WO2012128316A1 - 転がり軸受、及び、その転がり軸受を備えた走行装置 - Google Patents

転がり軸受、及び、その転がり軸受を備えた走行装置 Download PDF

Info

Publication number
WO2012128316A1
WO2012128316A1 PCT/JP2012/057326 JP2012057326W WO2012128316A1 WO 2012128316 A1 WO2012128316 A1 WO 2012128316A1 JP 2012057326 W JP2012057326 W JP 2012057326W WO 2012128316 A1 WO2012128316 A1 WO 2012128316A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal ring
rolling bearing
ring
filter
seal
Prior art date
Application number
PCT/JP2012/057326
Other languages
English (en)
French (fr)
Inventor
克典 曽根
直太 山本
伊藤 浩義
清茂 山内
宏之 宮崎
伊藤 崇
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011062445A external-priority patent/JP2012197871A/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201280014359.3A priority Critical patent/CN103477102B/zh
Priority to DE112012001375T priority patent/DE112012001375T5/de
Priority to US14/005,833 priority patent/US9506554B2/en
Priority to AU2012232118A priority patent/AU2012232118B2/en
Priority claimed from JP2012064678A external-priority patent/JP6050012B2/ja
Publication of WO2012128316A1 publication Critical patent/WO2012128316A1/ja
Priority to US15/278,267 priority patent/US10302132B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/667Details of supply of the liquid to the bearing, e.g. passages or nozzles related to conditioning, e.g. cooling, filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/541Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
    • F16C19/542Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact
    • F16C19/543Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7803Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members suited for particular types of rolling bearings
    • F16C33/7813Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members suited for particular types of rolling bearings for tapered roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7816Details of the sealing or parts thereof, e.g. geometry, material
    • F16C33/783Details of the sealing or parts thereof, e.g. geometry, material of the mounting region
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7889Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to an inner race and extending toward the outer race
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0469Bearings or seals
    • F16H57/0471Bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/048Type of gearings to be lubricated, cooled or heated
    • F16H57/0482Gearings with gears having orbital motion
    • F16H57/0486Gearings with gears having orbital motion with fixed gear ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/46Systems consisting of a plurality of gear trains each with orbital gears, i.e. systems having three or more central gears

