WO2012117992A1 - 高周波モジュール - Google Patents

高周波モジュール Download PDF

Info

Publication number
WO2012117992A1
WO2012117992A1 PCT/JP2012/054715 JP2012054715W WO2012117992A1 WO 2012117992 A1 WO2012117992 A1 WO 2012117992A1 JP 2012054715 W JP2012054715 W JP 2012054715W WO 2012117992 A1 WO2012117992 A1 WO 2012117992A1
Authority
WO
WIPO (PCT)
Prior art keywords
external connection
land
frequency module
reception
transmission
Prior art date
Application number
PCT/JP2012/054715
Other languages
English (en)
French (fr)
Inventor
北嶋宏通
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201280011145.0A priority Critical patent/CN103416001B/zh
Priority to JP2013502301A priority patent/JP5648736B2/ja
Publication of WO2012117992A1 publication Critical patent/WO2012117992A1/ja
Priority to US13/966,463 priority patent/US9319092B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0243Printed circuits associated with mounted high frequency components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09218Conductive traces
    • H05K2201/09227Layout details of a plurality of traces, e.g. escape layout for Ball Grid Array [BGA] mounting

Definitions

  • the present invention relates to a high-frequency module that transmits and receives a plurality of communication signals using a common antenna.
  • the high-frequency module described in Patent Document 1 includes a plurality of duplexers each including a SAW filter and a switch IC. These SAW duplexers and switch ICs are mounted on the surface of a laminate that constitutes another circuit of the high-frequency module. The external connection terminals of the high-frequency module are arrayed on the bottom surface of the laminate.
  • an object of the present invention is to realize a high-frequency module that can provide sufficient isolation while including a SAW duplexer that multiplexes and demultiplexes a transmission signal and a reception signal.
  • the present invention relates to a high frequency module including a switch IC having a common terminal and a plurality of individual terminals, and a SAW duplexer connected to the individual terminals of the switch IC and for multiplexing and demultiplexing a transmission signal and a reception signal of a communication signal.
  • the high-frequency module includes a stacked body having a predetermined three-dimensional shape including a mounting land for mounting the switch IC and the SAW duplexer on a predetermined surface other than the bottom surface, and an external connection land on the bottom surface.
  • the transmission-side external connection land to which the transmission signal is input, the external connection land to be connected to the antenna, and the reception-side external connection land to output the reception signal are along sides facing each other in plan view of the laminate. Are arranged so as to be separated from each other.
  • the reception-side mounting land on which the port on the reception signal side of the SAW duplexer is mounted is connected to the reception-side external connection land only through via holes.
  • the transmission-side external connection land and the reception-side external connection land for connecting to the external transmission circuit and the reception circuit are arranged apart from each other on the bottom surface of the laminate. Further, the receiving side mounting land of the SAW duplexer mounted on the mounting surface of the multilayer body and the receiving side external connection land on the bottom surface of the multilayer body are connected only by substantially via holes. As a result, in the stacked body, the receiving side external connection land and the receiving side mounting land of the SAW duplexer are connected in a substantially straight line along the stacking direction. Therefore, in the stacked body, the transmission system circuit and the reception system circuit do not easily overlap with each other as viewed from the stacking direction or are close to each other, and sufficient isolation is ensured.
  • the reception-side external connection land and the external connection land connected to the antenna are arranged so as to be separated from each other along opposite sides in a plan view of the laminate. Yes.
  • the switch IC is arranged along one side of the laminated body on which the transmission-side external connection land is arranged, and the SAW duplexer is arranged on the laminated body in which the reception-side external connection land is arranged. It is arrange
  • the distance between the switch IC and the SAW duplexer is increased, so that the isolation between these mounted components can be increased.
  • the receiving side mounting land is disposed at an overlapping position in plan view of the laminated body with respect to the receiving side external connection land.
  • This configuration shows a specific formation positional relationship between the above-described receiving-side mounting land and the receiving-side external connection land.
  • At least one of the mounting surface and the inner layer of the multilayer body is arranged between the reception-side external connection land and the transmission-side external connection land when viewed from above,
  • a ground electrode is formed between the transmission land and the transmission side mounting land on which the transmission signal side port of the SAW duplexer is mounted.
  • the ground electrode is connected via a via hole to a ground mounting land on which the ground port of the mounted SAW duplexer is mounted.
  • This configuration shows the ground structure of the high-frequency module of the present application.
  • the receiving system circuit including the receiving side mounting land, the receiving side external connection land and the via hole for connecting them
  • the transmitting side circuit including the transmitting side mounting land and the transmitting side external connection land.
  • a via hole connected to the ground electrode and extending in the stacking direction is present, higher isolation can be ensured between the transmission system circuit and the reception system circuit in the stack.
  • an external ground connection electrode is formed on the bottom surface of the multilayer body between the reception-side external connection land and the transmission-side external connection land when the multilayer body is viewed in plan. .
  • the external ground connection electrode is formed so as to overlap the ground mounting land in a plan view of the stacked body.
  • an electrode connected to the ground is formed between the transmission system circuit and the reception system circuit over the entire range in the stacking direction from the mounting surface to the bottom surface of the stacked body.
  • the switch IC includes a plurality of individual terminals, and different SAW duplexers are connected to the plurality of individual terminals.
  • the arrangement axis of the receiving side mounting land on which each SAW duplexer is mounted and the arrangement axis of the transmitting side mounting land are arranged in parallel at a predetermined interval.
  • a plurality of SAW duplexers mounted on the mounting surface of the laminate are arranged and arranged so that the terminal arrangement is in the same positional relationship. Thereby, a predetermined interval can be maintained between the transmission-side mounting land group and the reception-side mounting land group, and the isolation between the transmission system circuit and the reception system circuit can be increased.
  • the antenna-side ports of the plurality of SAW duplexers are disposed on the side opposite to the side on which the reception signal-side port and the transmission signal-side port of the SAW duplexer are disposed.
  • the plurality of SAW duplexers are arranged so that the antenna side ports sandwich the reception signal side port and the transmission signal side port along the arrangement axis of the reception side mounting land and the transmission side mounting land.
  • a duplexer is implemented.
  • This configuration shows a more specific configuration when a plurality of SAW duplexers are used.
  • the transmission-side external connection land and the external connection land connected to the antenna are formed along one side of the laminate.
  • An external connection land for applying a signal for driving the switch IC is disposed between the transmission-side external connection land and the external connection land connected to the antenna.
  • a predetermined interval is provided between the transmission-side external connection land and the external connection land connected to the antenna on the bottom surface of the laminate, and a land that prevents these electromagnetic field couplings can be formed in the middle. . Thereby, isolation between the transmission system circuit and the antenna side circuit can be ensured.
  • the laminate is formed by laminating a plurality of dielectric layers, and a first inner layer ground electrode for a switch IC and a second inner layer ground electrode for a SAW duplexer are formed inside the laminate. With. The first inner layer ground electrode and the second inner layer ground electrode are formed on different dielectric layers inside the multilayer body.
  • a high-frequency module including a laminated body on which a SAW duplexer that multiplexes and demultiplexes a transmission signal and a reception signal is sufficient between the transmission side circuit and the reception side circuit of the SAW duplexer. Isolation can be obtained.
  • 1 is a circuit diagram of a high-frequency module 10 according to an embodiment of the present invention.
  • 1 is an external perspective view showing a main configuration of a high-frequency module 10 according to an embodiment of the present invention. It is a lamination figure of high frequency module 10 concerning the embodiment of the present invention. It is a figure for demonstrating the positional relationship of the land for mounting of the high frequency module 10 which concerns on embodiment of this invention, and the land for external connection. It is a figure for demonstrating the positional relationship of the land for mounting and the land for external connection in the other structure of the high frequency module which concerns on embodiment of this invention.
  • FIG. 1 is an external perspective view showing the main configuration of the high-frequency module 10 of the present embodiment.
  • the high-frequency module 10 includes a switch IC element SWIC and a SAW duplexer SDP1, SDP2, SDP3.
