WO2012046666A1 - 導電性銅粒子および導電性銅粒子の製造方法、導電体形成用組成物、ならびに導電体付き基材 - Google Patents

導電性銅粒子および導電性銅粒子の製造方法、導電体形成用組成物、ならびに導電体付き基材 Download PDF

Info

Publication number
WO2012046666A1
WO2012046666A1 PCT/JP2011/072681 JP2011072681W WO2012046666A1 WO 2012046666 A1 WO2012046666 A1 WO 2012046666A1 JP 2011072681 W JP2011072681 W JP 2011072681W WO 2012046666 A1 WO2012046666 A1 WO 2012046666A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
particles
copper particles
conductive copper
conductive
Prior art date
Application number
PCT/JP2011/072681
Other languages
English (en)
French (fr)
Inventor
平社 英之
阿部 啓介
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201180048719.7A priority Critical patent/CN103153503B/zh
Priority to KR1020137010932A priority patent/KR101796339B1/ko
Priority to JP2012537684A priority patent/JP5720693B2/ja
Publication of WO2012046666A1 publication Critical patent/WO2012046666A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form

Definitions

  • the present invention relates to conductive copper particles, a method for producing conductive copper particles, a composition for forming a conductor, and a substrate with a conductor.
  • a method of applying a silver paste containing silver particles in a desired wiring pattern on a substrate and curing it is available.
  • the silver conductor film tends to cause a short circuit due to ion migration.
  • it has been studied to form a conductor film using a copper paste instead of a silver paste.
  • copper particles are easily oxidized, and an oxide film is easily formed on the surface. Therefore, the conductor film using copper particles tends to have a high volume resistivity, and its change with time is large.
  • the following methods (1) to (3) are known as methods for producing conductive copper particles for forming a conductor film having a low volume resistivity.
  • (1) A method of treating conductive powder made of copper or a copper alloy with an aqueous solution containing an acid, a reducing agent, and an alkali metal salt of a fatty acid having 8 or more carbon atoms (Patent Document 1).
  • (2) A method in which hypophosphorous acid is added to an aqueous copper salt solution to precipitate copper hydride fine particles, and the copper hydride fine particles are thermally decomposed to obtain copper fine particles (Patent Document 2).
  • the conductor film using the copper particles produced by the method (1) has excellent conductivity immediately after the film formation, the volume resistivity is greatly increased by storage in the air at room temperature. It cannot be used for wiring.
  • the method (2) particles obtained by agglomerating copper hydride fine particles can be obtained.
  • the conductivity is insufficient, and room temperature, in air Volume resistivity increases with storage.
  • the conductor film using the copper particles produced by the method (3) has a large volume resistivity even immediately after the film formation, and the volume resistivity increases with time, so it cannot be used for wiring of electronic equipment.
  • the present invention provides a conductive copper particle capable of forming a conductor film having a low volume resistivity and a small change with time, a method for producing the conductive copper particle, a composition for forming a conductor containing the conductive copper particle, and It aims at providing the base material with a conductor which has a conductor film formed with the said composition for conductor formation.
  • the conductive copper particles of the present invention contain 50 to 1000 ppm by mass of chlorine atoms with respect to the total mass of the particles, and the chlorine atoms are present in a water-insoluble form.
  • the conductive copper particles of the present invention preferably have an average particle size of 0.01 to 20 ⁇ m.
  • the composition for forming a conductor of the present invention includes the conductive copper particles of the present invention and a solvent. Moreover, it is preferable that the composition for conductor formation of this invention contains a resin binder.
  • the base material with a conductor of the present invention has a base material and a conductor film formed on the base material by the conductor forming composition of the present invention.
  • the method for producing conductive copper particles of the present invention includes a step of reducing at least one of copper particles and copper (II) ions in a reaction system containing chloride ions, having a pH of 3 or less and a redox potential of 220 mV or less. It is the method which has.
  • the conductive copper particles of the present invention are used, a conductor film having a low volume resistivity and a small change with time can be formed. Moreover, according to the manufacturing method of the electroconductive copper particle of this invention, the electroconductive copper particle which can form a conductor film with a low volume resistivity and a small time-dependent change is obtained. Moreover, the composition for forming a conductor of the present invention includes the conductive copper particles of the present invention, and can form a conductor film having a low volume resistivity and a small change with time. Moreover, the base material with a conductor of this invention has a low volume resistivity of a conductor film, and its temporal change is small.
  • ⁇ Conductive copper particles> By using the conductive copper particles of the present invention, a conductor film having a low volume resistivity and a small increase in volume resistivity over time can be formed. The reason why the conductor film having the above effect can be formed is not necessarily clear, but is estimated as follows.
  • the conductive copper particles of the present invention contain chlorine atoms that exist in a water-insoluble form.
  • a chlorine atom is present in a water-insoluble form means that a chloride ion concentration measured by a measurement method described later is 10 mass ppm or less.
  • copper (II) ions divalent copper ions
  • the copper (I) ions divalent copper ions
  • copper (I) chloride has extremely low solubility in water and low affinity with water, so that deterioration due to moisture in the air is small. Therefore, it is considered that an excellent effect that an increase in volume resistivity can be suppressed for a long time even after a substrate with a conductor is obtained.
  • the conductive copper particles of the present invention contain chlorine atoms in a form with extremely low solubility in water.
  • copper chloride (I) since it is difficult to identify copper chloride (I) in the conductive copper particles, it is defined as water-insoluble because the chloride ion concentration measured by the measurement method described later is 10 mass ppm or less. .
  • the content of chlorine atoms in the conductive copper particles is 50 to 1000 ppm by mass, preferably 80 to 300 ppm by mass, based on the total mass of the conductive copper particles. If content of a chlorine atom is more than the said lower limit, progress of the surface oxidation of a copper particle can be suppressed. If content of a chlorine atom is below the said upper limit, a conductor film with small volume resistivity can be formed. The content of chlorine atoms in the conductive copper particles is measured by fluorescent X-ray analysis.
  • the distilled water to be used is distilled water whose dissolved oxygen concentration is adjusted to 1 mass ppm or less.
  • the dissolved oxygen concentration is 1 mass ppm or less because copper (I) chloride (monovalent copper) present in the conductive copper particles is affected by oxidation by dissolved oxygen. This is to prevent the change to copper.
  • the amount of surface oxygen represented by the ratio of the surface oxygen concentration (unit: atom%) to the surface copper concentration (unit: atom%) of the conductive copper particles is preferably 0.5 or less, and more preferably 0.3 or less. If the amount of surface oxygen is less than or equal to the upper limit value, the contact resistance between the conductive copper particles becomes smaller, and the conductivity of the conductor film is improved.
  • the surface oxygen concentration and the surface copper concentration of the conductive copper particles are determined by X-ray photoelectron spectroscopy. Measurements are made over a range from the particle surface to the center to a depth of about 3 nm. If the measurement is performed in this range, the state of the particle surface can be sufficiently grasped.
  • the form of the conductive copper particles of the present invention is not particularly limited.
  • Examples of the conductive copper particles of the present invention include the following conductive copper particles (A) to (E).
  • the conductive copper particles (B) and the conductive copper particles (D) are conductive copper particles composed of a combination of primary particles and secondary particles, and the conductive copper particles (A), (C) and (E) are , Conductive copper particles composed of only primary particles or only secondary particles.
  • the copper hydride fine particles When the copper hydride fine particles are heated, the copper hydride is converted into metallic copper to become copper fine particles. That is, the conductive copper particles (B) become conductive copper particles (D) by heating. Moreover, electroconductive copper particle (C) turns into electroconductive copper particle (E) by heating.
  • the conductive copper particles of the present invention preferably have a surface coated with an organic material for the purpose of preventing oxidation and improving the fluidity of the conductor-forming composition.
  • the “coating” includes not only the case where the organic material covers the entire surface of the conductive copper particles, but also the case where the organic material partially covers the surface. Furthermore, it includes not only the case where the organic substance is bonded to the surface of the conductive copper particles but also the case where it is coordinated. Examples of the organic substance include carboxylic acid, amine, imidazole compound, and triazole compound.
  • Examples of the carboxylic acid include oleic acid, stearic acid, myristic acid, dodecanoic acid, decanoic acid, octylic acid, octanoic acid, hexanoic acid, benzoic acid, salicylic acid, and abietic acid.
  • Examples of the amine include oleylamine, stearylamine, myristylamine, dodecylamine, decylamine, octylamine, hexylamine, and aniline.
  • carboxylic acid is preferable from the viewpoint of wettability between the conductive copper particles and the resin, oleic acid, salicylic acid, Abietic acid is more preferred.
  • the wettability is the affinity between the particle surface and the resin by changing the interfacial energy.
  • the average particle diameter of the conductive copper particles of the present invention is preferably 0.01 to 20 ⁇ m, and may be appropriately adjusted within this range according to the shape of the conductive copper particles.
  • the average particle diameter is more preferably 1 to 10 ⁇ m.
  • the average particle diameter is preferably 0.01 to 1 ⁇ m, particularly preferably 0.02 to 0.4 ⁇ m. If the average particle diameter of electroconductive copper particle is more than the said lower limit, the flow characteristic of the composition for conductor formation containing this electroconductive copper particle will become favorable. If the average particle diameter of the conductive copper particles is not more than the above upper limit value, it becomes easy to produce fine wiring.
  • the average particle diameter in the present specification can be determined as follows depending on the shape of the conductive copper particles.
  • SEM scanning electron microscope
  • Secondary particles are calculated by measuring the particle size of 100 particles randomly selected from a transmission electron microscope (hereinafter referred to as “TEM”) image and averaging the particle sizes.
  • the average value of the major and minor diameters of the copper particles is taken as the particle size.
  • the particles are secondary particles, the average value of the long diameter of the secondary particles and the short diameter of the secondary particles is taken as the particle diameter.
  • electroconductive copper particle (B) the electroconductive copper particle (B) whole containing the copper particle which is a primary particle, and the copper hydride microparticle which is the secondary particle adhering to this copper particle is carried out by SEM. Observe and the average value of the major axis and minor axis including the secondary particles is taken as the particle diameter.
  • conductive copper particles (D) the entire conductive copper particles (D) including copper particles as primary particles and copper fine particles as secondary particles attached to the copper particles are observed by SEM. The average value of the major axis and minor axis including the secondary particles is taken as the particle diameter.
  • the conductive copper particles of the present invention have a step of reducing at least one of copper particles and copper (II) ions in a reaction system containing chloride ions, having a pH of 3 or less and a redox potential of 220 mV or less. It can be manufactured by a method. Hereinafter, a specific manufacturing method is demonstrated for every kind of form of the electroconductive copper particle to manufacture.
  • Method for producing conductive copper particles (A) examples include a method having the following steps ( ⁇ -1) and ( ⁇ -2).
  • ⁇ -1) Copper particles that are primary particles (hereinafter referred to as “copper particles (a1)”) are dispersed in a dispersion medium, contain chloride ions, have a pH of 3 or less, and a redox potential of 220 mV or less.
  • reaction system ( ⁇ ) A step of separating the conductive copper particles (A) from the reaction system ( ⁇ ).
  • Step ( ⁇ -1) Copper particles (a1) are dispersed in a dispersion medium, a compound that dissolves in the dispersion medium to generate chloride ions is added, the pH is 3 or less, a reducing agent is added, and a reaction system ( ⁇ ) is formed. Then, the copper particles (a1) are reduced. Here, during the reduction reaction, the redox potential of the reaction system ( ⁇ ) is adjusted to be 220 mV or less. The surface of the copper particles (a1) is usually oxidized to form an oxide film made of cuprous oxide. In the reaction system ( ⁇ ) of the step ( ⁇ -1), the cuprous oxide of the oxide film of the copper particles (a1) is reduced.
  • a copper particle (a1) is disperse
  • the redox potential of the reaction system ( ⁇ ) is adjusted to be 220 mV or less.
  • Examples of the copper particles (a1) include known metal copper particles generally used in a conductor forming composition called a copper paste.
  • the metallic copper particles are primary particles.
  • the particle shape of the copper particles (a1) may be spherical, or may be a plate shape, a scale shape, or the like.
  • copper particles Since the surface of copper particles is easily oxidized, generally, commercially available copper particles are often surface-treated with a long-chain carboxylic acid such as stearic acid, oleic acid or myristic acid for the purpose of preventing surface oxidation. Copper particles that have been surface-treated with a long-chain carboxylic acid have a hydrophobic surface, and therefore tend to aggregate in a highly polar dispersion medium such as water described below. Therefore, when using copper particles that have been surface-treated with a long-chain carboxylic acid, it is preferable to remove the long-chain carboxylic acid on the surface before the step ( ⁇ -1). The removal of the long-chain carboxylic acid on the surface can be carried out by treating the copper particles with a degreasing agent or heat-treating in an alkaline aqueous solution.
  • a degreasing agent or heat-treating in an alkaline aqueous solution.
  • the medium of the copper particles (a1) is a highly polar medium such as water or a mixed medium of water and alcohol.
  • the copper particles (a1) are preferably copper particles pretreated with a dispersant.
  • a dispersing agent is carry
  • the dispersant various water-soluble compounds having chemical adsorption properties to copper particles can be used.
  • the water-soluble compound include short-chain aliphatic carboxylic acids, water-soluble polymer compounds, chelating agents, and the like.
  • the short-chain aliphatic carboxylic acids aliphatic monocarboxylic acids such as aliphatic monocarboxylic acids having 6 or less carbon atoms, aliphatic hydroxy monocarboxylic acids and aliphatic amino acids; aliphatic polycarboxylic acids having 10 or less carbon atoms, Aliphatic polycarboxylic acids such as aliphatic hydroxypolycarboxylic acids are more preferred.
  • water-soluble polymer compound examples include polyvinyl alcohol, polyacrylic acid, polyvinyl pyrrolidone, hydroxypropyl cellulose, propyl cellulose, and ethyl cellulose.
  • chelating agent examples include ethylenediaminetetraacetic acid, iminodiacetic acid and the like.
  • short-chain aliphatic carboxylic acids are preferable, and aliphatic polycarboxylic acids having 8 or less carbon atoms such as glycine, alanine, citric acid, citric anhydride, malic acid, maleic acid, malonic acid, and the like are more preferable.
  • Particularly preferred are aliphatic dicarboxylic acids such as malic acid and maleic acid, or tricarboxylic acids such as citric acid.
  • the pretreatment can be carried out by dissolving the dispersant in a solvent such as water and adding the copper particles to this solution and stirring. Thereby, a dispersing agent couple
  • the pretreatment is preferably performed by replacing the inside of the treatment container with an inert gas from the viewpoint of suppressing the oxidation of the surface of the copper particles. Nitrogen gas, argon gas, etc. can be used as the inert gas. After the pretreatment, the solvent is removed and, if necessary, washing with water or the like is performed to obtain copper particles whose surface has been hydrophilized by the pretreatment.
  • the pretreatment can be performed even under heating. By performing the pretreatment under heating, the processing speed is improved.
  • the heating temperature is preferably 50 ° C. or higher and not higher than the boiling point of a solvent such as water (or lower boiling point when a low-boiling dispersant is used).
  • the heating time is preferably 5 minutes or more. Moreover, since heating for a long time is not economical, the heating time is preferably 3 hours or less.
  • the amount of the dispersant used for the pretreatment is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the copper particles before the pretreatment.
  • the average particle diameter (average primary particle diameter) of the copper particles (a1) is preferably 1 to 20 ⁇ m. This makes it easy to obtain conductive copper particles (A) having an average particle size (average primary particle size) of 1 to 20 ⁇ m.
  • the concentration of the copper particles (a1) in the reaction system ( ⁇ ) (100% by mass) is preferably 0.1 to 50% by mass. If the density
  • water or a medium containing water as a main component and containing alcohols such as methanol, ethanol, 2-propanol and ethylene glycol can be used, and water is particularly preferable.
  • water as a main component means that water is 70 mass% or more in 100 mass% of the dispersion medium.
  • the concentration of chloride ions in the reaction system ( ⁇ ) is preferably 5 to 100 ppm by mass and more preferably 10 to 50 ppm by mass with respect to the total mass of the reaction system ( ⁇ ). If the concentration of chloride ions is equal to or higher than the lower limit, an appropriate amount of chloride ions is present on the surface of the copper particles (a1) in the course of the reduction reaction. It is easy to obtain conductive copper particles (A) having a low resistivity. Moreover, if the density
  • the concentration of chloride ions can be adjusted by adjusting the amount of compound that dissolves in the dispersion medium of copper particles (a1) to produce chloride ions.
  • a compound that generates chloride ions hydrochloric acid, sodium chloride, potassium chloride, copper (II) chloride, and the like can be used as appropriate.
