WO2012043430A1 - 高周波モジュール - Google Patents

高周波モジュール Download PDF

Info

Publication number
WO2012043430A1
WO2012043430A1 PCT/JP2011/071792 JP2011071792W WO2012043430A1 WO 2012043430 A1 WO2012043430 A1 WO 2012043430A1 JP 2011071792 W JP2011071792 W JP 2011071792W WO 2012043430 A1 WO2012043430 A1 WO 2012043430A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency module
duplexer
transmission signal
electrode
switch element
Prior art date
Application number
PCT/JP2011/071792
Other languages
English (en)
French (fr)
Inventor
上嶋孝紀
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2012536421A priority Critical patent/JP5590135B2/ja
Priority to CN201180046047.6A priority patent/CN103155427B/zh
Publication of WO2012043430A1 publication Critical patent/WO2012043430A1/ja
Priority to US13/782,026 priority patent/US9077439B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • H04B1/48Transmit/receive switching in circuits for connecting transmitter and receiver to a common transmission path, e.g. by energy of transmitter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/46Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H7/463Duplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band

Definitions

  • the present invention relates to a high-frequency module that transmits and receives a plurality of communication signals using a common antenna.
  • the high-frequency module described in Patent Document 1 includes a switch IC and a duplexer.
  • a duplexer is a circuit element that demultiplexes a transmission signal and a reception signal that use different frequency bands in one communication band.
  • the duplexer described in Patent Document 1 includes a transmission signal input port, a reception signal output port, an antenna input / output port (specifically, a switch IC) in one communication band of a CDMA (Code Division Multiple Access) communication system. Connected to the antenna input / output port).
  • the duplexer transmits the transmission signal of the one communication band from the transmission signal input port to the antenna input / output port side, and transmits the reception signal of the one communication band from the antenna input / output port side to the reception signal output port.
  • an object of the present invention is to realize a high-frequency module formed in a relatively small size without a high-power transmission signal affecting the switch element.
  • a switch element that switches and connects a plurality of individual terminals to a common terminal, a duplexer that demultiplexes a transmission signal and a reception signal in one communication band, and the switch element and the duplexer are mounted on the top surface.
  • the present invention also relates to a high frequency module comprising: a laminated body in which an electrode for an external connection port is formed on a bottom surface, and a predetermined electrode pattern constituting a high frequency module is formed on an inner layer.
  • the high-frequency module according to the present invention further includes a surface-mount circuit element mounted on the top surface of the laminate.
  • a surface-mounted circuit element connected to a location different from the transmission path of the transmission signal is mounted between the switch element and the duplexer.
  • the duplexer has a substantially square shape when viewed in the stacking direction.
  • a transmission signal input terminal, a common terminal, and a reception signal output terminal are formed in the vicinity of each side.
  • the duplexer is mounted such that the side different from the side where the transmission signal input terminal and the common terminal are close to each other is the switch element side.
  • the transmission signal input terminal and the common terminal through which the transmission signal propagates are further separated from the switch element. Thereby, the leakage of the transmission signal to the switch element can be further suppressed.
  • the duplexer is mounted such that the side on which the transmission signal input terminal is close is opposite to the switch element side.
  • the positional relationship between the transmission signal input terminal of the duplexer and the switch IC is shown more specifically.
  • the transmission signal input terminal to which the signal having the largest power is input is arranged on the side opposite to the switch element, whereby leakage of the transmission signal to the switch element can be further suppressed.
  • the electrode for the external connection port includes an electrode for the transmission signal input port for inputting the transmission signal from the outside.
  • the transmission signal input terminal and the transmission signal input port electrode are mounted with a duplexer so that at least a part of the stacked body overlaps in a plan view.
  • the electrode on which the transmission signal input terminal of the duplexer formed on the top surface of the multilayer body is mounted and the electrode for the transmission signal input port formed on the bottom surface of the multilayer body are viewed in plan view. It becomes substantially the same position in the state. Therefore, if routing is performed along the normal stacking direction, the electrode pattern of the inner layer transmission system that connects the electrode on which the transmission signal input terminal of the duplexer is mounted and the electrode for the transmission signal input port can be shortened. . Therefore, the electrode pattern of the transmission system can suppress unnecessary electromagnetic coupling and electrostatic coupling to another electrode pattern, for example, an electrode pattern connected to the switch element. Thereby, the leakage of the transmission signal to the switch element can be further suppressed.
