WO2012141170A1 - 回転ねじり試験機 - Google Patents
回転ねじり試験機 Download PDFInfo
- Publication number
- WO2012141170A1 WO2012141170A1 PCT/JP2012/059777 JP2012059777W WO2012141170A1 WO 2012141170 A1 WO2012141170 A1 WO 2012141170A1 JP 2012059777 W JP2012059777 W JP 2012059777W WO 2012141170 A1 WO2012141170 A1 WO 2012141170A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- drive
- shaft
- unit
- drive shaft
- load
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/0028—Force sensors associated with force applying means
- G01L5/0042—Force sensors associated with force applying means applying a torque
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
- G01M13/02—Gearings; Transmission mechanisms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L3/00—Measuring torque, work, mechanical power, or mechanical efficiency, in general
- G01L3/02—Rotary-transmission dynamometers
- G01L3/04—Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
- G01L3/10—Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
- G01L3/108—Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving resistance strain gauges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
- G01M13/02—Gearings; Transmission mechanisms
- G01M13/025—Test-benches with rotational drive means and loading means; Load or drive simulation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/22—Investigating strength properties of solid materials by application of mechanical stress by applying steady torsional forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/26—Investigating twisting or coiling properties
Definitions
- the present invention relates to a rotational torsion tester that applies a twist in the rotational direction to a workpiece while rotating the workpiece.
- power transmission parts such as automobile clutches and propeller shafts receive a large fluctuation torque around the rotating shaft while rotating at high speed.
- a rotational torsion test is performed in which torque (torsional load) is applied around the rotation axis of the specimen while the specimen is rotated.
- Patent Document 1 discloses a rotary torsion tester including a hydraulic actuator 52 that applies torque to the specimen 11 and an AC motor 58 that synchronously rotates the hydraulic actuator 52 and the specimen 11.
- the AC motor 58 rotates the main body of the hydraulic actuator 52 and also rotates the output shaft of the specimen 11 coaxially at the same speed as the main body of the hydraulic actuator 52.
- the output shaft of the hydraulic actuator 52 is connected to the input shaft of the specimen 11. By driving the AC motor 58 and the hydraulic actuator 52, torque can be applied to the specimen 11 while rotating the specimen 11. It is like that. Torque applied to the specimen 11 is measured by a torque detector 47 provided between the output shaft 46 and the specimen 11.
- the specimen 11 and the mounting flange for mounting the specimen 11 are supported by the testing machine via the torque detector 47. Therefore, in addition to the torsional load to be measured, the torque detector 47 is also subjected to a bending load caused by the gravity and centrifugal force of the specimen 11 and the mounting flange, so that a sufficient torque is applied to the specimen 11 during the test. It was not possible to measure accurately.
- a first drive shaft to which one end of a work is attached and rotates about a predetermined rotation axis
- a second drive shaft to which the other end of the work is attached and rotates about the rotation axis
- a load applying portion that supports the first drive shaft and rotationally drives the first drive shaft to apply a torsional load to the workpiece, and at least one first bearing that supports the load applying portion so as to be rotatable about the rotation shaft
- a rotational drive unit that rotationally drives the first drive shaft and the load applying unit in the same phase, and a torque sensor that detects a torsional load.
- the rotational drive unit passes the work through the first and second drive shafts.
- the portion of the first drive shaft where the torsional load is detected by the torque sensor is supported by the shaft portion of the frame and the first bearing, so that the rigidity against bending is high.
- the detection error of the torque sensor due to the bending load caused by the gravity or centrifugal force of the workpiece attached to the shaft is kept low, and the torsional load can be measured with high accuracy.
- the shaft portion may include a pair of second bearings that are spaced apart in the axial direction and rotatably support the first drive shaft, and the torque sensor may be disposed between the pair of second bearings. Good.
- the load applying unit may include an electric motor that drives the first drive shaft and drive amount detection means that detects the drive amount of the electric motor.
- a rotational torsion tester is disposed outside the load application unit, a driving power supply unit that supplies driving power to the electric motor, a driving power transmission path that transmits the driving power from the driving power supply unit to the electric motor, and a load
- a torque signal processing unit for processing a torque signal output from the torque sensor, and a torque signal transmission path for transmitting the torque signal from the torque sensor to the torque signal processing unit, disposed outside the applying unit, and transmitting driving power
- An external drive power transmission path disposed outside the load application section, an internal drive power transmission path disposed inside the load application section and rotating together with the load application section, an external drive power transmission path, and an internal drive power
- a first slip ring part for connecting the transmission line, the torque signal transmission line being wired outside the load applying part and the external torque signal transmission line disposed outside the load applying part, An internal torque signal transmission path that rotates together with the applying section, and a second slip ring section that connects the external torque signal transmission path and the internal torque signal transmission path, the second slip ring section being separated from
- the electromagnetic noise generated in the first slip ring portion through which a large current flows is shielded by the first bearing, so that it is difficult for the electromagnetic noise to enter the torque signal transmission path via the second slip ring portion. Is prevented from degrading.
- the portion disposed in the shaft portion of the first drive shaft is provided with a narrowed portion having a thin outer diameter, and the torque sensor includes a strain gauge attached to the narrowed portion so as to detect a torsional load. It is good also as a structure.
- a compact torque sensor is realized by a simple structure in which a strain gauge is directly attached to the second drive shaft. Further, the configuration in which the strain gauge is attached to the constricted portion makes it possible to accommodate the torque sensor in the shaft portion without interfering with the shaft portion. Further, a torque sensor with high detection sensitivity is realized by a configuration in which a strain gauge is attached to the narrowed portion.
- the shaft portion may have a groove portion extending in the axial direction from the narrowed portion, and the internal torque signal transmission path may be passed from the narrowed portion to the groove portion and connected to the annular electrode of the second slip ring portion.
- the torque sensor can be easily manufactured and installed.
- a drive amount signal transmission path for transmitting a signal output from the drive amount detection means to the drive power supply unit is provided, and the drive amount signal transmission path is arranged outside the load application unit, and a load application
- the internal drive amount signal transmission path that is wired inside the part and rotates together with the load applying part is connected to the external drive amount signal transmission path and the internal drive amount signal transmission path that are arranged apart from the first slip ring part. It is good also as a structure provided with the 3rd slip ring part to do.
- Rotational speed detection means for detecting the rotational speed of the load applying portion may be provided, and at least one first bearing may be disposed between the rotational speed detection means and the first slip ring portion.
- the rotation driving unit includes a second motor and a driving force transmission unit that transmits the driving force of the second motor to the load applying unit and the second driving shaft to rotate in the same phase, and the driving force transmission unit includes the second motor. It is good also as a structure provided with the 1st driving force transmission part which transmits this driving force to a 2nd drive shaft, and the 2nd driving force transmission part which transmits the driving force of a 2nd motor to a load provision part.
- the first and second driving force transmission units may each include at least one of an endless belt mechanism, a chain mechanism, and a gear mechanism.
- Each of the first and second driving force transmission units includes an endless belt mechanism, and the first driving force transmission unit is arranged in parallel with the rotation shaft, and is driven by a second motor.
- a second driving force transmission unit coaxially connected to the third driving shaft, a second driving pulley fixed to the fourth driving shaft, and a second driving pulley fixed to the first driving shaft. It is good also as a structure provided with the 2nd endless belt hung around 2 driven pulleys, the 2nd drive pulley, and the 2nd driven pulley.
- a compact device is realized as compared with a general configuration in which the first driven pulley is attached to one end of the frame.
- the first drive shaft and the load application frame may be coaxially and integrally connected.
- the first drive shaft and the load applying unit can be driven using a common power transmission mechanism, and a torsional rotating device having a simple configuration is realized.
- the frame of the load applying portion has a columnar portion whose outer peripheral surface is formed in a columnar shape coaxial with the rotation axis, and the rotary torsion tester is arranged parallel to the rotation axis and is driven by the second motor. It is good also as a structure provided with a drive shaft, the 1st drive pulley fixed to the 3rd drive shaft, and the timing belt wound around the 1st drive pulley and the column part of the flame
- the rotary torsion tester described above may be a rotary torsion tester that measures the behavior of a workpiece when the workpiece is twisted in the rotational direction while rotating the workpiece based on the detection result of the torque sensor.
