WO2020195425A1 - 蓄電装置、及び、蓄電装置の管理方法 - Google Patents

蓄電装置、及び、蓄電装置の管理方法 Download PDF

Info

Publication number
WO2020195425A1
WO2020195425A1 PCT/JP2020/007041 JP2020007041W WO2020195425A1 WO 2020195425 A1 WO2020195425 A1 WO 2020195425A1 JP 2020007041 W JP2020007041 W JP 2020007041W WO 2020195425 A1 WO2020195425 A1 WO 2020195425A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
storage device
battery
voltage
circuit breaker
Prior art date
Application number
PCT/JP2020/007041
Other languages
English (en)
French (fr)
Inventor
和田 直也
将克 冨士松
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Publication of WO2020195425A1 publication Critical patent/WO2020195425A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • a lead-acid battery is generally used as a power storage device used for starting an engine in a motorcycle, but in Patent Document 1, a power storage device provided with a power storage element such as a lithium ion secondary battery can be applied to a motorcycle.
  • Patent Document 1 a power storage device provided with a power storage element such as a lithium ion secondary battery can be applied to a motorcycle.
  • the other type of power storage device can be applied without changing the design of the device side.
  • a lead-acid battery of a motorcycle is replaced with a power storage device including a power storage element such as a lithium ion battery
  • a so-called retrofit that can apply the power storage device without changing the design of the motorcycle is required.
  • Some power storage devices equipped with a power storage element such as a lithium-ion battery do not have a function of communicating with an external device.
  • a power storage element such as a lithium-ion battery
  • the problem of replacing the power storage device used in a certain device with another type of power storage device that does not have a function of communicating with an external device without changing the design of the certain device has been examined. I wasn't.
  • This specification discloses a technique for suppressing the increase in size of the power storage device due to the increase in output of the equalization circuit.
  • the power storage device is managed by a plurality of power storage elements, a circuit breaker connected in series with the plurality of power storage elements, and an equalization circuit for equalizing the voltages of the plurality of power storage elements.
  • the management unit includes a unit and, in a state where the circuit breaker is off, equalizes the voltage of each of the power storage elements by the equalization circuit, equalizes the voltage of each power storage element, and then turns on the circuit breaker.
  • One aspect of the present invention can suppress the increase in size of the power storage device due to the increase in output of the equalization circuit.
  • FIG. 1 Side view of motorcycle Vehicle system block diagram Disassembled perspective view of the battery Top view of secondary battery Sectional view of line AA of FIG. Battery block diagram Graph showing the relationship between the charged state and the open circuit voltage Flowchart of charge control process Graph showing the timing to start the equalization process Schematic diagram showing equalization processing A graph showing a state in which the voltage of one of the secondary batteries (cells) has risen above the threshold at which overcharging is foreseen. A graph showing the voltage of the secondary battery when the voltage of all the secondary batteries (cells) is equalized and charging is completed. Schematic diagram showing a state in which equalization processing is executed with the circuit breaker on. Schematic diagram showing a state in which equalization processing is executed with the circuit breaker turned off.
  • FIG. 1 Schematic diagram showing a state in which the equalization process is completed and charging is resumed.
  • the power storage device that does not have a function of communicating with the charger includes a plurality of power storage elements, a circuit breaker connected in series with the plurality of power storage elements, and an equalization circuit that equalizes the voltages of the plurality of power storage elements.
  • the management unit includes a control unit, and the control unit equalizes the voltage of each power storage element by the equalization circuit in a state where the circuit breaker is off (open, open), and equalizes the voltage of each power storage element. After that, the circuit breaker is turned on (closed, closed).
  • Lead-acid batteries used in motorcycles are generally rated at 12V [volt] and float-charged (floating-charged) at 15V.
  • Float charging is a charging method that keeps the battery fully charged by continuously applying a constant voltage.
  • the lead-acid battery is float-charged at 15V, it is charged with a constant current until the voltage of the lead-acid battery reaches 15V, and when the voltage rises to 15V, it is charged with a constant voltage of 15V.
  • a power storage device including a power storage element such as a lithium ion battery is usually charged at a voltage lower than 15V, assuming that the power storage device is rated at 12V. It is assumed that the voltage of a power storage element such as a lithium ion battery is 3V, and the power storage device is a device in which four storage elements are connected in series. It is assumed that the voltage at which overcharging of the power storage element is predicted (voltage that has not yet reached overcharging but is judged to be near overcharging) is 4V.
  • the voltage for charging the power storage device is 14V (voltage lower than 15V)
  • the voltage of each power storage element when charging is completed is ideally 3.5V
  • each power storage element is 4V. It does not become. In reality, the voltage does not always reach 3.5V uniformly because there are variations in voltage between the power storage elements. However, since there is a margin of 0.5V between 3.5V and 4V, it is unlikely that the voltage of any of the storage elements exceeds 4V even if the voltage varies slightly between the storage elements.
  • the voltage of each power storage element when charging is completed is ideally 3.75 V. Since the difference between 3.75V and 4V is only 0.25V, as shown in FIG. 11, there is a possibility that the voltage of any of the power storage elements exceeds 4V with a slight voltage variation. In float charging, the battery is charged as soon as the voltage drops, so if any of the power storage elements exceeds 4 V with a slight voltage variation, overcharging of the power storage element is frequently predicted. Therefore, the circuit breaker is frequently turned on / off to prevent overcharging, and there is a high possibility that the circuit breaker will fail. It is also conceivable to suppress the variation by equalizing the voltage of each power storage element by the equalization circuit in parallel with the charging.
  • the equalization circuit is also small, and it is difficult to mount a large resistance load and heat dissipation components associated therewith. In other words, it is difficult to suppress the variation by increasing the output by increasing the size of the equalization circuit. For example, if the maximum charging current is 30 A, the current flowing through the small equalization circuit is about 36 mA. Therefore, the discharge cannot catch up, and it is difficult to equalize the voltage before any of the power storage elements is overcharged.
  • the power storage device has a function of communicating with the ECU (Engine Control Unit) of the motorcycle, it is also possible for the management unit of the power storage device to request the ECU to lower the charging voltage.
  • the voltage of each power storage element is equalized by the equalization circuit when the circuit breaker is off, so that the voltage can be equalized over time. Therefore, it is not necessary to increase the size of the equalization circuit.
  • the circuit breaker since the circuit breaker is turned on after equalizing the voltage of each power storage element, the power storage element is charged by the charger. Since the voltage of each power storage element is equalized, it is highly possible that the voltage of each power storage element will be less than the voltage at which overcharging is predicted when charging is completed thereafter.
  • another power storage device (the above-mentioned power storage device) which does not have a function of communicating the power storage device used in a certain device with an external device without changing the design of the certain device. )
  • the frequent overcharging of the power storage element provided in the other power storage device can be reduced while suppressing the increase in size of the power storage device due to the high output of the equalization circuit.
  • the possibility that the circuit breaker may fail due to frequent on / off of the circuit breaker can be reduced while suppressing the increase in size of the power storage device.
  • the management unit may turn off the circuit breaker when an overcharge of any of the power storage elements is predicted while the plurality of power storage elements are being charged by the charger.
  • the circuit breaker includes a discharge circuit breaker in which a rectifying element and a switch that allow current to flow only in the direction of charging the power storage element and a switch are connected in parallel, and a rectifying element and a switch that allow current to flow only in the direction of discharging.
  • a connected charge circuit breaker is provided in series, and the control unit predicts overcharging of any of the power storage elements when the plurality of power storage elements are being charged by the charger. And the switch of the charge circuit breaker may be turned off, while the switch of the discharge circuit breaker may be kept on.
  • the discharge breaker switch remains on, so discharge is allowed. Therefore, it is possible to suppress a so-called power failure in which power is not supplied to an external device.
  • the control unit starts equalization by the equalization circuit when the charge state (SOC: State Of Charge) of the power storage element rises to a predetermined value smaller than a predetermined threshold for overcharging of the power storage element. May be good.
  • SOC State Of Charge
  • equalization is started before overcharging of the power storage element is predicted, so that there is a high possibility that charging of any power storage element will be completed without predicting overcharge.