  • the electrode on which the transmission signal input terminal is mounted and the electrode for the transmission signal input port are connected only by via electrodes formed along the stacking direction of the stacked body.
  • the electrode on which the transmission signal input terminal of the duplexer is mounted and the electrode for the transmission signal input port are connected at the shortest distance along the stacking direction. Therefore, it can further suppress that the electrode pattern of a transmission system carries out unnecessary electromagnetic coupling and electrostatic coupling with respect to another electrode pattern, for example, the electrode pattern connected to a switch element. Thereby, the leakage of the transmission signal to the switch element can be further suppressed.
  • the switch element includes a plurality of power supply system terminals to which a drive voltage and a control voltage are applied.
  • the electrode for the external connection port includes a plurality of power supply system input port electrodes for inputting a drive voltage and a control voltage, respectively.
  • the circuit element mounted between the switch element and the duplexer is a resistance element or a coil component connected between a plurality of power supply system terminals and a plurality of power supply system input port electrodes.
  • This configuration shows a specific example of the circuit element mounted between the switch element and the duplexer.
  • the resistor element or the coil component is mounted such that the end portion on the side connected to the power supply system input port electrode is on the duplexer side.
  • This configuration shows a specific mounting mode of the resistance element or the coil component.
  • this mounting mode since the end of the resistor element or coil component connected to the switch element is not close to the duplexer side, the transmission signal leaking to the switch element without passing through the resistor element or coil electrode is further suppressed. it can.
  • the circuit element mounted between the switch element and the duplexer is a matching element connected to a reception signal transmission path different from the reception signal transmission path including the duplexer.
  • circuit element mounted between the switch element and the duplexer is shown.
  • a matching element Even if a transmission signal leaks, it is attenuated by the matching element and leakage to the switch element can be suppressed.
  • one end of the matching element is connected to the ground.
  • the matching element is mounted such that one end thereof is on the duplexer side.
  • This configuration shows a specific implementation of the matching element.
  • the ground side of the matching element is the duplexer side, the leaked transmission signal easily flows to the ground, and the transmission signal leaking to the switch element can be further suppressed.
  • the duplexer is mounted on the opposite side of the switch element from the side where the power supply system terminals are disposed.
  • the power supply system terminal of the switch element and the duplexer are further separated. Therefore, the superimposition of the leaked transmission signal on the drive voltage and the control voltage can be further suppressed.
  • leakage of a high-power transmission signal to the switch element can be significantly suppressed, and a high-frequency module having excellent characteristics such as switch characteristics and a relatively small shape can be realized.
  • FIG. 10 It is a block diagram which shows the circuit structure of the high frequency module 10 which concerns on 1st Embodiment. It is a stacking figure of the high frequency module 10 of a 1st embodiment. It is the mounting aspect figure of the uppermost layer of the laminated body 900 of the high frequency module 10 of 1st Embodiment, and the arrangement pattern figure of the port electrode for external connection of the lowest layer. It is a block diagram which shows the circuit structure of 10 A of high frequency modules which concern on 2nd Embodiment. It is a stacking figure of high frequency module 10A of a 2nd embodiment. FIG.
  • FIG. 10 is a mounting diagram of the uppermost layer of the multilayer body 900A of the high-frequency module 10A of the second embodiment, and an arrangement pattern diagram of port electrodes for external connection of the lowermost layer of the multilayer body 900A. It is a figure which shows the mounting aspect of the uppermost layer of the laminated body of the high frequency module 10B of 3rd Embodiment.
  • the high-frequency module according to the first embodiment of the present invention will be described with reference to the drawings.
  • GSM Global System for Mobile Communications
  • a high-frequency module that performs transmission / reception of signals (transmission signals and reception signals) using the communication band of the CDMA communication system together with transmission / reception of signals (transmission signals and reception signals) using the communication band of GSM1900 will be described.
  • the GSM850 communication signal, the GSM900 communication signal, the GSM1800 communication signal, and the GSM1900 communication signal transmission / reception circuit can be omitted as appropriate.
  • a communication system other than these GSM communication systems is not limited to a CDMA communication system, and the number thereof is not limited to one.
  • FIG. 1 is a block diagram showing a circuit configuration of a high-frequency module 10 according to this embodiment.