- a rotating torsion tester capable of measuring torsional load with high accuracy is provided.
- FIG. 1 is a side view of a rotary torsion tester 1 according to the first embodiment of the present invention.
- FIG. 2 is a longitudinal sectional view of the vicinity of the load application unit 100 of the rotary torsion tester 1.
- FIG. 3 is a block diagram showing a schematic configuration of the control system of the rotary torsion tester 1.
- FIG. 4 is a plan view of a rotary torsion tester 200 according to the second embodiment of the present invention.
- FIG. 5 is a side view of a rotary torsion tester 200 according to the second embodiment of the present invention.
- FIG. 6 is a longitudinal sectional view of the vicinity of the load application unit 1100 of the rotary torsion tester 200.
- FIG. 7 is a flowchart showing processing executed by the rotational torsion tester 200.
- FIG. 1 is a side view of a rotary torsion tester 1 according to the first embodiment of the present invention.
- FIG. 2 is a longitudinal sectional view of the vicinity of the load application unit 100 of
- FIG. 8 is a flowchart showing details of the twisting operation processing S100.
- FIG. 9 is a flowchart showing details of the dynamic twisting operation processing S100.
- FIG. 10 is a graph showing an example of the time change of the torque applied to the specimen in the twisting operation processing S100.
- FIG. 11 is a graph showing an example of the change over time of the torque applied to the specimen in the twisting operation processing S100.
- FIG. 1 is a side view of a rotary torsion tester 1 according to the first embodiment of the present invention.
- the rotational torsion testing machine 1 is a device that performs a rotational torsion test using an automobile clutch as a specimen T1, and an input shaft and an output shaft (for example, a clutch cover and a clutch disk) of the specimen T1 while rotating the specimen T1. It is possible to apply a fixed or variable torque set during
- the rotary torsion testing machine 1 includes a gantry 10 that supports each part of the rotary torsion testing machine 1, a load applying unit 100 that applies a predetermined torque to the specimen T1 while rotating together with the specimen T1, and a load applying part 100 that is rotatable.
- An inverter motor 80 that rotates and drives 100 in a set rotation direction and rotation speed, a drive pulley 91, and a drive belt (timing belt) 92 are provided.
- the gantry 10 includes a lower base plate 11 and an upper base plate 12 that are arranged horizontally in the vertical direction, and a plurality of vertical support walls 13 that connect the lower base plate 11 and the upper stage 12.
- a plurality of anti-vibration mounts 15 are attached to the lower surface of the lower base plate 11, and the gantry 10 is disposed on a flat floor F via the anti-vibration mounts 15.
- An inverter motor 80 is fixed to the upper surface of the lower base plate 11. Further, bearing parts 20, 30, 40 and a rotary encoder 70 are attached to the upper surface of the upper base plate 12.
- FIG. 2 is a longitudinal sectional view of the vicinity of the load application unit 100 of the rotary torsion tester 1.
- the load applying unit 100 includes a stepped cylindrical casing 100a, a servo motor 150, a speed reducer 160, a connecting shaft 170, and a torque sensor 172 mounted in the casing 100a.
- the casing 100a includes a motor housing part (body part) 110 in which the servomotor 150 is housed, a shaft part 120 rotatably supported by the bearing part 20, and a shaft part 130 rotatably supported by the bearing part 30.
- the shaft part 140 to which the slip ring 51 of the slip ring part 50 (FIG. 1) is attached is provided.
- the motor housing part 110 and the shaft parts 120, 130, and 140 are substantially cylindrical members (or stepped cylinders whose diameter changes stepwise in the axial direction) each having a hollow part.
- the motor housing part 110 is a member having the largest outer diameter for housing the servo motor 150 in the hollow part.
- a shaft portion 120 is connected to one end (right end in FIG. 2) of the motor housing portion 110 on the specimen T1 side, and a shaft portion 130 is connected to the other end.
- a shaft portion 140 is connected to the end portion of the shaft portion 130 opposite to the motor housing portion 110.
- the shaft portion 140 is rotatably supported by the bearing portion 40 at the tip end portion (left end portion in FIG. 1).
- Servo motor 150 is fixed to motor housing 110 by a plurality of fixing bolts 111.
- the drive shaft 152 of the servo motor 150 is connected to the input shaft of the speed reducer 160 via a coupling 154.
- a connecting shaft 170 is connected to the output shaft of the speed reducer 160.
- the speed reducer 160 includes a mounting flange 162, and the motor housing portion 110 and the shaft portion 120 are connected to each other by bolts (not shown) in a state where the mounting flange 162 is sandwiched between the motor housing portion 110 and the shaft portion 120. By fastening, it is fixed to the casing 100a.
- the shaft portion 120 is a substantially stepped cylindrical member, has a pulley portion 121 having a large outer diameter on the motor housing portion 110 side, and is supported by the bearing portion 20 on the specimen T1 side so as to be rotatable.
- a drive belt 92 is stretched between the outer peripheral surface of the pulley portion 121 and the drive pulley 91 attached to the drive shaft 81 of the inverter motor 80, and the drive force of the inverter motor 80 is It is transmitted to the pulley part 121 by the drive belt 92 so that the load applying part 100 rotates.
- a connecting portion between the speed reducer 160 and the connecting shaft 170 is accommodated in the pulley portion 121.
- a compact device structure is realized without increasing the number of parts by using, as a pulley, a portion where the outer diameter needs to be increased in order to accommodate the connecting portion.
- a torque sensor 172 is attached to the tip (right end in FIG. 2) of the main shaft portion 122 of the shaft portion 120. Further, one surface (the right side surface in FIG. 2) of the torque sensor 172 is a seat surface to which the input shaft (clutch cover) of the specimen T1 is attached, and the torque applied to the specimen T1 is detected by the torque sensor 172. .
- Bearings 123 and 124 are provided in the vicinity of both ends in the axial direction on the inner peripheral surface of the main shaft portion 122 of the shaft portion 120.
- the coupling shaft 170 is rotatably supported in the shaft portion 120 by bearings 123 and 124.
- the tip of the connecting shaft 170 (the right end in FIG. 2) penetrates the torque sensor 172 and protrudes to the outside.
- a portion protruding from the torque sensor 172 is inserted into a shaft hole of a clutch disk (clutch hub) which is an output shaft of the specimen T1, and is fixed.
- a rotary encoder 70 for detecting the rotational speed of the load applying unit 100 is disposed near the end of the shaft 130 (left end in FIG. 1).
- the slip ring 51 of the slip ring portion 50 is attached to the central portion of the shaft portion 140 in the axial direction.
- a power line 150 ⁇ / b> W (FIG. 2) that supplies a drive current to the servo motor 150 is connected to the slip ring 51.
- a power line 150 ⁇ / b> W extending from the servo motor 150 is connected to the slip ring 51 through a hollow portion formed in the shaft portion 130 and the shaft portion 140.
- the slip ring unit 50 includes a slip ring 51, a brush fixture 52, and four brushes 53. As described above, the slip ring 51 is attached to the shaft portion 140 of the load application portion 100. Further, the brush 53 is fixed to the bearing portion 40 by a brush fixture 52.
- the slip ring 51 has four electrode rings 51r arranged at equal intervals in the axial direction, and a brush 53 is arranged opposite to each electrode ring 51r. Each electrode ring 51r is connected to each power line 150W of the servo motor 150, and the terminal of each brush 53 is connected to a servo motor drive unit 330 (described later).
- each power line 150 ⁇ / b> W of the servo motor 150 is connected to the servo motor drive unit 330 via the slip ring unit 50.
- the slip ring unit 50 introduces the drive current of the servo motor 150 supplied from the servo motor drive unit 330 into the rotating load applying unit 100.
- a slip ring (not shown) of the slip ring portion 60 is attached to the tip end (left end in FIG. 1) of the shaft portion 140.
- a communication line 150W ′ (FIG. 2) extending from the servo motor 150 is connected to the slip ring of the slip ring unit 60.
