WO2012133767A1 - 熱伝導性組成物及び熱伝導体 - Google Patents

熱伝導性組成物及び熱伝導体 Download PDF

Info

Publication number
WO2012133767A1
WO2012133767A1 PCT/JP2012/058583 JP2012058583W WO2012133767A1 WO 2012133767 A1 WO2012133767 A1 WO 2012133767A1 JP 2012058583 W JP2012058583 W JP 2012058583W WO 2012133767 A1 WO2012133767 A1 WO 2012133767A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
conductive composition
heat
fine particles
heat conductive
Prior art date
Application number
PCT/JP2012/058583
Other languages
English (en)
French (fr)
Inventor
亜由子 鈴木
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Priority to JP2013507784A priority Critical patent/JP5872545B2/ja
Publication of WO2012133767A1 publication Critical patent/WO2012133767A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/8388Hardening the adhesive by cooling, e.g. for thermoplastics or hot-melt adhesives

Definitions

  • the present invention relates to a heat conductive composition and a heat conductor obtained by heat-treating it.
  • a silver paste containing silver powder, a thermosetting resin, and a solvent has been used to bond and fix (die bonding) a semiconductor chip to a metal plate such as a lead frame.
  • the heat generated in the chip can be quickly released to the lead frame because silver has a high thermal conductivity.
  • the curing temperature of the resin is relatively low, the chip is not easily deteriorated by heat when the chip is bonded and fixed.
  • silver and resin contained in the silver paste are cheaper than gold.
  • the viscosity and thixotropy of the silver paste can be controlled by adjusting the addition amount of the viscosity adjusting agent (solvent) contained in the silver paste. Since the silver paste is easy to handle, it can be applied selectively and in a certain amount to the adhesive surface by application by printing, injection, dripping or the like. For this reason, silver paste is often used for bonding and fixing chips.
  • Patent Document 1 discloses a silver paste obtained by mixing spherical silver fine particles smaller than silver powder in a conductive paste containing silver powder, a thermosetting resin and a solvent.
  • Patent Document 2 discloses a thermally conductive resin composition containing silver powder, a thermosetting resin, and a compound having a sulfide bond and a hydroxyl group.
  • Patent Document 3 discloses a method for producing a bump for connecting an electronic circuit obtained by heat-treating silver particles coated with a higher fatty acid or a derivative of higher fatty acid.
  • Patent Document 4 discloses an adhesive paste having excellent thermal conductivity, including silver fine particles obtained by reducing silver ions and a thermosetting resin as an adhesive component.
  • an object of the present invention is to provide a heat conductive composition capable of obtaining a heat conductor having a high heat conductivity.
  • the present inventors have conducted research in order to solve the above problems. As a result, the present inventors use a thermally conductive composition containing silver powder, silver fine particles, fatty acid silver, and an amine, so that the heat is higher than that of conventional silver powder and silver paste containing silver fine particles. It has been discovered that a thermal conductor with conductivity can be obtained. The present invention has been completed based on such a novel discovery.
  • the present invention is a heat conductive composition characterized by containing (A) silver powder, (B) silver fine particles, (C) fatty acid silver, and (D) amine.
  • the (A) silver powder preferably has an average particle size of 0.3 ⁇ m to 100 ⁇ m.
  • the silver fine particles (B) The primary particles have an average particle size of 50 to 150 nm,
  • the crystallite diameter is 20-50 nm, and
  • the ratio of the average particle diameter to the crystallite diameter is preferably 1 to 7.5.
  • the silver fine particles (B) were prepared by mixing a silver salt of a carboxylic acid and an aliphatic primary amine and then adding a reducing agent to precipitate silver fine particles at a reaction temperature of 20 to 80 ° C. It is preferable.
  • the heat conductive composition of the present invention preferably further contains (E) a silver resinate.
  • the heat conductive composition of the present invention preferably further contains (F) a resin.
  • the present invention provides a heat conductor obtained by heat-treating any one of the above heat-conductive compositions in a temperature range of 100 to 400 ° C.
  • This invention provides the adhesive agent containing one of the said heat conductive compositions.
  • the present invention provides an electronic component including the above heat conductor.
  • FIG. 2 shows electron micrographs of cross sections of heat conductive films obtained from the heat conductive compositions of Examples 1 to 3.
  • FIG. 3 shows electron micrographs of cross sections of heat conductive films obtained from the heat conductive compositions of Comparative Examples 1 to 3.
  • FIG. 3 shows electron micrographs of cross sections of heat conductive films obtained from the heat conductive compositions of Comparative Examples 1 to 3.
  • the heat conductive composition which concerns on embodiment of this invention is characterized by containing (A) silver powder, (B) silver fine particle, (C) fatty acid silver, and (D) amine.
  • silver powder As silver powder in this invention, the powder which consists of pure silver or a silver alloy can be used.
  • the shape of the silver powder is not particularly limited, and for example, spherical, granular, or flaky (flaky) silver powder can be used.
  • the average particle diameter of the silver powder used in the present invention is preferably 0.3 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m, and most preferably 2.4 ⁇ m to 16 ⁇ m.
  • the average particle size here means the average particle size (D50) of primary particles obtained by a laser diffraction / scattering particle size distribution measurement method.
  • the particle size of the silver powder contained in the heat conductive composition In order to increase the thermal conductivity of the heat conductor, it is preferable to increase the particle size of the silver powder contained in the heat conductive composition. However, if the particle size of the silver powder is too large, the coating properties and workability of the thermally conductive composition on the device will be impaired. Therefore, it is preferable to use silver powder having a large particle size as long as the coating properties and workability to the device are not impaired. Considering these matters, the average particle diameter of the silver powder used in the present invention is preferably in the above range.
  • the contact point or contact surface of silver powder can be increased by using silver powder with a high packing density (tap density).
  • the heat conduction point or heat conduction surface between silver powders can be increased.
  • the heat conductive composition of the present invention contains an additive for promoting metal fusion at a heat conduction point between silver powders. By including such an additive, a larger heat conduction path is formed inside the heat conductor obtained by heating the heat conductive composition.
  • the following (C) fatty acid silver and (D) amine are used as such additives.
  • the method for producing silver powder is not particularly limited.
  • Silver powder can be produced by, for example, a reduction method, a pulverization method, an electrolysis method, an atomization method, a heat treatment method, or a combination thereof.
  • the flaky silver powder can be produced, for example, by crushing spherical or granular silver particles with a ball mill or the like.
  • the silver fine particles in the present invention are, for example, particles made of pure silver or a silver alloy having an average particle size relatively smaller than that of the above-described silver powder.
  • the silver fine particles of the present invention have an average primary particle size of 40 to 150 nm, preferably 50 to 150 nm, more preferably 70 to 140 nm.
  • the average particle diameter of the silver fine particles is within this range, aggregation of the silver fine particles is suppressed, and the storage stability of the silver paste is improved.
  • the average particle diameter means an average value of Haywood diameters obtained by observing particles with a scanning electron microscope (SEM) and image analysis.
  • the silver fine particles used in the present invention have a crystallite diameter of 15 to 50 nm, preferably 20 to 50 nm.
  • the crystallite diameter is a value calculated from Scherrer's equation by obtaining the half-value width of the plane index (1,1,1) plane peak from powder X-ray diffractometry using Cu K ⁇ ray as a radiation source. Means that.
  • the ratio of the average particle diameter to the crystallite diameter of the primary silver fine particles is 1 to 10, preferably 1 to 7.5, more preferably. Is in the range of 1-5.