  • the high-frequency module 10 is formed by a laminated body 11 in which a predetermined number of dielectric layers are laminated, a circuit element formed in the laminated body 11, and a circuit element mounted on the top surface of the laminated body. With the mounted circuit elements, switch IC elements SWIC and SAW duplexers SDP1, SDP2, and SDP3 are realized.
  • the constituent elements other than the switch IC element SWIC and the SAW duplexers SDP1, SDP2, and SDP3 that constitute the high frequency module 10 are the top surface (mounting surface), bottom surface, and electrode pattern (inside) formed on the inside of the laminate 10. (Including via holes).
  • An insulating protective material 12 is formed on the mounting surface of the laminate 11.
  • FIG. 2 is a circuit diagram of the high-frequency switch module 10 according to the embodiment of the present invention.
  • the switch IC element SWIC includes a single common terminal PIC0 and three individual terminals PIC11, PIC12, and PIC13, and is connected to the ground GND.
  • a drive voltage Vdd and a control voltage Vc1 are applied to the switch IC element SWIC.
  • the single common terminal PIC is changed to one of the three individual terminals PIC11, PIC12, and PIC13. Connecting.
  • the common terminal PIC0 of the switch IC element SWIC is connected to the antenna-side external connection land Pan of the high-frequency module 10 via the antenna-side electrode pattern Tan.
  • the antenna-side external connection land Pan is connected to an external antenna ANT.
  • the first individual terminal PIC11 of the switch IC element SWIC is connected to the antenna-side mounting electrode Psc1 of the first SAW duplexer SDP1 via the first electrode pattern Trc1.
  • the first SAW duplexer SDP1 includes an antenna side port Psc1, a transmission signal input side port Pstx1, and a reception signal side port Psrx1.
  • the first SAW duplexer SDP1 also includes a ground connection port.
  • the first SAW duplexer SDP1 is disposed between the first SAW filter disposed between the antenna side port Psc1 and the transmission signal input side port Pstx1, and between the antenna side port Psc1 and the reception signal output side port Psrx1. And a second SAW filter.
  • the first SAW filter uses a transmission signal frequency band of the first communication signal as a pass band and other frequency bands as a cutoff band.
  • the second SAW filter uses the reception signal frequency band of the first communication signal as a pass band and the other frequency band as a cutoff band.
  • the transmission signal input side port Pstx1 of the first SAW duplexer SDP1 is connected to the first transmission side external connection land PMtx1 of the high frequency module 10 via the first transmission side electrode pattern Trt1.
  • the reception signal output side port Psrx1 of the first SAW duplexer SDP1 is connected to the first reception side external connection land PMrx1 of the high frequency module 10 via the first reception side electrode pattern Trr1.
  • the second SAW duplexer SDP2 includes an antenna side port Psc2, a transmission signal input side port Pstx2, and a reception signal side port Psrx2.
  • the second SAW duplexer SDP2 also includes a ground connection port.
  • the second SAW duplexer SDP2 is disposed between the third SAW filter disposed between the antenna side port Psc2 and the transmission signal input side port Pstx2, and between the antenna side port Psc2 and the reception signal output side port Psrx2. And a fourth SAW filter.
  • the third SAW filter uses the transmission signal frequency band of the second communication signal as a pass band and the other frequency band as a cutoff band.
  • the fourth SAW filter uses the reception signal frequency band of the second communication signal as a pass band and the other frequency band as a cutoff band.
  • the transmission signal input side port Pstx2 of the second SAW duplexer SDP2 is connected to the second transmission side external connection land PMtx2 of the high frequency module 10 via the second transmission side electrode pattern Trt2.
  • the reception signal output side port Psrx2 of the second SAW duplexer SDP2 is connected to the second reception side external connection land PMrx2 of the high frequency module 10 through the second reception side electrode pattern Trr2.
  • the third SAW duplexer SDP3 includes an antenna side port Psc3, a transmission signal input side port Pstx3, and a reception signal side port Psrx3.
  • the third SAW duplexer SDP3 also includes a ground connection port.
  • the third SAW duplexer SDP3 is disposed between the fifth SAW filter disposed between the antenna side port Psc3 and the transmission signal input side port Pstx3, and between the antenna side port Psc3 and the reception signal output side port Psrx3.
  • a sixth SAW filter uses the transmission signal frequency band of the third communication signal as a pass band and the other frequency band as a cutoff band.
  • the sixth SAW filter uses the reception signal frequency band of the third communication signal as a pass band and the other frequency band as a cutoff band.
  • the transmission signal input side port Pstx3 of the third SAW duplexer SDP3 is connected to the third transmission side external connection land PMtx3 of the high frequency module 10 via the third transmission side electrode pattern Trt3.
  • the reception signal output side port Psrx3 of the third SAW duplexer SDP3 is connected to the third reception side external connection land PMrx3 of the high frequency module 10 via the third reception side electrode pattern Trr3.
  • FIG. 3 is a stack diagram of the high-frequency module 10 according to the present embodiment.
  • FIG. 4 is a view for explaining the positional relationship between the mounting land and the external connection land of the high-frequency module 10 according to the present embodiment.
  • FIG. 4A is a layout diagram of the mounting land pattern on the surface of the dielectric layer PL1, which is the mounting surface of the multilayer body 11, and the switch IC elements SWIC, SAW duplexers SDP1, SDP2, and SDP3.
  • FIG. 4B is a diagram showing an arrangement pattern of lands for external connection of the dielectric layer PL12 which becomes the bottom surface of the multilayer body 11.
  • FIG. 4C is a diagram in which the dielectric layer PL1 and the dielectric layer PL12 are overlapped. 3 and 4 are conductive via holes connecting the layers.
  • the laminate 11 constituting the high-frequency module 10 is formed by laminating 12 dielectric layers PL1-PL12.
  • Mounting lands for mounting the switch IC elements SWIC and SAW duplexers SDP1, SDP2 and SDP3 are arranged in a predetermined pattern on the surface of the dielectric layer PL1 which is the uppermost layer of the stacked body 11 (the top surface of the stacked body 11). Has been. In FIG. 3, a plurality of discrete components are mounted together with these elements. However, since these components are not essentially related to the characteristics of the present invention, they are not shown in other drawings.
  • the SAW duplexers SDP1, SDP2, and SDP3 have the same shape, and the arrangement pattern of the mounting electrodes corresponding to the transmission signal input side port, the reception signal output side port, and the ground connection port is the same. Therefore, the arrangement pattern of the mounting lands of the stacked body 11 on which the mounting electrodes are mounted is the same.
  • the mounting land for the transmission signal input side port Pstx1 and the ground connection port PGND are arranged along one side of the two sides along the longitudinal direction of the casing of the SAW duplexer SDP1.
  • the mounting land and the mounting land of the reception signal output side port Psrx1 are formed in this order.
  • the mounting land for the ground connection port PGND, the mounting land for the antenna side port Psc1, and the mounting land for the ground connection port PGND are arranged in this order. Is formed.
  • a mounting land for the ground connection port PGND is formed between the mounting land and the mounting land for the reception signal output side port Psrx1 and the mounting land for the ground connection port PGND.
  • the mounting land patterns are formed so that the mounting directions of the SAW duplexers SDP1, SDP2, and SDP3 are the same.
  • the mounting land of the reception signal output side ports Psrx1, Psrx2, Psrx3 of each SAW duplexer SDP1, SDP2, SDP3 is in the vicinity of one side along the longitudinal direction of the stacked body 11, and the SAW duplexers SDP1, SDP2, SDP3
  • the mounting land pattern is formed so that the short direction is parallel to the longitudinal direction of the laminate 11.
  • the mounting land of the switch IC element SWIC is opposite to the mounting land group of the reception signal output side ports Psrx1, Psrx2, Psrx3 with respect to the mounting land group of each SAW duplexer SDP1, SDP2, SDP3. It is formed in the area.
  • the mounting land group of the switch IC element SWIC is in the vicinity of the other side along the longitudinal direction of the stacked body 11 on the side where the mounting land groups of the transmission signal input side ports Pstx1, Pstx2, and Pstx3 are arranged. Is formed.
  • the mounting land of the common terminal PIC in the mounting land group of the switch IC element SWIC is in the vicinity of the side along the short direction near the mounting land formation position of the antenna side port Psc1 of the SAW duplexer SDP1. Is formed. That is, the mounting land of the common terminal PIC0 of the switch IC element SWIC is formed so as to be as far away as possible from the transmission signal input side ports Pstx1, Pstx2, Pstx3 of the SAW duplexers SDP1, SDP2, SDP3. Yes.
  • the mounting land arrangement pattern that is, the mounting pattern of the SAW duplexers SDP1, SDP2, and SDP3 in this manner
  • Each of the output side ports Psrx1, Psrx2, Psrx3 and the antenna side ports Psc1, Psc2, Psc3 is separated at a predetermined interval, and the ground connection port PGND is interposed therebetween. Thereby, interference (unnecessary electromagnetic coupling) between the ports can be suppressed, and high isolation can be ensured.
  • Conductive via holes penetrating through the dielectric layers PL1-PL12 are formed at the mounting land formation positions of the reception signal output side ports Psrx1, Psrx2, Psrx3.
  • the mounting lands of the reception signal output side ports Psrx1, Psrx2, Psrx3 and the first, second, and third reception side external connection lands PMrx1, PMrx2, PMrx3 formed on the bottom surface of the multilayer body 11 are connected in the stacking direction at a shortest distance. Thereby, each mounting land and each external connection land can be connected with low loss.