  • the pH of the reaction system ( ⁇ ) is 3 or less, preferably 0.5 to 3, and more preferably 0.5 to 2.
  • the pH of the reaction system ( ⁇ ) is 3 or less, the oxide film on the surface of the copper particles (a1) is smoothly reduced.
  • it is known that there is a stable region of copper (I) chloride at a specific oxidation-reduction potential in a low pH region of pH 3 or less Hiroaki Nakano et al., Journal of MMIJ, No. 123 (2007)). 33-38).
  • step ( ⁇ -1) when the oxide film is reduced, copper (I) chloride is formed on the surface of the copper particles (a1), and as a result, a conductive material containing chlorine atoms in a water-insoluble form. It is considered that the conductive copper particles (A) are obtained. Moreover, if pH is 0.5 or more, it will be easy to suppress that a copper (II) ion elutes excessively from a copper particle, and it will be easy to implement the surface modification of a copper particle (a1) smoothly.
  • the pH of the reaction system ( ⁇ ) is adjusted with a pH adjuster.
  • An acid can be used as the pH adjuster.
  • carboxylic acids that are soluble in water or alcohols such as formic acid, citric acid, maleic acid, malonic acid, acetic acid, propionic acid and the like are preferable.
  • the carboxylic acid may be adsorbed on the surface of the copper particles and may remain on the surface of the conductive copper particles (A) after the reduction treatment. The remaining carboxylic acid can be expected to protect the surface of the conductive copper particles (A) and suppress the oxidation.
  • formic acid is particularly preferable among the carboxylic acids.
  • formic acid is a compound having an aldehyde structure (—CHO), it has reducibility. Therefore, the formic acid remains on the surface of the conductive copper particles (A) after the reduction treatment, thereby increasing the effect of suppressing the oxidation of the surface of the conductive copper particles (A). As a result, the conductive copper particles It becomes easy to suppress the increase in volume resistivity of the conductor film using (A).
  • an acid for the pH adjuster sulfuric acid, nitric acid, hydrochloric acid, or the like may be used in addition to the carboxylic acid soluble in water or alcohols.
  • Hydrochloric acid can adjust the concentration of chloride ions and the pH at the same time.
  • the dispersion liquid in which the copper particles (a1) are dispersed in the dispersion medium and a compound (such as hydrochloric acid) that generates chloride ions has a pH of 3 or less, the dispersion liquid can be used for the reduction treatment as it is.
  • pH can be adjusted using a base as a pH adjuster.
  • the redox potential (ORP) of the reaction system ( ⁇ ) is 220 mV or less, preferably 150 to 220 mV, and particularly preferably 180 to 220 mV. If ORP is 220 mV or less, the reduction effect of the oxide film on the surface of the copper particles (a1) is increased, and the surface modification proceeds sufficiently. If the ORP exceeds 220 mV, the surface modification becomes insufficient, and not only the initial volume resistivity is large, but also the change in volume resistivity with time is increased. In this specification, ORP is obtained as a potential difference with respect to the potential of a standard hydrogen electrode (SHE).
  • the ORP of the reaction system ( ⁇ ) can be adjusted by the type of reducing agent used. Further, it can be adjusted to some extent by a reducing acid such as formic acid.
  • Examples of the reducing agent include hypophosphorous acid compounds, amine borane compounds, hydrides, and the like.
  • hypophosphorous acid compounds include hypophosphorous acid and hypophosphite.
  • Examples of amine borane compounds include dimethylamine borane.
  • Examples of the hydride include borohydride salts.
  • hypophosphorous acid, hypophosphite, dimethylamine borane, or borohydride is preferable, and hypophosphorous acid or hypophosphite is particularly preferable.
  • the amount of the reducing agent used is preferably 1 mol or more, more preferably 1.2 to 10 mol per mol of the entire copper particles (a1).
  • the amount of the reducing agent used is at least 1 mol per mole of the entire copper particles (a1), the reducing agent becomes excessively large with respect to the copper on the surface of the copper particles (a1), and the reduction proceeds easily.
  • the usage-amount of a reducing agent is 10 times mole or less with respect to the whole copper particle (a1), it is economically advantageous, and since the quantity of a reducing agent decomposition product decreases, the removal becomes easy.
  • the reduction reaction may be started by dispersing copper particles (a1) in a dispersion medium and adding a reducing agent to a dispersion in which the concentration and pH of chloride ions are adjusted.
  • the copper particles (a1) may be dispersed in the dispersion medium adjusted and added with the reducing agent.
  • the reaction temperature for the reduction reaction is preferably 5 to 60 ° C, more preferably 35 to 50 ° C. If reaction temperature is below the said lower limit, a reductive reaction will advance easily. If reaction temperature is below the said upper limit, the influence of the density
  • the obtained conductive copper particles (A) are separated from the reaction system ( ⁇ ), washed with water or the like as necessary, and then dried to obtain conductive copper particle (A) powder.
  • By-products such as reducing agent decomposition products are soluble in the dispersion medium, and can be separated from the conductive copper particles (A) by a method such as filtration or centrifugation.
  • Method for producing conductive copper particles (B) examples include a method having the following steps ( ⁇ -1) to ( ⁇ -3).
  • ( ⁇ -1) Copper (II) ions are reduced in a reaction system (hereinafter referred to as “reaction system ( ⁇ )”) containing copper (II) ions and chloride ions, having a pH of 3 or less and an ORP of 220 mV or less.
  • reaction system ( ⁇ ) a reaction system containing copper (II) ions and chloride ions, having a pH of 3 or less and an ORP of 220 mV or less.
  • a step of generating secondary particles of copper hydride fine particles having an average particle diameter of 20 to 350 nm hereinafter referred to as “copper hydride fine particles (b1)”).
  • Copper particles (b2) Copper particles that are primary particles (hereinafter referred to as “copper particles (b2)”) in the reaction system ( ⁇ ) before, during or after the formation of the copper hydride fine particles (b1).
  • ⁇ -3) A step of separating the conductive copper particles (B) from the reaction system ( ⁇ ).
  • Step ( ⁇ -1) A water-soluble copper compound is dissolved in a solvent, a compound that dissolves in the solvent to produce chloride ions is added, a pH is set to 3 or less, a reducing agent having a redox potential of 220 mV or less is added, and a reaction system is added. ( ⁇ ) is formed. In the reaction system ( ⁇ ), copper (II) ions are reduced by the reducing agent, and copper hydride fine particles (b1) that are secondary particles containing chlorine atoms in a water-insoluble form are generated.
  • the copper hydride fine particles (b1) are preferably aggregated secondary particles of 20 to 350 nm.
  • water-soluble copper compounds copper sulfate (II), copper nitrate (II), copper formate (II), copper acetate (II), copper chloride (II), copper bromide (II), copper iodide (I) Etc.
  • the solvent is not particularly limited as long as it dissolves the water-soluble copper compound and is inert to the reducing agent described later. Water or a mixed solvent of water and alcohols (ethanol, isopropyl alcohol, etc.) Water is particularly preferred.
  • the concentration of the water-soluble copper compound in the reaction system ( ⁇ ) (100% by mass) is preferably 0.1 to 30% by mass.
  • concentration of a water-soluble copper compound is 0.1 mass% or more, the usage-amount of a solvent can be suppressed and the production
  • concentration of the water-soluble copper compound is 30% by mass or less, the yield of the copper hydride fine particles (b1) is improved.
  • the concentration of chloride ions in the reaction system ( ⁇ ) is preferably 5 to 100 ppm by mass with respect to the total mass of the reaction system ( ⁇ ) for the same reason as in the reaction system ( ⁇ ). ppm is more preferred.
  • the concentration of chloride ions can be adjusted by using a compound that dissolves in a dispersion medium to generate chloride ions.
  • a compound that generates chloride ions hydrochloric acid, sodium chloride, potassium chloride, copper (II) chloride, and the like can be used as appropriate.
  • the pH of the reaction system ( ⁇ ) is 3 or less.
  • copper (II) ions and hydrogen ions in the reaction system ( ⁇ ) are reduced by the reducing agent, and the copper hydride fine particles (b1) are sufficiently generated.
  • grains (b1) which contain a chlorine atom with a water-insoluble form by producing
  • the pH of the reaction system ( ⁇ ) is more preferably 0.5 to 2 from the viewpoint of the production efficiency of the copper hydride fine particles (b1).
  • Examples of the acid that adjusts the pH of the reaction system ( ⁇ ) include the same acids as mentioned in the description of the production of the conductive copper particles (A), and oxidation of the surface of the obtained conductive copper particles (B).
  • Formic acid is particularly preferable because the effect of suppressing the increase in volume and the increase in volume resistivity of the conductor film can be easily suppressed.
  • the redox potential (ORP) of the reaction system ( ⁇ ) is preferably 220 mV or less and 150 to 220 mV. If ORP is 220 mV or less, the reduction effect of copper (II) ions is increased, and copper hydride fine particles (b1) are sufficiently generated. If the ORP exceeds 220 mV, the surface modification becomes insufficient, and not only the initial volume resistivity is large, but also the change in volume resistivity with time increases.
  • Examples of the reducing agent are the same as those described in the description of the production of the conductive copper particles (A), and hypophosphorous acid, hypophosphite, dimethylamine borane, or borohydride is preferable. Hypophosphorous acid or hypophosphite is particularly preferred.
  • the amount of the reducing agent added is preferably 1.2 to 10 times the molar amount of the water-soluble copper compound to be used. If the addition amount of the reducing agent is 1.2 times mol or more with respect to the water-soluble copper compound, the reduction reaction proceeds smoothly. If the addition amount of the reducing agent is 10 times mol or less with respect to the water-soluble copper compound, the amount of impurities (sodium, boron, phosphorus, etc.) contained in the copper hydride fine particles (b2) can be easily suppressed.
  • the reaction system ( ⁇ ) includes a reducing agent solution in which a reducing agent is dissolved in a solvent such as water, and a solution in which a water-soluble copper compound is dissolved in a solvent such as water (hereinafter referred to as “water-soluble copper compound solution”). It may be formed by mixing, or may be formed by adding a solid state reducing agent such as powder to the water-soluble copper compound solution.
  • the reaction system ( ⁇ ) means a system in which copper hydride fine particles are produced. Specifically, a reducing agent is added to a water-soluble copper compound solution containing copper (II) ions and chloride ions and having a pH of 3 or less. Immediately after the addition, a system in which the formation reaction of the copper hydride fine particles (b1) has not yet progressed, a system in which the formation reaction of the copper hydride fine particles (b1) is in progress, and the copper hydride fine particles (b1) It means a system in which the production reaction is completed and the produced copper hydride fine particles (b1) are dispersed.
  • the solvent of the water-soluble copper compound solution, the water-soluble copper compound dissolved in the solvent (substantially ionized, and present as a copper (II) ion, a counter anion, etc.) ),
  • a compound that produces chloride ions (substantially ionized and exists as chloride ions and paired cations, etc.), ions and residues after copper hydride fine particles (b1) are produced,
  • the produced copper hydride fine particles (b1) are isolated and newly dispersed in a dispersion medium to form a dispersion, the copper hydride fine particles (b1) in the dispersion are present in the reaction system ( ⁇ ). Not the copper hydride fine particles (b1).
  • the reaction temperature of the reaction system ( ⁇ ) is preferably 60 ° C. or less, more preferably 5 to 60 ° C., and particularly preferably 20 to 50 ° C.
  • copper hydride has a property of being decomposed by heating, if the reaction temperature of the reaction system ( ⁇ ) is equal to or lower than the upper limit value, it is easy to suppress decomposition of the copper hydride fine particles (b2). When the reaction temperature of the reaction system ( ⁇ ) is equal to or higher than the lower limit, the reduction reaction easily proceeds.
  • Step ( ⁇ -2) Copper hydride in which copper particles (b2) as primary particles are added to reaction system ( ⁇ ) formed in step ( ⁇ -1), and copper hydride fine particles (b1) are attached to the surfaces of copper particles (b2) Composite particles (conductive copper particles (B)) are generated.
  • the copper particles (b2) added in the step ( ⁇ -2) are reduced in surface oxide film in the reaction system ( ⁇ ), and contain chlorine atoms in a water-insoluble form. Then, copper hydride particles (b1) containing water-insoluble chlorine atoms adhere.
  • the addition time of the copper particles (b2) to the reaction system ( ⁇ ) is before the production of the copper hydride fine particles (b1), during the production of the copper hydride fine particles (b1), or after the production of the copper hydride fine particles (b1). It is. Adding the copper particles (b2) to the reaction system ( ⁇ ) before the formation of the copper hydride fine particles (b1) means that the copper particles (b2) already exist when the reaction system ( ⁇ ) is formed. Means. For example, there may be mentioned a case where a reaction system ( ⁇ ) is formed by adding a reducing agent after adding copper particles (b2) to a water-soluble copper compound solution.
  • adding the copper particles (b2) to the reaction system ( ⁇ ) after the production of the copper hydride fine particles (b1) means that new production of the copper hydride fine particles (b1) does not occur and has already been produced. This means that the copper particles (b2) are added to the reaction system ( ⁇ ) in a state where no further growth of the copper hydride fine particles (b1) is occurring. For example, the case where the copper particles (b2) are added after the copper ions and the reducing agent in the reaction system ( ⁇ ) are consumed and the production reaction of the copper hydride fine particles (b1) does not occur.
  • the addition of the copper particles (b2) to the reaction system ( ⁇ ) is easy to obtain conductive copper particles (B) having a low volume resistivity, or before the formation of the copper hydride fine particles (b1) or the copper hydride.
  • conductive copper particles (B) having a low volume resistivity
  • copper (II) ions are present in the reaction system ( ⁇ ).
  • the ions can be reduced, the copper particles (b2) and the copper hydride fine particles (b1) are bonded more firmly.
  • the presence of copper (II) ions can be grasped by a copper ion electrode, ultraviolet / visible spectrum analysis, and a method of measuring copper atom concentration by atomic emission spectrum.
  • Examples of the copper particles (b2) to be added to the reaction system ( ⁇ ) include the same copper particles as the copper particles (a1) described in the production of the conductive copper particles (A), and the average particle diameter (average primary particles). Copper particles having a diameter of 1 to 20 ⁇ m are preferable.
  • the content of copper particles (b2) in the reaction system ( ⁇ ) is the content of copper (II) ions in the water-soluble copper compound solution before adding the reducing agent (all the water-soluble copper compounds are ionized). 1 to 100 parts by mass is preferable with respect to 100 parts by mass, and 5 to 100 parts by mass is more preferable.
  • the method for separating the conductive copper particles (B) is not particularly limited, and examples thereof include centrifugation and filtration.
  • the separated conductive copper particles (B) are preferably washed with a cleaning liquid such as water to remove soluble impurities attached to the conductive copper particles (B).
  • a cleaning liquid such as water to remove soluble impurities attached to the conductive copper particles (B).
  • the solvent of the reaction system ( ⁇ ) and impurities dissolved in the solvent anion of water-soluble copper compound, decomposition product of reducing agent, etc. are removed by solvent substitution or the like. Also good.
  • Method for producing conductive copper particles (C) examples include a method having the following steps ( ⁇ -1) and ( ⁇ -2).
  • ⁇ -1) A copper (II) ion is reduced in a reaction system (hereinafter referred to as “reaction system ( ⁇ )”) containing copper (II) ions and chloride ions, having a pH of 3 or less and an ORP of 220 mV or less.
  • reaction system ( ⁇ ) a reaction system
  • ⁇ -2) A step of separating the conductive copper particles (C) from the reaction system ( ⁇ ).
  • Step ( ⁇ -1) can be carried out in the same manner as in step ( ⁇ -1) in the production of conductive copper particles (B) except for the following preferred conditions.
  • the average particle diameter of the secondary particles of the conductive copper particles (C) produced in the reaction system ( ⁇ ) is preferably 10 nm to 1 ⁇ m.
  • the average particle diameter of the conductive copper particles (C) can be adjusted by controlling the reaction temperature and reaction time and adding a dispersant.
  • Step ( ⁇ -2) The step ( ⁇ -2) can be performed in the same manner as the step ( ⁇ -3) in the production of the conductive copper particles (B).
  • Method for producing conductive copper particles (D) As a method for producing the conductive copper particles (D), the conductive copper particles (B) are produced, the obtained conductive copper particles (B) are heated, and the copper hydride in the conductive copper particles (B) is produced. There is a method in which the fine particles (b1) are converted into metal copper fine particles to obtain conductive copper particles (D). In this case, the copper fine particles produced by converting the copper hydride of the copper hydride fine particles (b1) into metal copper are not peeled off from the surfaces of the copper particles (b2) as the primary particles. Further, there is substantially no difference between the size of the copper hydride fine particles (b1) before heating and the size of the produced copper fine particles. Therefore, the conductive copper particles (D) having substantially the same structure and the same average particle diameter as the conductive copper particles (B) can be obtained.
  • the heating temperature is preferably 60 to 120 ° C, more preferably 60 to 100 ° C, and further preferably 60 to 90 ° C. If heating temperature is more than the said lower limit, heating time can be shortened and manufacturing cost can be suppressed. If heating temperature is below the said upper limit, it will be easy to suppress the wrinkles between copper fine particles, and it will be easy to suppress the increase in the volume resistivity of a conductor film.
  • the pressure during heating of the conductive copper particles (B) is preferably ⁇ 101 to ⁇ 50 kPa (gauge pressure). If the pressure during heating is ⁇ 101 kPa or more, a large-scale apparatus is not required, and it becomes easy to remove excess solvent and dry. If the pressure during heating is ⁇ 50 kPa or less, the time can be shortened and the production cost can be suppressed.