  • the silver fine particles used in the present invention are produced by mixing a silver salt of a carboxylic acid and an aliphatic primary amine, and then adding a reducing agent to precipitate the silver fine particles at a reaction temperature of 20 to 80 ° C. Can do.
  • a silver salt of carboxylic acid and an aliphatic primary amine are mixed to obtain a solution in which the silver salt of carboxylic acid is dissolved.
  • an aliphatic primary amine is coordinated to a silver salt of carboxylic acid to form a kind of amine complex.
  • the silver salt of carboxylic acid may be a silver salt of either aliphatic or aromatic carboxylic acid.
  • the silver salt of carboxylic acid may be a silver salt of monocarboxylic acid or a silver salt of polycarboxylic acid such as dicarboxylic acid.
  • the silver salt of an aliphatic carboxylic acid may be a silver salt of a chain aliphatic carboxylic acid or a silver salt of a cyclic aliphatic carboxylic acid.
  • the silver salt of an aliphatic carboxylic acid is preferably a silver salt of a chain aliphatic monocarboxylic acid, more preferably silver acetate, silver propionate or silver butyrate, and particularly preferably silver acetate. These may use only 1 type and may use 2 or more types together.
  • the aliphatic primary amine may be a chain aliphatic primary amine or a cyclic aliphatic primary amine. Moreover, even if it is a monoamine compound, polyamine compounds, such as a diamine compound, may be sufficient.
  • the aliphatic primary amine may be one in which a hydrogen atom of an aliphatic hydrocarbon group is substituted with an alkoxy group such as a hydroxyl group, a methoxy group, or an ethoxy group.
  • the aliphatic primary amine is more preferably 3-methoxypropylamine, 3-aminopropanol, or 1,2-diaminocyclohexane. These may use only 1 type and may use 2 or more types together.
  • the amount of the aliphatic primary amine used is preferably 1 equivalent or more with respect to 1 equivalent of the carboxylic acid silver salt.
  • the amount of the aliphatic primary amine used is preferably 1.0 to 3.0 equivalents, more preferably 1.0 to 2.0 equivalents, relative to 1 equivalent of the silver salt of the carboxylic acid. Particularly preferred is 1.2 to 1.8 equivalents.
  • Mixing of the silver salt of carboxylic acid and the aliphatic primary amine can be performed in the absence or presence of an organic solvent. Mixing can be facilitated by the use of organic solvents.
  • organic solvents include alcohols such as ethanol, propanol and butanol, ethers such as propylene glycol dibutyl ether, and aromatic hydrocarbons such as toluene. These organic solvents may use only 1 type and may use 2 or more types together.
  • the amount of the organic solvent used is arbitrary, and can be determined in consideration of ease of mixing, productivity of silver fine particles in a later step, and the like.
  • the temperature is preferably maintained at 20 to 80 ° C, more preferably 20 to 60 ° C.
  • a reducing agent is added to the mixture of the carboxylic acid silver salt and the aliphatic primary amine to precipitate silver fine particles.
  • the reducing agent is preferably formic acid, formaldehyde, ascorbic acid or hydrazine, more preferably formic acid, from the viewpoint of reaction control. These may be used alone or in combination of two or more.
  • the amount of the reducing agent used is preferably not less than the redox equivalent relative to the silver salt of the carboxylic acid, more preferably 1 to 3 times the redox equivalent.
  • the temperature is maintained at 20-80 ° C.
  • the temperature is preferably 20 to 70 ° C, more preferably 20 to 60 ° C.
  • the time required for the addition of the reducing agent and the subsequent reaction is usually 10 minutes to 10 hours, depending on the scale of the reactor.
  • an organic solvent such as an alcohol such as ethanol, propanol or butanol, an ether such as propylene glycol dibutyl ether, or an aromatic hydrocarbon such as toluene is added as necessary. Can be added.
  • the silver of the carboxylic acid with respect to the total volume (L) of the mixed solution of the silver salt of the carboxylic acid and the aliphatic primary amine, the reducing agent, and the organic solvent.
  • the amount (mol) of the salt is preferably 1.0 to 6.0 mol / L, more preferably 2.0 to 5.0 mol / L, and 2.0 to 4.0 mol / L. More preferably.
  • a solution obtained by mixing a silver salt of a carboxylic acid and an aliphatic primary amine and an arbitrary organic solvent are placed in a reaction vessel, and then a reducing agent is continuously supplied to the reaction vessel.
  • a reducing agent is continuously supplied to the reaction vessel.
  • the amount of silver fine particles referred to here means the amount of silver fine particles deposited with respect to a total volume of 1 L of a solution obtained by mixing a silver salt of a carboxylic acid and an aliphatic primary amine, a reducing agent, and an organic solvent. .
  • a continuous reaction system continuous complete mixing tank, flow system
  • the productivity of silver fine particles is further increased.
  • the supernatant is removed by decantation or the like, or a solvent such as alcohol, for example, methanol, ethanol, terpineol or the like is added. Thereby, silver fine particles can be separated from the reaction solution.
  • (C) Fatty acid silver examples include acetic acid, propionic acid, butyric acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, acrylic acid, oleic acid, linoleic acid, and arachidone.
  • Silver salts such as acids can be used. Of these, the silver salt of acetic acid is most preferably used.
  • the silver salt of the carboxylic acid which is a raw material of the said (B) silver fine particle can also be used as (C) fatty acid silver.
  • amines include aliphatic amines, aromatic amines, modified polyamines (eg, polyaminoamides, polyaminoimides, polyaminoesters, polyaminoureas, polyether-modified amines), tertiary amine compounds, imidazole compounds (eg, 2 -Methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2,2-diamino- 6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, etc.), hydrazide compounds, dicyanamide compounds, melamine compounds and the like. Further, as
  • the heat conductive composition of this invention contains (E) silver resinate further.
  • the silver resinate used in the present invention is a compound represented by the following formula (1). R-S-Ag (1)
  • Ag represents a silver atom
  • S represents a sulfur atom
  • R represents an alkyl group.
  • the alkyl group may be linear, branched or cyclic.
  • the alkyl group may be an alkyl group obtained by removing one hydrogen from a saturated hydrocarbon, or an alkyl group obtained by removing one hydrogen from an unsaturated hydrocarbon. In the alkyl group, continuous carbon atoms may be separated by an oxygen atom.
  • some hydrogen atoms of the alkyl group may be substituted with other functional groups such as a hydroxyl group.
  • the silver resinate represented by the above formula (1) is preferably a reaction product of a silver salt of a carboxylic acid and a mercaptan, and more preferably a reaction product of a silver salt of a carboxylic acid and t-dodecyl mercaptan. .
  • the silver salt of carboxylic acid may be a silver salt of either aliphatic or aromatic carboxylic acid.
  • the silver salt of carboxylic acid may be a silver salt of monocarboxylic acid or a silver salt of polycarboxylic acid such as dicarboxylic acid.
  • the silver salt of a carboxylic acid may be a silver salt of a chain aliphatic carboxylic acid or a silver salt of a cyclic aliphatic carboxylic acid.
  • the silver salt of carboxylic acid is preferably silver acetate, silver propionate, or silver butyrate, and particularly preferably silver acetate. These may use only 1 type and may use 2 or more types together.
  • Mercaptan is a compound having one or more mercapto groups (-SH) in the molecule.
  • the mercaptan is preferably benzyl mercaptan or t-dodecyl mercaptan, more preferably t-dodecyl mercaptan. These may use only 1 type and may use 2 or more types together.
  • a silver resinate can be produced by mixing the carboxylic acid silver salt and mercaptan with stirring. Mixing of the silver salt of carboxylic acid and mercaptan can be carried out in the absence or presence of an organic solvent. Mixing can be facilitated by the use of organic solvents.
  • the organic solvent include alcohols such as ethanol, propanol and butanol, ethers such as propylene glycol dibutyl ether, cyclic hydrocarbons such as cyclohexane, aromatic hydrocarbons such as toluene, and the like. These organic solvents may use only 1 type and may use 2 or more types together.
  • the heat conductive composition of this invention can contain (F) resin further.
  • the resin used in the present invention may be a thermosetting resin or a thermoplastic resin.
