WO2012140906A1 - テクスチャ形成面を有するシリコン基板と、それを含む太陽電池、およびその製造方法 - Google Patents
テクスチャ形成面を有するシリコン基板と、それを含む太陽電池、およびその製造方法 Download PDFInfo
- Publication number
- WO2012140906A1 WO2012140906A1 PCT/JP2012/002576 JP2012002576W WO2012140906A1 WO 2012140906 A1 WO2012140906 A1 WO 2012140906A1 JP 2012002576 W JP2012002576 W JP 2012002576W WO 2012140906 A1 WO2012140906 A1 WO 2012140906A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon ingot
- silicon substrate
- silicon
- texture
- substrate
- Prior art date
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 461
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 461
- 239000010703 silicon Substances 0.000 title claims abstract description 461
- 239000000758 substrate Substances 0.000 title claims abstract description 317
- 238000004519 manufacturing process Methods 0.000 title claims description 100
- 238000000034 method Methods 0.000 claims abstract description 102
- 238000005530 etching Methods 0.000 claims abstract description 86
- 230000008569 process Effects 0.000 claims abstract description 55
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 32
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 31
- 239000011737 fluorine Substances 0.000 claims abstract description 31
- 239000007789 gas Substances 0.000 claims description 127
- 239000010410 layer Substances 0.000 claims description 93
- 238000005468 ion implantation Methods 0.000 claims description 54
- 150000002500 ions Chemical class 0.000 claims description 52
- 239000002344 surface layer Substances 0.000 claims description 27
- 239000002019 doping agent Substances 0.000 claims description 25
- 230000001678 irradiating effect Effects 0.000 claims description 13
- 238000005507 spraying Methods 0.000 claims description 11
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 10
- 230000035939 shock Effects 0.000 claims description 8
- 238000007664 blowing Methods 0.000 abstract description 12
- 238000010586 diagram Methods 0.000 description 30
- 239000000112 cooling gas Substances 0.000 description 21
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 11
- 239000011261 inert gas Substances 0.000 description 11
- 239000012670 alkaline solution Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000001039 wet etching Methods 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 230000006837 decompression Effects 0.000 description 6
- -1 hydrogen ions Chemical class 0.000 description 6
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 6
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 239000011574 phosphorus Substances 0.000 description 5
- 238000001020 plasma etching Methods 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 239000001307 helium Substances 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 230000003116 impacting effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910018557 Si O Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 241001562081 Ikeda Species 0.000 description 1
- 229910008045 Si-Si Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910006411 Si—Si Inorganic materials 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1804—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/022441—Electrode arrangements specially adapted for back-contact solar cells
- H01L31/02245—Electrode arrangements specially adapted for back-contact solar cells for metallisation wrap-through [MWT] type solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/022441—Electrode arrangements specially adapted for back-contact solar cells
- H01L31/022458—Electrode arrangements specially adapted for back-contact solar cells for emitter wrap-through [EWT] type solar cells, e.g. interdigitated emitter-base back-contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0236—Special surface textures
- H01L31/02363—Special surface textures of the semiconductor body itself, e.g. textured active layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/068—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1892—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a silicon substrate having a textured surface, a solar cell including the same, and a method for manufacturing the same.
- Texture formation on the surface of a silicon substrate is generally performed by a wet process using an alkaline (KOH) aqueous solution as an etchant. Texture formation by a wet process requires a cleaning process using hydrogen fluoride, a heat treatment process, and the like as post-processing. For this reason, there is a risk of contaminating the surface of the silicon substrate, and there is a disadvantage in terms of cost.
- KOH alkaline
- the silicon substrate that can be textured by the wet process is limited to the silicon substrate having the substrate surface orientation (100) (see Patent Document 1, etc.); the surface of the silicon substrate having another substrate surface orientation is textured by the wet process.
- the silicon substrate having the substrate surface orientation 100
- the surface of the silicon substrate having another substrate surface orientation is textured by the wet process.
- a method for forming a texture on the surface of a silicon substrate by a dry process has also been proposed.
- a method of etching the surface of the silicon substrate by introducing such gas see Patent Document 2, Patent Document 3 and Patent Document 4), 3) By irradiating the silicon substrate with a laser beam in an atmosphere containing oxygen
- a method for forming irregularities on the surface of a silicon substrate has been proposed.
- Cited Document 7 ions are implanted in layers into a predetermined depth of the silicon substrate, and the silicon substrate into which the ions have been implanted is heated, so that the silicon substrate is cut at the above-described layered region, and a thin-layer silicon substrate is obtained. The method of obtaining is described. Similarly, it has been proposed to irradiate the surface of a silicon ingot substrate with an ion beam to peel off the surface film of the substrate (see Patent Documents 8 and 9).
- the solar cell is a double-sided electrode type solar cell in which an n electrode and a p electrode are disposed on the light receiving surface and the back surface thereof, and a back surface type solar cell in which the n electrode and the p electrode are disposed on the back surface of the light receiving surface.
- a back surface type solar cell in which the n electrode and the p electrode are disposed on the back surface of the light receiving surface.
- Battery cells Broadly divided into battery cells.
- a mode of the back surface type solar cell a mode in which a PN junction provided on the light receiving surface and an electrode provided on the back surface are connected by a through hole is known, which is referred to as a “metal wrap through structure back contact cell”. (For example, see Patent Document 10 and Non-Patent Document 1).
- JP 2000-150937 A Japanese Patent Laid-Open No. 10-313128 JP 2005-150614 A US2005 / 0126627 JP 2009-152569 A US 2010/0136735 JP-A-9-331077 JP 2009-295973 A US 2009/0277314 JP-A-4-223378
- a texture is formed on the surface of a silicon substrate by a wet process.
- the height of the convex portion itself was 10 ⁇ m or more. Therefore, when the thickness of the silicon substrate is reduced, for example, when the thickness is 50 ⁇ m or less, the ratio of the height of the convex portion of the texture to the thickness of the silicon substrate becomes excessively large. Therefore, the strength of the thinned silicon substrate cannot be ensured. That is, there has been a limit to thinning a silicon substrate having a textured surface.
- the first aspect of the present invention aims to make the silicon substrate for solar cells thinner by refining the texture of the silicon substrate having the texture forming surface. Thereby, it aims at raising the design freedom of a solar cell.
- a texture is formed on the surface of a silicon substrate by a wet process.
- the height of the convex portion itself was 10 ⁇ m or more. Therefore, when the thickness of the silicon substrate is reduced, for example, when the thickness is 50 ⁇ m or less, the ratio of the height of the convex portion of the texture to the thickness of the silicon substrate becomes excessively large, and the strength of the silicon substrate cannot be ensured. For this reason, there has been a limit to thinning a silicon substrate having a textured surface.
- a silicon substrate for a metal wrap through structure back contact cell has a through hole, so that its strength tends to be lowered. Therefore, it is more difficult to make the silicon substrate thinner.
- a second aspect of the present invention aims to make a silicon substrate having a through hole thinner by refining the texture of the silicon substrate having the textured surface.
- the present inventor has found that a very fine texture can be formed by supplying a specific etching gas to the surface of a silicon substrate having a specific substrate surface orientation for etching. Based on the findings, a thin silicon substrate was obtained while having a textured surface.
- a first feature of the present invention is a method of manufacturing a silicon substrate having a texture-formed surface and a thickness of 50 ⁇ m or less, and preparing a silicon substrate having a thickness of 50 ⁇ m or less and a substrate surface orientation (111)
- the gist is a manufacturing method including a process A and a process B in which an etching gas containing a fluorine-containing gas is sprayed on the surface of the prepared silicon substrate to form a texture.
- the second feature of the present invention is a silicon substrate having a thickness of 50 ⁇ m or less and a substrate surface orientation (111) having a textured surface.
- a solar cell including such a silicon substrate and having a textured surface as a light receiving surface.
- a third feature of the present invention is a method of manufacturing a silicon substrate having a texture-formed surface and a thickness of 50 ⁇ m or less, comprising preparing a silicon ingot having a substrate surface orientation (111) of silicon ingot, From the texture forming surface, a process B for forming a texture by supplying an etching gas containing a fluorine-containing gas on the surface, a process C for injecting a dopant into the texture forming surface to form a PN junction on the surface layer of the silicon ingot, and Ions are implanted to form an ion implantation layer, and the silicon ingot formed with the ion implantation layer is impacted to divide the silicon ingot by the ion implantation layer to obtain a silicon substrate having a thickness of 50 ⁇ m or less.
- the manufacturing method including the step E is the gist.
- a fourth feature of the present invention is a method for manufacturing a silicon substrate having a texture-formed surface and having a through hole and having a thickness of 50 ⁇ m or less, and preparing a silicon ingot having a substrate surface orientation (111) And supplying an etching gas containing a fluorine-containing gas to the surface of the silicon ingot to form a texture B, irradiating the textured surface with a laser to form holes C, and adding a dopant to the textured surface Implanting and forming a PN junction on the surface layer of the silicon ingot and the inner wall surface layer of the hole, step E of implanting ions from the textured surface to form an ion implanted layer, and forming an ion implanted layer
- the silicon ingot is impacted, the silicon ingot is divided by the ion implantation layer, and the silicon ingot having a thickness of 50 ⁇ m or less is divided.
- the gist of the manufacturing method includes the step F of obtaining a con substrate.
- a back contact solar cell including a silicon substrate obtained by such a method, the electrode comprising a conductive film formed on the inner surface of the through hole and connected to the PN junction, and a texture.
- a solar battery cell including an electrode made of a conductive film formed on a surface opposite to a formation surface.
- the texture is formed on the surface thereof.
- the light reflectance on the texture forming surface can be sufficiently suppressed, and the captured light is not leaked to the outside. Therefore, the silicon substrate according to the first aspect of the present invention is particularly preferably used as a silicon substrate for solar cells by using the texture-formed surface as a light receiving surface.
- the silicon substrate is thinned, the texture is formed on the surface and through holes are formed.
- the light reflectance on the texture forming surface can be sufficiently suppressed, and the captured light is not leaked to the outside. Therefore, the silicon substrate according to the second aspect of the present invention is particularly preferably used as a silicon substrate for a solar cell called a metal wrap through structure back contact cell by using the textured surface as a light receiving surface.
- FIG. 1A is a perspective view conceptually illustrating a triangular pyramid-shaped protrusion constituting the texture of the texture forming surface of the silicon substrate according to the first embodiment of the present invention.
- FIG. 1B is a cross-sectional view conceptually illustrating a triangular pyramid-shaped protrusion constituting the texture of the texture forming surface of the silicon substrate according to the first embodiment of the present invention.
- FIG. 2A is a diagram showing a manufacturing flow of the silicon substrate according to the first embodiment of the present invention.
- FIG. 22B is a diagram showing a manufacturing flow of the silicon substrate according to the first embodiment of the present invention.
- FIG. 2C is a diagram showing a manufacturing process of an arbitrary silicon substrate.
- FIG. 2D is a diagram illustrating a process of forming a solar cell.
- FIG. 3A is a diagram showing a manufacturing flow of the silicon substrate according to the first embodiment of the present invention.
- FIG. 3B is a diagram showing a manufacturing flow of the silicon substrate according to the first embodiment of the present invention.
- FIG. 3C is a diagram showing a manufacturing flow of the silicon substrate according to the first embodiment of the present invention.
