法に関する。
 リチウムイオン電池などの蓄電セルは、蓄電セルの内部で金属コンタミネーション(製造から包装・移送までの間に、原材料として使用していない異物が混入してしまうこと。以下、金属コンタミと略す)などによって微小な内部短絡(異常放電の一例)が生じることがある。蓄電セルは、蓄電セルを管理する管理システムの基板上での故障(マイグレーション、デンドライトなど)によって放電経路が形成され、微小な放電(異常放電の一例)が生じることもある。
 蓄電セルは異常放電が生じると電圧や残存電気量が低下する。相対的に電圧が高い蓄電セルあるいは相対的に残存電気量が高い蓄電セルを放電させることによって各蓄電セルの電圧の差や残存電気量の差を低減する場合、異常放電が生じている蓄電セルは電圧や残存電気量が低いことから、バランサ回路によって放電される機会が少なくなる。
 内部短絡が発生しているか否かを、バランサ回路によって放電された電気量(以下、バランサ放電電気量という)の差に基づいて判断する技術が知られている(例えば、特許文献1参照)。具体的には、特許文献1に記載のバッテリー管理システムは複数のバッテリーセルをバランシングするセルバランシング部を含んでいる。当該バッテリー管理システムは、各バッテリーセルのセルバランシング放電容量のうち最大値(CB_max)と各バッテリーセルのセルバランシング放電容量(CB_n)との差を基準値(REF)と比較して、複数のバッテリーセルのうち差が基準値より大きいバッテリーセルを短絡バッテリーセルと判断している。
特許第5117537号公報
 上述した特許文献1に記載のバッテリー管理システムの場合、内部短絡が発生しているか否かを精度よく判断するためには基準値(REF)を適切に決定する必要がある。しかしながら、特許文献1には基準値をどのように決定するかについては開示されておらず、適切な基準値を決定する上で改善の余地があった。
 本明細書では、バランサ放電電気量が最も小さい蓄電セルに異常放電が生じているか否かを判断するための基準値を適切に決定できる技術を開示する。
 本発明の一局面によれば、蓄電装置は、複数の蓄電セルと、各蓄電セルを個別に放電させるバランサ回路と、管理部と、を備える。前記管理部は、相対的に電圧または残存電気量が高い蓄電セルを前記バランサ回路によって放電させて前記複数の蓄電セルの電圧の差または残存電気量の差を低減する低減処理と、所定期間に前記バランサ回路によって放電されたバランサ放電電気量が最も小さい特定蓄電セルのバランサ放電電気量と他の蓄電セルのバランサ放電電気量との差を基準値と比較することにより、前記特定蓄電セルに異常放電が生じているか否かを判断する判断処理と、前記所定期間における前記複数の蓄電セルのバランサ放電電気量のばらつき、及び、前記所定期間における前記複数の蓄電セルの自己放電電気量のばらつきの少なくとも一方に基づいて前記基準値を決定する決定処理と、を実行する。
 上記構成により、バランサ放電電気量が最も小さい蓄電セルに異常放電が生じているか否かを判断するための基準値を適切に決定できる。
実施形態1に係る蓄電装置が搭載されている車両の模式図 車両の電源システムの模式図 蓄電装置の分解斜視図 蓄電素子の平面図 図4Aに示すA-A線の断面図 蓄電装置の電気的構成を示すブロック図 バランサ回路の動作を説明するための模式図 内部短絡の判断処理のフローチャート プラトー領域を説明するための模式図 蓄電セルの電気量ばらつきを説明するための模式図
 (本実施形態の概要)
 (1)蓄電装置は、複数の蓄電セルと、各蓄電セルを個別に放電させるバランサ回路と、管理部と、を備える。前記管理部は、相対的に電圧または残存電気量が高い蓄電セルを前記バランサ回路によって放電させて前記複数の蓄電セルの電圧の差または残存電気量の差を低減する低減処理と、所定期間に前記バランサ回路によって放電されたバランサ放電電気量が最も小さい特定蓄電セルのバランサ放電電気量と他の蓄電セルのバランサ放電電気量との差を基準値と比較することにより、前記特定蓄電セルに異常放電が生じているか否かを判断する判断処理と、前記所定期間における前記複数の蓄電セルのバランサ放電電気量のばらつき、及び、前記所定期間における前記複数の蓄電セルの自己放電電気量のばらつきの少なくとも一方に基づいて前記基準値を決定する決定処理と、を実行する。
 他の蓄電セルが複数ある場合、上述した「他の蓄電セルのバランサ放電電気量」は他のいずれか1つの蓄電セルのバランサ放電電気量であってもよいし、他の2以上の蓄電セルのバランサ放電電気量の平均値であってもよいし、他の2以上の蓄電セルのバランサ放電電気量の中央値であってもよい。他のいずれか1つの蓄電セルである場合、当該他のいずれか1つの蓄電セルは、所定期間におけるバランサ放電電気量が最も小さい蓄電セルの次にバランサ放電電気量が小さい蓄電セルであってもよいし、所定期間におけるバランサ放電電気量が最も大きい蓄電セルであってもよい。
 蓄電セルは電気負荷に接続されていなくても自己放電によって電圧や残存電気量が低下する。蓄電セルの自己放電電気量[Ah]は蓄電セルの充電状態や温度などによって異なるが、充電状態や温度などが同じであっても自己放電電気量がばらつくことがある。例えば2つの蓄電セルがあり、いずれの蓄電セルも異常放電が生じていない場合を考える。この場合、所定期間における2つの蓄電セルのバランサ放電電気量の差は理想的には0になるはずであるが、実際には自己放電電気量がばらつくことによって差が生じる。制御部はバランサ回路によって2つの蓄電セルの電圧の差または残存電気量の差を低減させるため、所定期間における2つの蓄電セルのバランサ放電電気量の差は、所定期間における2つの蓄電セルの自己放電電気量のばらつきの真値に相当する。
 ただし、上述した自己放電電気量のばらつきに加えて、あるいは自己放電電気量のばらつきに替えて、バランサ放電電気量のばらつきによってバランサ放電電気量に差が生じる場合もある。例えば、蓄電セル毎に放電抵抗を備えているバランサ回路の場合は、放電抵抗の許容誤差によってバランサ放電電気量にばらつきが生じることもある。
 いずれの蓄電セルも異常放電が生じていない場合は、2つの蓄電素子のバランサ放電電気量に差が生じたとしても、自己放電電気量のばらつきやバランサ放電電気量のばらつきによってその差を説明できる。これに対し、いずれか一方の蓄電セルに異常放電が生じている場合は、異常放電が生じている蓄電セルがバランサ回路によって放電される機会が少なくなることから、それらの蓄電セルのバランサ放電電気量に、自己放電電気量のばらつきやバランサ放電電気量のばらつきでは説明できない大きな差が生じる。
 上記の蓄電装置によると、所定期間における複数の蓄電セルのバランサ放電電気量のばらつき、及び、所定期間における複数の蓄電セルの自己放電電気量のばらつきの少なくとも一方に基づいて基準値を決定する。このため、特定蓄電セルに異常放電が生じているか否かを判断するための基準値を、バランサ放電電気量のばらつきや自己放電電気量のばらつきを考慮して適切に決定できる。
 上記の説明では蓄電セルが2つである場合を例に説明したが、蓄電セルは2つに限られるものではなく、3つ以上であってもよい。
 (2)前記管理部は、前記所定期間に、前記特定蓄電セルと他の蓄電セルが前記バランサ回路によって放電される頻度に起因して生じ得る第1パラメータと、前記所定期間における、前記特定蓄電セルと他の蓄電セルの自己放電電気量に起因して生じ得る第2パラメータと、に基づいて前記基準値を決定してもよい。