  • these via holes are arranged at predetermined intervals at substantially equal intervals when the multilayer body 11 is viewed in plan, it is possible to ensure isolation between the via holes.
  • a conductive via hole penetrating the dielectric layers PL1-PL12 in a completely linear shape is preferably used.
  • an inner layer corresponding to several diameters of the via holes is used in the middle dielectric layer.
  • the electrode pattern may be a structure in which the upper and lower via holes are electrically connected.
  • the inner layer electrode pattern may be formed so as not to approach the transmission signal input side ports Pstx1, Pstx2, and Pstx3.
  • inner layer ground electrodes GNDi for the SAW duplexers SDP1, SDP2, and SDP3 are formed.
  • An inner layer ground electrode GNDi for the switch IC element SWIC is formed on the dielectric layer PL3.
  • the inner layer ground electrode GNDi for the SAW duplexers SDP1, SDP2, and SDP3 and the inner layer ground electrode GNDi for the switch IC element SWIC in different layers, unnecessary electromagnetic field coupling between these inner layer ground electrodes can be achieved. It is possible to prevent the transmission signals and the reception signals from being transmitted unnecessarily through the inner layer ground electrode.
  • the dielectric layer PL3 includes a first electrode pattern Trc1 that connects the switch IC element SWIC and the SAW duplexer SDP1, a second electrode pattern Trc2 that connects the switch IC element SWIC and the SAW duplexer SDP2, and a switch.
  • a third electrode pattern Trc3 that connects the IC element SWIC and the SAW duplexer SDP3 is formed.
  • an inner layer ground electrode GNDi for the switch IC element SWIC is formed in the same manner as the dielectric layer PL3.
  • inner layer electrode patterns for realizing inductors (not shown in the circuit diagram) constituting the high frequency module 10 are formed on the dielectric layers PL4, PL5, PL6, and PL7.
  • the dielectric layer PL7 has a first transmission electrode pattern Trt1, a SAW duplexer SDP2, and a first high frequency module 10 connecting the above-mentioned SAW duplexer SDP1 and the first transmission external connection land PMtx1 of the high frequency module 10.
  • Second transmission-side electrode pattern Trt2, SAW duplexer SDP3 for connecting the transmission-side external connection land PMtx2 to the third transmission-side external connection land PMtx3 of the high-frequency module 10 Trt3 is formed.
  • the first, second, and third transmission-side electrode patterns Trt1, Trt2, and Trt3 start from the mounting positions of the transmission signal input-side ports Pstx1, Pstx2, and Pstx3, and receive signal-side ports Psrx1, Psrx2, and Psrx3. It is formed to extend in the direction opposite to the mounting land side. As a result, it is possible to ensure isolation from the above-described via hole constituting the reception system circuit.
  • the first, second, and third transmission-side electrode patterns Trt1, Trt2, and Trt3 are formed in parallel along almost all sides along the short direction of the multilayer body 11. Thereby, it is possible to improve the isolation of the first, second, and third transmission-side electrode patterns Trt1, Trt2, and Trt3.
  • first, second, and third transmission-side electrode patterns Trt1, Trt2, and Trt3 are formed so as to be separated from each other without approaching the via holes connected to the mounting lands of the reception signal-side ports Psrx1, Psrx2, and Psrx3. Therefore, it is possible to secure isolation between the transmission side circuit and the reception side circuit.
  • An inner layer ground electrode GNDi is formed on substantially the entire surface of the dielectric layer PL9.
  • an inner layer electrode pattern for realizing a capacitor (not shown in the circuit diagram) constituting the high-frequency module 10 and the above-described inductor wiring pattern are formed.
  • An inner layer ground electrode GNDi is formed on substantially the entire surface of the dielectric layer PL11.
  • Various external connection lands are formed on the bottom surface side of the dielectric layer PL12 constituting the bottom surface of the laminate 11.
  • An external ground connection land GND is formed at the center of the dielectric layer PL12 in plan view.
  • Third reception side external connection land PMrx3, two external ground connection lands GND, second reception side external connection land PMrx2, two external ground connection lands GND, first reception side external connection land PMrx1 and two external ground connection lands GND are arranged in this order.
  • the third receiving side external connection land PMrx3 and the mounting land of the reception signal output side port Psrx3 overlap each other when the stacked body 11 is viewed along the stacking direction, and the second receiving side external connection land PMrx2 is overlapped.
  • the mounting land of the reception signal output side port Psrx2 are overlapped, and the external connection land is formed so that the first reception side external connection land PMrx1 and the mounting land of the reception signal output side port Psrx1 overlap. ing.
  • the corresponding mounting lands and external connection lands can be connected at the shortest distance only by via holes penetrating the stacked body 11.
  • the external connection land for applying the control voltage Vc1, the external connection land for applying the drive voltage Vdd, the external ground connection land GND, and the antenna-side external connection land Pan are arranged in this order.
  • the first transmission-side external connection land PMrx1 is connected to the first transmission-side electrode pattern Trt1 of the dielectric layer PL7 through a via hole.
  • the second transmission-side external connection land PMrx2 is connected to the second transmission-side electrode pattern Trt2 of the dielectric layer PL7 through a via hole.
  • the third transmission side external connection land PMrx3 is connected to the third transmission side electrode pattern Trt3 of the dielectric layer PL7 through a via hole.
  • the first, second, and third transmission-side external connection lands PMtx1, PMtx2, and PMtx3 and the first, second, and third reception-side external connection lands PMrx1, PMrx2, and PMrx3 are stacked.
  • the antenna-side external connection land Pan and the first, second, and third reception-side external connection lands PMrx1, PMrx2, and PMrx3 are spaced apart from each other along two sides of the stacked body 11. Thus, it is possible to ensure isolation between the antenna side circuit and the reception system circuit in the arrangement pattern of the external connection land.
  • the first transmission-side external connection land PMrx1 and the antenna-side external connection that are closest to the antenna-side external connection land Pan of the first, second, and third transmission-side external connection lands PMrx1, PMrx2, and PMrx3 The external connection land for applying the control voltage Vc1, the external connection land for applying the drive voltage Vdd, and the external ground connection land GND are arranged between the antenna land Pan and the antenna side circuit. Isolation from the transmission side circuit can also be ensured.
  • the transmission system circuit and the antenna side circuit (electrode pattern and via hole) and the reception system circuit (via hole) are also arranged apart from each other in the multilayer body 11. Also in the structure, it is possible to ensure isolation between the antenna side circuit, the transmission system circuit, and the reception system circuit.
  • the inner ground electrode GNDi and the external ground connection land GND described above are formed so as to overlap the mounting land of the ground connection port PGND of the SAW duplexers SDP1, SDP2, and SDP3 when viewed in the stacking direction. These lands and electrodes are connected along the stacking direction by via holes.
  • the antenna-side circuit and the transmission system circuit are formed by the mounting land of the ground connection port PGND, the inner layer ground electrode GNDi, the external ground connection land GND, and the via hole group connecting them.
  • An electrode connected to the ground is disposed between the reception system circuit and the reception system circuit. Therefore, higher isolation can be secured between the antenna side circuit and the transmission system circuit and the reception system circuit.
  • the interference between the reception system circuit, the transmission system circuit, and the antenna side circuit is suppressed, and the high frequency module has high isolation. Can be realized.
  • the first, second, and third reception-side external connection lands PMrx1, PMrx2, and PMrx3 overlap with the mounting lands of the reception signal output-side ports Psrx1, Psrx2, and Psrx3 as viewed from the stacking direction.
  • the configuration is shown as an example. However, they may partially overlap or be in a close positional relationship.
  • the positional relationship between the mounting lands of the receiving system and the external connection lands is such that the wiring pattern of the receiving system circuit is more than a predetermined distance from the transmitting system circuit so that they do not overlap when viewed from the stacking direction. It only has to be formed. Therefore, for example, as shown in FIG. 5, the mounting positions of the SAW duplexers SDP1, SDP2, and SDP3 remain the same, and the external connection lands of the receiving system extend along the direction orthogonal to the arrangement direction of the SAW duplexers SDP1, SDP2, and SDP3. It is also possible to form an array.
  • FIG. 5 is a diagram for explaining the positional relationship between the mounting land and the external connection land of the high-frequency module having another configuration according to the present embodiment. FIG.
  • FIG. 5A is a land pattern diagram for mounting on the surface of the dielectric layer PL1A that becomes the mounting surface of the laminated body.
  • FIG. 5B is a diagram showing an arrangement pattern of lands for external connection of the dielectric layer PL12A which becomes the bottom surface of the multilayer body.
  • the high frequency module using three SAW duplexers has been described as an example, but the above configuration can be applied even when other numbers of SAW duplexers are used.
  • the SAW duplexer is mounted on the top surface of the multilayer body 11 .
  • the SAW duplexer SDP or the like is mounted on a predetermined intermediate layer of the multilayer body 11. Also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