- FIG. 4A is an external perspective view of a texture forming apparatus used for forming a texture on the surface of a silicon substrate in the example according to the first embodiment of the present invention.
- FIG. 4B is a perspective view seen through the inside of the decompression chamber.
- FIG. 5A is a schematic diagram of the texture of the texture forming surface of the silicon substrate according to the first embodiment of the present invention.
- FIG. 5B is a photomicrograph showing an example of the texture on the texture-formed surface of the silicon substrate according to the first embodiment of the present invention.
- FIG. 5C is a photomicrograph showing an example of the texture on the texture-formed surface of the silicon substrate according to the first embodiment of the present invention.
- FIG. 6A is a diagram showing a flow of a first method for manufacturing a silicon substrate according to the second embodiment of the present invention.
- FIG. 6B is a diagram showing a flow of the first manufacturing method of the silicon substrate according to the second embodiment of the present invention.
- FIG. 6C is a diagram showing a flow of the first manufacturing method of the silicon substrate according to the second embodiment of the present invention.
- FIG. 6D is a diagram showing a flow of the first manufacturing method of the silicon substrate according to the second embodiment of the present invention.
- FIG. 66E is a diagram showing a flow of the first manufacturing method of the silicon substrate according to the second embodiment of the present invention.
- FIG. 6F is a diagram showing a step of forming a solar cell.
- FIG. 7A is a diagram showing a flow of a second method for manufacturing a silicon substrate according to the second embodiment of the present invention.
- FIG. 7B is a diagram showing a flow of a second method for manufacturing a silicon substrate according to the second embodiment of the present invention.
- FIG. 7A is a diagram showing a flow of a second method for manufacturing a silicon substrate according to the second embodiment of the present invention.
- FIG. 7B is a diagram showing a flow of a second method for manufacturing a silicon substrate according to the second
- FIG. 7C is a diagram showing a flow of a second method for manufacturing a silicon substrate according to the second embodiment of the present invention.
- FIG. 7D is a diagram showing a flow of a second manufacturing method of the silicon substrate according to the second embodiment of the present invention.
- FIG. 7E is a diagram showing a flow of a second manufacturing method of the silicon substrate according to the second embodiment of the present invention.
- FIG. 7F is a diagram showing a step of forming a solar cell.
- FIG. 8A is a diagram showing a flow of a third method for manufacturing a silicon substrate according to the second embodiment of the present invention.
- FIG. 8B is a diagram showing a flow of a third method for manufacturing a silicon substrate according to the second embodiment of the present invention.
- FIG. 8A is a diagram showing a flow of a third method for manufacturing a silicon substrate according to the second embodiment of the present invention.
- FIG. 8B is a diagram showing a flow of a third method for manufacturing a silicon substrate according
- FIG. 8C is a diagram showing a flow of a third manufacturing method of the silicon substrate according to the second embodiment of the present invention.
- FIG. 8D is a diagram showing a flow of the third method for manufacturing a silicon substrate according to the second embodiment of the present invention.
- FIG. 8E is a diagram showing a flow of a third method for manufacturing a silicon substrate according to the second embodiment of the present invention.
- FIG. 8F is a diagram showing a step of forming a solar cell.
- FIG. 9A is a flowchart showing a first manufacturing example of a silicon substrate according to the third embodiment of the present invention.
- FIG. 9B is a flowchart showing a first manufacturing example of a silicon substrate according to the third embodiment of the present invention.
- FIG. 9A is a flowchart showing a first manufacturing example of a silicon substrate according to the third embodiment of the present invention.
- FIG. 9B is a flowchart showing a first manufacturing example of a silicon substrate according to the third embodiment of the present invention
- FIG. 9C is a flowchart showing a first manufacturing example of the silicon substrate according to the third embodiment of the present invention.
- FIG. 9D is a flowchart showing a first manufacturing example of the silicon substrate according to the third embodiment of the present invention.
- FIG. 9E is a flowchart showing a first manufacturing example of the silicon substrate according to the third embodiment of the present invention.
- FIG. 9F is a diagram showing a step of forming a solar cell.
- FIG. 10A is a flowchart showing a second manufacturing example of the silicon substrate according to the third embodiment of the present invention.
- FIG. 10B is a flowchart showing a second manufacturing example of the silicon substrate according to the third embodiment of the present invention.
- FIG. 10A is a flowchart showing a second manufacturing example of the silicon substrate according to the third embodiment of the present invention.
- FIG. 10C is a flowchart showing a second manufacturing example of the silicon substrate according to the third embodiment of the present invention.
- FIG. 10D is a flowchart showing a second manufacturing example of the silicon substrate according to the third embodiment of the present invention.
- FIG. 10E is a flowchart showing a second manufacturing example of the silicon substrate according to the third embodiment of the present invention.
- FIG. 10F is a diagram showing a step of forming a solar cell.
- FIG. 11A is a flowchart showing a third manufacturing example of the silicon substrate according to the third embodiment of the present invention.
- FIG. 11B is a flowchart showing a third manufacturing example of the silicon substrate according to the third embodiment of the present invention.
- FIG. 11A is a flowchart showing a third manufacturing example of the silicon substrate according to the third embodiment of the present invention.
- FIG. 11B is a flowchart showing a third manufacturing example of the silicon substrate according to the third embodiment of the present invention.
- FIG. 11C is a flowchart showing a third manufacturing example of the silicon substrate according to the third embodiment of the present invention.
- FIG. 11D is a flowchart showing a third manufacturing example of the silicon substrate according to the third embodiment of the present invention.
- FIG. 11E is a flowchart showing a third manufacturing example of the silicon substrate according to the third embodiment of the present invention.
- FIG. 11F is a flowchart showing a third manufacturing example of the silicon substrate according to the third embodiment of the present invention.
- FIG. 12 is a view showing an example of a back contact cell type solar battery cell including a silicon substrate according to the third embodiment of the present invention.
- the silicon substrate of the present invention is characterized in that a texture is formed on the surface thereof.
- the substrate surface on which the texture is formed is referred to as a texture-formed surface.
- the silicon substrate of the present invention is a single crystal silicon substrate having a substrate surface orientation (111).
- a texture can be formed on the surface of a silicon substrate having a substrate surface orientation (100).
- a texture cannot be formed on the surface of the silicon substrate having the substrate surface orientation (111) and is isotropically etched.
- the texture is formed on the single crystal silicon substrate having the substrate surface orientation (111).
- the silicon substrate may be intrinsic silicon, may be p-type doped, or may be n-type doped. Moreover, when using as a silicon substrate for solar cells, it is preferable that a PN junction is formed.
- Textured surface means a low reflective surface.
- the low reflection surface is preferably a surface having a reflectivity of about 10% or less when the reflectivity of the mirror surface with respect to light having a wavelength of 0.5 to 1.0 ⁇ m is set to 100%. Is more preferably 0%.
- FIG. 1A is a perspective view conceptually illustrating a triangular pyramid-shaped protrusion 11'a constituting the texture of the texture forming surface of the silicon substrate 50 according to the first embodiment of the present invention.
- FIG. 1B is a cross-sectional view conceptually illustrating a triangular pyramid-shaped protrusion 11 ′ a constituting the texture of the texture forming surface 11 ′ of the silicon substrate 50 according to the first embodiment of the present invention.
- the texture-formed surface 11 'of the present invention has a conical protrusion 11'a obtained by etching the (111) orientation surface of the silicon substrate 50. It is preferable that a plurality of conical protrusions are densely packed on the texture forming surface 11 ′.
- the cone shape is typically a triangular pyramid shape, but may be a cone shape, a quadrangular pyramid shape, or another shape.
- the triangular pyramid shape is a pyramid having a triangular bottom surface and preferably has a head apex.
- the triangular pyramid shape is preferably a shape close to a regular triangular pyramid, but it is not necessary to be a strict triangular pyramid.
- the height H (see FIGS. 1A and 1B) of the conical (typically triangular pyramidal) protrusion 11'a is usually 100 nm to 1.5 ⁇ m, preferably 100 nm to 1 ⁇ m.
- the length L (see FIG. 1A) of the diagonal line of the bottom surface of the conical (typically triangular pyramid) protrusion is usually 100 nm to 1.5 ⁇ m, preferably 100 nm to 1 ⁇ m.
- the angle ⁇ (see FIG. 1A) of the apex of the cone-shaped protrusion is preferably 40 to 80 °.
- the density of the protrusions 11′a on the textured surface 11 ′ is preferably 10 to 1000 per unit area (100 ⁇ m 2 ).
- the protrusions 11'a constituting the texture formed on the texture forming surface 11 ' are fine.
- the finer the texture structure the more light reflection on the textured surface 11 'is suppressed. For example, if the texture processing accuracy is 1 ⁇ m or less, the reflection of light having a wavelength of 1 ⁇ m on the texture forming surface can be made almost zero.
- the height of the textured projection formed on the surface of the silicon substrate by the conventional wet etching method or ion plasma etching method is large, and it was impossible to form a fine projection as in the present invention.
- the height H of the textured protrusion 11'a formed by the wet etching method is 10 to 20 ⁇ m.
- a further feature of the silicon substrate 50 having the textured surface 11 ′ of the present invention is that the thickness D of the silicon substrate is thin. That is, since the protrusions constituting the texture are fine, the strength of the silicon substrate can be maintained even if the thickness of the silicon substrate is reduced.
- the thickness D of the silicon substrate of the present invention is preferably 50 ⁇ m or less, including the height of the texture projections, and can also be 20 ⁇ m or less.
- the minimum of the thickness of a silicon substrate is not specifically limited, What is necessary is just to be able to maintain the intensity
- the texture may be formed on the entire surface of the silicon substrate, or the texture may be formed on a part thereof.
- a texture is formed in a region where a surface electrode (including a connector electrode, a bar electrode, a grid electrode, etc.) disposed on the light receiving surface side is disposed. It is preferable to make it flat without doing.
- the silicon substrate of the present invention when used as a semiconductor substrate for a solar cell, it preferably has a PN junction.
- a PN junction may be formed by doping the surface layer on the textured surface with n-type to form an emitter layer.
- the PN junction may be formed by doping the surface layer on the textured surface to p-type to form an emitter layer.
- the PN junction is preferably formed in a region having a depth PN of 0.01 ⁇ m to 0.1 ⁇ m from the texture forming surface, for example, in a region having a depth PN of about 0.05 ⁇ m.
- the manufacturing method of the silicon substrate which has a texture formation surface is not specifically limited, It can manufacture based on the method shown below.
- FIG. 2A and 2B are diagrams showing a manufacturing flow of the silicon substrate according to the first embodiment of the present invention.
- the silicon substrate having the texture-formed surface of the present invention has a thickness of 50 ⁇ m or less, a step A for preparing a silicon substrate having a substrate surface orientation (111) (see FIG. 2A), and the substrate surface of the silicon substrate prepared above. It can be manufactured by a method including a step B (see FIG. 2B) of forming a texture by spraying an etching gas containing a fluorine-containing gas on (substrate surface orientation (111)).
- a doping step shown in FIG. 2C may be further performed.
- FIG. 2D a solar cell is formed through a process of forming a front electrode 70 and a back electrode 75.
- Step A (Step of Preparing Silicon Substrate)
- a silicon substrate having a thickness of 50 ⁇ m or less and having a substrate surface orientation (111) is prepared. Specifically, the steps shown in FIGS. 3A to 3C can be performed. That is, the silicon substrate prepared in step A is prepared by a step (a1) of preparing a silicon ingot having a substrate surface orientation (111) (see FIG. 3A), and ions in a region of 50 ⁇ m or less in depth from the ingot surface of the silicon ingot described above. Implanting step a2 for forming an ion implantation layer (see FIG.