 例えば、所定期間における特定蓄電セルのバランサ放電電気量と他の蓄電セルのバランサ放電電気量との差が、バランサ放電電気量のばらつきに起因して生じ得るバランサ放電電気量の差の最大値(第1パラメータの一例)と、自己放電電気量のばらつきに起因して生じ得るバランサ放電電気量の差の最大値(第2パラメータの一例)とを合計した値以下である場合は、バランサ放電電気量のばらつきと自己放電電気量のばらつきとによってその差を説明できる。これに対し、差が上述した合計した値より大きい場合は、バランサ放電電気量のばらつきや自己放電電気量のばらつきではその差を説明できないことから、特定蓄電セルが内部短絡している可能性が高い。このため、上述した合計した値を基準値として決定すると、特定蓄電セルが内部短絡しているか否かを判断するための基準値を適切に決定できる。
 基準値は上述した各最大値を合計した値に限定されるものではなく、各最大値の二乗平方根であってもよい。上述した最大値を用いるのではなく、ばらつきの2σ(バランサ放電電気量や自己放電電気量の正規分布における95%信頼区間)に基づいてばらつきの幅を決定し、決定した幅を合計した値あるいは二乗平方和を基準値としてもよい。
 (3)前記他の蓄電セルのバランサ放電電気量として、2以上の他の蓄電セルのバランサ放電電気量の平均値を用いてもよい。
 上記の蓄電装置によれば、他のいずれか1つの蓄電セルのバランサ放電電気量を用いる場合に比べてより適切に基準値を決定できる。
 (4)前記蓄電セルの温度を計測する温度計測部を備え、前記管理部は、前記蓄電セルの温度及び充電状態と、一定時間における前記蓄電セルの自己放電電気量とが対応付けられているテーブルを用いてばらつきを取得して記録する記録処理を実行し、前記記録処理によって記録したばらつきのうち前記所定期間に記録したばらつきを合計することによって前記複数の蓄電セルの自己放電電気量のばらつきを求めてもよい。
 本願発明者は、蓄電セルの自己放電電気量のばらつきは蓄電セルの充電状態(SOC:State of Charge)や蓄電セルの温度などによって異なることを見出した。充電状態(SOC)は残存電気量と言い換えることもできる。
 上記の蓄電装置によると、蓄電セルの温度と蓄電セルのSOCとの組み合わせ毎に一定時間における蓄電セルの自己放電電気量のばらつきが対応付けられているテーブルから自己放電電気量のばらつきを取得することにより、蓄電セルのSOCや温度に応じたばらつきを求めることができる。
 (5)前記複数の蓄電セルは、充電状態の変化に対する電圧の変化が小さいプラトー領域を有してもよい。
 リチウムイオン二次電池などの蓄電セルは、充電器や電気負荷等の周辺装置の故障や、複数の蓄電セル間での電気量ばらつき等により、過充電や過放電となる可能性がある。このため、一般に蓄電装置は、蓄電セルの異常状態を検出すると、蓄電セルと充電器との間(あるいは蓄電セルと電気負荷との間)に接続されているリレーや半導体スイッチといった電流遮断装置を遮断状態(開、オープン、オフ)にすることによって蓄電セルを保護する。
 一方で、自動車などの車両に蓄電装置が搭載された場合は、電流遮断装置を遮断状態にして蓄電セルを保護すると、車両の各電気負荷への電源供給が不安定になる。例えば車両のオルタネータ(発電機)が故障して蓄電セルが過充電になった場合、電流遮断装置を遮断状態にすると、電気負荷への電源供給は故障したオルタネータのみによって維持される。このため、いつ電源喪失してもおかしくないという状況に陥る。このような場合は、オルタネータが故障しても運転者が車両を安全な路側帯などに停車させるまでの間、蓄電装置が車両への電源供給を維持することが好ましい。すなわち、車両に搭載されている蓄電装置の場合は、例え蓄電装置が異常な状態であっても一定時間は電流遮断装置を通電状態(閉、クローズ、オフ)に維持し続けることが好ましい。
 図8に示すように、蓄電セルの中にはSOCの変化に対する蓄電セルの開放電圧(OCV:Open Circuit Voltage)の変化が小さいプラトー領域を有するものがある。プラトー領域は、具体的には例えばSOCの変化量に対するOCVの変化量が2[mV/%]以下の領域である。プラトー領域を有する蓄電セルとしては、例えば正極活物質にLiFePO4(リン酸鉄リチウム)が含有され、負極活物質にGr(グラファイト)が含有されたLFP/Gr系(所謂鉄系)のリチウムイオン二次電池が例示される。
 図9に示すように、プラトー領域を有する蓄電セルの電気量ばらつきが生じていると、蓄電装置を充電したとき、SOCがプラトー領域にある蓄電セルは充電が進行しても電圧が上昇し難いが、SOCがプラトー領域より高い領域にある蓄電セル(言い換えると残存電気量の多い蓄電セル)は電圧が急激に上昇する。このため、電気量ばらつきが生じていない場合と比較して電流遮断装置を一定時間通電状態に維持し続けることが困難となる。このため、プラトー領域を有する蓄電装置の場合は電圧の差あるいは残存電気量の差を低減することがより望まれる。しかしながら、蓄電セルの異常放電が生じるとバランサ回路によって差を低減してもばらつきが生じる。
 蓄電セルの異常放電が生じた場合、車両を介して運転者に蓄電装置の交換を促せば、運転者が正常な蓄電装置に交換することにより、異常放電による電圧や残存電気量のばらつきを抑制できる。このため、プラトー領域を有する蓄電装置の場合は、蓄電セルが異常放電しているか否かを判断することが特に求められる。
 上記の蓄電装置によると、蓄電セルが異常放電しているか否かを判断できるので、プラトー領域を有する蓄電装置の場合に特に有用である。
 (6)前記蓄電セルの温度を計測する温度計測部を備え、前記管理部は、前記決定処理において、前記バランサ放電電気量のばらつき、及び、前記自己放電電気量のばらつきのいずれに基づいて前記基準値を決定するかを、前記温度計測部によって計測された温度に基づいて決定してもよい。
 例えば、蓄電セルの温度が低いとき(低温時)は蓄電セルの自己放電電気量のばらつきが無視できる程度に小さくなるため、自己放電電気量のばらつきは用いず、バランサ放電電気量のばらつきだけから基準値を決定してもよい。蓄電セルの温度が高いとき(高温時)は自己放電電気量の影響度がバランサ放電電気量より十分支配的であるため、バランサ放電電気量のばらつきは用いず、自己放電電気量のばらつきだけから基準値を決定してもよい。低温時と高温時との間のとき(常温時)は自己放電電気量のばらつき及びバランサ放電電気量のばらつきの両方に基づいて基準値を決定してもよい。
 本明細書によって開示される発明は、装置、方法、これらの装置または方法の機能を実現するためのコンピュータプログラム、そのコンピュータプログラムを記録した記録媒体等の種々の態様で実現できる。
 <実施形態1>
 実施形態1を図2ないし図7によって説明する。以降の説明では同一の構成部材には一部を除いて図面の符号を省略している場合がある。
 (1)蓄電装置
 図1及び図2を参照して、実施形態1に係る蓄電装置1について説明する。図1に示すように、蓄電装置1は自動車などの車両に搭載されるものである。図2に示すように、蓄電装置1は車両が備えるエンジン始動装置10(スターターモータ)や各種の補機類12(パワーステアリング、ブレーキ、ヘッドライト、エアコン、カーナビゲーションなど)に電力を供給する。蓄電装置1は車両発電機13(オルタネータ)によって充電される。