  • the power storage element may have a plateau region in which a change in open circuit voltage (OCV: Open Circuit Voltage) with respect to a change in charge state (SOC) is small.
  • OCV Open Circuit Voltage
  • some power storage elements have a plateau region in which the change in OCV with respect to the change in SOC is small (for example, an iron-based power storage element in which iron is contained in the positive electrode active material). ..
  • the plateau region is a region in which the amount of change in OCV with respect to the amount of change in SOC is 2 [mV /%] or less.
  • the OCV becomes almost constant when the SOC is in the plateau region, so it is difficult to detect the voltage difference of the power storage element from the SOC and start equalization. Therefore, after passing through the plateau region, the voltage difference is detected and equalization is started (the section shown by the circle 40 in FIG. 9A).
  • the power storage element may be a lithium ion battery
  • the charger may be a charger for a lead storage battery.
  • a charger that charges a lead-acid battery generally charges at a higher voltage than a charger that charges a lithium-ion battery. According to the above-mentioned power storage device, when the lithium ion battery is charged by the charger for the lead storage battery, it is possible to reduce the frequent prediction of overcharging of the lithium ion battery while suppressing the increase in size of the power storage device.
  • the invention disclosed in the present specification can be realized in various aspects such as a device, a method, a computer program for realizing the function of these devices or methods, a recording medium on which the computer program is recorded, and the like.
  • the battery 50 (an example of a power storage device) according to the first embodiment is a battery for a motorcycle mounted on a motorcycle 10.
  • the battery 50 is rated at 12V.
  • the battery 50 is connected to the starter 10A, the alternator 10B (an example of a charger), and the auxiliary equipment 10C (head ride, air conditioner, audio, etc.) mounted on the motorcycle 10.
  • the battery 50 is an engine starting battery that supplies electric power to the starter 10A to start the engine.
  • the battery 50 is charged by the alternator 10B during engine operation.
  • the alternator 10B is designed to charge a lead-acid battery, and float-charges the battery 50 at 15 V.
  • the battery 50 does not supply electric power to the auxiliary machinery 10C while the engine is operating, but also supplies electric power to the auxiliary machinery 10C when the auxiliary machinery 10C is used while the engine is stopped.
  • the battery for a two-wheeled vehicle does not have a function of communicating with the ECU of the motorcycle ten.
  • the motorcycle battery 50 according to the first embodiment also does not have a function of communicating with the ECU.
  • the battery 50 includes an assembled battery 60, a circuit board unit 65, and an accommodating body 71.
  • the housing body 71 includes a main body 73 made of a synthetic resin material and a lid body 74.
  • the main body 73 has a bottomed tubular shape.
  • the main body 73 includes a bottom surface portion 75 and four side surface portions 76.
  • An upper opening 77 is formed at the upper end portion by the four side surface portions 76.
  • the accommodating body 71 accommodates the assembled battery 60 and the circuit board unit 65.
  • the assembled battery 60 has 12 secondary batteries 62 (an example of a power storage element).
  • the secondary battery 62 is, for example, an iron-based lithium ion battery containing iron in the positive electrode active material.
  • the 12 secondary batteries 62 are connected in 3 parallels and 4 in series. In the following description, the secondary battery 62 may be referred to as a cell.
  • the circuit board unit 65 includes a circuit board 100 and electronic components mounted on the circuit board 100, and is arranged above the assembled battery 60.
  • the lid 74 closes the upper opening 77 of the main body 73.
  • An outer peripheral wall 78 is provided around the lid body 74.
  • the lid 74 has a substantially T-shaped protrusion 79 in a plan view.
  • the positive electrode external terminal 51 is fixed to one corner of the front portion of the lid 74, and the negative electrode external terminal 52 is fixed to the other corner.
  • the secondary battery 62 has an electrode body 83 housed in a rectangular parallelepiped case 82 together with a non-aqueous electrolyte.
  • the case 82 has a case body 84 and a lid 85 that closes an opening above the case body 84.
  • the electrode body 83 is porous between the negative electrode element in which the active material is applied to the base material made of copper foil and the positive electrode element in which the active material is applied to the base material made of aluminum foil.
  • a separator made of a resin film is arranged. All of these are band-shaped, and are wound flat so that they can be accommodated in the case body 84 with the negative electrode element and the positive electrode element shifted to the opposite sides in the width direction with respect to the separator. ..
  • the positive electrode terminal 87 is connected to the positive electrode element via the positive electrode current collector 86, and the negative electrode terminal 89 is connected to the negative electrode element via the negative electrode current collector 88.
  • the positive electrode current collector 86 and the negative electrode current collector 88 include a flat plate-shaped pedestal portion 90 and leg portions 91 extending from the pedestal portion 90. A through hole is formed in the pedestal portion 90.
  • the leg 91 is connected to a positive electrode element or a negative electrode element.
  • the positive electrode terminal 87 and the negative electrode terminal 89 include a terminal body portion 92 and a shaft portion 93 protruding downward from the center portion of the lower surface thereof. Among them, the terminal body portion 92 and the shaft portion 93 of the positive electrode terminal 87 are integrally molded with aluminum (single material).
  • the terminal body portion 92 is made of aluminum and the shaft portion 93 is made of copper, and these are assembled.
  • the terminal body 92 of the positive electrode terminal 87 and the negative electrode terminal 89 is arranged at both ends of the lid 85 via a gasket 94 made of an insulating material, and is exposed to the outside from the gasket 94.
  • the lid 85 has a pressure release valve 95. As shown in FIG. 2, the pressure release valve 95 is located between the positive electrode terminal 87 and the negative electrode terminal 89. When the internal pressure of the case 82 exceeds the limit value, the pressure release valve 95 opens to reduce the internal pressure of the case 82.
  • the battery 50 includes an assembled battery 60 and a BMU 101 (Battery Management Unit) that manages the assembled battery 60.
  • BMU101 is an example of a management device.
  • the assembled battery 60 is composed of 12 secondary batteries 62, and is connected in 3 parallels and 4 in series. In FIG. 6, three secondary batteries 62 connected in parallel are represented by one battery symbol.
  • the power line 70P is a power line that connects the positive electrode external terminal 51 and the positive electrode of the assembled battery 60.
  • the power line 70N is a power line that connects the negative electrode external terminal 52 and the negative electrode of the assembled battery 60.
  • the negative electrode of the assembled battery 60 is connected to the signal ground G1.
  • the assembled battery 60 uses the signal ground G1 as a reference potential.
  • the negative electrode external terminal 52 is connected to the body ground G2.
  • the body ground G2 is the body of the motorcycle 10.
  • the body ground G2 is the reference potential of the motorcycle 10.
  • the BMU 101 includes a current sensor 53, a voltage sensor 110, a circuit breaker 55, four equalization circuits 25, and a management unit 130.
  • the assembled battery 60, the current sensor 53, and the circuit breaker 55 are connected in series via the power line 70P and the power line 70N.
  • the circuit breaker 55, the current sensor, and the management unit 130 are mounted on the circuit board 100, and the signal ground G1 of the circuit board 100 is used as a reference potential (operation reference).
  • the current sensor 53 is located on the negative electrode of the assembled battery 60 and is provided on the power line 70N on the negative electrode side.
  • the current sensor 53 detects the current value and direction (charging direction / discharging direction) of the current flowing through the assembled battery 60.
  • the voltage sensor 110 detects the voltage V of each secondary battery 62 and the total voltage of the assembled battery 60.
  • the total voltage of the assembled battery 60 is the total voltage of the four secondary batteries 62.
  • the circuit breaker 55 is located on the negative electrode of the assembled battery 60 and is provided on the power line 70N of the negative electrode.
  • the circuit breaker 55 includes a charging FET 55A (an example of a charging circuit breaker) and a discharging FET 55B (an example of a discharging circuit breaker).
  • the charging FET 55A and the discharging FET 55B are semiconductor switches for electric power, and more specifically, they are N-channel field effect transistors (FETs: Field Effect Transistors).
  • the source S of the charging FET 55A and the discharging FET 55B is a reference terminal.
  • the gate G of the charging FET 55A and the discharging FET 55B is a control terminal.
  • the drain D of the charging FET 55A and the discharging FET 55B is a connection terminal.
  • the source S is connected to the negative electrode of the assembled battery 60.
  • the discharge FET 55B the source S is connected to the negative electrode external terminal 52.
  • the charging FET 55A and the discharging FET 55B are back-to-back connected by connecting the drains D to each other.
  • the charging FET 55A has a parasitic diode 56A (an example of a rectifying element that allows current to flow only in the discharge direction).
  • the parasitic diode 56A has the same forward direction as the discharge direction.
  • the discharge FET 55B has a parasitic diode 56B (an example of a rectifying element that allows current to flow only in the charging direction).