Definitions

  • the present invention relates to an oil-lubricated rolling bearing, and more particularly to a rolling bearing lubricated with oil flowing in through a filter. Further, the present invention relates to an oil-lubricated rolling bearing together with a power transmission mechanism such as a transmission and a reduction gear. The present invention also relates to a traveling device provided together.
  • Rolling bearings are incorporated in transmissions such as automobiles and various construction machines, power transmission mechanisms such as differentials, reduction gears, and traveling devices including them.
  • power transmission mechanisms such as differentials, reduction gears, and traveling devices including them.
  • this type of apparatus there is a structure in which the rolling bearing is lubricated with oil common to the oil that lubricates the power transmission mechanism.
  • the oil contained in the case of a power transmission mechanism such as a transmission, a differential, and a speed reducer contains a relatively large amount of foreign matter such as gear wear powder (iron powder, etc.).
  • gear wear powder iron powder, etc.
  • traveling devices such as automobiles and various construction machines are provided with a power transmission mechanism such as a transmission and a speed reducer as well as an oil lubricated rolling bearing.
  • traveling device 4 used in a mining dump truck (construction machine) 1 as shown in FIG.
  • a chassis 2 that supports a loading platform and a cab is supported by a plurality of drive wheels (tires) 3.
  • the traveling device 4 transmits power to the drive wheels 3.
  • the configuration of the traveling device 4 includes a traveling motor 5 that is a drive source, and a shaft 6 that is connected to a rotation shaft of the traveling motor 5.
  • a speed reducer is disposed as a power transmission mechanism T on the outer side of the tip portion of the shaft 6.
  • a spindle 7 that forms a fixed axle is disposed outside the shaft 6.
  • a wheel 9 is disposed outside the spindle 7 via a rolling bearing 10. The rotation of the wheel 9 is transmitted to the drive wheel 3 via the rim 8.
  • the traveling device 4 shown in FIG. 15 employs a planetary gear mechanism 50 as a speed reducer.
  • the planetary gear mechanism 50 includes a first planetary gear mechanism 50a and a second planetary gear mechanism 50b, and the rotation of the shaft 6 is decelerated and transmitted to the wheel 9 via the two planetary gear mechanisms 50a and 50b.
  • the first planetary gear mechanism 50 a includes a first sun gear 51 that rotates integrally with the shaft 6, a plurality of first planetary gears 52 that mesh with the first sun gear 51, and an outer ring gear 53 that meshes with the first planetary gear 52. With.
  • the outer ring gear 53 is connected to a connecting member 53 a that can rotate around the shaft 6.
  • the second planetary gear mechanism 50 b includes a second sun gear 54 that rotates around the axis as the connecting member 53 a rotates, and a second planetary gear 55 that meshes with the second sun gear 54.
  • the second planetary gear 55 is rotatably supported around the support shaft 56 b of the planet carrier 56 and meshes with an outer ring gear 59 a that rotates integrally with the wheel 9.
  • the planetary carrier 56 has an extension 56 a fixed to the inner peripheral part 7 a of the spindle 7 by spline coupling. Further, between the end surface of the planet carrier 56 and the end surface of the spindle 7, a bearing pressing part (retainer) 17 enters and the gap is maintained.
  • the first sun gear 51 rotates around the axis by the rotation of the shaft 6.
  • the rotation of the first sun gear 51 causes each first planetary gear 52 to rotate within the outer ring gear 53.
  • the connecting member 53a rotates, and the second sun gear 54 that meshes with the connecting member 53a rotates about its axis.
  • each second planetary gear 55 rotates around the support shaft 56b of the planet carrier 56, and rotates the wheel 9 via the outer ring gear 9a engaged therewith.
  • the rotation of the wheel 9 is transmitted to the drive wheel 3 via the rim 8, and the mine dump truck 1 travels (see, for example, Patent Documents 3 and 4).
  • This traveling device 4 employs a pair of single-row tapered roller bearings as the rolling bearing 10 between the spindle 7 and the wheel 9.
  • a tapered roller bearing is often used as the rolling bearing 10 in order to have a structure capable of withstanding a large radial load.
  • the tapered roller bearing employs a tapered roller as the rolling element 13, and the raceway surface 12a of the inner raceway (inner ring) 12 and the raceway surface 11a of the outer raceway (outer ring) 11 are on either side in the axial direction (FIG. 2).
  • the distance between the two rows of tapered roller bearings decreases from the outside in the axial direction toward the center between the two rows of tapered roller bearings.
  • the preload is given to each rolling element 13 by pressing the inner track 12 with respect to the outer track 11 toward the direction where the distance becomes narrower. This preload is achieved by tightening the bearing retainer part 17 with the bolt 7a with respect to the spindle 7 so that the inner bearing rings 12, 12 are compressed in the axial direction between the bearing retainer part 18 on the opposite side. It can be given by acting.
  • this kind of traveling device 4 may be provided with a rotation sensor on either side in the axial direction of the rolling bearing 10 as required.
  • the rotation sensor is configured to appropriately detect the rotation direction, rotation speed, rotation angle, rotation acceleration, and the like as necessary, and its output signal is used for rotation control of a rotation shaft such as a motor shaft. .
  • an oil passage hole is provided in a seal ring made of an elastomer material (hereinafter, the seal ring made of an elastomer material is particularly referred to as an “elastic seal member”).
  • the oil passage hole is covered with a filter.
  • the elastic seal member is exposed to the bearing opening, that is, the seal mounting portion without the cored bar. For this reason, when some external force is applied to the elastic seal member at the time of bearing assembly, transportation, or when incorporating a mechanical device, the sealing performance is impaired by the elastic seal member being deformed or deviating from a normal assembled state. there is a possibility.
  • the elastic seal member is directly attached to the bearing, in order to further improve the accuracy of the tightening allowance, the accuracy of the dimensions of the elastic seal member and the bearing must be further increased. Such further improvement in accuracy leads to an increase in manufacturing cost. Further, there is a limit to the dimensional management of the elastic seal member that is a molded product. On the other hand, if the tightening margin is increased to ensure sealing performance, the torque of the bearing is increased. Furthermore, when applied to a bearing having a different bearing size (particularly the radial dimension between the inner and outer rings on which the elastic seal member is mounted), it is necessary to prepare a separate elastic seal member, which is disadvantageous in terms of manufacturing cost.
  • deformation of the seal ring due to thermal expansion may cause the filter to fall off, such as a part of the fixed portion of the filter may be detached from the seal ring, or the filter may be completely detached from the seal ring. is there.
  • a method of insert molding a pre-manufactured filter into a seal ring is conceivable so that the filter can be fixed more firmly. If the filter is insert-molded into the seal ring, the outer peripheral portion of the filter is held in a state of being embedded in resin or rubber that is a material of the seal ring. For this reason, the filter is less likely to drop off.
  • the filter is insert-molded into the seal ring, if the degree of thermal expansion of the seal ring increases, the filter cannot follow the thermal expansion, and the mesh may be damaged or the holes may be damaged. There is. When the filter is damaged, foreign matter enters the rolling bearing side through the damaged portion, so that the seal ring can no longer function to capture the foreign matter.
  • the seal ring itself may bulge to the outer diameter side and may completely fall off from the inner race. In such a state, foreign matter enters the rolling bearing side through the gap of the drop-off portion, and similarly, the seal ring can no longer function to capture the foreign matter.
  • oil that lubricates the power transmission mechanism T such as a transmission or a speed reducer also flows into the rolling bearing 10 side. That is, the lubricating oil is commonly used on the power transmission mechanism T side and the rolling bearing 10 side.
  • oil that lubricates the power transmission mechanism T such as a transmission or a reduction gear is relatively free of gear wear powder (iron powder or the like) than oil that lubricates a general rolling bearing 10 used alone.
  • gear wear powder iron powder or the like
  • the first object of the present invention is to prevent the sealing performance of the seal ring with a filter provided in the rolling bearing from being impaired, and the function of capturing foreign matter even when the seal ring is thermally expanded.
  • the second problem is to make it possible to achieve this, and in a traveling device that lubricates a power transmission mechanism such as a transmission and a speed reducer and a rolling bearing with a common oil, prevent foreign matter from entering the rolling bearing. This is the third issue.
  • the present invention incorporates a rolling element between an outer race and an inner race, and at least a bearing space formed between the outer race and the inner race.
  • An opening at one end is covered with a seal ring, and a foreign substance contained in the lubricating oil is captured by a filter that covers an oil passage hole formed in the seal ring, and the seal ring is the outer raceway or the inner raceway.
  • An annular member made of a material softer than the seal ring is fixed to one of the rings, and the annular member has a gap on the other of the outer race ring or the inner race ring.
  • a rolling bearing characterized in that a lip portion facing or abutting is formed is employed.
  • an annular member made of a material softer than the seal ring is fixed to a seal ring locked to one of the outer race ring or the inner race ring, and the outer race ring or the inner race ring is fixed by the ring member.
  • a lip portion facing or abutting with a gap is formed on the other side.
  • the seal ring fixed to the race ring is a material that is relatively hard compared to the annular member constituting the lip portion, and thus is resistant to deformation against external force, that is, deformed against external force. Hateful.
  • the filter is firmly fixed to the main body of the seal ring, which is a material that is difficult to deform, and only the annular member constituting the soft and relatively easily damaged lip portion is attached to the main body of the seal ring. It can be exchangeable. Therefore, as a result, the life of the seal member and the bearing using the seal ring can be extended.
  • the seal ring and the annular member which are separately formed, are prevented from rotating in the circumferential direction by bonding or a rotation prevention mechanism, so that the seal ring and the annular member are worn by relative sliding between the seal ring and the ring member. It is also possible to prevent the performance from deteriorating.
  • the material of the seal ring and the ring member is free as long as the ring member is a material softer than the seal ring.
  • the seal ring is made of resin or metal.
  • the annular member may employ a configuration made of an elastomer material that is a softer material than the resin or metal that forms the seal ring, that is, a configuration made of rubber.
  • glass fiber reinforced resin is employable, for example. Glass fiber reinforced resin is a material that has higher rigidity than an elastomer alone and is difficult to deform against external force. For this reason, if such a material is employed, it is effective to ensure sealing performance.
  • the seal ring is fixed to one of the outer race and the inner race.
  • the material of the filter is free, but a configuration in which the filter material is a mesh member made of, for example, resin or metal can be employed.
  • the present invention incorporates a rolling element between the outer raceway and the inner raceway, and a bearing space formed between the outer raceway and the inner raceway.
  • a rolling bearing with a filter in which an opening at least one end of the filter is covered with a seal ring, and a foreign matter contained in the lubricating oil is captured by a filter that covers an oil passage hole formed in the seal ring.
  • the seal ring is made of resin.
  • the filter and the seal ring are integrated by insert molding, and the material of the filter is the same material as the seal ring, or a material having substantially the same linear expansion coefficient, or the wire of the seal ring A configuration that is a material having a linear expansion coefficient equal to or higher than the expansion coefficient was adopted.
  • This configuration can also be employed in each of the above configurations in which the lip portion is provided as a separate member from the seal ring. That is, in each of the above configurations, the filter and the seal ring are integrated by insert molding, and the material of the filter is the same material as the seal ring, or a material having substantially the same linear expansion coefficient, or The structure which is the raw material which has the linear expansion coefficient more than the linear expansion coefficient of the said seal ring is employable.
  • the filter and the seal ring are made of the same material, a material having substantially the same linear expansion coefficient, or the filter having a linear expansion coefficient equal to or greater than that of the seal ring, the seal ring is heated. Even if expanded, the filter expands to the same extent following the thermal expansion of the seal ring, or the filter expands larger than the expansion amount of the seal ring. For this reason, it does not cause damage such as a broken mesh or a hole in the filter.
  • the filter or seal ring for example, a polyamide resin can be adopted.
  • the filter and seal ring are materials of approximately the same linear expansion coefficient that are approximate to the extent that they do not cause damage to the filter during thermal expansion in the assumed temperature environment.
  • the filter needs to be a material having a linear expansion coefficient equal to or higher than the linear expansion coefficient. At this time, it is more preferable that the materials are materials having the same linear expansion coefficient.
  • the mesh member constituting the filter preferably has a mesh size of 0.3 mm to 0.7 mm.
  • the mesh size is desirably 0.5 mm.
  • the mesh size that is, the size of the mesh means an opening of the mesh.
  • the size of the indentation formed on the raceway surface and the rolling surface of the bearing exceeds 1 mm, the life of the bearing rapidly decreases.
  • the mesh size capable of preventing the intrusion of foreign matters that would cause indentations exceeding 1 mm in size was 0.5 mm or less. For this reason, if the mesh size is 0.5 mm or less, the life of the bearing is particularly good.
  • the filter size By setting the filter size to 0.7 mm or less, the indentation that can be generated is 1.3 mm or less.
  • the mesh size is desirably 0.3 mm or more.
  • the filter and the seal ring are integrated by insert molding, and the same material as that of the filter and the seal ring, a material having substantially the same linear expansion coefficient, or the filter has a linear expansion larger than the linear expansion coefficient of the seal ring.
  • various structures can be adopted as the locking structure and locking method of the seal ring with respect to the raceway.
  • rip part comprised by the above-mentioned annular member can also be employ
  • the seal ring is fixed to one of the outer race ring or the inner race ring.
  • the seal ring mainly thermally expands toward the outer diameter side.
  • the seal ring in the state where the maximum temperature expected under the usage environment, that is, the maximum amount of thermal expansion, is still in the expanded state, and there is still a gap for harmful foreign objects to enter between the inner ring and the inner ring. Not required.
  • the following configuration can be adopted as a lock structure and a lock method for the seal ring with respect to the inner race. That is, a rolling element is incorporated between the outer race and the inner race, and at least one end opening of the bearing space formed between the outer race and the inner race is covered with a seal ring. A foreign material contained in the lubricating oil is captured by a filter that covers the oil passage hole formed in the sealing ring, and the seal ring includes at least a locking portion that is locked to the inner race, and a locking portion thereof The seal ring is movable in the radial direction when thermally expanding with respect to the inner raceway by entering the recess provided in the inner raceway.
  • the seal ring includes at least a locking portion that is locked to the inner race, and a wall portion that rises from the locking portion toward the outer diameter side.
  • the locking portion provided on the inner diameter side enters the recess provided in the inner raceway so that it can move in the radial direction with respect to the inner raceway during thermal expansion. It can be set as the structure currently made.
  • the locking portion provided on the inner diameter side of the seal ring enters and is locked into the recess of the inner race, and within the limit that the locking portion and the recess are locked, It is set so that thermal expansion of the seal ring can occur.
  • the state in which the locking portion always enters the concave portion is maintained, so that there is still a gap for harmful foreign substances to enter the inner race after the thermal expansion. Does not occur.
  • the end of the outer race of the seal ring fixed to the inner race is provided with a lip portion that abuts against the outer race or faces with a gap.
  • the lip portion can be molded separately from the seal ring and can be fixed by bonding, fitting or the like. If the seal ring and the lip are separate, for example, a material that is relatively difficult to deform, such as glass fiber reinforced resin, is used for the seal ring, and a material that is softer than the seal ring, such as rubber, is used for the lip. can do.
  • the seal ring may include a labyrinth seal forming portion that extends from the wall portion and faces the outer race ring with a small gap.
  • the labyrinth seal forming portion is an annular member extending in the axial direction from the wall portion, and the tip of the annular member is The outer raceway may be opposed to the end face of the outer race ring with a minute gap, and the outer diameter surface may be opposed to the housing holding the outer raceway with a minute gap.
  • the labyrinth seal forming portion may be molded integrally with the seal ring, or may be molded separately from the seal ring and fixed by bonding, fitting or the like.
  • This labyrinth seal forming part is only required to be opposed to the outer race ring with a small gap when fixing the seal ring to the inner race ring, and when fixing the seal ring to the outer race ring, It is only necessary to face the inner raceway with a minute gap.
  • the labyrinth seal is formed between the labyrinth seal forming portion of the seal ring fixed to one of the race rings and the end face, the inner diameter surface of the other race ring, or the rotating housing that holds the race ring.
  • the seal ring is fixed to the inner race ring
  • the labyrinth seal forming portion is an annular member that extends in the axial direction from the wall portion of the seal ring, and the tip of the annular member has a minute gap on the end surface of the outer race ring.
  • the outer diameter surfaces of the housings are opposed to each other with a small gap therebetween.
  • the outer diameter surface of the cylindrical labyrinth seal forming portion faces the rotating housing that holds the outer raceway with a small gap
  • the tip of the labyrinth seal formation portion has a minute gap on the end surface of the outer raceway ring. Oppose.
  • the circular member which comprises this labyrinth seal formation part may be a cylindrical member, for example, and may be a member which has a taper surface on an outer surface or an inner surface.
  • the locking portion enters into the recess of the inner race and is locked so that harmful foreign substances do not enter between the seal ring and the inner race.
  • the concave portion may be, for example, an end surface of the inner race or an outer diameter surface.
  • the concave portion of the inner race is formed as a seal groove formed along the circumferential direction.
  • the locking portion includes a protruding portion provided at an inner diameter side end portion of the wall portion, and the concave portion is a circumferential seal groove formed in the inner race, and the protruding portion Is inserted into the seal groove, so that the seal ring is locked to the inner race so as to be movable in the radial direction during thermal expansion.
  • locking part and recessed part which mutually latch may be arrange
  • the type of the rolling bearing to which the seal ring is attached is free.
  • a tapered roller bearing using a tapered roller as a rolling element may be used, or a ball may be used as the rolling element. It may be a deep groove ball bearing, a cylindrical roller bearing using cylindrical rollers, or a self-aligning roller bearing using spherical rollers.
  • the seal groove may be formed to open to the outer surface of the large collar of the inner race. Further, when the rolling bearing is a deep groove ball bearing, a cylindrical roller bearing, or a self-aligning roller bearing, the seal groove is formed to open on the outer diameter surface of the end of the inner race of the rolling bearing. It can be set as the structure currently made.
  • the protruding portion includes an inner protruding portion on the side close to the rolling element and an outer protruding portion on the far side
  • the seal groove includes the inner protruding portion. It is possible to adopt a configuration including an inner seal groove into which the outer protrusion enters and an outer seal groove into which the outer protrusion enters. According to this configuration, since the locking portion of the seal ring includes the two protrusions along the axial direction, the seal ring is more reliably engaged with the inner race by the two protrusions having different axial positions. You can stop.
  • the depth at which the inner protrusion enters the inner seal groove can be configured to be shallower than the depth at which the outer protrusion enters the outer seal groove. According to this configuration, when the seal ring is pushed into the opening of the bearing space and fixed, the inner projecting portion located on the deeper side can be elastically deformed or heat deformed, and can be easily fitted into the seal groove. Moreover, since the penetration depth of the outer protrusion located on the near side with respect to the seal groove is deep, the engagement between the seal ring and the inner race can be maintained even with respect to thermal expansion in a large outer diameter direction.
  • the said inner side protrusion part and the said outer side protrusion part may each be provided continuously over the perimeter of a circumferential direction, respectively, and may each be provided intermittently along the circumferential direction. That is, the inner protrusion may be intermittent along the circumferential direction and the outer protrusion may be continuous along the circumferential direction. Alternatively, the inner protrusion may be continuous along the circumferential direction, and the outer protrusion may be intermittent along the circumferential direction. Both can be continuous or intermittent. Further, the inner protrusions and the outer protrusions can be arranged alternately along the circumferential direction.