 (2)蓄電装置の構成
 図3に示すように、蓄電装置1は収容体71を備える。収容体71は合成樹脂材料からなる本体73と蓋体74とを備えている。本体73は有底筒状である。本体73は底面部75と4つの側面部76とを備えている。4つの側面部76によって上端部分に上方開口部77が形成されている。
 収容体71は複数の蓄電セル30Aからなる組電池30と回路基板ユニット72とを収容する。回路基板ユニット72は組電池30の上部に配置されている。
 蓋体74は本体73の上方開口部77を閉鎖する。蓋体74の周囲には外周壁78が設けられている。蓋体74は平面視略T字形の突出部79を有する。蓋体74の前部のうち一方の隅部に正極の外部端子80Pが固定され、他方の隅部に負極の外部端子80Nが固定されている。
 蓄電セル30Aは繰り返し充放電可能な二次電池であり、具体的にはリチウムイオン二次電池である。より具体的には、蓄電セル30AはSOCの変化に対するOCVの変化が小さいプラトー領域を有するリチウムイオン二次電池である。プラトー領域を有するリチウムイオン二次電池としては、正極活物質に鉄が含有された鉄系のリチウムイオン二次電池が例示される。鉄系のリチウムイオン二次電池としては、正極活物質にLiFePO4(リン酸鉄リチウム)、負極活物質にGr(グラファイト)が含有されたLFP/Gr系のリチウムイオン二次電池が例示される。
 図4A及び図4Bに示すように、蓄電セル30Aは直方体形状のケース82内に電極体83を非水電解質と共に収容したものである。ケース82はケース本体84とその上方の開口部を閉鎖する蓋85とを有している。
 電極体83は、詳細については図示しないが、銅箔からなる基材に負極活物質を塗布した負極要素と、アルミニウム箔からなる基材に正極活物質を塗布した正極要素との間に多孔性の樹脂フィルムからなるセパレータを配置したものである。これらはいずれも帯状であり、セパレータに対して負極要素と正極要素とを幅方向の反対側にそれぞれ位置をずらした状態で、ケース本体84に収容可能となるように扁平状に巻回されている。
 正極要素には正極集電体86を介して正極端子87が接続されており、負極要素には負極集電体88を介して負極端子89が接続されている。正極集電体86及び負極集電体88は平板状の台座部90とこの台座部90から延びる脚部91とからなる。台座部90には貫通孔が形成されている。脚部91は正極要素又は負極要素に接続されている。正極端子87及び負極端子89は、端子本体部92と、その下面中心部分から下方に突出する軸部93とからなる。そのうち、正極端子87の端子本体部92と軸部93とは、アルミニウム(単一材料)によって一体成形されている。負極端子89においては、端子本体部92がアルミニウム製で、軸部93が銅製であり、これらを組み付けたものである。正極端子87及び負極端子89の端子本体部92は、蓋85の両端部に絶縁材料からなるガスケット94を介して配置され、このガスケット94から外方へ露出されている。
 図4Aに示すように、蓋85は圧力開放弁95を有している。圧力開放弁95は正極端子87と負極端子89の間に位置している。圧力開放弁95はケース82の内圧が制限値を超えた時に開放してケース82の内圧を下げる。
 (3)蓄電装置の電気的構成
 図5に示すように、蓄電装置1は組電池30、BMU31(管理装置の一例)及び通信コネクタ32を備える。組電池30はパワーライン34Pによって正極の外部端子80Pに接続されており、パワーライン34Nによって負極の外部端子80Nに接続されている。
 組電池30は12個の蓄電セル30Aが3並列で4直列に接続されている。図5では並列に接続された3つの蓄電セル30Aを1つの電池記号で表している。
 BMU31は電流センサ33、電圧計測回路35、温度センサ36(温度計測部の一例)、バランサ回路38、電流遮断装置39及び管理部37を備えている。
 電流センサ33は組電池30の負極側に位置し、負極のパワーライン34Nに設けられている。電流センサ33は組電池30の充放電電流[A]を計測して管理部37に出力する。
 電圧計測回路35は信号線によって各蓄電セル30Aの両端にそれぞれ接続されている。電圧計測回路35は各蓄電セル30Aの電池電圧[V]を計測して管理部37に出力する。組電池30の総電圧[V]は直列に接続された4つの蓄電セル30Aの合計電圧である。
 温度センサ36は接触式あるいは非接触式であり、蓄電セル30Aの温度[℃]を計測して管理部37に出力する。図5では省略しているが、温度センサ36は2つ以上設けられている。各温度センサ36は互いに異なる蓄電セル30Aの温度を計測する。
 バランサ回路38は各蓄電セル30Aのうち相対的に電圧が高い蓄電セル30Aを放電させることによって各蓄電セル30Aの電圧の差を低減するパッシブ方式のバランサ回路38である。バランサ回路38は蓄電セル30A毎に放電抵抗38Aとスイッチ素子38Bとを有している。放電抵抗38Aとスイッチ素子38Bとは直列に接続されており、対応する蓄電セル30Aと並列に接続されている。スイッチ素子38Bがオンになると対応する蓄電セル30Aの電力が放電抵抗38Aによって放電される。
 電流遮断装置39はパワーライン34Pに設けられている。電流遮断装置39としてはリレーなどの有接点スイッチ(機械式)や、FET(Field Effect Transistor)などの半導体スイッチなどを用いることができる。電流遮断装置39は管理部37によって通電状態(閉状態、オン状態、クローズ状態)と遮断状態(開状態、オフ状態、オープン状態)とが切り替えられる。
 管理部37はCPUやRAMなどが1チップ化されたマイクロコンピュータ37A、記憶部37B及び通信部37Cを備える。記憶部37Bはデータを書き換え可能な記憶媒体であり、各種のプログラムやデータ(後述するテーブルを含む)などが記憶されている。マイクロコンピュータ37Aは記憶部37Bに記憶されているプログラムを実行することによって蓄電装置1を管理する。通信部37CはBMU31が車両ECU14(Engine Control Unit)と通信するための回路である。
 通信コネクタ32はBMU31が車両ECU14と通信するための通信ケーブルが接続されるコネクタである。
 (4)管理部によって実行される処理
 管理部37によって実行される以下の4つの処理について説明する。
・SOC推定処理
・バランサ放電電気量、及び、バランサ放電電気量のばらつきの記録処理
・蓄電セルの自己放電電気量のばらつきの記録処理
・内部短絡の判断処理
 (4-1)SOC推定処理
 管理部37は電流積算法によって蓄電装置1のSOCを推定する。電流積算法は、電流センサ33によって所定の時間間隔(10ミリ秒など)で蓄電装置1の充放電電流の電流値を計測し、計測した電流値を初期値に加減することによって蓄電装置1のSOCを推定する方法である。電流積算法は一例であり、SOCを推定する方法はこれに限られない。
 (4-2)バランサ放電電気量及びバランサ放電電気量のばらつきの記録処理