  • the parasitic diode 56B has the same forward direction as the charging direction.
  • the body ground G2 is the reference potential.
  • the source S is connected to the negative electrode of the assembled battery 60. Since the negative electrode of the assembled battery 60 is connected to the signal ground G1 of the circuit board 100, the signal ground G1 of the charging FET 55A is the reference potential.
  • the charging FET 55A is turned on when an H level voltage is applied to the gate G, and is turned off when an L level voltage is applied to the gate G. The same applies to the discharge FET 55B.
  • the four equalization circuits 25 are for equalizing the voltage of the secondary battery 62, and are connected in parallel to the secondary batteries 62, which are different from each other.
  • Each equalization circuit 25 includes a discharge resistor 25A and a switch 25B such as an FET or a relay.
  • the management unit 130 includes a CPU 131, a ROM 132, and a RAM 133.
  • the management unit 130 manages the battery 50 based on the outputs of the voltage sensor 110, the current sensor 53, and the temperature sensor 111.
  • the management unit 130 applies an H-level voltage to the gate G of the charging FET 55A and the gate G of the discharging FET 55B to turn on the charging FET 55A and the discharging FET 55B.
  • both the charging FET 55A and the discharging FET 55B are on, the assembled battery 60 can be both charged and discharged.
  • the SOC estimation process is a process of estimating the charging state of the assembled battery 60 by the current integration method.
  • the charge / discharge current of the assembled battery 60 is measured by the current sensor 53 at predetermined time intervals to measure the amount of electric power entering and exiting the assembled battery 60, and the SOC is estimated by adding or subtracting this from the initial capacity. How to do it.
  • the current integration method has the advantage that the SOC can be estimated even when the assembled battery 60 is in use, but since the current is constantly measured and the charge / discharge power amount is integrated, the measurement error of the current sensor 53 may accumulate and become gradually inaccurate. There is sex. Therefore, the management unit 130 may reset the SOC estimated by the current integration method based on the open circuit voltage (OCV) of the assembled battery 60.
  • OCV open circuit voltage
  • OCV is not limited to the voltage when the circuit is open.
  • the OCV may be a voltage when the current value of the current flowing through the secondary battery 62 is less than a minute reference value.
  • (3-2) Charge Control Process The charge control process executed by the management unit 130 will be described with reference to FIGS. 8 to 10. This process is executed every time the SOC of the assembled battery 60 is estimated by the SOC estimation process.
  • the battery 50 includes 12 secondary batteries 62, but for ease of understanding, a case where four 3V secondary batteries 62 are connected in series will be described here as an example.
  • the management unit 130 determines whether or not the SOC of the assembled battery 60 is equal to or higher than a predetermined value S2 (for example, 90%) smaller than the threshold value S1 (for example, 95%) for which overcharging is predicted (FIG. 9A). ). The management unit 130 proceeds to S102 when the SOC is the predetermined value S2 or more, and ends this process when the SOC is less than the predetermined value S2.
  • a predetermined value S2 for example, 90%
  • S1 for example, 95%
  • the management unit 130 starts the equalization process with the charging FET 55A turned on (FIGS. 9B and 10A).
  • FIG. 9B four secondary batteries 62 are shown in cells 1 to 4.
  • the voltage of the secondary battery 62 having the lowest voltage among the four secondary batteries 62 is used as the reference voltage, and the other secondary batteries 62 are used until the voltages of the other secondary batteries 62 match the reference voltage.
  • the management unit 130 determines whether or not the voltage of any of the secondary batteries 62 is equal to or higher than the threshold voltage (for example, 4V) at which overcharging is predicted (FIG. 9C). The management unit 130 proceeds to S104 when the voltage of any of the secondary batteries 62 is equal to or higher than the threshold voltage, and executes S103 again after a lapse of a predetermined time when the voltage of any of the secondary batteries 62 is less than the threshold voltage. To do.
  • the threshold voltage for example, 4V
  • the management unit 130 turns off the charging FET 55A while keeping the discharging FET 55B on (FIG. 10B).
  • the charging FET 55A is turned off, charging is interrupted, but since the discharging FET 55B is kept on, discharging is allowed.
  • the management unit 130 determines whether or not the equalization process started in S102 is completed (whether or not the voltage of each secondary battery 62 is equalized), and if not, proceeds to S106. When finished, the process proceeds to S107.
  • the management unit 130 determines whether or not the current in the discharge direction is detected by the current sensor, proceeds to S107 if the current in the discharge direction is detected, returns to S105 if not detected, and repeats the process. In S107, the management unit 130 turns on the charging FET 55A (FIG. 10C). As a result, charging of each secondary battery 62 is restarted.
  • the voltage of each secondary battery 62 is equalized by the equalization circuit 25 in a state where the charging FET 55A is off (FIG. 10B), so that the voltage can be equalized over time. Therefore, it is not necessary to increase the size of the equalization circuit 25.
  • the charging FET 55A is turned on after equalizing the voltage of each secondary battery 62 (FIG. 10C)
  • charging of the secondary battery 62 by the alternator 10B is restarted. Since the voltage of each secondary battery 62 is equalized, when charging is completed thereafter, the voltage of each secondary battery 62 may be less than the voltage (4V) for which overcharging is predicted. It becomes higher (Fig. 9D).
  • the battery 50 when the lead-acid battery used in the motorcycle 10 is replaced with the battery 50 (a power storage device having no function of communicating with an external device) without changing the design of the motorcycle 10. It is possible to reduce the frequent prediction of overcharging of the secondary battery 62 while suppressing the increase in size of the battery 50 due to the increase in the output of the equalization circuit 25. In other words, according to the battery 50, the possibility that the charging FET 55A may fail due to frequent on / off of the charging FET 55A can be reduced while suppressing the increase in size of the battery 50.
  • the battery 50 when a plurality of secondary batteries 62 are being charged by the alternator 10B, if any of the secondary batteries 62 is foreseen to be overcharged, the charging FET 55A is turned off, so that equalization is completed. The time from when charging is completed is short. Therefore, it is possible to reduce the possibility that variation will occur again during that period.
  • the discharging FET 55B remains on, so that discharging is allowed. Therefore, it is possible to suppress a so-called power failure in which power is not supplied to the starter 10A and the auxiliary equipment 10C.
  • the equalization is started before the overcharge of the secondary battery 62 is predicted, so that there is a high possibility that the charging of any of the secondary batteries 62 will be completed without the overcharge being predicted.
  • the charging FET 55A is equalized in the off state, so even if equalization is started immediately before overcharging, it can be equalized over time. Therefore, even if the secondary battery 62 has a plateau region, the possibility that the secondary battery 62 will be overcharged can be reduced while suppressing the increase in size of the battery 50. Therefore, it is particularly useful in the case of the secondary battery 62 having a plateau region.
  • the secondary battery 62 is a lithium ion battery
  • the alternator 10B is a charger for a lead storage battery. According to the battery 50, when the lithium ion battery is charged by the charger for the lead storage battery, it is possible to reduce the frequent prediction of overcharging of the lithium ion battery while suppressing the increase in size of the battery 50.
  • the charging FET 55A is turned on even before the voltage of each secondary battery 62 is equalized. Even if a large discharge current flows before the equalization process is completed, the failure of the parasitic diode 56A can be suppressed.
  • the alternator 10B of the motorcycle 10 has been described as an example of the charger, but the charger may be a charger different from the motorcycle 10.
  • the iron-based secondary battery 62 has been described as an example of the secondary battery 62, but the secondary battery 62 is not limited to the iron-based battery 62, and is not limited to the iron-based battery 62, and is another type of secondary battery having a plateau region. It may be a battery.
  • the secondary battery 62 having a plateau region has been described as an example, but the secondary battery 62 is not limited to the one having a plateau region.
  • the charging FET 55A has been described as an example of the charging circuit breaker, but the charging circuit breaker may have a rectifying element and a relay connected in parallel. The same applies to the discharge circuit breaker.
  • circuit breaker includes the charging FET 55A and the discharging FET 55B has been described as an example, but the circuit breaker may be one relay.
  • the lithium ion battery has been described as an example of the power storage element, but the power storage element is not limited to this.
  • the power storage element may be a capacitor that involves an electrochemical reaction.
  • the battery 50 for starting the engine of the motorcycle 10 has been described as an example, but the use of the battery 50 is not limited to this.
  • the battery 50 may be a battery for starting an engine of a four-wheeled vehicle, or may be a battery for auxiliary equipment mounted on an electric vehicle or a plug-in hybrid vehicle to supply power to auxiliary equipment. ..
  • the battery 50 may be a battery used in an uninterruptible power supply (UPS: Power Power Supply).
  • UPS Uninterruptible power supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