  • the switch element SWIC includes a single common terminal PIC0 and six individual terminals PIC11 to PIC16.
  • the switch element SWIC includes a ground terminal PGND for connection to the ground GND.
  • the ground terminal PGND is connected to the ground port electrode PMGND for external connection of the high-frequency module 10.
  • the switch element SWIC is a surface-mounted circuit element and is mounted on the top surface of the laminate.
  • the switch element SWIC includes a drive voltage application terminal PICVdd and a plurality of control voltage application terminals PICVc1, PICVc2, and PICVc3.
  • the drive voltage application terminal PICVdd is connected to the power supply system port electrode PMVdd for external connection of the high-frequency module 10.
  • the control voltage application terminals PICVc1, PICVc2, and PICVc3 are connected to the power supply system port electrodes PMVc1, PMVc2, and PMVc3 for external connection of the high-frequency module 10, respectively.
  • the inductor Lm is connected between the drive voltage application terminal PICVdd of the switch element SWIC and the power supply system port electrode PMVdd for external connection of the high frequency module 10.
  • a resistor R1 is connected between the control voltage application terminal PICVc1 of the switch element SWIC and the power supply system port electrode PMVc1 for external connection of the high frequency module 10.
  • a resistor R2 is connected between the control voltage application terminal PICVc2 of the switch element SWIC and the power supply system port electrode PMVc2 for external connection of the high frequency module 10.
  • a resistor R3 is connected between the control voltage application terminal PICVc3 of the switch element SWIC and the power supply system port electrode PMVc3 for external connection of the high frequency module 10.
  • the inductor Lm is made of a surface mount type coil component, and the resistors R1, R2, and R3 are made of surface mount type resistance elements, and each is mounted on the top surface of the laminate.
  • the switch element SWIC is driven by the drive voltage Vdd applied from the drive voltage application terminal PICVdd.
  • the switch element SWIC is configured by combining a single common terminal PIC0 with six individual terminals PIC11 to PIC16 by a combination of control voltages Vc1, Vc2, and Vc3 applied to a plurality of control voltage application terminals PICVc1, PICVc2, and PICVc3, respectively. Connect to one of them.
  • the common terminal PIC0 is connected to an external connection port electrode PMan of the high-frequency module 10 via an antenna-side matching circuit 11 that also serves as an ESD (Electrostatic Discharge) circuit.
  • the port electrode PMan is connected to an external antenna ANT.
  • the first individual terminal PIC11 is connected to the port electrode PMtL for external connection of the high-frequency module 10 via the transmission-side filter 12A.
  • the port electrode PMtL is a port to which a GSM850 transmission signal or a GSM900 transmission signal is input from the outside.
  • the transmission-side filter 12A is a filter circuit that attenuates the second harmonic and the third harmonic of the GSM850 transmission signal and the GSM900 transmission signal, and sets the use frequency band of the GSM850 transmission signal and the GSM900 transmission signal as a pass band. is there.
  • the transmission-side filter 12A includes an inner layer electrode pattern of a laminated body, and is realized using a surface-mount circuit element as necessary.
  • the second individual terminal PIC12 is connected to the port electrode PMtH for external connection of the high-frequency module 10 via the transmission filter 12B.
  • the port electrode PMtH is a port to which a GSM1800 transmission signal or a GSM1900 transmission signal is input from the outside.
  • the transmission-side filter 12B is a filter circuit that attenuates the second harmonic and the third harmonic of the GSM1800 transmission signal and the GSM1900 transmission signal, and uses the use frequency band of the GSM1800 transmission signal and the GSM1900 transmission signal as a pass band. is there.
  • the transmission-side filter 12B includes an inner layer electrode pattern of a laminate, and is realized using a surface-mount type circuit element as necessary.
  • the third individual terminal PIC13 is connected to the common terminal of the diplexer DIP.
  • a matching inductor L2 is connected between the transmission line connecting the third individual terminal PIC13 and the common terminal of the diplexer DIP and the ground potential.
  • the inductor L2 is a surface mount type circuit element mounted on the top surface of the multilayer body.
  • the diplexer DIP is a surface-mounted circuit element in which the SAW filter SAW1 and the SAW filter 2 are integrally formed in one casing, and is mounted on the top surface of the laminate.