 図6に示すように、蓄電装置1は蓄電セル30A間で電圧のばらつきが生じることがある。便宜上、図6では4つの蓄電セル30Aに1~4の符号を付している。管理部37はいずれかの蓄電セル30Aの電圧が所定の電圧まで上昇すると、バランサ回路38を制御して、その蓄電セル30Aの電圧が、他の蓄電セル30Aのうち電圧が最も低い蓄電セル30Aの電圧と略同じになるようにその蓄電セル30Aを放電させることによって各蓄電セル30Aの電圧の差を低減する(低減処理)。
 各蓄電セル30Aの電圧の差を低減するのではなく、各蓄電セル30AのSOC(残存電気量の一例)の差を低減してもよい。具体的には、管理部37は蓄電セル30A毎にSOCを計測し、いずれかの蓄電セル30AのSOCが所定のSOCまで上昇すると、バランサ回路38を制御して、その蓄電セル30AのSOCが、他の蓄電セル30AのうちSOCが最も低い蓄電セル30AのSOCと略同じになるようにその蓄電セル30Aを放電させてもよい。
 管理部37は、バランサ回路38によって蓄電セル30Aを放電させるとき、放電させた電気量(バランサ放電電気量[Ah])を計測する。具体的には、管理部37はある蓄電セル30Aを放電させるとき、電圧計測回路35によってその蓄電セル30Aの電圧を計測する。管理部37は、その蓄電セル30Aの電圧と、その蓄電セル30Aに対応する放電抵抗38Aの抵抗値とから、バランサ回路38によって放電される電流の電流値をオームの法則によって所定期間毎に計算する。管理部37は所定期間毎に計算した電流値を積算することでバランサ放電電気量を計測する。
 管理部37は、バランサ回路38によって1つの蓄電セル30Aを放電させる毎に、計測したバランサ放電電気量、以下に説明するバランサ放電電気量のばらつき、及び、放電した日時を、放電させた蓄電セル30Aに対応付けて記憶部37Bに記録する。
 バランサ放電電気量のばらつきについて説明する。バランサ回路38は放電抵抗38Aによって蓄電セル30Aを放電するので、放電抵抗38Aの許容誤差によってバランサ放電電気量にばらつきが生じる。例えばある蓄電セル30Aの放電に用いる放電抵抗38Aの許容誤差が±1%であり、計測したバランサ放電電気量が10mAhであったとする。この場合、以下の式1及び式2より、計測したバランサ放電電気量に対して、実際にバランサ回路38が放電した放電電気量のばらつきは±0.1mAhとなる。
 10×(100/101)×(0.01)≒+0.1mAh ・・・ 式1
 10×(100/99)×(-0.01)≒-0.1mAh ・・・ 式2
 バランサ放電電気量のばらつきは、計測されたバランサ放電電気量に含まれているばらつきの成分の大きさ、あるいは、バランサ放電電気量に含まれているばらつきの大きさの範囲ということもできる。
 (4-3)蓄電セルの自己放電電気量のばらつきの記録処理
 蓄電セル30Aの自己放電電気量を実際に計測することは困難であるため、管理部37は蓄電セル30Aの温度と蓄電セル30AのSOCとの組み合わせに基づいて各蓄電セル30Aの自己放電電気量を推定する。具体的には、以下の表1に示すように、記憶部37Bには、蓄電セル30Aの温度毎、且つ、蓄電セル30AのSOC毎に、一定時間(例えば1時間)における蓄電セル30Aの標準的な自己放電電気量とその自己放電電気量のばらつきとが対応付けられているテーブルが記憶されている。
Figure JPOXMLDOC01-appb-T000001
 表1に示す例の場合、例えば温度が50℃であり、SOCが100%である場合、一定時間における標準的な自己放電電気量は1mAhであり、そのときの自己放電電気量のばらつきは±0.1mAである。管理部37は一定時間毎に蓄電セル30AのSOCと温度とに対応する自己放電電気量のばらつきをテーブルから取得し、日時と対応付けて記憶部37Bに記録する。例えば温度が50℃であり、SOCが100%である場合、自己放電電気量のばらつきとして±0.1mAが記録される。
 便宜上、実施形態1ではいずれか1つの蓄電セル30Aについてのみ記録処理を実行し、他の蓄電セル30Aについては当該1つの蓄電セル30Aについて記録された自己放電電気量のばらつきを共通に用いるものとする。このため、所定期間における自己放電電気量のばらつきはいずれの蓄電セル30Aも同じ値となる。蓄電セル30A毎にSOCの推定と温度の計測とを行い、蓄電セル30A毎に個別に記録処理を実行してもよい。
 自己放電電気量のばらつきは、自己放電電気量の推定値に含まれているばらつきの成分の大きさ、あるいは、自己放電電気量の推定値に含まれているばらつきの大きさの範囲ということもできる。
 (4-4)内部短絡の判断処理
 管理部37は、所定期間におけるバランサ放電電気量が最も小さい蓄電セル30A(特定蓄電セル30A)のバランサ放電電気量と、当該所定期間における他の蓄電セル30Aのバランサ放電電気量との差を基準値と比較することにより、特定蓄電セル30Aが内部短絡しているか否か(特定蓄電セル30Aに異常放電が生じているか否か)を判断する。
 実施形態1では、上述した基準値として、所定期間に、特定蓄電セル30Aと他の蓄電セル30Aがバランサ回路38によって放電される頻度に起因して生じ得るバランサ放電電気量の差の最大値(第1パラメータの一例)と、所定期間における、特定蓄電セル30Aと他の蓄電セル30Aの自己放電電気量に起因して生じ得るバランサ放電電気量の差の最大値(第2パラメータの一例)と、を合計した値を用いる。
 以降の説明では上述した所定期間として直近の1カ月を例に説明する。所定期間は直近の1カ月に限定されるものではなく、適宜に決定可能である。
 図7を参照して、内部短絡の判断処理のフローチャートについて説明する。本処理は例えば車両のエンジンが始動されたときに実行される。本処理は、車両のエンジンが始動された後、10分間隔などの所定の時間間隔で繰り返し実行されてもよい。
 S101では、管理部37は各蓄電セル30Aについて直近の1カ月におけるバランサ放電電気量、及び、バランサ放電電気量のばらつきを求める。具体的には、管理部37は、各蓄電セル30Aについて、記憶部37Bに記録されているバランサ放電電気量、及び、バランサ放電電気量のばらつきのうち直近の1カ月に記録されたバランサ放電電気量、及び、バランサ放電電気量のばらつきをそれぞれ合計する。以降の説明では、直近の1カ月に記録されたバランサ放電電気量のばらつきの合計値のことを単に「直近の1カ月のバランサ放電電気量のばらつき」という。
 各蓄電セル30Aについて直近の1カ月におけるバランサ放電電気量、及び、バランサ放電電気量のばらつきを求めた結果の一例を以下の表2に示す。便宜上、表2では4つの蓄電セル30Aに1~4の符号を付している。以降の説明では表2に示すばらつきを例に説明する。
Figure JPOXMLDOC01-appb-T000002
 S102では、管理部37はS101で求めた各蓄電セル30Aのバランサ放電電気量から、直近の1カ月におけるバランサ放電電気量が最も小さい蓄電セル30A(ここでは蓄電セル4)を特定する。蓄電セル4は特定蓄電セルの一例である。
 S103では、管理部37は直近の1カ月における特定蓄電セル30A(蓄電セル4)のバランサ放電電気量と、直近の1カ月における他の蓄電セル30A(蓄電セル1~3)のバランサ放電電気量との差を求める。具体的には、管理部37は以下の式3により、直近の1カ月における特定蓄電セル30Aのバランサ放電電気量と、直近の1カ月における他の全ての蓄電セル30Aのバランサ放電電気量の平均値との差を求める。