  • the thermosetting resin is not particularly limited as long as it is a resin that is cured by heating. Examples of thermosetting resins include epoxy resins, urethane resins, vinyl ester resins, silicone resins, phenol resins, urea resins, melamine resins, unsaturated polyester resins, diallyl phthalate resins, polyimide resins, and the like.
  • the thermoplastic resin is not particularly limited as long as the resin is softened by heating.
  • thermoplastic resin examples include cellulose resins such as ethyl cellulose and nitrocellulose, acrylic resins, alkyd resins, saturated polyester resins, butyral resins, polyvinyl alcohol, and hydroxypropyl cellulose. These resins may be used alone or in combination of two or more.
  • the thermally conductive composition of the present invention may further contain (G) a solvent for viscosity adjustment and the like.
  • a solvent for viscosity adjustment examples include alcohol solvents such as methanol, ethylene glycol, propylene glycol, dihydroterpineol; toluene, xylene, ethylbenzene, diethylbenzene, isopropylbenzene, amylbenzene, p-cymene, tetralin and petroleum aromatic hydrocarbon mixtures, etc.
  • Aromatic hydrocarbon solvents such as terpineol, linalool, geraniol, citronellol; ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-butyl ether, propylene Glycol mono-tert-butyl ether, diethylene glycol monoethyl ether, diethylene glycol Ether alcohol solvents such as call monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether and tripropylene glycol monomethyl ether; ketone solvents such as methyl isobutyl ketone; and ethylene glycol monomethyl ether acetate and ethylene glycol monoethyl ether Examples thereof include ester solvents such as acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl
  • the thermally conductive composition of the present invention may include any one or more of the following substances.
  • ⁇ Inorganic fillers eg fumed silica, calcium carbonate, talc
  • Coupling agents for example, silane coupling agents such as ⁇ -glycidoxypropyltrimethoxysilane, titanate coupling agents such as tetraoctyl bis (ditridecyl phosphite) titanate
  • Silane monomers for example, tris (3- (trimethoxysilyl) propyl
  • Plasticizer for example, copolymer such as carboxyl-terminated polybutadiene-acrylonitrile, silicone rubber, silicone rubber powder, silicone resin powder, resin powder such as acrylic resin powder
  • Flame retardants ⁇ Antioxidants ⁇ Defoamers
  • the thermally conductive composition of the present invention can be prepared. Further, by adding one or more selected from the above (E) silver resinate, (F) resin, (G) solvent, and (H) other components as optional components and mixing them, the heat conduction of the present invention. Sex compositions can be prepared.
  • the order in which the components (A) to (H) are added is arbitrary, the components (A) to (H) may be added and mixed simultaneously, or the components (A) to (H) may be added in order. You may mix in addition to.
  • the above components (A) to (D) and, if necessary, components (E) to (H) are mixed to prepare a paste-like heat conductive composition.
  • This prepared heat conductive composition is apply
  • the application method is arbitrary, and for example, it can be applied by methods such as dispensing, jet dispensing, stencil printing, screen printing, pin transfer, and stamping.
  • the heat conductive composition After applying the paste-like heat conductive composition on the substrate, the heat conductive composition is heat-treated at a temperature range of 100 to 400 ° C., more preferably 150 to 350 ° C., and even more preferably 200 to 300 ° C. . Thereby, the film
  • the thermal conductor film thus obtained has a characteristic that the thermal conductivity is very high.
  • the reason for this is not clear, but (C) the fatty acid silver and (D) the two components of the amine form a kind of complex, and this complex brings the silver powder and the silver fine particles closer to each other, thereby heat treatment. In this case, it is considered that the fusion of the silver powder and the silver fine particles is promoted.
  • the heat conductive composition of this invention can be used for formation of the conductive circuit of various electronic components, for example, formation of the circuit pattern in a printed circuit board.
  • the thermally conductive composition of the present invention can be used as an adhesive (die bonding agent) for adhering and fixing a semiconductor chip to a lead frame.
  • the heat conductor obtained by heating the heat conductive composition of the present invention has a very high heat conductivity.
  • thermally conductive composition of the present invention can be used for bonding / fixing to substrates such as capacitors, resistors, diodes, memories, arithmetic elements (CPUs), etc. in addition to chip bonding / fixing.
  • A Silver powder The silver powder used was a mixture of the following two types (A1 and A2) of silver flakes in a ratio of 1: 1.
  • A1 Composition “silver”, shape “spherical”, particle size distribution “D50: 1.4 ⁇ m, D10: 0.7 ⁇ m, D90: 4.1 ⁇ m”, tap density “5.1 g / ml”
  • A2) Composition “silver”, shape “flakes”, particle size distribution “D50: 4.2 ⁇ m, D10: 1.9 ⁇ m, D90: 7.9 ⁇ m”, tap density “5.2 g / ml”
  • Silver fine particles were prepared by the following method. First, 4.0 kg (45.0 mol) of 3-methoxypropylamine was placed in a 10 L glass reaction vessel. To this 3-methoxypropylamine, 5.0 kg (30.0 mol) of silver acetate was added with stirring while maintaining the reaction temperature at 45 ° C. or lower. Immediately after the addition of silver acetate, silver acetate was a clear solution and dissolved in 3-methoxypropylamine. As more silver acetate was added, the silver acetate gradually began to become cloudy. When all of the silver acetate was added, the silver acetate became a cloudy gray, viscous solution.
  • the average particle diameter is an average value of Haywood diameters obtained by image analysis by observation with a scanning electron microscope (SEM).
  • the crystallite diameter is a value measured with an X-ray diffractometer (M18XHF22) manufactured by Mac Science Co., Ltd. From a measurement by a powder X-ray diffraction method using Cu K ⁇ ray as a radiation source, the surface index (1,1,1 ) The half-value width of the surface peak is obtained and calculated from the Scherrer equation.
  • (E) Silver resinate As the silver resinate, a reaction product of t-dodecyl mercaptan and silver acetate was used.
  • Silver pastes made of the heat conductive compositions of Examples 1 to 3 and Comparative Examples 1 to 3 were each applied to a Teflon (registered trademark) substrate by a stencil printing method. Next, the substrate was heat-treated at 200 ° C. for 30 minutes. After the heat treatment, the coating film was peeled off from the Teflon (registered trademark) substrate. Thereby, a film made of a heat conductor having a thickness of 300 ⁇ m was obtained. The thermal conductivity of the film made of a heat conductor was measured by a laser flash method. The measurement results are shown in Table 1 above.
  • the laser flash method is a method of measuring the thermal diffusivity, which is a method of irradiating the back surface of the sample with xenon flash light in a pulse shape and measuring how heat is transmitted to the sample surface with an infrared detector.
  • the thermal conductivity can be calculated by thermal diffusivity x specific heat x density.
  • the heat conductors obtained by heat-treating the heat conductive compositions of Examples 1 to 3 have a heat conductivity of 45.0 [W / mK] or higher, and high heat conductivity. Had a rate. From this result, the thermal conductive composition containing (A) silver powder, (B) silver fine particles, (C) fatty acid silver, and (D) amine is (A) only silver powder or (A) silver powder and ( B) It has been demonstrated that a thermal conductor having a higher thermal conductivity than that of a thermal conductive composition containing only silver fine particles can be obtained.
  • thermal conductivity containing (A) silver powder, (B) silver fine particles, (C) fatty acid silver, (D) amine, and (E) silver resinate is obtained.
  • FIG. 1 shows an electron micrograph of a cross section of a heat conductive film obtained by heating the heat conductive compositions of Examples 1 to 3.
  • FIG. 2 shows an electron micrograph of a cross section of a heat conductive film obtained by heating the heat conductive compositions of Comparative Examples 1 to 3.
  • the heat conductive films obtained by heating the heat conductive compositions of Examples 1 to 3 have large heat because silver powder and silver fine particles are fused to each other. A conduction path was formed, and the thermal conductivity was high.
  • the heat conductive films obtained by heating the heat conductive compositions of Comparative Examples 1 to 3 have a high heat conductivity because the silver powder and the silver fine particles are not fused so much. There wasn't.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