- the silicon ingot 10 prepared in step a1 is a silicon ingot having a substrate surface orientation (111) (see FIG. 3A).
- the silicon ingot may be intrinsic silicon or may be doped p-type or n-type.
- a doped silicon ingot is often prepared.
- a normal silicon substrate for a solar cell has a PN junction.
- the silicon ingot 10 is doped p-type or n-type, a silicon substrate having a PN junction is easy to manufacture.
- ions 40 are implanted from the substrate surface 11 (111 surface) of the silicon ingot 10 (see FIG. 3B).
- the ions 40 to be implanted may be hydrogen ions (protons), nitrogen ions, or rare gas (such as argon) ions.
- the ion implantation layer 25 is formed by allowing the implanted ions 40 to exist in a layered region having a constant depth a from the substrate surface 11 of the silicon ingot 10 (see FIG. 3B).
- the constant depth a is a depth of 50 ⁇ m or less, preferably a depth of 20 ⁇ m or less. By adjusting this depth, the thickness of the resulting silicon substrate can be adjusted.
- the thickness b of the ion implantation layer 45 is not particularly limited, but may be about 0.7 ⁇ m.
- step a2 in order to cause ions to exist in a layered region having a constant depth a from the substrate surface 11 of the silicon ingot 10, the acceleration energy of ions to be implanted or the dose amount is adjusted.
- step a3 an impact is given to the silicon ingot 10 on which the ion implantation layer 45 is formed (see FIG. 3C).
- the means for giving an impact may be laser irradiation or heat treatment, but may be achieved by irradiating atmospheric pressure plasma 40.
- irradiating the atmospheric pressure plasma 40 instead of the laser irradiation, there is an advantage that defects that can occur in the silicon ingot 10 due to the ions 40 implanted in the step a2 can be repaired.
- step a3 in order to give an impact to the silicon ingot 10, the atmospheric pressure plasma 60 may be irradiated, and then the dry ultrasonic wave 65 may be further irradiated (see FIG. 3C). Irradiation of the dry ultrasonic wave 65 has an advantage that no special equipment is required and the process cost is reduced.
- the silicon ingot 10 subjected to the impact in step a3 is divided with the ion implantation layer 45 as a boundary (see FIG. 3C).
- a silicon substrate 50 having a thickness of 50 ⁇ m or less and having a substrate surface 11 with a substrate surface orientation (111) is obtained.
- the ion implantation layer 45 is illustrated so as to remain on the surface of the silicon ingot 10.
- the ion implantation layer 45 may remain on the bottom surface of the silicon substrate 50 (opposite to the textured surface) or may remain on the surface of the silicon ingot 10 and the bottom surface of the silicon substrate 50.
- a texture is formed on the surface 11 of the silicon substrate 50 prepared in step A to form a texture forming surface 11 ′ (see FIG. 2B).
- the texture is preferably formed by gas (dry) etching in which the etching gas 20 is blown onto the surface 11 of the silicon substrate 50 (see FIG. 2A) (see FIG. 2B). This is because the thickness of the silicon substrate 50 is thin, and thus the size of the texture (the height of the uneven projections) needs to be reduced.
- wet etching using an alkaline solution or reactive ion etching using plasma which is a conventional general texture forming method, the size of the formed texture becomes excessive, and the silicon substrate 50 is destroyed.
- a fine texture is formed by spraying a specific etching gas 20 on the surface 11 of the substrate surface orientation (111) to perform gas etching.
- the etching gas 20 includes a fluorine-containing gas.
- the fluorine-containing gas include ClF 3 , XeF 2 , BrF 3 , BrF 5 and NF 3 .
- the fluorine-containing gas may be a mixed gas of two or more of these gases.
- Fluorine-containing gas molecules physically adsorb on the surface of the silicon substrate and move to the etching site. Gas molecules that have reached the etching site are decomposed and react with silicon to produce volatile fluorine compounds. Thereby, the silicon ingot surface is etched and a texture is formed.
- Etching gas 20 preferably contains an inert gas in addition to the fluorine-containing gas.
- the inert gas is nitrogen gas, argon, helium, or the like, and may be any gas that does not have reactivity with silicon.
- the inert gas contained in the etching gas 20 may be a mixed gas of two or more gases.
- the total concentration (volume concentration) of the inert gas in the etching gas 20 is preferably 3 times or more with respect to the total concentration of the fluorine-containing gas, and may be 10 times or more or 20 times or more.
- the triangular pyramidal projections texture projections
- the concentration of the inert gas it is preferable to increase the concentration of the inert gas and relatively decrease the concentration of the fluorine-containing gas.
- the concentration of the inert gas in the etching gas 20 is low and the concentration of the fluorine-containing gas is relatively high, the surface of the silicon ingot may be easily isotropically etched. It may be difficult to form a texture.
- the silicon substrate surface may be easily isotropically etched, and a desired texture is formed on the silicon substrate surface. It may be difficult.
- the etching gas 20 contains a gas containing oxygen atoms in the molecule together with the fluorine-containing gas.
- the gas containing oxygen atoms is typically oxygen gas (O 2 ), but may be carbon dioxide (CO 2 ), nitrogen dioxide (NO 2 ), or the like.
- the concentration (volume concentration) of the oxygen atom-containing gas in the etching gas 20 is preferably more than twice the total concentration of the fluorine-containing gas, and more preferably 4 times or more.
- the concentration (volume concentration) of the oxygen atom-containing gas in the etching gas 20 is preferably 30 to 80% with respect to the total concentration of the fluorine-containing gas and the inert gas. If the concentration of the oxygen atom-containing gas in the etching gas 20 is too low, a desired texture may not be obtained due to overetching.
- the oxygen atom-containing gas in the etching gas 20, it is possible to form an uneven shape suitable for the texture of the solar cell on the surface of the semiconductor substrate.
- the reason is not particularly limited.
- ClF 3 gas when ClF 3 gas is physically adsorbed on the silicon surface, it reacts with silicon and becomes SiF 4 to be gasified. At this time, oxygen atoms are terminated in dangling bonds of the silicon network structure, so that Si—O bonds are partially configured.
- Si—Si silicon network structure
- Si—O a region that is difficult to etch
- step B of the method for manufacturing a silicon substrate of the present invention it is important to maintain the temperature of the silicon substrate 50 during gas etching at a low temperature.
- the temperature of the silicon substrate 50 is preferably maintained at 130 ° C. or lower, more preferably maintained at 100 ° C. or lower, and further preferably maintained at 80 ° C. or lower.
- step B of the method for manufacturing a silicon substrate of the present invention a step of spraying a cooling gas onto the silicon substrate may be included.
- the cooling gas is the same as the aforementioned inert gas, and means nitrogen gas, argon, helium, or the like.
- the substrate that has generated heat is cooled by spraying a cooling gas on the silicon substrate that has generated heat by reaction with the etching gas.
- step B of the silicon substrate manufacturing method of the present invention the step of blowing an etching gas to the silicon substrate 50 and the step of blowing a cooling gas may be alternately repeated.
- the substrate temperature is maintained at a low temperature.
- the process time is not particularly limited, but may be about 1 to 10 minutes.
- the cooling gas may be sprayed to lower the substrate temperature, and the etching gas may be sprayed onto the silicon substrate 50 again.
- the etching gas 20 causes the surface 11 of the silicon substrate 50 to be a textured surface 11 ′ having a desired texture (see FIG. 2B), it is preferable to remove the etching gas remaining on the silicon substrate 50 or a decomposition product thereof.
- the remaining fluorine component may be removed from the silicon substrate 50 in a hydrogen gas atmosphere.
- the emitter layer may be formed by doping the texture forming surface 11 ′ with the dopant 30.
- a PN junction 35 is formed on the silicon substrate 50 (see FIG. 2C).
- the PN junction 35 may be formed by doping 1) by applying phosphorus glass (PSG) to the textured surface 11 'and doping the surface layer into N-type (glass coating method). 2)
- the textured surface 11 ′ may be heated in a phosphorus oxychloride gas atmosphere to form an N-type emitter layer on the textured surface 11 ′ to form a PN junction.
- the silicon substrate 50 since the silicon substrate 50 is very thin, the silicon substrate 50 may be warped depending on these methods.
- the PN junction 35 is preferably formed by doping using atmospheric pressure plasma.
- the surface layer can be doped p-type by injecting boron into the textured surface 11 ′ with atmospheric pressure plasma.
- the silicon substrate of this invention is used as a silicon substrate for solar cells.
- the solar cell can be obtained by disposing the front electrode 70 on the light receiving surface that is the texture-forming surface and disposing the back electrode 75 on the non-light receiving surface (see FIG. 2D).
- the aspect of the solar cell is not limited to that described above.
- an antireflection layer may be laminated on the texture forming surface 11 '(not shown).
- the antireflection layer can further reduce the reflectance as a solar cell, and improves the photoelectric conversion rate.
- Examples of the antireflection layer include a silicon nitride film and a titanium oxide film.
- FIG. 4A is an external perspective view of the texture forming apparatus 100 used in the experimental example.
- FIG. 4B is a perspective view seen through the decompression chamber 120.
- the texture forming apparatus 100 shown in FIGS. 4A and 4B is for placing a nozzle 130 for jetting an etching gas, a nozzle 140 for jetting a cooling gas, and a silicon ingot (silicon substrate) 110 in a decompression chamber 120.
- Stage 150 The nozzle 130 is connected to an etching gas supply pipe 131.
- the nozzle 140 that ejects the cooling gas is connected to the cooling gas supply pipe 141.
- a silicon ingot having a textured surface was manufactured by spraying an etching gas and a cooling gas onto the silicon ingot 110 placed on the stage 150.
- a silicon ingot 110 having a substrate surface orientation (111) was placed on the stage 150 of the texture forming apparatus 100 shown in FIGS. 4A and 4B.
- the interval between the nozzle 130 and the silicon ingot 110 was set to 10 mm.
- the area of the substrate surface of the silicon ingot 110 is 125 mm ⁇ 125 mm.
- the temperature of the stage 150 was set to 25 ° C.
- the etching gas from the nozzle 130 was sprayed over the entire surface of the silicon ingot 110 over 3 minutes.
- FIGS. 5A to 5C The texture-formed surfaces of the obtained silicon ingot are shown in FIGS. 5A to 5C.
- FIG. 5A is a schematic diagram of a texture forming surface.
- FIG. 5B is a micrograph of this, and it can be seen that triangular pyramidal protrusions are densely formed.
- FIG. 5C it can be seen that the height of the protrusion is 100 nm to 200 nm.
- a fine texture can be formed. Therefore, even a silicon substrate having a thickness of 50 ⁇ m or less can be used as a silicon substrate for a solar cell while maintaining its mechanical strength. it can.
- FIGS. 6A-6F are flowcharts of a first method for manufacturing a silicon substrate having a texture-formed surface according to the second embodiment of the present invention. It is shown in FIGS. 6A-6F.
- the first manufacturing method includes a step A (see FIG. 6A) for preparing the silicon ingot 10, a step B (see FIG. 6B) for forming a texture on the surface 11 of the silicon ingot 10 to form a textured surface 11 ′, Step C (see FIG.