  • Method for producing conductive copper particles (E) As a method for producing the conductive copper particles (E), the conductive copper particles (C) are produced, the obtained conductive copper particles (C) are heated, and the copper hydride in the conductive copper particles (C) is produced. Can be converted into metallic copper to obtain conductive copper particles (E). In this case, there is substantially no difference between the size of the conductive copper particles (C) before heating and the size of the conductive copper particles (E) generated by heating.
  • the heating conditions for the conductive copper particles (C) can be the same as the heating conditions for the conductive copper particles (B) in the method for producing the conductive copper particles (D).
  • the composition for forming a conductor of the present invention includes the conductive copper particles of the present invention and a solvent as essential components, and a resin binder as necessary.
  • the conductive copper particles are preferably one or more selected from the group consisting of the conductive copper particles (A) to (E).
  • the conductive copper particles (A), the conductive copper particles (B), and the conductive copper One or more types selected from the group consisting of particles (D) are more preferable, and any of conductive copper particles (A), conductive copper particles (B), and conductive copper particles (D) is particularly preferable.
  • the solvent examples include cyclohexanone, cyclohexanol, terpineol, ethylene glycol, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether. , Diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate and the like.
  • the content of the solvent in the conductor-forming composition is preferably 1 to 20% by mass with respect to the conductive copper particles (100% by mass) from the viewpoint that it can be easily adjusted to a viscosity suitable for a printing paste or the like.
  • thermosetting resin binder As a resin binder, the well-known thermosetting resin binder used for a metal paste, a thermoplastic resin binder, etc. are mentioned. It is preferable to use a thermosetting resin binder that sufficiently undergoes a curing reaction at the temperature during curing. Further, it is preferable to use a thermoplastic resin binder that has a small tack and can maintain the shape of the conductor in the use environment.
  • the resin binder include phenol resin, melamine resin, urea resin, diallyl phthalate resin, unsaturated alkyd resin, epoxy resin, urethane resin, bismaleidotriazine resin, silicone resin, acrylic resin, and polyester resin. Of these, a phenol resin and a polyester resin are preferable, and a phenol resin is particularly preferable.
  • the content of the resin binder in the conductor-forming composition needs to be within a range in which the amount of the cured product or solidified product does not hinder the conductivity of the conductive copper particles.
  • the content of the resin binder in the composition for forming a conductor can be appropriately selected in consideration of the ratio between the volume of the conductive copper particles and the gap formed between the conductive copper particles. 5 to 50 parts by mass is preferable with respect to parts, and 5 to 20 parts by mass is more preferable. If content of a resin binder is more than the said lower limit, the hardness of a conductor film will become more favorable. If content of a resin binder is below the said upper limit, it will be easy to suppress the volume resistivity of a conductor film low.
  • composition for conductor formation of this invention is a range which does not impair the effect of this invention, various additives (a leveling agent, a coupling agent, a viscosity modifier, antioxidant, etc.) etc. as needed. May be included.
  • the conductor-forming composition of the present invention can be prepared by mixing the conductive copper particles of the present invention, a solvent, and a resin binder used as necessary.
  • a thermosetting resin binder among the resin binders heating may be performed to such an extent that the thermosetting resin binder does not cure and the solvent does not volatilize and disappear.
  • mixing may be performed by replacing the inside of the mixing container with an inert gas. Thereby, it becomes easy to suppress the oxidation of the conductive copper particles being mixed.
  • the conductor forming composition of the present invention described above contains the conductive copper particles of the present invention that are not easily oxidized even in the air, so that the volume resistivity is low and the volume resistivity is low. A conductor film that changes little over time can be formed.
  • the base material with a conductor of the present invention has a base material and a conductor film formed on the base material by the conductor forming composition of the present invention.
  • a conductor film is a linear wiring body, and it is preferable that it is a printed wiring board.
  • the substrate include a glass substrate, a plastic substrate (a film-like substrate such as a polyimide film and a polyester film), a substrate made of a fiber reinforced composite material (a glass fiber reinforced resin substrate, etc.), and a ceramic substrate. Examples thereof include materials and metal substrates.
  • the volume resistivity of the conductor film is preferably 1.0 ⁇ 10 ⁇ 4 ⁇ cm or less.
  • the substrate with a conductor of the present invention can be suitably used as a conductor for electronic equipment.
  • the volume resistivity of the conductor film is measured with a four-probe resistance meter.
  • the change rate of the volume resistivity after one month with respect to the volume resistivity immediately after the film formation in the conductor film is preferably 5% or less, and more preferably 2% or less.
  • the thickness of the conductor film is preferably 1 to 100 ⁇ m, and particularly preferably 5 to 50 ⁇ m, from the viewpoint that it is easy to maintain the wiring shape while ensuring stable conductivity.
  • the substrate with a conductor of the present invention is formed by coating the surface of the substrate with the composition for forming a conductor of the present invention to form a coating layer, and removing a volatile component such as a solvent from the coating layer. It can be manufactured by forming a body membrane.
  • the composition for forming a conductor of the present invention contains a thermosetting resin binder, after removing volatile components such as a solvent from the coating layer, the conductor film is formed by curing the thermosetting resin binder. Form.
  • the obtained conductor film includes conductive copper particles and a cured product of a thermosetting resin binder.
  • composition for conductor formation of this invention contains a thermoplastic resin binder
  • a conductor film is formed by removing volatile components, such as a solvent, from an application layer.
  • the obtained conductive film contains conductive copper particles and a solid thermoplastic resin.
  • Examples of the method for applying the composition for forming a conductor include known methods such as screen printing, roll coating, air knife coating, blade coating, bar coating, gravure coating, die coating, and slide coating. .
  • the thermosetting resin binder can be cured by heating.
  • the heating method include hot air heating and heat radiation.
  • the heating temperature and the heating time can be appropriately determined according to the characteristics required for the conductor film.
  • the composition for forming a conductor contains conductive copper particles (B) or conductive copper particles (C) as conductive copper particles
  • the conductive copper and the conductive copper are cured simultaneously with the curing of the thermosetting resin binder.
  • Copper hydride contained in the particles is converted into metallic copper.
  • the conductive material-forming composition contains a thermoplastic resin binder and contains conductive copper particles (B) or conductive copper particles (C) as conductive copper particles, volatilization of a solvent, etc.
  • the copper hydride contained in these electroconductive copper particles is converted into metallic copper by the heating at the time of removing the sex component.
  • the heating temperature is preferably 100 to 300 ° C. If heating temperature is 100 degreeC or more, the solvent contained in the composition for conductor formation will fully volatilize. Further, the curing of the thermosetting resin is likely to proceed. If heating temperature is 300 degrees C or less, a plastic film can be used as a base material which forms a conductor film.
  • the curing time may be a time for the resin binder to sufficiently cure depending on the curing temperature.
  • the environment in which the conductor film is formed is not particularly limited, and may be in air or under nitrogen with little oxygen. Among these, air is preferable because the production equipment is simplified.
  • the base material with a conductor of the present invention described above has a conductor film having a low volume resistivity and a small change with time in volume resistivity.
  • Examples 1 to 5 are examples, and examples 6 to 10 are comparative examples.
  • the average particle diameter of the copper particles before the reduction treatment and the obtained conductive copper particles was measured as follows.
  • the particle size of 100 particles randomly selected from SEM images obtained by SEM (manufactured by Hitachi, Ltd., S-4300) was measured and calculated by averaging.
  • the particle size of 100 particles randomly selected from a TEM image obtained with a transmission electron microscope (TEM) was measured and calculated by averaging.
  • reaction system chloride ion concentration The chloride ion concentration in the reaction system was measured with a chloride ion electrode (HM-20P, manufactured by Toa DKK Corporation).
  • the pH of the reaction system was measured with a pH meter (manufactured by Toa DKK Corporation, HM-20P).
  • ORP oxidation-reduction potential
  • the surface oxygen content of the obtained conductive copper particles was determined by determining the surface oxygen concentration [atomic%] and the surface copper concentration [atomic%] by X-ray photoelectron spectroscopy (manufactured by ULVAC-PHI, ESCA5500). It was calculated by dividing by the surface copper concentration.
  • the thickness of the conductor film was measured with DEKTAK3 (manufactured by Veeco metrology group).
  • the surface resistance value of the conductor film was measured immediately after film formation with a four-probe resistance meter (manufactured by Mitsubishi Yuka Co., Ltd., model: lorestaIP MCP-T250). Moreover, the surface resistance value of the conductor film after one month passed was measured again, and the change rate (unit:%) with respect to the surface resistance value immediately after film formation was determined.
  • volume resistivity of conductor film The volume resistivity was determined by taking the product of the thickness of the conductor film and the surface resistance value of the conductor film measured by the above method.
  • Example 1 (Production of conductive copper particles A1)
  • 100 g of copper particles (trade name “1400YP”, average primary particle size: 7 ⁇ m, manufactured by Mitsui Mining & Smelting Co., Ltd.) are dispersed in 1800 g of distilled water, 30 g of formic acid as a pH adjuster, and chloride As a compound that generates ions, 35 mass% hydrochloric acid was added to adjust the chloride ion concentration of the reaction system to 10 massppm. Next, the beaker was placed in a 40 ° C.
  • Table 1 shows the pH of the reaction system ( ⁇ ) immediately after the addition of hypophosphorous acid, the pH of the reaction system ( ⁇ ) after the completion of the reaction, and the redox potential (ORP) of the reaction system ( ⁇ ) after the completion of the reaction. Show.
  • the precipitate was separated by filtration.
  • the precipitate was redispersed in 600 g of distilled water, and then the aggregate was precipitated again by centrifugation to separate the precipitate.
  • reduced pressure of ⁇ 35 kPa gauge pressure
  • the precipitate was heated at 80 ° C. for 60 minutes, and the residual water was volatilized and gradually removed to obtain conductive copper particles A1.
  • Content of the chlorine atom in electroconductive copper particle A1 was 100 mass ppm.
  • concentration of the chloride ion eluted in distilled water was less than 5 mass ppm. That is, the chlorine atom contained in the conductive copper particles A1 was in a water-insoluble form.
  • the average particle diameter of electroconductive copper particle A1 was 7 micrometers.
  • composition for forming conductor film 1.2 g of conductive copper particles A1 was added to a resin solution in which 0.26 g of phenol resin (trade name “Resitop PL 6220” manufactured by Gunei Chemical Co., Ltd.) was dissolved in 0.15 g of ethylene glycol monobutyl ether acetate. . This mixture was put in a mortar and mixed at room temperature to obtain a conductor film forming composition. The addition amount of the phenol resin was 11 parts by mass with respect to 100 parts by mass of the conductive copper particles A1.
  • the obtained composition for forming a conductor film is applied to a glass substrate and heated at 150 ° C. for 1 hour to cure the phenol resin, thereby forming a conductor film having a thickness of 20 ⁇ m, and the volume resistivity of the conductor film was measured.
  • Example 2 (Production of conductive copper particles A2) Conductive copper particles A2 were obtained in the same manner as in Example 1 except that the chloride ion concentration in the reaction system ( ⁇ ) was 25 ppm by mass. Content of the chlorine atom of obtained electroconductive copper particle A2 was 250 mass ppm. Moreover, when the water solubility test of electroconductive copper particle A2 was implemented, the density
  • Example 3 (Production of conductive copper particles D1)
  • 100 g of copper particles manufactured by Mitsui Kinzoku Mining Co., Ltd., trade name “1400YP”, average primary particle diameter: 7 ⁇ m
  • 15 g of formic acid as a pH adjuster, 39 g of copper formate as a water-soluble copper compound, and 35% by mass hydrochloric acid as a compound that generates chloride ions are added, and the chloride ion concentration of the reaction system is 10 masses. ppm.
  • the beaker was placed in a 40 ° C.
  • conductive copper particles B1 having a form in which copper hydride fine particles as secondary particles adhere to the surface of copper particles as primary particles are once generated, and in order to volatilize residual moisture, the conductive copper particles B1 are vaporized at 80 ° C. for 60 minutes. In the process of heating, it is considered that the copper hydride fine particles are converted into copper fine particles to obtain conductive copper particles D1.
  • Content of the chlorine atom of the obtained electroconductive copper particle D1 was 150 mass ppm. Moreover, when the water solubility test of the electroconductive copper particle D1 was implemented, the density
  • composition for forming conductor film 1.2 g of conductive copper particles D1 was added to a resin solution in which 0.15 g of an amorphous polyester resin (trade name “Byron 300” manufactured by Toyobo Co., Ltd.) was dissolved in 0.35 g of cyclohexanone. This mixture was put in a mortar and mixed at room temperature to obtain a conductor film forming composition. The addition amount of the amorphous polyester resin was 11 parts by mass with respect to 100 parts by mass of the conductive copper particles D1.
  • Formation of conductor film The obtained composition for forming a conductor film is applied to a glass substrate, heated at 150 ° C. for 1 hour to cure the amorphous polyester resin, and a conductor film having a thickness of 20 ⁇ m is formed. The volume resistivity of was measured.
  • Example 4 (Production of conductive copper particles D2) Conductive copper particles D2 were obtained in the same manner as in Example 3 except that the chloride ion concentration in the reaction system ( ⁇ ) was 15 ppm by mass. Content of the chlorine atom of the obtained electroconductive copper particle D2 was 400 mass ppm. Moreover, when the water solubility test of the electroconductive copper particle D2 was implemented, the density
  • Example 5 (Production of conductive copper particles D3) Conductive copper particles D3 were obtained in the same manner as in Example 3 except that the chloride ion concentration in the reaction system ( ⁇ ) was 25 ppm by mass. Content of the chlorine atom of the obtained electroconductive copper particle B3 was 700 mass ppm. Moreover, when the water solubility test of the electroconductive copper particle D3 was implemented, the density
  • Example 6 Manufacture of conductive copper particles
  • 100 g of copper particles (trade name “1400YP”, average primary particle diameter: 7 ⁇ m, manufactured by Mitsui Mining & Mining Co., Ltd.) are dispersed in 1800 g of distilled water, 30 g of formic acid is added, and then 40 beakers are added.
  • Conductive copper particles F1 were obtained in the same manner as in Example 1 except that the reaction system was formed by adding 90 g of sulfuric acid while stirring in a water bath at ° C. Content of the chlorine atom of the obtained electroconductive copper particle F1 was less than 50 mass ppm.
  • Example 7 Manufacture of conductive copper particles
  • 100 g of copper particles (trade name “1400YP”, average primary particle size 7 ⁇ m, manufactured by Mitsui Mining & Mining Co., Ltd.) are dispersed in 1800 g of distilled water, and the beaker is placed in a 40 ° C. water bath.
  • Conductive copper particles F2 were obtained in the same manner as in Example 1 except that 72 g of formic acid was added while stirring to form a reaction system. Content of the chlorine atom of the obtained electroconductive copper particle F2 was less than 50 mass ppm.
  • Example 8 Manufacture of conductive copper particles
  • 100 g of copper particles (trade name “1400YP”, average primary particle diameter: 7 ⁇ m, manufactured by Mitsui Mining & Smelting Co., Ltd.) are dispersed in 1800 g of distilled water, and 35 mass% hydrochloric acid is added to add chlorine in the reaction system.
  • Conductive copper particles F3 were prepared in the same manner as in Example 1 except that the atomic concentration was 100 ppm by mass, the beaker was placed in a 40 ° C. water bath, and 72 g of formic acid was added while stirring to form a reaction system. Got. The obtained copper content of conductive copper particles F3 was 300 mass ppm.
  • concentration of the chloride ion eluted in distilled water was 30 mass ppm. That is, the chlorine contained in the conductive copper particles F3 was in a water-soluble form.
  • Example 9 Manufacture of conductive copper particles
  • hydrochloric acid was added to the conductive copper particles so that the chlorine atom content was 100 ppm by mass to obtain conductive copper particles F4.
  • Content of the chlorine atom of the obtained electroconductive copper particle F4 was 100 mass ppm.
  • concentration of the chloride ion eluted in distilled water was 90 mass ppm. That is, the chlorine contained in the conductive copper particles F4 was in a water-soluble form.
  • Example 10 (Preparation of conductive copper particles) After obtaining conductive copper particles in the same manner as in Example 7, hydrochloric acid was further added to the conductive copper particles so that the chlorine atom content was 1,000 ppm by mass to obtain conductive copper particles F5. It was. Content of the chlorine atom of the obtained electroconductive copper particle F5 was 1,000 mass ppm. Moreover, when the water solubility test of the electroconductive copper particle F5 was implemented, the density
  • the conductive films of Examples 1 to 5 using the conductive copper particles of the present invention containing 50 to 1000 ppm by mass of chlorine atoms in a water-insoluble form have a low volume resistivity, and the month The rate of change after the lapse was also low.
  • the conductive copper particles and the conductive film forming composition of the present invention are used for various purposes such as formation and repair of wiring patterns in printed wiring boards, interlayer wiring in semiconductor packages, bonding of printed wiring boards and electronic components, etc. Can be suitably used.