 高い熱伝導率を有する熱伝導体を得ることのできる熱伝導性組成物を提供する。 本発明の熱伝導性組成物は、(A)銀粉、(B)銀微粒子、(C)脂肪酸銀、及び(D)アミンを含有する。(A)銀粉は、平均粒径が0.3μm~100μmであることが好ましい。(B)銀微粒子は、1次粒子の平均粒子径が50~150nmであり、結晶子径が20~50nmであり、かつ、結晶子径に対する平均粒子径の比が1~7.5であることが好ましい。(B)銀微粒子は、カルボン酸の銀塩と脂肪族第一級アミンとを混合し、次いで還元剤を添加して、反応温度20~80℃で銀微粒子を析出させることにより製造されたものであることが好ましい。

Description

熱伝導性組成物及び熱伝導体
 本発明は、熱伝導性組成物及びそれを加熱処理して得られる熱伝導体に関する。
 従来、半導体チップをリードフレーム等の金属板に接着・固定(ダイボンディング)するために、銀粉末、熱硬化性樹脂、及び溶剤を含む銀ペーストが用いられている。この銀ペーストを用いてチップを接着・固定した場合には、銀は高い熱伝導率を有しているために、チップで発生した熱を速やかにリードフレームに逃がすことができる。また、樹脂の硬化温度が比較的低いために、チップの接着・固定の際に、チップが熱によって劣化を起こしにくい。また、銀ペーストに含まれる銀や樹脂は、金などに比べて安価である。さらには、銀ペーストに含まれる粘度調製剤(溶剤)の添加量を調整することによって、銀ペーストの粘度やチクソトロピーを制御できる。銀ペーストは、取り扱いが容易であるため、印刷による塗布や、注入、滴下等により、接着面へ選択的にかつ一定量付与することができる。このため、銀ペーストは、チップの接着・固定に多く用いられている。
 このような銀ペーストとして、特許文献1には、銀粉、熱硬化性樹脂および溶剤を含有する導電性ペーストに、銀粉よりも小さい球状の銀微粒子を混在させてなる銀ペーストが開示されている。特許文献2には、銀粉、熱硬化性樹脂、及びスルフィド結合と水酸基を有する化合物を含む熱伝導性樹脂組成物が開示されている。特許文献3には、高級脂肪酸または高級脂肪酸の誘導体で被覆された銀粒子を加熱処理して得られる電子回路接続用バンプの製造方法が開示されている。特許文献4には、銀イオンを還元して得られる銀微粒子と、接着剤成分としての熱硬化性樹脂とを含む、熱伝導性に優れる接着ペーストが開示されている。
特開平11-150135号公報 特開2009-191214号公報 特開2009-289745号公報 特開2003-183616号公報
 近年、半導体チップを用いた電子部品の高性能化により、チップからの発熱量が増加しており、チップをリードフレームに接着・固定するための銀ペーストには、高い熱伝導率を有することがより強く要求されている。
 そこで、本発明は、高い熱伝導率を有する熱伝導体を得ることのできる熱伝導性組成物を提供することを目的とする。
 本発明者らは、上記の課題を解決するために研究を行った。
 その結果、本発明者らは、銀粉と、銀微粒子と、脂肪酸銀と、アミンとを含有する熱伝導性組成物を用いることによって、従来の銀粉及び銀微粒子を含む銀ペーストよりも、高い熱伝導率を有する熱伝導体が得られることを発見した。
 本発明は、このような新規な発見に基づいて完成されたものである。
 本発明は、(A)銀粉と、(B)銀微粒子と、(C)脂肪酸銀と、(D)アミンとを含有することを特徴とする熱伝導性組成物である。
 前記(A)銀粉は、平均粒径が0.3μm~100μmであることが好ましい。
 前記(B)銀微粒子は、
 1次粒子の平均粒子径が50~150nmであり、
 結晶子径が20~50nmであり、かつ、
 結晶子径に対する平均粒子径の比が1~7.5であることが好ましい。
 前記(B)銀微粒子は、カルボン酸の銀塩と脂肪族第一級アミンとを混合し、次いで還元剤を添加して、反応温度20~80℃で銀微粒子を析出させることにより製造されたものであることが好ましい。
 本発明の熱伝導性組成物は、さらに、(E)銀レジネートを含有することが好ましい。
 本発明の熱伝導性組成物は、さらに、(F)樹脂を含有することが好ましい。
 本発明は、上記いずれかの熱伝導性組成物を100~400℃の温度範囲で加熱処理して得られる熱伝導体を提供する。
 本発明は、上記いずれかの熱伝導性組成物を含む接着剤を提供する。
 本発明は、上記の熱伝導体を含む電子部品を提供する。
 本発明によれば、高い熱伝導率を有する熱伝導体を得ることのできる熱伝導性組成物を提供することができる。
実施例1~3の熱伝導性組成物より得られた熱伝導体膜の断面の電子顕微鏡写真を示している。 比較例1~3の熱伝導性組成物より得られた熱伝導体膜の断面の電子顕微鏡写真を示している。
 以下、本発明を実施するための形態について詳細に説明する。
 本発明の実施形態に係る熱伝導性組成物は、(A)銀粉、(B)銀微粒子、(C)脂肪酸銀、及び(D)アミンを含有することを特徴とする。
(A)銀粉
 本発明における銀粉としては、純銀または銀合金からなる粉末を用いることができる。銀粉の形状は、特に限定されず、例えば、球状、粒状、あるいはフレーク状(鱗片状)の銀粉を用いることが可能である。
 本発明において用いる銀粉の平均粒径は、0.3μm~100μmが好ましく、より好ましくは1μm~50μmであり、最も好ましくは2.4μm~16μmである。ここでいう平均粒径は、レーザー回折散乱式粒度分布測定法により得られる一次粒子の平均粒径(D50)のことを意味する。
 熱伝導体の熱伝導率を高くするためには、熱伝導性組成物に含まれる銀粉の粒径を大きくするのが好ましい。しかし、銀粉の粒径が大きすぎる場合、熱伝導性組成物のデバイスへの塗布特性や作業性が損なわれることになる。したがって、デバイスへの塗布特性や作業性が損なわれない限りにおいて、粒径の大きい銀粉を用いることが好ましい。これらのことを考慮すると、本発明において用いる銀粉の平均粒径は、上記の範囲であることが好ましい。
 また、充填密度(タップ密度)が高い銀粉を用いることによって、銀粉同士の接触点あるいは接触面を増やすことができる。その結果、銀粉同士の熱伝導点あるいは熱伝導面を増やすことができる。銀粉の充填密度をより高くするためには、粒度分布及び/又は形状の異なる複数種の銀粉を混合して用いることが好ましい。
 本発明の熱伝導性組成物は、銀粉同士の熱伝導点における金属融着を促進するための添加剤を含んでいる。このような添加剤を含むことによって、熱伝導性組成物を加熱して得られる熱伝導体の内部に、より大きな熱伝導パスが形成される。本発明では、このような添加剤として、後述の(C)脂肪酸銀、及び、(D)アミンを用いている。
 銀粉の製造方法は、特に限定されない。銀粉は、例えば、還元法、粉砕法、電解法、アトマイズ法、熱処理法、あるいはそれらの組合せによって製造することができる。フレーク状の銀粉は、例えば、球状または粒状の銀粒子を、ボールミル等によって押し潰すことによって製造することができる。
(B)銀微粒子
 本発明における銀微粒子は、例えば、上記した銀粉よりも相対的に小さい平均粒径を有する、純銀あるいは銀合金からなる粒子である。
 本発明の銀微粒子は、1次粒子の平均粒径が40~150nmであり、好ましくは50~150nmであり、より好ましくは70~140nmである。銀微粒子の平均粒径がこの範囲であると、銀微粒子の凝集が抑制され、銀ペーストの保存安定性が良好になる。なお、ここでいう平均粒径は、走査型電子顕微鏡(SEM)で粒子を観察して画像解析により求めたヘイウッド径の平均値のことを意味する。
 本発明において用いる銀微粒子は、結晶子径が15~50nmであり、好ましくは20~50nmである。結晶子径がこの範囲であると、熱伝導性組成物を加熱処理した時の体積収縮が抑制されるとともに、加熱処理後に形成される熱伝導体の緻密性や表面平滑性が向上する。なお、この結晶子径は、CuのKα線を線源とした粉末X線回折法による測定から、面指数(1,1,1)面ピークの半値幅を求め、Scherrerの式より計算した値のことを意味する。
 本発明において用いる銀微粒子は、1次銀微粒子の結晶子径に対する平均粒子径の比(平均粒子径/結晶子径)が1~10であり、好ましくは1~7.5であり、より好ましくは1~5の範囲である。
 本発明において用いる銀微粒子は、カルボン酸の銀塩と脂肪族第一級アミンとを混合し、次いで還元剤を添加して、反応温度20~80℃で銀微粒子を析出させることにより製造することができる。
 はじめに、カルボン酸の銀塩と脂肪族第一級アミンとを混合して、カルボン酸の銀塩を溶解させた溶液を得る。溶液中では、カルボン酸の銀塩に脂肪族第一級アミンが配位し、一種のアミン錯体を形成していると考えられる。
 カルボン酸の銀塩は、脂肪族、芳香族いずれのカルボン酸の銀塩であってもよい。また、カルボン酸の銀塩は、モノカルボン酸の銀塩であっても、ジカルボン酸等のポリカルボン酸の銀塩であってもよい。脂肪族カルボン酸の銀塩は、鎖状脂肪族カルボン酸の銀塩であっても、環状脂肪族カルボン酸の銀塩であってもよい。脂肪族カルボン酸の銀塩は、好ましくは鎖状脂肪族モノカルボン酸の銀塩であり、より好ましくは、酢酸銀、プロピオン酸銀又は酪酸銀であり、特に好ましくは、酢酸銀である。これらは、1種類のみを使用してもよいし、2種以上を併用してもよい。
 脂肪族第一級アミンは、鎖状脂肪族第一級アミンであっても、環状脂肪族第一級アミンであってもよい。また、モノアミン化合物であっても、ジアミン化合物等のポリアミン化合物であってもよい。脂肪族第一級アミンには、脂肪族炭化水素基の水素原子が、ヒドロキシル基、メトキシ基、エトキシ基等のアルコキシ基で置換されたものであってもよい。脂肪族第一級アミンは、より好ましくは、3-メトキシプロピルアミン、3-アミノプロパノール、又は1,2-ジアミノシクロヘキサンである。これらは、1種類のみを使用してもよいし、2種以上を併用してもよい。