  • SAW filter SAW1 is a filter whose passband is the frequency band used for the received signal of GSM850, and has a balanced-unbalanced conversion function.
  • the other end of the SAW filter SAW1 is a balanced terminal, and is connected to the port electrode PMrL1 for external connection of the high-frequency module 10.
  • the SAW filter SAW2 is a filter whose passband is the frequency band used for the received signal of GSM900, and has a balanced-unbalanced conversion function.
  • the other end of the SAW filter SAW2 is a balanced terminal, and is connected to the port electrode PMrL2 for external connection of the high-frequency module 10.
  • the fourth individual terminal PIC14 is connected to one end of the SAW filter SAW3 constituting the collective SAW filter SAWu.
  • a matching inductor L3 is connected in series between the fourth individual terminal PIC14 and one end of the SAW filter SAW3.
  • the inductor L3 is a surface-mounted circuit element mounted on the top surface of the multilayer body.
  • SAW filter SAW3 is a filter whose passband is the frequency band used for the received signal of GSM1800, and has a balanced-unbalanced conversion function.
  • the other end of the SAW filter SAW3 is a balanced terminal, and is connected to the port electrode PMrH1 for external connection of the high-frequency module 10.
  • the fifth individual terminal PIC15 is connected to one end of the SAW filter SAW4 constituting the collective SAW filter SAWu.
  • a matching inductor L4 is connected in series between the fifth individual terminal PIC15 and one end of the SAW filter SAW4.
  • the inductor L4 is a surface mount type circuit element mounted on the top surface of the multilayer body.
  • SAW filter SAW4 is a filter whose passband is the frequency band used for the received signal of GSM1900, and has a balanced-unbalanced conversion function.
  • the other end of the SAW filter SAW4 is a balanced terminal, and is connected to a port electrode PMrH2 for external connection of the high-frequency module 10.
  • the sixth individual terminal PIC16 is connected to the duplexer DUP. Between the sixth individual terminal PIC16 and the common terminal of the duplexer DUP, a matching inductor L5 is connected between the transmission line connecting the sixth individual terminal PIC16 and the common terminal of the duplexer DUP and the ground potential. Has been.
  • the inductor L5 is a surface mount type circuit element mounted on the top surface of the multilayer body.
  • the duplexer DUP includes a SAW filter SAWut1 and a SAW filter SAWur1, and has a shape integrally formed in one casing.
  • the duplexer DUP is a surface-mount type circuit element and is mounted on the top surface of the laminate.
  • the SAW filter SAWut1 has a use frequency band of a transmission signal of the CDMA communication system as a pass band, and a use frequency band of the reception signal is set within an attenuation band.
  • the transmission signal input terminal of the SAW filter SAWut1 is connected to the port electrode PMct1 for external connection of the high frequency module 10.
  • the port electrode PMct1 is a port to which a transmission signal of the CDMA communication system is input from the outside.
  • the SAW filter SAWur1 has a use frequency band of a received signal of the CDMA communication system as a pass band, and a use frequency band of the transmission signal is set within an attenuation band.
  • the reception signal output terminal of the SAW filter SAWur1 is connected to the port electrode PMcr1 for external connection of the high-frequency module 10.
  • the port electrode PMcr1 is a port that outputs a reception signal of the CDMA communication system to the outside.
  • FIG. 2 is a stacking diagram of the high-frequency module 10 of the present embodiment.
  • FIG. 3A is a mounting diagram of the uppermost layer of the multilayer body of the high-frequency module 10 of the present embodiment, and
  • FIG. 3B is an array pattern diagram of port electrodes for external connection of the lowermost layer of the multilayer body.
  • small-diameter circles described in the drawings mean via holes having via electrodes that conduct a plurality of dielectric layers in the stacking direction.
  • the high-frequency module 10 includes a laminated body and the following circuit elements mounted on the top surface of the laminated body.
  • the laminated body has a predetermined number of dielectric layers laminated to form inner layer electrodes, and realizes an electrode pattern that forms the high-frequency module 10 excluding the following circuit elements.
  • the number of layers is 17, but the number of layers may be set as appropriate according to specifications.
  • the circuit elements mounted on the top surface of the multilayer body are the above-described switch element SWIC, diplexer DIP, duplexer DUP, collective SAW filter SAWu, inductors L2, L3, L4, L5, Lm, resistors R1, R2, R3, And it consists of circuit elements for constituting the transmission filters 12A and 12B and the antenna side matching circuit 11.