Abstract

 本発明は、塩素原子を、粒子の総質量に対して50~1000質量ppm含有し、該塩素原子が非水溶性の形態で存在している導電性銅粒子に関する。

Description

導電性銅粒子および導電性銅粒子の製造方法、導電体形成用組成物、ならびに導電体付き基材
 本発明は、導電性銅粒子および導電性銅粒子の製造方法、導電体形成用組成物、ならびに導電体付き基材に関する。
 プリント基板等、所望の配線パターンの導電体膜を有する導電体付き基材の製造方法としては、基材上に、銀粒子を含む銀ペーストを所望の配線パターン状に塗布し、硬化する方法が知られている。しかし、銀の導電体膜は、イオンマイグレーションによる短絡を起こしやすい。そのため、電子機器の信頼性の点から、銀ペーストの代わりに銅ペーストを使用して導電体膜を形成することが検討されている。しかし、銅粒子は、酸化しやすく、表面に酸化被膜が形成されやすい。そのため、銅粒子を使用した導電体膜は、体積抵抗率が高くなりやすく、その経時的な変化が大きい。
 体積抵抗率が低い導電体膜を形成する導電性銅粒子の製造方法としては、下記方法(1)~(3)が知られている。
 (1)銅または銅合金からなる導電粉を、酸と還元剤と炭素数8以上の脂肪酸のアルカリ金属塩とを含有する水溶液で処理する方法(特許文献1)。
 (2)銅塩水溶液に次亜リン酸を加えて水素化銅微粒子を析出させ、該水素化銅微粒子を熱分解して銅微粒子を得る方法(特許文献2)。
 (3)銅イオンを含有する溶液中に、該銅イオンに対して塩化物イオンを0.05モル以上(1250質量ppm以上)含有させ、pH10~12.5で還元し、表面にコブ状の凹凸を備えた銅粒子を製造する方法(特許文献3)。
日本国特開2007-184143号公報 日本国特開平2-294417号公報 日本国特開2007-169770号公報
 しかし、方法(1)により製造した銅粒子を使用した導電体膜は、成膜直後は優れた導電性を有するが、室温、空気中の保存で体積抵抗率が大幅に増加するため、電子機器の配線には使用できない。
 方法(2)によれば、水素化銅微粒子が凝集した粒子が得られるが、この方法で製造した粒子を用いて導電体膜とした際、導電性が不充分であり、室温、空気中の保存で体積抵抗率が増加する。
 方法(3)により製造した銅粒子を使用した導電体膜は、成膜直後でも体積抵抗率が大きく、その体積抵抗率が経時的に増加するので、電子機器の配線には使用できない。
 本発明は、体積抵抗率が低く、かつその経時変化が小さい導電体膜を形成できる導電性銅粒子および導電性銅粒子の製造方法、前記導電性銅粒子を含む導電体形成用組成物、ならびに前記導電体形成用組成物により形成した導電体膜を有する導電体付き基材の提供を目的とする。
 本発明の導電性銅粒子は、塩素原子を、粒子の総質量に対して50~1000質量ppm含有し、該塩素原子が非水溶性の形態で存在している。
 本発明の導電性銅粒子は、平均粒子径が0.01~20μmであることが好ましい。
 本発明の導電体形成用組成物は、本発明の導電性銅粒子と溶剤とを含む。また、本発明の導電体形成用組成物は、樹脂バインダを含むことが好ましい。
 本発明の導電体付き基材は、基材と、本発明の導電体形成用組成物により前記基材上に形成された導電体膜とを有する。
 本発明の導電性銅粒子の製造方法は、銅粒子および銅(II)イオンの少なくとも一方を、塩化物イオンが含まれ、pH3以下、かつ酸化還元電位が220mV以下である反応系で還元する工程を有する方法である。
 本発明の導電性銅粒子を使用すれば、体積抵抗率が低く、かつその経時変化が小さい導電体膜を形成できる。
 また、本発明の導電性銅粒子の製造方法によれば、体積抵抗率が低く、かつその経時変化が小さい導電体膜を形成できる導電性銅粒子が得られる。
 また、本発明の導電体形成用組成物は、本発明の導電性銅粒子を含み、体積抵抗率が低く、かつその経時変化が小さい導電体膜を形成できる。
 また、本発明の導電体付き基材は、導電体膜の体積抵抗率が低く、かつその経時変化が小さい。
<導電性銅粒子>
 本発明の導電性銅粒子を使用することで、体積抵抗率が低く、かつ経時的な体積抵抗率の増加が小さい導電体膜を形成できる。前記効果を有する導電体膜を形成できる理由は必ずしも明らかではないが、次のように推定される。
 本発明の導電性銅粒子は、非水溶性の形態で存在する塩素原子を含む。本明細書中において、塩素原子が非水溶性の形態で存在しているとは、後述する測定法により測定される塩化物イオン濃度が10質量ppm以下となることを意味する。
 本発明の導電性銅粒子を得るには銅(II)イオン(2価の銅イオン)を還元するが、その過程において、銅(I)イオン(1価の銅イオン)を経由すると考えられる。銅(I)イオンが生成した際、近傍に1価の陰イオンである塩化物イオンが適量存在すると、両者は速やかに反応して、導電性銅粒子の表面に塩化銅(I)が形成されると考えられる。そのため、導電性銅粒子表面の酸化が抑えられ、低い体積抵抗率が得られると考えられる。また、塩化銅(I)は、水に対する溶解性が極めて低く、水との親和性が低いため、空気中の水分による劣化が小さい。そのため、導電体付き基材とした後も体積抵抗率の増加を長期間抑制できるという、優れた効果を奏すると考えられる。
 以上のように、本発明の導電性銅粒子では、水への溶解性が極めて低い形態で塩素原子が存在すると考えられる。ただし、導電性銅粒子における塩化銅(I)の同定が困難であるため、後述の測定法によって測定される塩化物イオン濃度が10質量ppm以下になることをもって、非水溶性と定義している。
 導電性銅粒子中の塩素原子の含有量は、導電性銅粒子の総質量に対して、50~1000質量ppmであり、80~300質量ppmが好ましい。塩素原子の含有量が前記下限値以上であれば、銅粒子の表面酸化の進行を抑制できる。塩素原子の含有量が前記上限値以下であれば、体積抵抗率の小さい導電体膜を形成できる。導電性銅粒子中の塩素原子の含有量は、蛍光X線分析により測定される。
(測定法)
1.導電性銅粒子中の塩素原子の含有量を蛍光X線分析法によって測定する。
2.導電性銅粒子に含有されている塩素原子が全て蒸留水中に溶出したとすれば、当該蒸留水中に含まれる塩化物イオンの濃度が100質量ppmとなる量の導電性銅粒子を、蒸留水に浸漬する。
3.導電性銅粒子を浸漬した蒸留水を、20℃において、試験管ミキサー(アズワン社製、HM-01)を使用して1000rpmで5秒間撹拌した後、該蒸留水中に溶出した塩化物イオン濃度を測定する。ここで、使用する蒸留水は、溶存酸素濃度を1質量ppm以下に調整した蒸留水である。
 なお、溶存酸素濃度を1質量ppm以下とするのは、導電性銅粒子に存在する塩化銅(I)(1価の銅)が、溶存酸素による酸化の影響で塩化銅(II)(2価の銅)に変化することを防ぐためである。
 導電性銅粒子の表面銅濃度(単位:原子%)に対する表面酸素濃度(単位:原子%)の割合で表される表面酸素量は、0.5以下が好ましく、0.3以下がより好ましい。前記表面酸素量が前記上限値以下であれば、導電性銅粒子間の接触抵抗がより小さくなり、導電体膜の導電性が向上する。
 なお、導電性銅粒子の表面酸素濃度と表面銅濃度は、X線光電子分光分析により求められる。測定は粒子表面から中心へ向けて約3nmの深さまでの範囲に対して行われる。この範囲について測定がされていれば、粒子表面の状態を充分把握できる。
 本発明の導電性銅粒子の形態は、特に限定されない。本発明の導電性銅粒子は、例えば、下記導電性銅粒子(A)~(E)が挙げられる。
 (A)非水溶性の形態の塩素原子を含有する一次粒子であって、その平均粒子径が1μm以上の銅粒子。
 (B)非水溶性の形態の塩素原子を含有する一次粒子であって、その平均粒子径が1μm以上の銅粒子の表面に、非水溶性の形態の塩素原子を含有する二次粒子であって、その平均粒子径が20~350nmの水素化銅微粒子が付着した銅複合粒子。
 (C)非水溶性の形態の塩素原子を含有する二次粒子であって、その平均粒子径が10nm~1μmの水素化銅微粒子。
 (D)非水溶性の形態の塩素原子を含有する一次粒子であって、その平均粒子径が1μm以上の銅粒子の表面に、非水溶性の形態の塩素原子を含有する二次粒子であって、その平均粒子径が20~350nmの銅微粒子が付着した銅複合粒子。
 (E)非水溶性の形態の塩素原子を含有する二次粒子であって、その平均粒子径が10nm~1μmの銅微粒子。
 導電性銅粒子(B)および導電性銅粒子(D)は、一次粒子と二次粒子の組合せからなる導電性銅粒子であり、導電性銅粒子(A)、(C)および(E)は、一次粒子のみ、または二次粒子のみからなる導電性銅粒子である。
 水素化銅微粒子は、加熱することで水素化銅が金属銅に変換され、銅微粒子となる。すなわち、導電性銅粒子(B)は、加熱することにより導電性銅粒子(D)となる。また、導電性銅粒子(C)は、加熱することにより導電性銅粒子(E)となる。
 本発明の導電性銅粒子は、酸化防止、および導電体形成用組成物の流動性の向上の目的から、表面が有機物によって被覆されていることが好ましい。なお、「被覆」とは有機物が導電性銅粒子の表面全体を覆っている場合だけでなく、部分的に覆っている場合も含む。さらに、有機物が導電性銅粒子の表面に結合している場合のみならず、配位している場合等も含む。
 前記有機物としては、カルボン酸、アミン、イミダゾール系化合物、トリアゾール系化合物等が挙げられる。
 前記カルボン酸としては、オレイン酸、ステアリン酸、ミリスチン酸、ドデカン酸、デカン酸、オクチル酸、オクタン酸、ヘキサン酸、安息香酸、サリチル酸、およびアビエチン酸等が挙げられる。
 前記アミンとしては、オレイルアミン、ステアリルアミン、ミリスチルアミン、ドデシルアミン、デシルアミン、オクチルアミン、ヘキシルアミン、およびアニリン等が挙げられる。
 前記有機物としては、導電性銅粒子と共に樹脂バインダを含む導電体形成用組成物を調製する場合、当該導電性銅粒子と樹脂とのぬれ性の点から、カルボン酸が好ましく、オレイン酸、サリチル酸、アビエチン酸がより好ましい。なお、ぬれ性とは界面エネルギーを変化させることによる粒子表面と樹脂との親和性のことである。
 本発明の導電性銅粒子の平均粒子径は、0.01~20μmが好ましく、導電性銅粒子の形状に応じ、この範囲内において適宜調整されればよい。導電性銅粒子が一次粒子を含む場合の平均粒子径は、1~10μmがより好ましい。また、導電性銅粒子が二次粒子のみからなる場合の平均粒子径は、0.01~1μmが好ましく、0.02~0.4μmが特に好ましい。導電性銅粒子の平均粒子径が前記下限値以上であれば、該導電性銅粒子を含む導電体形成用組成物の流動特性が良好となる。導電性銅粒子の平均粒子径が前記上限値以下であれば、微細配線を作製しやすくなる。
 本明細書中における平均粒子径は、導電性銅粒子の形状によって以下のように求めることができる。一次粒子について平均一次粒子径を求めるときは、走査型電子顕微鏡(以下、「SEM」と記す。)像の中から無作為に選んだ100個の粒子の粒子径を測定し、それら粒子径を平均することにより算出される。二次粒子については、透過型電子顕微鏡(以下、「TEM」と記す。)像の中から無作為に選んだ100個の粒子の粒子径を測定し、それら粒子径を平均することにより算出される。
 銅粒子が球状でない場合は、一次粒子であれば、銅粒子の長径と短径との平均値を粒子径とする。粒子が二次粒子である場合は、二次粒子の長径と二次粒子の短径との平均値を粒子径とする。
 また、導電性銅粒子(B)の場合は、一次粒子である銅粒子と、該銅粒子に付着した二次粒子である水素化銅微粒子とを含む導電性銅粒子(B)全体をSEMによって観察し、二次粒子も含めたうえでの長径と短径との平均値を粒子径とする。同様に、導電性銅粒子(D)の場合は、一次粒子である銅粒子と、該銅粒子に付着した二次粒子である銅微粒子とを含む導電性銅粒子(D)全体をSEMによって観察し、二次粒子も含めたうえでの長径と短径との平均値を粒子径とする。
<導電性銅粒子の製造方法>
 本発明の導電性銅粒子は、銅粒子および銅(II)イオンの少なくとも一方を、塩化物イオンが含まれ、pH3以下、かつ酸化還元電位が220mV以下である反応系で還元する工程を有する製造方法により製造できる。以下、製造する導電性銅粒子の形態の種類毎に、具体的な製造方法を説明する。
(導電性銅粒子(A)を製造する方法)
 導電性銅粒子(A)を製造する方法としては、例えば、下記工程(α-1)および(α-2)を有する方法が挙げられる。
 (α-1)一次粒子である銅粒子(以下、「銅粒子(a1)」という。)が分散媒に分散され、塩化物イオンが含まれ、pH3以下、かつ酸化還元電位が220mV以下である反応系(以下、「反応系(α)」という。)で、銅粒子(a1)を還元して導電性銅粒子(A)を得る工程。
 (α-2)反応系(α)から導電性銅粒子(A)を分離する工程。
 工程(α-1):
 銅粒子(a1)を分散媒に分散し、当該分散媒に溶解して塩化物イオンを生成する化合物を添加し、pHを3以下として、還元剤を添加して、反応系(α)を形成して銅粒子(a1)を還元する。ここで、還元反応中は、反応系(α)の酸化還元電位が220mV以下となるように調整する。銅粒子(a1)は、通常、表面が酸化されて、亜酸化銅からなる酸化被膜が形成されている。工程(α-1)の反応系(α)では、銅粒子(a1)の酸化被膜の亜酸化銅が還元される。また、分散媒に溶解して塩化物イオンを生成する化合物を添加し、pHを3以下として、還元剤を添加した後に、銅粒子(a1)を分散させて反応系(α)を形成してもよい。ここでも、還元反応中は、反応系(α)の酸化還元電位が220mV以下となるように調整する。
 銅粒子(a1)としては、銅ペーストと呼ばれる導電体形成用組成物に一般的に使用される公知の金属銅粒子が挙げられる。この金属銅粒子は、一次粒子である。また、銅粒子(a1)の粒子形状は、球状であってもよく、板状や鱗粉状等の形状であってもよい。
 銅粒子は表面が酸化されやすいため、市販の銅粒子は、一般に表面の酸化防止を目的として、ステアリン酸、オレイン酸、ミリスチン酸等の長鎖カルボン酸で表面処理されていることが多い。長鎖カルボン酸で表面処理されている銅粒子は、表面が疎水性であるため、後述する水等の高極性分散媒中で凝集しやすい。そのため、長鎖カルボン酸で表面処理されている銅粒子を使用する場合は、工程(α-1)前に表面の長鎖カルボン酸を除去することが好ましい。表面の長鎖カルボン酸の除去は、銅粒子を脱脂剤によって処理したり、アルカリ性の水溶液中で加熱処理したりすることにより実施できる。