 脂肪族第一級アミンの使用量は、カルボン酸の銀塩1当量に対して、1当量以上であることが好ましい。脂肪族第一級アミンの使用量は、カルボン酸の銀塩1当量に対して、1.0~3.0当量であることが好ましく、より好ましくは1.0~2.0当量であり、特に好ましくは1.2~1.8当量である。
 カルボン酸の銀塩と脂肪族第一級アミンとの混合は、有機溶媒の非存在下又は存在下で行うことができる。有機溶媒の使用により、混合を容易にすることができる。有機溶媒の例としては、エタノール、プロパノール、ブタノール等のアルコール類、プロピレングリコールジブチルエーテル等のエーテル類、トルエン等の芳香族炭化水素等が挙げられる。これらの有機溶媒は、1種類のみを使用してもよく、2種以上を併用してもよい。有機溶媒の使用量は任意であり、混合のしやすさ、後の工程での銀微粒子の生産性等を考慮して決定することができる。
 カルボン酸塩の銀塩と脂肪族第一級アミンとを混合するためには、例えば、第一級脂肪族アミン、又は第一級脂肪族アミンと有機溶媒の混合物を攪拌しながら、カルボン酸の銀塩をこれに添加する。添加終了後も、適宜、攪拌を続けることができる。その間、温度を、20~80℃に維持することが好ましく、20~60℃に維持することがより好ましい。
 その後、カルボン酸の銀塩と脂肪族第一級アミンとの混合物に還元剤を添加して、銀微粒子を析出させる。還元剤は、反応の制御の点から、ギ酸、ホルムアルデヒド、アスコルビン酸又はヒドラジンが好ましく、より好ましくは、ギ酸である。これらは1種類のみをしてもよく、2種以上を併用してもよい。還元剤の使用量は、カルボン酸の銀塩に対して酸化還元当量以上であることが好ましく、より好ましくは酸化還元当量の1~3倍である。
 還元剤の添加及びその後の反応の間は、温度を20℃~80℃に維持する。温度は、20~70℃が好ましく、20~60℃がより好ましい。温度がこの範囲にあると、銀微粒子が十分に成長するとともに、生産性が高くなり、銀微粒子の二次凝集も抑制される。還元剤の添加及びその後の反応に要する時間は、反応装置の規模にも依存するが、通常、10分~10時間である。なお、還元剤の添加及びその後の反応に際して、必要に応じて、エタノール、プロパノール、ブタノール等のアルコール類、プロピレングリコールジブチルエーテル等のエーテル類、トルエン等の芳香族炭化水素等の有機溶媒を追加で添加することができる。
 還元剤の添加及びその後の反応においては、カルボン酸の銀塩と脂肪族第一級アミンとを混合した溶液と、還元剤と、有機溶媒との合計の容積(L)に対する、カルボン酸の銀塩の量(mol)は、1.0~6.0mol/Lであることが好ましく、2.0~5.0mol/Lであることがより好ましく、2.0~4.0mol/Lであることがさらに好ましい。カルボン酸の銀塩の濃度がこの範囲にある場合、反応液の攪拌を十分に行うことが可能であり、反応熱を除去することができる。その結果、析出する銀微粒子の平均粒径が適切となるため、後の工程で行われる沈降デカント、溶媒置換等の操作に支障が生じることを防止することができる。
 カルボン酸の銀塩と脂肪族第一級アミンとを混合した溶液と、任意の有機溶媒とを反応容器に入れた後、この反応容器に還元剤を連続的に供給する。このようなセミバッチ方式で反応を行った場合、還元剤の添加開始から反応終了までの1時間当たりの銀微粒子の析出量は、例えば0.3~1.0mol/h/Lとなる。したがって、セミバッチ方式で反応を行った場合、銀微粒子の生産性は非常に大きくなる。ここでいう銀微粒子の析出量は、カルボン酸の銀塩と脂肪族第一級アミンとを混合した溶液と、還元剤と、有機溶媒の合計の容積1Lに対する、銀微粒子の析出量を意味する。連続反応方式(連続式完全混合糟、流通式)で反応を行った場合、銀微粒子の生産性はさらに大きくなる。
 上記の反応により析出した銀微粒子を沈降させた後、デカンテーション等により上澄みを除去するか、又は、アルコール等の溶媒、例えば、メタノール、エタノール、テルピネオール等を添加する。これにより、反応液から銀微粒子を分離することができる。
 なお、上記で説明した銀微粒子の製造方法自体は公知であり、例えば特開2006-183072号公報に開示されている。
(C)脂肪酸銀
 本発明における脂肪酸銀としては、例えば、酢酸、プロピオン酸、酪酸、カプリル酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、アクリル酸、オレイン酸、リノール酸、アラキドン酸などの銀塩を用いることができる。この中では、酢酸の銀塩を用いることが最も好ましい。
 また、(C)脂肪酸銀として、上記(B)銀微粒子の原料であるカルボン酸の銀塩を用いることもできる。
(D)アミン
 本発明におけるアミンとしては、第1級アミン、第2級アミン、第3級アミンのいずれであっても用いることができる。アミンの例としては、脂肪族アミン、芳香族アミン、変性ポリアミン(例えば、ポリアミノアミド、ポリアミノイミド、ポリアミノエステル、ポリアミノ尿素、ポリエーテル変性アミンなど)、第三級アミン化合物、イミダゾール化合物(例えば、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4-メチル -5-ヒドロキシメチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2,2-ジアミノ-6-[2'-メチルイミダゾリル-(1')]-エチル-s-トリアジンなど)、ヒドラジド化合物、ジシアンアミド化合物、メラミン化合物などが挙げられる。
 また、(D)アミンとして、上記(B)銀微粒子の原料である脂肪族第1級アミンを用いることもできる。
(E)銀レジネート
 本発明の熱伝導性組成物は、さらに、(E)銀レジネートを含有することが好ましい。
 本発明において用いる銀レジネートは、以下の式(1)で表される化合物である。
  R-S-Ag  …(1)
 上式(1)において、Agは銀原子を表しており、Sは硫黄原子を表しており、Rはアルキル基を表している。Rで表されるアルキル基の炭素数に特に制限はなく、炭素数は任意である。また、アルキル基は、直鎖状、分岐状、環状のいずれであってもよい。また、アルキル基は、飽和炭化水素から1個の水素を取り除いたアルキル基であってもよいし、不飽和炭化水素から1個の水素を取り除いたアルキル基であってもよい。また、アルキル基は、連続する炭素原子同士の間が酸素原子によって分断されていてもよい。また、アルキル基の水素原子の一部が、ヒドロキシル基等の他の官能基によって置換されていてもよい。
 上式(1)で表される銀レジネートは、カルボン酸の銀塩とメルカプタンとの反応物であることが好ましく、カルボン酸の銀塩とt-ドデシルメルカプタンとの反応物であることがより好ましい。
 カルボン酸の銀塩は、脂肪族、芳香族いずれのカルボン酸の銀塩であってもよい。また、カルボン酸の銀塩は、モノカルボン酸の銀塩であっても、ジカルボン酸等のポリカルボン酸の銀塩であってもよい。また、カルボン酸の銀塩は、鎖状脂肪族カルボン酸の銀塩であってもよく、環状脂肪族カルボン酸の銀塩であってもよい。カルボン酸の銀塩は、好ましくは、酢酸銀、プロピオン酸銀、又は酪酸銀であり、特に好ましくは、酢酸銀である。これらは、1種類のみを使用してもよいし、2種以上を併用してもよい。
 メルカプタン(チオール)は、分子中に1個以上のメルカプト基(-SH)を有する化合物である。メルカプタンは、好ましくは、ベンジルメルカプタン、t-ドデシルメルカプタンであり、より好ましくは、t-ドデシルメルカプタンである。これらは、1種類のみを使用してもよいし、2種以上を併用してもよい。
 上記したカルボン酸の銀塩とメルカプタンとを攪拌しながら混合することによって、銀レジネートを製造することができる。カルボン酸の銀塩とメルカプタンとの混合は、有機溶媒の非存在下又は存在下で行うことができる。有機溶媒の使用により、混合を容易にすることができる。有機溶媒の例としては、エタノール、プロパノール、ブタノール等のアルコール類、プロピレングリコールジブチルエーテル等のエーテル類、シクロヘキサン等の環状炭化水素、トルエン等の芳香族炭化水素等が挙げられる。これらの有機溶媒は、1種類のみを使用してもよいし、2種以上を併用してもよい。
(F)樹脂
 本発明の熱伝導性組成物は、さらに、(F)樹脂を含有することができる。
 本発明において用いる樹脂は、熱硬化性樹脂であってもよく、熱可塑性樹脂であってもよい。
 熱硬化性樹脂は、特に制限するものではなく、加熱により硬化する樹脂であればよい。熱硬化性樹脂の例としては、エポキシ樹脂、ウレタン樹脂、ビニルエステル樹脂、シリコーン樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、ポリイミド樹脂等を挙げることができる。
 熱可塑性樹脂は、特に制限するものではなく、加熱により軟化する樹脂であればよい。熱可塑性樹脂の例としては、エチルセルロース、ニトロセルロース等のセルロース系樹脂、アクリル樹脂、アルキド樹脂、飽和ポリエステル樹脂、ブチラール樹脂、ポリビニルアルコール、ヒドロキシプロピルセルロース等を挙げることができる。
 これらの樹脂は、1種類のみを使用してもよいし、2種類以上を併用してもよい。
(G)溶剤
 本発明の熱伝導性組成物は、粘度調整等のために、さらに、(G)溶剤を含有することができる。