- a solar cell is formed through a process of forming the front electrode 70 and the back electrode 75.
- a silicon ingot 10 is prepared.
- the silicon ingot 10 prepared in step A is a single crystal silicon ingot having a substrate surface orientation (111).
- One of the features of the method for producing a silicon ingot of the present invention is that a texture is formed on the surface of the silicon ingot having the substrate surface orientation (111).
- a texture can be formed on the surface of a silicon ingot having a substrate surface orientation (100); a silicon ingot having a substrate surface orientation (111)
- the texture cannot be formed on the surface of the film and is isotropically etched.
- a texture is formed on a single crystal silicon ingot having a substrate surface orientation (111).
- the silicon ingot is preferably doped p-type or n-type. This is because if a silicon ingot is doped in advance, a PN junction can be easily formed in step C described later.
- a texture is formed on the surface 11 of the silicon ingot 10 to form a texture-formed surface 11 ′.
- the texture is preferably formed by gas etching (dry etching) in which an etching gas 20 is blown. This is because the thickness of the silicon substrate manufactured according to the present invention is thin, and the size of the texture (the height of the uneven projections) must be reduced.
- the small texture size means, for example, that the height of the protrusion is in the range of 100 nm to 1500 nm, and preferably in the range of 100 nm to 1000 nm.
- the size of the texture to be formed becomes excessive (for example, the height of the uneven protrusion is about 10 ⁇ m). It was impossible to obtain a thin silicon substrate.
- the etching gas the same gas as in the first embodiment can be used.
- the temperature of the silicon ingot is preferably maintained at 130 ° C or lower, more preferably maintained at 100 ° C or lower, and further preferably maintained at 80 ° C or lower. In order to maintain the temperature of the silicon ingot at a low temperature, it is preferable to maintain the temperature of the stage on which the silicon ingot is placed at about room temperature (25 ° C.) or less.
- Process B may include a step of spraying a cooling gas on the surface of the silicon ingot.
- the cooling gas is the same as the aforementioned inert gas, and means nitrogen gas, argon, helium, or the like.
- the generated silicon ingot can be cooled by spraying a cooling gas onto the surface of the silicon ingot that has generated heat by reaction with the etching gas.
- step B the step of blowing an etching gas to the silicon ingot and the step of blowing a cooling gas may be alternately repeated.
- the process time of the step of blowing the etching gas to the silicon ingot the temperature of the silicon ingot is kept low.
- the process time is not particularly limited, but may be about 1 to 10 minutes.
- the etching gas remaining on the silicon ingot or a decomposition product thereof is removed.
- the remaining fluorine component may be removed from the silicon ingot in a hydrogen gas atmosphere.
- a PN junction 35 is formed by injecting a dopant 30 into the silicon ingot through the textured surface 11 ′.
- a PN junction may be formed by doping the surface layer on the textured surface with N-type to form an emitter layer.
- a PN junction may be formed by forming an emitter layer by doping the surface layer of the texture forming surface to P-type.
- the PN junction is preferably formed in a region having a depth of 0.01 ⁇ m to 0.1 ⁇ m from the texture forming surface 11, for example, preferably in a region having a depth of about 0.05 ⁇ m.
- the doping of the surface layer of the texture-forming surface 11 is performed by gas-phase diffusion of a gas containing a dopant; thermal diffusion after applying a solution containing the dopant to the texture-forming surface 11, or irradiation with atmospheric pressure plasma in an atmosphere containing the dopant. It can be realized by a technique to do. For example, when the silicon ingot is doped P-type, 1) the textured surface is heated in phosphorus oxychloride gas to diffuse phosphorus in the surface layer of the textured surface 11 or 2) the phosphorus component Irradiation with atmospheric pressure plasma in an atmosphere containing Of course, after diffusing the dopant, it may be activated by annealing (for example, heat treatment).
- ions 40 are implanted into the silicon ingot 10 from the textured surface 11 ′ to form an ion implanted layer 45.
- the step (D step) for forming the ion implantation layer 45 was performed after the PN junction 35 was formed.
- the process of forming the ion implantation layer 45 is not particularly limited, and may be performed before or after other processes.
- the process D ′ may be performed before the texture is formed (see FIG. 7B), or the process D ′′ may be performed after the texture is formed and before the PN junction is formed (FIG. 7). 8C).
- ions 40 are implanted into the silicon ingot through the surface (111 surface) of the silicon ingot 10.
- the surface of the silicon ingot 10 may be a textured surface 11 ′ (see FIGS. 6D and 8C), or may be a surface 11 with no texture formed (see FIG. 7B).
- the ions 40 to be implanted include hydrogen ions (protons), nitrogen ions, or rare gas (such as argon) ions.
- the ion implantation layer 45 is formed by allowing the implanted ions to exist in a layered region having a certain depth from the substrate surface of the silicon ingot.
- the constant depth a is a depth of 50 ⁇ m or less, preferably a depth of 20 ⁇ m or less. By adjusting this depth, the thickness of the manufactured silicon substrate can be adjusted.
- step D in order to form the ion implantation layer 45 in a layered region having a constant depth a from the substrate surface of the silicon ingot, the acceleration energy of ions to be implanted is adjusted, Adjust the amount.
- the thickness b of the ion implantation layer 45 itself is not particularly limited, but may be about 0.7 ⁇ m.
- Step E Step of Dividing Silicon Ingot
- the means for giving an impact may be laser irradiation or heat treatment. Heating means heating to 500 ° C., for example.
- the silicon ingot may be impacted by irradiating the atmospheric pressure plasma 60.
- irradiating the atmospheric pressure plasma 60 instead of the laser irradiation, there is an advantage that a defect that may occur in the silicon ingot 10 due to the ions 40 implanted in the process D can be repaired.
- the dry ultrasonic wave 65 may be irradiated after the atmospheric pressure plasma 60 is irradiated. Irradiation with the dry ultrasonic wave 45 has the advantage that no special equipment is required and the process cost is reduced.
- the silicon ingot impacted in step E is divided with the ion implantation layer 45 as a boundary (see FIGS. 6E, 7E, and 8E).
- a silicon substrate 50 having a substrate surface orientation (111) having a texture forming surface 11 'and a thickness of 50 ⁇ m or less is obtained.
- the silicon substrate produced according to the present invention is preferably used as a silicon substrate for solar cells.
- the antireflection layer include a silicon nitride film and a titanium oxide film.
- the solar cell can be obtained by disposing the surface electrode 70 on the light receiving surface that is the texture forming surface and the back electrode 75 on the non-light receiving surface (FIG. 6F, (See FIGS. 7F and 8F).
- the surface electrode 70 is, for example, silver wiring.
- the back electrode 75 is, for example, an aluminum deposition film.
- the aspect of the solar cell is not limited to this.
- FIGS. 7A to 7F are flowcharts of a second method for manufacturing a silicon substrate having a textured surface according to the second embodiment of the present invention.
- the ion implantation layer 45 is formed as shown in FIG. 6D.
- the PN junction 35 may be formed after the ion implantation layer 45 is formed. That is, in the second manufacturing method, the step A (see FIG.
- Step 7A for preparing the silicon ingot 10 and the step of forming the ion implantation layer 45 by implanting the ions 40 from the non-textured surface 11 of the silicon ingot 10.
- D ′ see FIG. 7B
- a process B see FIG. 7C
- Step C for forming a PN junction 35 by implantation
- step E for obtaining a silicon substrate 50 by dividing the silicon ingot 10 by impacting the silicon ingot 10 on which the ion implantation layer 45 is formed.
- FIG. 8A to 8F are flowcharts of a third method for manufacturing a silicon substrate having a texture-formed surface according to the second embodiment of the present invention.
- a step (step of forming an ion implantation layer) corresponding to step D in the first manufacturing method is performed before step C (step of forming a PN junction). That is, a process A (see FIG. 8A) for preparing the silicon ingot 10, a process B (see FIG. 8B) that forms a texture on the surface 11 of the silicon ingot 10 to form a texture forming surface 11 ′, and a texture forming surface 11 ′.
- Step D ′′ (see FIG. 8C) for implanting ions 40 to form an ion implantation layer 45, and Step C (see FIG.
- step E for implanting dopant 30 into the texture forming surface 11 ′ to form a PN junction 35.
- step E (see FIG. 8E) of applying a shock to the silicon ingot 10 formed with the ion implantation layer 45 to divide the silicon ingot 10 to obtain the silicon substrate 50.
- triangular pyramidal projections were densely formed on the textured surface of the obtained silicon ingot.
- the height of the protrusion was 100 nm to 200 nm.
- a fine texture can be formed. Therefore, even a silicon substrate having a thickness of 50 ⁇ m or less can be used as a silicon substrate for a solar cell while maintaining its mechanical strength. it can.
- FIG. 9A to FIG. 9F are flowcharts of a first method for manufacturing a silicon substrate having a textured surface according to the third embodiment of the present invention.
- the first manufacturing method shown in FIGS. 9A to 9F includes a step A (see FIG. 9A) of preparing the silicon ingot 10 and a step of forming a texture on the surface 11 of the silicon ingot 10 to form a textured surface 11 ′.
- B see FIG. 9B
- Step C for forming holes 15 in the texture-forming surface 11 ′
- dopant 30 is injected into the texture-forming surface 11 ′ in which the holes 15 are formed to form the PN junction 35.
- Step D see FIG.
- Step E for implanting ions 40 from the textured surface 11 ′ to form the ion implanted layer 45, and silicon ingot on which the ion implanted layer 45 is formed 10 and the step F of dividing the silicon ingot 10 to obtain the silicon substrate 50 (see FIG. 9F).
- Step E for implanting ions 40 from the textured surface 11 ′ to form the ion implanted layer 45
- silicon ingot on which the ion implanted layer 45 is formed 10 and the step F of dividing the silicon ingot 10 to obtain the silicon substrate 50 (see FIG. 9F).
- a silicon ingot 10 is prepared.
- the silicon ingot 10 prepared in step A is a single crystal silicon ingot having a substrate surface orientation (111).
- One of the features of the method for producing a silicon ingot of the present invention is that a texture is formed on the surface of the silicon ingot having the substrate surface orientation (111).
- a texture can be formed on the surface of a silicon ingot having a substrate surface orientation (100); a silicon ingot having a substrate surface orientation (111)
- the texture cannot be formed on the surface of the film and is isotropically etched.
- a texture can be formed on a single crystal silicon ingot having a substrate surface orientation (111).
- the silicon ingot is preferably doped p-type or n-type. This is because if a silicon ingot is doped in advance, a PN junction can be easily formed in step C described later.
- a texture is formed on the surface 11 of the silicon ingot 10 to form a textured surface 11 ′.
- a texture may be formed on the entire surface 11 of the silicon ingot, or a texture may be formed on a part thereof.
- the texture formation is preferably performed by gas etching (dry etching) in which an etching gas 20 is blown. This is because the thickness of the silicon substrate manufactured according to the present invention is thin (for example, 50 ⁇ m or less), and the size of the texture (the height of the uneven projections) must be reduced.
- the small texture size means, for example, that the height of the protrusion is in the range of 100 nm to 1500 nm, and preferably in the range of 100 nm to 1000 nm.
- the size of the texture to be formed becomes excessive (for example, the height of the uneven protrusion is about 10 ⁇ m). It was impossible to obtain a thin silicon substrate.
- the same etching gas as that of the first embodiment can be used.