- a signal of a built-in rotary encoder (not shown) built in the servo motor 150 is sent to the slip ring unit. It is output to the outside via 60.
- the communication line 150W ′ through which the weak current flows and the power line 150W through which the large current flows are connected to the external wiring by using separate slip rings arranged at a certain distance, It is possible to effectively prevent noise from being mixed into the communication signal.
- the slip ring part 60 is provided in the surface on the opposite side to the slip ring part 50 side of the bearing part 40. As shown in FIG. With this configuration, the bearing portion 40 can also obtain an effect of shielding the slip ring portion 60 from electromagnetic noise generated in the slip ring portion 50.
- FIG. 3 is a block diagram showing a schematic configuration of a control system of the rotary torsion tester 1.
- the rotary torsion tester 1 includes a control unit 310 that controls the entire rotary torsion tester 1, a setting unit 370 for setting test conditions, and set test conditions (the torque waveform and the twist angle applied to the specimen).
- a waveform generation unit 320 that calculates a drive amount waveform of the servo motor 150 based on the waveform, and outputs the drive current to the control unit 310, and a servo motor drive that generates a drive current of the servo motor 150 based on the control of the control unit 310.
- a unit 330 an inverter motor drive unit 340 that generates a drive current of the inverter motor 80 based on the control of the control unit 310, and a torque measurement unit that calculates torque applied to the specimen based on a signal from the torque sensor 172 350 and the load applying unit 10 based on the signal of the rotary encoder 70.
- a rotational speed measuring unit 360 for calculating the number of revolutions.
- the setting unit 370 includes a user input interface such as a touch panel (not shown), a replaceable recording medium reader such as a CD-ROM drive, an external input interface such as GPIB (General Purpose Interface Bus) and USB (Universal Serial Bus), and a network interface. It has.
- the setting unit 370 receives user input received via a user input interface, data read from a replaceable recording medium, data input from an external device (for example, a function generator) via an external input interface, and / or a network interface.
- the test conditions are set based on the data acquired from the server via Note that the rotational torsion tester 1 of the present embodiment uses the twist angle applied to the specimen T1 to be applied to the specimen T1 (that is, the servo motor 150 detected by the built-in rotary encoder built in the servo motor 150). 2) corresponding to two control methods, ie, displacement control controlled based on the drive amount) and torque control controlled based on the torque applied to the specimen T1 (ie, detected by the torque sensor 172). It can be set by the setting unit 370 whether the control is performed according to the control method.
- the control unit 310 commands the inverter motor drive unit 340 to rotate the inverter motor 80 based on the set value of the rotation speed of the specimen T1 acquired from the setting unit 370.
- the control unit 310 instructs the servo motor drive unit 330 to drive the servo motor 150 based on the waveform data of the drive amount of the servo motor 150 acquired from the waveform generation unit 320.
- the torque measurement value calculated by the torque measurement unit 350 based on the signal from the torque sensor 172 is sent to the control unit 310 and the waveform generation unit 320.
- the signal of the built-in rotary encoder built in the servo motor 150 is sent to the control unit 310, the waveform generation unit 320, and the servo motor drive unit 330.
- the waveform generation unit 320 calculates a measured value of the rotation speed of the servo motor 150 from a signal of a built-in rotary encoder that detects the rotation angle of the drive shaft 152 of the servo motor 150.
- the waveform generation unit 320 compares the set value of the torque (the driving amount of the servo motor 150 in the case of displacement control) and the measured value, and sends them to the control unit 310 so that they match. Feedback control is performed on the set value of the drive amount of the servo motor 150.
- the measured value of the rotational speed of the load applying unit 100 calculated by the rotational speed measurement unit 360 based on the signal of the rotary encoder 70 is sent to the control unit 310.
- the control unit 310 compares the set value of the rotational speed of the load applying unit 100 with the measured value, and feedback-controls the frequency of the drive current sent to the inverter motor 80 so that they match.
- the servo motor drive unit 330 compares the drive value target value of the servo motor 150 with the drive value detected by the built-in rotary encoder, and sends the drive amount to the servo motor 150 so that the drive value approaches the target value. Feedback control of current.
- the control unit 310 also includes a hard disk device (not shown) for storing test data, and the rotational speed of the specimen T1, the twist angle applied to the specimen T1 (rotation angle of the servo motor 150), and the torsion load. Data of each measured value is recorded on the hard disk device. The time change of each measurement value is recorded over the entire period from the start to the end of the test. With the configuration of the first embodiment described above, a rotational torsion test is performed using the automobile clutch as the specimen T1.
- the rotational torsion testing machine 1000 is a device for performing a rotational torsion test using an automobile propeller shaft as a specimen T2, and a fixed or variable torque set between the input shaft and the output shaft of the propeller shaft while rotating the propeller shaft.
- FIG. 4 is a plan view of the rotary torsion tester 1000
- FIG. 5 is a side view of the rotary torsion tester 1000 (viewed from the lower side to the upper side in FIG. 4).
- FIG. 6 is a longitudinal sectional view in the vicinity of a load applying portion 1100 described later.
- the control system of the rotational torsion tester 1000 has the same schematic configuration as that of the first embodiment shown in FIG.
- the rotary torsion tester 1000 includes four bases 1011, 1012, 1013, and 1014 that support each part of the rotary torsion tester 1000, and both ends of the specimen T2 while rotating together with the specimen T2.
- a load applying unit 1100 that applies a predetermined torque
- bearings 1020, 1030, and 1040 that rotatably support the load applying unit 1100
- slip ring units 1050 and 1060 that electrically connect wiring inside and outside the load applying unit 1100.
- a rotary encoder 1070 for detecting the rotational speed of the load applying unit 1100
- an inverter motor that rotationally drives one end (the right end in FIG.
- the driving force transmission unit 1200 includes a bearing portion 1210, a driving shaft 1212, a relay shaft 1220, a bearing portion 1230, a driving shaft 1232, a driving pulley 1234, a bearing portion 1240, a driving shaft 1242, a driven pulley 1244, and a driving belt (timing belt) 1250. And a work mounting portion 1280.
- the bearing units 1020, 1030, 1040, the slip ring unit 1050, the slip ring unit 1060, the rotary encoder 1070, the inverter motor 1080, and the drive pulley 1091 in the rotary torsion tester 1000 are respectively the rotary torsion tester 1 of the first embodiment.
- the bearing parts 20, 30, 40, slip ring part 50, slip ring part 60, rotary encoder 70, inverter motor 80, and drive pulley 91 are configured similarly.
- the load applying unit 1100 has the same configuration as the load applying unit 100 of the first embodiment except for a shaft portion 1120, a connecting shaft 1170, a work attachment portion 1180, and a slip ring portion 1400, which will be described later.
- the drive belt 1192 is different from the configuration of the drive belt 92 of the first embodiment in that the drive belt 1192 is hung on the driven pulley 1193 on the driven side, but the other configurations are the same as the drive belt 92.
- the same or similar reference numerals are used for the same or similar components as those in the first embodiment, and a detailed description is omitted, and the differences from the first embodiment are mainly described.
- the four bases 1011, 1012, 1013 and 1014 are arranged on the same flat floor F and fixed by fixing bolts (not shown).
- an inverter motor 1080 and a bearing portion 1210 are fixed.
- the bearing portions 1020, 1030, and 1040 that support the load applying portion 1100 and the support frame 1402 of the slip ring portion 1400 are fixed.
- a bearing portion 1230 is fixed to the base 1013
- a bearing portion 1240 is fixed to the base 1014.
- the bases 1013 and 1014 can be moved in the axial direction of the bearing portion 1230 or 1240 according to the length of the specimen T1 by loosening the fixing bolts.
- the connecting shaft 1170 of the load applying portion 1100 protrudes from the tip (right end in FIG. 6) of the shaft 1120 to the outside, and a work attachment portion (flange joint) 1180 is provided at the tip (right end in FIG. 6) of the connecting shaft 1170. It is fixed.
- a slip ring 1401 having a plurality of electrode rings is attached to a central portion in the axial direction of a portion protruding from the shaft portion 1120 of the connecting shaft 1170.