オルタネータ10Bと通信する機能を有しないバッテリ50であって、複数の二次電池62と、複数の二次電池62と直列に接続されている遮断器55と、複数の二次電池62の電圧を均等化する均等化回路25と、管理部130と、を備え、管理部130は、遮断器55がオフの状態で均等化回路25によって各二次電池62の電圧を均等化し、各二次電池62の電圧を均等化した後に遮断器55をオンにする。

Description

蓄電装置、及び、蓄電装置の管理方法
 蓄電装置、及び、蓄電装置の管理方法に関する。
 近年、鉛蓄電池などの低容量の電池をリチウムイオン電池などの高容量の電池に置き換えることが検討されている。例えば、一般に自動二輪車ではエンジン始動に用いられる蓄電装置として鉛蓄電池が用いられているが、特許文献1にはリチウムイオン二次電池などの蓄電素子を備えた蓄電装置を自動二輪車に適用することが記載されている。
特開2019-3846号公報
 ある機器で用いられている蓄電装置を別の種類の蓄電装置に置き換える場合、機器側の設計を変更することなく当該別の種類の蓄電装置を適用できることが望ましい。例えば、自動二輪車の鉛蓄電池を、リチウムイオン電池などの蓄電素子を備える蓄電装置に置き換える場合、自動二輪車側の設計を変更しなくても当該蓄電装置を適用できる所謂レトロフィットが求められている。
 リチウムイオン電池などの蓄電素子を備える蓄電装置の中には外部の機器と通信する機能を有しないものがある。従来は、ある機器で用いられている蓄電装置を、当該ある機器の設計を変更することなく、外部の機器と通信する機能を有しない別の種類の蓄電装置に置き換えた場合の課題について検討されていなかった。
 本明細書では、均等化回路の高出力化に伴う蓄電装置の大型化を抑制する技術を開示する。
 本発明の一局面は、蓄電装置は、複数の蓄電素子と、前記複数の蓄電素子と直列に接続されている遮断器と、前記複数の蓄電素子の電圧を均等化する均等化回路と、管理部と、を備え、前記管理部は、前記遮断器がオフの状態で前記均等化回路によって各前記蓄電素子の電圧を均等化し、各前記蓄電素子の電圧を均等化した後に前記遮断器をオンにする。
 本発明の一局面は、均等化回路の高出力化に伴う蓄電装置の大型化を抑制できる。
自動二輪車の側面図 車両システムのブロック図 バッテリの分解斜視図 二次電池の平面図 図4のA-A線の断面図 バッテリのブロック図 充電状態と開放電圧との関係を示すグラフ 充電制御処理のフローチャート 均等化処理を開始するタイミングを示すグラフ 均等化処理を示す模式図 いずれかの二次電池(セル)の電圧が、過充電が予見される閾値以上まで上昇した状態を示すグラフ 全ての二次電池(セル)の電圧が、均等化され、充電が終了したときの二次電池の電圧を示すグラフ 遮断器がオンの状態で均等化処理が実行されている状態を示す模式図 遮断器がオフの状態で均等化処理が実行されている状態を示す模式図 均等化処理が終了して充電が再開された状態を示す模式図 4つの二次電池が直列に接続された蓄電装置において、蓄電素子1のみが不均等の状態で、鉛蓄電池用の充電器で充電した場合を比較例として示すグラフ
 (本実施形態の概要)
 充電器と通信する機能を有しない蓄電装置は、複数の蓄電素子と、前記複数の蓄電素子と直列に接続されている遮断器と、前記複数の蓄電素子の電圧を均等化する均等化回路と、管理部と、を備え、前記管理部は、前記遮断器がオフ(開、オープン)の状態で前記均等化回路によって各前記蓄電素子の電圧を均等化し、各前記蓄電素子の電圧を均等化した後に前記遮断器をオン(閉、クローズ)にする。
 例えば自動二輪車のエンジン始動に用いられている鉛蓄電池を、リチウムイオン電池などの蓄電素子を備える蓄電装置に置き換える場合を考える。自動二輪車に用いられる鉛蓄電池は一般に定格12V[ボルト]であり、15Vでフロート充電(浮動充電)される。フロート充電は一定の電圧を印加し続けることによって常に満充電に維持する充電方法である。鉛蓄電池を15Vでフロート充電する場合は、鉛蓄電池の電圧が15Vに達するまでは定電流充電され、電圧が15Vまで上昇すると15Vで定電圧充電される。
 これに対し、一般にリチウムイオン電池などの蓄電素子を備える蓄電装置は、当該蓄電装置の定格が12Vであるとすると、通常、15Vより低い電圧で充電される。リチウムイオン電池などの蓄電素子の電圧が3Vであり、蓄電装置はその蓄電素子を4つ直列に接続したものであると仮定する。蓄電素子の過充電が予見される電圧(まだ過充電には至っていないが、過充電が近いと判断される電圧)が4Vであると仮定する。この場合、蓄電装置を充電する電圧が14V(15Vより低い電圧)であると仮定すると、充電が完了したときの各蓄電素子の電圧は理想的には3.5Vとなり、いずれの蓄電素子も4Vにはならない。
 実際には蓄電素子間で電圧のばらつきがあるため必ずしも一律に3.5Vにはならない。しかしながら、3.5Vと4Vとの間には0.5Vの余裕があるので、蓄電素子間で電圧が多少ばらついてもいずれかの蓄電素子の電圧が4Vを超える可能性は低い。
 上述したリチウムイオン電池などの蓄電素子を備える蓄電装置を自動二輪車に適用する場合、自動二輪車側の設計を変更することなく適用すると、蓄電装置は15Vで充電される。この場合、充電が完了したときの各蓄電素子の電圧は理想的には3.75Vとなる。3.75Vと4Vとの差は0.25Vしかないため、図11に示すように、少しの電圧のばらつきでいずれかの蓄電素子の電圧が4Vを超える可能性がある。
 フロート充電では電圧が低下すると直ぐに充電されるので、少しの電圧のばらつきでいずれかの蓄電素子が4Vを超えると、蓄電素子の過充電が頻繁に予見される。このため、過充電を防止するために遮断器が頻繁にオン/オフされ、遮断器が故障する可能性が高くなる。
 充電と並行して均等化回路によって各蓄電素子の電圧を均等化することによってばらつきを抑制することも考えられる。しかしながら、蓄電装置の小型化や低コスト化が求められる場合は均等化回路も小型であり、大きな抵抗負荷とそれに伴う放熱部品を実装することは難しい。言い換えると、均等化回路を大型化することによる高出力化によってばらつきを抑制することは難しい。例えば充電電流が最大30Aであるとすると、小型の均等化回路に流れる電流は36mA程度である。このため放電が追いつかず、いずれかの蓄電素子が過充電になる前に電圧を均等化することは困難である。
 蓄電装置が自動二輪車のECU(Engine Control Unit)と通信する機能を有している場合は、蓄電装置の管理部がECUに充電電圧を下げるよう要求することも可能である。しかしながら、ECUと通信する機能を有しない蓄電装置の場合は充電電圧を下げるよう要求することもできない。
 上記の蓄電装置によると、遮断器がオフの状態で均等化回路によって各蓄電素子の電圧を均等化するので、時間をかけて均等化できる。このため均等化回路を大型化しなくてよい。
 上記の蓄電装置によると、各蓄電素子の電圧を均等化した後に遮断器をオンにするので、充電器によって蓄電素子が充電される。各蓄電素子の電圧が均等化されていることから、その後に充電が終了したとき、各蓄電素子の電圧はいずれも過充電が予見される電圧未満となる可能性が高い。
 このため上記の蓄電装置によると、ある機器に用いられている蓄電装置を、当該ある機器の設計を変更することなく、外部の機器と通信する機能を有しない別の蓄電装置(上記の蓄電装置)に置き換えた場合に、当該別の蓄電装置が備える蓄電素子の過充電が頻繁に予見されることを、均等化回路の高出力化に伴う蓄電装置の大型化を抑制しつつ低減できる。言い換えると、上記の蓄電装置によると、遮断器が頻繁にオン/オフされることによって遮断器が故障する可能性を、蓄電装置の大型化を抑制しつつ低減できる。