 また、後述するように銅粒子(a1)の媒体は、水や水とアルコール類との混合媒体等、極性の高い媒体を用いる。銅粒子(a1)のこれらの高極性分散媒への分散性が向上し、銅粒子の凝集を抑制しやすい点から、銅粒子(a1)としては、分散剤で前処理された銅粒子が好ましい。分散剤は、銅粒子の表面に担持され、その表面を親水化する。長鎖カルボン酸で表面処理された銅粒子であっても、分散剤による前処理により、表面が親水化された銅粒子が得られる。
 分散剤としては、銅粒子への化学吸着性を有する各種水溶性化合物を使用できる。前記水溶性化合物としては、短鎖の脂肪族カルボン酸類、水溶性高分子化合物、キレート剤等が挙げられる。
 短鎖の脂肪族カルボン酸類としては、炭素数6以下の脂肪族モノカルボン酸、脂肪族ヒドロキシモノカルボン酸、脂肪族アミノ酸等の脂肪族モノカルボン酸類;炭素数10以下の脂肪族ポリカルボン酸、脂肪族ヒドロキシポリカルボン酸等の脂肪族ポリカルボン酸類がより好ましい。
 水溶性高分子化合物としては、ポリビニルアルコール、ポリアクリル酸、ポリビニルピロリドン、ヒドロキシプロピルセルロース、プロピルセルロース、エチルセルロース等が挙げられる。
 キレート剤としては、エチレンジアミン四酢酸、イミノジ二酢酸等が挙げられる。
 分散剤としては、短鎖の脂肪族カルボン酸類が好ましく、グリシン、アラニン、クエン酸、クエン酸無水物、リンゴ酸、マレイン酸、マロン酸等の炭素数8以下の脂肪族ポリカルボン酸類がより好ましく、リンゴ酸、マレイン酸等の脂肪族ジカルボン酸、またはクエン酸等のトリカルボン酸が特に好ましい。
 前処理は、分散剤を水等の溶媒に溶解させ、この溶液中に銅粒子を投入して撹拌することにより実施できる。これにより、銅粒子表面に分散剤が結合する。前処理は、銅粒子の表面の酸化を抑制する点から、処理容器内を不活性ガスで置換して行うことが好ましい。不活性ガスとしては、窒素ガス、アルゴンガス等を使用できる。前処理後、溶媒を除去し、必要により水等で洗浄することで、前処理により表面が親水化された銅粒子が得られる。
 前処理は、加熱下でも実施できる。加熱下で前処理を実施することにより、処理速度が向上する。加熱温度は、50℃以上、かつ水等の溶媒の沸点以下(低沸点の分散剤を使用する場合はその沸点以下。)が好ましい。加熱時間は、5分間以上が好ましい。また、長時間の加熱は経済的でないので、加熱時間は3時間以下が好ましい。
 前処理に用いる分散剤の量は、前処理前の銅粒子の100質量部に対して、0.1~10質量部が好ましい。
 銅粒子(a1)の平均粒子径(平均一次粒子径)は、1~20μmが好ましい。これにより、平均粒子径(平均一次粒子径)が1~20μmの導電性銅粒子(A)が得られやすい。
 反応系(α)(100質量%)中の銅粒子(a1)の濃度は、0.1~50質量%が好ましい。銅粒子(a1)の濃度が0.1質量%以上であれば、分散媒の使用量を抑制でき、また導電性銅粒子(A)の生産効率が良好となる。銅粒子(a1)の濃度が50質量%以下であれば、銅粒子(a1)同士の凝集の影響がより小さくなるので、導電性銅粒子(A)の収率が高くなりやすい。
 分散媒としては、水または水を主成分とし、メタノール、エタノール、2-プロパノール、エチレングリコール等のアルコール類を含む媒体を使用でき、水が特に好ましい。なお、水を主成分とするとは、分散媒100質量%中、水が70質量%以上であることを意味する。
 反応系(α)中の塩化物イオンの濃度は、反応系(α)の総質量に対して、5~100質量ppmが好ましく、10~50質量ppmがより好ましい。塩化物イオンの濃度が前記下限値以上であれば、還元反応の過程において銅粒子(a1)表面に適切な量の塩化物イオンが存在するので、塩化銅(I)が生成しやすくなり、体積抵抗率が低い導電性銅粒子(A)が得られやすい。また、塩化物イオンの濃度が前記上限値以下であれば、導電性銅粒子(A)中の塩化銅(I)の量が多すぎて導電性が低下することを抑制しやすい。
 塩化物イオンの濃度は、銅粒子(a1)の分散媒に溶解して塩化物イオンを生成する化合物の添加量を調節することで調節できる。塩化物イオンを生成する化合物としては、塩酸、塩化ナトリウム、塩化カリウム、塩化銅(II)等を適宜使用できる。
 反応系(α)のpHは、3以下であり、0.5~3が好ましく、0.5~2がより好ましい。反応系(α)のpHが3以下であれば、銅粒子(a1)表面の酸化被膜の還元が円滑に行われる。また、pH3以下という低pHの領域では、特定の酸化還元電位で塩化銅(I)の安定域が存在することが知られている(中野 博昭ら、Journal of MMIJ誌、123号(2007年)、33-38頁)。このことから、工程(α-1)においては、酸化被膜を還元する際、銅粒子(a1)表面に塩化銅(I)が生成し、結果として非水溶性の形態で塩素原子を含有する導電性銅粒子(A)が得られると考えられる。
 また、pHが0.5以上であれば、銅粒子から銅(II)イオンが過度に溶出することを抑制しやすく、銅粒子(a1)の表面改質を円滑に実施しやすい。
 反応系(α)のpHは、pH調整剤により調整する。
 pH調整剤としては、酸が使用できる。pH調整剤の酸としては、ギ酸、クエン酸、マレイン酸、マロン酸、酢酸、プロピオン酸等の水またはアルコール類に可溶のカルボン酸が好ましい。前記カルボン酸は、銅粒子表面に吸着され、還元処理後の導電性銅粒子(A)の表面に残存する場合がある。残存した前記カルボン酸は、導電性銅粒子(A)の表面を保護して酸化を抑制する効果が期待できる。pH調整剤の酸としては、前記カルボン酸のなかでも、ギ酸が特に好ましい。ギ酸は、アルデヒドの構造(-CHO)を有する化合物であるので、還元性を有する。したがって、還元処理後の導電性銅粒子(A)の表面にギ酸が残存することで、導電性銅粒子(A)の表面の酸化を抑制する効果がより高くなり、結果として、導電性銅粒子(A)を使用した導電体膜の体積抵抗率の上昇を抑制しやすくなる。
 pH調整剤の酸としては、前記水またはアルコール類に可溶のカルボン酸以外に、硫酸、硝酸、塩酸等を使用してもよい。塩酸は、塩化物イオンの濃度の調整と、pHの調整を同時に行える。分散媒に銅粒子(a1)を分散し、塩化物イオンを生成する化合物(塩酸等)を添加した分散液のpHが3以下の場合は、該分散液をそのまま還元処理に使用できる。
 また、酸によってpHが低くなりすぎた場合は、pH調整剤として塩基を使用してpHを調整できる。
 反応系(α)の酸化還元電位(ORP)は、220mV以下であり、150~220mVが好ましく、180~220mVが特に好ましい。ORPが220mV以下であれば、銅粒子(a1)表面の酸化被膜の還元効果が大きくなり、表面改質が充分に進行する。ORPが220mV超であると、表面改質が不十分となり、初期の体積抵抗率が大きいだけでなく、体積抵抗率の経時的な変化も大きくなる。本明細書中において、ORPは、標準水素電極(SHE)の電位に対する電位差として求められる。
 反応系(α)のORPは、使用する還元剤の種類により調節できる。また、ギ酸等の還元性を有する酸によってもある程度調節できる。
 還元剤としては、次亜リン酸化合物、アミンボラン化合物、水素化物等が挙げられる。
 次亜リン酸化合物としては、次亜リン酸、次亜リン酸塩等が挙げられる。
 アミンボラン化合物としては、ジメチルアミンボラン等が挙げられる。
 水素化物としては、水素化ホウ素塩等が挙げられる。
 還元剤としては、次亜リン酸、次亜リン酸塩、ジメチルアミンボラン、または水素化ホウ素塩が好ましく、次亜リン酸または次亜リン酸塩が特に好ましい。
 還元剤の使用量は、銅粒子(a1)全体に対して、1倍モル以上が好ましく、1.2~10倍モルがより好ましい。還元剤の使用量が銅粒子(a1)全体に対して1倍モル以上であれば、銅粒子(a1)表面の銅に対して還元剤が大過剰となり、還元が充分に進行しやすい。また、還元剤の使用量が銅粒子(a1)全体に対して10倍モル以下であれば、経済的に有利であり、また還元剤分解物の量が少なくなるのでその除去が容易になる。
 還元反応は、銅粒子(a1)を分散媒に分散し、塩化物イオンの濃度およびpHを調整した分散液に、還元剤を添加して開始してもよく、塩化物イオンの濃度およびpHを調整し、還元剤を添加した分散媒に、銅粒子(a1)を分散させて開始してもよい。
 還元反応の反応温度は、5~60℃が好ましく、35~50℃がより好ましい。反応温度が前記下限値以下であれば、還元反応が進行しやすい。反応温度が前記上限値以下であれば、分散媒が蒸発することによる反応系(α)の濃度変化の影響が小さい。
 還元反応の終了後、得られた導電性銅粒子(A)を反応系(α)から分離し、必要により水等で洗浄した後、乾燥して導電性銅粒子(A)の粉末を得る。還元剤分解物等の副生物は、分散媒に可溶であるので、濾過、遠心分離等の方法で導電性銅粒子(A)と分離できる。
(導電性銅粒子(B)を製造する方法)
 導電性銅粒子(B)を製造する方法としては、例えば、下記工程(β-1)~工程(β-3)を有する方法が挙げられる。
 (β-1)銅(II)イオンと塩化物イオンを含み、pH3以下、ORPが220mV以下の反応系(以下、「反応系(β)」という。)で、銅(II)イオンを還元し、二次粒子であって、その平均粒子径20~350nmの水素化銅微粒子(以下、「水素化銅微粒子(b1)」という。)を生成させる工程。
 (β-2)水素化銅微粒子(b1)の生成前、生成途中または生成後の反応系(β)中に、一次粒子である銅粒子(以下、「銅粒子(b2)」という。)を添加し、銅粒子(b2)の表面に水素化銅微粒子(b1)が付着した水素化銅複合粒子(導電性銅粒子(B))を生成させる工程。
 (β-3)導電性銅粒子(B)を反応系(β)から分離する工程。
 工程(β-1):
 水溶性銅化合物を溶媒に溶解し、該溶媒に溶解して塩化物イオンを生成する化合物を添加し、pHを3以下として、酸化還元電位が220mV以下となる還元剤を添加して、反応系(β)を形成する。反応系(β)では、還元剤により銅(II)イオンが還元され、非水溶性の形態の塩素原子を含有する、二次粒子である水素化銅微粒子(b1)が生成する。水素化銅微粒子(b1)は20~350nmの凝集した二次粒子とすることが好ましい。
 水溶性銅化合物としては、硫酸銅(II)、硝酸銅(II)、ギ酸銅(II)、酢酸銅(II)、塩化銅(II)、臭化銅(II)、ヨウ化銅(I)等が挙げられる。
 溶媒としては、水溶性銅化合物が溶解し、かつ後述する還元剤に対して不活性な溶媒であれば特に限定されず、水または水とアルコール類(エタノール、イソプロピルアルコール等)との混合溶媒が好ましく、水が特に好ましい。
 反応系(β)(100質量%)中の水溶性銅化合物の濃度は、0.1~30質量%が好ましい。水溶性銅化合物の濃度が0.1質量%以上であれば、溶媒の使用量を抑制でき、また、水素化銅微粒子(b1)の生成効率が良好となる。水溶性銅化合物の濃度が30質量%以下であれば、水素化銅微粒子(b1)の収率が向上する。
 反応系(β)中の塩化物イオンの濃度は、前記反応系(α)と同様の理由で、反応系(β)の総質量に対して、5~100質量ppmが好ましく、10~50質量ppmがより好ましい。塩化物イオンの濃度は、分散媒に溶解して塩化物イオンを生成する化合物を使用することで調整できる。塩化物イオンを生成する化合物としては、塩酸、塩化ナトリウム、塩化カリウム、塩化銅(II)等を適宜使用できる。
 反応系(β)のpHは、3以下とする。反応系(β)のpHが3以下であれば、反応系(β)中の銅(II)イオンと水素イオンが還元剤により還元され、水素化銅微粒子(b1)が充分に生成する。また、銅(II)イオンが還元された銅(I)イオンと塩化物イオンから塩化銅(I)が生成することで、非水溶性の形態で塩素原子を含有する水素化銅粒子(b1)が生成すると考えられる。反応系(β)のpHは、水素化銅微粒子(b1)の生成効率の点から、0.5~2がより好ましい。
 反応系(β)のpHを調整する酸としては、前記導電性銅粒子(A)の製造の説明で挙げたものと同じものが挙げられ、得られる導電性銅粒子(B)の表面の酸化を抑制する効果がより高くなり、導電体膜の体積抵抗率の上昇を抑制しやすくなる点から、ギ酸が特に好ましい。
 反応系(β)の酸化還元電位(ORP)は、220mV以下、150~220mVが好ましい。ORPが220mV以下であれば、銅(II)イオンの還元効果が大きくなり、水素化銅微粒子(b1)が充分に生成する。ORPが220mV超であれば、表面改質が不十分となり、初期の体積抵抗率が大きいだけでなく、体積抵抗率の経時的な変化も大きくなる。
 還元剤としては、前記導電性銅粒子(A)の製造の説明で挙げたものと同じものが挙げられ、次亜リン酸、次亜リン酸塩、ジメチルアミンボラン、または水素化ホウ素塩が好ましく、次亜リン酸または次亜リン酸塩が特に好ましい。
 還元剤の添加量は、使用する水溶性銅化合物に対して1.2~10倍モルが好ましい。還元剤の添加量が水溶性銅化合物に対して1.2倍モル以上であれば、還元反応が円滑に進行する。還元剤の添加量が水溶性銅化合物に対して10倍モル以下であれば、水素化銅微粒子(b2)に含まれる不純物(ナトリウム、ホウ素、リン等。)の量を抑制しやすい。
 反応系(β)は、還元剤を水等の溶媒に溶解した還元剤溶液と、水溶性銅化合物を水等の溶媒に溶解した溶液(以下、「水溶性銅化合物溶液」という。)とを混合して形成してもよく、粉末等の固体状態の還元剤を水溶性銅化合物溶液に添加して形成してもよい。
 反応系(β)とは、水素化銅微粒子が生成する系を意味し、具体的には、銅(II)イオンおよび塩化物イオンを含み、pH3以下の水溶性銅化合物溶液に、還元剤を添加した直後で、まだ水素化銅微粒子(b1)の生成反応が進行していない系、水素化銅微粒子(b1)の生成反応が進行している状態の系、水素化銅微粒子(b1)の生成反応が終了し、生成した水素化銅微粒子(b1)が分散している状態の系を意味する。反応系(β)には、水溶性銅化合物溶液の溶媒、該溶媒中に溶解した水溶性銅化合物(実質的にイオン化しており、銅(II)イオン、および対の陰イオン等として存在する)、塩化物イオンを生成する化合物(実質的にはイオン化しており、塩化物イオン、および対の陽イオン等として存在する)、水素化銅微粒子(b1)が生成した後のイオンや残渣、還元剤およびその分解物等が存在する。