- an annular narrowed portion 1172 having a thin outer diameter is formed in a portion accommodated in the shaft portion 1120 of the connecting shaft 1170, and a circumferential surface of the narrowed portion 1172 is formed.
- a strain gauge 1174 is attached.
- the connecting shaft 1170 is a cylindrical member having a hollow portion (not shown) penetrating on the central axis, and an insertion hole (not shown) communicating with the hollow portion is formed in the narrowed portion 1172.
- a lead (not shown) of the strain gauge 1174 is passed through the insertion hole and the hollow portion formed in the connecting shaft 1170 and is connected to each electrode ring of the slip ring 1401.
- a wiring groove extending from the narrowed portion 1172 to the slip ring 1401 is provided on the peripheral surface of the connecting shaft 1170, and the lead of the strain gauge 1174 is routed to the slip ring 1401 through the wiring groove. It is good also as a structure.
- the brush part 1403 fixed on the support frame 1402 is arranged at the lower part of the slip ring 1401.
- the brush portion 1403 includes a plurality of brushes arranged to face each electrode ring of the slip ring 1401 so as to be in contact therewith.
- Each brush terminal is connected to a torque measuring unit 1350 (described later) by a wire (not shown).
- the bearing portions 1210, 1230, and 1240 respectively support the drive shafts 1212, 1232, and 1242 so as to be rotatable.
- One end (the left end in FIG. 4) of the drive shaft 1212 is connected to the drive shaft of the inverter motor 1080 via the drive pulley 1191.
- One end (left end in FIG. 4) of the drive shaft 1232 is connected to the other end (right end in FIG. 4) of the drive shaft 1212 via the relay shaft 1220.
- a drive pulley 1234 is attached to the other end of the drive shaft 1232 (right end in FIG.
- a driven pulley 1244 is attached to one end of the drive shaft 1242 (right end in FIG. 4).
- a driving belt 1250 is stretched between the driving pulley 1234 and the driven pulley 1244.
- a work attachment portion (flange joint) 1280 for fixing one end of the specimen T2 is attached to the other end of the drive shaft 1242 (left end in FIG. 4).
- the driving force of the inverter motor 1080 is transmitted through the above-described driving force transmission unit 1200 (that is, the driving shaft 1212, the relay shaft 1220, the driving shaft 1232, the driving pulley 1234, the driving belt 1250, the driven pulley 1244, and the driving shaft 1242).
- the workpiece attachment portion 1280 is transmitted to the workpiece attachment portion 1280, and the workpiece attachment portion 1280 is rotated with the set rotation direction and rotation speed.
- the driving force of the inverter motor 1080 is transmitted to the load applying unit 1100 via the driving force transmitting unit 1190 (that is, the driving pulley 1191, the driving belt 1192, and the driven pulley 1193), and the load applying unit 1100 and the work attaching unit are transmitted.
- 1280 and 1280 are rotated synchronously (that is, always at the same rotational speed and the same phase).
- FIG. 7 is a flowchart showing processing executed by the rotational torsion tester 1000.
- an initialization process S1 for each part is performed, and then a test condition is set by the setting unit 1370 (S2).
- Test conditions are set by user input on an input screen (not shown). It is also possible to input test conditions by reading existing test condition data from a server via a recording medium such as a memory card or a network.
- test conditions for example, test waveforms
- the control unit 1310 determines whether the operation mode of the input test condition is “static torsion operation” or “dynamic torsion operation” (S3).
- “Static torsional operation” is an operation mode in which torsion is applied in a stationary state without rotating the workpiece, and is applied when performing a general torsion test.
- the “dynamic torsion operation” is an operation mode in which torsion is performed while the workpiece is rotated, and is applied when a rotational torsion test is performed. If the operation mode of the set test condition is a static torsion operation, the “twist operation process” (S100) shown in FIG. 8 is executed. If the operation mode of the set test condition is a dynamic torsion operation, “dynamic torsion operation processing” (S200) shown in FIG. 9 is executed.
- a drive amount waveform calculation S101 for converting the waveform of the test torque input in the process S2 into a drive amount waveform of the servo motor 1150 is performed.
- the drive amount waveform calculation S101 is executed by the waveform generation unit 1320 capable of high-speed calculation processing.
- the control unit 1310 outputs a drive signal with the drive amount corresponding to each time as an instruction value to the servo motor drive unit 1330 based on the drive amount waveform calculated in the process S101, and the servo motor 1150. Is driven (S102).
- the waveform generation unit 1320 acquires the measured value of the torque applied to the specimen T2 from the torque measurement unit 1350 (S103).
- the waveform generation unit 1320 determines whether or not the torque measurement value acquired in step S103 has reached the set value (S104). If the measured value of the torque does not reach the set value (S104: NO), the waveform generation unit 1320 feedback corrects the drive amount waveform (S105), and the control unit 1310 drives again based on the new drive amount waveform. A signal is output to drive the servo motor 1150 (S102). If the measured value of the torque has reached the set value (S104: YES), it is determined whether or not the drive control is completed to the end of the drive amount waveform (S106), and the control is completed to the end of the drive amount waveform. If not, the process returns to step S102 to continue the drive control, and if the drive control is completed, the torsional operation process S100 ends.
- the rotary torsion testing machine 1000 performs displacement control with the torsion angle (displacement) given to the specimen T1 as the controlled object. It can also be done.
- displacement control is performed, the waveform of the test displacement (twist angle) is converted into the waveform of the drive amount of the servo motor 1150 in the drive amount waveform calculation S101.
- the waveform generation unit 1320 calculates the measured value of the torsion angle given to the specimen T1 from the signal of the built-in rotary encoder built in the servo motor 150 in the process S103, and in the process S104, the measured value of the torsion angle. It is determined whether or not has reached the set value.
- the inverter motor 1080 is driven so that the specimen T2 rotates at the set rotation speed (S201).
- a measured value of the rotation speed of the load applying unit 1100 that is rotationally driven together with the specimen T2 by the inverter motor 1080 is acquired from the rotation speed measurement unit 1360 (S202).
- the preload Lp is a direct current component (static load) of torque applied to the specimen T2.
- a preload Lp in the direction opposite to the rotation direction (minus) by the inverter motor 1080 is added (FIG. 10).
- a preload Lp in the same direction (plus) as the direction of rotation by the inverter motor 1080 is added (FIG. 11).
- the drive amount corresponding to the preload Lp is set as an instruction value, and the servo motor 1150 is driven so that only the preload Lp is applied to the specimen T2 (S206).
- the measured value of the torque applied to the specimen T2 is acquired from the torque measuring unit 1350 (S207), and it is determined whether or not the set value of the preload Lp has been reached (S208). If the measured value of the torque does not reach the set value of the preload Lp (S208: NO), the instruction value of the drive amount of the servo motor 1150 is corrected (S209), and the servo motor is again based on the corrected instruction value. 1150 is driven (S206).
- the rotation speed of the inverter motor 1080 is changed. Therefore, after adding the preload Lp, the measured value of the rotation speed of the load applying unit 1100 is acquired again (S210), and it is determined whether or not it matches the set rotation speed (S211). If the measured value of the rotational speed does not match the set value (S211: NO), the frequency of the drive power of the inverter motor 1080 is corrected so that the error from the set value is eliminated (S212). When the frequency of the drive current of the inverter motor 1080 is corrected to change the rotation speed of the load applying unit 1100, the torque applied to the specimen T2 changes. Therefore, the torque is detected again (S207), and it is determined whether or not the preload Lp according to the set value is applied (S208).
- the process proceeds to the torsional operation process S100 described above.
- step S101 the test torque is separated into a direct current component (static load) and an alternating current component (dynamic load), and a driving amount waveform is calculated only for the alternating current component. Then, a value obtained by adding the driving amount for applying the AC component calculated in processing S101 to the driving amount necessary for applying the preload stored in processing S212 is set as an instruction value to the servo motor 1150.
- the instruction value stored in step S212 is also used for drive control of the inverter motor 1080.
- the driving force of the servo motor is amplified by the speed reducer.
- the speed reducer may not be used. By omitting the speed reducer, the friction loss is reduced and the inertia moment of the drive unit of the rotary torsion tester is also reduced, so that the reverse drive at a higher frequency is possible.