積層体(11)の天面のSAWデュプレクサ(SDP1,DP2,SDP3)の受信信号出力側ポート(Psrx1,Psrx2,Psrx3)の実装用ランドと、底面の受信側外部接続用ランド(PMrx1,PMrx2,PMrx3)は、それぞれ積層方向に沿って見て重なり合うように形成され、ビアホールで直接接続される。積層体(11)の底面には、送信側外部接続用ランド(PMtx1,PMtx2,PMtx3)が形成されている。これら送信側外部接続用ランド(PMtx1,PMtx2,PMtx3)は、積層体(11)の天面の送信信号入力側ポート(Pstx1,Pstx2,Pstx3)の実装用ランドに受信系のビアホールに近づかない所定の内層電極およびビアホールにより接続される。

Description

高周波モジュール
 この発明は、複数の通信信号を共通アンテナで送受信する高周波モジュールに関する。
 従来、それぞれに異なる周波数帯域を利用した複数の通信信号を共通アンテナで送受信する高周波モジュールが各種考案されている。例えば、特許文献1に記載の高周波モジュールは、それぞれにSAWフィルタを組み合わせた複数のデュプレクサとスイッチICとを備える。これらのSAWデュプレクサおよびスイッチICは、高周波モジュールの他の回路を構成する積層体の表面に実装される。そして、高周波モジュールの外部接続端子は、積層体の底面に配列形成されている。
 このような高周波モジュールでは、送信信号が伝送する回路と受信信号が伝送する回路との間のアイソレーションを高くする必要がある。このため、特許文献1に記載の高周波モジュールは、受信回路側の外部接続端子群と、送信回路側の外部接続端子群とが、積層体を平面視した対向する側辺にそれぞれ配列形成された構造を採用している。
特開2008-10995号公報
 しかしながら、特許文献1に記載の高周波モジュールの構造では、積層体の外部接続端子に関しては、送信側回路と受信側回路とのアイソレーションを確保できるものの、積層体表面の実装パターンおよび積層体内等の配線パターンはアイソレーションを意識的に配慮しておらず、アイソレーションが低下してしまう可能性がある。特に、送信信号と受信信号とを合分波するSAWデュプレクサを用いた場合、よりアイソレーションが低下しやすくなってしまう。
 したがって、本発明の目的は、送信信号と受信信号とを合分波するSAWデュプレクサを備えながらも、十分なアイソレーションが得られる高周波モジュールを実現することにある。
 この発明は、共通端子および複数の個別端子を備えたスイッチICと、該スイッチICの個別端子に接続し、通信信号の送信信号と受信信号とを合分波するSAWデュプレクサとを備えた高周波モジュールに関する。この高周波モジュールは、スイッチICおよびSAWデュプレクサを底面以外の所定面に実装する実装用ランドを備え、且つ底面に外部接続用ランドを備える所定の立体形状からなる積層体を備える。送信信号が入力される送信側外部接続用ランドおよびアンテナに接続する外部接続用ランドと、受信信号を出力する受信側外部接続用ランドとは、積層体を平面視して対向する辺に沿って、互いに分離するように配設されている。SAWデュプレクサの受信信号側のポートが実装される受信側実装用ランドは、受信側外部接続用ランドとほぼビアホールのみにより接続されている。
 この構成では、外部の送信回路および受信回路にそれぞれ接続するための送信側外部接続用ランドと受信側外部接続用ランドとが、積層体の底面において離間して配置されている。さらに、積層体の実装面に実装されたSAWデュプレクサの受信側実装用ランドと積層体の底面の受信側外部接続用ランドとが略ビアホールのみで接続される。これにより、積層体内では、受信側外部接続用ランドとSAWデュプレクサの受信側実装用ランドとが積層方向に沿ってほぼ直線でつながる配線構造となる。したがって、積層体内では、送信系回路と受信系回路とが積層方向から見て重なる構造や、近接する構造にはなりにくく、十分なアイソレーションが確保される。
 また、この発明の高周波モジュールでは、受信側外部接続用ランドとアンテナに接続する外部接続用ランドとは、積層体を平面視して対向する辺に沿って、互いに分離するように配設されている。
 この構成では、受信側外部接続用ランドとアンテナに接続する外部接続用ランドとの距離が離間するので、これらの間のアイソレーションを高くすることができる。
 また、この発明の高周波モジュールでは、スイッチICは送信側外部接続用ランドが配置された積層体の一方側の辺に沿って配置され、SAWデュプレクサは受信側外部接続用ランドが配置された積層体の他方側の辺に沿って配置されている。
 この構成では、スイッチICとSAWデュプレクサとの距離が離間するので、これらの実装部品間でのアイソレーションを高くすることができる。
 また、この発明の高周波モジュールでは、受信側実装用ランドは、受信側外部接続用ランドに対して、積層体を平面視した重なり合う位置に配設されている。
 この構成では、上述の受信側実装用ランドと受信側外部接続用ランドとの具体的な形成位置関係を示している。
 また、この発明の高周波モジュールでは、積層体の実装面および内層の少なくとも一方には、積層体を平面視して受信側外部接続用ランドと送信側外部接続用ランドとの間、および受信側実装用ランドとSAWデュプレクサの送信信号側のポートが実装される送信側実装用ランドとの間に、グランド電極が形成されている。該グランド電極は、実装された前記SAWデュプレクサのグランドポートが実装されるグランド実装用ランドに対してビアホールを介して接続されている。
 この構成では、本願の高周波モジュールのグランド構造を示している。このように、受信側実装用ランド、受信側外部接続用ランドおよびこれらを接続するビアホール等からなる受信系回路と、送信側実装用ランド、送信側外部接続用ランドを含む送信系回路との間に、グランド電極およびグランド電極に接続し積層方向に延びるビアホールが存在することで、積層体内での送信系回路と受信系回路との間に、より高いアイソレーションを確保することができる。
 また、この発明の高周波モジュールでは、積層体の底面には、積層体を平面視して受信側外部接続用ランドと送信側外部接続用ランドとの間に外部グランド接続用電極が形成されている。外部グランド接続用電極は、グランド実装用ランドと、積層体を平面視して重なり合うように形成されている。
 この構成では、積層体の実装面から底面までの積層方向の全範囲に亘り、送信系回路と受信系回路との間にグランドに接続する電極が形成される。これにより、送信系回路と受信系回路との間に、さらに高いアイソレーションを確保することができる。
 また、この発明の高周波モジュールでは、スイッチICは複数の個別端子を備え、該複数の個別端子毎に異なるSAWデュプレクサが接続される。各SAWデュプレクサを実装する受信側実装用ランドの配列軸と、送信側実装用ランドの配列軸とが、所定間隔をおいて平行に配設されている。
 この構成では、積層体の実装面に実装される複数のSAWデュプレクサが、端子配置が同じ位置関係となるように、配列して配置される。これにより、送信側実装用ランド群と受信側実装用ランド群との間に、所定間隔を保つことができ、送信系回路と受信系回路との間のアイソレーションを高くすることができる。
 この発明の高周波モジュールでは、複数のSAWデュプレクサのアンテナ側ポートは、SAWデュプレクサの受信信号側のポートおよび送信信号側のポートが配設された辺と対向する辺に配設される。そして、これら複数のSAWデュプレクサのアンテナ側ポートが受信側実装用ランドおよび送信側実装用ランドの配列軸に沿って受信信号側のポートおよび送信信号側のポートを間に挟むように、複数のSAWデュプレクサが実装されている。
 この構成では、複数のSAWデュプレクサを用いる場合のより具体的な構成を示している。そして、このような複数のSAWデュプレクサの配置を行うことで、各SAWデュプレクサにおける送信系回路およびアンテナ側回路と受信系回路との間で、高いアイソレーションを確保できる。
 この発明の高周波モジュールでは、送信側外部接続用ランドおよびアンテナに接続する外部接続用ランドとは、積層体の一側辺に沿って配列して形成される。送信側外部接続用ランドおよびアンテナに接続する外部接続用ランドとの間には、スイッチICを駆動する信号を印加するための外部接続用ランドが配設されている。
 この構成では、積層体の底面において、送信側外部接続用ランドとアンテナに接続する外部接続用ランドとの間に所定間隔を設け、中間にこれらの電磁界結合を妨げるランドを形成することができる。これにより、送信系回路とアンテナ側回路とのアイソレーションを確保することができる。
 この発明の高周波モジュールでは、積層体は複数の誘電体層を積層して形成され、積層体の内部にはスイッチIC用の第1の内層グランド電極と、SAWデュプレクサ用の第2の内層グランド電極とを備える。第1の内層グランド電極と第2の内層グランド電極とは、積層体の内部の異なる誘電体層上に形成されている。
 この構成では、スイッチIC用の内層グランド電極と、SAWデュプレクサ用の内層グランド電極との間の電磁界結合を防止できる。
 この発明によれば、送信信号と受信信号とを合分波するSAWデュプレクサが実装された積層体からなる高周波モジュールであっても、SAWデュプレクサの送信側回路と受信側回路との間で、十分なアイソレーションが得ることができる。
本発明の実施形態に係る高周波モジュール10の回路図である。 本発明の実施形態に係る高周波モジュール10の主要構成を示す外観斜視図である。 本発明の実施形態に係る高周波モジュール10の積層図である。 本発明の実施形態に係る高周波モジュール10の実装用ランドと外部接続用ランドとの位置関係を説明するための図である。 本発明の実施形態に係る高周波モジュールの他の構成での実装用ランドと外部接続用ランドとの位置関係を説明するための図である。
 本発明の実施形態に係る高周波モジュールについて、図を参照して説明する。本実施形態では、高周波モジュールとして、それぞれに異なる周波数帯域を利用した第1、第2、第3の通信信号を送受信する高周波スイッチモジュールを例に説明する。図1は本実施形態の高周波モジュール10の主要構成を示す外観斜視図である。高周波モジュール10は、スイッチIC素子SWIC、SAWデュプレクサSDP1,SDP2,SDP3を備えている。
 高周波モジュール10は誘電体層を所定層数だけ積層してなる積層体11と、当該積層体11内に形成される回路素子および積層体の天面に実装される回路素子により形成される。この実装される回路素子により、スイッチIC素子SWIC、SAWデュプレクサSDP1,SDP2,SDP3が実現される。そして、高周波モジュール10を構成する、これらスイッチIC素子SWIC、SAWデュプレクサSDP1,SDP2,SDP3以外の構成要素が、積層体10の天面(実装面)、底面、および内部に形成された電極パターン(ビアホールを含む)により実現される。なお、積層体11の実装面上には絶縁性保護材12が形成されている。