  • symbol is abbreviate
  • a mounting electrode for mounting each circuit element described above is formed on the top surface of the first layer, which is the uppermost layer of the laminate.
  • the duplexer DUP, the switch element SWIC, the diplexer DIP, and the collective SAW filter SAWu are mounted on the top surface of the first layer in a positional relationship as shown in FIG.
  • an inductor Lm and resistors R1, R2, and R3 are mounted between the duplexer DUP and the switch element SWIC, so that the high-power transmission signal leaked from the duplexer DUP. Is attenuated by these circuit elements. Thereby, it is possible to suppress the transmission signal leaked from the duplexer DUP from propagating to the switch element SWIC. As a result, it is possible to prevent deterioration of the switch characteristics of the switch element SWIC.
  • the inductor Lm and the resistors R1, R2, and R3 have a rectangular casing, and both ends in the longitudinal direction are used as external connection terminals.
  • the inductor Lm and the resistors R1, R2, and R3 are arranged and mounted along the short direction so that the respective longitudinal directions are parallel to each other.
  • this arrangement direction is parallel to the side surfaces where the switch element SWIC and the duplexer DUP face each other.
  • the inductor Lm and the resistors R1, R2, and R3 are present in a relatively long region along the opposing side surface between the switch element SWIC and the duplexer DUP. Therefore, the transmission signal leaked from the duplexer DUP can be more reliably prevented from leaking to the switch element.
  • the inductor Lm and the resistors R1, R2, and R3 are arranged so that the external connection terminal SB connected to the power supply system port electrodes PMVdd, PMVc1, PMVc2, and PMVc3 for the external connection of the high-frequency module 10 is on the duplexer DUP side.
  • the external connection terminal SA on the side connected to the switching elements of the inductor Lm and the resistors R1, R2, and R3 does not face the duplexer DUP side and does not come close to it.
  • the transmission signal leaking to the switch element SWIC side without passing through the inductor Lm and the resistors R1, R2, and R3 can be further greatly suppressed.
  • the leakage of the transmission signal to the switch element SWIC can be significantly suppressed.
  • the duplexer DUP has a rectangular shape, and a transmission signal input terminal, a common terminal, and a reception signal output terminal are arranged near different sides. Specifically, when the duplexer DUP is viewed from the stacking direction in a mounted state (in plan view), a transmission signal input terminal is disposed near one side surface in the longitudinal direction of the rectangle, and the other side surface A reception signal output terminal is disposed in the vicinity. In addition, a common terminal is disposed near the side surface opposite to the transmission signal input terminal and the reception signal output terminal in the short direction.
  • the duplexer DUP is mounted such that the side surface on which the reception signal output terminal is disposed is on the switch element SWIC side.
  • the transmission signal input terminal and the common terminal are further separated from the switch element SWIC. Thereby, the leakage of the transmission signal to the switch element SWIC can be further suppressed.
  • the distance between the transmission signal input terminal and the switch element SWIC can be further increased. Thereby, the leakage of the transmission signal to the switch element SWIC can be further suppressed.
  • the routed pattern electrodes are formed from the second layer to the fifth layer of the laminated body.
  • An inner layer ground electrode GNDi is formed at a predetermined position on the sixth layer.
  • a lead pattern electrode is formed in the seventh layer.
  • an inner layer ground electrode GNDi is formed on substantially the entire surface.
  • inner layer electrode patterns that form inductors and capacitors constituting the antenna-side matching circuit 11 and the transmission filters 12A and 12B are formed.
  • an inner layer ground electrode GNDi is formed on substantially the entire surface.
  • the port electrodes for external connection are arranged on the bottom surface of the 17th layer which is the lowest layer of the laminate.
  • an external connection port electrode PMct1 for transmitting signal input is disposed on one end side of the 17th layer corresponding to the side surface on which the duplexer DUP is mounted.
  • the port electrode PMct1 is disposed at a position at least partially overlapping the mounting electrode Pstx on which the transmission signal input terminal of the duplexer DUP is mounted in a plan view of the multilayer body.
  • the port electrode PMct1 and the mounting electrode Pstx are connected only via the via electrode VHt1 penetrating the stacked body along the stacking direction.