  • the inner protrusions and the outer protrusions are alternately arranged in the circumferential direction, the inner protrusion is less likely to enter the blind spot of the outer protrusion when the seal ring is pushed into the bearing space and fixed. For this reason, it is easy to visually confirm that the inner projecting portion on the back side is fitted in the seal groove.
  • the outer protrusion is movable in the axial direction within the outer seal groove. If the outer protrusion is movable in the axial direction in the outer seal groove, the outer protrusion can smoothly move in the radial direction in the seal groove when the seal ring is thermally expanded. For this reason, the outer protrusion is not restrained in the seal groove, and it is possible to prevent the pulling force in the outer diameter direction due to thermal expansion from acting on the seal ring, and to avoid damage to the filter.
  • a locking projection that protrudes in the axial direction is provided on the protruding portion, a locking recess is provided in the seal groove, and the locking projection enters the locking recess, whereby the seal ring Can adopt a configuration in which movement in the radial direction or circumferential direction, or movement in both directions thereof is restricted.
  • the seal ring when the seal ring is thermally expanded, the movement of the thermally expanded seal ring by a predetermined amount or more in the radial direction (particularly, movement due to expansion from the cold state to the outer diameter direction) is regulated. At the same time, the seal ring can be prevented from rotating in the circumferential direction with respect to the inner race.
  • the end surface of the inner raceway is brought into contact with a shaft shoulder fitted and fixed to the inner diameter of the inner raceway, and the opening of the end surface of the outer seal groove is closed by the shaft shoulder.
  • a configuration can be employed. According to this configuration, the outer protrusion is securely held in the outer seal groove. That is, after the outer protrusion is fitted into the outer seal groove, the opening on the end surface of the outer seal groove can be closed with the shaft shoulder.
  • the present invention employs a filter-equipped rolling bearing having the above-described configurations in a traveling device in which the power transmission mechanism and the rolling bearing are lubricated with a common lubricating oil. It is.
  • the configuration includes a drive source, a power transmission mechanism that transmits rotation from the drive source to the drive wheel, and a rolling bearing that supports the drive wheel on an axle on a coaxial line, and the power transmission mechanism and the
  • a traveling device in which the rolling bearing is lubricated with a common lubricating oil, a rolling bearing having any one of the above-described components is used as the rolling bearing, and the rolling bearing is disposed closer to the power transmission mechanism.
  • An oil flow passage from the power transmission mechanism side to the rolling bearing side is provided, and an opening at one axial end of the bearing space formed between the outer race ring and the inner race ring of the rolling bearing is the flow passage.
  • the opening is covered with the seal ring, and the filter integrated with the seal ring employs a traveling device that captures foreign matter contained in oil passing through the flow passage. It was.
  • the power transmission mechanism examples include a transmission, a speed reducer, and a speed increaser.
  • the speed reducer in particular, it can be a planetary speed reducer provided with a planetary gear mechanism.
  • a planetary speed reducer including a planetary gear mechanism is employed in a construction machine used under severe conditions such as a mining dump truck. Under such severe use conditions, the frequency of the harmful foreign matter entering the oil from the gears or the like of the planetary speed reducer is high, so the effect of providing a filter in the oil flow path is higher.
  • the filter is insert-molded into the seal ring, that is, if the seal ring is made of synthetic resin or rubber, and the filter is insert-molded when the seal ring is molded, an integrated structure is adopted.
  • a traveling device in which the mechanism and the rolling bearing are lubricated with a common lubricating oil, a low-cost seal ring with a filter and a rolling bearing with a filter can be obtained.
  • a plurality of the rolling bearings are provided in parallel in the axial direction, and the seal ring is disposed at a position closest to the power transmission mechanism among the plurality of parallel rolling bearings.
  • the structure which covers the said opening by the side of the power transmission mechanism of the rolling bearing made can be employ
  • a configuration is adopted in which a rotation sensor is provided on the side opposite to the power transmission mechanism of the rolling bearing arranged at a position farthest from the power transmission mechanism among the plurality of rolling bearings arranged in parallel. be able to.
  • the filter is provided on the power transmission mechanism side of the rolling bearing arranged closest to the power transmission mechanism, and the side opposite to the power transmission mechanism of the rolling bearing arranged farthest from the power transmission mechanism side.
  • the outer race is a rotation side
  • the inner race is a stationary side
  • a rolling bearing disposed at a position closest to the power transmission mechanism.
  • the outer race ring and the outer race ring of the rolling bearing disposed at a position farthest from the power transmission mechanism are processed common parts, and by the processing, one of the common parts is A configuration in which a seal groove for fixing the seal ring and a peripheral groove for fixing the encoder of the rotation sensor are formed on the other side can be adopted.
  • the seal groove and the circumferential groove can be formed by, for example, cutting, grinding, or the like.
  • the outer races of the rolling bearings arranged in parallel can be manufactured based on common parts, which can contribute to cost reduction.
  • the races of the rolling bearings arranged in parallel are members having the same shape and dimensions as described above at least at the portion where they touch the rolling elements. If the seal groove and the circumferential groove have the same shape, the outer races of the parallel rolling bearings can be completely shared.
  • the type of the rolling bearing is arbitrary, for example, a tapered roller bearing using a tapered roller as a rolling element, or a deep groove ball bearing using a ball as a rolling element, or a cylinder A cylindrical roller bearing using a roller may be used.
  • each rolling bearing may be a tapered roller bearing, or may be a deep groove ball bearing, a cylindrical roller bearing, a self-aligning roller bearing, or the like.
  • the rolling bearings are arranged such that the end surfaces on the small diameter side of the tapered rollers are arranged back to back, and the inner race is pressed in the axial direction so that preload is applied.
  • the given configuration can be adopted.
  • the said seal groove and the said circumferential groove can each be set as the structure provided in the large diameter side edge part of the internal diameter surface of the said outer race. That is, when fixing the seal ring and the encoder of the rotation sensor to the outer race of the tapered roller bearing, the outer race is moved further toward the end on the larger diameter side than the contact area (track surface) with the rolling element. It is desirable to expand outward and to be provided at that position. According to this configuration, the inner diameter of the mounting position of the seal ring and the encoder is increased, so that it is easy to secure the mounting space and the mounting work is facilitated.
  • the seal ring may be fixed to either the outer race ring or the inner race ring.
  • the seal ring can be fitted to the inner race.
  • rolling bearings used in various construction machinery undercarriages, etc. are often stationary at the inner ring and rotated at the outer ring.
  • the seal ring is fitted to the inner raceway on the stationary side. It is desirable to have a combined configuration.
  • the encoder on the outer race ring side may be a pulsar ring
  • the sensor unit on the inner race ring side may be provided with a back magnet type magnetic sensor. Since many rolling bearings used for suspensions of various construction machines have a relatively large diameter, the sensor performance can be stabilized by employing a back magnet type rotation sensor in this way.
  • the seal ring has a locking projection provided at the locking portion of the seal ring in order to prevent the seal ring from falling off due to centrifugal force. Is desirable.
  • annular member made of a material softer than the seal ring is fixed to a seal ring locked to one of the outer race ring or the inner race ring, and the outer race ring or the inner race ring is fixed by the annular member.
  • a lip portion facing or abutting with a gap is formed on the other of the race rings.
  • the filter is firmly fixed to the main body of the seal ring, which is a material that is difficult to deform, and only the annular member constituting the soft and relatively easily damaged lip portion is replaced with the main body of the seal ring. Can be possible. Therefore, the life of the seal ring using these and the bearing using the seal ring can be extended.
  • the filter and the seal ring are made of the same material, or a material having substantially the same linear expansion coefficient, or the filter is made of a material having a linear expansion coefficient equal to or greater than the linear expansion coefficient of the seal ring. Therefore, even if the seal ring is thermally expanded, the filter expands to the same extent following the thermal expansion of the seal ring, or the filter expands larger than the expansion amount of the seal ring. For this reason, it does not cause damage such as a broken mesh or a hole in the filter. Therefore, even when the seal ring is thermally expanded, the function of capturing foreign matter can be continuously exhibited.
  • the locking part provided on the inner diameter side of the seal ring is always maintained in the state where it enters the recess of the inner raceway. It should be noted that there is no gap between the seal ring and the inner race. Also in this respect, when the seal ring is thermally expanded, the function of capturing foreign matter can be continuously exhibited.
  • a traveling device that lubricates a power transmission mechanism such as a transmission and a reduction gear and a rolling bearing with a common oil
  • harmful foreign matters that flow out of the power transmission mechanism and float in the lubricating oil are filtered by the rolling bearing. It is captured so as not to enter the inside of. Therefore, the raceway surface and rolling surface of the rolling bearing are not damaged, such as peeling, scratches, and indentations, and the durability of the rolling bearing can be improved and the operation life thereof can be extended.
  • the principal part expanded sectional view which shows one Embodiment of this invention (A) (b) is the principal part enlarged view of FIG. The detail of a seal ring is shown, (a) is a principal part expanded side view, (b) is a principal part enlarged plan view (A) and (b) are perspective views showing details of a seal ring.
  • the principal part expanded sectional view which shows 2nd embodiment of this invention In FIG. 5, the principal part enlarged view which shows the state which inserted the member for dimension adjustment.
  • the principal part expanded sectional view which shows 3rd embodiment of this invention The principal part expanded sectional view which shows 4th Embodiment of this invention
  • the principal part expanded sectional view which shows 5th Embodiment of this invention (A)
  • (b) is explanatory drawing of the mesh size of a filter
  • (A) is a graph showing the relationship between the size of the indentation and the life reduction rate
  • (b) is a graph showing the mesh size and the size of the indentation.
  • the principal part expansion longitudinal cross-sectional view of the traveling apparatus provided with the rolling bearing of 1st embodiment.
  • FIGS. 1 and 2 are enlarged cross-sectional views of a main part of the rolling bearing 10 according to the present invention
  • FIGS. 3 and 4 are detailed views of a seal ring 20 provided in the rolling bearing 10.
  • This rolling bearing 10 is incorporated in the traveling device 4 of the mining dump truck (construction machine) 1 shown in FIG.
  • a chassis 2 that supports a loading platform and a cab is supported by a plurality of drive wheels (tires) 3.
  • the traveling device 4 transmits power to the drive wheels 3.
  • the traveling device 4 includes a traveling motor 5 that is a drive source and a shaft 6 that is connected to the rotation shaft of the traveling motor 5.
  • a reduction gear is disposed as a power transmission mechanism T on the outer side of the tip of the shaft 6.
  • a spindle 7 that forms a fixed axle is disposed outside the shaft 6.
  • a wheel 9 is arranged outside the spindle 7 via a rolling bearing 10. The rotation of the wheel 9 is transmitted to the drive wheel 3 via the rim 8.
  • This travel device 4 employs a planetary gear mechanism 50 as a speed reducer.
  • the planetary gear mechanism 50 includes a first planetary gear mechanism 50a and a second planetary gear mechanism 50b, and the rotation of the shaft 6 is decelerated and transmitted to the wheel 9 via the two planetary gear mechanisms 50a and 50b.
  • the configuration of the speed reducer is not limited to this example, and a speed reduction mechanism using a planetary gear mechanism having another configuration or a known speed reduction mechanism other than the planetary gear mechanism can be employed.
  • FIG. 12 shows an enlarged vertical cross-sectional view of a main part of a portion where the rolling bearing 10 of the traveling device 4 is provided in a double row.
  • the drive wheel 3 is supported on the axle via the parallel tapered roller bearings.
  • a tapered roller bearing is often used as the rolling bearing 10 in order to have a structure capable of withstanding a large radial load.
  • the rolling bearing 10 has a tapered roller as a rolling element 13 between the raceway surfaces 11 a and 12 a of the outer raceway ring 11 and the inner raceway ring 12.
  • the rolling element 13 is held in the circumferential direction by a cage 14.
  • the parallel rolling bearings 10 are arranged so that the small diameter side end faces of the tapered rollers are back to back.
  • the raceway surface 12 a of the inner raceway ring 12 and the raceway surface 11 a of the outer raceway ring 11 go from the axially outer side of the two rows of rolling bearings 10, 10 to the central portion between the two rows of rolling bearings 10, 10. It is provided so that a mutual distance may become narrow toward the side which goes.
  • preload is applied to each rolling element 13 by pressing the inner race 12 against the outer race 11 toward the direction in which the distance decreases.
  • This preload is caused by tightening the bearing retainer 17 shown in FIG. 14 with a bolt 17a with respect to the spindle 7 and thereby axially between the inner bearing rings 12 and 12 and the bearing retainer 18 on the opposite side. It can be applied by applying a compressive force to the.
  • the power transmission mechanism T and the rolling bearing 10 are lubricated with a common lubricating oil. That is, since the oil is stored up to a certain level in the casing of the traveling device 4, at least the lower part of the power transmission mechanism T and the rolling bearing 10 is immersed in the oil. Thereby, the components of the power transmission mechanism T and the rolling bearing 10 are lubricated.
  • the inner race 12 is mounted on an axle (spindle 7) that is a non-rotating shaft and cannot rotate. Further, the outer race 11 is mounted so as to rotate integrally with the rotary housing H.
  • the rotary housing H is formed as a member integral with the wheel 9 of the drive wheel 3 or is coupled to the wheel 9 so as to be rotatable.
  • an oil flow path from the power transmission mechanism T side to the rolling bearing 10 side is provided on the side close to the power transmission mechanism T of the rolling bearing 10. That is, since the power transmission mechanism T and the rolling bearing 10 are lubricated with common oil, the oil transmission path between the power transmission mechanism T and the rolling bearing 10 is a mutual passage.
  • the oil flow path is an opening on the power transmission mechanism T side of the rolling bearing 10 on the side close to the power transmission mechanism T, that is, This is an opening on the side of the power transmission mechanism T in a bearing space formed between the outer race ring 11 and the inner race ring 12.
  • FIGS. 1 and 2 show the main part of the rolling bearing 10 on the side close to the power transmission mechanism T, and the left side in the figure is the opening on the power transmission mechanism T side.
  • a seal member S is attached to the rolling bearing 10 on the power transmission mechanism T side. As shown in FIG. 4, the seal member S is attached so as to cover the opening on the power transmission mechanism T side in the bearing space of the rolling bearing 10 on the power transmission mechanism T side. If necessary, a similar seal member S may be attached to the opening on the opposite side of the power transmission mechanism T in the rolling bearing 10 far from the power transmission mechanism T.
  • the seal member S includes a locking portion 21 that is locked to the inner race 12 of the rolling bearing 10, and a wall portion 25 that rises from the locking portion 21 toward the outer diameter side. And a labyrinth seal forming portion 26 extending from the wall portion, and a seal ring 20 having a L-shaped cross section (main body of the seal ring).
  • the seal ring 20 is made of resin, and a filter 23 made of the same resin is integrated by insert molding so as to cover the oil passage hole 22 formed in the wall portion 25 of the seal ring 20.
  • the filter 23 is located substantially at the center in the length direction of the oil passage hole 22 (the thickness direction of the seal ring 20).
  • the peripheral portion of the filter 23 is embedded and fixed in the resin of the seal ring 20 around the oil passage hole 22.
  • the material of the filter 23 and the material of the seal ring 20 are the same resin material, the material of the filter 23 and the material of the seal ring 20 have the same thermal expansion coefficient. For this reason, even if the seal ring 20 is thermally expanded due to the temperature rise of the lubricating oil in the rolling bearing 10, the filter 23 expands to the same extent following the thermal expansion of the seal ring 20. Therefore, damage such as a broken mesh or a hole in the filter 23 is not caused.
  • a polyamide resin or the like is employed as the material of the filter 23 and the seal ring 20, but other resins may be employed.
  • other resins include polyacetal (POM), polycarbonate (PC), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyetheretherketone (PEEK), polyphenylene sulfide (PPS), and polytetrafluoroethylene.
  • PTFE polysulfone
  • PSF polyethersulfone
  • PES polyimide
  • PEI polyetherimide
  • glass fiber reinforced resin for example, PA (polyamide) 46 + GF or PA (polyamide) 66 + GF can be employed.
  • the blending ratio of the glass fibers is optimized from the shrinkage ratio of the resin and the required strength, and is preferably 15 to 35%, more preferably 25 to 30%, for example.
  • the shrinkage rate becomes small, and dimensional management after molding becomes easy.
  • the glass fiber blending ratio is small, the strength of the resin is lowered and the resin tends to be deformed.
  • carbon fiber reinforced resin, polyethylene fiber reinforced resin, aramid fiber reinforced resin, or the like can be used as a material for these filter 23 and seal ring 20.
  • the filter 23 and the seal ring 20 are made of the same material, and they are integrated by insert molding.
  • the material of the filter 23 is not limited to the same material as the seal ring 20, A material having substantially the same linear expansion coefficient as the material of the seal ring 20 or a material having a linear expansion coefficient equal to or greater than the linear expansion coefficient of the seal ring 20 may be used. Even in such a configuration, the filter 23 expands to the same extent following the thermal expansion of the seal ring 20, or the filter 23 expands larger than the expansion amount of the seal ring 20. It can be prevented from being damaged without being pulled.
  • any material can be used for the filter 23 and the seal ring 20 regardless of the value of the linear expansion coefficient.
  • seal ring 20 has a locking portion 21 provided on the inner diameter side thereof entering a circumferential seal groove (concave portion) 30 provided in the inner raceway ring 12. 12 is locked so as to be movable in the radial direction.
  • the oil passage hole 22 of this embodiment forms a long hole having a rectangular shape in a side view.
  • a plurality of oil passage holes 22 are provided at intervals along the circumferential direction of the seal ring 20.
  • the shape, number, and arrangement interval of the oil passage holes 22 can be set as appropriate.
  • the shape of the oil passage hole 22 may be a shape other than a long hole having a rectangular shape in a side view, and may be a long hole having an arc shape in a side view, for example.
  • a mesh-like resin having a mesh size of about 0.1 to 1 mm can be adopted.
  • a mesh-like resin having a mesh size of 0.5 mm is used, but the mesh size of the filter 23 can be appropriately set according to the diameter of a foreign substance to be captured. An optimal mesh size that can ensure a long bearing life will be described later.
  • the labyrinth seal forming portion 26 is a cylindrical member extending inward in the axial direction from the outer diameter side edge of the wall portion 25, and the tip of the cylindrical member is opposed to the end surface of the outer race 11 with a minute gap. ing. Further, the outer diameter surface of the cylindrical member faces the inner diameter surface of the rotary housing H that holds the outer race 11 with a minute gap. A minute gap between the labyrinth seal forming portion 26 and the end surface of the outer race 11 and the inner diameter surface of the rotary housing H forms a labyrinth seal.
  • the labyrinth seal allows oil to flow to the rolling bearing 10 side, and the gap is very small, so that harmful foreign substances are prevented from entering the rolling bearing 10 side.
  • the labyrinth seal forming portion 26 is not limited to the cylindrical member, and may have another shape as long as it forms an annular shape around the axis.
  • a member having a tapered surface on the outer surface or the inner surface may be used.
  • the annular member it is also possible for the annular member to have a conical shape that gradually expands as the surface on the labyrinth side goes in one axial direction. In that case, there also exists an effect
  • the locking portion 21 of the seal ring 20 is located on the inner diameter side provided at the inner diameter side end of the wall portion 25. Protruding portion 24 is provided.
  • the projecting portion 24 includes an inner projecting portion 24a on the side close to the rolling element 13 and an outer projecting portion 24b on the far side.
  • the seal groove 30 includes an inner seal groove 30a into which the inner protrusion 24a enters and an outer seal groove 30b into which the outer protrusion 24b enters.
  • the seal ring 20 When the projecting portion 24 enters the seal groove 30, the seal ring 20 is locked to the inner race 12 so as to be movable in the radial direction during thermal expansion. Further, since the projecting portion 24 is composed of two projecting portions 24a and 24b along the axial direction, the seal ring 20 is more reliably guided to the inner track by the two projecting portions 24a and 24b having different axial positions. The ring 12 can be locked.
  • the depth h1 at which the inner protrusion 24a enters the inner seal groove 30a is the outer protrusion.
  • the depth 24b is set to be relatively shallower than the depth h2 into which the outer seal groove 30b enters. For this reason, when the seal ring 20 is pushed into the opening of the bearing space and fixed, the inner projecting portion 24a on the back side can be easily fitted into the inner seal groove 30a by elastic deformation or heat deformation at the time of the push.