 次に、高周波モジュール10の具体的回路構成について説明する。図2は本発明の実施形態に係る高周波スイッチモジュール10の回路図である。
 スイッチIC素子SWICは、単一の共通端子PIC0と、三個の個別端子PIC11,PIC12,PIC13を備え、グランドGNDに接続されている。スイッチIC素子SWICには駆動電圧Vddおよび制御電圧Vc1が印加されており、当該制御電圧Vc1を制御することで、単一の共通端子PICを三個の個別端子PIC11,PIC12,PIC13のいずれかに接続する。
 スイッチIC素子SWICの共通端子PIC0は、アンテナ側電極パターンTanを介して高周波モジュール10のアンテナ側外部接続用ランドPanに接続している。このアンテナ側外部接続用ランドPanは、外部のアンテナANTに接続している。
 スイッチIC素子SWICの第1個別端子PIC11は、第1の電極パターンTrc1を介して、第1のSAWデュプレクサSDP1のアンテナ側実装用電極Psc1に接続している。
 第1のSAWデュプレクサSDP1は、アンテナ側ポートPsc1、送信信号入力側ポートPstx1、受信信号側ポートPsrx1を備える。なお、第1のSAWデュプレクサSDP1は、グランド接続用ポートも備える。
 第1のSAWデュプレクサSDP1は、アンテナ側ポートPsc1と送信信号入力側ポートPstx1との間に配設された第1SAWフィルタと、アンテナ側ポートPsc1と受信信号出力側ポートPsrx1との間に配設された第2SAWフィルタとからなる。第1SAWフィルタは、第1通信信号の送信信号周波数帯域を通過帯域とし、それ以外の周波数帯域を遮断帯域とする。第2SAWフィルタは、第1通信信号の受信信号周波数帯域を通過帯域とし、それ以外の周波数帯域を遮断帯域とする。
 第1のSAWデュプレクサSDP1の送信信号入力側ポートPstx1は、第1の送信側電極パターンTrt1を介して、高周波モジュール10の第1の送信側外部接続用ランドPMtx1に接続している。
 第1のSAWデュプレクサSDP1の受信信号出力側ポートPsrx1は、第1の受信側電極パターンTrr1を介して、高周波モジュール10の第1の受信側外部接続用ランドPMrx1に接続している。
 第2のSAWデュプレクサSDP2は、アンテナ側ポートPsc2、送信信号入力側ポートPstx2、受信信号側ポートPsrx2を備える。なお、第2のSAWデュプレクサSDP2は、グランド接続用ポートも備える。
 第2のSAWデュプレクサSDP2は、アンテナ側ポートPsc2と送信信号入力側ポートPstx2との間に配設された第3SAWフィルタと、アンテナ側ポートPsc2と受信信号出力側ポートPsrx2との間に配設された第4SAWフィルタとからなる。第3SAWフィルタは、第2通信信号の送信信号周波数帯域を通過帯域とし、それ以外の周波数帯域を遮断帯域とする。第4SAWフィルタは、第2通信信号の受信信号周波数帯域を通過帯域とし、それ以外の周波数帯域を遮断帯域とする。
 第2のSAWデュプレクサSDP2の送信信号入力側ポートPstx2は、第2の送信側電極パターンTrt2を介して、高周波モジュール10の第2の送信側外部接続用ランドPMtx2に接続している。
 第2のSAWデュプレクサSDP2の受信信号出力側ポートPsrx2は、第2の受信側電極パターンTrr2を介して、高周波モジュール10の第2の受信側外部接続用ランドPMrx2に接続している。
 第3のSAWデュプレクサSDP3は、アンテナ側ポートPsc3、送信信号入力側ポートPstx3、受信信号側ポートPsrx3を備える。なお、第3のSAWデュプレクサSDP3は、グランド接続用ポートも備える。
 第3のSAWデュプレクサSDP3は、アンテナ側ポートPsc3と送信信号入力側ポートPstx3との間に配設された第5SAWフィルタと、アンテナ側ポートPsc3と受信信号出力側ポートPsrx3との間に配設された第6SAWフィルタとからなる。第5SAWフィルタは、第3通信信号の送信信号周波数帯域を通過帯域とし、それ以外の周波数帯域を遮断帯域とする。第6SAWフィルタは、第3通信信号の受信信号周波数帯域を通過帯域とし、それ以外の周波数帯域を遮断帯域とする。
 第3のSAWデュプレクサSDP3の送信信号入力側ポートPstx3は、第3の送信側電極パターンTrt3を介して、高周波モジュール10の第3の送信側外部接続用ランドPMtx3に接続している。
 第3のSAWデュプレクサSDP3の受信信号出力側ポートPsrx3は、第3の受信側電極パターンTrr3を介して、高周波モジュール10の第3の受信側外部接続用ランドPMrx3に接続している。
 次に、上述の回路構成からなる高周波モジュール10の具体的な構造について説明する。図3は本実施形態に係る高周波モジュール10の積層図である。図4は本実施形態に係る高周波モジュール10の実装用ランドと外部接続用ランドとの位置関係を説明するための図である。図4(A)は、積層体11の実装面となる誘電体層PL1表面の実装用ランドパターンおよびスイッチIC素子SWIC、SAWデュプレクサSDP1,SDP2,SDP3の配置図である。図4(B)は積層体11の底面となる誘電体層PL12の外部接続用ランドの配置パターンを示す図である。図4(C)は、誘電体層PL1と誘電体層PL12とを重ね合わせて見た図である。なお、図3、図4の各層に記載の丸印は、層間を接続する導電性ビアホールである。
 高周波モジュール10を構成する積層体11は、12層からなる誘電体層PL1-PL12を積層してなる。
 積層体11の最上層となる誘電体層PL1の表面(積層体11の天面)には、スイッチIC素子SWIC、SAWデュプレクサSDP1,SDP2,SDP3を実装するための実装用ランドが所定パターンで配置されている。なお、図3では、これらの素子とともに複数のディスクリート部品が実装されているが、本願発明の特徴に本質的に関係するものではないので、他の図には記載していない。
 より具体的な誘電体層PL1の実装用ランドの配置パターンを説明する。
 SAWデュプレクサSDP1,SDP2,SDP3は、同じ形状であり、上述の送信信号入力側ポート、受信信号出力側ポートおよびグランド接続用ポートに対応する実装用電極の配置パターンも同じである。したがって、これら実装用電極が実装される積層体11の実装用ランドの配置パターンも同じである。
 その配置の一例としてSAWデュプレクサSDP1に対する実装用ランドの配置を説明する。図4(A)に示すように、SAWデュプレクサSDP1の筐体の長手方向に沿った二側辺の一方辺に沿って、送信信号入力側ポートPstx1用の実装用ランド、グランド接続用ポートPGNDの実装用ランドおよび受信信号出力側ポートPsrx1の実装用ランドがこの順で形成されている。また、前記長手方向に沿った二側辺の他方辺に沿って、グランド接続用ポートPGNDの実装用ランド、アンテナ側ポートPsc1の実装用ランド、グランド接続用ポートPGNDの実装用ランドがこの順で形成されている。さらに、短手方向に沿って、送信信号入力側ポートPstx1用の実装用ランドとグランド接続用ポートPGNDの実装用ランドとの間、グランド接続用ポートPGNDの実装用ランドとアンテナ側ポートPsc1の実装用ランドとの間、および受信信号出力側ポートPsrx1用の実装用ランドとグランド接続用ポートPGNDの実装用ランドとの間に、それぞれグランド接続用ポートPGNDの実装用ランドが形成されている。
 そして、これらSAWデュプレクサSDP1,SDP2,SDP3は、短手方向に沿って並ぶように配置されるので、これらに対する各実装用ランドパターンもSAWデュプレクサSDP1,SDP2,SDP3毎に、短手方向に沿って配列形成されている。
 この際、SAWデュプレクサSDP1,SDP2,SDP3の実装される向きが同じになるように、実装用ランドパターンが形成されている。
 さらに、各SAWデュプレクサSDP1,SDP2,SDP3の受信信号出力側ポートPsrx1,Psrx2,Psrx3の実装用ランドが、積層体11の長手方向に沿った一方の側辺近傍となり、SAWデュプレクサSDP1,SDP2,SDP3の短手方向が積層体11の長手方向と平行になるように、実装用ランドパターンが形成されている。
 スイッチIC素子SWICの実装用ランドは、各SAWデュプレクサSDP1,SDP2,SDP3の実装用ランド群に対して、受信信号出力側ポートPsrx1,Psrx2,Psrx3の実装用ランド群が配列された側と反対側の領域に形成されている。すなわち、スイッチIC素子SWICの実装用ランド群は、送信信号入力側ポートPstx1,Pstx2,Pstx3の実装用ランド群が配列された側である積層体11の長手方向に沿った他方の側辺近傍に形成されている。このように、スイッチIC素子SWICを、送信信号入力側ポート側に配置することにより、送信側と受信側のアイソレーションを向上することができる。
 さらに、スイッチIC素子SWICの実装用ランド群における共通端子PICの実装用ランドは、SAWデュプレクサSDP1のアンテナ側ポートPsc1の実装用ランドの形成位置に近い短手方向に沿った側辺近傍となるように形成されている。すなわち、スイッチIC素子SWICの共通端子PIC0の実装用ランドは、各SAWデュプレクサSDP1,SDP2,SDP3の送信信号入力側ポートPstx1,Pstx2,Pstx3に対して、極力遠い位置となるように、形成されている。
 実装用ランドの配置パターンすなわちSAWデュプレクサSDP1,SDP2,SDP3の実装パターンをこのように設定することで、各SAWデュプレクサSDP1,SDP2,SDP3の各送信信号入力側ポートPstx1,Pstx2,Pstx3、各受信信号出力側ポートPsrx1,Psrx2,Psrx3、アンテナ側ポートPsc1,Psc2,Psc3のそれぞれが、所定間隔で離間し、且つそれぞれの間にグランド接続用ポートPGNDが介する構成となる。これにより、各ポート間の干渉(不必要な電磁界結合)を抑圧し、高いアイソレーションを確保することができる。
 受信信号出力側ポートPsrx1,Psrx2,Psrx3の実装用ランドの形成位置には、誘電体層PL1-PL12を貫く導電性のビアホールが形成されている。
 これらのビアホールにより、受信信号出力側ポートPsrx1,Psrx2,Psrx3の実装用ランドと、積層体11の底面に形成された第1、第2、第3の受信側外部接続用ランドPMrx1,PMrx2,PMrx3とが、積層方向にほぼ最短距離で接続される。これにより、各実装用ランドと、各外部接続用ランドとを低損失に接続することができる。また、これらビアホールは、積層体11を平面視して、ほぼ等間隔に所定間隔を開けて配置されているので、ビアホール間のアイソレーションを確保することができる。また、積層方向に延びる短い電極となるので、誘電体層の面に平行に形成される後述の第1、第2、第3の電極パターンTrc1,Trc2,Trc3および第1、第2、第3の送信側電極パターンTrt1,Trt2,Trt3との干渉を抑制でき、送信系回路およびアンテナ側回路に対するアイソレーションをさらに高く確保することができる。