 溶剤は、当該分野において公知のものを使用することができる。溶剤の例として、メタノール、エチレングリコール、プロピレングリコール、ジヒドロターピネオール等のアルコール系溶剤;トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、イソプロピルベンゼン、アミルベンゼン、p-シメン、テトラリン及び石油系芳香族炭化水素混合物等の芳香族炭化水素系溶剤;テルピネオール、リナロール、ゲラニオール、シトロネロール等のテルペンアルコール;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノ-tert-ブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコ-ルモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル等のエーテルアルコール系溶剤;メチルイソブチルケトン等のケトン系溶剤;並びにエチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のエステル系溶剤、水等が挙げられる。これらの溶剤は、1種類のみを使用してもよいし、2種類以上を併用してもよい。
(H)その他
 さらに、本発明の熱伝導性組成物は、以下の物質のいずれか1種以上を含んでもよい。
・無機充填剤(例えば、ヒュームドシリカ、炭酸カルシウム、タルクなど)
・カップリング剤(例えば、γ-グリシドキシプロピルトリメトキシシランなどのシランカップリング剤、テトラオクチルビス(ジトリデシルホスファイト)チタネートなどのチタネートカップリング剤など)
・シランモノマー(例えば、トリス(3-(トリメトキシシリル)プロピル)イソシアヌレート)
・可塑剤(例えば、カルボキシル基末端ポリブタジエン‐アクリロニトリルなどのコポリマー、シリコーンゴム、シリコーンゴムパウダー、シリコーンレジンパウダー、アクリル樹脂パウダーなどの樹脂パウダー)
・難燃剤
・酸化防止剤
・消泡剤
 上記(A)銀粉、(B)銀微粒子、(C)脂肪酸銀、及び(D)アミンを加えて混合することによって、本発明の熱伝導性組成物を調製することができる。
 また、上記(E)銀レジネート、(F)樹脂、(G)溶剤、及び(H)その他の成分から選択された1種以上を任意成分としてさらに加えて混合することによって、本発明の熱伝導性組成物を調製することができる。
 なお、上記(A)~(H)成分を加える順番は任意であり、上記(A)~(H)成分を同時に加えて混合してもよいし、上記(A)~(H)成分を順番に加えて混合してもよい。
 次に、上記のようにして得られた熱伝導性組成物を用いて基板上に熱伝導体を形成する方法について説明する。
 上記(A)~(D)成分、及び、必要に応じて(E)~(H)成分を混合してペースト状の熱伝導性組成物を調製する。この調製した熱伝導性組成物を、基板上に塗布する。塗布方法は任意であり、例えば、ディスペンス、ジェットディスペンス、孔版印刷、スクリーン印刷、ピン転写、スタンピングなどの方法によって塗布することができる。
 基板上にペースト状の熱伝導性組成物を塗布した後、この熱伝導性組成物を100~400℃、より好ましくは150~350℃、さらに好ましくは200~300℃の温度範囲で加熱処理する。これにより、基板上に、熱伝導体からなる膜を形成することができる。
 このようにして得られた熱伝導体膜は、熱伝導率が非常に高いという特性を有している。その理由は明らかではないが、(C)脂肪酸銀、及び、(D)アミンの2つの成分がある種の錯体を形成し、この錯体が銀粉及び銀微粒子同士を互いに接近させることによって、加熱処理の際に銀粉及び銀微粒子同士の融着を促進していると考えられる。
 本発明の熱伝導性組成物は、各種電子部品の導電回路の形成、例えば、プリント基板における回路パターンの形成に用いることができる。
 また、本発明の熱伝導性組成物は、半導体チップをリードフレームに接着・固定するための接着剤(ダイボンディング剤)として用いることができる。
 本発明の熱伝導性組成物を加熱して得られる熱伝導体は、熱伝導率が非常に高い。本発明の熱伝導性組成物を用いることによって、例えばチップで発生した熱を容易に逃がすことのできる放熱性の高い電子部品を製造することができる。
 また、本発明の熱伝導性組成物は、チップの接着・固定以外にも、例えば、コンデンサ、抵抗、ダイオード、メモリ、演算素子(CPU)等の基板への接着・固定に用いることができる。
 以下、本発明の実施例について説明するが、本発明はこれらに限定されるものではない。
(A)銀粉
 銀粉は、以下の2種類(A1及びA2)の銀フレークを、1:1の割合で混合したものを使用した。
 (A1)
 組成「銀」、形状「球状」、粒度分布「D50:1.4μm、D10:0.7μm、D90:4.1μm」、タップ密度「5.1g/ml」
 (A2)
 組成「銀」、形状「フレーク状」、粒度分布「D50:4.2μm、D10:1.9μm、D90:7.9μm」、タップ密度「5.2g/ml」
(B)銀微粒子
 銀微粒子は、以下の方法で調製した。
 まず、10Lのガラス製反応容器に、3-メトキシプロピルアミン4.0kg(45.0mol)を入れた。この3-メトキシプロピルアミンに、反応温度を45℃以下に維持しつつ、酢酸銀5.0kg(30.0mol)を攪拌しながら添加した。酢酸銀を添加した直後において、酢酸銀は透明な溶液であり、3-メトキシプロピルアミンに溶解した。酢酸銀をさらに添加すると、酢酸銀は次第に濁り始めた。酢酸銀を全量添加すると、酢酸銀は濁った灰色の、粘性のある溶液となった。その溶液に、95重量%のギ酸0.7kg(15.0mol)をゆっくり滴下した。ギ酸を滴下した直後、溶液は激しく発熱した。その間、反応温度を30~45℃に維持した。濁った灰色の、粘性のある溶液は、茶色へ変化し、さらに黒色へ変化した。ギ酸を全量滴下した後、反応が終了した。反応によって得られた混合物を40℃で静置すると、その混合物は二層に分離した。上層は、黄色の透明な液体であった。下層は、沈殿した黒色の銀微粒子であった。上層の液体には、銀が含まれていなかった。上層の液体を、デカンテーションで除去した。メタノールを使用した分離によって、銀含有率90重量%の真球状の銀微粒子を得た。
 得られた銀微粒子は、平均粒子径130nm、結晶子径40nm、平均粒子径/結晶子径=3.25であった。平均粒子径は、走査型電子顕微鏡(SEM)で観察して画像解析により求めたヘイウッド径の平均値である。結晶子径は、マックサイエンス社製X線回折測定装置(M18XHF22)で測定した値であり、CuのKα線を線源とした粉末X線回折法による測定から、面指数(1,1,1)面ピークの半値幅を求め、Scherrerの式より計算した値である。
(C)脂肪酸銀
 脂肪酸銀は、酢酸銀を用いた。
(D)アミン
 アミンは、以下の2種類のアミンを用いた。
 (D1)メトキシプロピルアミン
 (D2)ジアミノシクロヘキサン
(E)銀レジネート
 銀レジネートは、t-ドデシルメルカプタンと酢酸銀との反応物を用いた。 
(F)樹脂
 樹脂は、ポリエステル粉末を用いた。
(G)溶剤
 溶剤は、以下の2種類(G1~G2)の溶剤を用いた。
 (G1)メタノール
 (G2)ノルマルパラフィン混合物(炭素数C14~C16の混合物)
 上記(A)~(G)成分を、以下の表1に示す割合で混合した。これにより、実施例1~3、及び、比較例1~3の熱伝導性組成物を調製した。なお、表1に示す各成分の配合割合は、全て重量%で示している。
Figure JPOXMLDOC01-appb-T000001
 実施例1~3及び比較例1~3の熱伝導性組成物からなる銀ペーストを、孔版印刷法によって、それぞれテフロン(登録商標)製の基板に塗布した。つぎに、基板を、200℃で、30分間、加熱処理した。加熱処理後、塗膜を、テフロン(登録商標)製の基板から剥がし取った。これにより、厚み300μmの熱伝導体からなる膜を得た。熱伝導体からなる膜の熱伝導率を、レーザーフラッシュ法でそれぞれ測定した。測定結果を、上記の表1に示す。
 なお、レーザーフラッシュ法とは、熱拡散率を測定する方法であり、サンプル裏面にキセノンフラッシュ光をパルス状に照射し、サンプル表面への熱の伝わり方を赤外線検出器で測定する方法である。熱伝導率は、熱拡散率×比熱×密度で算出することができる。
 表1に示す結果から分かる通り、実施例1~3の熱伝導性組成物を加熱処理して得られた熱伝導体は、熱伝導率が45.0[W/mK]以上であり、高い熱伝導率を有していた。
 この結果より、(A)銀粉、(B)銀微粒子、(C)脂肪酸銀、及び(D)アミンを含有する熱伝導性組成物は、(A)銀粉のみ、あるいは、(A)銀粉及び(B)銀微粒子のみを含有する熱伝導性組成物よりも、高い熱伝導率を有する熱伝導体が得られることが実証された。
 実施例1と実施例3の結果を比較すれば分かる通り、(E)銀レジネートを含む熱伝導性組成物は、(E)銀レジネートを含まない熱伝導性組成物よりも、高い熱伝導率を有する熱伝導体が得られることが分かった。
 実施例3と比較例2の結果を比較すれば分かる通り、(A)銀粉、(B)銀微粒子、(C)脂肪酸銀、(D)アミン、及び(E)銀レジネートを含有する熱伝導性組成物は、(A)銀粉、(B)銀微粒子、及び(E)銀レジネートのみを含有する熱伝導性組成物よりも、高い熱伝導率を有する熱伝導体が得られることが分かった。
 図1は、実施例1~3の熱伝導性組成物を加熱して得られた熱伝導体膜の断面の電子顕微鏡写真を示している。図2は、比較例1~3の熱伝導性組成物を加熱して得られた熱伝導体膜の断面の電子顕微鏡写真を示している。
 図1及び図2を比較すれば分かる通り、実施例1~3の熱伝導性組成物を加熱して得られた熱伝導体膜は、銀粉及び銀微粒子同士が互いに融着することで大きな熱伝導パスを形成しており、高い熱伝導率を有していた。これに対し、比較例1~3の熱伝導性組成物を加熱して得られた熱伝導体膜は、銀粉及び銀微粒子同士があまり融着しておらず、高い熱伝導率を有していなかった。