 前記管理部は、前記充電器によって前記複数の蓄電素子が充電されているときにいずれかの前記蓄電素子の過充電が予見されると前記遮断器をオフにしてもよい。
 いずれかの蓄電素子の過充電が予見される前に遮断器をオフにすることも可能であるが、その場合は均等化が完了してから充電が終了するまでの時間が長くなるので、その間に再びばらつきが発生する可能性がある。
 上記の蓄電装置によると、いずれかの蓄電素子の過充電が予見されると遮断器をオフにするので、均等化が完了してから充電が終了するまでの時間が短い。このため、その間に再びばらつきが発生する可能性を低減できる。
 前記遮断器は、前記蓄電素子を充電する向きのみに電流を流す整流素子とスイッチとが並列に接続されている放電遮断器と、放電する向きのみに電流を流す整流素子とスイッチとが並列に接続されている充電遮断器とが直列に設けられており、前記制御部は、前記充電器によって前記複数の蓄電素子が充電されているときにいずれかの前記蓄電素子の過充電が予見されると前記充電遮断器の前記スイッチをオフにする一方、前記放電遮断器の前記スイッチをオンに維持してもよい。
 上記の蓄電装置によると、充電遮断器のスイッチをオフにしても放電遮断器のスイッチについてはオンを維持するので放電は許容される。このため外部の機器に電力が供給されない所謂パワーフェールを抑制できる。
 前記制御部は、前記蓄電素子の充電状態(SOC:State Of Charge)が、前記蓄電素子の過充電が予見される閾値より小さい所定値以上まで上昇すると前記均等化回路による均等化を開始してもよい。
 上記の蓄電装置によると、蓄電素子の過充電が予見される前に均等化を開始するので、いずれの蓄電素子も過充電が予見されることなく充電が終了する可能性が高くなる。
 前記蓄電素子は充電状態(SOC)の変化に対する開放電圧(OCV:Open Circuit Voltage)の変化が小さいプラトー領域を有していてもよい。
 図7に示すように、蓄電素子の中にはSOCの変化に対するOCVの変化が小さいプラトー領域を有しているものがある(例えば正極活物質に鉄が含有されている鉄系の蓄電素子)。プラトー領域は、具体的には例えばSOCの変化量に対するOCVの変化量が2[mV/%]以下の領域である。
 プラトー領域を有している蓄電素子の場合、SOCがプラトー領域にあるときはOCVがほぼ一定になるので、SOCから蓄電素子の電圧差を検出して均等化を開始することが困難である。このためプラトー領域を抜けてから電圧差を検出して均等化を開始することになる(図9Aの円40で示されている区間)。
 しかしながら、図7から判るように、プラトー領域の右側にはOCVが急峻に立ち上がる急峻領域がある。急峻領域は充電末期に存在しているため、SOCがプラトー領域を抜けてからいずれかの蓄電素子が過充電になるまでの時間が短い。このため均等化が間に合わず、いずれかの蓄電素子が過充電になる前に均等化を終了することが困難であった。
 上記に蓄電装置によると、遮断器がオフの状態で均等化するので、過充電になる直前で均等化を開始しても、時間をかけて均等化できる。このため、プラトー領域を有している蓄電素子であっても、蓄電素子の過充電が頻繁に予見されることを、蓄電装置の大型化を抑制しつつ低減できる。このため、プラトー領域を有する蓄電素子の場合に特に有用である。
 前記蓄電素子はリチウムイオン電池であり、前記充電器は鉛蓄電池用の充電器であってもよい。
 前述したように、一般に鉛蓄電池を充電する充電器はリチウムイオン電池を充電する充電器より高い電圧で充電する。上記の蓄電装置によると、鉛蓄電池用の充電器でリチウムイオン電池を充電する場合に、リチウムイオン電池の過充電が頻繁に予見されることを、蓄電装置の大型化を抑制しつつ低減できる。
 本明細書によって開示される発明は、装置、方法、これらの装置または方法の機能を実現するためのコンピュータプログラム、そのコンピュータプログラムを記録した記録媒体等の種々の態様で実現できる。
 <実施形態1>
 実施形態1を図1ないし図10によって説明する。
 図1に示すように、実施形態1に係るバッテリ50(蓄電装置の一例)は自動二輪車10に搭載される二輪車用のバッテリである。バッテリ50は定格12Vである。
 図2に示すように、バッテリ50には自動二輪車10に搭載されているスタータ10A、オルタネータ10B(充電器の一例)及び補機類10C(ヘッドライド、エアコン、オーディオなど)が接続されている。バッテリ50はスタータ10Aに電力を供給してエンジンを始動させるエンジン始動用のバッテリである。バッテリ50はエンジン動作中にオルタネータ10Bによって充電される。オルタネータ10Bは鉛蓄電池を充電するために設計されたものであり、バッテリ50を15Vでフロート充電する。
 自動二輪車10のエンジン動作中はオルタネータ10Bから補機類10Cに電力が供給される。このため、バッテリ50は、エンジン動作中は補機類10Cに電力を供給しないが、エンジン停止中に補機類10Cが使用される場合は補機類10Cにも電力を供給する。
 一般に二輪車用のバッテリは自動二輪車10のECUと通信する機能を有していない。実施形態1に係る二輪車用のバッテリ50もECUと通信する機能を有していない。
 (1)バッテリの構成
 図3に示すように、バッテリ50は組電池60と、回路基板ユニット65と、収容体71とを備える。
 収容体71は、合成樹脂材料からなる本体73と蓋体74とを備えている。本体73は有底筒状である。本体73は、底面部75と、4つの側面部76とを備えている。4つの側面部76によって上端部分に上方開口部77が形成されている。
 収容体71は、組電池60と回路基板ユニット65を収容する。組電池60は12個の二次電池62(蓄電素子の一例)を有する。二次電池62は一例として正極活物質に鉄を含有した鉄系のリチウムイオン電池である。12個の二次電池62は、3並列で4直列に接続されている。以降の説明では二次電池62のことをセルという場合もある。
 回路基板ユニット65は、回路基板100と回路基板100上に搭載される電子部品とを含み、組電池60の上部に配置されている。
 蓋体74は、本体73の上方開口部77を閉鎖する。蓋体74の周囲には外周壁78が設けられている。蓋体74は、平面視略T字形の突出部79を有する。蓋体74の前部のうち、一方の隅部に正極外部端子51が固定され、他方の隅部に負極外部端子52が固定されている。
 図4及び図5に示すように、二次電池62は直方体形状のケース82内に電極体83を非水電解質と共に収容したものである。ケース82は、ケース本体84と、その上方の開口部を閉鎖する蓋85とを有している。
 電極体83は、詳細については図示しないが、銅箔からなる基材に活物質を塗布した負極要素と、アルミニウム箔からなる基材に活物質を塗布した正極要素との間に、多孔性の樹脂フィルムからなるセパレータを配置したものである。これらはいずれも帯状で、セパレータに対して負極要素と正極要素とを幅方向の反対側にそれぞれ位置をずらした状態で、ケース本体84に収容可能となるように扁平状に巻回されている。