- the temperature of the silicon ingot is preferably maintained at 130 ° C or lower, more preferably maintained at 100 ° C or lower, and further preferably maintained at 80 ° C or lower. In order to maintain the temperature of the silicon ingot at a low temperature, it is preferable to maintain the temperature of the stage on which the silicon ingot is placed at about room temperature (25 ° C.) or less.
- Process B may include a step of spraying a cooling gas on the surface of the silicon ingot.
- the cooling gas is the same as the aforementioned inert gas, and means nitrogen gas, argon, helium, or the like.
- the generated silicon ingot can be cooled by spraying a cooling gas onto the surface of the silicon ingot that has generated heat by reaction with the etching gas.
- step B the step of blowing an etching gas to the silicon ingot and the step of blowing a cooling gas may be alternately repeated.
- the process time of the step of blowing the etching gas to the silicon ingot the temperature of the silicon ingot is kept low.
- the process time is not particularly limited, but may be about 1 to 10 minutes.
- the etching gas remaining on the silicon ingot or a decomposition product thereof is removed.
- the remaining fluorine component may be removed from the silicon ingot in a hydrogen gas atmosphere.
- holes 15 are formed in the texture forming surface 11 ′ of the silicon ingot 10.
- the diameter of the hole 15 is not particularly limited, but is preferably larger than the wiring width of the bus bar electrode (disposed on the texture forming surface) when the solar cell is formed.
- the wiring width of the bus bar electrode is usually about 1 mm.
- the depth of the hole 15 should just be larger than the thickness of the silicon substrate 50 to be manufactured. For example, if the thickness of the silicon substrate 50 to be manufactured is 20 ⁇ m, the depth of the hole 15 may be 20 ⁇ m or more.
- the shape of the hole 15 is not particularly limited, and may be any shape such as a columnar shape, a conical shape, a prismatic shape, or a pyramid shape.
- the hole 15 can be formed by, for example, etching using an alkaline solution or by irradiating the texture forming surface 11 ′ with laser, but it is preferable to form the hole 15 by laser irradiation.
- the hole 15 is formed by etching using an alkaline solution, for example, 1) the texture forming surface 11 ′ is covered with a mask (for example, a silicon oxide film), and 2) the mask of the portion where the hole is formed is removed. A window is formed, 3) a hole is formed in the silicon ingot at the window portion with an alkaline solution, and 4) the mask is removed.
- Etching using such an alkaline solution requires a cleaning process using hydrogen fluoride, a heat treatment process, and the like as post-processing. For this reason, there is a risk of contaminating the surface of the silicon substrate, and there is a disadvantage in terms of cost.
- the formation of the holes 15 by laser irradiation can be performed by a dry process, contamination of the silicon substrate is suppressed.
- the conditions for forming the holes 15 by laser irradiation are not particularly limited, but a YAG laser or the like may be used to irradiate laser light having a pulse width of hemtoseconds or picoseconds.
- a plasma assisted laser ablation method may be employed.
- the dopant 30 is implanted into the silicon ingot 10 through the textured surface 11 ′ where the holes 15 are formed and the inner wall surface of the holes 15.
- the emitter layer is formed by doping the surface layer of the texture forming surface 11 ′ and the surface layer of the inner wall surface of the hole 15 to N-type to form the PN junction 35. do it.
- the emitter layer is formed by doping the surface layer of the texture forming surface 11 ′ and the surface layer of the inner wall surface of the hole 15 to P-type, thereby forming the PN junction 35. May be formed.
- the PN junction 35 is preferably formed in a region having a depth of 0.01 ⁇ m to 0.1 ⁇ m from the texture forming surface 11 ′ and the inner wall surface of the hole 15, for example, in a region having a depth of about 0.05 ⁇ m. preferable.
- the doping of the surface layer of the textured surface 11 ′ and the surface layer of the inner wall surface of the hole 15 may be performed by gas-phase diffusion of a gas containing a dopant; or by thermal diffusion after applying a solution containing the dopant to the textured surface 11 ′. It can be realized by a method of irradiating atmospheric pressure plasma in an atmosphere including For example, when the silicon ingot 10 is doped P-type, 1) the silicon ingot is heated in phosphorus oxychloride gas, and phosphorus is vaporized on the surface layer of the texture forming surface 11 ′ and the inner wall surface of the hole 15.
- Phase diffusion is performed, or 2) atmospheric pressure plasma is irradiated to the surface layer of the texture forming surface 11 ′ and the surface layer of the inner wall surface of the hole 15 in an atmosphere containing a phosphorus component.
- atmospheric pressure plasma is irradiated to the surface layer of the texture forming surface 11 ′ and the surface layer of the inner wall surface of the hole 15 in an atmosphere containing a phosphorus component.
- it may be activated by annealing (for example, heat treatment).
- Step E Step of Forming Ion Implanted Layer
- ions 40 are implanted into the silicon ingot 10 from the textured surface 11 ′ to form an ion implanted layer 45.
- the step (E step) of forming the ion implantation layer 45 was performed after the PN junction 35 was formed.
- the process of forming the ion implantation layer 45 is not particularly limited, and may be performed before or after other processes.
- the process E ′ may be performed before the texture is formed (see FIG. 10B).
- Step E ′′ may be performed after the texture is formed and before the holes 15 are formed (see FIG. 11C).
- step E if ions 40 are implanted into the silicon ingot 10 through the surface (111 plane) of the silicon ingot 10, the surface of the silicon ingot 10 is textured. It may be the formation surface 11 ′ (see FIG. 9D and FIG. 11C) or the texture-unformed surface 11 (see FIG. 10B).
- Examples of ions 40 to be implanted include hydrogen ions (protons), nitrogen ions, or rare gas (such as argon) ions.
- the ion implantation layer 45 is formed by allowing the implanted ions to exist in a layered region having a certain depth from the substrate surface of the silicon ingot.
- the constant depth a is a depth of 50 ⁇ m or less, preferably a depth of 20 ⁇ m or less. By adjusting this depth, the thickness of the silicon substrate 50 to be manufactured can be adjusted.
- the constant depth a is required to be smaller than the depth of the hole 15. This is because a through hole (through hole) is provided in the silicon substrate to be manufactured.
- step E in order to form the ion implantation layer 45 in a layered region having a constant depth a from the substrate surface of the silicon ingot, the acceleration energy of ions to be implanted is adjusted, Adjust the amount.
- the thickness b of the ion implantation layer 45 itself is not particularly limited, but may be about 0.7 ⁇ m.
- Step F Step of Dividing Silicon Ingot
- the means for giving an impact may be laser irradiation or heat treatment. Heating means heating to 500 ° C., for example.
- the silicon ingot may be impacted by irradiating the atmospheric pressure plasma 60.
- irradiating the atmospheric pressure plasma 60 instead of the laser irradiation, there is an advantage that a defect that may occur in the silicon ingot 10 due to the ions 40 implanted in the process D can be repaired.
- the dry ultrasonic wave 65 may be irradiated after the atmospheric pressure plasma 60 is irradiated. Irradiation with the dry ultrasonic wave 45 has the advantage that no special equipment is required and the process cost is reduced.
- the silicon ingot subjected to the impact in the process F is divided with the ion implantation layer 45 as a boundary (see FIGS. 9F, 10F, and 11F).
- a silicon substrate 50 having a substrate surface orientation (111) having a texture forming surface 11 'and a thickness of 50 ⁇ m or less is obtained.
- a through-hole (through hole) 15 is formed in the silicon substrate 50.
- the silicon substrate 50 manufactured according to the present invention is characterized in that a texture is formed on the surface thereof.
- the substrate surface on which the texture is formed is referred to as a texture-formed surface.
- the silicon substrate 50 is preferably used as a silicon substrate for solar cells, and more preferably used as a back contact cell type silicon substrate.
- An example of a back contact cell type solar cell including the silicon substrate 50 is shown in FIG. FIG. 6 shows a cross section passing through the through hole 15 (see FIG. 1F and the like) of the silicon substrate 50.
- the solar battery cell shown in FIG. 6 has 1) an electrode 70 filled in the through hole 15, and 2) an electrode 75 formed on the back surface of the textured surface 11 ′ of the silicon substrate 50.
- the electrode 70 is connected to the PN junction 35.
- the electrode 70 can be formed on the back surface of the texture forming surface 11 ′ of the silicon substrate 50 together with the inside of the through hole 15.
- an insulating film is provided between the back surface of the texture forming surface 11 ′ and the electrode 70. 79 is sandwiched.
- the electrode 70 is electrically connected to a bus bar electrode 78 disposed on the texture forming surface 11 ′ of the silicon substrate.
- the bus bar electrode is connected to a finger electrode ′ (not shown) or the like, and is an electrode that collects electric power generated by the solar cell.
- the metal film that becomes the electrode may be formed by, for example, vapor deposition.
- the electrode 70 is, for example, silver.
- the electrode 75 is, for example, an aluminum vapor deposition film.
- an antireflection layer (not shown) is preferably laminated on the textured surface 11 ′ of the silicon substrate 50. This is because the antireflection layer can further reduce the reflectance on the texture-formed surface and improve the photoelectric conversion rate of the solar cell.
- the antireflection layer include a silicon nitride film and a titanium oxide film.
- 10A to 10F are flowcharts of a second method for manufacturing a silicon substrate having a textured surface according to the third embodiment of the present invention.
- the ion implantation layer 45 was formed as shown in FIGS. 9D and 9E.
- the PN junction 35 may be formed after the ion implantation layer 45 is formed. That is, the process A (see FIG.
- FIG. 11A to 11F are flowcharts of a third method for manufacturing a silicon substrate having a texture-formed surface according to the third embodiment of the present invention.
- a step (step of forming an ion implantation layer) corresponding to step E in the first manufacturing method is performed before step C (step of forming holes). That is, a process A (see FIG. 11A) for preparing the silicon ingot 10, a process B (see FIG. 11B) that forms a texture on the surface 11 of the silicon ingot 10 to form a texture-formed surface 11 ′, and a texture-formed surface 11 ′.
- Step 40 '' for forming the ion-implanted layer 45 by implanting ions 40, Step C (see FIG.
- Step D for injecting the dopant 30 into the textured surface 11 ′ thus formed to form the PN junction 35, and impacting the silicon ingot 10 on which the ion implantation layer 45 is formed cause the silicon ingot 10 to And a step F (see FIG. 11F) of dividing to obtain a silicon substrate 50.
- triangular pyramidal protrusions are formed densely on the textured surface of the obtained silicon ingot 110, and the height of the protrusions was 100 nm to 200 nm.