 |(105mAh+110mAh+85mAh)/3-30mAh|=70mAh ・・・ 式3
 S104では、管理部37は、直近の1カ月における、特定蓄電セル30Aと他の蓄電セル30Aがバランサ回路38によって放電される頻度に起因して生じ得るバランサ放電電気量の差の最大値(第1パラメータの一例)を求める。
 具体的には、管理部37は以下の式4によって他の全ての蓄電セル30Aのバランサ放電電気量のばらつきの平均値を求める。
 (|±5.25mAh|+|±5.5mAh|+|±4.25mAh|)/3=5.0mAh ・・・ 式4
 管理部37は、以下の式5により、特定蓄電セル30Aのバランサ放電電気量のばらつきと、他の全ての蓄電セル30Aのバランサ放電電気量のばらつきの平均値とを合計することにより、特定蓄電セル30Aと他の蓄電セル30Aがバランサ回路38によって放電される頻度に起因して生じ得るバランサ放電容量の差の最大値を求める。
 |±1.5mAh|+5.0mAh=6.5mAh ・・・ 式5
 上述した式5より、特定蓄電セル30Aのバランサ放電電気量が下に1.5mAhばらつき、他の全ての蓄電セル30Aのバランサ放電電気量が上に5.0mAhばらついた場合、特定蓄電セル30Aのバランサ放電電気量と他の全ての蓄電セル30Aのバランサ放電電気量の平均値とには最大で6.5mAhの差が生じ得ることになる。
 S105では、管理部37は、前述した「蓄電セルの自己放電電気量のばらつきの記録処理」によって記録された自己放電電気量のばらつきのうち直近の1カ月に記録されたばらつきを合計することにより、1つの蓄電セル30Aの直近の1カ月の自己放電電気量のばらつきの合計値を求める。例えば、直近の1カ月に記録された自己放電電気量のばらつきが±0.1mAh、±0.05mAh、±0.01mAhの3つであったとする。この場合、直近の1カ月に記録された自己放電電気量のばらつきの合計値は±0.16mAh(=±0.1mAh±0.05mAh±0.01mAh)となる。
 以降の説明では、直近の1カ月における自己放電電気量のばらつきの合計値のことを単に「直近の1カ月における自己放電電気量のばらつき」という。
 S106では、管理部37は、直近の1カ月における、特定蓄電セル30Aと他の蓄電セル30Aの自己放電電気量に起因して生じ得るバランサ放電電気量の差の最大値(第2パラメータの一例)を求める。
 前述したように管理部37はいずれか1つの蓄電セル30Aについてのみ自己放電電気量のばらつきの記録処理を実行し、他の蓄電セル30Aについては当該1つの蓄電セルについて記録された自己放電電気量のばらつきを共通に用いるので、直近の1カ月における各蓄電セル30Aの自己放電電気量のばらつきは同じ値になる。このため、上述した差の最大値はいずれか1つの蓄電セル30Aの直近の1カ月における自己放電電気量のばらつきを2倍した値の絶対値となる。例えば自己放電電気量のばらつきの合計値が±0.16mAhである場合、上述した差の最大値は0.32mAhとなる。
 便宜上、以降の説明では、直近の1カ月における各蓄電セル30Aの自己放電電気量のばらつきが±20mAhであったとして説明する。この場合、特定蓄電セル30Aの自己放電電気量が下に20mAhばらつき、他の全ての蓄電セル30Aの自己放電電気量が上に20mAhばらついたとすると、特定蓄電セル30Aのバランサ放電電気量と他の全ての蓄電セル30Aのバランサ放電電気量の平均値とには、自己放電電気量のばらつきに起因して最大で40mAhの差が生じ得ることになる。
 S107では、管理部37は、以下の式6に示すように、S104で求めたバランサ回路38によって放電される頻度に起因して生じ得るバランサ放電電気量の差の最大値(第1パラメータの一例)と、S106で求めた自己放電電気量に起因して生じ得るバランサ放電電気量の差の最大値(第2パラメータの一例)とを合計することによって基準値を決定する。
 6.5mAh+40mAh=46.5mAh ・・・ 式6
 S108では、管理部37はS103で求めた差と基準値とを比較することにより、バランサ放電電気量が最も小さい蓄電セル30Aが内部短絡しているか否かを判断する(判断処理の一例)。上述した例の場合、以下の式7に示すように、S103で求めた差(70mAh)の方が基準値(46.5mAh)より大きい。この場合、バランサ放電電気量のばらつきや自己放電電気量のばらつきではその差が生じた理由を説明できないことから、管理部37は特定蓄電セル30Aが内部短絡していると判断する。
 46.5mAh<70mAh ・・・ 式7
 これに対し、S103で求めた差が基準値以下である場合は、管理部37は蓄電セル30Aが内部短絡していないと判断する。管理部37は、内部短絡していると判断した場合はS109に進み、内部短絡していないと判断した場合は本処理を終了する。
 S109では、管理部37は蓄電セル30Aが内部短絡していることを車両ECU14に通知する。車両ECU14は内部短絡していることを通知されると、蓄電装置1に関する警告ランプを点灯させるなどにより、正常な蓄電装置1に交換するよう運転者に促す。
 (5)実施形態の効果
 蓄電装置1によれば、所定期間における蓄電セル30Aのバランサ放電電気量のばらつき、及び、所定期間における蓄電セル30Aの自己放電電気量のばらつきの両方に基づいて基準値を決定する。このため、所定期間における特定蓄電セル30Aが内部短絡しているか否かを判断するための基準値を、バランサ放電電気量のばらつきや自己放電電気量のばらつきを考慮して適切に決定できる。
 蓄電装置1によれば、基準値は、所定期間における特定蓄電セル30Aと他の蓄電セル30Aとのバランサ放電電気量のばらつきに起因して生じるバランサ放電電気量の差の最大値と、所定期間における特定蓄電セル30Aと他の蓄電セル30Aとの自己放電電気量のばらつきに起因して生じるバランサ放電電気量の差の最大値と、を合計した値であるので、特定蓄電セル30Aが内部短絡しているか否かを判断するための基準値を適切に決定できる。
 蓄電装置1によれば、他の蓄電セル30Aのバランサ放電電気量は、2以上の他の蓄電セル30Aのバランサ放電電気量の平均値であるので、他のいずれか1つの蓄電セル30Aのバランサ放電電気量を用いる場合に比べてより適切に基準値を決定できる。
 蓄電装置1によれば、蓄電セル30Aの温度と蓄電セル30AのSOCとの組み合わせ毎に一定時間における蓄電セル30Aの自己放電電気量のばらつきが対応付けられているテーブルから自己放電電気量のばらつきを取得することにより、蓄電セル30AのSOCや温度に応じた自己放電電気量のばらつきを求めることができる。
 蓄電装置1によれば、蓄電セル30Aが内部短絡しているか否かを判断できるので、プラトー領域を有する蓄電装置1の場合に特に有用である。
 <他の実施形態>
 本明細書によって開示される技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本明細書によって開示される技術的範囲に含まれる。