 なお、理想的には、完全に直線状に誘電体層PL1-PL12を貫く導電性のビアホールを用いるのが良いが、途中の誘電体層にて、ビアホールの直径の数個分に相当する内層電極パターンで、上下のビアホールを電気的に接続するような構造であってもよい。この場合、送信信号入力側ポートPstx1,Pstx2,Pstx3に近づかないように内層電極パターンを形成するとよい。
 誘電体層PL2には、SAWデュプレクサSDP1,SDP2,SDP3用の内層グランド電極GNDiが形成されている。
 誘電体層PL3には、スイッチIC素子SWIC用の内層グランド電極GNDiが形成されている。このように、SAWデュプレクサSDP1,SDP2,SDP3用の内層グランド電極GNDiとスイッチIC素子SWIC用の内層グランド電極GNDiとを異なる層に形成することで、これら内層グランド電極間による不要な電磁界結合を防止でき、内層グランド電極を介して各送信信号や各受信信号が不要に伝送することを防止できる。
 また、誘電体層PL3には、上述のスイッチIC素子SWICとSAWデュプレクサSDP1とを接続する第1の電極パターンTrc1、スイッチIC素子SWICとSAWデュプレクサSDP2とを接続する第2の電極パターンTrc2、スイッチIC素子SWICとSAWデュプレクサSDP3とを接続する第3の電極パターンTrc3が形成されている。
 誘電体層PL4、PL5には、誘電体層PL3と同様に、スイッチIC素子SWIC用の内層グランド電極GNDiが形成されている。
 また、誘電体層PL4,PL5,PL6,PL7には、高周波モジュール10を構成するインダクタ(回路図上は図示せず)を実現する内層電極パターンが形成されている。
 誘電体層PL7には、上述のSAWデュプレクサSDP1と高周波モジュール10の第1の送信側外部接続用ランドPMtx1とを接続する第1の送信側電極パターンTrt1、SAWデュプレクサSDP2と高周波モジュール10の第1の送信側外部接続用ランドPMtx2とを接続する第2の送信側電極パターンTrt2、SAWデュプレクサSDP3と高周波モジュール10の第3の送信側外部接続用ランドPMtx3とを接続する第3の送信側電極パターンTrt3が形成されている。
 この際、第1、第2、第3の送信側電極パターンTrt1,Trt2,Trt3は、送信信号入力側ポートPstx1,Pstx2,Pstx3の実装位置を起点として、受信信号側ポートPsrx1,Psrx2,Psrx3の実装用ランド側と反対側の方向へ延びるように形成される。これにより、受信系回路を構成する上述のビアホールとの間のアイソレーションを確保することができる。そして、これら第1、第2、第3の送信側電極パターンTrt1,Trt2,Trt3は、積層体11の短手方向に沿って、ほぼ全辺に亘って平行に形成されている。これにより、これら第1、第2、第3の送信側電極パターンTrt1,Trt2,Trt3についても、アイソレーションを向上させることができる。
 また、これら第1、第2、第3の送信側電極パターンTrt1,Trt2,Trt3は、受信信号側ポートPsrx1,Psrx2,Psrx3の実装用ランドに接続するビアホールに近づくことなく、離間するように形成されているので、送信側回路と受信側回路との間のアイソレーションを確保することもできる。
 誘電体層PL8には、ビアホールのみが形成されている。
 誘電体層PL9には、略全面に内層グランド電極GNDiが形成されている。
 誘電体層PL10には、高周波モジュール10を構成するキャパシタ(回路図上は図示せず)を実現する内層電極パターンおよび上述のインダクタ用の配線パターンが形成されている。
 誘電体層PL11には、略全面に内層グランド電極GNDiが形成されている。
 積層体11の底面を構成する誘電体層PL12の底面側には、各種外部接続用ランドが形成されている。誘電体層PL12を平面視した中央には、外部グランド接続用ランドGNDが形成されている。
 誘電体層PL12の長手方向に沿った一方の側辺(上述の受信信号出力側ポートPsrx1,Psrx2,Psrx3の実装用ランドが配置される側の側辺)近傍には、当該長手方向に沿って、第3の受信側外部接続用ランドPMrx3、二つの外部グランド接続用ランドGND、第2の受信側外部接続用ランドPMrx2、二つの外部グランド接続用ランドGND、第1の受信側外部接続用ランドPMrx1、二つの外部グランド接続用ランドGNDが、この順で配設されている。この際、積層体11を積層方向に沿って見て、第3の受信側外部接続用ランドPMrx3と受信信号出力側ポートPsrx3の実装用ランドとが重なり合い、第2の受信側外部接続用ランドPMrx2と受信信号出力側ポートPsrx2の実装用ランドとが重なり合い、第1の受信側外部接続用ランドPMrx1と受信信号出力側ポートPsrx1の実装用ランドとが重なり合うように、各外部接続用ランドが形成されている。これにより、それぞれ対応する実装用ランドと外部接続用ランドとを、積層体11を貫通するビアホールのみで最短距離にて接続することができる。
 誘電体層PL12の長手方向に沿った他方の側辺(上述の受信信号出力側ポートPsrx1,Psrx2,Psrx3の実装用ランドが配置される側と反対側の側辺)近傍には、当該長手方向に沿って、第3の送信側外部接続用ランドPMtx3、外部グランド接続用ランドGND、第2の送信側外部接続用ランドPMtx2、外部グランド接続用ランドGND、第1の送信側外部接続用ランドPMrx1、制御電圧Vc1印加のための外部接続用ランド、駆動電圧Vdd印加のための外部接続用ランド、外部グランド接続用ランドGND、アンテナ側外部接続用ランドPanが、この順で配設されている。
 第1の送信側外部接続用ランドPMrx1はビアホールを介して、誘電体層PL7の第1の送信側電極パターンTrt1に接続している。第2の送信側外部接続用ランドPMrx2はビアホールを介して、誘電体層PL7の第2の送信側電極パターンTrt2に接続している。第3の送信側外部接続用ランドPMrx3はビアホールを介して、誘電体層PL7の第3の送信側電極パターンTrt3に接続している。
 誘電体層PL12の短手方向に沿った二辺には、外部グランド接続用ランドGNDのみが配設されている。
 このように、第1、第2、第3の送信側外部接続用ランドPMtx1,PMtx2,PMtx3と第1、第2、第3の受信側外部接続用ランドPMrx1,PMrx2,PMrx3とが、積層体11の対向するに二辺に沿って離間して配置されることで、当該外部接続用ランドの配置パターンにおいて、送信系回路と受信系回路とのアイソレーションを確保することができる。
 また、アンテナ側外部接続用ランドPanと第1、第2、第3の受信側外部接続用ランドPMrx1,PMrx2,PMrx3とが、積層体11の対向するに二辺に沿って離間して配置されることで、当該外部接続用ランドの配置パターンにおいて、アンテナ側回路と受信系回路とのアイソレーションを確保することができる。
 また、第1、第2、第3の送信側外部接続用ランドPMrx1,PMrx2,PMrx3の内のアンテナ側外部接続用ランドPanに最も近い第1の送信側外部接続用ランドPMrx1とアンテナ側外部接続用ランドPanとの間に、制御電圧Vc1印加のための外部接続用ランド、駆動電圧Vdd印加のための外部接続用ランド、外部グランド接続用ランドGNDが配設されることで、アンテナ側回路と送信側回路とのアイソレーションも確保することができる。
 また、上述のように、積層体11内においても、送信系回路およびアンテナ側回路(電極パターンおよびビアホール)と受信系回路(ビアホール)とが離間して配設されるので、積層体11内の構造においても、アンテナ側回路および送信系回路と、受信系回路とのアイソレーションを確保することができる。
 また、上述の内層グランド電極GNDiおよび外部グランド接続用ランドGNDは、SAWデュプレクサSDP1,SDP2,SDP3のグランド接続用ポートPGNDの実装用ランドに対して、積層方向に見て重なり合うように形成されており、これらのランドや電極は、ビアホールにより積層方向に沿って接続されている。このような構成とすることで、これらのグランド接続用ポートPGNDの実装用ランド、内層グランド電極GNDi、外部グランド接続用ランドGNDおよびこれらを接続するビアホール群により、アンテナ側回路および送信系回路と、受信系回路との間にグランドに接続する電極が配置されることになる。したがって、アンテナ側回路および送信系回路と受信系回路との間に、さらに高いアイソレーションを確保することができる。
 以上のように、本実施形態の構成を用いることで、高周波モジュール10の全体において、受信系回路と、送信系回路およびアンテナ側回路との間の干渉を抑圧し、高いアイソレーションを有する高周波モジュールを実現することができる。
 なお、上述の説明では、第1、第2、第3の受信側外部接続用ランドPMrx1,PMrx2,PMrx3と受信信号出力側ポートPsrx1,Psrx2,Psrx3の実装用ランドとが積層方向から見て重なり合う構成を例に示した。しかしながら、これらは部分的に重なったり、近接する位置関係になったりしてもよい。
 さらには、これらの受信系の実装用ランドと外部接続用ランドとの位置関係は、送信系回路に対して受信系回路の配線パターンが所定間隔以上空き、積層方向から見て重なり合わないように形成されていればよい。したがって、例えば、図5に示すように、SAWデュプレクサSDP1,SDP2,SDP3の実装位置はそのままで、SAWデュプレクサSDP1,SDP2,SDP3の配列方向と直交する方向に沿って受信系の外部接続用ランドが配列形成することも可能である。図5は本実施形態に係る他の構成の高周波モジュールの実装用ランドと外部接続用ランドとの位置関係を説明するための図である。図5(A)は、積層体の実装面となる誘電体層PL1A表面の実装用ランドパターン図である。図5(B)は積層体の底面となる誘電体層PL12Aの外部接続用ランドの配置パターンを示す図である。
 また、上述の説明では、三個のSAWデュプレクサを用いた高周波モジュールを例に説明したが、他の個数のSAWデュプレクサを用いる場合であっても、上述の構成を適用することができる。
 また、上述の説明では、積層体11の天面にSAWデュプレクサを実装する例を示したが、場合によっては積層体11の所定の中間層にSAWデュプレクサSDP等を実装するような構成であってもよい。
10:高周波モジュール、11:積層体、12:絶縁性保護材、SWIC:スイッチIC、SDP1,SDP2,SDP3:SAWデュプレクサ