- the silicon substrate of the present invention is particularly preferably used as a silicon substrate for solar cells by using the textured surface as a light receiving surface. And the material efficiency of the silicon
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Photovoltaic Devices (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
本発明のシリコン基板は、その表面にテクスチャが形成されていることを特徴とする。テクスチャが形成された基板表面を、テクスチャ形成面という。
本発明のテクスチャ形成面を有するシリコン基板の製法は特に限定されないが、以下に示される手法に基づいて製造することができる。
なお、さらに図2Dに示すように表面電極70,裏面電極75を形成する工程を経ることで、太陽電池が形成される。
50μm以下の厚みを有し、基板面方位(111)のシリコン基板を準備する。具体的には、図3A~図3Cに示される工程を行うことができる。即ち、工程Aで準備するシリコン基板は、基板面方位(111)のシリコンインゴットを用意する工程a1と(図3A参照)、上述のシリコンインゴットの、インゴット表面から深さ50μm以下の領域にイオンを注入して、イオン注入層を形成する工程a2と(図3B参照)、イオン注入層を形成されたインゴットに衝撃を与えて、イオン注入層でインゴットを切断して、厚み50μm以下のシリコン基板を得る工程a3と(図3C参照)を含む方法で製造されうる。
工程Aで準備したシリコン基板50の表面11にテクスチャを形成して、テクスチャ形成面11’を形成する(図2B参照)。テクスチャの形成は、シリコン基板50の表面11に(図2A参照)、エッチングガス20を吹きつけるガス(ドライ)エッチングにより行われることが好ましい(図2B参照)。シリコン基板50の厚みが薄いため、テクスチャの大きさ(凹凸の突起の高さ)を小さくする必要があるためである。
従来の一般的なテクスチャ形成手法であるアルカリ溶液によるウェットエッチングや、プラズマによる反応性イオンエッチングなどによると、形成されるテクスチャの大きさが過大となり、シリコン基板50を破壊してしまう。
上述の工程A、工程Bに加えて、任意の工程として、テクスチャ形成面11’に、ドーパント30をドーピングしてエミッタ層を形成してもよい。それにより、シリコン基板50にPN接合35が形成される(図2C参照)。PN接合35は、1)テクスチャ形成面11’にリンガラス(PSG)を塗布して、表層をN型にドープする手法(ガラス塗布方式)で、ドーピングを行って形成してもよく、2)オキシ塩化リンガス雰囲気中でテクスチャ形成面11’を加熱して、テクスチャ形成面11’にN型エミッタ層を形成してPN接合を形成してもよい。しかしながら、シリコン基板50が極めて薄いために、これらの手法によってはシリコン基板50が反ってしまう恐れがある。
本発明のシリコン基板は、太陽電池用のシリコン基板として用いられることが好ましい。本発明のシリコン基板を太陽電池とするには、さらに、テクスチャ形成面である受光面に表面電極70を配置し、非受光面に裏面電極75を配置することで、太陽電池が得られる(図2D参照)。もちろん、太陽電池の態様が上述したものに限定されるわけではない。
基板面方位(111)のシリコンインゴットの表面に、微細なテクスチャを形成した実験例を示す。
第一の実施形態との相違点を中心に、第二の実施形態について説明する。
図6A~図6Eは、本発明の第二の実施形態に係るテクスチャ形成面を有するシリコン基板の第一の製造方法のフロー図である。図6A~図6Fに示される。第一の製造方法は、シリコンインゴット10を用意する工程A(図6A参照)と、シリコンインゴット10の表面11にテクスチャを形成してテクスチャ形成面11’とする工程B(図6B参照)と、テクスチャ形成面11’にドーパント30を注入してPN接合35を形成する工程C(図6C参照)と、テクスチャ形成面11’からイオン40を注入して、イオン注入層45を形成する工程D(図6D参照)と、イオン注入層45を形成されたシリコンインゴット10に衝撃を与えて、シリコンインゴット10を分割して、シリコン基板50を得る工程E(図6E参照)と、を含む。以下各工程毎に説明する。なお、さらに図6Fに示すように表面電極70,裏面電極75を形成する工程を経ることで、太陽電池が形成される。
図6Aに示すように、シリコンインゴット10を用意する。工程Aで用意するシリコンインゴット10は、基板面方位(111)の単結晶シリコンインゴットである。本発明のシリコンインゴットの製造方法の特徴の一つは、基板面方位(111)のシリコンインゴットの表面にテクスチャを形成することである。従来の一般的なテクスチャ形成手法であるアルカリ溶液によるウェットエッチング法によれば、基板面方位(100)のシリコンインゴットの表面にテクスチャを形成することはできるが;基板面方位(111)のシリコンインゴットの表面にテクスチャを形成することはできず、等方的にエッチングされてしまう。これに対して、本発明では基板面方位(111)の単結晶シリコンインゴットにテクスチャを形成する。
図6Bに示すように、シリコンインゴット10の表面11にテクスチャを形成してテクスチャ形成面11’とする。テクスチャの形成は、エッチングガス20を吹きつけるガスエッチング(ドライエッチング)により行われることが好ましい。本発明で製造されるシリコン基板の厚みは薄いため、テクスチャの大きさ(凹凸の突起の高さ)も小さくする必要があるためである。テクスチャの大きさが小さいとは、例えば突起の高さが100nm~1500nmの範囲にあることを意味し、好ましくは100nm~1000nmの範囲にあることを意味する。
図6Cに示すように、テクスチャ形成面11’を通して、シリコンインゴットにドーパント30を注入してPN接合35を形成する。シリコンインゴットがP型にドープされている場合には、テクスチャ形成面の表層をN型にドーピングしてエミッタ層を形成することでPN接合を形成すればよい。シリコンインゴットが、N型にドープされている場合には、テクスチャ形成面の表層をP型にドーピングすることでエミッタ層を形成することでPN接合を形成すればよい。PN接合は、テクスチャ形成面11から深さ0.01μm~0.1μmの領域に形成することが好ましく、例えば、深さ約0.05μmの領域に形成することが好ましい。
図6Dに示すように、テクスチャ形成面11’からシリコンインゴット10にイオン40を注入して、イオン注入層45を形成する。
なお、第二の実施形態に係る製造方法において、イオン注入層45を形成する工程(D工程)は、PN接合35を形成した後に行った。しかし、イオン注入層45を形成する工程は、特に制限されることはなく、他の工程の先もしくは後に行っても構わない。例えば、工程D’として、テクスチャを形成する前に行っても(図7B参照)、工程D''として、テクスチャを形成した後であって、PN接合を形成する前に行ってもよい(図8C参照)。
図6Eに示すように、イオン注入層45を形成されたシリコンインゴット10に衝撃を与える。衝撃を与える手段は、レーザ照射や、加熱処理でもよい。加熱とは、例えば500℃に加熱することをいう。さらに、大気圧プラズマ60を照射することで、シリコンインゴットに衝撃を与えてもよい。レーザ照射ではなく、大気圧プラズマ60を照射することで、工程Dにおいて注入されたイオン40によってシリコンインゴット10に生じうる欠陥を修復することができるという利点が得られる。
上述の工程に加え、さらに、任意の工程として、テクスチャ形成面である受光面に表面電極70を配置し、非受光面に裏面電極75を配置することで、太陽電池が得られる(図6F,図7F,図8Fを参照)。表面電極70とは、例えば銀配線である。裏面電極75とは、例えばアルミニウムの蒸着膜である。もちろん、太陽電池の態様がこれに限定されるわけではない。
図7A~図7Fは、本発明の第二の実施形態に係るテクスチャ形成面を有するシリコン基板の第二の製造方法のフロー図である。第二の実施形態の第一の製造方法においては、図6B,6Cに示されるようにPN接合35を形成した後に、図6Dに示されるようにイオン注入層45を形成した。しかしながら、図7B,図7C,図7Dに示されるように、イオン注入層45を形成した後に、PN接合35を形成してもよい。つまり、第二の製造方法は、シリコンインゴット10を用意する工程A(図7A参照)と、シリコンインゴット10のテクスチャ未形成の表面11からイオン40を注入して、イオン注入層45を形成する工程D’(図7B参照)と、シリコンインゴット10のテクスチャ未形成の表面11にテクスチャを形成してテクスチャ形成面11’とする工程B(図7C参照)と、テクスチャ形成面11’にドーパント30を注入してPN接合35を形成する工程C(図7D参照)と、イオン注入層45を形成されたシリコンインゴット10に衝撃を与えて、シリコンインゴット10を分割して、シリコン基板50を得る工程E(図7E参照)と、を含む。
基板面方位(111)のシリコンインゴットの表面に、微細なテクスチャを形成した実験例を示す。
図9A~図9Fは、本発明の第三の実施形態に係るテクスチャ形成面を有するシリコン基板の第一の製造方法のフロー図である。図9A~図9Fに示される第一の製造方法は、シリコンインゴット10を用意する工程A(図9A参照)と、シリコンインゴット10の表面11にテクスチャを形成してテクスチャ形成面11’とする工程B(図9B参照)と、テクスチャ形成面11’にホール15を形成する工程C(図9C参照)と、ホール15を形成されたテクスチャ形成面11’にドーパント30を注入してPN接合35を形成する工程D(図9D参照)と、テクスチャ形成面11’からイオン40を注入して、イオン注入層45を形成する工程E(図9E参照)と、イオン注入層45を形成されたシリコンインゴット10に衝撃を与えて、シリコンインゴット10を分割して、シリコン基板50を得る工程F(図9F参照)と、を含む。以下工程毎に説明する。
図9Aに示すように、シリコンインゴット10を用意する。工程Aで用意するシリコンインゴット10は、基板面方位(111)の単結晶シリコンインゴットである。本発明のシリコンインゴットの製造方法の特徴の一つは、基板面方位(111)のシリコンインゴットの表面にテクスチャを形成することである。従来の一般的なテクスチャ形成手法であるアルカリ溶液によるウェットエッチング法によれば、基板面方位(100)のシリコンインゴットの表面にテクスチャを形成することはできるが;基板面方位(111)のシリコンインゴットの表面にテクスチャを形成することはできず、等方的にエッチングされてしまう。これに対して、本発明では基板面方位(111)の単結晶シリコンインゴットにテクスチャを形成することができる。
図9Bに示すように、シリコンインゴット10の表面11にテクスチャを形成してテクスチャ形成面11’を形成する。シリコンインゴットの表面11の全面にテクスチャを形成してもよく、その一部にテクスチャを形成してもよい。テクスチャ形成は、エッチングガス20を吹きつけるガスエッチング(ドライエッチング)により行われることが好ましい。本発明で製造されるシリコン基板の厚みは薄い(例えば50μm以下)ため、テクスチャの大きさ(凹凸の突起の高さ)も小さくする必要があるためである。テクスチャの大きさが小さいとは、例えば突起の高さが100nm~1500nmの範囲にあることを意味し、好ましくは100nm~1000nmの範囲にあることを意味する。
図9Cに示すように、シリコンインゴット10のテクスチャ形成面11'にホール15を形成する。ホール15の直径は特に限定されないが、太陽電池としたときのバスバー電極(テクスチャ形成面に配置される)の配線幅よりも大きいことが好ましい。バスバー電極の配線幅は、通常約1mmである。また、ホール15の深さは、製造しようとするシリコン基板50の厚みよりも大きければよい。例えば、製造しようとするシリコン基板50の厚みが20μmであれば、ホール15の深さは20μm以上とすればよい。ホール15の形状は特に限定されず、円柱状、円錐状、角柱状、角錐状など任意である。
図9Dに示すように、ホール15を形成したテクスチャ形成面11'とホール15の内壁面を通して、シリコンインゴット10にドーパント30を注入する。シリコンインゴット10がP型にドープされている場合には、テクスチャ形成面11'の表層とホール15の内壁面の表層とをN型にドーピングしてエミッタ層を形成することでPN接合35を形成すればよい。シリコンインゴット10が、N型にドープされている場合には、テクスチャ形成面11'の表層とホール15の内壁面の表層とをP型にドーピングすることでエミッタ層を形成することでPN接合35を形成すればよい。PN接合35は、テクスチャ形成面11'およびホール15の内壁面から深さ0.01μm~0.1μmの領域に形成することが好ましく、例えば、深さ約0.05μmの領域に形成することが好ましい。
図9Eに示すように、テクスチャ形成面11’からシリコンインゴット10にイオン40を注入して、イオン注入層45を形成する。
なお、第三の実施形態に係る製造方法において、イオン注入層45を形成する工程(E工程)は、PN接合35を形成した後に行った。しかし、イオン注入層45を形成する工程は、特に制限されることはなく、他の工程の先もしくは後に行っても構わない。例えば、工程E’として、テクスチャを形成する前に行っても(図10B参照)。工程E''として、テクスチャを形成した後であって、ホール15を形成する前に行ってもよい(図11C参照)。即ち、工程E(工程E’および工程E'')においては、シリコンインゴット10の表面(111面)を通じて、シリコンインゴット10にイオン40が注入されるのであれば、シリコンインゴット10の表面は、テクスチャ形成面11’でもよいし(図9Dおよび図11C参照)、テクスチャ未形成の表面11であってもよい(図10B参照)。