 正極要素には正極集電体86を介して正極端子87が、負極要素には負極集電体88を介して負極端子89がそれぞれ接続されている。正極集電体86及び負極集電体88は、平板状の台座部90と、この台座部90から延びる脚部91とからなる。台座部90には貫通孔が形成されている。脚部91は正極要素又は負極要素に接続されている。正極端子87及び負極端子89は、端子本体部92と、その下面中心部分から下方に突出する軸部93とからなる。そのうち、正極端子87の端子本体部92と軸部93とは、アルミニウム(単一材料)によって一体成形されている。負極端子89においては、端子本体部92がアルミニウム製で、軸部93が銅製であり、これらを組み付けたものである。正極端子87及び負極端子89の端子本体部92は、蓋85の両端部に絶縁材料からなるガスケット94を介して配置され、このガスケット94から外方へ露出されている。
 蓋85は、圧力開放弁95を有している。圧力開放弁95は、図2に示すように、正極端子87と負極端子89の間に位置している。圧力開放弁95は、ケース82の内圧が制限値を超えた時に、開放して、ケース82の内圧を下げる。
 (2)バッテリの電気的構成
 図6に示すように、バッテリ50は組電池60と、組電池60を管理するBMU101(Battery Management Unit)とを備えている。BMU101は管理装置の一例である。
 前述したように組電池60は12個の二次電池62から構成されており、3並列で4直列に接続されている。図6では並列に接続された3つの二次電池62を1つの電池記号で表している。
 パワーライン70Pは、正極外部端子51と組電池60の正極とを接続するパワーラインである。パワーライン70Nは、負極外部端子52と組電池60の負極とを接続するパワーラインである。組電池60の負極はシグナルグランドG1に接続されている。組電池60はシグナルグランドG1を基準電位とする。負極外部端子52は、ボディグランドG2に接続されている。ボディグランドG2は自動二輪車10のボディである。ボディグランドG2は自動二輪車10の基準電位である。
 BMU101は電流センサ53、電圧センサ110、遮断器55、4つの均等化回路25及び管理部130を備える。組電池60、電流センサ53及び遮断器55は、パワーライン70P、パワーライン70Nを介して、直列に接続されている。遮断器55、電流センサ及び管理部130は回路基板100上に実装されており、回路基板100のシグナルグランドG1を基準電位(動作基準)とする。
 電流センサ53は、組電池60の負極に位置し、負極側のパワーライン70Nに設けられている。電流センサ53は、組電池60に流れる電流の電流値及び方向(充電方向/放電方向)を検出する。
 電圧センサ110は、各二次電池62の電圧Vと組電池60の総電圧とを検出する。組電池60の総電圧は4つの二次電池62の合計電圧である。
 遮断器55は、組電池60の負極に位置し、負極のパワーライン70Nに設けられている。遮断器55は、充電用FET55A(充電遮断器の一例)と、放電用FET55B(放電遮断器の一例)とを有する。充電用FET55A及び放電用FET55Bは電力用の半導体スイッチであり、より具体的にはNチャンネルの電界効果トランジスタ(FET:Field Effect Transistor)である。充電用FET55A及び放電用FET55BのソースSは基準端子である。充電用FET55A及び放電用FET55BのゲートGは制御端子である。充電用FET55A及び放電用FET55BのドレンDは接続端子である。
 充電用FET55AはソースSが組電池60の負極に接続されている。放電用FET55BはソースSが負極外部端子52に接続されている。充電用FET55Aと放電用FET55BとはドレンD同士が接続されることによってバックツーバック接続されている。
 充電用FET55Aは寄生ダイオード56A(放電する向きのみに電流を流す整流素子の一例)を有している。寄生ダイオード56Aは順方向が放電方向と同一である。放電用FET55Bは寄生ダイオード56B(充電する向きのみに電流を流す整流素子の一例)を有している。寄生ダイオード56Bは順方向が充電方向と同一である。
 放電用FET55BはソースSが負極外部端子52に接続されていることから、ボディグランドG2が基準電位である。充電用FET55AはソースSが組電池60の負極に接続されている。組電池60の負極は回路基板100のシグナルグランドG1に接続されているので、充電用FET55AはシグナルグランドG1が基準電位である。
 充電用FET55AはゲートGにHレベルの電圧が印加されることでオンになり、ゲートGにLレベルの電圧が印加されることでオフになる。放電用FET55Bも同様である。
 4つの均等化回路25は二次電池62の電圧の均等化するためのものであり、それぞれ互いに異なる二次電池62に並列接続されている。各均等化回路25は放電抵抗25AとFETやリレーなどのスイッチ25Bとを備えている。
 管理部130は、CPU131、ROM132及びRAM133を備える。管理部130は電圧センサ110、電流センサ53、温度センサ111の出力に基づいてバッテリ50を管理する。管理部130は、正常時、充電用FET55AのゲートG及び放電用FET55BのゲートGにHレベルの電圧を印加し、充電用FET55A及び放電用FET55Bをオンにする。充電用FET55A及び放電用FET55Bの双方がオンの場合、組電池60は充電、放電の双方が可能である。
 (3)管理部よって実行される処理
 管理部130によって実行される処理のうちSOC推定処理及び充電制御処理について説明する。
 (3-1)SOC推定処理
 SOC推定処理は、電流積算法によって組電池60の充電状態を推定する処理である。電流積算法は、電流センサ53によって組電池60の充放電電流を所定の時間間隔で計測することで組電池60に出入りする電力量を計測し、これを初期容量から加減することでSOCを推定する方法である。
 電流積算法は組電池60の使用中でもSOCを推定できるという利点がある反面、常に電流を計測して充放電電力量を積算するので電流センサ53の計測誤差が累積して次第に不正確になる可能性がある。このため、管理部130は、電流積算法によって推定したSOCを組電池60の開放電圧(OCV)に基づいてリセットしてもよい。
 具体的には、図7に示すように、OCVとSOCとの間には比較的精度の良い相関関係があるので、OCVからSOCを推定し、電流積算法によって推定したSOCを、OCVから推定したSOCでリセットしてもよい。
 OCVは回路が開放されている状態の電圧に限られない。例えば、OCVは二次電池62に流れる電流の電流値が微小な基準値未満であるときの電圧であってもよい。
 (3-2)充電制御処理
 図8から図10を参照して、管理部130によって実行される充電制御処理について説明する。本処理はSOC推定処理によって組電池60のSOCが推定される毎に実行される。
 前述したようにバッテリ50は12個の二次電池62を備えているが、理解を容易にするためここでは3Vの二次電池62が4個直列に接続されている場合を例に説明する。前述したようにオルタネータ10Bは15Vでバッテリ50を充電するので、充電が完了したとき、各二次電池62の電圧は理想的には3.75V(=15V/4)になる。
 S101では、管理部130は、組電池60のSOCが、過充電が予見される閾値S1(例えば95%)より小さい所定値S2(例えば90%)以上であるか否かを判断する(図9A)。管理部130は、SOCが所定値S2以上である場合はS102に進み、所定値S2未満である場合は本処理を終了する。
 S102では、管理部130は充電用FET55Aがオンの状態で均等化処理を開始する(図9B、図10A)。便宜上、図9Bでは4つの二次電池62をセル1~セル4で示している。