  • the penetration depth h2 of the outer protrusion 24b with respect to the outer seal groove 30b is relatively deep, the outer diameter of the seal ring 20 is larger as in the state after the temperature rise (expanded state) shown in FIG. Even with respect to the amount of thermal expansion in the direction, the outer protrusion 24b and the outer seal groove 30b can remain locked. In other words, the engagement between the seal ring 20 and the inner race 12 can be maintained, and even in this expanded state, no gap is created in which harmful foreign substances enter the rolling bearing 10.
  • the penetration depth h2 of the outer protrusion 24b into the outer seal groove 30b is set so that no gap is formed (see FIG. 2B). For this reason, under the temperature environment assumed for the seal ring 20, the state in which the outer protruding portion 24 b always enters the outer seal groove 30 b is maintained, and a gap is formed between the inner race 12 and harmful foreign matter. I won't let you.
  • the inner side protrusion part 24a and the outer side protrusion part 24b are alternately arrange
  • the inner protrusion 24a is formed on the outer protrusion 24b when the seal ring 20 is pushed into the bearing space and fixed. It is difficult to enter the blind spot. For this reason, it is easy to visually confirm that the inner projecting portion 24a on the back side is fitted in the inner seal groove 30a.
  • 1 and FIG. 2 are sectional views corresponding to the II-II section of the seal ring 20 shown in FIG. 3B, and the positional relationship between the inner protruding portion 24a and the outer protruding portion 24b and the protruding height. Can be compared.
  • the inner side protrusion part 24a and the outer side protrusion part 24b are arrange
  • the arrangement of the inner projecting portion 24a and the outer projecting portion 24b is not limited to this embodiment, and the inner projecting portion 24a and the outer projecting portion 24b may be arranged such that overlapping portions are generated in the circumferential direction. Good.
  • the outer protrusion 24b has an axial clearance w1 between the outer seal groove 30b and its end wall. That is, the axial width of the outer seal groove 30b is wider by the axial gap w1 than the width of the outer protrusion 24b. For this reason, the outer protrusion 24b can move in the axial direction within the outer seal groove 30b within the range of the axial gap w1.
  • the outer protrusion 24b can move in the axial direction in the outer seal groove 30b, the outer protrusion 24b is not restrained in the outer seal groove 30b when the seal ring 20 is thermally expanded. , And can move smoothly in the radial direction along with the thermal expansion. For this reason, it is possible to prevent the pulling force in the outer diameter direction due to the thermal expansion from acting on the seal ring 20, and avoid damage to the filter 23.
  • the outer seal groove 30b is formed to open at the end surface of the inner race 12 as shown in FIG. Further, a shaft shoulder (shoulder portion of the axle) A that fits and is fixed to the inner diameter of the inner raceway ring 12 is brought into contact with the end surface of the inner raceway ring 12. For this reason, the opening of the end surface of the outer seal groove 30b can be closed by the shaft shoulder A after the outer protrusion 24b is fitted into the outer seal groove 30b. In this way, if the outer seal groove 30b is opened in the end face of the inner race 12, the fitting is easy. Moreover, since the opening of the end surface can be closed by the shaft shoulder A, the outer protrusion 24b is prevented from being detached from the outer seal groove 30b.
  • the filter 23 when the filter 23 is clogged with foreign matter, it can be dealt with by replacing the seal ring 20 with a new seal ring 20.
  • This embodiment is a rolling bearing 10 in a traveling device 4 used for a large construction machine, with an outer race 11 being a rotating side and an inner race 12 being a stationary side. Further, the seal ring 20 is locked to the inner race 12 which is the stationary side. For this reason, the filter 23 does not move in the direction around the axis, and the foreign matter captured by the filter 23 is not easily scattered.
  • the type of the rolling bearing 10 to which the seal ring 20 is attached is arbitrary.
  • it may be a tapered roller bearing using a tapered roller as the rolling element 13, or a deep groove ball bearing using a ball as the rolling element 13.
  • a cylindrical roller bearing using a cylindrical roller may be used.
  • FIG. 5 shows a second embodiment of the present invention.
  • a lip portion 41 that comes into contact with the outer race 11 is provided at the outer diameter side end portion of the seal ring 20.
  • the lip portion 41 is configured by fixing a rubber ring member 40 molded separately from the seal ring 20 to the seal ring 20. Since the other main configuration is the same as that of the above-described embodiment, the difference will be mainly described below.
  • the seal member S has a locking portion 21 that is locked to the inner race 12 of the rolling bearing 10 and from the locking portion 21 toward the outer diameter side.
  • a seal ring 20 (a main body of a seal ring) is integrally provided with a rising wall portion 25 and a lip mounting portion 27 provided at an outer diameter side end portion of the wall portion.
  • annular member 40 is fixed to the lip mounting portion 27 of the seal ring 20 as shown in FIG.
  • the annular member 40 is made of rubber and is a softer material than the material of the seal ring 20 made of polyamide resin or the like.
  • the annular member 40 is fitted and fixed to the outer periphery of the lip mounting portion 27 and is in close contact with the lip mounting portion 27 due to its elasticity.
  • a material of the annular member 40 for example, nitrile rubber, acrylic rubber, urethane rubber, fluoro rubber, or the like can be used for synthetic rubber.
  • the annular member 40 fixed to the lip mounting portion 27 constitutes a lip portion 41 that contacts the outer race 11.
  • An abutting portion 41d provided at the tip of the lip portion 41 abuts on the outer race ring 11, and the lip portion 41 contacts the outer race ring 11 due to the elasticity of the material even if the seal ring 20 is thermally expanded. Contact is maintained.
  • the seal ring 20 fixed to the inner race 12 is a relatively hard material compared to the annular member 40 constituting the lip portion 41, the seal ring 20 is resistant to deformation due to external force, that is, hardly deformed against external force. .
  • the filter 23 is firmly fixed to the main body of the seal ring 20 which is a material that is not easily deformed, and only the annular member 40 constituting the lip portion 41 that is soft and relatively easily damaged is sealed.
  • the body of the ring 20 can be exchangeable. Therefore, as a result, the life of the seal member S and the bearing using the seal member S can be extended.
  • the position of the annular member 40 in the bearing width direction with respect to the seal ring 20 is determined. It can also be adjustable. This adjustment is possible, for example, by inserting a dimension adjusting member 28 between the axially outer end surface 40a of the annular member 40 and the inner end surface 27a of the lip mounting portion 27 as shown in FIG. . If the dimension adjusting member 28 is a plate-shaped member (shim), the adjustment dimension can be easily set by preparing various members having different thicknesses.
  • the lip tightening allowance of the seal member S can be easily adjusted.
  • the seal ring 20 and the annular member 40 can also be used for bearings of different model numbers having different width dimensions.
  • the seal ring 20 and the annular member 40 molded separately are prevented from rotating in the circumferential direction by adhesion or a rotation prevention mechanism, thereby causing a relative slip between the seal ring 20 and the ring member 40. It is also possible to prevent the sealing performance from being deteriorated due to wear.
  • a general adhesive can be used, and a technique by vulcanization bonding can also be employed.
  • the adhesion surface is between the axially outer end surface of the annular member 40 and the inner end surface 27a of the lip mounting portion 27, and between the inner peripheral surface 40b of the annular member 40 and the outer peripheral surface 27b of the lip mounting portion 27. It is desirable to do.
  • the annular member 40 has a structure that can prevent slippage in the rotational direction more reliably by fitting in the radial direction with not only adhesion but also tightening allowance. However, if the adhesion is omitted using a rotation prevention mechanism, the annular member can be easily replaced.
  • FIG. 7 shows a third embodiment of the present invention.
  • a locking means 29 that restricts the radial movement of the seal ring 20 is provided in the locking portion 21 of the seal ring 20 and the seal groove 30 of the inner race 12.
  • the locking means 29 includes a locking projection 29 a provided in the locking portion 21 of the seal ring 20 and a locking recess 29 b provided in the seal groove 30.
  • the locking projection 29a is provided so as to protrude in the axial direction in the middle of the protruding direction of the outer protruding portion 24b among the inner protruding portion 24a and the outer protruding portion 24b constituting the locking portion 21.
  • the locking recess 29b is provided to be recessed in the axial direction on the inner surface of the outer seal groove 30b so that the locking projection 29a can enter.
  • the length of the locking recess 29b with respect to the radial direction of the bearing is longer than the length of the locking projection 29a with respect to the radial direction of the bearing by the dimension w2. For this reason, in a state where the locking projection 29a enters the locking recess 29b, the locking projection 29a can move in the locking recess 29b along the radial direction of the bearing.
  • the length of the locking recess 29b in the circumferential direction of the bearing is the same as the length of the locking projection 29a in the radial direction of the bearing, but the length of the locking recess 29b in the circumferential direction is the same.
  • the length can be made slightly longer than the length of the locking projection 29a. Thereby, the latching convex part 29a can move in the latching concave part 29b along the circumferential direction of the bearing.
  • the locking projection 29 a of the seal ring 20 enters the locking recess 29 b in the sealing groove 30.
  • the seal ring 20 is restricted from moving by a predetermined amount or more in the radial direction of the bearing, and is restricted from moving in the circumferential direction of the bearing. Therefore, when the seal ring 20 is thermally expanded, while restricting movement of the thermally expanded seal ring 20 in the radial direction by a predetermined amount or more (particularly movement due to expansion from the cold state to the outer diameter direction) At the same time, the seal ring 20 can be prevented from rotating in the circumferential direction with respect to the inner race 12.
  • the seal ring 20 is attached when the seal ring 20 is attached to the bearing. Even when 20 is heated, the locking projection 29a can smoothly enter the locking recess 29b.
  • FIG. 8 shows a fourth embodiment of the present invention.
  • a positioning step portion 41 c is provided on the inner diameter portion of the annular member 40 constituting the lip portion 41.
  • the step portion 41 c meshes with a step portion 27 c provided on the lip mounting portion 27 of the seal ring 20 to position the annular member 40 in the axial direction with respect to the seal ring 20.
  • locking part 21, and the inner side race ring fitting part between the inner side seal groove 30a and the outer side seal groove 30b. 32 is press-fitted with a tightening margin.
  • the press-fitting is set to a predetermined tightening allowance by heating and inflating the resin seal ring 20 and fitting the seal ring 20 into the inner race 12 in this state. Due to the tightening allowance, the sealing performance of the seal ring 20 is improved.
  • FIG. 9 shows a fifth embodiment of the present invention.
  • the cross-sectional shape of the lip mounting portion 27 of the seal ring 20 is a U-shape.
  • the lip mounting portion 27 has a U-shaped cross section, the annular member 40 has a protective effect against an external force from the outer peripheral side with respect to the seal ring 20. Further, since the lip mounting portion 27 has a U-shaped cross section, when an adhesive or a filler is used for fixing the annular member 40, an effect of preventing leakage of the adhesive or the filler can be expected.
  • a synthetic resin such as polyamide or a metal such as stainless steel can be employed as the material of the filter 23 for example.
  • a synthetic resin it is effective for preventing rust and reducing the weight.
  • the material of the filter 23 is a metal, it is possible to improve the strength and durability against hard foreign matters such as metal.
  • the mesh member constituting the filter 23 has a mesh size of 0.3 mm to 0.7 mm as described above. This is the same in any embodiment.
  • the mesh size is desirably 0.5 mm.
  • the mesh size means a mesh opening (opening) of a mesh structure as shown by a dimension w3 in FIGS. 10 (a) and 10 (b).
  • FIG. 11A shows the relationship between the size of the indentation generated on the raceway surface and the rolling surface of the bearing and the rate of decrease in the life of the bearing associated with the indentation
  • FIG. The relationship of the magnitude
  • test conditions were a tapered roller bearing with main dimensions (inner diameter, outer diameter, width) of ⁇ 30 mm ⁇ ⁇ 62 mm ⁇ 17.25 mm as a rolling bearing, radial load 17.65 kN, axial load 1.47 kN, shaft rotation speed 2000 min. -1 is set.
  • the mesh size capable of preventing the intrusion of foreign matters that would cause indentations exceeding 1 mm in size was 0.5 mm or less. For this reason, if the mesh size is 0.5 mm or less, the life of the bearing is particularly good.
  • the filter size By setting the filter size to 0.7 mm or less, the indentation that can be generated is 1.3 mm or less. If the indentation is 1.3 mm or less, it is possible to suppress the decrease in the life of the rolling bearing to a certain level (life ratio of 0.6 with respect to the one without the indentation).
  • the mesh size is desirably 0.3 mm or more.
  • FIG. 13 shows an enlarged longitudinal sectional view of a main part of the traveling device 4 according to the present invention.
  • This traveling device 4 is also used for the undercarriage of the mining dump truck (construction machine) 1. Since the configuration other than the main part shown in FIG. 13 can be the same as the configuration of FIG. 14 and the like described in the above embodiments, a part of the description is omitted, and the following is the difference from the above embodiment. The explanation will be focused on.
  • the traveling device 4 includes a traveling motor that is a drive source 5, a power transmission mechanism T that transmits rotation from the drive source 5 to the drive wheels 3, and a drive.
  • a rolling bearing 10 that supports the wheel 3 on the axle is provided on a coaxial line.
  • the power transmission mechanism T is a speed reducer including the planetary gear mechanism 50 similar to that of the above-described embodiment.
  • rolling elements 13 are incorporated between the raceway surfaces 11 a and 12 a of the outer raceway ring 11 and the inner raceway ring 12.
  • the rolling element 13 is held in the circumferential direction by a cage 14.
  • a tapered roller bearing using a tapered roller is similarly employed as the rolling bearing 10 as the rolling element 13, and two of the tapered rollers are arranged in parallel along the axial direction.
  • the drive wheel 3 is supported on the axle via the double-row tapered roller bearing.
  • the inner race 12 is mounted on an axle (spindle 7) that is a non-rotating shaft and cannot rotate. Further, the outer race 11 is mounted so as to rotate integrally with the rotary housing H.
  • the rotary housing H is formed as a member integral with the wheel 9 of the drive wheel 3 or is rotatably coupled integrally with the wheel 9 (see FIG. 14 for both the spindle 7 and the wheel 9). ).
  • an oil flow path from the power transmission mechanism T side to the rolling bearing 10 side is provided on the side close to the power transmission mechanism T of the rolling bearing 10.
  • the seal ring 20 covering the oil flow passage is attached so as to cover the opening of the bearing space of the rolling bearing 10 on the power transmission mechanism T side.
  • the opening of the bearing space is annular along the raceway surfaces 11a and 12a of the outer raceway ring 11 and the inner raceway ring 12, and the seal ring 20 covering it is also annular.
  • the seal ring 20 is made of a synthetic resin molded product.
  • the resin seal ring 20 is attached between the large collar 12 b of the inner raceway ring 12 and the large-diameter side end portion of the inner diameter surface of the outer raceway ring 11.
  • the outer race ring 11 is on the rotation side
  • the inner race ring 12 is on the stationary side
  • the seal ring 20 is fixed to the outer race ring 11 on the rotation side by fitting.
  • the seal ring 20 includes a locking portion 21 locked to the outer race 11, a wall portion 25 rising from the locking portion 21 toward the inner diameter side, and the wall portion 25.
  • a cylindrical labyrinth seal forming portion 26 that extends and faces the outer diameter surface of the inner race 12 is provided.
  • the locking portion 21 has a cylindrical shape, and the cylindrical locking portion 21 is fitted and fixed in a seal groove 11 b provided at the large-diameter end of the inner diameter surface of the outer race 11.
  • a projecting portion 24 extending in the circumferential direction is formed on the outer diameter surface of the locking portion 21, and the projecting portion 24 is detachably engaged with a circumferential recess 11c formed in the seal groove 11b. If an external force directed outward in the axial direction (on the side of the power transmission mechanism T) is applied to the seal ring 20 attached to the opening of the bearing space, the engagement of the protrusion 24 with the recess 11c is released, and the seal ring 20 Can be removed.
  • the inner diameter surface of the labyrinth seal forming portion 26 is slightly larger than the outer diameter surface of the inner race 12 facing it. Since the gap between the opposing surfaces is a minute gap, the passage of oil is allowed through the gap, and the entry of harmful foreign substances into the bearing is prevented.
  • the seal ring 20 is provided with an oil passage hole 22 penetrating the wall portion 25 in the axial direction.
  • the oil passage hole 22 forms a long hole having an arc shape in a side view.
  • a plurality of arc-shaped oil passage holes 22 are provided at intervals along the circumferential direction of the seal ring 20 so that the arcs are arranged in the direction around the axis.
  • the filter 23 is attached so as to cover the oil passage hole 22.
  • the seal ring 20 is made of resin, and a filter 23 made of the same resin is integrated by insert molding so as to cover the oil passage hole 22.
  • the filter 23 is located substantially at the center in the length direction of the oil passage hole 22 (the thickness direction of the seal ring 20).
  • the peripheral portion of the filter 23 is embedded and fixed in the resin of the seal ring 20 around the oil passage hole 22.
  • the material of the filter 23 and the material of the seal ring 20 are the same resin material, the material of the filter 23 and the material of the seal ring 20 have the same thermal expansion coefficient. For this reason, even if the seal ring 20 is thermally expanded due to the temperature rise of the lubricating oil in the rolling bearing 10, the filter 23 expands to the same extent following the thermal expansion of the seal ring 20. Therefore, damage such as a broken mesh or a hole in the filter 23 is not caused. Also in this embodiment, a polyamide resin or the like is employed as a material for the filter 23 or the seal ring 20, but other resins may be employed.
  • the filter 23 can be fixed to the surface of the wall 25 of the seal ring 20 on the side of the rolling element 13 by using, for example, an adhesive. In this way, since the filter 23 is fixed to the surface of the wall 25 on the rolling element 13 side, the oil passage hole 22 on the power transmission mechanism T side (planetary gear mechanism 50 side) than the filter 23.
  • the inner space functions as a foreign substance accumulation space.
  • the material of the filter 23 various materials such as metal and nonwoven fabric can be adopted in addition to the resin of this embodiment.
  • the material and mesh size of the filter 41 can be appropriately set according to the diameter of the foreign material to be captured.
  • the traveling device 4 is provided with a rotation sensor 60.
  • the rotation sensor 60 is provided at the end of the rolling bearing 10 on the side away from the power transmission mechanism T on the side opposite to the power transmission mechanism T.
  • the rotation sensor 60 is used for ABS control or traction control, for example, by detecting the rotation speed of the wheel 9.
  • the rotation sensor 60 fixes a pulsar ring as an encoder 61 to the outer race 11 on the rotation side. Further, a sensor case 64 having a sensor portion 62 made of a back magnet type magnetic sensor is fixed to the inner race 12 which is the stationary side. Since many rolling bearings used in the suspension of various construction machines have a relatively large diameter, the performance of the sensor can be stabilized by using the rotation sensor 60 as a back magnet type in this way. .
  • the rotation sensor 60 is not limited to the back magnet type magnetic sensor, and may be a rotation sensor 60 having another configuration.
  • the sensor case 64 that houses the sensor unit 62 is fixed to a ring-shaped member 65 that fits on the outer diameter surface of the inner race 12.
  • the sensor case 64 is fixed to the inner race 12 through the ring-shaped member 65.
  • the ring-shaped member 65 is divided into two parts along the circumferential direction, and is composed of two members having a semicircular shape.
  • the ring-shaped member 65 is fastened and fixed around the inner race 12 by joining both ends of the two semicircular members.
  • the circumferential protrusion 65 a provided on the inner diameter surface of the ring-shaped member 65 is fitted and locked in the circumferential groove 12 d provided on the outer diameter surface of the inner race 12.
  • the input / output line 63 that leads to the circuit board mounted on the sensor unit 62 is drawn out of the rolling bearing 10 from the sensor case 64 through the lead-out hole 66 of the ring-shaped member 65.
  • the encoder 61 is fixed by being fitted in a circumferential groove 11d formed on the inner diameter surface of the outer race 11.
  • the circumferential groove 11 d is provided at the large-diameter end of the inner diameter surface of the outer race 11.
  • the rotation sensor 60 Since the rotation sensor 60 is disposed at the position farthest from the power transmission mechanism T, even if a foreign matter enters the rolling bearing 10, the amount of foreign matter that reaches the rotation sensor 60 can be reduced. For this reason, the performance of the rotation sensor 60 is not hindered.
  • a tapered roller bearing is adopted as the rolling bearing 10, but the rolling bearing 10 is not limited to this.
  • a deep groove ball bearing in which a ball as the rolling element 13 is incorporated between an outer ring as the outer race ring 11 and an inner ring as the inner race ring 12 and the ball is held by a cage may be used.
  • a cylindrical roller or spherical roller as a rolling element 13 is incorporated between an outer ring as the outer raceway ring 11 and an inner ring as the inner raceway ring 12, and a cylindrical roller bearing or automatic adjustment in which the cylindrical roller is held by a cage.
  • a center roller bearing may be used.
  • the number of rolling bearings 10 interposed between the axle and the drive wheel 3 may be one.
  • the seal ring 20 is opposed to either the outer race ring 11 or the inner race ring 12 with a minute gap. You may make it touch both.