Claims (9)

  1.  以下の(A)~(D)成分を含有することを特徴とする熱伝導性組成物。
     (A)銀粉
     (B)銀微粒子
     (C)脂肪酸銀
     (D)アミン
  2.  前記(A)銀粉は、平均粒径が0.3μm~100μmである、請求項1に記載の熱伝導性組成物。
  3.  前記(B)銀微粒子は、
     1次粒子の平均粒子径が50~150nmであり、
     結晶子径が20~50nmであり、かつ、
     結晶子径に対する平均粒子径の比が1~7.5である、請求項1または請求項2に記載の熱伝導性組成物。
  4.  前記(B)銀微粒子は、カルボン酸の銀塩と脂肪族第一級アミンとを混合し、次いで還元剤を添加して、反応温度20~80℃で銀微粒子を析出させることにより製造されたものである、請求項1から請求項3のうちいずれか1項に記載の熱伝導性組成物。
  5.  さらに、(E)銀レジネートを含有する請求項1から請求項4のうちいずれか1項に記載の熱伝導性組成物。
  6.  さらに、(F)樹脂を含有する請求項1から請求項5のうちいずれか1項に記載の熱伝導性組成物。
  7.  請求項1から請求項6のうちいずれか1項に記載の熱伝導性組成物を、100~400℃の温度範囲で加熱処理して得られる熱伝導体。
  8.  請求項1から請求項6のうちいずれか1項に記載の熱伝導性組成物を含む接着剤。
  9.  請求項7に記載の熱伝導体を含む電子部品。
PCT/JP2012/058583 2011-03-31 2012-03-30 熱伝導性組成物及び熱伝導体 WO2012133767A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013507784A JP5872545B2 (ja) 2011-03-31 2012-03-30 熱伝導性組成物及び熱伝導体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-079043 2011-03-31
JP2011079043 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012133767A1 true WO2012133767A1 (ja) 2012-10-04

Family

ID=46931463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058583 WO2012133767A1 (ja) 2011-03-31 2012-03-30 熱伝導性組成物及び熱伝導体

Country Status (3)

Country Link
JP (1) JP5872545B2 (ja)
TW (1) TWI564381B (ja)
WO (1) WO2012133767A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013249390A (ja) * 2012-05-31 2013-12-12 Sumitomo Bakelite Co Ltd 熱硬化性樹脂組成物および半導体装置
JP2014194013A (ja) * 2013-03-01 2014-10-09 Kyocera Chemical Corp 熱硬化性樹脂組成物、半導体装置及び電気・電子部品
WO2015146314A1 (ja) * 2014-03-28 2015-10-01 富士フイルム株式会社 積層体及びその製造方法、並びに反射板、ミラーフィルム、抗菌コート、導電膜、熱伝導体
WO2016125737A1 (ja) * 2015-02-04 2016-08-11 ナミックス株式会社 熱伝導性ペースト及びその製造方法
JP2017160348A (ja) * 2016-03-10 2017-09-14 ナミックス株式会社 熱伝導性接着剤、ディスペンス用接着剤、スクリーン印刷用接着剤、および半導体装置
WO2017204238A1 (ja) * 2016-05-26 2017-11-30 株式会社大阪ソーダ 導電性接着剤
WO2018034234A1 (ja) * 2016-08-19 2018-02-22 住友ベークライト株式会社 ダイアタッチペーストおよび半導体装置
JP2018049735A (ja) * 2016-09-21 2018-03-29 矢崎総業株式会社 導電性ペースト及びそれを用いた配線板
WO2020004342A1 (ja) * 2018-06-25 2020-01-02 三菱マテリアル株式会社 銀ペースト及び接合体の製造方法
JP2020510740A (ja) * 2017-02-08 2020-04-09 ナショナル リサーチ カウンシル オブ カナダ 低粘度及び低処理温度を有する銀分子インク
JP2020164974A (ja) * 2018-06-25 2020-10-08 三菱マテリアル株式会社 銀ペースト及びその製造方法並びに接合体の製造方法
WO2021125336A1 (ja) * 2019-12-20 2021-06-24 三菱マテリアル株式会社 銀ペースト及びその製造方法並びに接合体の製造方法
WO2021125161A1 (ja) * 2019-12-19 2021-06-24 三菱マテリアル株式会社 銀ペースト及びその製造方法並びに接合体の製造方法
JP2021098890A (ja) * 2019-12-20 2021-07-01 三菱マテリアル株式会社 銀ペースト及びその製造方法並びに接合体の製造方法
JP2021098889A (ja) * 2019-12-19 2021-07-01 三菱マテリアル株式会社 銀ペースト及びその製造方法並びに接合体の製造方法
US11401446B2 (en) 2017-07-11 2022-08-02 Tanaka Kikinzoku Kogyo K.K. Electroconductive adhesive composition
WO2023190591A1 (ja) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 銀ペースト及び複合体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102424543B1 (ko) * 2017-01-31 2022-07-25 엠. 테크닉 가부시키가이샤 고결정 은 미립자의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150135A (ja) * 1997-11-17 1999-06-02 Nec Corp 熱伝導性が良好な導電性ペースト及び電子部品
JP2005197021A (ja) * 2004-01-05 2005-07-21 Murata Mfg Co Ltd 樹脂硬化型導電性ペーストおよびこれを用いたセラミック電子部品
JP2006037145A (ja) * 2004-07-23 2006-02-09 Toda Kogyo Corp Agナノ粒子及びその製造法、Agナノ粒子を含む分散体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4487143B2 (ja) * 2004-12-27 2010-06-23 ナミックス株式会社 銀微粒子及びその製造方法並びに導電ペースト及びその製造方法
KR101559605B1 (ko) * 2008-02-06 2015-10-13 나믹스 가부시끼가이샤 열 경화성 도전 페이스트, 및 그것을 이용하여 형성한 외부 전극을 갖는 적층 세라믹 전자 부품
JP4825286B2 (ja) * 2009-08-07 2011-11-30 ナミックス株式会社 多層配線板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150135A (ja) * 1997-11-17 1999-06-02 Nec Corp 熱伝導性が良好な導電性ペースト及び電子部品
JP2005197021A (ja) * 2004-01-05 2005-07-21 Murata Mfg Co Ltd 樹脂硬化型導電性ペーストおよびこれを用いたセラミック電子部品
JP2006037145A (ja) * 2004-07-23 2006-02-09 Toda Kogyo Corp Agナノ粒子及びその製造法、Agナノ粒子を含む分散体