 例えば、生成した水素化銅微粒子(b1)を単離して新たに分散媒に分散させて分散液とした場合は、その分散液中の水素化銅微粒子(b1)は反応系(β)に存在する水素化銅微粒子(b1)ではない。
 反応系(β)の反応温度は、60℃以下が好ましく、5~60℃がより好ましく、20~50℃が特に好ましい。水素化銅は加熱により分解する性質を有するが、反応系(β)の反応温度が前記上限値以下であれば、水素化銅微粒子(b2)の分解を抑制しやすい。反応系(β)の反応温度が前記下限値以上であれば、還元反応が進行しやすい。
 工程(β-2):
 工程(β-1)で形成した反応系(β)に、一次粒子である銅粒子(b2)を添加し、銅粒子(b2)の表面に水素化銅微粒子(b1)が付着した水素化銅複合粒子(導電性銅粒子(B))を生成させる。工程(β-2)で添加した銅粒子(b2)は、反応系(β)中で表面の酸化被膜が還元され、非水溶性の形態で塩素原子を含有するようになると共に、その表面に、非水溶性の塩素原子を含有する水素化銅粒子(b1)が付着する。
 反応系(β)への銅粒子(b2)の添加時期は、水素化銅微粒子(b1)の生成前、水素化銅微粒子(b1)の生成途中、または水素化銅微粒子(b1)の生成後である。水素化銅微粒子(b1)の生成前の反応系(β)に銅粒子(b2)を添加するとは、反応系(β)が形成された時点で既に銅粒子(b2)が存在していることを意味する。例えば、水溶性銅化合物溶液中に銅粒子(b2)を添加した後に、還元剤を添加して反応系(β)を形成する場合が挙げられる。また、水素化銅微粒子(b1)の生成後の反応系(β)に銅粒子(b2)を添加するとは、水素化銅微粒子(b1)の新たな生成が生じない状態で、かつ既に生成している水素化銅微粒子(b1)のさらなる成長が生じない状態の反応系(β)に、銅粒子(b2)を添加することを意味する。例えば、反応系(β)中の銅イオンや還元剤が消費されて水素化銅微粒子(b1)の生成反応が起こらなくなった後に、銅粒子(b2)を添加する場合が挙げられる。
 反応系(β)への銅粒子(b2)の添加は、体積抵抗率が低い導電性銅粒子(B)が得られやすい点から、水素化銅微粒子(b1)の生成前、または水素化銅微粒子(b1)の生成途中が好ましい。水素化銅微粒子(b1)の生成前および生成途中では、反応系(β)中に銅(II)イオンが存在している。反応系(β)に銅(II)イオンが存在している状態で銅粒子(b2)を加えることによって、銅粒子(b2)と水素化銅微粒子(b1)とが共存した状態で銅(II)イオンを還元できるため、銅粒子(b2)と水素化銅微粒子(b1)とがより強固に結合する。銅(II)イオンの存在は、銅イオン電極、紫外・可視光の分光スペクトル解析、原子発光スペクトルによって銅原子濃度を測定する方法、により把握できる。
 反応系(β)に添加する銅粒子(b2)としては、前記前記導電性銅粒子(A)の製造で説明した銅粒子(a1)と同じ銅粒子が挙げられ、平均粒子径(平均一次粒子径)が1~20μmの銅粒子が好ましい。
 反応系(β)中の銅粒子(b2)の含有量は、還元剤を添加する前の水溶性銅化合物溶液中における銅(II)イオンの含有量(水溶性銅化合物は全てイオン化しているものとする。)100質量部に対して、1~100質量部が好ましく、5~100質量部がより好ましい。
 工程(β-3):
 反応系(β)から、生成した導電性銅粒子(B)を分離し、粉末状態の粒子を得る。導電性銅粒子(B)を分離する方法は特に限定されず、例えば、遠心分離、濾過等が挙げられる。
 分離した導電性銅粒子(B)は、水等の洗浄液で洗浄し、導電性銅粒子(B)に付着している溶解性不純物を除去することが好ましい。また、分離の前に、溶媒置換等により、反応系(β)の溶媒、および該溶媒に溶解している不純物(水溶性銅化合物の陰イオン、還元剤の分解物等。)を除去してもよい。
(導電性銅粒子(C)を製造する方法)
 導電性銅粒子(C)を製造する方法としては、例えば、下記工程(γ-1)および(γ-2)を有する方法が挙げられる。
 (γ-1)銅(II)イオンと塩化物イオンを含み、pH3以下、ORPが220mV以下の反応系(以下、「反応系(γ)」という。)で、銅(II)イオンを還元し、二次粒子であり、その平均粒子径が10nm~1μmの水素化銅微粒子(導電性銅粒子(C))を生成させる工程。
 (γ-2)導電性銅粒子(C)を反応系(γ)から分離する工程。
 工程(γ-1):
 工程(γ-1)は、下記の好ましい条件以外は、導電性銅粒子(B)の製造における工程(β-1)と同様の方法で実施できる。
 反応系(γ)で生成させる導電性銅粒子(C)の二次粒子の平均粒子径は、10nm~1μmが好ましい。導電性銅粒子(C)の平均粒子径は、反応温度や反応時間の制御、分散剤の添加により調節できる。
 工程(γ-2):
 工程(γ-2)は、導電性銅粒子(B)の製造における工程(β-3)と同様にして実施できる。
(導電性銅粒子(D)を製造する方法)
 導電性銅粒子(D)を製造する方法としては、導電性銅粒子(B)を製造し、得られた導電性銅粒子(B)を加熱し、導電性銅粒子(B)における水素化銅微粒子(b1)を金属銅微粒子に変換して導電性銅粒子(D)とする方法が挙げられる。
 この場合、水素化銅微粒子(b1)の水素化銅が金属銅に変換して生成する銅微粒子は、一次粒子である銅粒子(b2)の表面からは剥離しない。また、加熱前の水素化銅微粒子(b1)の大きさと、生成する銅微粒子の大きさには実質的に差がない。そのため、導電性銅粒子(B)とほぼ同じ構造、かつほぼ同じ平均粒子径の導電性銅粒子(D)が得られる。
 加熱温度は、60~120℃が好ましく、60~100℃がより好ましく、60~90℃がさらに好ましい。加熱温度が前記下限値以上であれば、加熱時間を短縮でき、製造コストを抑制できる。加熱温度が前記上限値以下であれば、銅微粒子同士の            を抑制しやすく、導電体膜の体積抵抗率の増加を抑制しやすい。
 導電性銅粒子(B)の加熱時の圧力は、-101~-50kPa(ゲージ圧)が好ましい。加熱時の圧力が-101kPa以上であれば、大規模な装置を必要とせず、余分な溶媒を除去して乾燥させることが容易になる。加熱時の圧力が-50kPa以下であれば、時間を短縮でき、製造コストを抑制できる。
(導電性銅粒子(E)を製造する方法)
 導電性銅粒子(E)を製造する方法としては、導電性銅粒子(C)を製造し、得られた導電性銅粒子(C)を加熱し、導電性銅粒子(C)における水素化銅を金属銅に変換して導電性銅粒子(E)とする方法が挙げられる。この場合、加熱前の導電性銅粒子(C)の大きさと、加熱により生成する導電性銅粒子(E)の大きさには実質的に差がない。
 導電性銅粒子(C)の加熱条件は、導電性銅粒子(D)の製造方法における導電性銅粒子(B)の加熱条件と同じ条件を採用できる。
<導電体形成用組成物>
 本発明の導電体形成用組成物は、本発明の導電性銅粒子と、溶剤とを必須成分として含み、必要に応じて樹脂バインダを含む。
 導電性銅粒子としては、前記導電性銅粒子(A)~(E)からなる群から選ばれる1種以上が好ましく、導電性銅粒子(A)、導電性銅粒子(B)および導電性銅粒子(D)からなる群から選ばれる1種以上がより好ましく、導電性銅粒子(A)、導電性銅粒子(B)または導電性銅粒子(D)のいずれかが特に好ましい。
 溶剤としては、例えば、シクロヘキサノン、シクロヘキサノール、テルピネオール、エチレングリコール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等が挙げられる。
 導電体形成用組成物中の溶剤の含有量は、印刷用ペースト等に適した粘度に調整しやすい点から、導電性銅粒子(100質量%)に対して、1~20質量%が好ましい。
 樹脂バインダとしては、金属ペーストに使用される公知の熱硬化性樹脂バインダ、熱可塑性樹脂バインダ等が挙げられる。熱硬化性樹脂バインダは、硬化時の温度において、充分に硬化反応が進行するものを使用することが好ましい。また、熱可塑性樹脂バインダは、タックが小さく、使用環境において導電体の形状を維持できるものを使用することが好ましい。
 樹脂バインダとしては、フェノール樹脂、メラミン樹脂、尿素樹脂、ジアリルフタレート樹脂、不飽和アルキド樹脂、エポキシ樹脂、ウレタン樹脂、ビスマレイドトリアジン樹脂、シリコーン樹脂、アクリル樹脂、ポリエステル樹脂等が挙げられる。なかでも、フェノール樹脂、ポリエステル樹脂が好ましく、フェノール樹脂が特に好ましい。
 樹脂バインダの硬化物または固化物は、量が多すぎると導電性銅粒子間の接触を妨げ、導電体膜の体積抵抗率を上昇させる。そのため、導電体形成用組成物中の樹脂バインダの含有量は、その硬化物または固化物の量が導電性銅粒子の導電性を妨げない範囲内とする必要がある。
 導電体形成用組成物中の樹脂バインダの含有量は、導電性銅粒子の体積と、該導電性銅粒子間にできる空隙との比率を考慮して適宜選択でき、導電性銅粒子の100質量部に対して、5~50質量部が好ましく、5~20質量部がより好ましい。樹脂バインダの含有量が前記下限値以上であれば、導電体膜の硬度がより良好となる。樹脂バインダの含有量が前記上限値以下であれば、導電体膜の体積抵抗率を低く抑えやすい。
 本発明の導電体形成用組成物は、本発明の効果を損なわない範囲であれば、必要に応じて、各種添加剤(レベリング剤、カップリング剤、粘度調整剤、酸化防止剤等。)等を含んでもよい。
[製造方法]
 本発明の導電体形成用組成物は、本発明の導電性銅粒子と、溶剤と、必要に応じて使用する樹脂バインダ等を混合することにより調製できる。樹脂バインダのうち、熱硬化性樹脂バインダを混合する場合、熱硬化性樹脂バインダが硬化せず、かつ溶剤が揮発消失しない程度の加熱を行ってもよい。また、必要に応じて、混合容器内を不活性ガスで置換して混合を行ってもよい。これにより、混合中の導電性銅粒子の酸化を抑制しやすくなる。
 以上説明した本発明の導電体形成用組成物にあっては、空気中であっても酸化され難い本発明の導電性銅粒子を含んでいるため、体積抵抗率が低く、かつ体積抵抗率の経時的な変化が小さい導電体膜を形成できる。
<導電体付き基材>
 本発明の導電体付き基材は、基材と、本発明の導電体形成用組成物により前記基材上に形成された導電体膜とを有する。本発明の導電体付き基材は、導電体膜が線状の配線体であることが好ましく、プリント配線板であることが好ましい。
 基材としては、ガラス基材、プラスチック基材(ポリイミドフィルム、ポリエステルフィルム等のフィルム状の基材等。)、繊維強化複合材料製の基材(ガラス繊維強化樹脂基材等。)、セラミックス基材、金属基材等が挙げられる。
 導電体膜の体積抵抗率は、1.0×10-4Ωcm以下が好ましい。体積抵抗率が1.0×10-4Ωcm以下であれば、本発明の導電体付き基材を、電子機器用の導電体として好適に使用できる。導電体膜の体積抵抗率は、四探針式抵抗値計により測定される。
 また、導電体膜における、成膜直後の体積抵抗率に対する一ヶ月後の体積抵抗率の変化率は、5%以下が好ましく、2%以下がより好ましい。
 導電体膜の厚さは、安定した導電性を確保しつつ、配線形状を維持することが容易である点から、1~100μmが好ましく、5~50μmが特に好ましい。
[製造方法]
 本発明の導電体付き基材は、基材の表面に、本発明の導電体形成用組成物を塗布して塗布層を形成し、該塗布層から溶剤等の揮発性成分を除去して導電体膜を形成することで製造できる。また、本発明の導電体形成用組成物が熱硬化性樹脂バインダを含む場合は、塗布層から溶剤等の揮発性成分を除去した後、熱硬化性樹脂バインダを硬化することにより導電体膜を形成する。この場合、得られた導電体膜は、導電性銅粒子と、熱硬化性樹脂バインダの硬化物とを含む。また、本発明の導電体形成用組成物が熱可塑性樹脂バインダを含む場合は、塗布層から溶剤等の揮発性成分を除去することにより導電体膜を形成する。この場合、得られた導電膜は、導電性銅粒子と、固形の熱可塑性樹脂とを含む。
 導電体形成用組成物の塗布方法としては、スクリーン印刷法、ロールコート法、エアナイフコート法、ブレードコート法、バーコート法、グラビアコート法、ダイコート法、スライドコート法等の公知の方法が挙げられる。
 導電体形成用組成物が熱硬化性樹脂バインダを含む場合、熱硬化性樹脂バインダの硬化は、加熱によって行うことができる。加熱の方法としては、温風加熱、熱輻射等の方法が挙げられる。加熱温度および加熱時間は、導電体膜に求められる特性に応じて適宜決定できる。導電体形成用組成物が、導電性銅粒子として、導電性銅粒子(B)または導電性銅粒子(C)を含んでいる場合は、熱硬化性樹脂バインダの硬化と同時に、それら導電性銅粒子に含まれる水素化銅が金属銅に変換される。
 導電体形成用組成物が熱可塑性樹脂バインダを含む場合であって、導電性銅粒子として、導電性銅粒子(B)または導電性銅粒子(C)を含んでいる場合は、溶剤等の揮発性成分を除去する際の加熱により、それら導電性銅粒子に含まれる水素化銅が金属銅に変換される。
 加熱温度は、100~300℃が好ましい。加熱温度が100℃以上であれば、導電体形成用組成物に含まれる溶剤が充分に揮発する。また、熱硬化性樹脂の硬化が進行しやすい。加熱温度が300℃以下であれば、導電体膜を形成する基材としてプラスチックフィルムを使用できる。硬化時間は、硬化温度に応じて、樹脂バインダが充分に硬化する時間とすればよい。
 導電体膜を形成する環境は、特に限定されず、空気中であってもよく、酸素が少ない窒素下であってもよい。なかでも、製造設備が単純になる点から、空気中が好ましい。
 以上説明した本発明の導電体付き基材は、体積抵抗率が低く、かつ体積抵抗率の経時的な変化が小さい導電体膜を有している。
 以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。例1~5は実施例であり、例6~10は比較例である。
[測定方法]
 本実施例における各数値の測定方法を以下に示す。
(平均粒子径)