Abstract

 シールリングが熱膨張した際にも、異物を捕捉する機能が発揮できるようにする。外側軌道輪(11)と内側軌道輪(12)との間に転動体(13)を組み込み、その軸受空間の少なくとも一端の開口をシールリング(20)で覆い、そのシールリング(20)に形成された通油孔(22)を覆うフィルタ(23)により潤滑オイルに含まれる異物を捕捉するようにしたフィルタ付き転がり軸受において、シールリング(20)は樹脂で構成され、フィルタ(23)とシールリング(20)とはインサート成型により一体であり、フィルタ(23)とシールリング(20)とを同一の素材で構成した。また、シールリング(20)とは別体の部材である円環部材(40)で構成したリップ部(41)が外側軌道輪(11)に当接し、そのシールリング(20)の内径側に設けた係止部(21)が、内側軌道輪(12)に設けた凹部に入り込むことによって、その熱膨張の際に、内側軌道輪(12)に対して径方向へ移動可能となるように係止されている構成とした。

Description

転がり軸受、及び、その転がり軸受を備えた走行装置
 この発明は、オイル潤滑される転がり軸受に係り、詳しくは、フィルタを通して流入するオイルで潤滑される転がり軸受に関し、さらには、トランスミッションや減速機などの動力伝達機構とともに、オイル潤滑式の転がり軸受を併せて備えた走行装置に関するものである。
 自動車や各種建設用機械等のトランスミッションやディファレンシャル、減速機等の動力伝達機構や、あるいは、それらを備えた走行装置には転がり軸受が組み込まれている。
 この種の装置では、転がり軸受が、動力伝達機構を潤滑するオイルと共通のオイルで潤滑される構造となっているものがある。
 しかし、トランスミッションやディファレンシャル、減速機等の動力伝達機構のケース内に収容されたオイルには、ギヤの摩耗粉(鉄粉等)等の異物が比較的多く含まれている。その異物が転がり軸受の内部に侵入すると、異物の噛み込みによって軌道面や転動面に剥離が生じて、転がり軸受の耐久性を低下させることになる。
 このため、その異物の侵入を防止するため、転がり軸受に取付けるシールリングにフィルタを設けたフィルタ付き転がり軸受が提案されている。このフィルタ付き転がり軸受は、シールリングに設けたオイル流通用の通油孔に、異物を捕捉するためのフィルタを取付けたものである(例えば、特許文献1,2参照)。
 また、自動車や各種建設用機械等の走行装置には、トランスミッションや減速機などの動力伝達機構とともに、オイル潤滑式の転がり軸受を併せて備えたものがある。
 この種の走行装置として、例えば、図16に示すような鉱山用ダンプトラック(建設用機械)1に用いられる走行装置4が挙げられる。この鉱山用ダンプトラック1は、荷台と運転台を支えるシャーシ2が、複数の駆動輪(タイヤ)3によって支持されている。走行装置4は、この駆動輪3に動力を伝達する。
 走行装置4の構成は、図15に示すように、駆動源である走行モータ5と、この走行モータ5の回転軸に接続されるシャフト6を備える。そのシャフト6の先端部の外側には動力伝達機構Tとして減速機が配置されている。
 また、シャフト6の外側には、固定の車軸を形成するスピンドル7が配置されている。このスピンドル7の外側には、転がり軸受10を介してホイール9が配置されている。ホイール9の回転は、リム8を介して駆動輪3に伝達される。
 減速機は、その自動車や各種建設用機械等の用途や機種等に応じて、種々の構成が採用される。例えば、図15に示す走行装置4では、減速機として遊星歯車機構50を採用している。遊星歯車機構50は、第一遊星歯車機構50aと第二遊星歯車機構50bとを備え、この2つの遊星歯車機構50a,50bを介して、シャフト6の回転を減速してホイール9に伝達する。
 第一遊星歯車機構50aは、シャフト6と一体に回転する第一太陽歯車51と、この第一太陽歯車51に噛み合う複数の第一遊星歯車52と、その第一遊星歯車52に噛み合う外輪歯車53とを備える。外輪歯車53には、シャフト6の軸周りに回転可能にする連結部材53aが接続されている。
 第二遊星歯車機構50bは、連結部材53aの回転に伴って軸周りに回転する第二太陽歯車54と、この第二太陽歯車54と噛み合う第二遊星歯車55を備える。第二遊星歯車55は、遊星キャリア56の支持軸56b周りに回転可能に支持され、ホイール9と一体に回転する外輪歯車59aに噛み合っている。また、その遊星キャリア56は、その延長部56aがスピンドル7の内周部7aにスプライン結合で固定されている。さらに、その遊星キャリア56の端面とスピンドル7の端面との間には軸受押え部品(リテーナ)17が入り込んでその間隙が保持されている。
 走行モータ5の駆動によってシャフト6が軸周りに回転すると、このシャフト6の回転によって第一太陽歯車51が軸周りに回転する。この第一太陽歯車51の回転によって、各第一遊星歯車52が外輪歯車53内で回転する。これらの第一遊星歯車52の回転に伴って連結部材53aが回転し、それに噛み合う第二太陽歯車54が軸周り回転する。
 第二太陽歯車54の回転に伴って、各第二遊星歯車55が遊星キャリア56の支持軸56b周りに回転し、それに噛み合う外輪歯車9aを介してホイール9を回転させる。このホイール9の回転が、リム8を介して駆動輪3に伝えられ、鉱山用ダンプトラック1が走行する(例えば、特許文献3,4参照)。
 この走行装置4では、スピンドル7とホイール9との間の転がり軸受10として、一対の単列円すいころ軸受を採用している。この種の建設用機械では、大きなラジアル荷重に耐え得る構造とするため、転がり軸受10として円すいころ軸受が用いられることが多い。
 円すいころ軸受は、転動体13として円すいころを採用し、内側軌道輪(内輪)12の軌道面12aと外側軌道輪(外輪)11の軌道面11aとは、軸方向いずれかの側(図2では、2列の円すいころ軸受の軸方向外側から、その2列の円すいころ軸受間の中央部へ向かう側)に向かって互いの距離が狭まるように設けられている。また、その距離が狭まる方向へ向かって外側軌道輪11に対して内側軌道輪12を押圧することにより、各転動体13に予圧が付与されている。この予圧は、前記軸受押え部品17を、スピンドル7に対してボルト17aで締め付けることにより、両内側軌道輪12,12に対して、対側の軸受押え部品18との間で軸方向に圧縮力を作用させることで付与することができる。
 さらに、この種の走行装置4には、転がり軸受10の軸方向いずれかの側に、必要に応じて回転センサが設けられる場合もある。回転センサは、必要に応じて回転方向、回転速度、回転角、回転加速度等の検出を適宜に行うように構成され、その出力信号がモータ軸等の回転軸の回転制御等に利用されている。
特開平6-323335号公報 特開2002-250354公報 特開2009-204016号公報 米国特許出願公開2004/0065169号公報
 上記特許文献1,2に記載されたフィルタ付き転がり軸受では、エラストマー材からなるシールリング(以下、エラストマー材からなるシールリングを、特に「弾性シール部材」と称する)に通油孔を設け、その通油孔をフィルタで覆う構造としている。
 しかし、このような転がり軸受では、弾性シール部材が芯金のない状態で軸受開口部、すなわち、シール装着部に剥き出しになっている。このため、軸受組立時、搬送時、及び機械装置組込み時等に何らかの外力が弾性シール部材に作用した場合、その弾性シール部材が変形したり、正規の組込み状態からずれることでシール性が損なわれる可能性がある。
 また、シール性が損なわないようにし、シールリングの長寿命化を図るためには、弾性シール部材と軸受間の締代を精度良く管理する必要がある。
 しかし、弾性シール部材は直接軸受に取付けられているため、締代のさらなる精度向上には、弾性シール部材及び軸受の各々の寸法の精度をさらに高めなければならない。このようなさらなる精度の向上は、製造コストの高騰を招くことになる。また、成形品である弾性シール部材の寸法管理には限界がある。
 一方、シール性確保のために締代を増大すると、軸受のトルク増大を招くことになる。さらには、軸受サイズ(特に弾性シール部材が装着される内外輪間の径方向寸法)が異なる軸受に適用する場合、弾性シール部材を別に用意する必要があり、製造コストの面で不利である。
 また、上記特許文献1,2に記載されたフィルタ付き転がり軸受では、樹脂やゴム製のシールリングに設けた通油孔に対して、フィルタを接着剤や嵌め込み等により固定していると考えられる。フィルタを構成する極細いメッシュ部材を、相対的に厚いシールリングの成型と同時に同一の型枠で一体に樹脂等で形成することは困難だからである。
 このため、シールリングが熱膨張で変形することにより、フィルタの固定部分の一部がシールリングから外れたり、あるいは、フィルタがシールリングから完全に外れてしまう等、フィルタの脱落を生じさせることがある。
 フィルタが脱落すると、そのままでは異物が転がり軸受の内部に侵入しやすくなるので、シールリングの交換が必要となる。シールリングの交換は、少なくとも動力伝達機構の分解を伴う作業となるので、いつでも容易にできるものではない。このため、フィルタは脱落しにくい構造であることが望ましい。
 また、フィルタをより強固に固定できるように、予め製作されたフィルタをシールリングにインサート成型する手法が考えられる。フィルタをシールリングにインサート成型すれば、フィルタの外周部は、シールリングの素材である樹脂やゴムに埋め込まれた状態に保持される。このため、フィルタの脱落は生じにくくなる。
 しかし、フィルタをシールリングにインサート成型しても、シールリングの熱膨張の度合いが大きくなると、フィルタがその熱膨張に追随できず、メッシュが破れたり穴が明くなどして損傷してしまうことがある。フィルタが損傷すると、異物は、その損傷箇所を通じて転がり軸受側に侵入するので、もはやシールリングは異物を捕捉する機能を発揮することができない。
 また、シールリングの熱膨張の度合いが大きくなると、シールリングそのものが外径側へ膨らんで、内側軌道輪から完全に脱落してしまうこともある。このような状態になると、異物は、その脱落箇所の隙間を通じて転がり軸受側に侵入するので、同じく、もはやシールリングは異物を捕捉する機能を発揮することができない。
 また、上記の走行装置4では、トランスミッションや減速機等の動力伝達機構Tを潤滑するオイルが、転がり軸受10側にも流入するようになっている。すなわち、潤滑用のオイルは、動力伝達機構T側と転がり軸受10側とで共通に用いられている。
 しかし、トランスミッションや減速機等の動力伝達機構Tを潤滑するオイルには、単体で用いられる一般的な転がり軸受10を潤滑するオイルよりも、相対的にギヤの摩耗粉(鉄粉等)等の異物の含まれている割合が多くなる。
 このため、その動力伝達機構Tを潤滑するオイルがそのまま転がり軸受10側に侵入すると、それとともに、異物も転がり軸受10の内部に侵入する機会が増える。このような異物は、動力伝達機構T側のオイルに介在することは一定の限度内において問題ない。しかし、転がり軸受10では、その異物が軌道面や転動面に噛み込むことによって、軌道面や転動面に剥離や傷、圧痕等の損傷を生じさせてしまうことがある。このため、転がり軸受20の耐久性を低下させることになるので好ましくない。
 そこで、この発明は、転がり軸受に備えられるフィルタ付きのシールリングのシール性が損なわれないようにすることを第一の課題とし、シールリングが熱膨張した際にも、異物を捕捉する機能が発揮できるようにすることを第二の課題とし、また、トランスミッションや減速機等の動力伝達機構と転がり軸受とを共通のオイルで潤滑する走行装置において、その転がり軸受に異物が侵入しないようにすることを第三の課題とする。
 上記第一の課題を解決するため、この発明は、外側軌道輪と内側軌道輪との間に転動体を組み込み、前記外側軌道輪と前記内側軌道輪との間に形成された軸受空間の少なくとも一端の開口をシールリングで覆い、そのシールリングに形成された通油孔を覆うフィルタにより潤滑オイルに含まれる異物を捕捉するようになっており、前記シールリングは前記外側軌道輪又は前記内側軌道輪の一方に係止され、前記シールリングにはそのシールリングよりも柔らかい素材からなる円環部材が固定されて、その円環部材により、前記外側軌道輪又は前記内側軌道輪の他方に隙間をもって対向又は当接するリップ部が構成されていることを特徴とする転がり軸受を採用した。
 すなわち、外側軌道輪又は内側軌道輪の一方に係止されるシールリングに対し、そのシールリングよりも柔らかい素材からなる円環部材を固定し、その円環部材により、外側軌道輪又は内側軌道輪の他方に隙間をもって対向又は当接するリップ部が構成されるようにした。
 この構成によれば、軌道輪に固定されるシールリングは、リップ部を構成する円環部材に比べて相対的に硬い素材であるので、外力に対する変形に強く、すなわち、外力に対して変形しにくい。このため、フィルタは、その変形しにくい素材であるシールリングの本体にしっかりと固定され、また、柔らかくて相対的に損傷しやすいリップ部を構成する円環部材のみを、そのシールリングの本体に対して交換可能とすることができる。したがって、結果的にシールリングを用いたシール部材及び軸受を長寿命化することができる。
 また、リップ部を構成する円環部材と軌道輪に固定されるシールリングとを別体としたことにより、その円環部材のシールリングに対する軸受幅方向の位置を調整可能とすることもできる。このようにすれば、シールリングのリップ締代を容易に調整することができる。これにより、リップ部が摩耗した場合のリップ締代の再調整ができることに加え、幅寸法が異なる別の型番の軸受にも、シールリングや円環部材を兼用することができる。
 さらに、別体で造られたシールリングと円環部材とを、接着や回り止め機構により周方向への回り止めを施すことで、そのシールリングと円環部材間の相対滑りによる摩耗によって、シール性が低下することを防止することもできる。
 これらの構成において、前記シールリングと前記円環部材の素材は、前記円環部材が前記シールリングよりも柔らかい素材である限りにおいて自由であるが、例えば、前記シールリングは樹脂又は金属製であり、前記円環部材は、シールリングを構成する樹脂や金属よりも柔らかい素材であるエラストマー材からなる構成、すなわち、ゴム製である構成を採用することができる。
 また、このシールリングの素材としては、例えば、ガラス繊維強化樹脂を採用することができる。ガラス繊維強化樹脂は、エラストマー単体に比べて剛性が高く、外力に対して変形しにくい素材である。このため、このような素材を採用すれば、シール性の確保に有効である。これらの各構成では、シールリングは、外側軌道輪又は内側軌道輪のうち一方の軌道輪に固定される。
 また、これらの各構成において、前記フィルタの素材は自由であるが、そのフィルタの素材に、例えば、樹脂又は金属からなる網目状部材である構成を採用することができる。
 また、上記第二の課題を解決するため、この発明は、外側軌道輪と内側軌道輪との間に転動体を組み込み、前記外側軌道輪と前記内側軌道輪との間に形成された軸受空間の少なくとも一端の開口をシールリングで覆い、そのシールリングに形成された通油孔を覆うフィルタにより潤滑オイルに含まれる異物を捕捉するようにしたフィルタ付き転がり軸受において、前記シールリングは樹脂で構成され、前記フィルタと前記シールリングとはインサート成型により一体であり、前記フィルタの素材は、前記シールリングと同一の素材であるか、ほぼ同じ線膨張係数を有する素材、又は、前記シールリングの線膨張係数以上の線膨張係数を有する素材である構成を採用した。
 なお、この構成は、リップ部をシールリングとは別体の部材として備えた上記の各構成においても採用することができる。すなわち、上記の各構成において、前記フィルタと前記シールリングとはインサート成型により一体であり、前記フィルタの素材は、前記シールリングと同一の素材であるか、ほぼ同じ線膨張係数の素材、又は、前記シールリングの線膨張係数以上の線膨張係数を有する素材である構成を採用することができる。
 フィルタとシールリングとを同一の素材、又は、ほぼ同じ線膨張係数の素材、又は、そのフィルタを、前記シールリングの線膨張係数以上の線膨張係数を有する素材としたことから、シールリングが熱膨張しても、フィルタがそのシールリングの熱膨張に追随して同程度膨張するか、あるいは、フィルタがシールリングの膨張量よりも大きく膨張する。このため、フィルタのメッシュが破れたり穴が明くなどの損傷を生じさせない。
 なお、そのフィルタやシールリングの素材として、例えば、ポリアミド樹脂を採用することができる。また、フィルタとシールリングとが異なる素材である場合、それらの素材同士は、想定される温度環境での熱膨張の際に、フィルタに損傷を生じさせない程度に近似したほぼ同じ線膨張係数の素材であること、又は、そのフィルタは、線膨張係数以上の線膨張係数を有する素材であることが必要である。このとき、その素材同士は、同一の線膨張係数の材料であればさらに好ましい。
 これらの各構成において、前記フィルタを構成する網目状部材は、そのメッシュサイズを0.3mm~0.7mmとすることが望ましい。また、特に、そのメッシュサイズを0.5mmとすることが望ましい。
 すなわち、シールリングに設けたフィルタのメッシュが大きすぎると、大きな異物が軸受内へ浸入し、軸受の寿命に影響を与える大きな圧痕が、軸受の軌道面や転動面に形成されてしまうことになる。また、逆に、メッシュを小さくしすぎると、異物でメッシュが目詰まりし、潤滑油が軸受に供給されなくなることがある。
 そこで、寿命試験を行うことにより、軸受の軌道面や転動面に生じた圧痕の大きさと、その圧痕に伴う軸受の寿命の低下率を調べ、ある大きさ以下の圧痕は、寿命に影響を与えないことを確認した。また、実験により、メッシュサイズと、そのメッシュを通過した異物によって形成される圧痕の大きさの関係を確認した。
 メッシュサイズ、すなわち、メッシュの大きさとは、メッシュの目開き(オープニング)のことを言う。実験では、軸受の軌道面や転動面に形成される圧痕の大きさが1mm超えると、軸受の寿命は急激に低下することが確認できた。また、大きさ1mmを超える圧痕を生じさせるような異物の侵入を阻止できるメッシュサイズは、0.5mm以下であることが確認できた。このため、メッシュサイズが0.5mm以下であれば、軸受の寿命は特に良好である。
 なお、フィルタサイズを0.7mm以下とすることにより、生じ得る圧痕は1.3mm以下となる。圧痕が1.3mm以下であれば、転がり軸受の寿命の低下をある程度のレベル(圧痕の無いものに対して寿命比0.6)に抑えることが可能である。なお、目詰まり防止のため、メッシュサイズは0.3mm以上とすることが望ましい。
 このフィルタとシールリングとをインサート成型により一体とし、且つ、そのフィルタとシールリングと同一の素材、ほぼ同じ線膨張係数の素材、又は、そのフィルタを、前記シールリングの線膨張係数以上の線膨張係数を有する素材とした構成において、シールリングの軌道輪に対する係止構造、係止方法は、種々の構成を採用することができる。また、前述の円環部材で構成されたリップ部を備えた構成を併せて採用することもできる。これらの各構成においても、シールリングは、外側軌道輪又は内側軌道輪のうち一方の軌道輪に固定される。
 ところで、転がり軸受内のシールリングの使用環境下において、オイル等の温度上昇とともに、そのシールリングは主に外径側に向かって熱膨張する。そして、使用環境下で想定される最高の温度、すなわち、最大の熱膨張量となった状態のシールリングが、その膨張状態でもなお、内側軌道輪との間に有害な異物が入り込む隙間が生じていないことが求められる。
 そこで、シールリングを内側軌道輪に固定する場合において、そのシールリングの内側軌道輪に対する係止構造、係止方法として、次なる構成を採用することができる。
 すなわち、外側軌道輪と内側軌道輪との間に転動体を組み込み、前記外側軌道輪と前記内側軌道輪との間に形成された軸受空間の少なくとも一端の開口をシールリングで覆い、そのシールリングに形成された通油孔を覆うフィルタにより潤滑オイルに含まれる異物を捕捉するようになっており、前記シールリングは、少なくとも前記内側軌道輪に係止される係止部と、その係止部から外径側に向かって立ち上がる壁部とを備え、前記シールリングは前記係止部が前記内側軌道輪に設けた凹部に入り込むことによって前記内側軌道輪に対して熱膨張時に径方向へ移動可能に係止されている構成である。
 なお、このシールリングを内側軌道輪に対して熱膨張時に移動可能とする構成は、上記の各構成においても併せて採用することができる。すなわち、上記の各構成において、前記シールリングは、少なくとも前記内側軌道輪に係止される係止部と、その係止部から外径側に向かって立ち上がる壁部とを備え、前記シールリングは、その内径側に設けた係止部が、前記内側軌道輪に設けた凹部に入り込むことによって、その熱膨張の際に、前記内側軌道輪に対して径方向へ移動可能となるように係止されている構成とすることができる。
 この構成によれば、シールリングの内径側に設けた係止部が、内側軌道輪の凹部に入り込んで係止されており、その係止部と凹部とが係止されている限度内において、シールリングの熱膨張が生じ得るように設定される。すなわち、シールリングに想定される温度環境下では、常に、係止部が凹部に入り込んだ状態が維持されるので、熱膨張後もなお、内側軌道輪との間に有害な異物が入り込む隙間が生じない。
 一般に、外側軌道輪又は内側軌道輪のうち、一方の軌道輪に固定したシールリングが、他方の軌道輪に微小間隙をおいて対向している場合、その微小間隔を通じたオイルの流通は許容される。シールリングの先端がラビリンスシール部を構成する場合等である。しかし、その間隙は微小であるから、転がり軸受側への有害な異物の侵入は阻止されている。ここで、上記の構成において、シールリングの熱膨張によって、その微小間隙が狭くなったり、あるいは閉じたりすることは差し支えない。
 ここで、内側軌道輪に固定したシールリングの外側軌道輪の端部に、その外側軌道輪に当接する、又は、隙間をもって対抗するリップ部を備えた構成を採用することができる。リップ部は、シールリングと別体に成型して、両者を接着、嵌合等により固定することができる。シールリングとリップ部とが別体であれば、例えば、シールリングにはガラス繊維強化樹脂等の比較的変形しにくい素材を、また、リップ部にはゴム等、シールリングよりも柔らかい素材を採用することができる。
 また、これらの各構成において、シールリングは、前記壁部から伸びて前記外側軌道輪に微小間隙をおいて対向するラビリンスシール形成部を備えた構成とすることもできる。特に、前記係止部と凹部とによって、内側軌道輪に固定されたシールリングでは、前記ラビリンスシール形成部は、前記壁部から軸方向に伸びる円環部材であり、その円環部材の先端が前記外側軌道輪の端面に微小間隙をおいて対向し、その外径面が前記外側軌道輪を保持するハウジングに微小間隙をおいて対向する構成とできる。ラビリンスシール形成部は、シールリングと一体に成型することもできるし、シールリングと別体に成型して、両者を接着、嵌合等により固定してもよい。
 このラビリンスシール形成部は、シールリングを内側軌道輪に固定する場合には、外側軌道輪に対して微小間隙をおいて対向していればよく、シールリングを外側軌道輪に固定する場合には、内側軌道輪に対して微小間隙をおいて対向していればよい。このとき、ラビリンスシールは、一方の軌道輪に固定されたシールリングのラビリンスシール形成部と、他方の軌道輪の端面、内径面、あるいは、その軌道輪を保持する回転ハウジングとの間に形成されている構成が考えられる。
 例えば、シールリングが内側軌道輪に固定され、ラビリンスシール形成部が、シールリングの壁部から軸方向に伸びる円環部材であり、その円環部材の先端が前記外側軌道輪の端面に微小間隙をおいて対向し、その外径面が前記外側軌道輪を保持するハウジングに微小間隙をおいて対向する構成とすることができる。
 この構成では、円筒状を成すラビリンスシール形成部の外径面が、外側軌道輪を保持する回転ハウジングに微小間隙をおいて対向し、ラビリンスシール形成部の先端が外側軌道輪の端面に微小間隙をおいて対向する。このため、シールリングの熱膨張の際に、その回転ハウジング側の微小間隙を縮小する方向(外径方向)への熱膨張が許容されやすい。このようなラビリンスシール構造を備えたシールリングでは、従来、熱膨張による脱落が生じやすかったので、本構造とする効果がより高い。なお、このラビリンスシール形成部を構成する円環部材は、例えば、円筒部材であってもよいし、外面又は内面にテーパ面を有する部材であってもよい。
 これらの各構成において、係止部が、内側軌道輪の凹部に入り込んで係止されることで、そのシールリングと内側軌道輪との間から有害な異物が入り込まないようになっている構成の場合、その凹部は、例えば、内側軌道輪の端面であっても外径面であってもよい。
 このとき、その内側軌道輪の凹部を、周方向に沿って形成されたシール溝とした構成を採用することができる。
 その構成は、前記係止部は、前記壁部の内径側端部に設けられた突出部を備え、前記凹部は、前記内側軌道輪に形成された周方向のシール溝であり、その突出部が前記シール溝に入り込むことにより、前記シールリングは前記内側軌道輪に対して熱膨張時に径方向へ移動可能に係止されている構成である。
 なお、互いに係止する係止部と凹部とは、周方向に沿って断続的に配置されていてもよいし、全周に亘って連続的であってもよい。
 また、これらの各構成において、シールリングを取付ける転がり軸受の種別は自由であり、例えば、転動体として円すいころを用いた円すいころ軸受であってもよいし、その他、転動体としてボールを用いた深溝玉軸受や、円筒ころを用いた円筒ころ軸受、あるいは、球面ころを用いた自動調心ころ軸受等であってもよい。
 転がり軸受が円すいころ軸受である場合には、前記シール溝は、前記内側軌道輪の大つば外径面に開口して形成されている構成とすることができる。また、転がり軸受が深溝玉軸受、円筒ころ軸受、又は、自動調心ころ軸受である場合には、前記シール溝は、その転がり軸受の前記内側軌道輪の端部外径面に開口して形成されている構成とすることができる。