 (1)上記実施形態では、基準値として、特定蓄電セル30Aと他の蓄電セル30Aがバランサ回路38によって放電される頻度に起因して生じ得るバランサ放電電気量の差の最大値(第1パラメータ)と、所定期間における、特定蓄電セル30Aと他の蓄電セル30Aの自己放電電気量に起因して生じ得るバランサ放電電気量の差の最大値(第2パラメータ)とを合計した値を用いる場合を例に説明した。
 これに対し、各蓄電セル30Aのバランサ放電電気量のばらつき、及び、各蓄電セル30Aの自己放電電気量のばらつきのいずれに基づいて基準値を決定するかを、温度センサ36によって計測された温度に基づいて決定してもよい。
 例えば、蓄電セル30Aの温度が低いとき(低温時)は自己放電し難くなるので、蓄電セル30Aの自己放電電気量のばらつきは無視できる程度に小さくなる。このため、低温時は自己放電電気量のばらつきは用いず、バランサ放電電気量のばらつきだけから基準値を決定してもよい。蓄電セル30Aの温度が高いとき(高温時)は自己放電電気量の影響度がバランサ放電電気量より十分支配的であるため、バランサ放電電気量のばらつきは用いず、自己放電電気量のばらつきだけから基準値を決定してもよい。低温時と高温時との間のとき(常温時)は、自己放電電気量のばらつき及びバランサ放電電気量のばらつきの両方に基づいて基準値を決定してもよい。
 あるいは、放電抵抗38Aの許容誤差が非常に小さい場合はバランサ放電電気量のばらつきが無視できる程度であるので、自己放電電気量のばらつきだけから基準値を決定してもよい。
 あるいは、バランサ回路によっては複数の蓄電セル30Aを1つの放電抵抗38Aによって放電することもある。この場合は放電抵抗38Aの許容誤差によるバランサ放電電気量のばらつきは生じないので、自己放電電気量のばらつきだけから基準値を決定してもよい。
 基準値は上述した各最大値を合計した値に限定されるものではなく、各最大値の二乗平方根であってもよい。上述した最大値を用いるのではなく、例えばばらつきの2σ(バランサ放電電気量や自己放電電気量の正規分布における95%信頼区間)に基づいてばらつきの幅を決定し、決定した幅を合計した値あるいは二乗平方和を基準値としてもよい。
 (2)上記実施形態では他の蓄電セル30Aのバランサ放電電気量として他の全ての蓄電セル30Aのバランサ放電電気量の平均値を例に説明した。しかしながら、他の蓄電セル30Aのバランサ放電電気量はこれに限られない。例えば、他の蓄電セル30Aのバランサ放電電気量は、他の全ての蓄電セル30Aのバランサ放電電気量の中央値であってもよい。あるいは、他のいずれか1つの蓄電セル30Aのバランサ放電電気量であってもよい。他のいずれか1つの蓄電セル30Aは、特定蓄電セル30Aの次にバランサ放電電気量が小さい蓄電セル30Aであってもよいし、バランサ放電電気量が最も大きい蓄電セル30Aであってもよい。
 (3)上記実施形態では記憶部37Bに記録されている自己放電電気量のばらつきを合計することによって蓄電セル30Aの自己放電電気量のばらつきを求める場合を例に説明した。しかしながら、蓄電セル30Aの自己放電電気量のばらつきを求める方法はこれに限られない。例えば所定期間における蓄電セル30Aの自己放電電気量の正規分布における95%信頼区間の幅を自己放電電気量のばらつきとして用いてもよい。あるいは、所定期間における蓄電セル30Aの自己放電電気量のばらつきは予め決められた固定値であってもよい。
 (4)上記実施形態ではバランサ回路38としてパッシブ方式のバランサ回路38を例に説明した。これに対し、バランサ回路38は電圧が高い蓄電セル30Aによって電圧が低い蓄電セル30Aを充電することによって差を低減するアクティブ方式のバランサ回路であってもよい。
 (5)上記実施形態では、蓄電セル30Aの電圧と、その蓄電セル30Aに対応する放電抵抗38Aの抵抗値とから、オームの法則によりバランサ回路38によって放電される電流を所定期間毎に計算して積算することで、バランサ放電電気量を計算する場合を例に説明したが、バランサ放電電気量を計測する方法はこれに限られない。例えば、管理部37は、電圧計測回路35によって蓄電セル30Aの電圧を計測し、その蓄電セル30Aの電圧が、電圧が最も低い蓄電セル30Aの電圧と同じ電圧まで低下すると、放電前の電圧と放電後の電圧との電圧差を所定の計算式(あるいはテーブル)によって放電電気量[Ah]に換算してもよい。
 あるいは、放電前の電圧から蓄電セル30Aの現在の電気量[Ah]を推定するとともに、放電後の電圧から蓄電セル30Aの現在の電気量を推定し、それらの差をバランサ放電電気量としてもよい。
 あるいは、管理部37に、バランサ回路38の放電抵抗38Aの抵抗値を記憶させ、逐次的に電圧変化を計測することで、放電電気量を積算してもよい。具体的には、以下の式8~10からバランサ放電電気量を計算してもよい。
 時間t1でのバランサ電流I1=t1時点のセル電圧/放電抵抗値 ・・・ 式8
 時間t2でのバランサ電流I2=t2時点のセル電圧/放電抵抗値 ・・・ 式9
 時間t1と時間t2の区間でのバランサ放電電気量=(I2-I1)×(t2-t1)
 ・・・ 式10
 あるいは、バランサ回路38が動作する通常の電圧(例えば3.5V)と放電抵抗38Aとから、バランサ電流の平均値を記憶させてもよい。そして、管理部37は、バランサ動作時間とバランサ電流の平均値との乗算によってバランサ放電電気量を計算してもよい。
 (6)上記実施形態では蓄電セル30Aが内部短絡しているか否かを判断する場合を例に説明した。これに対し、内部短絡以外にもBMU31(管理システムに相当)の故障によって微小な放電が発生する場合もある。このため、管理部37は、S103で求めた差が基準値より大きい場合は、内部短絡していると判断するのではなく、内部短絡及びBMU31の故障による微小な放電の少なくとも一方が生じていると判断してもよい。
 (7)上記実施形態では、管理部37はいずれかの蓄電セル30Aの電圧が所定の電圧まで上昇すると、バランサ回路38を制御して、その蓄電セル30Aの電圧が、他の蓄電セル30Aのうち電圧が最も低い蓄電セル30Aの電圧と略同じになるようにその蓄電セル30Aを放電させる場合を例に説明した。
 これに対し、管理部37は、最も電圧が低い蓄電セル30Aを基準とし、他の全ての蓄電セル30Aの電圧が、基準となる蓄電セル30Aの電圧と略同じになるように他の全ての蓄電セル30Aをそれぞれ放電させてもよい。あるいは、最も残存電気量が低い蓄電セル30Aを基準とし、他の全ての蓄電セル30Aの残存電気量が、基準となる蓄電セル30Aの残存電気量と略同じになるように他の全ての蓄電セル30Aをそれぞれ放電させてもよい。
 電圧の差(あるいは残存電気量の差)を低減する方法はこれに限られない。例えば電圧が最も高い蓄電セル30Aは18mAh、2番目に高い蓄電セル30Aは12mAh、3番目に高い蓄電セル30Aは6mAhなどのように、放電する電気量(あるいは放電時間)が順位に応じて予め決められていてもよい。
 (8)上記実施形態では自動車などの車両に搭載される蓄電装置1を例に説明したが、蓄電装置1は車両に搭載されるものに限定されるものではなく、任意の目的に用いることができる。
 (9)上記実施形態では蓄電セル30Aとしてリチウムイオン二次電池を例に説明したが、蓄電セル30Aは電気化学反応を伴うキャパシタであってもよい。
1…蓄電装置
30A…蓄電セル
36…温度センサ(温度計測部の一例)
37…管理部
38…バランサ回路