 均等化処理は、4個の二次電池62のうち電圧が最も小さい二次電池62の電圧を基準電圧とし、他の二次電池62の電圧が基準電圧と一致するまで他の二次電池62を放電抵抗25Aによって放電させることにより、各二次電池62の電圧を均等化する処理である。
 S103では、管理部130はいずれかの二次電池62の電圧が、過充電が予見される閾値電圧(例えば4V)以上であるか否かを判断する(図9C)。管理部130は、いずれかの二次電池62の電圧が閾値電圧以上である場合はS104に進み、いずれの二次電池62の電圧も閾値電圧未満である場合は所定時間経過後に再度S103を実行する。
 S104では、管理部130は充電用FET55Aをオフにする一方、放電用FET55Bをオンに維持する(図10B)。充電用FET55Aをオフにすると充電が中断されるが、放電用FET55Bがオンに維持されるので放電は許容される。
 S105では、管理部130はS102で開始した均等化処理が終了したか否か(各二次電池62の電圧が均等化されたか否か)を判断し、終了していない場合はS106に進み、終了した場合はS107に進む。
 S106では、管理部130は電流センサによって放電方向の電流が検出されたか否かを判断し、放電方向の電流が検出された場合はS107に進み、検出されない場合はS105に戻って処理を繰り返す。
 S107では、管理部130は充電用FET55Aをオンにする(図10C)。これにより各二次電池62の充電が再開される。
 (4)実施形態の効果
 バッテリ50によると、充電用FET55Aがオフの状態で均等化回路25によって各二次電池62の電圧を均等化するので(図10B)、時間をかけて均等化できる。このため均等化回路25を大型化しなくてよい。
 バッテリ50によると、各二次電池62の電圧を均等化した後に充電用FET55Aをオンにするので(図10C)、オルタネータ10Bによる二次電池62の充電が再開される。各二次電池62の電圧が均等化されていることから、その後に充電が終了したとき、各二次電池62の電圧はいずれも過充電が予見される電圧(4V)未満となる可能性が高くなる(図9D)。
 このためバッテリ50によると、自動二輪車10に用いられている鉛蓄電池を、自動二輪車10の設計を変更することなくバッテリ50(外部の機器と通信する機能を有しない蓄電装置)に置き換えた場合に、二次電池62の過充電が頻繁に予見されることを、均等化回路25の高出力化に伴うバッテリ50の大型化を抑制しつつ低減できる。言い換えると、バッテリ50によると、充電用FET55Aが頻繁にオン/オフされることによって充電用FET55Aが故障する可能性を、バッテリ50の大型化を抑制しつつ低減できる。
 バッテリ50によると、オルタネータ10Bによって複数の二次電池62が充電されているときにいずれかの二次電池62の過充電が予見されると充電用FET55Aをオフにするので、均等化が完了してから充電が終了するまでの時間が短い。このため、その間に再びばらつきが発生する可能性を低減できる。
 バッテリ50によると、充電用FET55Aをオフにしても放電用FET55Bについてはオンを維持するので放電は許容される。このためスタータ10Aや補機類10Cに電力が供給されない所謂パワーフェールを抑制できる。
 バッテリ50によると、二次電池62の過充電が予見される前に均等化を開始するので、いずれの二次電池62も過充電が予見されることなく充電が終了する可能性が高くなる。
 バッテリ50によると、充電用FET55Aがオフの状態で均等化するので、過充電になる直前で均等化を開始しても、時間をかけて均等化できる。このため、プラトー領域を有している二次電池62であっても、二次電池62が過充電になる可能性を、バッテリ50の大型化を抑制しつつ低減できる。このため、プラトー領域を有する二次電池62の場合に特に有用である。
 バッテリ50によると、二次電池62はリチウムイオン電池であり、オルタネータ10Bは鉛蓄電池用の充電器である。バッテリ50によると、鉛蓄電池用の充電器でリチウムイオン電池を充電する場合に、リチウムイオン電池の過充電が頻繁に予見されることを、バッテリ50の大型化を抑制しつつ低減できる。
 バッテリ50によると、充電用FET55Aをオフにした後、放電方向の電流が検出された場合は、各二次電池62の電圧が均等化される前であっても充電用FET55Aをオンにするので、均等化処理が終了する前に大きな放電電流が流れても寄生ダイオード56Aの故障を抑制できる。
 <他の実施形態>
 本明細書によって開示される技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本明細書によって開示される技術的範囲に含まれる。
 (1)上記実施形態では充電器として自動二輪車10のオルタネータ10Bを例に説明したが、充電器は自動二輪車10とは別の充電器であってもよい。
 (2)上記実施形態では二次電池62として鉄系の二次電池62を例に説明したが、二次電池62は鉄系に限られるものではなく、プラトー領域を有する他の種類の二次電池であってもよい。
 (3)上記実施形態ではプラトー領域を有する二次電池62を例に説明したが、二次電池62はプラトー領域を有するものに限定されない。
 (4)上記実施形態では、組電池60のSOCが、過充電が予見される閾値S1より小さい所定値S2以上である場合は、組電池60の過充電が予見されなくても均等化処理を開始する(S101及びS102)。これに対し、組電池60のSOCが閾値S1より小さい場合は均等化処理を開始せず、S103でいずれかの二次電池62の過充電が予見された場合にS105において均等化処理を開始してもよい。
 (5)上記実施形態では、S104において、充電用FET55Aをオフにする一方、放電用FET55Bをオンに維持する場合を例に説明したが、放電用FET55Bもオフにしてもよいし、放電用FET55Bを有していなくてもよい。
 (6)上記実施形態では充電遮断器として充電用FET55Aを例に説明したが、充電遮断器は整流素子とリレーとが並列に接続されているものであってもよい。放電遮断器についても同様である。
 (7)上記実施形態では遮断器が充電用FET55Aと放電用FET55Bとを備えている場合を例に説明したが、遮断器は一つのリレーであってもよい。
 (8)上記実施形態ではS106において放電方向の電流が検出されたか否かを判断するが、発熱による充電用FET55Aの寄生ダイオード56Aの故障が予見されるか否かを判断し、故障が予見される場合はS107に進んでもよい。
 (9)上記実施形態では蓄電素子としてリチウムイオン電池を例に説明したが、蓄電素子はこれに限られない。例えば、蓄電素子は電気化学反応を伴うキャパシタであってもよい。
(10)上記実施形態ではバッテリ50として自動二輪車10のエンジン始動用のバッテリを例に説明したが、バッテリ50の用途はこれに限られない。例えば、バッテリ50は四輪自動車のエンジン始動用のバッテリであってもよいし、電気自動車やプラグインハイブリッド自動車に搭載されて補機類に電力を供給する補機用のバッテリであってもよい。バッテリ50は無停電電源装置(UPS: Uninterruptible Power Supply)に用いられるバッテリであってもよい。
10 自動二輪車
10B オルタネータ(充電器の一例)
25 均等化回路
50 バッテリ(蓄電装置の一例)
55 遮断器
55A 充電用FET(充電遮断器、スイッチの一例)
55B 放電用FET(放電遮断器、スイッチの一例)
56A 寄生ダイオード(整流素子の一例)
56B 寄生ダイオード(整流素子の一例)
62 二次電池(蓄電素子の一例)
130 管理部 