 また、前記係止部として突出部を備えた構成において、前記突出部は、前記転動体に近い側の内側突出部と遠い側の外側突出部とを備え、前記シール溝は、前記内側突出部が入り込む内側シール溝と、前記外側突出部が入り込む外側シール溝とを備えた構成を採用することができる。
 この構成によれば、シールリングの係止部は、軸方向に沿って二つの突出部を備えるので、その軸方向位置の異なる二つの突出部によって、シールリングをより確実に内側軌道輪に係止できる。
 また、その内側突出部が前記内側シール溝に入り込む深さは、前記外側突出部が前記外側シール溝に入り込む深さよりも浅く設定されている構成を採用することができる。
 この構成によれば、シールリングを軸受空間の開口に押し込んで固定する際に、より奥側に位置する内側突出部を弾性変形又は加熱変形させ、容易にシール溝に嵌め込みできる。また、手前側に位置する外側突出部のシール溝に対する入り込み深さは深いので、大きな外径方向への熱膨張に対しても、シールリングと内側軌道輪との係止を維持できる。
 なお、前記内側突出部と前記外側突出部とは、それぞれ周方向全周に亘って連続的に設けてもよいし、それぞれ、周方向に沿って断続的に設けてもよい。すなわち、前記内側突出部を周方向に沿って断続的に、前記外側突出部を周方向に沿って連続的としてもよい。あるいは、前記内側突出部を周方向に沿って連続的に、前記外側突出部を周方向に沿って断続的としてもよい。また、その両方を連続的又は断続的とすることもできる。
 また、前記内側突出部と前記外側突出部とを周方向に沿って交互配置とすることもできる。内側突出部と外側突出部とが周方向に交互配置であれば、シールリングを軸受空間の開口に押し込んで固定する際に、内側突出部が外側突出部の死角に入りにくい。このため、奥側の内側突出部がシール溝に嵌まっていることを目視で確認しやすい。
 この内側突出部と外側突出部とを備えた構成において、少なくとも前記外側突出部は、前記外側シール溝内において軸方向へ移動可能である構成を採用することができる。外側突出部が外側シール溝内で軸方向へ移動可能であれば、シールリングが熱膨張する際に、外側突出部がそのシール溝内で円滑に径方向へ移動できる。このため、外側突出部がシール溝内で拘束されず、そのシールリングに熱膨張に伴う外径方向への引っ張り力が作用することを防止し、フィルタの損傷を回避し得る。
 これらの構成において、前記突出部に軸方向へ突出する係止凸部を設け、前記シール溝内に係止凹部を設け、前記係止凸部が前記係止凹部に入り込むことで、前記シールリングは、その半径方向又は周方向への動き、あるいは、その両方向への動きが規制される構成を採用することができる。
 この構成によれば、シールリングが熱膨張した際、その熱膨張したシールリングの径方向への所定量以上の移動(特に、冷間状態から外径方向への膨張による移動)を規制しつつ、同時に、シールリングが内側軌道輪に対して周方向に回転することを防止することができる。
 これらの構成において、前記外側シール溝は、前記内側軌道輪の端面に開口して形成されている構成を採用することができる。シール溝への入り込み深さが深い外側突出部は、そのシール溝への嵌め込みが容易でない場合(外側突出部がシール溝内で折れ曲がってしまうような状態)も想定されるが、この構成のように、外側シール溝を内側軌道輪の端面に開口させれば、その嵌め込みは容易である。
 このとき、前記内側軌道輪の端面に、その内側軌道輪の内径に嵌め合いで固定される軸肩が当接するようにし、前記外側シール溝の前記端面の開口は、前記軸肩によって塞がれる構成を採用することができる。この構成によれば、外側突出部は外側シール溝内に確実に保持されるようになる。すなわち、外側突出部を外側シール溝へ嵌め込んだ後、軸肩で外側シール溝の端面の開口を塞ぐことができる。
 また、上記第三の課題を解決するため、この発明は、上記の各構成からなるフィルタ付き転がり軸受を、動力伝達機構と転がり軸受とが共通の潤滑用オイルで潤滑される走行装置に採用したのである。
 すなわち、その構成は、駆動源と、その駆動源からの回転を駆動輪に伝達する動力伝達機構と、前記駆動輪を車軸に支持する転がり軸受とを同軸線上に備え、前記動力伝達機構と前記転がり軸受とが共通の潤滑用オイルで潤滑される走行装置において、前記転がり軸受に、上記の各構成のいずれかからなる転がり軸受を用い、前記転がり軸受の前記動力伝達機構に近い側に、その動力伝達機構側から転がり軸受側へのオイルの流通路を備え、前記転がり軸受の前記外側軌道輪と前記内側軌道輪との間に形成された軸受空間の軸方向一端の開口が前記流通路であってその開口が前記シールリングで覆われており、前記シールリングに一体の前記フィルタは、前記流通路を通るオイルに含まれる異物を捕捉することを特徴とする走行装置を採用した。
 この構成によれば、動力伝達機構から流出してその潤滑油内に浮遊する摩耗粉(鉄粉等)等の有害な異物が、フィルタによって転がり軸受の内部に侵入しないように捕捉される。このため、有害な異物は、転がり軸受側に侵入しにくくなる。したがって、転がり軸受の軌道面や転動面に剥離や傷、圧痕等の損傷を生じさせず、転がり軸受の耐久性を高め、その運転寿命を長くすることができる。
 この動力伝達機構としては、例えば、トランスミッションや減速機、増速機等が挙げられる。減速機の場合、特に、遊星歯車機構を備えた遊星減速機とすることができる。遊星歯車機構を備えた遊星減速機は、例えば、鉱山用ダンプトラック等、過酷な条件で使用される建設用機械に採用される場合が多い。このような過酷な使用条件では、遊星減速機の歯車等からオイルに有害な異物が混入する頻度が高いので、オイルの流通路にフィルタを設ける効果がより高い。
 また、フィルタがシールリングにインサート成型されており、すなわち、シールリングを合成樹脂やゴムの成形品とし、そのシールリングの成型時にフィルタをインサート成型して一体とした構成を採用すれば、動力伝達機構と転がり軸受とが共通の潤滑用オイルで潤滑される走行装置において、コストの安いフィルタ付きシールリング、及び、フィルタ付転がり軸受を得ることができる。
 また、このシールリングを備えた構成において、前記転がり軸受は軸方向に並列して複数設けられ、前記シールリングは、前記並列する複数の転がり軸受のうち、前記動力伝達機構に最も近い位置に配置される転がり軸受の動力伝達機構側の前記開口を覆っている構成を採用することができる。
 この構成によれば、転がり軸受が軸方向に2つ、あるいはそれ以上並列して設けられている場合において、シールリングは、動力伝達機構に最も近い位置に配置される。このため、走行装置のメンテナンス時等において、その走行装置から動力伝達機構を取り外し(分解)すれば、そのシールリングが外部に露出するか、あるいは、外部から比較的手の届きやすいエリアに位置することとなる。したがって、そのシールリングの着脱がさらに容易となる。
 さらに、その構成において、前記並列する複数の転がり軸受のうち、前記動力伝達機構から最も離れた位置に配置される転がり軸受の動力伝達機構とは反対側に、回転センサを設けた構成を採用することができる。
 この構成によれば、最も動力伝達機構に近い位置に配置する転がり軸受の動力伝達機構側にフィルタを設け、動力伝達機構側から最も離れた位置に配置する転がり軸受の動力伝達機構とは反対側に回転センサを固定することにより、全ての転がり軸受に対して動力伝達機構から流出する有害な異物の侵入を低減することができる。また、その異物が回転センサの検出部に侵入することも低減することができる。すなわち、回転センサのセンサ部に異物が付着しないので、センサの検出信頼性を向上させることができる。
 さらに、このシールリングと回転センサとを併せて備えた構成において、前記外側軌道輪は回転側、前記内側軌道輪は静止側であり、前記動力伝達機構に最も近い位置に配置される転がり軸受の前記外側軌道輪と、前記動力伝達機構から最も離れた位置に配置される転がり軸受の前記外側軌道輪とは共通の部品を加工したものであり、その加工により、前記共通の部品の一方には、前記シールリングを固定するためのシール溝が、他方には、前記回転センサのエンコーダを固定するための周溝が形成されている構成を採用することができる。シール溝及び周溝は、例えば、切削、研削等によって形成することができる。
 この構成によれば、並列する転がり軸受の外側軌道輪を共通の部品をもとに製作できるので、コストの低減に寄与し得る。また、予圧の管理上、並列する転がり軸受の各軌道輪は、少なくとも転動体に触れる箇所については、このように同一の形状、寸法からなる部材であることが好ましい。
 なお、シール溝と周溝とを同一の形状とすれば、並列する転がり軸受の外側軌道輪同士を完全に共通化できる。
 これらの各構成において、転がり軸受の種別は自由であり、例えば、転動体として円すいころを用いた円すいころ軸受であってもよいし、その他、転動体としてボールを用いた深溝玉軸受や、円筒ころを用いた円筒ころ軸受等であってもよい。
 また、転がり軸受が複数並列する構成においても、転がり軸受はそれぞれ、円すいころ軸受であってもよく、その他、深溝玉軸受や円筒ころ軸受、自動調心ころ軸受等であってもよい。
 並列する転がり軸受として円すいころ軸受を用いた場合において、その転がり軸受は、前記円すいころの小径側端面同士が背面合わせに配置されて、前記内側軌道輪が軸方向に押圧されることにより予圧が付与されている構成を採用することができる。
 また、その構成において、前記シール溝及び前記周溝を、それぞれ、前記外側軌道輪の内径面の大径側端部に設けた構成とすることができる。
 すなわち、円すいころ軸受の外側軌道輪にシールリングや回転センサのエンコーダを固定する場合、外側軌道輪の部材を、転動体との接触範囲(軌道面)よりもさらに大径側端部側へと外側に拡大して、その位置に設けることが望ましい。この構成によれば、シールリングやエンコーダの取付け位置の内径が大きくなるから、その取付スペースが確保しやすく、取付作業も容易となるからである。
 また、これらのフィルタ付きのシールリングを備えた前記全ての構成において、シールリングは外側軌道輪か内側軌道輪のいずれの側に固定してもよいが、特に、外側軌道輪が回転側、内側軌道輪が静止側である場合には、シールリングは内側軌道輪に嵌合している構成を採用することができる。
 すなわち、各種建設用機械の足回り等で使用される転がり軸受は、内輪静止、外輪回転とする場合が多いので、このような場合には、シールリングは、静止側である内側軌道輪に嵌合している構成とすることが望ましい。
 なお、この転がり軸受に回転センサを備える場合は、外側軌道輪側のエンコーダをパルサリングとし、内側軌道輪側のセンサ部に、バックマグネット式の磁気センサを備えた構成とすることができる。各種建設用機械の足回り等で使用される転がり軸受は比較的大径のものが多いので、回転センサを、このようにバックマグネット式とすることで、センサの性能を安定させることができる。
 また、シールリングを回転側の内側軌道輪に嵌合した構成において、前記シールリングは、遠心力によるシールリングの脱落を防ぐため、シールリングの係止部に設けられる係止凸部を有することが望ましい。
 この発明は、外側軌道輪又は内側軌道輪の一方に係止されるシールリングに対し、そのシールリングよりも柔らかい素材からなる円環部材を固定し、その円環部材により、外側軌道輪又は内側軌道輪の他方に隙間をもって対向又は当接するリップ部が構成されるようにした。このため、軌道輪に固定されるシールリングは、リップ部を構成する円環部材に比べて相対的に硬い素材であるので、外力に対する変形に強く、すなわち、外力に対して変形しにくい。フィルタは、その変形しにくい素材であるシールリングの本体にしっかりと固定され、また、柔らかくて相対的に損傷しやすいリップ部を構成する円環部材のみを、そのシールリングの本体に対して交換可能とすることができる。したがって、これらを用いたシールリング、及び、そのシールリングを用いた軸受を長寿命化することができる。
 また、この発明は、フィルタとシールリングとを同一の素材、又は、ほぼ同じ線膨張係数の素材、又は、そのフィルタを、前記シールリングの線膨張係数以上の線膨張係数を有する素材としたことから、シールリングが熱膨張しても、フィルタがそのシールリングの熱膨張に追随して同程度膨張するか、あるいは、フィルタがシールリングの膨張量よりも大きく膨張する。このため、フィルタのメッシュが破れたり穴が明くなどの損傷を生じさせない。したがって、シールリングが熱膨張した際にも、異物を捕捉する機能を継続して発揮できる。
 また、シールリングに想定される温度環境下で、常に、シールリングの内径側に設けた係止部が、内側軌道輪の凹部に入り込んだ状態に維持されるようにしたので、熱膨張後もなお、シールリングと内側軌道輪との間に有害な異物が入り込む隙間を生じさせない。
 この点においても、シールリングが熱膨張した際に、異物を捕捉する機能を継続して発揮できる。
 さらに、トランスミッションや減速機等の動力伝達機構と転がり軸受とを共通のオイルで潤滑する走行装置において、動力伝達機構から流出してその潤滑油内に浮遊する有害な異物が、フィルタによって、転がり軸受の内部に侵入しないように捕捉される。したがって、転がり軸受の軌道面や転動面に剥離や傷、圧痕等の損傷を生じさせず、転がり軸受の耐久性を高め、その運転寿命を長くすることができる。
この発明の一実施形態を示す要部拡大断面図 (a)(b)は、図1の要部拡大図 シールリングの詳細を示し、(a)は要部拡大側面図、(b)は要部拡大平面図 (a)(b)は、シールリングの詳細を示す斜視図 この発明の第二の実施形態を示す要部拡大断面図 図5において、寸法調整用部材を挿入した状態を示す要部拡大図 この発明の第三の実施形態を示す要部拡大断面図 この発明の第四の実施形態を示す要部拡大断面図 この発明の第五の実施形態を示す要部拡大断面図 (a)(b)はフィルタのメッシュサイズの説明図 (a)は圧痕の大きさと寿命低下率との関係を示すグラフ図、(b)はメッシュサイズと圧痕との大きさとを示すグラフ図 第一の実施形態の転がり軸受を備えた走行装置の要部拡大縦断面図 この発明の第六の実施形態の転がり軸受を備えた走行装置の要部拡大縦断面図 この発明の走行装置の縦断面図 従来の走行装置の縦断面図 鉱山用ダンプトラックの全体図
 以下、この発明の実施形態を図面に基づいて説明する。図1及び図2は、この発明に係る転がり軸受10の要部拡大断面図を、図3及び図4は、その転がり軸受10が備えるシールリング20の詳細図を示す。
 この転がり軸受10は、図16に示す鉱山用ダンプトラック(建設用機械)1の走行装置4に、動力伝達機構Tとともに組み込まれるものである。鉱山用ダンプトラック1は、荷台と運転台を支えるシャーシ2が、複数の駆動輪(タイヤ)3によって支持されている。走行装置4は、この駆動輪3に動力を伝達する。
 走行装置4の構成は、図14に示すように、駆動源である走行モータ5と、この走行モータ5の回転軸に接続されるシャフト6を備える。そのシャフト6の先端部の外側には、動力伝達機構Tとして減速機が配置されている。
 また、シャフト6の外側には、固定の車軸を形成するスピンドル7が配置されている。このスピンドル7の外側には、その転がり軸受10を介してホイール9が配置されている。ホイール9の回転は、リム8を介して駆動輪3に伝達される。
 この走行装置4では、減速機として遊星歯車機構50を採用している。遊星歯車機構50は、第一遊星歯車機構50aと第二遊星歯車機構50bとを備え、この2つの遊星歯車機構50a,50bを介して、シャフト6の回転を減速してホイール9に伝達する。ただし、減速機の構成はこの例に限定されず、他の構成からなる遊星歯車機構を用いた減速機構や、あるいは、遊星歯車機構以外の周知の減速機構を採用することができる。
 この走行装置4では、スピンドル7とホイール9との間の転がり軸受10として、並列の円すいころ軸受を採用している。図12は、走行装置4の転がり軸受10を複列に備えた部分の要部拡大縦断面図を示す。
 この並列の円すいころ軸受を介して駆動輪3を車軸に支持している。この種の建設用機械では、大きなラジアル荷重に耐え得る構造とするため、転がり軸受10として円すいころ軸受が用いられることが多い。
 転がり軸受10の構成は、図12に示すように、外側軌道輪11と内側軌道輪12の各軌道面11a,12aの間に、転動体13として円すいころが組み込まれている。転動体13は、保持器14によって周方向に保持されている。
 並列する転がり軸受10は、円すいころの小径側端面同士が背面合わせになるように配置されている。すなわち、内側軌道輪12の軌道面12aと外側軌道輪11の軌道面11aとは、2列の転がり軸受10,10の軸方向外側から、その2列の転がり軸受10,10間の中央部へ向かう側に向かって互いの距離が狭まるように設けられている。
 また、その距離が狭まる方向へ向かって外側軌道輪11に対して内側軌道輪12を押圧することにより、各転動体13に予圧が付与されている。この予圧は、図14に示す軸受押え部品17を、スピンドル7に対してボルト17aで締め付けることにより、両内側軌道輪12,12に対して、対側の軸受押え部品18との間で軸方向に圧縮力を作用させることで付与することができる。
 この動力伝達機構Tと転がり軸受10とは、共通の潤滑用のオイルで潤滑されるようになっている。すなわち、走行装置4のケーシング内には一定のレベルまでオイルが貯留されているので、動力伝達機構Tや転がり軸受10の少なくとも下部は、そのオイルに浸かった状態である。これにより、動力伝達機構Tや転がり軸受10の構成部品が、潤滑されるようになっている。
 なお、内側軌道輪12は、非回転軸である車軸(前記スピンドル7)に装着され回転不能である。また、外側軌道輪11は、回転ハウジングHと一体に回転するように装着される。回転ハウジングHは、駆動輪3の前記ホイール9と一体の部材として形成されるか、あるいは、前記ホイール9と一体に回転可能に結合される。
 また、ケーシング内において、転がり軸受10の動力伝達機構Tに近い側に、その動力伝達機構T側から転がり軸受10側へのオイルの流通路を備える。すなわち、動力伝達機構Tと転がり軸受10とは共通のオイルで潤滑されるから、その動力伝達機構Tと転がり軸受10との間が、相互間のオイルの流通路となっている。
 この実施形態では、転がり軸受10は軸方向に並列して2つ設けられているので、オイルの流通路は、動力伝達機構Tに近い側の転がり軸受10の動力伝達機構T側の開口、すなわち、外側軌道輪11と内側軌道輪12との間に形成された軸受空間の動力伝達機構T側の開口である。図1及び図2は、この動力伝達機構Tに近い側の転がり軸受10の要部を示し、いずれも、図中左側がその動力伝達機構T側の開口である。
 この動力伝達機構T側の転がり軸受10に、シール部材Sが取付けられる。シール部材Sは、図4に示すように、動力伝達機構T側の転がり軸受10の軸受空間における動力伝達機構T側の開口を覆うように取付けられる。
 なお、必要であれば、動力伝達機構Tから遠い側の転がり軸受10においても、その動力伝達機構Tの反対側の開口に、同様なシール部材Sを取付けてもよい。
 シール部材Sの構成は、図1に示すように、転がり軸受10の内側軌道輪12に係止される係止部21と、その係止部21から外径側に向かって立ち上がる壁部25と、その壁部から伸びるラビリンスシール形成部26とを有する断面L字状のシールリング20(シールリングの本体)を備える。
 シールリング20は樹脂で構成され、そのシールリング20の壁部25に形成された通油孔22を覆うように、同一の樹脂からなるフィルタ23がインサート成型により一体とされたものである。
 フィルタ23は、通油孔22の長さ方向(シールリング20の厚さ方向)のほぼ中央部に位置する。そのフィルタ23の周縁部が、通油孔22の周囲においてシールリング20の樹脂に埋め込まれて固定されている。
 フィルタ23の素材とシールリング20の素材とを同一の樹脂素材としたことから、フィルタ23の素材とシールリング20の素材とは同一の熱膨張率である。このため、転がり軸受10内の潤滑用のオイルの温度上昇により、シールリング20が熱膨張しても、フィルタ23がそのシールリング20の熱膨張に追随して同程度膨張する。したがって、フィルタ23のメッシュが破れたり穴が明くなどの損傷を生じさせない。
 なお、このフィルタ23やシールリング20の素材としては、この実施形態では、ポリアミド樹脂等を採用しているが、他の樹脂を採用してもよい。他の樹脂としては、例えば、ポリアセタール(POM)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンスルファイド(PPS)、ポリテトラフロロエチレン(PTFE)、ポリスルホン(PSF)、ポリエーテルサルフォン(PES)、ポリイミド(PI)、ポリエーテルイミド(PEI)などがある。また、それらの樹脂を用いたガラス繊維強化樹脂としてもよい。ガラス繊維強化樹脂としては、例えば、PA(ポリアミド)46+GF、あるいは、PA(ポリアミド)66+GFといったものを採用できる。
 ガラス繊維の配合割合は、樹脂の収縮率と必要強度から最適化され、例えば、15~35%、より好ましくは25~30%とすることが望ましい。一般に、ガラス繊維配合割合が多いと、収縮率は小さくなり、成形後の寸法管理が容易になる。逆に、ガラス繊維配合割合が小さいと、樹脂の強度が低下し、変形しやすくなるため、収縮率と強度のバランスが最適な配合割合は25~30%である。
 また、これらのフィルタ23やシールリング20の素材として、ガラス繊維強化樹脂の他、炭素繊維強化樹脂やポリエチレン繊維強化樹脂、又は、アラミド繊維強化樹脂等でも適用できる。
 なお、この実施形態では、フィルタ23とシールリング20とを同一の素材とし、それらをインサート成型により一体としているが、フィルタ23の素材は、シールリング20と同一の素材には限定されず、そのシールリング20の素材とほぼ同じ線膨張係数の素材や、シールリング20の線膨張係数以上の線膨張係数を有する素材としてもよい。
 このような構成においても、フィルタ23は、シールリング20の熱膨張に追随して同程度膨張するか、あるいは、フィルタ23がシールリング20の膨張量よりも大きく膨張するので、フィルタ23が過度に引張られることがなく、その損傷を防止できる。
 また、シールリング20の熱膨張時におけるフィルタの損傷を危惧する必要がない場合には、線膨張係数の数値に関係なく、フィルタ23とシールリング20とに任意の素材を採用することができる。
 また、シールリング20は、その内径側に設けた係止部21が、内側軌道輪12に設けた周方向のシール溝(凹部)30に入り込むことによって、その熱膨張の際に、内側軌道輪12に対して径方向へ移動可能となるように係止されている。
 なお、この実施形態の通油孔22は、図3に示すように、側面視長方形状の長孔を成す。この通油孔22が、シールリング20の周方向に沿って間隔をおいて複数設けられている。通油孔22の形状や数、配置間隔は適宜設定することができる。なお、通油孔22の形状は、側面視長方形状の長孔以外の形状であってもよく、例えば、側面視円弧状の長孔等であってもよい。
 フィルタ23の構成としては、メッシュサイズが0.1~1mm程度の網目状の樹脂を採用し得る。ここでは、メッシュサイズが0.5mmの網目状の樹脂を採用しているが、フィルタ23のメッシュサイズは、捕捉しようとする異物の径に応じて適宜設定することができる。なお、軸受寿命を長く確保し得る最適なメッシュサイズについては後述する。
 また、ラビリンスシール形成部26は、壁部25の外径側端縁から軸方向内側に伸びる円筒部材であり、その円筒部材の先端が、外側軌道輪11の端面に微小間隙をおいて対向している。また、その円筒部材の外径面が、外側軌道輪11を保持する回転ハウジングHの内径面に微小間隙をおいて対向している。このラビリンスシール形成部26と、外側軌道輪11の端面及び回転ハウジングHの内径面との間の微小間隙がラビリンスシールとなっている。
 このラビリンスシールによって、転がり軸受10側へのオイルの流通は許容され、且つ、その間隙は微小であるから、転がり軸受10側への有害な異物の侵入は阻止されている。なお、図1では、理解がしやすいように、ラビリンスシールの前記微小間隙を比較的広く描いている。
 なお、このラビリンスシール形成部26は円筒部材に限られず、軸周り円環形状を成すものであれば他の形状であってもよい。例えば、外面又は内面にテーパ面を有する部材であってもよい。このとき、その円環部材を、ラビリンス側の面が軸方向一方に向かうにつれて徐々に広がる円錐形状とすることも可能である。その場合、オイル及び異物がラビリンス部(ラビリンスシール)から入りにくくなる作用もある。
 係止部21とシール溝30の構成について詳しく説明すると、図2~図4に示すように、シールリング20の係止部21は、壁部25の内径側端部に設けられた内径側に向く突出部24を備えている。
 突出部24は、転動体13に近い側の内側突出部24aと遠い側の外側突出部24bとを備える。また、シール溝30は、内側突出部24aが入り込む内側シール溝30aと、外側突出部24bが入り込む外側シール溝30bとを備える。
 この突出部24がシール溝30に入り込むことにより、シールリング20は、内側軌道輪12に対して熱膨張時に径方向へ移動可能に係止されている。
 また、突出部24が、軸方向に沿って二つの突出部24a,24bで構成されているので、その軸方向位置の異なる二つの突出部24a,24bによって、シールリング20をより確実に内側軌道輪12に係止できるようになっている。
 転がり軸受10の潤滑用のオイルが温度上昇する前の状態(定常状態)において、図2(a)に示すように、内側突出部24aが内側シール溝30aに入り込む深さh1は、外側突出部24bが外側シール溝30bに入り込む深さh2よりも相対的に浅く設定されている。