 還元処理前の銅粒子、および得られた導電性銅粒子の平均粒子径は、以下のように測定した。一次粒子の場合は、SEM(日立製作所社製、S-4300)にて得られたSEM像の中から無作為に選んだ100個の粒子の粒子径を測定し、平均することにより算出した。また、二次粒子の場合は、透過型電子顕微鏡(TEM)にて得られたTEM像の中から無作為に選んだ100個の粒子の粒子径を測定し、平均することにより算出した。
(反応系の塩化物イオン濃度)
 反応系の塩化物イオン濃度の測定は、塩素イオン電極(東亜ディーケーケー社製、HM-20P)にて行った。
(反応系のpH)
 反応系のpHの測定は、pHメータ(東亜ディーケーケー社製、HM-20P)にて行った。
(反応系の酸化還元電位)
 反応系の酸化還元電位(ORP)の測定は、ORPメータ(東亜ディーケーケー社製、RM-12P)にて行った。
(導電性銅粒子の塩素原子含有量)
 得られた導電性銅粒子中の塩素原子の含有量は、蛍光X線分析(理学電機工業社製、ZSX100e)によって求めた。
(導電性銅粒子の表面酸素量)
 得られた導電性銅粒子の表面酸素量は、X線光電子分光分析(アルバック・ファイ社製、ESCA5500)によって表面酸素濃度[原子%]と表面銅濃度[原子%]を求め、表面酸素濃度を表面銅濃度で除して算出した。
(導電性銅粒子中の塩素原子の水溶性試験)
 導電性銅粒子に含有されている塩素原子が全て蒸留水中に溶出した場合に、当該蒸留水中の塩化物イオンの濃度が100質量ppmとなる量の導電性銅粒子を、蒸留水(溶存酸素濃度1質量ppm以下)に浸漬した。ついで、導電性銅粒子を浸漬した蒸留水を、20℃において、試験管ミキサー(アズワン社製、HM-01)を使用して1000rpmで5秒間撹拌した後、該蒸留水中に溶出した塩化物イオン濃度を塩素イオン電極を用いて測定した。
(導電体膜の厚さ)
 導電体膜の厚さは、DEKTAK3(Veeco metrology Group社製)にて測定した。
(導電体膜の表面抵抗値)
 導電体膜の表面抵抗値は、四探針式抵抗値計(三菱油化社製、型式:lorestaIP MCP-T250)にて、成膜直後に測定した。また、一ヶ月経過後の導電体膜の表面抵抗値を再度測定し、成膜直後の表面抵抗値に対する変化率(単位:%)を求めた。
(導電体膜の体積抵抗率)
 前記の手法で測定した、導電体膜の厚さと導電体膜の表面抵抗値との積をとって、体積抵抗率を求めた。
[例1] 
(導電性銅粒子A1の製造)
 ガラス製ビーカー内にて、銅粒子(三井金属鉱業社製、商品名「1400YP」、平均一次粒子径7μm)の100gを蒸留水の1800gに分散させ、pH調整剤としてギ酸の30gと、塩化物イオンを生成する化合物として35質量%塩酸を加えて、反応系の塩化物イオン濃度を10質量ppmとした。ついで、ビーカーを40℃のウォーターバス中に入れ、撹拌しながら50質量%の次亜リン酸水溶液の180gを加えて反応系(α)を形成し、30分間撹拌を続けた。次亜リン酸を加えた直後の反応系(α)のpHと、反応終了後の反応系(α)のpH、反応終了後の反応系(α)の酸化還元電位(ORP)を表1に示す。
 撹拌終了後、濾過によって沈殿物を分離した。該沈殿物を蒸留水の600gに再分散させた後、再び遠心分離によって凝集物を沈殿させ、沈殿物を分離した。-35kPa(ゲージ圧)の減圧下、沈殿物を80℃で60分間加熱し、残留水分を揮発させて徐々に取り除き、導電性銅粒子A1を得た。
 導電性銅粒子A1中の塩素原子の含有量は、100質量ppmであった。また、導電性銅粒子A1の水溶性試験を実施したところ、蒸留水中に溶出した塩化物イオンの濃度は、5質量ppm未満であった。すなわち、導電性銅粒子A1に含有されている塩素原子は、非水溶性の形態であった。また、導電性銅粒子A1の平均粒子径は、7μmであった。
(導電体膜形成用組成物の調製)
 フェノール樹脂(群栄化学社製、商品名「レジトップPL6220」)の0.26gをエチレングリコールモノブチルエーテルアセテートの0.15gに溶解した樹脂溶液に、導電性銅粒子A1の1.2gを加えた。この混合物を乳鉢中に入れ、室温下で混ぜ合わせて導電体膜形成用組成物を得た。フェノール樹脂の添加量は、導電性銅粒子A1の100質量部に対して、11質量部であった。
(導電体膜の形成)
 得られた導電体膜形成用組成物をガラス基板に塗布し、150℃で1時間加熱してフェノール樹脂を硬化させ、厚さ20μmの導電体膜を形成し、該導電体膜の体積抵抗率を測定した。
[例2] 
(導電性銅粒子A2の製造)
 反応系(α)中の塩化物イオン濃度を25質量ppmとした以外は、例1と同様にして導電性銅粒子A2を得た。
 得られた導電性銅粒子A2の塩素原子の含有量は、250質量ppmであった。また、導電性銅粒子A2の水溶性試験を実施したところ、蒸留水中に溶出した塩化物イオンの濃度は、5質量ppm未満であった。すなわち、導電性銅粒子A2に含有されている塩素原子は、非水溶性の形態であった。また、導電性銅粒子A2の平均粒子径は、7μmであった。
(導電体膜形成用組成物の調製)
 導電性銅粒子A2を使用して、例1と同様にして導電体膜形成用組成物を得た。
(導電体膜の形成)
 得られた導電体膜形成用組成物を使用して、例1と同様にして導電体膜を形成し、その体積抵抗率を測定した。
[例3] 
(導電性銅粒子D1の製造)
 ガラス製ビーカー内にて、銅粒子(三井金属鉱業社製、商品名「1400YP」、平均一次粒子径7μm)の100gを蒸留水の1800gに分散させた。つぎに、pH調整剤としてギ酸の15gと、水溶性銅化合物としてギ酸銅の39gと、塩化物イオンを生成する化合物として35質量%塩酸とを加えて、反応系の塩化物イオン濃度を10質量ppmとした。ついで、ビーカーを40℃のウォーターバス中に入れ、撹拌しながら50質量%の次亜リン酸水溶液の180gを加えて反応系(β)を形成し、30分間撹拌を続けた。撹拌終了後、反応系(β)を例1の反応系(α)と同様に処理することで、導電性銅粒子D1を得た。この例では、一旦、一次粒子である銅粒子の表面に二次粒子である水素化銅微粒子が付着した形態の導電性銅粒子B1が生成し、残留水分を揮発させるために80℃で60分間加熱する過程において、水素化銅微粒子が銅微粒子に変換されて導電性銅粒子D1が得られていると考えられる。
 得られた導電性銅粒子D1の塩素原子の含有量は、150質量ppmであった。また、導電性銅粒子D1の水溶性試験を実施したところ、蒸留水中に溶出した塩化物イオンの濃度は、5質量ppm未満であった。すなわち、導電性銅粒子D1に含有されている塩素原子は、非水溶性の形態であった。また、導電性銅粒子D1の平均粒子径は、8μmであった。
(導電体膜形成用組成物の調製)
 非晶質ポリエステル樹脂(東洋紡績社製、商品名「バイロン300」)の0.15gをシクロヘキサノンの0.35gに溶解した樹脂溶液に、導電性銅粒子D1の1.2gを加えた。この混合物を乳鉢中に入れ、室温下で混ぜ合わせて導電体膜形成用組成物を得た。非晶質ポリエステル樹脂の添加量は、導電性銅粒子D1の100質量部に対して、11質量部であった。
(導電体膜の形成)
 得られた導電体膜形成用組成物をガラス基材に塗布し、150℃で1時間加熱して非晶質ポリエステル樹脂を硬化させ、厚さ20μmの導電体膜を形成し、該導電体膜の体積抵抗率を測定した。
[例4] 
(導電性銅粒子D2の製造)
 反応系(β)中の塩化物イオン濃度を15質量ppmとした以外は、例3と同様にして導電性銅粒子D2を得た。
 得られた導電性銅粒子D2の塩素原子の含有量は、400質量ppmであった。また、導電性銅粒子D2の水溶性試験を実施したところ、蒸留水中に溶出した塩化物イオンの濃度は、8質量ppmであった。すなわち、導電性銅粒子D2に含有されている塩素原子は、非水溶性の形態であった。また、導電性銅粒子D2の平均粒子径は、8μmであった。
(導電体膜形成用組成物の調製)
 導電性銅粒子D2を使用して、例3と同様にして導電体膜形成用組成物を得た。
(導電体膜の形成)
 得られた導電体膜形成用組成物を使用して、例1と同様にして導電体膜を形成し、その体積抵抗率を測定した。
[例5] 
(導電性銅粒子D3の製造)
 反応系(β)中の塩化物イオン濃度を25質量ppmとした以外は、例3と同様にして導電性銅粒子D3を得た。
 得られた導電性銅粒子B3の塩素原子の含有量は、700質量ppmであった。また、導電性銅粒子D3の水溶性試験を実施したところ、蒸留水中に溶出した塩化物イオンの濃度は、10質量ppmであった。すなわち、導電性銅粒子D3に含有されている塩素は、非水溶性の形態であった。また、導電性銅粒子D3の平均粒子径は、8μmであった。
(導電体膜形成用組成物の調製)
 導電性銅粒子D3を使用して、例3と同様にして導電体膜形成用組成物を得た。
(導電体膜の形成)
 得られた導電体膜形成用組成物を使用して、例1と同様にして導電体膜を形成し、その体積抵抗率を測定した。
[例6] 
(導電性銅粒子の製造)
 ガラス製ビーカー内にて、銅粒子(三井金属鉱業社製、商品名「1400YP」、平均一次粒子径7μm)の100gを蒸留水の1800gに分散させ、ギ酸の30gを加えた後、ビーカーを40℃のウォーターバス中に入れ、撹拌しながら硫酸90gを加えて反応系を形成した以外は、例1と同様にして導電性銅粒子F1を得た。
 得られた導電性銅粒子F1の塩素原子の含有量は、50質量ppm未満であった。
(導電体膜形成用組成物の調製)
 導電性銅粒子F1を使用して、例1と同様にして導電体膜形成用組成物を得た。
(導電体膜の形成)
 得られた導電体膜形成用組成物を使用して、例1と同様にして導電体膜を形成し、その体積抵抗率を測定した。
[例7] 
(導電性銅粒子の製造)
 ガラス製ビーカー内にて、銅粒子(三井金属鉱業社製、商品名「1400YP」、平均一次粒子径7μm)の100gを蒸留水1800gに分散させ、ビーカーを40℃のウォーターバス中に入れた後、撹拌しながらギ酸72gを加えて反応系を形成した以外は、例1と同様にして導電性銅粒子F2を得た。
 得られた導電性銅粒子F2の塩素原子の含有量は、50質量ppm未満であった。
(導電体膜形成用組成物の調製)
 導電性銅粒子F2を使用して、例1と同様にして導電体膜形成用組成物を得た。
(導電体膜の形成)
 得られた導電体膜形成用組成物を使用して、例1と同様にして導電体膜を形成し、その体積抵抗率を測定した。
[例8] 
(導電性銅粒子の製造)
 ガラス製ビーカー内にて、銅粒子(三井金属鉱業製、商品名「1400YP」、平均一次粒子径7μm)の100gを蒸留水の1800gに分散させ、35質量%塩酸を加えて反応系中の塩素原子の濃度を100質量ppmとし、ビーカーを40℃のウォーターバス中に入れた後、撹拌しながらギ酸の72gを加えて反応系を形成した以外は、例1と同様にして導電性銅粒子F3を得た。
 得られた導電性銅粒子F3の塩素含有量は、300質量ppmであった。また、導電性銅粒子F3の水溶性試験を実施したところ、蒸留水中に溶出した塩化物イオンの濃度は、30質量ppmであった。すなわち、導電性銅粒子F3に含有されている塩素は、水溶性の形態であった。
(導電体膜形成用組成物の調製)
 導電性銅粒子F3を使用して、例1と同様にして導電体膜形成用組成物を得た。
(導電体膜の形成)
 得られた導電体膜形成用組成物を使用して、例1と同様にして導電体膜を形成し、その体積抵抗率を測定した。
[例9] 
(導電性銅粒子の製造)
 例7と同様にして導電性銅粒子を得た後、さらに該導電性銅粒子に、塩素原子の含有量が100質量ppmになるように塩酸を添加し、導電性銅粒子F4を得た。
 得られた導電性銅粒子F4の塩素原子の含有量は、100質量ppmであった。また、導電性銅粒子F4の水溶性試験を実施したところ、蒸留水中に溶出した塩化物イオンの濃度は、90質量ppmであった。すなわち、導電性銅粒子F4に含有されている塩素は、水溶性の形態であった。
(導電体膜形成用組成物の調製)
 導電性銅粒子F4を使用して、例1と同様にして導電体膜形成用組成物を得た。
(導電体膜の形成)
 得られた導電体膜形成用組成物を使用して、例1と同様にして導電体膜を形成し、その体積抵抗率を測定した。
[例10] 
(導電性銅粒子の調製)
 例7と同様にして導電性銅粒子を得た後、さらに該導電性銅粒子に、塩素原子の含有量が1,000質量ppmになるように塩酸を添加し、導電性銅粒子F5を得た。
 得られた導電性銅粒子F5の塩素原子の含有量は、1,000質量ppmであった。また、導電性銅粒子F5の水溶性試験を実施したところ、蒸留水中に溶出した塩化物イオンの濃度は、90質量ppmであった。すなわち、導電性銅粒子F5に含有されている塩素は、水溶性の形態であった。
(導電体膜形成用組成物の調製)
 導電性銅粒子F5を使用して、例1と同様にして導電体膜形成用組成物を得た。
(導電体膜の形成)
 得られた導電体膜形成用組成物を使用して、例1と同様にして導電体膜を形成し、その体積抵抗率を測定した。
 例1~10における反応系、導電性銅粒子、導電体膜の特性及び評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、塩素原子の含有量が50質量ppm未満の導電性銅粒子を使用した例6および7、ならびに水溶性の形態の塩素原子を含有する導電性銅粒子を使用した例8~10の導電体膜は、成膜直後から体積抵抗率が高かったり、成膜直後の体積抵抗率は低くても、保存により体積抵抗率が増大したりした。これに対し、非水溶性の形態の塩素原子を50~1000質量ppm含有する本発明の導電性銅粒子を使用した例1~5の導電体膜は、体積抵抗率が低く、またその一ヶ月経過後の変化率も低かった。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の範囲と精神を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2010年10月6日出願の日本特許出願2010-226632に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の導電性銅粒子および導電体膜形成用組成物は、プリント配線板等における配線パターンの形成および修復、半導体パッケージ内の層間配線、プリント配線板と電子部品との接合等、様々な用途に好適に利用できる。