- a timing belt is used to transmit driving force between rotating shafts arranged in parallel.
- endless belts for example, flat belts and V belts
- a driving force transmission mechanism for example, a chain mechanism or a gear mechanism
- the driven pulley 1193 is arranged on the workpiece attachment portion 1180 side with respect to the bearing portion 1020. With this configuration, the distance between the driven pulleys 1193 and 1244 is shortened, and a compact driving force transmission unit is realized.
- the driven pulley 1244 is disposed on the opposite side of the work mounting portion 1280 with respect to the bearing portion 1240, but the driven pulley 1244 is disposed on the work mounting portion 1280 side with respect to the bearing portion 1240. May be. With this configuration, a more compact driving force transmission unit is realized.
- the driven pulley 1193 may be arranged on the opposite side of the work mounting portion 1180 with respect to the bearing portion 1020.
- control unit is configured to give a digital sign command signal to the servo motor drive unit and the inverter motor drive unit.
- command signals for example, analog current signals
- the servo motor drive is controlled by controlling the rotation angle (displacement) of the drive shaft of the servo motor or the torque applied to the specimen, but the configuration of the embodiment of the present invention.
- the present invention is not limited to this, and a configuration in which other parameters (for example, the rotation speed of the servo motor and the torsion speed of the specimen) are set as target values is also included in the technical scope of the present invention.
- the torque sensor 172 is disposed outside the bearing portion 20, but the outer diameter of the portion accommodated in the bearing portion 20 of the connecting shaft 170 is similar to the second embodiment. It is also possible to provide an annular constriction portion formed so as to be thin, a strain gauge attached to the peripheral surface of the constriction portion, and a torque sensor to be disposed in the bearing portion 20.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Description
更に、狭窄部にひずみゲージを貼り付ける構成により、検出感度の高いトルクセンサが実現する。
図1は、本発明の第1実施形態に係る回転ねじり試験機1の側面図である。回転ねじり試験機1は、自動車用クラッチを供試体T1として回転ねじり試験を行う装置であり、供試体T1を回転させながら供試体T1の入力軸と出力軸(例えば、クラッチカバーとクラッチディスク)との間に設定された固定又は変動トルクを加えることができる。回転ねじり試験機1は、回転ねじり試験機1の各部を支持する架台10と、供試体T1と共に回転しながら供試体T1に所定のトルクを加える荷重付与部100と、荷重付与部100を回転自在に支持する軸受部20、30及び40と、荷重付与部100の内外を電気的に接続するスリップリング部50及び60と、荷重付与部100の回転数を検出するロータリーエンコーダ70と、荷重付与部100を設定された回転方向及び回転数で回転駆動するインバータモータ80、駆動プーリー91及び駆動ベルト(タイミングベルト)92を備えている。
次に、本発明の第2実施形態に係る回転ねじり試験機1000について説明する。回転ねじり試験機1000は、自動車用プロペラシャフトを供試体T2として回転ねじり試験を行う装置であり、プロペラシャフトを回転させながらプロペラシャフトの入力軸と出力軸との間に設定された固定又は変動トルクを加えることができる。図4は回転ねじり試験機1000の平面図であり、図5は回転ねじり試験機1000の側面図(図4において下側から上側を見た図)である。また、図6は後述する荷重付与部1100付近の縦断面図である。なお、回転ねじり試験機1000の制御システムは、図3に示す第1実施形態と同じ概略構成を有している。
20、1020 … 軸受部
30、1030 … 軸受部
40、1040 … 軸受部
50、60、1050、1060、1400 … スリップリング部
70、1070 … ロータリーエンコーダ
80、1080 … インバータモータ
100、1100 … 荷重付与部
310、1310 … 制御ユニット
320、1320 … 波形生成ユニット
330、1330 … サーボモータ駆動ユニット
340、1340 … インバータモータ駆動ユニット
1200 … 駆動力伝達部
T1、T2 … 供試体
Claims (16)
- ワークの一端が取り付けられ、所定の回転軸を中心に回転する第1駆動軸と、
前記ワークの他端が取り付けられ、前記回転軸を中心に回転する第2駆動軸と、
前記第1駆動軸を支持すると共に該第1駆動軸を回転駆動して前記ワークにねじり荷重を与える荷重付与部と、
前記回転軸を中心に回転自在に前記荷重付与部を支持する少なくとも一つの第1軸受と、
前記第1駆動軸及び前記荷重付与部を同位相で回転駆動する回転駆動部と、
前記ねじり荷重を検出するトルクセンサと、
を備え、
前記回転駆動部により、前記第1及び前記第2駆動軸を介して前記ワークを回転させると共に、前記荷重付与部により、前記第1駆動軸と前記第2駆動軸の回転に位相差を与えることで、前記ワークに荷重を与えるように構成されており、
前記荷重付与部が、前記第1駆動軸が差し込まれた円筒状の軸部を有するフレームを備え、前記軸部において前記フレームが前記第1軸受により支持されると共に前記第1駆動軸を支持し、前記トルクセンサが、前記第1駆動軸の前記軸部に差し込まれた部分に取り付けられると共に該部分のねじり荷重を検出するように構成されたことを特徴とする回転ねじり試験機。 - 前記軸部が、軸方向に離間して配置された、前記第1駆動軸を回転自在に支持する一対の第2軸受を備え、
前記トルクセンサが、前記一対の第2軸受の間に配置されていることを特徴とする請求項1に記載の回転ねじり試験機。 - 前記荷重付与部が、第1駆動軸を駆動する電気モータと、該電気モータの駆動量を検出する駆動量検出手段とを備える
ことを特徴とする請求項1又は請求項2に記載の回転ねじり試験機。 - 前記回転ねじり試験機が、
前記荷重付与部の外部に配置された、前記電気モータに駆動電力を供給する駆動電力供給部と、
前記駆動電力供給部から前記電気モータへ駆動電力を伝送する駆動電力伝送路と、
前記荷重付与部の外部に配置された、前記トルクセンサが出力するトルク信号を処理するトルク信号処理部と
前記トルクセンサから前記トルク信号処理部へトルク信号を伝送するトルク信号伝送路と、を備え、
前記駆動電力伝送路が、
前記荷重付与部の外部に配置された外部駆動電力伝送路と、
前記荷重付与部の内部に配置され、該荷重付与部と共に回転する内部駆動電力伝送路と、
前記外部駆動電力伝送路と前記内部駆動電力伝送路とを接続する第1スリップリング部と、を備え、
前記トルク信号伝送路が、
前記荷重付与部の外部に配置された外部トルク信号伝送路と、
前記荷重付与部の内部に配線され、該荷重付与部と共に回転する内部トルク信号伝送路と、
前記外部トルク信号伝送路と前記内部トルク信号伝送路とを接続する第2スリップリング部と、を備え、
前記第2スリップリング部が前記第1スリップリング部から離隔して配置された
ことを特徴とする請求項1から請求項3のいずれか一項に記載の回転ねじり試験機。 - 前記第1スリップリング部と前記第2スリップリング部との間に少なくとも一つの前記第1軸受が配置されることを特徴とする請求項4に記載の回転ねじり試験機。
- 前記第1駆動軸の前記軸部内に配置される部分には、外径が細く形成された狭窄部が設けられ、
前記トルクセンサが、前記ねじり荷重を検出するように前記狭窄部に貼りつけられたひずみゲージを備えたことを特徴とする請求項1から請求項5のいずれか一項に記載の回転ねじり試験機。 - 前記軸部が、前記狭窄部から軸方向に延びる溝部を有し、
前記内部トルク信号伝送路が、前記狭窄部から前記溝部に通されて、前記第2スリップリング部の環状電極に接続されている
ことを特徴とする請求項6に記載の回転ねじり試験機。 - 前記駆動量検出手段の出力する信号を前記駆動電力供給部へ伝送する駆動量信号伝送路を備え、
前記駆動量信号伝送路が、
前記荷重付与部の外部に配置された外部駆動量信号伝送路と、
前記荷重付与部の内部に配線され、該荷重付与部と共に回転する内部駆動量信号伝送路と、