Claims (7)

  1.  充電器と通信する機能を有しない蓄電装置であって、
     複数の蓄電素子と、
     前記複数の蓄電素子と直列に接続されている遮断器と、
     前記複数の蓄電素子の電圧を均等化する均等化回路と、
     管理部と、
    を備え、
     前記管理部は、前記遮断器がオフの状態で前記均等化回路によって各前記蓄電素子の電圧を均等化し、各前記蓄電素子の電圧を均等化した後に前記遮断器をオンにする、蓄電装置。
  2.  請求項1に記載の蓄電装置であって、
     前記管理部は、前記充電器によって前記複数の蓄電素子が充電されているときにいずれかの前記蓄電素子の過充電が予見されると前記遮断器をオフにする、蓄電装置。
  3.  請求項2に記載の蓄電装置であって、
     前記遮断器は、前記蓄電素子を充電する向きのみに電流を流す整流素子とスイッチとが並列に接続されている放電遮断器と、放電する向きのみに電流を流す整流素子とスイッチとが並列に接続されている充電遮断器とが直列に設けられており、
     前記制御部は、前記充電器によって前記複数の蓄電素子が充電されているときにいずれかの前記蓄電素子の過充電が予見されると前記充電遮断器の前記スイッチをオフにする一方、前記放電遮断器の前記スイッチをオンに維持する、蓄電装置。
  4.  請求項2又は請求項3に記載の蓄電装置であって、
     前記制御部は、前記蓄電素子の充電状態が、前記蓄電素子の過充電が予見される閾値より小さい所定値以上まで上昇すると前記均等化回路による均等化を開始する、蓄電装置。
  5.  請求項1乃至請求項4のいずれか一項に記載の蓄電装置であって、
     前記蓄電素子は充電状態の変化に対する開放電圧の変化が小さいプラトー領域を有する、蓄電装置。
  6.  請求項1乃至請求項5のいずれか一項に記載の蓄電装置であって、
     前記蓄電素子はリチウムイオン電池であり、前記充電器は鉛蓄電池用の充電器である、蓄電装置。
  7.  充電器と通信する機能を有しない蓄電装置の管理方法であって、
     前記蓄電装置が備える複数の蓄電素子と直列に接続されている遮断器がオフの状態で均等化回路によって各前記蓄電素子の電圧を均等化し、各前記蓄電素子の電圧を均等化した後に前記遮断器をオンにするステップを含む、管理方法。 
PCT/JP2020/007041 2019-03-28 2020-02-21 蓄電装置、及び、蓄電装置の管理方法 WO2020195425A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-063639 2019-03-28
JP2019063639A JP7192614B2 (ja) 2019-03-28 2019-03-28 蓄電装置、及び、蓄電装置の管理方法

Publications (1)

Publication Number Publication Date
WO2020195425A1 true WO2020195425A1 (ja) 2020-10-01

Family

ID=72611812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007041 WO2020195425A1 (ja) 2019-03-28 2020-02-21 蓄電装置、及び、蓄電装置の管理方法

Country Status (2)

Country Link
JP (1) JP7192614B2 (ja)
WO (1) WO2020195425A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010246225A (ja) * 2009-04-03 2010-10-28 Sony Corp 電池パックおよび充電方法
JP2017216879A (ja) * 2012-10-11 2017-12-07 株式会社Gsユアサ 蓄電装置
JP2018023258A (ja) * 2016-08-05 2018-02-08 株式会社Gsユアサ エンジン始動用の蓄電装置、エンジン始動用の蓄電装置の制御方法、車両
JP2018026923A (ja) * 2016-08-09 2018-02-15 株式会社Gsユアサ 蓄電装置および蓄電装置の充電制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010246225A (ja) * 2009-04-03 2010-10-28 Sony Corp 電池パックおよび充電方法
JP2017216879A (ja) * 2012-10-11 2017-12-07 株式会社Gsユアサ 蓄電装置
JP2018023258A (ja) * 2016-08-05 2018-02-08 株式会社Gsユアサ エンジン始動用の蓄電装置、エンジン始動用の蓄電装置の制御方法、車両
JP2018026923A (ja) * 2016-08-09 2018-02-15 株式会社Gsユアサ 蓄電装置および蓄電装置の充電制御方法

Also Published As

Publication number Publication date
JP2020167766A (ja) 2020-10-08
JP7192614B2 (ja) 2022-12-20

Similar Documents

Publication Publication Date Title
US20100188054A1 (en) Battery internal short-circuit detecting device and method, battery pack, and electronic device system
JP2020048396A (ja) 車両の電源システムの制御方法、車両の電源システム
WO2022249943A1 (ja) 推定装置、蓄電装置、推定方法
JP7464041B2 (ja) 蓄電素子の管理装置及び蓄電装置
JP2020145841A (ja) 蓄電素子の管理装置、システム、及び、蓄電素子の管理方法
WO2020195425A1 (ja) 蓄電装置、及び、蓄電装置の管理方法
WO2022196362A1 (ja) 蓄電装置、及び、蓄電装置の制御方法
WO2022259766A1 (ja) 蓄電装置、及び、蓄電装置の異常放電検出方法
JP7276682B2 (ja) 蓄電素子の管理装置、蓄電装置、及び、蓄電素子の管理方法
WO2020196366A1 (ja) 蓄電装置、蓄電素子の容量推定方法、蓄電素子の容量推定プログラム
JP7099224B2 (ja) 蓄電素子の管理装置、及び、蓄電装置
JP7320177B2 (ja) 蓄電装置
WO2020100896A1 (ja) 管理装置、管理方法
WO2021039355A1 (ja) 蓄電素子の充電状態推定値の補正方法、蓄電素子の管理装置、及び、蓄電装置
JP2020165675A (ja) 蓄電素子の管理装置、蓄電装置、及び、蓄電素子の管理方法
WO2020218032A1 (ja) 蓄電装置、及び、充電状態の低下抑制方法
WO2024043044A1 (ja) 検出装置、蓄電装置、及び、検出方法
WO2022264698A1 (ja) 蓄電装置、及び、蓄電装置の制御方法
WO2022249784A1 (ja) 補正装置、蓄電装置、補正方法
WO2024128058A1 (ja) 蓄電装置
WO2022186061A1 (ja) 蓄電セルの制御装置、蓄電装置、充電システム、充電電圧の制御方法
JP6969307B2 (ja) 管理装置、蓄電システム、蓄電素子の残存容量を均等化する方法、蓄電素子の内部状態を推定する方法
WO2019203104A1 (ja) 蓄電装置、及び、蓄電素子の管理方法
JP2023008149A (ja) 蓄電装置、組電池の異常検出方法
JP2020202670A (ja) 保護回路、車載用の蓄電装置、制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778542

Country of ref document: EP

Kind code of ref document: A1