  • the port electrode PMct1 and the mounting electrode Pstx are connected at the shortest distance along the stacking direction, and unnecessary electromagnetic coupling and electrostatic coupling are unlikely to occur with respect to other circuit elements. Also with this configuration, it is possible to suppress the transmission signal from leaking to the switch element SWIC side.
  • FIG. 4 is a block diagram showing a circuit configuration of the high-frequency module 10A according to the present embodiment.
  • FIG. 5 is a stacking diagram of the high-frequency module 10A of the present embodiment.
  • FIG. 6A is an implementation diagram of the uppermost layer of the multilayer body 900A of the high-frequency module 10A of this embodiment, and
  • FIG. 6B is an arrangement pattern diagram of port electrodes for external connection of the lowermost layer of the multilayer body 900A. It is.
  • the small-diameter circles described in the drawings mean via holes having via electrodes that conduct a plurality of dielectric layers in the stacking direction.
  • the high frequency module 10A of the present embodiment is obtained by omitting the inductor Lm and the resistors R1, R2, and R3 from the high frequency module 10 shown in the first embodiment in terms of circuit configuration. Are the same. Therefore, only different portions will be described, and description of other circuit configurations will be omitted.
  • the drive voltage application terminal PICVdd of the switch element SWIC is directly connected to the power supply system port electrode PMVdd for external connection of the high frequency module 10A.
  • the control voltage application terminal PICVc1 of the switch element SWIC is directly connected to the power supply system port electrode PMVc1 for external connection of the high frequency module 10A.
  • the control voltage application terminal PICVc2 of the switch element SWIC is directly connected to the power supply system port electrode PMVc2 for external connection of the high frequency module 10A.
  • the control voltage application terminal PICVc3 of the switch element SWIC is directly connected to the power supply system port electrode PMVc3 for external connection of the high frequency module 10A.
  • the high-frequency module 10A having such a circuit configuration has a laminated structure and a mounting manner as shown in FIGS. Note that only the differences from the first embodiment will be specifically described with respect to the laminated structure and the mounting mode.
  • an inductor L2 that is a matching element of the receiving circuit system is mounted between the duplexer DUP and the switch element SWIC.
  • the inductor L2 of the receiving circuit system is mounted between the duplexer DUP and the switch element SWIC, similarly to the inductor Lm and the resistors R1, R2, and R3 shown in the first embodiment, It is possible to suppress the transmission signal leaked from the duplexer DUP from being attenuated and propagating to the switch element SWIC.
  • the inductor L2 is mounted such that the external connection terminal SG on the ground potential side is on the duplexer DUP side. With this configuration, the external connection terminal SL on the side connected to the switch element SWIC of the inductor L2 is not directed to the duplexer DUP side and is not adjacent thereto. Thereby, most of the leaked transmission signal flows to the ground, and the transmission signal leaking to the switch element SWIC side can be further greatly suppressed. Further, the leakage amount of the transmission signal that did not flow to the ground is also attenuated by the inductor L2. As a result, the leakage of the transmission signal to the switch element SWIC can be significantly suppressed.
  • a lead pattern electrode is formed on the second layer and the third layer of the laminate.
  • an inner layer ground electrode GNDi is partially formed in the third layer.
  • the inner layer ground electrode GNDi is electrically connected to the mounting electrode on which the external connection terminal SG on the ground potential side of the inductor L2 is mounted via the via electrode VHG.
  • the inner layer ground electrode GNDi is formed on substantially the entire surface of the fourth layer.
  • a fifth pattern electrode is formed on the fifth layer.
  • An inner layer ground electrode GNDi is partially formed on the sixth layer.
  • a lead pattern electrode is formed in the seventh layer.
  • An inner layer ground electrode GNDi is formed on substantially the entire surface of the eighth layer.
  • inner layer electrode patterns that form inductors and capacitors constituting the antenna-side matching circuit 11 and the transmission filters 12A and 12B are formed.
  • an inner layer ground electrode GNDi is formed on substantially the entire surface.
  • the port electrodes for external connection are arranged on the bottom surface of the 17th layer which is the lowest layer of the laminate.
  • an external connection port electrode PMct1 for transmitting signal input is disposed on one end side of the 17th layer corresponding to the side surface on which the duplexer DUP is mounted.