前記第1スリップリング部から離隔して配置された、前記外部駆動量信号伝送路と前記内部駆動量信号伝送路とを接続する第3スリップリング部と、を備る
ことを特徴とする請求項7に記載の回転ねじり試験機。 - 前記荷重付与部の回転数を検出する回転数検出手段を備え、
前記回転数検出手段と前記第1スリップリング部との間に前記第1軸受が少なくとも一つ配置されていることを特徴とする請求項1から請求項8のいずれか一項に記載の回転ねじり試験機。 - 前記回転駆動部が、第2モータと、該第2モータの駆動力を前記荷重付与部及び前記第2駆動軸に伝達して同位相で回転させる駆動力伝達部を備え、該駆動力伝達部が、
前記第2モータの駆動力を前記第2駆動軸に伝達する第1駆動力伝達部と、
前記第2モータの駆動力を前記荷重付与部に伝達する第2駆動力伝達部と、
を備えたことを特徴とする請求項1から請求項9のいずれか一項に記載の回転ねじり試験機。 - 前記第1及び前記第2駆動力伝達部が、それぞれ無端ベルト機構、チェーン機構及びギア機構の少なくとも一つを備える、ことを特徴とする請求項10に記載の回転ねじり試験機。
- 前記第1及び前記第2駆動力伝達部が、それぞれ無端ベルト機構を備え、
前記第1駆動力伝達部が、
前記回転軸と平行に配置された、前記第2モータにより駆動される第3駆動軸と、
前記第3駆動軸に同軸に固定された第1駆動プーリーと、
前記荷重付与部に同軸に固定された第1従動プーリーと、
前記第1駆動プーリーと前記第1従動プーリーとに掛け渡された第1無端ベルトと、を備え、
前記第2駆動力伝達部が、
前記第3駆動軸に同軸に連結された第4駆動軸と、
前記第4駆動軸に固定された第2駆動プーリーと、
前記第1駆動軸に固定された第2従動プーリーと、
前記第2駆動プーリーと前記第2従動プーリーとに掛け渡された第2無端ベルトと、
を備えることを特徴とする請求項11に記載の回転ねじり試験機。 - 前記荷重付与部のフレームの外周部に前記第1従動プーリーが形成されている、ことを特徴とする請求項12に記載の回転ねじり試験機。
- 前記荷重付与部内に配置された減速機を備え、
前記第1従動プーリーが、前記減速機が取り付けられた減速機固定板に固定されている
ことを特徴とする請求項12又は請求項13に記載の回転ねじり試験機。 - 前記第1駆動軸と前記荷重付与部のフレームとが同軸且つ一体に接続されている
ことを特徴とする請求項1から請求項9のいずれか一項に記載の回転ねじり試験機。 - 前記荷重付与部のフレームが、外周面が前記回転軸と同軸の円柱状に形成された円柱部を有し、
前記回転ねじり試験機が、
前記回転軸と平行に配置され、前記第2モータにより駆動される第3駆動軸と、
前記第3駆動軸に固定された第1駆動プーリーと、
前記第1駆動プーリーと前記フレームの円柱部とに巻き掛けられたタイミングベルトと、を備える
ことを特徴とする請求項15に記載の回転ねじり試験機。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187029031A KR102146490B1 (ko) | 2011-04-12 | 2012-04-10 | 토크 부여 유닛 및 이를 구비한 구동 장치 |
CN201280025283.4A CN103620372B (zh) | 2011-04-12 | 2012-04-10 | 旋转扭曲试验机 |
EP18197551.7A EP3457111A1 (en) | 2011-04-12 | 2012-04-10 | Rotational torsion tester |
KR1020137029772A KR101921173B1 (ko) | 2011-04-12 | 2012-04-10 | 회전 비틀림 시험기 |
JP2013509925A JP5943908B2 (ja) | 2011-04-12 | 2012-04-10 | 回転ねじり試験機 |
ES12771398T ES2748863T3 (es) | 2011-04-12 | 2012-04-10 | Probador de torsión rotacional |
EP12771398.0A EP2698619B1 (en) | 2011-04-12 | 2012-04-10 | Rotational torsion tester |
US14/049,495 US8984965B2 (en) | 2011-04-12 | 2013-10-09 | Rotational torsion tester |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011088692 | 2011-04-12 | ||
JP2011-088692 | 2011-04-12 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/049,495 Continuation-In-Part US8984965B2 (en) | 2011-04-12 | 2013-10-09 | Rotational torsion tester |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012141170A1 true WO2012141170A1 (ja) | 2012-10-18 |
Family
ID=47009343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/059777 WO2012141170A1 (ja) | 2011-04-12 | 2012-04-10 | 回転ねじり試験機 |
Country Status (8)
Country | Link |
---|---|
US (1) | US8984965B2 (ja) |
EP (2) | EP2698619B1 (ja) |
JP (1) | JP5943908B2 (ja) |
KR (2) | KR102146490B1 (ja) |
CN (1) | CN103620372B (ja) |
ES (1) | ES2748863T3 (ja) |
TW (1) | TWI534427B (ja) |
WO (1) | WO2012141170A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104251755A (zh) * | 2014-09-24 | 2014-12-31 | 中国特种设备检测研究院 | 大容积气瓶扭矩测试装置 |
CN105897514A (zh) * | 2016-06-08 | 2016-08-24 | 大唐(通辽)霍林河新能源有限公司 | 一种风力发电机组通讯滑环动态加载平台 |
JP2018077173A (ja) * | 2016-11-10 | 2018-05-17 | 株式会社鷺宮製作所 | 回転ねじり試験機 |
KR101935656B1 (ko) | 2017-03-23 | 2019-01-04 | 오성국 | 벤딩기의 내구성실험장치 및 그 실험방법 |
TWI658260B (zh) * | 2018-05-23 | 2019-05-01 | 中國鋼鐵股份有限公司 | 扭矩量測方法 |
KR20190056447A (ko) | 2016-11-10 | 2019-05-24 | 가부시키가이샤 사기노미야세이사쿠쇼 | 회전 비틀림 시험기 |
CN110806283A (zh) * | 2019-12-09 | 2020-02-18 | 天津光电久远科技有限公司 | 一种硒鼓启动扭矩测试仪及测试方法 |
JPWO2020241323A1 (ja) * | 2019-05-24 | 2020-12-03 | ||
CN112748068A (zh) * | 2020-12-30 | 2021-05-04 | 浙江工业大学 | 适用于低温真空条件下的摩擦实验装置 |
CN114705248A (zh) * | 2022-04-06 | 2022-07-05 | 东莞麦珂威尔自动化科技有限公司 | 一种转动单元的测试设备 |
RU2819075C2 (ru) * | 2019-05-24 | 2024-05-13 | Кокусай Кейсокуки Кабусики Кайся | Устройство для испытаний шин |
JP7563525B1 (ja) | 2023-05-16 | 2024-10-08 | Jfeスチール株式会社 | 応力-ひずみ関係推定方法 |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2748863T3 (es) * | 2011-04-12 | 2020-03-18 | Kokusai Keisokuki Kk | Probador de torsión rotacional |
KR101482778B1 (ko) * | 2014-05-22 | 2015-01-19 | 한국기계연구원 | 블레이드 피로시험용 비틀림발생장치 및 이를 이용한 피로시험 방법 |
CN105372060B (zh) * | 2014-08-28 | 2018-01-23 | 广州汽车集团股份有限公司 | 一种驱动轴的扭转试验台架 |
DE102015225696A1 (de) * | 2015-12-17 | 2017-06-22 | Robert Bosch Gmbh | Verfahren zur Drehmomentmessung einer Antriebseinheit |
US9696224B1 (en) * | 2015-12-31 | 2017-07-04 | Chung-Yu Tsai | Torque detection device |
RU172555U1 (ru) * | 2016-12-06 | 2017-07-12 | Акционерное общество "Научно-производственный центр "Полюс" | Устройство для измерения момента трогания шарикоподшипника |
CN106584436B (zh) * | 2016-12-30 | 2023-09-26 | 深圳市优必选科技有限公司 | 舵机虚位测试装置及舵机虚位测试系统 |
CN106840907B (zh) * | 2017-01-20 | 2023-07-25 | 西华大学 | 一种可控金属试块应力状态的可靠性测试系统 |
JP6369596B1 (ja) * | 2017-05-09 | 2018-08-08 | 株式会社明電舎 | ダイナモメータシステムの制御装置 |
RU174531U1 (ru) * | 2017-07-13 | 2017-10-19 | Публичное акционерное общество "АВТОВАЗ" (ПАО "АВТОВАЗ") | Стенд для акустических испытаний автомобильного электрогенератора |
JP7011432B2 (ja) * | 2017-09-28 | 2022-01-26 | Kyb株式会社 | 試験機 |