Claims (6)

  1.  塩素原子を、粒子の総質量に対して50~1000質量ppm含有し、該塩素原子が非水溶性の形態で存在している導電性銅粒子。
  2.  平均粒子径が0.01~20μmである請求項1に記載の導電性銅粒子。
  3.  請求項1または2に記載の導電性銅粒子と溶剤とを含む導電体形成用組成物。
  4.  樹脂バインダを含む請求項3に記載の導電体形成用組成物。
  5.  基材と、請求項3または4に記載の導電体形成用組成物により前記基材上に形成された導電体膜とを有する導電体付き基材。
  6.  請求項1に記載の導電性銅粒子の製造方法であって、
     銅粒子および銅(II)イオンの少なくとも一方を、塩化物イオンが含まれ、pH3以下、かつ酸化還元電位が220mV以下である反応系で還元する工程を有する、導電性銅粒子の製造方法。
PCT/JP2011/072681 2010-10-06 2011-09-30 導電性銅粒子および導電性銅粒子の製造方法、導電体形成用組成物、ならびに導電体付き基材 WO2012046666A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180048719.7A CN103153503B (zh) 2010-10-06 2011-09-30 导电性铜粒子及导电性铜粒子的制造方法、导电体形成用组合物以及带导电体的基材
KR1020137010932A KR101796339B1 (ko) 2010-10-06 2011-09-30 도전성 구리 입자 및 도전성 구리 입자의 제조 방법, 도전체 형성용 조성물, 그리고 도전체가 형성된 기재
JP2012537684A JP5720693B2 (ja) 2010-10-06 2011-09-30 導電性銅粒子の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010226632 2010-10-06
JP2010-226632 2010-10-06

Publications (1)

Publication Number Publication Date
WO2012046666A1 true WO2012046666A1 (ja) 2012-04-12

Family

ID=45927662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072681 WO2012046666A1 (ja) 2010-10-06 2011-09-30 導電性銅粒子および導電性銅粒子の製造方法、導電体形成用組成物、ならびに導電体付き基材

Country Status (5)

Country Link
JP (1) JP5720693B2 (ja)
KR (1) KR101796339B1 (ja)
CN (1) CN103153503B (ja)
TW (1) TWI510592B (ja)
WO (1) WO2012046666A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014143172A (ja) * 2012-12-27 2014-08-07 Jsr Corp 銅膜形成用組成物、銅膜形成方法、銅膜、配線基板および電子機器
JP2014150048A (ja) * 2013-01-11 2014-08-21 Jsr Corp 銅膜形成用組成物、銅膜形成方法、銅膜、配線基板および電子機器
WO2015060258A1 (ja) * 2013-10-24 2015-04-30 三井金属鉱業株式会社 銀被覆銅粉
JP2015115147A (ja) * 2013-12-10 2015-06-22 旭硝子株式会社 金属粒子、導電膜形成用ペースト、および物品
WO2015115139A1 (ja) * 2014-01-29 2015-08-06 三井金属鉱業株式会社 銅粉
CN104918732A (zh) * 2013-01-24 2015-09-16 三井金属矿业株式会社 铜粉
JP2016131078A (ja) * 2015-01-13 2016-07-21 Dowaエレクトロニクス株式会社 導電性ペーストおよびそれを用いた導電膜の製造方法
JP2017039988A (ja) * 2015-08-21 2017-02-23 古河電気工業株式会社 金属粒子の分散溶液および接合構造体ならびにそれらの製造方法
JP2017186605A (ja) * 2016-04-05 2017-10-12 日油株式会社 レーザーエッチング用銅ペースト組成物
JP2018145501A (ja) * 2017-03-08 2018-09-20 株式会社Adeka 銅粉の製造方法、樹脂組成物、硬化物を形成する方法および硬化物
JP2019002067A (ja) * 2017-06-19 2019-01-10 健鼎科技股▲分▼有限公司 コロイド状金属ナノ粒子の製造方法
WO2019009136A1 (ja) * 2017-07-05 2019-01-10 東邦チタニウム株式会社 金属粉末、及びその製造方法
WO2019167365A1 (ja) * 2018-02-27 2019-09-06 富士フイルム株式会社 導電膜形成用組成物および導電膜の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111482596B (zh) * 2015-02-27 2022-11-22 昭和电工材料株式会社 含铜粒子、导体形成组合物、导体的制造方法、导体以及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000248304A (ja) * 1999-03-03 2000-09-12 Fukuda Metal Foil & Powder Co Ltd 多孔質金属粉末およびその製造方法
JP2007169770A (ja) * 2005-12-26 2007-07-05 Mitsui Mining & Smelting Co Ltd 銅粒子並びに銅粉及びその銅粒子の製造方法
JP2008231564A (ja) * 2007-03-23 2008-10-02 Furukawa Electric Co Ltd:The 銅微粒子の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162701A (ja) * 1987-12-18 1989-06-27 Kawasaki Steel Corp 銅超微粉の精製方法
JPH0211702A (ja) * 1988-06-29 1990-01-16 Kawasaki Steel Corp 銅超微粉の精製方法
JP3102574B2 (ja) * 1991-03-04 2000-10-23 川崎製鉄株式会社 金属超微粉および微粉の精製方法
JP4164009B2 (ja) * 2003-08-13 2008-10-08 石原産業株式会社 銅粉末及びそれを用いた銅ペースト・塗料、電極
JP5144022B2 (ja) * 2006-03-24 2013-02-13 三井金属鉱業株式会社 銅粉の製造方法及びその製造方法で得られた銅粉

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000248304A (ja) * 1999-03-03 2000-09-12 Fukuda Metal Foil & Powder Co Ltd 多孔質金属粉末およびその製造方法
JP2007169770A (ja) * 2005-12-26 2007-07-05 Mitsui Mining & Smelting Co Ltd 銅粒子並びに銅粉及びその銅粒子の製造方法
JP2008231564A (ja) * 2007-03-23 2008-10-02 Furukawa Electric Co Ltd:The 銅微粒子の製造方法

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014143172A (ja) * 2012-12-27 2014-08-07 Jsr Corp 銅膜形成用組成物、銅膜形成方法、銅膜、配線基板および電子機器
JP2014150048A (ja) * 2013-01-11 2014-08-21 Jsr Corp 銅膜形成用組成物、銅膜形成方法、銅膜、配線基板および電子機器
JPWO2014115614A1 (ja) * 2013-01-24 2017-01-26 三井金属鉱業株式会社 銅粉
CN104918732A (zh) * 2013-01-24 2015-09-16 三井金属矿业株式会社 铜粉
KR101613601B1 (ko) * 2013-01-24 2016-04-19 미쓰이금속광업주식회사 구리분
WO2015060258A1 (ja) * 2013-10-24 2015-04-30 三井金属鉱業株式会社 銀被覆銅粉
JPWO2015060258A1 (ja) * 2013-10-24 2017-03-09 三井金属鉱業株式会社 銀被覆銅粉
JP2015115147A (ja) * 2013-12-10 2015-06-22 旭硝子株式会社 金属粒子、導電膜形成用ペースト、および物品
JPWO2015115139A1 (ja) * 2014-01-29 2017-03-23 三井金属鉱業株式会社 銅粉
JP5876971B2 (ja) * 2014-01-29 2016-03-02 三井金属鉱業株式会社 銅粉
WO2015115139A1 (ja) * 2014-01-29 2015-08-06 三井金属鉱業株式会社 銅粉
JP2016131078A (ja) * 2015-01-13 2016-07-21 Dowaエレクトロニクス株式会社 導電性ペーストおよびそれを用いた導電膜の製造方法
EP3244420A4 (en) * 2015-01-13 2018-08-22 Dowa Electronics Materials Co., Ltd. Electroconductive paste and method for manufacturing electroconductive film using same
JP2017039988A (ja) * 2015-08-21 2017-02-23 古河電気工業株式会社 金属粒子の分散溶液および接合構造体ならびにそれらの製造方法
JP2017186605A (ja) * 2016-04-05 2017-10-12 日油株式会社 レーザーエッチング用銅ペースト組成物
JP2018145501A (ja) * 2017-03-08 2018-09-20 株式会社Adeka 銅粉の製造方法、樹脂組成物、硬化物を形成する方法および硬化物
JP2019002067A (ja) * 2017-06-19 2019-01-10 健鼎科技股▲分▼有限公司 コロイド状金属ナノ粒子の製造方法
WO2019009136A1 (ja) * 2017-07-05 2019-01-10 東邦チタニウム株式会社 金属粉末、及びその製造方法
JPWO2019009136A1 (ja) * 2017-07-05 2019-07-04 東邦チタニウム株式会社 金属粉末、及びその製造方法
JP2019173179A (ja) * 2017-07-05 2019-10-10 東邦チタニウム株式会社 金属粉末、及びその製造方法
CN110799285A (zh) * 2017-07-05 2020-02-14 东邦钛株式会社 金属粉末及其制造方法
KR20200023442A (ko) * 2017-07-05 2020-03-04 도호 티타늄 가부시키가이샤 금속 분말 및 그 제조 방법
KR102278500B1 (ko) 2017-07-05 2021-07-15 도호 티타늄 가부시키가이샤 금속 분말 및 그 제조 방법
CN110799285B (zh) * 2017-07-05 2022-04-29 东邦钛株式会社 金属粉末及其制造方法
JP7080856B2 (ja) 2017-07-05 2022-06-06 東邦チタニウム株式会社 金属粉末、及びその製造方法
WO2019167365A1 (ja) * 2018-02-27 2019-09-06 富士フイルム株式会社 導電膜形成用組成物および導電膜の製造方法

Also Published As

Publication number Publication date
KR20130109150A (ko) 2013-10-07
JPWO2012046666A1 (ja) 2014-02-24
JP5720693B2 (ja) 2015-05-20
KR101796339B1 (ko) 2017-11-09
TW201215657A (en) 2012-04-16
CN103153503A (zh) 2013-06-12
CN103153503B (zh) 2018-01-02
TWI510592B (zh) 2015-12-01

Similar Documents

Publication Publication Date Title
JP5720693B2 (ja) 導電性銅粒子の製造方法
TWI501260B (zh) Conductive paste and substrate with conductive film
EP3508286B1 (en) Silver-coated alloy powder, electrically conductive paste, electronic part, and electric device
KR101554580B1 (ko) 도전용 은코팅 유리분말 및 그 제조 방법, 및 도전성 페이스트
WO2010032841A1 (ja) 導電性フィラー、導電性ペーストおよび導電膜を有する物品
WO2012077548A1 (ja) 導電ペーストおよびこれを用いた導電膜付き基材、ならびに導電膜付き基材の製造方法
JP5847511B2 (ja) 導電用銀被覆硝子粉及びその製造方法、並びに導電性ペースト
JP2014182913A (ja) 導電膜形成用組成物およびこれを用いる導電膜の製造方法
JP2013140687A (ja) 導電ペースト、導電膜付き基材およびその製造方法
WO2012161201A1 (ja) 導電ペーストおよびこれを用いた導電膜付き基材、ならびに導電膜付き基材の製造方法
JP2009231059A (ja) オフセット印刷用導電性インクおよびそれを用いた回路パターン形成方法
JP2012218020A (ja) 接合方法
JP5439995B2 (ja) 表面改質銅粒子の製造方法、導電体形成用組成物、導電体膜の製造方法および物品
JP5410850B2 (ja) 銅複合粒子の製造方法、複合金属銅粒子の製造方法、銅ペーストおよび金属銅導体の製造方法
WO2009098985A1 (ja) 水素化銅ナノ粒子、その製造方法、金属ペーストおよび物品
WO2019009146A1 (ja) 導電性ペースト
JP2009127056A (ja) 錫微粒子分散液及びその製造方法
JP6110464B2 (ja) 銀被覆フレーク状硝子粉およびその製造方法
JP2018199844A (ja) 錫コート銅粉の製造方法および導電性ペーストの製造方法
CN110809806B (zh) 导电性糊料
JP2013084411A (ja) 導電ペーストおよびその製造方法、導電膜付き基材、ならびに導電膜付き基材の製造方法
JP2019172501A (ja) 粒子組成物、導電ペースト及び導電層の形成方法
JP2016046136A (ja) 導電性ペーストおよび導電膜付き基材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180048719.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830598

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012537684

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137010932

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11830598

Country of ref document: EP

Kind code of ref document: A1