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013249390A (ja) * 2012-05-31 2013-12-12 Sumitomo Bakelite Co Ltd 熱硬化性樹脂組成物および半導体装置
JP2014194013A (ja) * 2013-03-01 2014-10-09 Kyocera Chemical Corp 熱硬化性樹脂組成物、半導体装置及び電気・電子部品
WO2015146314A1 (ja) * 2014-03-28 2015-10-01 富士フイルム株式会社 積層体及びその製造方法、並びに反射板、ミラーフィルム、抗菌コート、導電膜、熱伝導体
JP2015191180A (ja) * 2014-03-28 2015-11-02 富士フイルム株式会社 積層体及びその製造方法、並びに反射板、ミラーフィルム、抗菌コート、導電膜、熱伝導体
KR102428149B1 (ko) 2015-02-04 2022-08-02 나믹스 가부시끼가이샤 열전도성 페이스트 및 그의 제조 방법
CN107112249A (zh) * 2015-02-04 2017-08-29 纳美仕有限公司 导热膏及其制备方法
KR20170113582A (ko) * 2015-02-04 2017-10-12 나믹스 가부시끼가이샤 열전도성 페이스트 및 그의 제조 방법
JPWO2016125737A1 (ja) * 2015-02-04 2017-11-16 ナミックス株式会社 熱伝導性ペースト及びその製造方法
EP3255657A4 (en) * 2015-02-04 2018-09-12 Namics Corporation Thermally conductive paste and manufacturing method therefor
US20180002576A1 (en) * 2015-02-04 2018-01-04 Namics Corporation Heat conductive paste and method for producing the same
US10544334B2 (en) 2015-02-04 2020-01-28 Namics Corporation Heat conductive paste and method for producing the same
WO2016125737A1 (ja) * 2015-02-04 2016-08-11 ナミックス株式会社 熱伝導性ペースト及びその製造方法
JP2017160348A (ja) * 2016-03-10 2017-09-14 ナミックス株式会社 熱伝導性接着剤、ディスペンス用接着剤、スクリーン印刷用接着剤、および半導体装置
EP3467062A4 (en) * 2016-05-26 2020-01-15 Osaka Soda Co., Ltd. ELECTRICALLY CONDUCTIVE ADHESIVE
JPWO2017204238A1 (ja) * 2016-05-26 2019-04-11 株式会社大阪ソーダ 導電性接着剤
WO2017204238A1 (ja) * 2016-05-26 2017-11-30 株式会社大阪ソーダ 導電性接着剤
CN109072012A (zh) * 2016-05-26 2018-12-21 株式会社大阪曹達 导电性粘接剂
JP6319530B1 (ja) * 2016-08-19 2018-05-09 住友ベークライト株式会社 ダイアタッチペーストおよび半導体装置
CN109643662A (zh) * 2016-08-19 2019-04-16 住友电木株式会社 芯片粘结膏和半导体装置
WO2018034234A1 (ja) * 2016-08-19 2018-02-22 住友ベークライト株式会社 ダイアタッチペーストおよび半導体装置
CN109643662B (zh) * 2016-08-19 2021-07-13 住友电木株式会社 芯片粘结膏和半导体装置
JP2018049735A (ja) * 2016-09-21 2018-03-29 矢崎総業株式会社 導電性ペースト及びそれを用いた配線板
WO2018055848A1 (ja) * 2016-09-21 2018-03-29 矢崎総業株式会社 導電性ペースト及びそれを用いた配線板
JP2020510740A (ja) * 2017-02-08 2020-04-09 ナショナル リサーチ カウンシル オブ カナダ 低粘度及び低処理温度を有する銀分子インク
US11746246B2 (en) 2017-02-08 2023-09-05 National Research Council Of Canada Silver molecular ink with low viscosity and low processing temperature
JP7242557B2 (ja) 2017-02-08 2023-03-20 ナショナル リサーチ カウンシル オブ カナダ 低粘度及び低処理温度を有する銀分子インク
US11401446B2 (en) 2017-07-11 2022-08-02 Tanaka Kikinzoku Kogyo K.K. Electroconductive adhesive composition
WO2020004342A1 (ja) * 2018-06-25 2020-01-02 三菱マテリアル株式会社 銀ペースト及び接合体の製造方法
JP2020164974A (ja) * 2018-06-25 2020-10-08 三菱マテリアル株式会社 銀ペースト及びその製造方法並びに接合体の製造方法
CN111801183A (zh) * 2018-06-25 2020-10-20 三菱综合材料株式会社 银膏及接合体的制造方法
WO2021125161A1 (ja) * 2019-12-19 2021-06-24 三菱マテリアル株式会社 銀ペースト及びその製造方法並びに接合体の製造方法
CN114829042A (zh) * 2019-12-19 2022-07-29 三菱综合材料株式会社 银膏及其制造方法以及接合体的制造方法
JP2021098889A (ja) * 2019-12-19 2021-07-01 三菱マテリアル株式会社 銀ペースト及びその製造方法並びに接合体の製造方法
CN114829042B (zh) * 2019-12-19 2023-08-04 三菱综合材料株式会社 银膏及其制造方法以及接合体的制造方法
EP4029627A4 (en) * 2019-12-19 2023-11-08 Mitsubishi Materials Corporation SILVER PASTE, METHOD FOR PRODUCING SAME AND METHOD FOR PRODUCING AN ARTICULATE ARTICLE
CN114845827A (zh) * 2019-12-20 2022-08-02 三菱综合材料株式会社 银膏及其制造方法以及接合体的制造方法
JP2021098890A (ja) * 2019-12-20 2021-07-01 三菱マテリアル株式会社 銀ペースト及びその製造方法並びに接合体の製造方法
EP4059634A4 (en) * 2019-12-20 2023-08-23 Mitsubishi Materials Corporation SILVER PASTE AND METHOD FOR PRODUCTION THEREOF AND METHOD FOR PRODUCTION OF SOLDERED ARTICLE
WO2021125336A1 (ja) * 2019-12-20 2021-06-24 三菱マテリアル株式会社 銀ペースト及びその製造方法並びに接合体の製造方法
CN114845827B (zh) * 2019-12-20 2023-09-15 三菱综合材料株式会社 银膏及其制造方法以及接合体的制造方法
WO2023190591A1 (ja) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 銀ペースト及び複合体

Also Published As

Publication number Publication date
TW201247859A (en) 2012-12-01
JP5872545B2 (ja) 2016-03-01
JPWO2012133767A1 (ja) 2014-07-28
TWI564381B (zh) 2017-01-01

Similar Documents

Publication Publication Date Title
JP5872545B2 (ja) 熱伝導性組成物及び熱伝導体の製造方法
US10071426B2 (en) Coated metal fine particle and manufacturing method thereof
KR100895192B1 (ko) 도전배선 형성용 페이스트에 사용되는 유기 은 착화합물
JP6191606B2 (ja) 銀ナノ微粒子、その製造方法、銀ナノ微粒子分散液及び銀要素形成基材
WO2011048876A1 (ja) 金属ナノ粒子含有複合体、その分散液、及びこれらの製造方法
TW201013704A (en) Conductive inks and pastes
WO2014084275A1 (ja) 導電ペースト及びその製造方法
WO2015060245A1 (ja) 銀ペースト及びそれを用いた半導体装置、並びに銀ペーストの製造方法
WO2012046666A1 (ja) 導電性銅粒子および導電性銅粒子の製造方法、導電体形成用組成物、ならびに導電体付き基材
TW201405581A (zh) 導電性組成物
TW201437299A (zh) 導電膜形成用組成物及使用其的導電膜的製造方法
JP4935175B2 (ja) 金属微粒子分散体およびその製造方法
JP6277751B2 (ja) 銅粒子分散ペースト、及び導電性基板の製造方法
JP2006032165A (ja) 導電性金属粒子とそれを用いた導電性樹脂組成物及び導電性接着剤
JP6036185B2 (ja) 高純度の金属ナノ粒子分散体ならびにその製造方法
JP2016110691A (ja) 導電性基板の製造方法、及び導電性基板
JP6414085B2 (ja) 金属ナノ微粒子の製造方法
JP2012150920A (ja) 導電性組成物及び導電膜
JP2013112807A (ja) 導電性インク組成物、及び導電性パターンの製造方法
JP4491776B2 (ja) 導電性ペースト等の製造方法
WO2018159115A1 (ja) 半導体装置の製造方法
WO2013141174A1 (ja) 導電インク、導体付き基材及び導体付き基材の製造方法
JP6237098B2 (ja) 分散剤、導電性基板用金属粒子分散体、及び導電性基板の製造方法
JP7031187B2 (ja) 導体及びその形成方法、並びに構造体及びその製造方法
JP6404523B1 (ja) 銀ナノ粒子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507784

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765030

Country of ref document: EP

Kind code of ref document: A1