JP6910991B2 (ja) | 2018-07-02 | 2021-07-28 | 日本電産コパル電子株式会社 | トルクセンサの支持装置 |
US10571377B2 (en) * | 2018-07-10 | 2020-02-25 | Delavan Inc. | Torsion testing machine and methods for additive builds |
KR101984941B1 (ko) * | 2018-08-27 | 2019-05-31 | 주식회사 액트 | 드래그 포스 테스트 장치 |
US10883900B2 (en) * | 2018-11-29 | 2021-01-05 | Kaydon Ring & Seal, Inc. | Shaft assembly for a high-speed test rig |
CN109883589B (zh) * | 2019-03-15 | 2020-10-27 | 中国汽车技术研究中心有限公司 | 一种新能源汽车驱动轴转矩测试装置及方法 |
AT522696B1 (de) * | 2019-07-25 | 2021-01-15 | Avl List Gmbh | Verfahren und antriebsstrangprüfstand zur detektion einer unwucht und/oder einer fehlausrichtung |
US11169047B2 (en) * | 2020-01-28 | 2021-11-09 | GM Global Technology Operations LLC | Method for determining a noise or vibration response of a vehicle subassembly and test apparatus for same |
CN112067287A (zh) * | 2020-09-17 | 2020-12-11 | 中国第一汽车股份有限公司 | 奇数挡输入轴扭矩疲劳试验方法及试验系统 |
CN112229614B (zh) * | 2020-10-16 | 2023-06-20 | 中国航发沈阳发动机研究所 | 一种轴类零件扭转疲劳试验装置 |
CN112255116B (zh) * | 2020-10-22 | 2022-10-21 | 山东鲁科工程质量检测有限责任公司 | 一种轻钢龙骨性能测试综合试验台 |
DE102021203479B4 (de) * | 2021-04-08 | 2022-12-22 | Zf Friedrichshafen Ag | Prüfstand für einen Antriebsstrang eines Kraftfahrzeugs |
DE102021203714B3 (de) * | 2021-04-15 | 2022-08-25 | Zf Friedrichshafen Ag | Prüfstand für einen Antriebsstrang eines Kraftfahrzeugs |
CN114166504A (zh) * | 2021-12-02 | 2022-03-11 | 江苏心源航空科技有限公司 | 一种静扭试验台 |
CN115402530B (zh) * | 2022-09-02 | 2024-06-18 | 中国空空导弹研究院 | 一种舵机扭矩测试平台 |
CN115561086B (zh) * | 2022-12-05 | 2023-02-17 | 常州市朗科精密机械有限公司 | 一种伺服电机外壳多工位同步检测装置 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01262435A (ja) * | 1988-04-13 | 1989-10-19 | Honda Motor Co Ltd | ドライブシャフトの検査方法及びその装置 |
JPH03200043A (ja) * | 1989-12-28 | 1991-09-02 | Saginomiya Seisakusho Inc | 回転捩り試験機における捩り角度検出装置 |
JPH0590345U (ja) * | 1992-04-30 | 1993-12-10 | 株式会社島津製作所 | 材料試験機 |
JPH10274610A (ja) * | 1997-03-28 | 1998-10-13 | Japan Tobacco Inc | ねじり試験機 |
JP2000074806A (ja) * | 1998-08-27 | 2000-03-14 | Hitachi Cable Ltd | ホースの捩り剛性測定装置 |
JP2001138146A (ja) * | 1999-11-16 | 2001-05-22 | Sugiura Seisakusho Co Ltd | 雄ねじ部材と雌ねじ部材との噛み合わせ状態検査装置 |
JP2002214080A (ja) * | 2001-01-16 | 2002-07-31 | Aisin Seiki Co Ltd | トルク負荷試験装置 |
JP2004125549A (ja) | 2002-10-01 | 2004-04-22 | Ntn Corp | 車軸装置端部荷重負荷試験機 |
JP2006214795A (ja) * | 2005-02-02 | 2006-08-17 | Matsushita Electric Ind Co Ltd | ねじり試験装置 |
JP2008267939A (ja) * | 2007-04-19 | 2008-11-06 | Kokusai Keisokki Kk | ねじり試験装置 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4283957A (en) * | 1979-06-25 | 1981-08-18 | Zonic Corporation | Torsional exciter for a rotating structure |
US4414854A (en) * | 1981-10-30 | 1983-11-15 | Mts Systems Corporation | Rotary actuator assembly |
JP3097927B2 (ja) | 1991-09-26 | 2000-10-10 | 住友ベークライト株式会社 | 2層tabテープの製造方法 |
JP3349627B2 (ja) * | 1995-10-20 | 2002-11-25 | 本田技研工業株式会社 | 減速機付き電動機およびその製造方法 |
KR20000014239A (ko) * | 1998-08-19 | 2000-03-06 | 송기성 | 입력과 출력이 동시에 이루어지고 출력을 증가시킬 수 있는 발전기 |
JP3405235B2 (ja) * | 1998-11-24 | 2003-05-12 | 日本精工株式会社 | ラジアル転がり軸受用回転精度及び動トルク測定装置 |
US6539809B1 (en) * | 1999-04-18 | 2003-04-01 | Testing Machines, Inc. | Test apparatus for measuring stresses and strains |
AT500358B1 (de) * | 2004-05-24 | 2007-09-15 | Anton Paar Gmbh | Rotationsrheometer bzw. -viskosimeter |
US7080565B2 (en) * | 2004-09-29 | 2006-07-25 | Raytheon Company | Dynamic load fixture for rotary mechanical systems |
DE102006006037B4 (de) * | 2006-02-09 | 2013-08-08 | Siemens Aktiengesellschaft | Motor mit rotatorischem und linearem Antrieb mit integrierter Axialkraftmessung |
JP4944501B2 (ja) * | 2006-06-08 | 2012-06-06 | 株式会社共和電業 | 回転体のトルク測定装置 |
JP2009276211A (ja) * | 2008-05-15 | 2009-11-26 | Sinfonia Technology Co Ltd | 継手装置および試験装置 |
WO2010049175A2 (en) | 2008-10-31 | 2010-05-06 | Montanuniversität Leoben | Sample analysis system |
CN201757732U (zh) * | 2010-06-23 | 2011-03-09 | 国营武汉长虹机械厂 | 大功率齿轮疲劳强度试验装置 |
ES2748863T3 (es) * | 2011-04-12 | 2020-03-18 | Kokusai Keisokuki Kk | Probador de torsión rotacional |
US8505390B2 (en) * | 2011-05-12 | 2013-08-13 | The United States Of America, As Represented By The Secretary Of The Navy | High-capacity wide-range variable rotational rate vane testing device |
JP5750351B2 (ja) * | 2011-09-30 | 2015-07-22 | 国際計測器株式会社 | ねじり試験機 |
TWI555979B (zh) * | 2011-09-30 | 2016-11-01 | 國際計測器股份有限公司 | 扭轉測試裝置 |
JP5759013B2 (ja) | 2011-11-12 | 2015-08-05 | 国際計測器株式会社 | 制御プログラム、制御方法及び制御装置 |
-
2012
- 2012-04-10 ES ES12771398T patent/ES2748863T3/es active Active
- 2012-04-10 CN CN201280025283.4A patent/CN103620372B/zh active Active
- 2012-04-10 EP EP12771398.0A patent/EP2698619B1/en active Active
- 2012-04-10 KR KR1020187029031A patent/KR102146490B1/ko active IP Right Grant
- 2012-04-10 WO PCT/JP2012/059777 patent/WO2012141170A1/ja active Application Filing
- 2012-04-10 JP JP2013509925A patent/JP5943908B2/ja active Active