Claims (7)

  1.  蓄電装置であって、
     複数の蓄電セルと、
     各蓄電セルを個別に放電させるバランサ回路と、
     管理部と、
    を備え、
     前記管理部は、
     相対的に電圧または残存電気量が高い蓄電セルを前記バランサ回路によって放電させて前記複数の蓄電セルの電圧の差または残存電気量の差を低減する低減処理と、
     所定期間に前記バランサ回路によって放電されたバランサ放電電気量が最も小さい特定蓄電セルのバランサ放電電気量と他の蓄電セルのバランサ放電電気量との差を基準値と比較することにより、前記特定蓄電セルに異常放電が生じているか否かを判断する判断処理と、
     前記所定期間における前記複数の蓄電セルのバランサ放電電気量のばらつき、及び、前記所定期間における前記複数の蓄電セルの自己放電電気量のばらつきの少なくとも一方に基づいて前記基準値を決定する決定処理と、
    を実行する、蓄電装置。
  2.  請求項1に記載の蓄電装置であって、
     前記管理部は、
     前記所定期間に、前記特定蓄電セルと他の蓄電セルが前記バランサ回路によって放電される頻度に起因して生じ得る第1パラメータと、
     前記所定期間における、前記特定蓄電セルと他の蓄電セルの自己放電電気量に起因して生じ得る第2パラメータと、
    に基づいて前記基準値を決定する、蓄電装置。
  3.  請求項1又は請求項2に記載の蓄電装置であって、
     前記他の蓄電セルのバランサ放電電気量として、2以上の他の蓄電セルのバランサ放電電気量の平均値を用いる、蓄電装置。
  4.  請求項1から請求項3のいずれか一項に記載の蓄電装置であって、
     前記蓄電セルの温度を計測する温度計測部を備え、
     前記管理部は、
     前記蓄電セルの温度及び充電状態と、一定時間における前記蓄電セルの自己放電電気量とが対応付けられているテーブルを用いてばらつきを取得して記録する記録処理を実行し、
     前記記録処理によって記録したばらつきのうち前記所定期間に記録したばらつきを合計することによって前記複数の蓄電セルの自己放電電気量のばらつきを求める、蓄電装置。
  5.  請求項1から請求項4のいずれか一項に記載の蓄電装置であって、
     前記複数の蓄電セルは、充電状態の変化に対する電圧の変化が小さいプラトー領域を有する、蓄電装置。
  6.  請求項1から請求項5のいずれか一項に記載の蓄電装置であって、
     前記蓄電セルの温度を計測する温度計測部を備え、
     前記管理部は、前記決定処理において、前記バランサ放電電気量のばらつき、及び、前記自己放電電気量のばらつきのいずれに基づいて前記基準値を決定するかを、前記温度計測部によって計測された温度に基づいて決定する、蓄電装置。
  7.  複数の蓄電セルと各蓄電セルを個別に放電させるバランサ回路とを有する蓄電装置の異常放電検出方法であって、
     相対的に電圧または残存電気量が高い蓄電セルを前記バランサ回路によって放電させて前記複数の蓄電セルの電圧の差または残存電気量の差を低減する低減工程と、
     所定期間に前記バランサ回路によって放電されたバランサ放電電気量が最も小さい特定蓄電セルのバランサ放電電気量と他の蓄電セルのバランサ放電電気量との差を基準値と比較することにより、前記特定蓄電セルに異常放電が生じているか否かを判断する判断工程と、
     前記所定期間における前記複数の蓄電セルのバランサ放電電気量のばらつき、及び、前記所定期間における前記複数の蓄電セルの自己放電電気量のばらつきの少なくとも一方に基づいて前記基準値を決定する決定工程と、
    を含む、異常放電検出方法。
PCT/JP2022/018004 2021-06-09 2022-04-18 蓄電装置、及び、蓄電装置の異常放電検出方法 WO2022259766A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280054408.XA CN117795812A (zh) 2021-06-09 2022-04-18 蓄电装置以及蓄电装置的异常放电检测方法
US18/567,658 US20240275194A1 (en) 2021-06-09 2022-04-18 Energy storage apparatus, and method of detecting abnormal discharge in energy storage apparatus
DE112022003004.6T DE112022003004T5 (de) 2021-06-09 2022-04-18 Energiespeichervorrichtung und Verfahren zum Erfassen einer anormalen Entladung in einer Energiespeichervorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021096428A JP2022188418A (ja) 2021-06-09 2021-06-09 蓄電装置、及び、蓄電装置の異常放電検出方法
JP2021-096428 2021-06-09