Claims (10)

  1.  共通端子および複数の個別端子を備えたスイッチICと、該スイッチICの個別端子に接続し、通信信号の送信信号と受信信号とを合分波するSAWデュプレクサとを備えた高周波モジュールであって、
     前記スイッチICおよび前記SAWデュプレクサを底面以外の所定面に実装する実装用ランドを備え、且つ前記底面に外部接続用ランドを備える所定の立体形状からなる積層体を備え、
     前記送信信号が入力される送信側外部接続用ランドおよびアンテナに接続する外部接続用ランドと、前記受信信号を出力する受信側外部接続用ランドとは、前記積層体を平面視して対向する辺に沿って、互いに分離するように配設され、
     前記SAWデュプレクサの受信信号側のポートが実装される受信側実装用ランドは、前記受信側外部接続用ランドとほぼビアホールのみにより接続されている、高周波モジュール。
  2.  請求項1に記載の高周波モジュールであって、
     前記受信側外部接続用ランドとアンテナに接続する外部接続用ランドとは、前記積層体を平面視して対向する辺に沿って、互いに分離するように配設されている、高周波モジュール。
  3.  請求項1または請求項2に記載の高周波モジュールであって、
     前記スイッチICは前記送信側外部接続用ランドが配置された前記積層体の一方側の辺に沿って配置され、前記SAWデュプレクサは前記受信側外部接続用ランドが配置された前記積層体の他方側の辺に沿って配置されている、高周波モジュール。
  4.  請求項1乃至請求項3のいずれかに記載の高周波モジュールであって、
     前記受信側実装用ランドは、前記受信側外部接続用ランドに対して、前記積層体を平面視した重なり合う位置に配設されている、高周波モジュール。
  5.  請求項1乃至請求項4のいずれかに記載の高周波モジュールであって、
     前記積層体の実装面および内層の少なくとも一方には、前記積層体を平面視して前記受信側外部接続用ランドと前記送信側外部接続用ランドとの間、および前記受信側実装用ランドと前記SAWデュプレクサの送信信号側のポートが実装される送信側実装用ランドとの間に、グランド電極が形成されており、
     該グランド電極は、実装された前記SAWデュプレクサのグランドポートが実装されるグランド実装用ランドに対してビアホールを介して接続されている、高周波モジュール。
  6.  請求項1乃至請求項5のいずれかに記載の高周波モジュールであって、
     前記積層体の底面には、前記積層体を平面視して前記受信側外部接続用ランドと前記送信側外部接続用ランドとの間に外部グランド接続用電極が形成されており、
     該外部グランド接続用電極は、前記グランド実装用ランドと、前記積層体を平面視して重なり合うように形成されている、高周波モジュール。
  7.  請求項1乃至請求項6のいずれかに記載の高周波モジュールであって、
     前記スイッチICは複数の個別端子を備え、該複数の個別端子毎に異なるSAWデュプレクサが接続され、
     各SAWデュプレクサを実装する受信側実装用ランドの配列軸と、送信側実装用ランドの配列軸とが、所定間隔をおいて平行に配設されている、高周波モジュール。
  8.  請求項7に記載の高周波モジュールであって、
     前記複数のSAWデュプレクサのアンテナ側ポートは、前記SAWデュプレクサの受信信号側のポートおよび送信信号側のポートが配設された辺と対向する辺に配設され、
     前記複数のSAWデュプレクサのアンテナ側ポートは、前記受信側実装用ランドおよび送信側実装用ランドの配列軸に沿って、前記受信信号側のポートおよび前記送信信号側のポートを間に挟むように、前記複数のSAWデュプレクサが実装されている、高周波モジュール。
  9.  請求項1乃至請求項8のいずれかに記載の高周波モジュールであって、
     前記送信側外部接続用ランドおよび前記アンテナに接続する外部接続用ランドとは、前記積層体の一側辺に沿って配列して形成され、
     前記送信側外部接続用ランドおよび前記アンテナに接続する外部接続用ランドとの間には、前記スイッチICを駆動する信号を印加するための外部接続用ランドが配設されている、高周波モジュール。
  10.  請求項1乃至請求項9のいずれかに記載の高周波モジュールであって、
     前記積層体は複数の誘電体層を積層して形成され、
     前記積層体の内部には前記スイッチIC用の第1の内層グランド電極と、前記SAWデュプレクサ用の第2の内層グランド電極とを備え、
     前記第1の内層グランド電極と前記第2の内層グランド電極とは、前記積層体の内部の異なる前記誘電体層上に形成されている、高周波モジュール。
PCT/JP2012/054715 2011-03-02 2012-02-27 高周波モジュール WO2012117992A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280011145.0A CN103416001B (zh) 2011-03-02 2012-02-27 高频模块
JP2013502301A JP5648736B2 (ja) 2011-03-02 2012-02-27 高周波モジュール
US13/966,463 US9319092B2 (en) 2011-03-02 2013-08-14 High-frequency module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-045142 2011-03-02
JP2011045142 2011-03-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/966,463 Continuation US9319092B2 (en) 2011-03-02 2013-08-14 High-frequency module