- 2012-04-10 EP EP18197551.7A patent/EP3457111A1/en active Pending
- 2012-04-10 KR KR1020137029772A patent/KR101921173B1/ko active Application Filing
- 2012-04-12 TW TW101112940A patent/TWI534427B/zh active
-
2013
- 2013-10-09 US US14/049,495 patent/US8984965B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01262435A (ja) * | 1988-04-13 | 1989-10-19 | Honda Motor Co Ltd | ドライブシャフトの検査方法及びその装置 |
JPH03200043A (ja) * | 1989-12-28 | 1991-09-02 | Saginomiya Seisakusho Inc | 回転捩り試験機における捩り角度検出装置 |
JPH0590345U (ja) * | 1992-04-30 | 1993-12-10 | 株式会社島津製作所 | 材料試験機 |
JPH10274610A (ja) * | 1997-03-28 | 1998-10-13 | Japan Tobacco Inc | ねじり試験機 |
JP2000074806A (ja) * | 1998-08-27 | 2000-03-14 | Hitachi Cable Ltd | ホースの捩り剛性測定装置 |
JP2001138146A (ja) * | 1999-11-16 | 2001-05-22 | Sugiura Seisakusho Co Ltd | 雄ねじ部材と雌ねじ部材との噛み合わせ状態検査装置 |
JP2002214080A (ja) * | 2001-01-16 | 2002-07-31 | Aisin Seiki Co Ltd | トルク負荷試験装置 |
JP2004125549A (ja) | 2002-10-01 | 2004-04-22 | Ntn Corp | 車軸装置端部荷重負荷試験機 |
JP2006214795A (ja) * | 2005-02-02 | 2006-08-17 | Matsushita Electric Ind Co Ltd | ねじり試験装置 |
JP2008267939A (ja) * | 2007-04-19 | 2008-11-06 | Kokusai Keisokki Kk | ねじり試験装置 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104251755A (zh) * | 2014-09-24 | 2014-12-31 | 中国特种设备检测研究院 | 大容积气瓶扭矩测试装置 |
CN105897514A (zh) * | 2016-06-08 | 2016-08-24 | 大唐(通辽)霍林河新能源有限公司 | 一种风力发电机组通讯滑环动态加载平台 |
JP2018077173A (ja) * | 2016-11-10 | 2018-05-17 | 株式会社鷺宮製作所 | 回転ねじり試験機 |
KR20190056447A (ko) | 2016-11-10 | 2019-05-24 | 가부시키가이샤 사기노미야세이사쿠쇼 | 회전 비틀림 시험기 |
KR101935656B1 (ko) | 2017-03-23 | 2019-01-04 | 오성국 | 벤딩기의 내구성실험장치 및 그 실험방법 |
TWI658260B (zh) * | 2018-05-23 | 2019-05-01 | 中國鋼鐵股份有限公司 | 扭矩量測方法 |
WO2020241323A1 (ja) * | 2019-05-24 | 2020-12-03 | 国際計測器株式会社 | タイヤ試験装置 |
JPWO2020241323A1 (ja) * | 2019-05-24 | 2020-12-03 | ||
CN113874229A (zh) * | 2019-05-24 | 2021-12-31 | 国际计测器株式会社 | 轮胎测试装置 |
JP7154654B2 (ja) | 2019-05-24 | 2022-10-18 | 国際計測器株式会社 | タイヤ試験装置 |
RU2819075C2 (ru) * | 2019-05-24 | 2024-05-13 | Кокусай Кейсокуки Кабусики Кайся | Устройство для испытаний шин |
CN113874229B (zh) * | 2019-05-24 | 2024-05-31 | 国际计测器株式会社 | 轮胎测试装置 |
TWI844677B (zh) * | 2019-05-24 | 2024-06-11 | 日商國際計測器股份有限公司 | 輪胎測試裝置 |
CN110806283A (zh) * | 2019-12-09 | 2020-02-18 | 天津光电久远科技有限公司 | 一种硒鼓启动扭矩测试仪及测试方法 |
CN112748068A (zh) * | 2020-12-30 | 2021-05-04 | 浙江工业大学 | 适用于低温真空条件下的摩擦实验装置 |
CN114705248A (zh) * | 2022-04-06 | 2022-07-05 | 东莞麦珂威尔自动化科技有限公司 | 一种转动单元的测试设备 |
CN114705248B (zh) * | 2022-04-06 | 2023-09-29 | 东莞麦珂威尔自动化科技有限公司 | 一种转动单元的测试设备 |
JP7563525B1 (ja) | 2023-05-16 | 2024-10-08 | Jfeスチール株式会社 | 応力-ひずみ関係推定方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2698619A4 (en) | 2014-10-22 |
TW201300773A (zh) | 2013-01-01 |
KR102146490B1 (ko) | 2020-08-21 |
US8984965B2 (en) | 2015-03-24 |
EP2698619A1 (en) | 2014-02-19 |
JPWO2012141170A1 (ja) | 2014-07-28 |
KR101921173B1 (ko) | 2018-11-22 |
ES2748863T3 (es) | 2020-03-18 |
KR20140024891A (ko) | 2014-03-03 |
TWI534427B (zh) | 2016-05-21 |
JP5943908B2 (ja) | 2016-07-05 |
CN103620372A (zh) | 2014-03-05 |
EP2698619B1 (en) | 2019-10-02 |
EP3457111A1 (en) | 2019-03-20 |
KR20180114239A (ko) | 2018-10-17 |
US20140033831A1 (en) | 2014-02-06 |
CN103620372B (zh) | 2016-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5943908B2 (ja) | 回転ねじり試験機 | |
JP6461897B2 (ja) | ねじり試験装置 | |
JP6041474B2 (ja) | ねじり試験機 | |
JP2006200984A (ja) | 遊星歯車機構の動特性測定装置及び動特性測定方法 | |
JP2009139187A (ja) | トルク測定装置 | |
KR20200110700A (ko) | 토크 전달 샤프트에 인가되는 힘 및/또는 토크를 결정하기 위한 측정 장치 및 방법 | |
CN106017758A (zh) | 一种电机动静态转矩同步在线测试装置与测试方法 | |
ITMO20120192A1 (it) | Macchina equilibratrice per l'equilibratura di ruote di veicoli | |
JP2008082879A (ja) | ねじり振動測定装置及びその方法 | |
JP4525415B2 (ja) | エンジンバランス測定装置および方法 | |
CN105784246A (zh) | 一种旋转轴轴向力测量装置 | |
JP2023517360A (ja) | 圧電トルクセンサを調整するための方法 | |
JP2009036544A (ja) | 歯車伝動機のギヤノイズ評価方法及びその装置 | |
JP2022532253A (ja) | 機械システムの健全性及び性能を監視するための装置及び方法 | |
JP4821156B2 (ja) | エンジンバランス測定用連結装置 | |
JP6554515B2 (ja) | 工作機械の振動検出方法 | |
CN109655270A (zh) | 一种悬臂安装可高转速测量扭矩的装置 | |
Sigonde et al. | Enhancing Fault Diagnosis of Gear Transmission Error Based on Experimental Analysis | |
JP4780321B2 (ja) | 歯車振動強制力評価装置 | |
Imam et al. | Experimental study of vibration signature of various couplings using MFS lite | |
CN105258835A (zh) | 一种用于滑动轴承液膜摩擦扭矩测量的方法及装置 | |
RU90561U1 (ru) | Стенд для вибрационной диагностики подшипника | |
Królikowski et al. | of article:„Wpływ kąta załamania osi wału, prędkości obrotowej oraz niewyważenia dynamicznego na drgania poprzeczne | |
RU67704U1 (ru) | Индукционный датчик | |
JP2008096393A (ja) | ギヤ強制力計測方法、及び、ギヤ強制力計測装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12771398 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2013509925 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012771398 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137029772 Country of ref document: KR Kind code of ref document: A |