図9Fに示すように、イオン注入層45を形成されたシリコンインゴット10に衝撃を与える。衝撃を与える手段は、レーザ照射や、加熱処理でもよい。加熱とは、例えば500℃に加熱することをいう。さらに、大気圧プラズマ60を照射することで、シリコンインゴットに衝撃を与えてもよい。レーザ照射ではなく、大気圧プラズマ60を照射することで、工程Dにおいて注入されたイオン40によってシリコンインゴット10に生じうる欠陥を修復することができるという利点が得られる。
シリコン基板50は、太陽電池セル用のシリコン基板として用いられることが好ましく、より好ましくはバックコンタクトセル型のシリコン基板として用いられる。シリコン基板50を含むバックコンタクトセル型の太陽電池セルの例を図6に示す。図6は、シリコン基板50のスルーホール15(図1Fなど参照)を通る断面を示している。図6に示される太陽電池セルは、1)スルーホール15の内部に充填された電極70と、2)シリコン基板50のテクスチャ形成面11'の裏面に形成された電極75とを有する。電極70は、PN接合35と接続している。電極70は、スルーホール15の内部とともに、シリコン基板50のテクスチャ形成面11'の裏面にも形成されうるが、その場合には、テクスチャ形成面11'の裏面と電極70との間に絶縁膜79を挟む。また、電極70は、シリコン基板のテクスチャ形成面11’に配設されるバスバー電極78と電気接続している。バスバー電極は、フィンガー電極’(不図示)などと接続しており、太陽電池が発電した電力を集電する電極である。電極となる金属膜の成膜は、例えば蒸着法によって行えばよい。電極70は、例えば銀である。電極75は、例えば例えばアルミニウムの蒸着膜である。
図10A~図10Fは、本発明の第三の実施形態に係るテクスチャ形成面を有するシリコン基板の第二の製造方法のフロー図である。図9B,9C、9Dに示されるようにPN接合35を形成した後に、図9D、9Eに示されるようにイオン注入層45を形成した。しかしながら、図10B,図10C,図10Dに示されるように、イオン注入層45を形成した後に、PN接合35を形成してもよい。つまり、シリコンインゴット10を用意する工程A(図10A参照)と、シリコンインゴット10のテクスチャ未形成の表面11からイオン40を注入して、イオン注入層45を形成する工程E’(図10B参照)と、シリコンインゴット10のテクスチャ未形成の表面11にテクスチャを形成してテクスチャ形成面11’とする工程B(図10C参照)と、テクスチャ形成面11’にホール15を形成する工程C(図10D参照)と、ホール15を形成されたテクスチャ形成面11’にドーパント30を注入してPN接合35を形成する工程D(図10E参照)と、イオン注入層45を形成されたシリコンインゴット10に衝撃を与えて、シリコンインゴット10を分割して、シリコン基板50を得る工程F(図10F参照)と、を含む。
基板面方位(111)のシリコンインゴットの表面に、微細なテクスチャを形成した実験例を示す。
本出願は、同出願人により先にされた日本国特許出願、すなわち、2011-91374号(出願日2011年4月15日)、2011-91382号(出願日2011年4月15日)、及び2011-91386号(出願日2011年4月15日)、に基づく優先権主張を伴うものであって、これらの明細書を参照のためにここに組み込むものとする。
11 シリコンインゴットの表面
11' テクスチャ形成面
15 (スルー)ホール
20 エッチングガス
30 ドーパント
35 PN接合
40 イオン
45 イオン注入層
60 大気圧プラズマ
65 ドライ超音波
50 シリコン基板
70 表面電極
75 裏面電極
100 テクスチャ形成装置
110 シリコンインゴット(シリコン基板)
120 減圧チャンバ
130 エッチングガスを噴出するノズル
131 エッチングガス供給配管
140 冷却ガスを噴出するノズル
141 冷却ガス供給配管
150 ステージ
Claims (21)
- テクスチャ形成面を有し、50μm以下の厚みを有するシリコン基板の製造方法であって、
50μm以下の厚みを有し、基板面方位(111)のシリコン基板を準備する工程Aと、
前記準備したシリコン基板の基板表面に、フッ素含有ガスを含むエッチングガスを吹き付けて、テクスチャを形成する工程Bと、
を含む製造方法。 - 前記工程Aは、基板面方位(111)のシリコンインゴットを用意する工程a1と、
前記シリコンインゴットの、インゴット表面から深さ50μm以下の領域にイオンを注入して、イオン注入層を形成する工程a2と、
前記イオン注入層を形成されたインゴットに衝撃を与えて、イオン注入層でインゴットを分割して、厚み50μm以下のシリコン基板を得る工程a3とを含む、請求項1に記載の製造方法。 - 前記フッ素含有ガスは、ClF3,XeF2,BrF3,BrF5およびNF3からなる群から選ばれる一以上のガスが含まれる、請求項1に記載の製造方法。
- 前記エッチングガスには、分子中に酸素原子を含有するガスがさらに含まれる、請求項1に記載の製造方法。
- 前記工程Bにおけるシリコン基板のエッチングは、減圧環境下にて行われる、請求項1に記載の製造方法。
- 前記テクスチャ形成面には、複数の錘状の突起が形成され、かつ前記突起の高さは100nm~1500nmの範囲にある、請求項1に記載の製造方法。
- テクスチャ形成面を有し、50μm以下の厚みを有するシリコン基板の製造方法であって、
基板面方位(111)のシリコンインゴットを用意する工程Aと、
前記シリコンインゴットの表面にフッ素含有ガスを含むエッチングガスを供給して、テクスチャを形成する工程Bと、
前記テクスチャ形成面にドーパントを注入して、前記シリコンインゴットの表層にPN接合を形成する工程Cと、
前記テクスチャ形成面からイオンを注入して、イオン注入層を形成する工程Dと、
前記イオン注入層を形成されたシリコンインゴットに衝撃を与えて、イオン注入層でシリコンインゴットを分割して、厚み50μm以下のシリコン基板を得る工程Eと、
を含む製造方法。 - テクスチャ形成面を有し、50μm以下の厚みを有するシリコン基板の製造方法であって、
基板面方位(111)のシリコンインゴットを用意する工程Aと、
前記シリコンインゴットの表面からイオンを注入して、イオン注入層を形成する工程D'と、
前記シリコンインゴットの表面にフッ素含有ガスを含むエッチングガスを供給して、テクスチャを形成する工程Bと、
前記テクスチャ形成面にドーパントを注入して、前記シリコンインゴットの表層にPN接合を形成する工程Cと、
前記イオン注入層を形成されたシリコンインゴットに衝撃を与えて、イオン注入層でシリコンインゴットを分割して、厚み50μm以下のシリコン基板を得る工程Eと、
を含む製造方法。 - テクスチャ形成面を有し、50μm以下の厚みを有するシリコン基板の製造方法であって、
基板面方位(111)のシリコンインゴットを用意する工程Aと、
前記シリコンインゴットの表面にフッ素含有ガスを含むエッチングガスを供給して、テクスチャを形成する工程Bと、
前記テクスチャ形成面からイオンを注入して、イオン注入層を形成する工程D'’と、
前記テクスチャ形成面にドーパントを注入して、前記シリコンインゴットの表層にPN接合を形成する工程Cと、
前記イオン注入層を形成されたシリコンインゴットに衝撃を与えて、イオン注入層でシリコンインゴットを分割して、厚み50μm以下のシリコン基板を得る工程Eと、
を含む製造方法。 - 前記フッ素含有ガスは、ClF3,XeF2,BrF3,BrF5およびNF3からなる群から選ばれる一以上のガスが含まれる、請求項7~9のいずれか一項に記載の製造方法。
- 前記エッチングガスには、分子中に酸素原子を含有するガスがさらに含まれる、請求項7~9のいずれか一項に記載の製造方法。
- 前記工程Bにおけるシリコンインゴットのエッチングは、減圧環境下にて行われる、請求項7~9のいずれか一項に記載の製造方法。
- 前記テクスチャ形成面には複数の錘状の突起が形成され、かつ前記突起の高さは100nm~1500nmの範囲にある、請求項7~9のいずれか一項に記載の製造方法。
- テクスチャ形成面を有し、かつスルーホールを有する50μm以下の厚みを有するシリコン基板の製造方法であって、
基板面方位(111)のシリコンインゴットを用意する工程Aと、
前記シリコンインゴットの表面にフッ素含有ガスを含むエッチングガスを供給して、テクスチャを形成する工程Bと、
前記テクスチャ形成面にレーザを照射してホールを形成する工程Cと、
前記テクスチャ形成面にドーパントを注入して、前記シリコンインゴットの表層および前記ホールの内壁表面層にPN接合を形成する工程Dと、
前記テクスチャ形成面からイオンを注入して、イオン注入層を形成する工程Eと、
前記イオン注入層を形成されたシリコンインゴットに衝撃を与えて、イオン注入層でシリコンインゴットを分割して、厚み50μm以下のシリコン基板を得る工程Fと、
を含む製造方法。 - テクスチャ形成面を有し、かつスルーホールを有する50μm以下の厚みを有するシリコン基板の製造方法であって、
基板面方位(111)のシリコンインゴットを用意する工程Aと、
前記シリコンインゴットの表面からイオンを注入して、イオン注入層を形成する工程E'と、
前記シリコンインゴットの表面にフッ素含有ガスを含むエッチングガスを供給して、テクスチャを形成する工程Bと、
前記テクスチャ形成面にレーザを照射してホールを形成する工程Cと、
前記テクスチャ形成面にドーパントを注入して、前記シリコンインゴットの表層にPN接合を形成する工程Dと、
前記イオン注入層を形成されたシリコンインゴットに衝撃を与えて、イオン注入層でシリコンインゴットを分割して、厚み50μm以下のシリコン基板を得る工程Fと、
を含む製造方法。 - テクスチャ形成面を有し、かつスルーホールを有する50μm以下の厚みを有するシリコン基板の製造方法であって、
基板面方位(111)のシリコンインゴットを用意する工程Aと、
前記シリコンインゴットの表面にフッ素含有ガスを含むエッチングガスを供給して、テクスチャを形成する工程Bと、
前記テクスチャ形成面からイオンを注入して、イオン注入層を形成する工程E'’と、
前記テクスチャ形成面にレーザを照射してホールを形成する工程Cと、
前記テクスチャ形成面にドーパントを注入して、前記シリコンインゴットの表層にPN接合を形成する工程Dと、
前記イオン注入層を形成されたシリコンインゴットに衝撃を与えて、イオン注入層でシリコンインゴットを分割して、厚み50μm以下のシリコン基板を得る工程Fと、
を含む製造方法。 - 前記フッ素含有ガスは、ClF3,XeF2,BrF3,BrF5およびNF3からなる群から選ばれる一以上のガスが含まれる、請求項14~16のいずれか一項に記載の製造方法。
- 前記エッチングガスには、分子中に酸素原子を含有するガスがさらに含まれる、請求項14~16のいずれか一項に記載の製造方法。
- 前記工程Bにおけるシリコンインゴットのエッチングは、減圧環境下にて行われる、請求項14~16のいずれか一項に記載の製造方法。
- 前記テクスチャ形成面には複数の錘状の突起が形成され、かつ前記突起の高さは100nm~1500nmの範囲にある、請求項14~16のいずれか一項に記載の製造方法。
- 請求項14~16のいずれか一項に記載の方法で得たシリコン基板を含むバックコンタクト型太陽電池セルであって、
前記スルーホールの内側面に成膜され、PN接合と接続している導電膜からなる電極と、テクスチャ形成面とは反対の面に成膜された導電膜からなる電極と、を含む太陽電池セル。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280003093.2A CN103125016B (zh) | 2011-04-15 | 2012-04-13 | 具有纹理形成面的硅基板及其制造方法、包含硅基板的太阳能电池 |
JP2012540188A JP5204351B2 (ja) | 2011-04-15 | 2012-04-13 | 太陽電池用シリコン基板の製造方法 |
US13/823,470 US8772067B2 (en) | 2011-04-15 | 2012-04-13 | Silicon substrate having textured surface, solar cell having same, and method for producing same |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011091382 | 2011-04-15 | ||
JP2011091374 | 2011-04-15 | ||
JP2011-091374 | 2011-04-15 | ||
JP2011-091382 | 2011-04-15 | ||
JP2011-091386 | 2011-04-15 | ||
JP2011091386 | 2011-04-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012140906A1 true WO2012140906A1 (ja) | 2012-10-18 |
Family
ID=47009095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/002576 WO2012140906A1 (ja) | 2011-04-15 | 2012-04-13 | テクスチャ形成面を有するシリコン基板と、それを含む太陽電池、およびその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8772067B2 (ja) |
JP (1) | JP5204351B2 (ja) |
CN (1) | CN103125016B (ja) |
WO (1) | WO2012140906A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014225634A (ja) * | 2013-04-16 | 2014-12-04 | パナソニックIpマネジメント株式会社 | ノンプラズマドライエッチング装置 |