 このため、シールリング20を軸受空間の開口に押し込んで固定する際に、奥側の内側突出部24aは、その押し込み時の弾性変形又は加熱変形により、容易に内側シール溝30aに嵌め込みできる。
 また、外側突出部24bの外側シール溝30bに対する入り込み深さh2は相対的に深いので、図2(b)に示す温度上昇後の状態(膨張状態)のように、シールリング20により大きな外径方向への熱膨張量に対しても、外側突出部24bと外側シール溝30bとは係止を維持できる。すなわち、シールリング20と内側軌道輪12との係止を維持でき、この膨張状態においても、転がり軸受10内に有害な異物が入り込む隙間を生じさせない。
 このとき、その転がり軸受10において想定される最高の温度、すなわち、最大の熱膨張量となった状態のシールリング20が、その膨張状態でもなお、内側軌道輪12との間に有害な異物が入り込む隙間が生じていないように、外側突出部24bの外側シール溝30bへの入り込み深さh2が設定されている(図2(b)参照)。
 このため、シールリング20に想定される温度環境下では、常に、外側突出部24bが外側シール溝30bに入り込んだ状態が維持され、内側軌道輪12との間に有害な異物が入り込む隙間を生じさせない。
 また、この実施形態では、図3及び図4に示すように、内側突出部24aと外側突出部24bとを周方向に沿って交互配置としている。
 このように、内側突出部24aと外側突出部24bとが周方向に交互配置であれば、シールリング20を軸受空間の開口に押し込んで固定する際に、内側突出部24aが外側突出部24bの死角に入りにくい。このため、奥側の内側突出部24aが内側シール溝30aに嵌まっていることを目視で確認しやすい。なお、図1及び図2では、図3(b)に示すシールリング20のII-II断面に対応する断面図を記載し、内側突出部24aと外側突出部24bとの位置関係及び突出高さを比較できるようにしている。
 また、この実施形態では、内側突出部24aと外側突出部24bとは、周方向に重複部分が生じないような配置となっている。すなわち、各内側突出部24aの周方向両端の位置する軸周り方位が、周方向に隣り合う外側突出部24bの周方向端の位置する軸周り方位に一致している。
 ただし、内側突出部24aと外側突出部24bの配置は、この実施形態には限定されず、内側突出部24aと外側突出部24bとを、互いに周方向に重複部分が生じるように配置してもよい。
 また、この実施形態では、図2(a)に示すように、外側突出部24bは、外側シール溝30b内においてその端壁との間に軸方向隙間w1を有している。すなわち、外側シール溝30bの軸方向幅は、外側突出部24bの幅よりも前記軸方向隙間w1だけ広くなっている。このため、この軸方向隙間w1の範囲内において、外側突出部24bは外側シール溝30b内で軸方向へ移動可能である。
 このように、外側突出部24bが外側シール溝30b内で軸方向へ移動可能であれば、シールリング20が熱膨張する際に、外側シール溝30b内で外側突出部24bが拘束されることなく、その熱膨張に伴って円滑に径方向へ移動できる。このため、シールリング20に、その熱膨張に伴う外径方向への引っ張り力が作用することを防止し、フィルタ23の損傷を回避し得る。
 なお、この外側シール溝30bは、図2(a)に示すように、内側軌道輪12の端面に開口して形成されている。また、内側軌道輪12の端面には、その内側軌道輪12の内径に嵌め合いで固定される軸肩(車軸の肩部)Aが当接するようになっている。このため、外側突出部24bを外側シール溝30bへ嵌め込んだ後、軸肩Aで外側シール溝30bの端面の開口を塞ぐことができる。
 このように、外側シール溝30bを内側軌道輪12の端面に開口させれば、その嵌め込みは容易である。また、その端面の開口は軸肩Aで塞ぐことができるので、外側シール溝30bからの外側突出部24bの離脱が防止されている。
 このシールリング20の作用について説明すると、走行装置4の使用中、動力伝達機構Tや転がり軸受10の回転に伴って、オイルの一部は、動力伝達機構T側から転がり軸受10の側面に向けて飛散する。
 このとき、転がり軸受10の軸受空間における動力伝達機構T側の開口にはシールリング20が装着されているので、そのオイルはシールリング20に向かって飛散する。そして、シールリング20に当たったオイルのうち、その一部は、通油孔22のフィルタ23に衝突する。
 フィルタ23に衝突したオイルは、そのフィルタ23のメッシュを透過する際、オイルに含まれる異物のうち、フィルタ23のメッシュサイズより大きい異物がそのメッシュで捕捉される。すなわち、シールリング20に一体のフィルタ23が、転がり軸受10の軸受空間の軸方向一端の開口(前記流通路)を通るオイルに含まれる有害な異物を捕捉する。また、フィルタ23を透過したオイルは、軸受空間内に流入して転がり軸受10を潤滑する。このため、動力伝達機構Tから排出される有害な異物が、転がり軸受10の内部に侵入することを防止できる。
 また、フィルタ23が異物によって目詰まりした場合には、そのシールリング20を新しいシールリング20と交換することで対応することができる。
 この実施形態は、大型の建設用機械に用いられる走行装置4内の転がり軸受10であり、外側軌道輪11は回転側、内側軌道輪12は静止側である。また、シールリング20は静止側である内側軌道輪12に係止されている。このため、フィルタ23は軸周り方向へは動かず、そのフィルタ23に捕捉された異物が飛散しにくい構成となっている。
 このシールリング20を取付ける転がり軸受10の種別は自由であり、例えば、転動体13として円すいころを用いた円すいころ軸受であってもよいし、その他、転動体13としてボールを用いた深溝玉軸受や、円筒ころを用いた円筒ころ軸受等であってもよい。
 図5に、この発明の第二の実施形態を示す。この実施形態は、シールリング20の外径側端部に、外側軌道輪11に当接するリップ部41を設けた構成である。リップ部41は、シールリング20とは別体に成型されたゴム製の円環部材40が、そのシールリング20に固定されて構成されている。それ以外の主たる構成は、前述の実施形態と同様であるので、以下、その差異点を中心に説明する。
 この実施形態において、シール部材Sの構成は、図5に示すように、転がり軸受10の内側軌道輪12に係止される係止部21と、その係止部21から外径側に向かって立ち上がる壁部25と、その壁部の外径側端部に設けたリップ取付部27とを一体に有するシールリング20(シールリングの本体)を備える。
 シールリング20のリップ取付部27には、図5に示すように、円環部材40が固定されている。円環部材40はゴム製であり、ポリアミド樹脂等からなるシールリング20の素材よりも柔らかい素材となっている。円環部材40は、リップ取付部27の外周に嵌め込んで固定され、その弾性によってリップ取付部27に密着している。この円環部材40の素材としては、例えば、合成ゴムでは、ニトリルゴム、アクリルゴム、ウレタンゴム、フッ素ゴム等を採用することができる。
 リップ取付部27に固定された円環部材40は、外側軌道輪11に当接するリップ部41を構成する。リップ部41の先端に設けた当接部41dが外側軌道輪11に当接し、そのリップ部41は、シールリング20が熱膨張しても、その素材の弾性によって、外側軌道輪11への当接が維持される。
 内側軌道輪12に固定されるシールリング20は、リップ部41を構成する円環部材40に比べて相対的に硬い素材であるので、外力に対する変形に強く、すなわち、外力に対して変形しにくい。このため、フィルタ23は、その変形しにくい素材であるシールリング20の本体にしっかりと固定され、また、柔らかくて相対的に損傷しやすいリップ部41を構成する円環部材40のみを、そのシールリング20の本体に対して交換可能とすることができる。したがって、結果的にシール部材S及びそのシール部材Sを用いた軸受を長寿命化することができる。
 また、リップ部41を構成する円環部材40と、内側軌道輪12に固定されるシールリング20とを別体としたことにより、その円環部材40のシールリング20に対する軸受幅方向の位置を調整可能とすることもできる。この調整は、例えば、図6に示すように、円環部材40の軸方向外側端面40aとリップ取付部27の内側端面27aとの間に、寸法調整用部材28を挿入することで可能である。この寸法調整用部材28を板状の部材(シム)とすれば、板厚の異なる様々な部材を用意しておくことで、調整寸法の設定が容易である。
 このように、円環部材40のシールリング20に対する位置を調整可能とすれば、シール部材Sのリップ締代を容易に調整することができる。これにより、リップ部41が摩耗した場合のリップ締代の再調整ができることに加え、幅寸法が異なる別の型番の軸受にも、シールリング20や円環部材40を兼用することができる。
 さらに、別体に成型されたシールリング20と円環部材40とを、接着や回り止め機構により周方向への回り止めを施すことで、そのシールリング20と円環部材40間の相対滑りによる摩耗によって、シール性が低下することを防止することもできる。シールリング20に円環部材40を接着固定する場合は、例えば、一般的な接着剤が使用できる他、加硫接着による手法を採用することもできる。接着面は、円環部材40の軸方向外側端面とリップ取付部27の内側端面27aとの間、及び、円環部材40の内周面40bとリップ取付部27の外周面27bとの間とすることが望ましい。
 また、円環部材40は、径方向へは接着のみならず締代を持った嵌合いとし、回転方向の滑りをより確実に防止できる構造とすることが望ましい。ただし、回り止め機構を用いて接着を省略すれば、円環部材の交換が容易である。
 図7に、この発明の第三の実施形態を示す。この実施形態は、シールリング20の係止部21と内側軌道輪12のシール溝30に、そのシールリング20の径方向への動きを規制する係止手段29を設けた構成である。
 係止手段29は、図7に示すように、シールリング20の係止部21に設けられる係止凸部29aと、シール溝30内に設けられる係止凹部29bとで構成される。
 係止凸部29aは、係止部21を構成する内側突出部24aと外側突出部24bのうち、外側突出部24bの突出方向中ほどに軸方向へ突出して設けられる。また、係止凹部29bは、その係止凸部29aが入り込むことができるように、外側シール溝30bの内面に軸方向へ凹むように設けられる。
 軸受の半径方向に対する係止凹部29bの長さは、軸受の半径方向に対する係止凸部29aの長さよりも、寸法w2だけ長くなっている。このため、係止凸部29aが係止凹部29bに入り込んだ状態で、その係止凸部29aは、係止凹部29b内を軸受の半径方向に沿って移動可能である。
 なお、この実施形態では、軸受の周方向に対する係止凹部29bの長さは、軸受の半径方向に対する係止凸部29aの長さと同一としているが、その周方向への係止凹部29bの長さを係止凸部29aの長さよりもやや長くすることもできる。これにより、係止凸部29aは、係止凹部29b内を軸受の周方向に沿って移動可能となる。
 シールリング20の係止部21を、内側軌道輪12のシール溝30内に収容した状態で、シールリング20の係止凸部29aが、シール溝30内の係止凹部29bに入り込むことで、シールリング20は、その軸受の半径方向への所定量以上の動きが規制され、また、軸受の周方向への動きが規制される。
 このため、シールリング20が熱膨張した際、その熱膨張したシールリング20の径方向への所定量以上の移動(特に、冷間状態から外径方向への膨張による移動)を規制しつつ、同時に、シールリング20が内側軌道輪12に対して周方向に回転することを防止することができる。
 また、軸受の半径方向に対する係止凹部29bの長さが、軸受の半径方向に対する係止凸部29aの長さよりもやや長くなっているので、シールリング20を軸受に取付ける際に、そのシールリング20が加熱された状態であっても、係止凸部29aを係止凹部29bにスムーズに入り込ませることができる。
 図8に、この発明の第四の実施形態を示す。この実施形態は、リップ部41を構成する円環部材40の内径部に、位置決め用の段部41cを設けたものである。この段部41cは、シールリング20のリップ取付部27に設けた段部27cに噛み合って、シールリング20に対して円環部材40を軸方向へ位置決めをする。
 また、この実施形態では、係止部21の内側突出部24aと外側突出部24bの間のシールリング嵌合部31と、内側シール溝30aと外側シール溝30bの間の内側軌道輪嵌合部32とが、締代をもって圧入嵌合されている。これはいずれの実施形態でも同様である。この圧入は、前述のように、樹脂製のシールリング20を加熱して膨張させ、その状態で内側軌道輪12に嵌め込むことで、所定の締代に設定される。締代があることで、シールリング20のシール性が向上する。
 図9に、この発明の第五の実施形態を示す。この実施形態は、シールリング20のリップ取付部27の断面形状をコの字状にしたものである。
 リップ取付部27が断面コの字状であるので、シールリング20に対する外周側からの外力に対して、円環部材40の保護効果がある。また、リップ取付部27が断面コの字状であるので、円環部材40の固定に接着剤や充填材を用いる場合は、その接着剤や充填材の漏洩防止効果も期待できる。
 これらの各実施形態において、フィルタ23の素材としては、例えば、ポリアミド等の合成樹脂や、あるいは、ステンレス等の金属を採用することができる。フィルタ23の素材を合成樹脂とした場合、錆防止及び軽量化に対して有効である。また、フィルタ23の素材を金属とした場合、金属等の硬い異物に対する強度、耐久性の向上が図ることができる。
 また、これらの各実施形態において、フィルタ23を構成する網目状部材は、前述のように、そのメッシュサイズを0.3mm~0.7mmとすることが望ましい。これはいずれの実施形態でも同様である。また、特に、そのメッシュサイズを0.5mmとすることが望ましい。ここで、メッシュサイズとは、図10(a)(b)に寸法w3に示すように、網目構造のメッシュの目開き(オープニング)のことを言う。
 すなわち、シールリング20に設けたフィルタ23のメッシュが大きすぎると、大きな異物が軸受内へ侵入し、軸受の寿命に影響を与える大きな圧痕が、軸受の軌道面や転動面に形成されてしまうことになる。また、逆に、メッシュを小さくしすぎると、異物でメッシュが目詰まりし、潤滑油が軸受に供給されなくなることがある。
 そこで、寿命試験を行うことにより、軸受の軌道面や転動面に生じた圧痕の大きさと、その圧痕に伴う軸受の寿命の低下率を調べ、ある大きさ以下の圧痕は、寿命に影響を与えないことを確認した。また、実験により、メッシュサイズと、そのメッシュを通過した異物によって形成される圧痕の大きさの関係を確認した。
 図11(a)(b)にその実験結果を示す。図11(a)は、軸受の軌道面や転動面に生じた圧痕の大きさと、その圧痕に伴う軸受の寿命の低下率との関係を、図11(b)は、メッシュサイズと、そのメッシュを通過した異物によって形成される圧痕の大きさの関係を示す。
 試験条件は、転がり軸受として、主要寸法(内径、外径、幅)が、φ30mm×φ62mm×17.25mmの円すいころ軸受を用い、ラジアル荷重17.65kN、アキシアル荷重1.47kN、軸回転速度2000min-1としている。
 実験では、軸受の軌道面や転動面に形成される圧痕の大きさが1mmを超えると、軸受の寿命は急激に低下することが確認できた。また、大きさ1mmを超える圧痕を生じさせるような異物の侵入を阻止できるメッシュサイズは、0.5mm以下であることが確認できた。このため、メッシュサイズが0.5mm以下であれば、軸受の寿命は特に良好である。なお、フィルタサイズを0.7mm以下とすることにより、生じ得る圧痕は1.3mm以下となる。圧痕が1.3mm以下であれば、転がり軸受の寿命の低下をある程度のレベル(圧痕の無いものに対して寿命比0.6)に抑えることが可能である。なお、目詰まり防止のため、メッシュサイズは0.3mm以上とすることが望ましい。
 この発明の第6の実施形態を、図13に基づいて説明する。図13は、この発明に係る走行装置4の要部拡大縦断面図を示す。この走行装置4も、鉱山用ダンプトラック(建設用機械)1の足回りに用いられるものである。図13に示す要部以外の構成は、前述の各実施形態で説明した図14等の構成と同様とし得るので、一部その説明を省略し、以下は、その前述の実施形態との差異点を中心に説明する。
 走行装置4は、前述の実施形態で説明した図14等に示すように、駆動源5である走行モータと、その駆動源5からの回転を駆動輪3に伝達する動力伝達機構Tと、駆動輪3を車軸に支持する転がり軸受10とを同軸線上に備えている。動力伝達機構Tは、前述の実施形態と同様の遊星歯車機構50を備えた減速機である。
 転がり軸受10は、外側軌道輪11と内側軌道輪12の各軌道面11a,12aの間に、転動体13が組み込みまれている。転動体13は、保持器14によって周方向に保持されている。
 この実施形態では、転がり軸受10として、同じく、転動体13として円すいころを用いた円すいころ軸受を採用しており、その円すいころを軸方向に沿って2つ並列して配置している。この複列の円すいころ軸受を介して駆動輪3を車軸に支持している。
 なお、内側軌道輪12は、非回転軸である車軸(前記スピンドル7)に装着され回転不能である。また、外側軌道輪11は、回転ハウジングHと一体に回転するように装着される。回転ハウジングHは、駆動輪3の前記ホイール9と一体の部材として形成されるか、あるいは、前記ホイール9と一体に回転可能に結合される(スピンドル7、ホイール9については、いずれも図14参照)。
 また、ケーシング内において、転がり軸受10の動力伝達機構Tに近い側に、その動力伝達機構T側から転がり軸受10側へのオイルの流通路を備える。そのオイルの流通路を覆うシールリング20は、動力伝達機構T側の転がり軸受10の軸受空間の開口を覆うように取付けられる。軸受空間の開口は、外側軌道輪11と内側軌道輪12の軌道面11a,12aに沿って環状であり、それを覆うシールリング20も環状である。
 また、シールリング20は合成樹脂の成形品からなる。その樹脂製のシールリング20が、内側軌道輪12の大つば12bと外側軌道輪11の内径面の大径側端部との間に取付けられている。
 なお、この実施形態は、外側軌道輪11は回転側、内側軌道輪12は静止側であり、シールリング20は回転側である外側軌道輪11に嵌合で固定されている。
 このシールリング20は、図13に示すように、外側軌道輪11に係止される係止部21と、その係止部21から内径側に向かって立ち上がる壁部25と、その壁部25から伸びて内側軌道輪12の外径面に対向する円筒状のラビリンスシール形成部26とを備える。
 係止部21は円筒状であり、その円筒状の係止部21が、外側軌道輪11の内径面の大径側端部に設けたシール溝11bに嵌合して固定されている。
 また、係止部21の外径面には周方向に延びる突出部24が形成され、その突出部24は、シール溝11b内に形成した周方向の凹部11cに係脱自在に係合する。軸受空間の開口に取付けられたシールリング20に、軸方向外方(動力伝達機構T側)に向く外力を付加すれば、凹部11cに対する突出部24の係合が解除して、そのシールリング20の取り外しが可能である。
 また、ラビリンスシール形成部26の内径面は、それに対向する内側軌道輪12の外径面より僅かに大径である。その対向面間が微小間隙となっているので、その間隙を通じてオイルの通過は許容され、且つ、軸受内への有害な異物の侵入は阻止される。
 シールリング20には、壁部25を軸方向に貫通する通油孔22が設けられている。通油孔22は、側面視円弧状の長孔を成す。この円弧状の通油孔22が、その円弧が軸周り方向に並ぶように、シールリング20の周方向に沿って間隔をおいて複数設けられている。
 また、フィルタ23は、その通油孔22を覆うように取付けられている。この実施形態では、シールリング20は樹脂で構成され、その通油孔22を覆うように、同一の樹脂からなるフィルタ23がインサート成型により一体とされている。
 フィルタ23は、通油孔22の長さ方向(シールリング20の厚さ方向)のほぼ中央部に位置する。そのフィルタ23の周縁部が、通油孔22の周囲においてシールリング20の樹脂に埋め込まれて固定されている。
 この実施形態においても、フィルタ23の素材とシールリング20の素材とを同一の樹脂素材としたことから、フィルタ23の素材とシールリング20の素材とは同一の熱膨張率である。このため、転がり軸受10内の潤滑用のオイルの温度上昇により、シールリング20が熱膨張しても、フィルタ23がそのシールリング20の熱膨張に追随して同程度膨張する。したがって、フィルタ23のメッシュが破れたり穴が明くなどの損傷を生じさせない。
 この実施形態においても、このフィルタ23やシールリング20の素材として、ポリアミド樹脂等を採用しているが、他の樹脂を採用してもよい。
 なお、フィルタ23を、シールリング20の壁部25の転動体13側の面に、例えば、接着剤等を用いて固定することもできる。このようにすれば、そのフィルタ23が、壁部25の転動体13側の面に固定されているから、そのフィルタ23よりも動力伝達機構T側(遊星歯車機構50側)の通油孔22内の空間が、異物の溜まり空間として機能する。
 また、フィルタ23の素材としては、この実施形態の樹脂の他、金属、不織布等、種々の素材を採用し得る。フィルタ41の素材やメッシュサイズは、捕捉しようとする異物の径に応じて適宜設定することができる。
 また、この走行装置4には、回転センサ60が設けられている。回転センサ60は、図13に示すように、動力伝達機構Tから離れた側の転がり軸受10において、動力伝達機構Tとは反対側の端部に設けられている。この回転センサ60は、建設用機械の場合、例えば、ホイール9の回転速度を検出することにより、ABS制御やトラクションコントロールに使用される。
 回転センサ60は、回転側である外側軌道輪11に、エンコーダ61としてパルサリングを固定している。また、静止側である内側軌道輪12に、バックマグネット式の磁気センサからなるセンサ部62を備えたセンサケース64を固定している。
 各種建設用機械の足回り等で使用される転がり軸受は比較的大径のものが多いので、回転センサ60を、このようにバックマグネット式とすることで、センサの性能を安定させることができる。ただし、この回転センサ60は、このバックマグネット式磁気センサには限定されず、他の構成からなる回転センサ60であってもよい。
 センサ部62を収容したセンサケース64は、内側軌道輪12の外径面に嵌るリング状部材65に固定されている。センサケース64は、そのリング状部材65を介して、内側軌道輪12に固定される。
 また、そのリング状部材65は周方向に沿って二つ割りに形成されて、半円状を成す二つの部材からなる。その半円状を成す二つの部材の両端間を結合することにより、リング状部材65は内側軌道輪12の周囲に締め付けられて固定されるようになっている。
 このとき、リング状部材65の内径面に設けた周方向の突起65aが、内側軌道輪12の外径面に設けた周方向の溝12dに嵌って係止される。
 また、センサ部62に実装される回路基板へ通じる入出力線63は、センサケース64からリング状部材65の引出孔66を通じて、転がり軸受10の外部へ引き出されている。
 なお、エンコーダ61は、外側軌道輪11の内径面に形成した周溝11dに嵌めて固定されている。周溝11dは、外側軌道輪11の内径面の大径側端部に設けられている。
 回転センサ60を動力伝達機構Tから最も離れた位置に配置しているので、万が一、異物が転がり軸受10内部に侵入しても、回転センサ60に到達する異物の量が少なくて済む。このため、回転センサ60の性能を阻害しないようになっている。
 なお、フィルタ23が異物によって目詰まりした場合には、そのシールリング20を新しいシールリング20と交換することで対応することができる。
 前述の実施形態と同様、この実施形態では、転がり軸受10として円すいころ軸受を採用したが、転がり軸受10はこれには限定されない。例えば、外側軌道輪11としての外輪と内側軌道輪12としての内輪との間に、転動体13としてのボールを組込み、そのボールを保持器で保持した深溝玉軸受であってもよい。あるいは、外側軌道輪11としての外輪と内側軌道輪12としての内輪との間に、転動体13としての円筒ころや球面ころを組込み、その円筒ころを保持器で保持した円筒ころ軸受や自動調心ころ軸受であってもよい。また、車軸と駆動輪3との間に介在する転がり軸受10は1個であってもよい。
 さらに、この実施形態では、シールリング20を、外側軌道輪11又は内側軌道輪12のいずれかに対して微小間隙をもって対向するようにしたが、これを、外側軌道輪11及び内側軌道輪12の両方に接するようにしてもよい。
1 建設機械(鉱山用ダンプトラック)
2 シャーシ
3 駆動輪(タイヤ)
4 走行装置
5 駆動源(走行モータ)
6 シャフト
7 スピンドル
8 リム
9 ホイール
10 転がり軸受
11  外輪(外側軌道輪)
11a 軌道面
11b シール溝
11c 凹部
11d 周溝
12  内輪(内側軌道輪)
12a 軌道面
12b 大つば
12c 小つば
13 円すいころ(転動体)
14 保持器
20 シールリング
21 係止部
22 通油孔
23 フィルタ
24 突出部
24a 内側突出部
24b 外側突出部
25 壁部
26 ラビリンスシール形成部
27 リップ取付部
27a 内側端面
27b 外周面
27c 段部
28 寸法調整部材
29 係止手段
29a 係止凸部
29b 係止凹部
30 シール溝
30a 内側シール溝
30b 外側シール溝
31 シールリング嵌合部
32 内側軌道輪嵌合部
40 円環部材
41 リップ部
41a 外側端面
41b 内周面
41c 段部
41d 当接部
50 遊星歯車機構
60 回転センサ
61 エンコーダ(パルサリング)
62 センサ部
63 入出力線
64 センサケース
65 リング状部材