Publications (1)

Publication Number Publication Date
WO2012117992A1 true WO2012117992A1 (ja) 2012-09-07

Family

ID=46757926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054715 WO2012117992A1 (ja) 2011-03-02 2012-02-27 高周波モジュール

Country Status (4)

Country Link
US (1) US9319092B2 (ja)
JP (1) JP5648736B2 (ja)
CN (1) CN103416001B (ja)
WO (1) WO2012117992A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140210569A1 (en) * 2013-01-25 2014-07-31 Tayo Yuden Co., Ltd. Module substrate and module
WO2015156079A1 (ja) * 2014-04-08 2015-10-15 株式会社村田製作所 高周波モジュール
WO2019188968A1 (ja) * 2018-03-30 2019-10-03 株式会社村田製作所 高周波モジュール及びそれを備える通信装置
US11929738B2 (en) 2018-11-02 2024-03-12 Murata Manufacturing Co., Ltd. Electronic device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012000679B4 (de) * 2011-02-04 2017-05-11 Murata Manufacturing Co., Ltd. Duplexermodul
KR102499634B1 (ko) * 2015-11-09 2023-02-13 가부시키가이샤 와이솔재팬 듀플렉서 디바이스 및 듀플렉서 탑재용 기판
CN106785257B (zh) * 2017-02-20 2020-01-31 联想(北京)有限公司 多工器焊盘、电路板及电子设备
CN110663177B (zh) * 2017-05-30 2021-02-19 株式会社村田制作所 多工器、发送装置以及接收装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223582A (ja) * 2004-02-05 2005-08-18 Renesas Technology Corp 高周波回路モジュール
JP2005260835A (ja) * 2004-03-15 2005-09-22 Ngk Spark Plug Co Ltd アンテナ切換モジュールおよびその製造方法
JP2008010995A (ja) * 2006-06-28 2008-01-17 Ngk Spark Plug Co Ltd アンテナスイッチモジュール
WO2010053131A1 (ja) * 2008-11-05 2010-05-14 日立金属株式会社 高周波回路、高周波部品、及びマルチバンド通信装置
JP4539788B2 (ja) * 2008-12-10 2010-09-08 株式会社村田製作所 高周波モジュール
JP2010220231A (ja) * 2000-11-01 2010-09-30 Hitachi Metals Ltd 高周波スイッチモジュール

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6686832B2 (en) * 2000-05-23 2004-02-03 Satius, Inc. High frequency network multiplexed communications over various lines
JP2003087149A (ja) * 2001-09-14 2003-03-20 Matsushita Electric Ind Co Ltd 高周波複合スイッチモジュール
US7236758B1 (en) * 2003-02-07 2007-06-26 Femto Devices, Inc. Integrated wireless multimedia integrated circuit
JP2005094405A (ja) * 2003-09-18 2005-04-07 Tdk Corp 弾性表面波フィルタを備えた高周波モジュール
JP2005136887A (ja) 2003-10-31 2005-05-26 Kyocera Corp 高周波モジュール及び無線通信機器
JP2005295350A (ja) * 2004-04-02 2005-10-20 Ngk Spark Plug Co Ltd アンテナ切換モジュールおよびアンテナ切換回路形成用の積層体
JP2006014029A (ja) * 2004-06-28 2006-01-12 Kyocera Corp 高周波モジュール
JP2007053563A (ja) * 2005-08-17 2007-03-01 Nippon Dempa Kogyo Co Ltd 弾性表面波フィルタモジュールおよびこのモジュールの製造方法
CN101401317B (zh) * 2006-01-17 2012-09-26 日立金属株式会社 高频电路部件及利用了该高频电路部件的通信装置
JP3147878U (ja) 2008-11-06 2009-01-22 株式会社村田製作所 高周波スイッチモジュール
WO2010143472A1 (ja) * 2009-06-11 2010-12-16 株式会社村田製作所 高周波スイッチモジュール
FI123405B (fi) 2011-07-08 2013-03-28 Sandvik Mining & Constr Oy Menetelmä porauslaitteen anturien kalibroimiseksi

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010220231A (ja) * 2000-11-01 2010-09-30 Hitachi Metals Ltd 高周波スイッチモジュール
JP2005223582A (ja) * 2004-02-05 2005-08-18 Renesas Technology Corp 高周波回路モジュール
JP2005260835A (ja) * 2004-03-15 2005-09-22 Ngk Spark Plug Co Ltd アンテナ切換モジュールおよびその製造方法
JP2008010995A (ja) * 2006-06-28 2008-01-17 Ngk Spark Plug Co Ltd アンテナスイッチモジュール
WO2010053131A1 (ja) * 2008-11-05 2010-05-14 日立金属株式会社 高周波回路、高周波部品、及びマルチバンド通信装置
JP4539788B2 (ja) * 2008-12-10 2010-09-08 株式会社村田製作所 高周波モジュール

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140210569A1 (en) * 2013-01-25 2014-07-31 Tayo Yuden Co., Ltd. Module substrate and module
US9252739B2 (en) * 2013-01-25 2016-02-02 Taiyo Yuden Co., Ltd. Module substrate and module
WO2015156079A1 (ja) * 2014-04-08 2015-10-15 株式会社村田製作所 高周波モジュール
US10320364B2 (en) 2014-04-08 2019-06-11 Murata Manufacturing Co., Ltd. Radio-frequency module
WO2019188968A1 (ja) * 2018-03-30 2019-10-03 株式会社村田製作所 高周波モジュール及びそれを備える通信装置
US11043983B2 (en) 2018-03-30 2021-06-22 Murata Manufacturing Co., Ltd. Radio frequency module and communication device including the same
US11929738B2 (en) 2018-11-02 2024-03-12 Murata Manufacturing Co., Ltd. Electronic device

Also Published As

Publication number Publication date
US20130329611A1 (en) 2013-12-12
CN103416001B (zh) 2015-05-20
US9319092B2 (en) 2016-04-19
CN103416001A (zh) 2013-11-27
JP5648736B2 (ja) 2015-01-07
JPWO2012117992A1 (ja) 2014-07-07

Similar Documents

Publication Publication Date Title
JP5648736B2 (ja) 高周波モジュール
JP5561379B2 (ja) 高周波モジュール
KR101271108B1 (ko) 듀플렉서 모듈
JP5187361B2 (ja) 高周波モジュール
JP5708804B2 (ja) 高周波モジュール
US9071227B2 (en) High-frequency module
JP5018858B2 (ja) 高周波モジュール
WO2012043430A1 (ja) 高周波モジュール
WO2012144229A1 (ja) 分波器およびこれを備える回路モジュール
JP5790771B2 (ja) 高周波モジュール
WO2012043429A1 (ja) 高周波モジュール
JP5776847B2 (ja) スイッチモジュール
KR101350766B1 (ko) 고주파 모듈
JP6311787B2 (ja) 高周波モジュール
JP5790770B2 (ja) 高周波モジュール、送信フィルタモジュール、受信フィルタモジュール
JP6465210B2 (ja) 分波回路
JP2012222491A (ja) モジュール
WO2013125362A1 (ja) 高周波スイッチモジュール
JP5874501B2 (ja) 高周波モジュール
JP2010212962A (ja) 高周波部品およびそれを用いた通信装置
JP5472672B2 (ja) 高周波回路部品およびこれを用いた通信装置
KR20110046284A (ko) 고주파 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752806

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013502301

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752806

Country of ref document: EP

Kind code of ref document: A1