JP2016119426A (ja) * | 2014-12-23 | 2016-06-30 | 学校法人 名古屋電気学園 | 表面加工方法及び構造体の製造方法 |
JP2019106525A (ja) * | 2017-12-08 | 2019-06-27 | 三星エスディアイ株式会社Samsung SDI Co., Ltd. | 太陽電池 |
JP2019106524A (ja) * | 2017-12-08 | 2019-06-27 | 三星エスディアイ株式会社Samsung SDI Co., Ltd. | 太陽電池 |
JP2019186483A (ja) * | 2018-04-16 | 2019-10-24 | 浜松ホトニクス株式会社 | 裏面入射型半導体光検出素子の製造方法 |
JP2019201080A (ja) * | 2018-05-15 | 2019-11-21 | 王子ホールディングス株式会社 | 光電変換素子用構造体及び光電変換素子とこれらの製造方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9831361B2 (en) * | 2012-12-14 | 2017-11-28 | Robert Bosch Gmbh | Method of fabricating nanocone texture on glass and transparent conductors |
EP2933843A1 (en) * | 2014-04-17 | 2015-10-21 | Total Marketing Services | Solar cell and method for manufacturing such a solar cell |
CN107658348A (zh) * | 2017-09-20 | 2018-02-02 | 贵州大学 | 硅基微纳光伏结构及其光子制备方法 |
US10593602B2 (en) | 2018-04-27 | 2020-03-17 | Semiconductor Components Industries, Llc | Semiconductor substrate crack mitigation systems and related methods |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003017723A (ja) * | 2001-06-29 | 2003-01-17 | Shin Etsu Handotai Co Ltd | 半導体薄膜の製造方法及び太陽電池の製造方法 |
JP2005150614A (ja) * | 2003-11-19 | 2005-06-09 | Sharp Corp | 太陽電池及びその製造方法 |
JP2010034155A (ja) * | 2008-07-25 | 2010-02-12 | Ulvac Japan Ltd | テクスチャー形成方法及び真空処理装置 |
JP2011077370A (ja) * | 2009-09-30 | 2011-04-14 | Tokyo Electron Ltd | 太陽電池の製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04223378A (ja) | 1990-12-25 | 1992-08-13 | Sharp Corp | 太陽電池 |
JP3628108B2 (ja) | 1996-06-10 | 2005-03-09 | 株式会社イオン工学研究所 | 太陽電池の製造方法 |
JP3493951B2 (ja) | 1997-05-13 | 2004-02-03 | 松下電器産業株式会社 | シリコン基板の異方性エッチング方法及び太陽電池の製造方法 |
US6313397B1 (en) | 1998-08-31 | 2001-11-06 | Sharp Kabushiki Kaisha | Solar battery cell |
JP3589590B2 (ja) | 1998-08-31 | 2004-11-17 | シャープ株式会社 | 太陽電池セル及びその製造方法 |
CA2370731A1 (en) * | 2001-02-07 | 2002-08-07 | Ebara Corporation | Solar cell and method of manufacturing same |
US9362439B2 (en) | 2008-05-07 | 2016-06-07 | Silicon Genesis Corporation | Layer transfer of films utilizing controlled shear region |
JP5286046B2 (ja) | 2007-11-30 | 2013-09-11 | 株式会社半導体エネルギー研究所 | 光電変換装置の製造方法 |
-
2012
- 2012-04-13 WO PCT/JP2012/002576 patent/WO2012140906A1/ja active Application Filing
- 2012-04-13 US US13/823,470 patent/US8772067B2/en not_active Expired - Fee Related
- 2012-04-13 CN CN201280003093.2A patent/CN103125016B/zh not_active Expired - Fee Related
- 2012-04-13 JP JP2012540188A patent/JP5204351B2/ja not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003017723A (ja) * | 2001-06-29 | 2003-01-17 | Shin Etsu Handotai Co Ltd | 半導体薄膜の製造方法及び太陽電池の製造方法 |
JP2005150614A (ja) * | 2003-11-19 | 2005-06-09 | Sharp Corp | 太陽電池及びその製造方法 |
JP2010034155A (ja) * | 2008-07-25 | 2010-02-12 | Ulvac Japan Ltd | テクスチャー形成方法及び真空処理装置 |
JP2011077370A (ja) * | 2009-09-30 | 2011-04-14 | Tokyo Electron Ltd | 太陽電池の製造方法 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014225634A (ja) * | 2013-04-16 | 2014-12-04 | パナソニックIpマネジメント株式会社 | ノンプラズマドライエッチング装置 |
JP2016119426A (ja) * | 2014-12-23 | 2016-06-30 | 学校法人 名古屋電気学園 | 表面加工方法及び構造体の製造方法 |
JP2019106525A (ja) * | 2017-12-08 | 2019-06-27 | 三星エスディアイ株式会社Samsung SDI Co., Ltd. | 太陽電池 |
JP2019106524A (ja) * | 2017-12-08 | 2019-06-27 | 三星エスディアイ株式会社Samsung SDI Co., Ltd. | 太陽電池 |
JP2019186483A (ja) * | 2018-04-16 | 2019-10-24 | 浜松ホトニクス株式会社 | 裏面入射型半導体光検出素子の製造方法 |
WO2019203125A1 (ja) * | 2018-04-16 | 2019-10-24 | 浜松ホトニクス株式会社 | 裏面入射型半導体光検出素子の製造方法 |
JP7089931B2 (ja) | 2018-04-16 | 2022-06-23 | 浜松ホトニクス株式会社 | 裏面入射型半導体光検出素子の製造方法 |
US11450695B2 (en) | 2018-04-16 | 2022-09-20 | Hamamatsu Photonics K.K. | Method for manufacturing back surface incident type semiconductor photo detection element |
US11764236B2 (en) | 2018-04-16 | 2023-09-19 | Hamamatsu Photonics K.K. | Method for manufacturing back surface incident type semiconductor photo detection element |
JP2019201080A (ja) * | 2018-05-15 | 2019-11-21 | 王子ホールディングス株式会社 | 光電変換素子用構造体及び光電変換素子とこれらの製造方法 |
WO2019220949A1 (ja) * | 2018-05-15 | 2019-11-21 | 王子ホールディングス株式会社 | 光電変換素子用構造体とその製造方法及び光電変換素子とその製造方法 |
JP7072801B2 (ja) | 2018-05-15 | 2022-05-23 | 王子ホールディングス株式会社 | 光電変換素子用構造体及び光電変換素子 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012140906A1 (ja) | 2014-07-28 |
CN103125016A (zh) | 2013-05-29 |
US20130183791A1 (en) | 2013-07-18 |
JP5204351B2 (ja) | 2013-06-05 |
US8772067B2 (en) | 2014-07-08 |
CN103125016B (zh) | 2015-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5204351B2 (ja) | 太陽電池用シリコン基板の製造方法 | |
JP5839628B2 (ja) | 光電変換モジュールの作製方法 | |
US8124535B2 (en) | Method of fabricating solar cell | |
JP5564358B2 (ja) | 光電変換装置及びその作製方法 | |
JP2010034539A (ja) | 光電変換装置モジュールおよび光電変換装置モジュールの作製方法 | |
US8039396B2 (en) | Method for manufacturing photovoltaic device | |
KR20120080583A (ko) | 태양 전지 및 이의 제조방법 | |
JP2009260310A (ja) | 光電変換装置の製造方法及び光電変換装置 | |
JP5297543B2 (ja) | テクスチャ形成面を有するシリコン基板、およびその製造方法 | |
JPH10270361A (ja) | 半導体装置とその製造方法 | |
WO2009133607A1 (ja) | 光起電力装置およびその製造方法 | |
JP2012222300A (ja) | テクスチャ形成面を有するシリコン基板、およびその製造方法 | |
TWI401810B (zh) | 太陽能電池 | |
Addonizio et al. | Plasma etched c-Si wafer with proper pyramid-like nanostructures for photovoltaic applications | |
US20130330871A1 (en) | Methods for texturing a semiconductor material | |
JP4248793B2 (ja) | 薄膜太陽電池の製造方法 | |
JP5395270B2 (ja) | テクスチャ形成面を有するシリコン基板、およびその製造方法 | |
JP2012054438A (ja) | シリコン系基板の粗面化方法および装置 | |
JP2013219164A (ja) | テクスチャ形成面を有するシリコン基板およびその製造方法 | |
JP6529743B2 (ja) | 光電変換素子 | |
Joshi et al. | Black Silicon Photovoltaics: Fabrication methods and properties | |
US20140246092A1 (en) | Silicon substrate and manufacturing method thereof | |
JP5281217B1 (ja) | テクスチャ形成面を有するシリコン基板の製造方法 | |
TWI330384B (en) | Semiconductor texturing process | |
JP5945738B2 (ja) | シリコン基板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201280003093.2 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2012540188 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12770898 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13823470 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12770898 Country of ref document: EP Kind code of ref document: A1 |