Claims (18)

  1.  外側軌道輪(11)と内側軌道輪(12)との間に転動体(13)を組み込み、前記外側軌道輪(11)と前記内側軌道輪(12)との間に形成された軸受空間の少なくとも一端の開口をシールリング(20)で覆い、そのシールリング(20)に形成された通油孔(22)を覆うフィルタ(23)により潤滑オイルに含まれる異物を捕捉するようになっており、前記シールリング(20)は前記外側軌道輪(11)又は前記内側軌道輪(12)の一方に係止され、前記シールリング(20)にはそのシールリング(20)よりも柔らかい素材からなる円環部材(40)が固定されて、その円環部材(40)により、前記外側軌道輪(11)又は前記内側軌道輪(12)の他方に隙間をもって対向又は当接するリップ部(41)が構成されていることを特徴とする転がり軸受。
  2.  前記シールリング(20)は樹脂又は金属製であり、前記円環部材(40)はゴム製であることを特徴とする請求項1に記載の転がり軸受。
  3.  前記フィルタ(23)と前記シールリング(20)とはインサート成型により一体であり、前記フィルタ(23)の素材は、前記シールリング(20)と同一の素材であるか、ほぼ同じ線膨張係数の素材、又は、前記シールリング(20)の線膨張係数以上の線膨張係数を有する素材であることを特徴とする請求項1又は2に記載の転がり軸受。
  4.  外側軌道輪(11)と内側軌道輪(12)との間に転動体(13)を組み込み、前記外側軌道輪(11)と前記内側軌道輪(12)との間に形成された軸受空間の少なくとも一端の開口をシールリング(20)で覆い、そのシールリング(20)に形成された通油孔(22)を覆うフィルタ(23)により潤滑オイルに含まれる異物を捕捉するようになっており、前記シールリング(20)は樹脂で構成され、前記フィルタ(23)と前記シールリング(20)とはインサート成型により一体であり、前記フィルタ(23)の素材は、前記シールリング(20)と同一の素材であるか、ほぼ同じ線膨張係数を有する素材、又は、前記シールリングの線膨張係数以上の線膨張係数を有する素材であることを特徴とする転がり軸受。
  5.  前記シールリング(20)は、少なくとも前記内側軌道輪(12)に係止される係止部(21)と、その係止部(21)から外径側に向かって立ち上がる壁部(25)とを備え、前記シールリング(20)は、その内径側に設けた係止部(21)が、前記内側軌道輪(12)に設けた凹部に入り込むことによって、その熱膨張の際に、前記内側軌道輪(12)に対して径方向へ移動可能となるように係止されていることを特徴とする請求項1乃至4のいずれか一つに記載の転がり軸受。
  6.  外側軌道輪(11)と内側軌道輪(12)との間に転動体(13)を組み込み、前記外側軌道輪(11)と前記内側軌道輪(12)との間に形成された軸受空間の少なくとも一端の開口をシールリング(20)で覆い、そのシールリング(20)に形成された通油孔(22)を覆うフィルタ(23)により潤滑オイルに含まれる異物を捕捉するようになっており、前記シールリング(20)は、少なくとも前記内側軌道輪(12)に係止される係止部(21)と、その係止部(21)から外径側に向かって立ち上がる壁部(25)とを備え、前記シールリング(20)は前記係止部(21)が前記内側軌道輪(12)に設けた凹部に入り込むことによって前記内側軌道輪(12)に対して熱膨張時に径方向へ移動可能に係止されていることを特徴とする転がり軸受。
  7.  前記係止部(21)は、前記壁部(25)の内径側端部に設けられた突出部(24)を備え、前記凹部は、前記内側軌道輪(12)に形成された周方向のシール溝(30)であり、その突出部(24)が前記シール溝(30)に入り込むことにより、前記シールリング(20)は前記内側軌道輪(12)に対して熱膨張時に径方向へ移動可能に係止されていることを特徴とする請求項5又は6に記載の転がり軸受。
  8.  前記転がり軸受は円すいころ軸受であり、前記シール溝(30)は、前記内側軌道輪(12)の大つば外径面に開口して形成されていることを特徴とする請求項7に記載の転がり軸受。
  9.  前記転がり軸受は深溝玉軸受、円筒ころ軸受、又は、自動調心ころ軸受であり、前記シール溝(30)は、その転がり軸受の前記内側軌道輪(12)の端部外径面に開口して形成されていることを特徴とする請求項7に記載の転がり軸受。
  10.  前記突出部(24)は、前記転動体(13)に近い側の内側突出部(24a)と遠い側の外側突出部(24b)とを備え、前記シール溝(30)は、前記内側突出部(24a)が入り込む内側シール溝(30a)と、前記外側突出部(24b)が入り込む外側シール溝(30b)とを備えることを特徴とする請求項7乃至9のいずれか一つに記載の転がり軸受。
  11.  前記内側突出部(24a)が前記内側シール溝(30a)に入り込む深さは、前記外側突出部(24b)が前記外側シール溝(30b)に入り込む深さよりも浅く設定されていることを特徴とする請求項10に記載の転がり軸受。
  12.  前記突出部(24)に軸方向へ突出する係止凸部(29a)を設け、前記シール溝(30)内に係止凹部(29b)を設け、前記係止凸部(29a)が前記係止凹部(29b)に入り込むことで、前記シールリング(20)は、その半径方向又は周方向への動き、あるいはその両方向への動きが規制されることを特徴とする請求項7乃至11のいずれか一つに記載の転がり軸受。
  13.  前記フィルタ(23)は、樹脂又は金属からなる網目状部材であることを特徴とする1乃至12のいずれか一つに記載の転がり軸受。
  14.  前記フィルタ(23)を構成する網目状部材は、そのメッシュサイズを0.3mm~0.7mmとすることを特徴とする請求項1乃至13のいずれか一つに記載の転がり軸受。
  15.  駆動源(5)と、その駆動源(5)からの回転を駆動輪(3)に伝達する動力伝達機構(T)と、前記駆動輪(3)を車軸に支持する転がり軸受(10)とを同軸線上に備え、前記動力伝達機構(T)と前記転がり軸受(10)とが共通の潤滑用オイルで潤滑される走行装置において、
     前記転がり軸受(10)に、請求項1乃至14のいずれか一つに記載の転がり軸受を用い、前記転がり軸受(10)の前記動力伝達機構(T)に近い側に、その動力伝達機構(T)側から転がり軸受(10)側へのオイルの流通路を備え、前記転がり軸受(10)の前記外側軌道輪(11)と前記内側軌道輪(12)との間に形成された軸受空間の軸方向一端の開口が前記流通路であってその開口が前記シールリング(20)で覆われており、前記シールリング(20)に一体の前記フィルタ(23)は、前記流通路を通るオイルに含まれる異物を捕捉することを特徴とする走行装置。
  16.  前記動力伝達機構(T)は、遊星歯車機構を備えた減速機であることを特徴とする請求項15に記載の走行装置。
  17.  前記転がり軸受(10)は軸方向に並列して複数設けられ、前記シールリング(20)は、前記並列する複数の転がり軸受(10)のうち、前記動力伝達機構(T)に最も近い位置に配置される転がり軸受(10)の動力伝達機構(T)側の前記開口を覆っていることを特徴とする請求項15又は16に記載の走行装置。
  18.  前記並列する複数の転がり軸受(10)のうち、前記動力伝達機構(T)から最も離れた位置に配置される転がり軸受(10)の動力伝達機構(T)とは反対側に、回転センサ(60)を設けたことを特徴とする請求項17に記載の走行装置。
PCT/JP2012/057326 2011-03-22 2012-03-22 転がり軸受、及び、その転がり軸受を備えた走行装置 WO2012128316A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280014359.3A CN103477102B (zh) 2011-03-22 2012-03-22 滚动轴承、以及具备了该滚动轴承的行驶装置
DE112012001375T DE112012001375T5 (de) 2011-03-22 2012-03-22 Wälzlager und Fahreinheit mit Wälzlagern
US14/005,833 US9506554B2 (en) 2011-03-22 2012-03-22 Rolling bearing and a travel unit including rolling bearings
AU2012232118A AU2012232118B2 (en) 2011-03-22 2012-03-22 Roller bearing, and travel device provided with roller bearing
US15/278,267 US10302132B2 (en) 2011-03-22 2016-09-28 Rolling bearing and a travel unit including rolling bearings

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011-062445 2011-03-22
JP2011062445A JP2012197871A (ja) 2011-03-22 2011-03-22 走行装置
JP2011-065524 2011-03-24
JP2011065524 2011-03-24
JP2012064678A JP6050012B2 (ja) 2011-03-24 2012-03-22 転がり軸受
JP2012-064678 2012-03-22
JP2012-064675 2012-03-22
JP2012064675A JP5944708B2 (ja) 2011-03-24 2012-03-22 転がり軸受

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/005,833 A-371-Of-International US9506554B2 (en) 2011-03-22 2012-03-22 Rolling bearing and a travel unit including rolling bearings
US15/278,267 Division US10302132B2 (en) 2011-03-22 2016-09-28 Rolling bearing and a travel unit including rolling bearings

Publications (1)

Publication Number Publication Date
WO2012128316A1 true WO2012128316A1 (ja) 2012-09-27

Family

ID=46879457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057326 WO2012128316A1 (ja) 2011-03-22 2012-03-22 転がり軸受、及び、その転がり軸受を備えた走行装置

Country Status (5)

Country Link
US (2) US9506554B2 (ja)
CN (1) CN103477102B (ja)
AU (1) AU2012232118B2 (ja)
DE (1) DE112012001375T5 (ja)
WO (1) WO2012128316A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104884830A (zh) * 2012-12-28 2015-09-02 Ntn株式会社 滚动轴承
CN105229322A (zh) * 2013-05-28 2016-01-06 Ntn株式会社 滚动轴承
US10359077B2 (en) * 2015-08-05 2019-07-23 Ntn Corporation Rolling bearing with abnormality detector
US20190390715A1 (en) * 2016-12-14 2019-12-26 Ntn Corporation Rolling bearing with rotation sensor
US10738825B2 (en) 2018-05-08 2020-08-11 Roller Bearing Company Of America, Inc. Double row tapered roller bearing assembly having a two-piece outer ring

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013106344B4 (de) 2013-06-18 2015-03-12 Bitzer Kühlmaschinenbau Gmbh Kältemittelverdichter
DE102015202688A1 (de) * 2015-02-13 2016-08-18 Zf Friedrichshafen Ag Dichtelement, Wälzlager, Getriebe sowie Kraftfahrzeug
DE102015005108A1 (de) * 2015-04-10 2016-10-13 Parker Hannifin Manufacturing Germany GmbH & Co. KG Ringförmige Dichtung zur Medientrennung zwischen zwei relativ zueinander bewegten Körpern
JP6621997B2 (ja) * 2015-04-17 2019-12-18 Ntn株式会社 自動車用減速機付きモータ駆動装置
US10415642B2 (en) * 2015-06-09 2019-09-17 Aktiebolaget Skf Coupling system of a sealing assembly with a rotating annular element
DE102015216475B4 (de) * 2015-08-28 2020-10-08 Aktiebolaget Skf Lageranordnung
CN108350947B (zh) * 2015-11-12 2020-06-26 Ntn株式会社 滚动轴承单元
DE102015223667A1 (de) * 2015-11-30 2017-06-14 Zf Friedrichshafen Ag Planetenträger für eine Getriebestufe eines Planetengetriebes
US11105374B2 (en) * 2016-04-12 2021-08-31 Ntn Corporation Rolling bearing unit
JP2017223351A (ja) * 2016-06-08 2017-12-21 Ntn株式会社 転がり軸受ユニット
US20190316990A1 (en) * 2016-07-19 2019-10-17 Nsk Ltd. Wheel equipped with sensing device
CN106704558A (zh) * 2016-12-12 2017-05-24 重庆江增船舶重工有限公司 用于离心机的齿轮箱结构
DE102017114486B4 (de) 2017-06-29 2023-09-14 Schaeffler Technologies AG & Co. KG Verfahren zur Herstellung einer Dichtungsanordnung für ein Radlager
DE102017116875A1 (de) * 2017-07-26 2019-01-31 Thyssenkrupp Ag Kombination eines Wälzlagers und mindestens eines Abdeckelements sowie Walzenmühle
DE102017222408A1 (de) * 2017-12-11 2019-06-13 Aktiebolaget Skf Lagereinheit
JP7111585B2 (ja) 2018-11-08 2022-08-02 日立建機株式会社 ダンプトラック
IT201800020209A1 (it) * 2018-12-19 2020-06-19 Skf Ab Unità cuscinetto con supporto flangiato per applicazioni industriali
USD937331S1 (en) * 2018-12-19 2021-11-30 Aktiebolaget Skf Housing for ball bearings
US20230128071A1 (en) * 2021-10-22 2023-04-27 Lockheed Martin Corporation Multi-piece bushing
EP4299932A1 (en) * 2022-06-30 2024-01-03 Aktiebolaget SKF Support assembly for food applications

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4324167Y1 (ja) * 1964-06-09 1968-10-12
JPH0579048U (ja) * 1992-03-31 1993-10-26 エヌティエヌ株式会社 シール付調心型転がり軸受
JPH08303473A (ja) * 1995-02-28 1996-11-19 Ntn Corp シール付き円すいころ軸受およびその取付構造
JP2000055064A (ja) * 1998-08-10 2000-02-22 Nippon Seiko Kk シール付き転がり軸受
JP2002227974A (ja) * 2001-01-30 2002-08-14 Nsk Ltd トラクションドライブ装置
JP2006010478A (ja) * 2004-06-25 2006-01-12 Ntn Corp 荷重センサ付車輪用軸受装置
JP2006322538A (ja) * 2005-05-19 2006-11-30 Uchiyama Mfg Corp シールリング及びその製造方法
JP2010174950A (ja) * 2009-01-28 2010-08-12 Hitachi Constr Mach Co Ltd 作業車両の走行駆動装置

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1425177A1 (de) * 1962-10-16 1969-01-02 Ziller Dr Ing E H Hans Waelzlagerabdichtung mit einem schleifenden Ring aus Gummi od. dgl.
US3572857A (en) * 1967-10-14 1971-03-30 Toyo Bearing Mfg Co Antifriction bearing seal
JPS469083Y1 (ja) * 1967-11-21 1971-03-31
GB1319953A (en) * 1969-06-17 1973-06-13 Skf Uk Ltd Rolling bearings
JPS6073506U (ja) * 1983-10-27 1985-05-23 株式会社島津製作所 放射線診療装置の患者用ベツド
JPS63170615A (ja) 1987-01-09 1988-07-14 Hitachi Ltd 液晶表示装置
JPH0623775Y2 (ja) 1987-04-25 1994-06-22 エヌティエヌ株式会社 オイルフイルタ付き転がり軸受
US5456475A (en) * 1988-04-28 1995-10-10 Skf Usa Inc. Protected seal assembly and protective filter unit therefor
JPH069083Y2 (ja) * 1989-08-23 1994-03-09 株式会社タブチ 水道配管に於ける流体機器の連結装着用ベース
JP2988688B2 (ja) * 1990-05-23 1999-12-13 松下電器産業株式会社 カセット自動交換再生装置における交換制御方法
JPH04324167A (ja) * 1991-04-25 1992-11-13 Toshiba Corp 磁気記録再生装置
JPH0579048A (ja) 1991-09-19 1993-03-30 Haseko Corp 地中梁の配筋構造
US5186548A (en) * 1992-02-07 1993-02-16 Brenco, Incorporated Bearing shaft seal
JPH069083A (ja) * 1992-06-29 1994-01-18 Canon Inc シート材供給装置及び画像形成装置
NL9202086A (nl) 1992-12-01 1994-07-01 Skf Ind Trading & Dev Een wentellagersysteem met een filterafdichtring.
NL9302277A (nl) * 1993-12-28 1995-07-17 Skf Ind Trading & Dev Waterafstotende filterafdichting.
JPH09196066A (ja) 1996-01-18 1997-07-29 Nippon Seiko Kk 転がり軸受用スリンガ
DE19634689A1 (de) * 1996-08-28 1998-03-05 Skf Gmbh Wälzlager
DE19958788A1 (de) * 1999-12-01 2001-06-21 Mannesmann Ag Dichtring mit einem ringförmigen Grundkörper für ein auf eine Welle oder eine Achse aufsteckbares Lager, insbesondere Wälzlager
JP2002250354A (ja) 2001-02-23 2002-09-06 Nsk Ltd 転がり軸受
WO2003066359A2 (en) 2002-02-07 2003-08-14 Euclid-Hitachi Heavy Equipment, Ltd. Axle assembly
JP2006057817A (ja) * 2004-08-24 2006-03-02 Ntn Corp センサ付車輪用軸受装置
JP2006336734A (ja) * 2005-06-01 2006-12-14 Nsk Ltd 密封装置付き転がり軸受
US7832735B2 (en) * 2006-01-11 2010-11-16 Skf Usa Inc. Seal assembly with protective filter
JP2008008465A (ja) * 2006-06-30 2008-01-17 Nsk Ltd 転がり軸受
JP2008175301A (ja) * 2007-01-18 2008-07-31 Nsk Ltd シール装置付き転がり軸受
EP1967749B1 (en) * 2007-03-05 2018-10-31 JTEKT Corporation Tapered roller bearing with lubrication
JP4667478B2 (ja) 2008-02-26 2011-04-13 日立建機株式会社 走行装置
CN201443562U (zh) * 2009-07-20 2010-04-28 徐翔 轴承
DE102010019442A1 (de) * 2010-05-05 2011-11-10 Schaeffler Technologies Gmbh & Co. Kg Wälzlager mit integrierter Abdichtung
DE102010025803B4 (de) * 2010-07-01 2016-05-19 Schaeffler Technologies AG & Co. KG Dichtungsanordnung
DE202010017137U1 (de) * 2010-12-20 2012-01-02 Axel R. Hidde Gedichtete Lageranordnung mit semipermeabler Elastomer-Membran
JP6075977B2 (ja) * 2012-06-19 2017-02-08 Ntn株式会社 転がり軸受
ITTO20120604A1 (it) * 2012-07-09 2014-01-10 Skf Ab Gruppo cuscinetto-mozzo con dispositivo di tenuta
JP6214158B2 (ja) * 2012-12-28 2017-10-18 Ntn株式会社 転がり軸受
JP6419478B2 (ja) * 2014-07-25 2018-11-07 Ntn株式会社 転がり軸受
WO2017213225A1 (ja) * 2016-06-08 2017-12-14 Ntn株式会社 転がり軸受ユニット

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4324167Y1 (ja) * 1964-06-09 1968-10-12
JPH0579048U (ja) * 1992-03-31 1993-10-26 エヌティエヌ株式会社 シール付調心型転がり軸受
JPH08303473A (ja) * 1995-02-28 1996-11-19 Ntn Corp シール付き円すいころ軸受およびその取付構造
JP2000055064A (ja) * 1998-08-10 2000-02-22 Nippon Seiko Kk シール付き転がり軸受
JP2002227974A (ja) * 2001-01-30 2002-08-14 Nsk Ltd トラクションドライブ装置
JP2006010478A (ja) * 2004-06-25 2006-01-12 Ntn Corp 荷重センサ付車輪用軸受装置
JP2006322538A (ja) * 2005-05-19 2006-11-30 Uchiyama Mfg Corp シールリング及びその製造方法
JP2010174950A (ja) * 2009-01-28 2010-08-12 Hitachi Constr Mach Co Ltd 作業車両の走行駆動装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104884830A (zh) * 2012-12-28 2015-09-02 Ntn株式会社 滚动轴承
EP2940329A4 (en) * 2012-12-28 2015-11-04 Ntn Toyo Bearing Co Ltd BEARING BEARING
US9476456B2 (en) 2012-12-28 2016-10-25 Ntn Corporation Rolling bearing
AU2013367567B2 (en) * 2012-12-28 2017-05-25 Ntn Corporation Rolling bearing
CN104884830B (zh) * 2012-12-28 2018-04-27 Ntn株式会社 滚动轴承
CN105229322A (zh) * 2013-05-28 2016-01-06 Ntn株式会社 滚动轴承
CN105229322B (zh) * 2013-05-28 2019-08-16 Ntn株式会社 滚动轴承
US10359077B2 (en) * 2015-08-05 2019-07-23 Ntn Corporation Rolling bearing with abnormality detector
US20190390715A1 (en) * 2016-12-14 2019-12-26 Ntn Corporation Rolling bearing with rotation sensor
US10883543B2 (en) * 2016-12-14 2021-01-05 Ntn Corporation Rolling bearing with rotation sensor
US10738825B2 (en) 2018-05-08 2020-08-11 Roller Bearing Company Of America, Inc. Double row tapered roller bearing assembly having a two-piece outer ring

Also Published As

Publication number Publication date
CN103477102B (zh) 2016-08-17
CN103477102A (zh) 2013-12-25
US20170037902A1 (en) 2017-02-09
US9506554B2 (en) 2016-11-29
AU2012232118A1 (en) 2013-10-03
US20140011622A1 (en) 2014-01-09
DE112012001375T5 (de) 2013-12-19
US10302132B2 (en) 2019-05-28
AU2012232118B2 (en) 2015-11-26

Similar Documents

Publication Publication Date Title
WO2012128316A1 (ja) 転がり軸受、及び、その転がり軸受を備えた走行装置
JP6239065B2 (ja) 転がり軸受
JP6075977B2 (ja) 転がり軸受
EP3006757B1 (en) Rolling bearing with an oil permeable sealing device
JP6523994B2 (ja) シール付軸受
US9751576B2 (en) Sealing devices for anti-friction bearing
JP5300420B2 (ja) シール付き軸受
JP2014231856A (ja) 転がり軸受
CN108119560B (zh) 具有改进的密封装置的滚动轴承
JP2011256895A (ja) 転がり軸受
JP2014119029A (ja) 転がり軸受
TWI600849B (zh) 齒輪傳動裝置
JP5624506B2 (ja) フィルタ付き転がり軸受
WO2012128054A1 (ja) フィルタ付き転がり軸受、及び、そのフィルタ付き転がり軸受を備えた走行装置
JP2007270873A (ja) 密封装置
WO2015152329A1 (ja) フィルタ付き転がり軸受
JP2012197871A (ja) 走行装置
JP2012202444A (ja) フィルタ付き転がり軸受
JP2012117628A (ja) 密封装置および転がり軸受
JP2015200332A (ja) フィルタ付き転がり軸受
KR101995198B1 (ko) 차량용 휠 베어링

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760398

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14005833

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120013751

Country of ref document: DE

Ref document number: 112012001375

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2012232118

Country of ref document: AU

Date of ref document: 20120322

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12760398

Country of ref document: EP

Kind code of ref document: A1