Publications (1)

Publication Number Publication Date
WO2022259766A1 true WO2022259766A1 (ja) 2022-12-15

Family

ID=84425918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018004 WO2022259766A1 (ja) 2021-06-09 2022-04-18 蓄電装置、及び、蓄電装置の異常放電検出方法

Country Status (5)

Country Link
US (1) US20240275194A1 (ja)
JP (1) JP2022188418A (ja)
CN (1) CN117795812A (ja)
DE (1) DE112022003004T5 (ja)
WO (1) WO2022259766A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115871579A (zh) * 2023-01-03 2023-03-31 重庆长安汽车股份有限公司 一种车辆用电监控方法、系统、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282155A (ja) * 2002-03-25 2003-10-03 Toyota Motor Corp 組電池の異常検出装置および異常検出方法
JP2008134060A (ja) * 2006-11-27 2008-06-12 Matsushita Electric Ind Co Ltd 蓄電装置の異常検出装置、蓄電装置の異常検出方法及びその異常検出プログラム
JP2011155825A (ja) * 2010-01-26 2011-08-11 Sb Limotive Co Ltd バッテリー管理システム及びその駆動方法
JP2012186985A (ja) * 2011-02-16 2012-09-27 Iks Co Ltd 二次電池劣化判定方法及び二次電池劣化判定装置
WO2015155805A1 (ja) * 2014-04-09 2015-10-15 三菱電機株式会社 蓄電池劣化測定装置、蓄電システム装置
JP2020054056A (ja) * 2018-09-25 2020-04-02 日立建機株式会社 蓄電システム、蓄電管理システム、およびハイブリッド式建設機械

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282155A (ja) * 2002-03-25 2003-10-03 Toyota Motor Corp 組電池の異常検出装置および異常検出方法
JP2008134060A (ja) * 2006-11-27 2008-06-12 Matsushita Electric Ind Co Ltd 蓄電装置の異常検出装置、蓄電装置の異常検出方法及びその異常検出プログラム
JP2011155825A (ja) * 2010-01-26 2011-08-11 Sb Limotive Co Ltd バッテリー管理システム及びその駆動方法
JP2012186985A (ja) * 2011-02-16 2012-09-27 Iks Co Ltd 二次電池劣化判定方法及び二次電池劣化判定装置
WO2015155805A1 (ja) * 2014-04-09 2015-10-15 三菱電機株式会社 蓄電池劣化測定装置、蓄電システム装置
JP2020054056A (ja) * 2018-09-25 2020-04-02 日立建機株式会社 蓄電システム、蓄電管理システム、およびハイブリッド式建設機械

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115871579A (zh) * 2023-01-03 2023-03-31 重庆长安汽车股份有限公司 一种车辆用电监控方法、系统、电子设备及存储介质
CN115871579B (zh) * 2023-01-03 2024-05-24 重庆长安汽车股份有限公司 一种车辆用电监控方法、系统、电子设备及存储介质

Also Published As

Publication number Publication date
JP2022188418A (ja) 2022-12-21
CN117795812A (zh) 2024-03-29
DE112022003004T5 (de) 2024-03-28
US20240275194A1 (en) 2024-08-15

Similar Documents

Publication Publication Date Title
US20100188054A1 (en) Battery internal short-circuit detecting device and method, battery pack, and electronic device system
US10800261B2 (en) Battery state estimation apparatus, assembled battery, energy storage system, and methods of using the same
WO2020179479A1 (ja) 蓄電素子の管理装置、蓄電装置、システム、蓄電素子の管理方法、及び、コンピュータプログラム
WO2022259766A1 (ja) 蓄電装置、及び、蓄電装置の異常放電検出方法
JP7464041B2 (ja) 蓄電素子の管理装置及び蓄電装置
WO2022196362A1 (ja) 蓄電装置、及び、蓄電装置の制御方法
JP7099224B2 (ja) 蓄電素子の管理装置、及び、蓄電装置
JP7174333B2 (ja) 蓄電装置、蓄電素子の容量推定方法
WO2024090338A1 (ja) 蓄電装置、複数セルの制御方法及び蓄電装置の制御方法
WO2024043044A1 (ja) 検出装置、蓄電装置、及び、検出方法
JP7491108B2 (ja) 蓄電素子の管理装置、蓄電装置、及び、管理方法
JP2020167767A (ja) 蓄電素子の管理装置、蓄電装置、及び、蓄電素子の管理方法
WO2022249784A1 (ja) 補正装置、蓄電装置、補正方法
WO2021039355A1 (ja) 蓄電素子の充電状態推定値の補正方法、蓄電素子の管理装置、及び、蓄電装置
WO2020246285A1 (ja) 監視ユニット、蓄電装置、監視ユニットの起動方法
WO2022264698A1 (ja) 蓄電装置、及び、蓄電装置の制御方法
US20240322268A1 (en) Energy storage apparatus, and method of diagnosing failure of current interruption device
WO2020195425A1 (ja) 蓄電装置、及び、蓄電装置の管理方法
JP7320177B2 (ja) 蓄電装置
JP6969307B2 (ja) 管理装置、蓄電システム、蓄電素子の残存容量を均等化する方法、蓄電素子の内部状態を推定する方法
US20210155113A1 (en) Energy storage apparatus and method for managing energy storage device
KR20170090137A (ko) 배터리 관리 시스템의 구동방법
JP2023008149A (ja) 蓄電装置、組電池の異常検出方法
CN118251813A (zh) 蓄电装置、电流切断装置的故障诊断方法
JP2023025388A (ja) 蓄電装置、蓄電装置の管理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819952

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112022003004

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 202280054408.X

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 22819952

Country of ref document: EP

Kind code of ref document: A1