  • the port electrode PMct1 is disposed at a position at least partially overlapping the mounting electrode Pstx on which the transmission signal input terminal of the duplexer DUP is mounted in a plan view of the multilayer body.
  • the port electrode PMct1 and the mounting electrode Pstx are connected only via the via electrode VHt1 penetrating the stacked body along the stacking direction.
  • the port electrode PMct1 and the mounting electrode Pstx are connected at the shortest distance along the stacking direction, and unnecessary electromagnetic coupling and electrostatic coupling are unlikely to occur with respect to other circuit elements. Also with this configuration, it is possible to suppress the transmission signal from leaking to the switch element SWIC side.
  • a high-power transmission signal input to the duplexer DUP leaks to the switch element while the high-frequency module is formed in a small size. Can be greatly suppressed.
  • FIG. 7 is a diagram showing a mounting mode of the uppermost layer of the laminate of the high-frequency module 10B of the present embodiment.
  • the high-frequency module 10B of the present embodiment has the same circuit configuration as the high-frequency module 10A of the second embodiment, and the mounting mode of the switch element SWIC on the stacked body is different.
  • the switch element SWIC includes the drive voltage application terminal PICVdd and the plurality of control voltage application terminals PICVc1, PICVc2, and PICVc3, and one side of the switch element SWIC in plan view.
  • An array is formed in the vicinity of the side along the one side.
  • the switch element SWIC is mounted on the laminate so that the side surface on which the drive voltage application terminal PICVdd and the plurality of control voltage application terminals PICVc1, PICVc2, and PICVc3 are formed is opposite to the duplexer DUP. .
  • the example in which the port electrode to be connected and the mounting electrode are connected only by the via electrode has been described.
  • the routing may be performed by the inner layer electrode. Even with this configuration, it is possible to ensure high isolation between the transmission system circuit and the reception system circuit of the same communication signal.
  • 10, 10A, 10B high frequency module
  • 11 antenna side matching circuit
  • 12A, 12B transmission filter
  • SWIC switch element
  • DIP diplexer
  • DUP duplexer
  • SAWu aggregate SAW filter
  • SAW1, SAW2, SAWur1 SAWut1 -SAW filter
  • VHt1 VHG-via electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

小型でありながら、ハイパワーの送信信号がスイッチ素子に漏洩することのない高周波モジュールを実現する。積層体の天面には、スイッチ素子(SWIC)とデュプレクサ(DUP)とが所定の距離を空けて実装されている。スイッチ素子(SWIC)とデュプレクサ(DUP)との間には、送信系回路とは異なる回路に接続されたインダクタ(Lm)、抵抗器(R1,R2,R3)が実装されている。この際、インダクタ(Lm)、抵抗器(R1,R2,R3)は、スイッチ素子(SWIC)に接続する外部接続端子SAがスイッチ素子(SWIC)側となり、高周波モジュール(10)の外部接続用の電源系ポート電極(PMVc1,PMVc2,PMVc3)に接続する外部接続端子(SB)がデュプレクサ(DUP)側となるように、実装されている。

Description

高周波モジュール
 この発明は、複数の通信信号を共通アンテナで送受信する高周波モジュールに関する。
 従来、それぞれに異なる周波数帯域を利用した複数の通信信号を共通アンテナで送受信する高周波モジュールが各種考案されている。このような高周波モジュールとして、例えば、特許文献1に記載の高周波モジュールは、スイッチICおよびデュプレクサを備えている。
 ここで、デュプレクサとは、一つの通信帯域における異なる周波数帯域を利用する送信信号と受信信号とを分波する回路素子である。例えば、特許文献1に記載のデュプレクサは、CDMA(Code Division Multiple Access)通信システムのうちの一つの通信帯域の送信信号入力ポートおよび受信信号出力ポートとアンテナ入出力ポート(具体的には、スイッチICを介したアンテナ入出力ポート)との間に接続される。デュプレクサは、前記一つの通信帯域の送信信号を送信信号入力ポートからアンテナ入出力ポート側へ伝送し、前記一つの通信帯域の受信信号をアンテナ入出力ポート側から受信信号出力ポートへ伝送する。
特開2008-10995号公報
 現在、通信機器の小型化に伴い、高周波モジュールも小型化が要求されている。このため、特許文献1に示すように、デュプレクサとスイッチ素子とを近接させて実装しなければならない場合が生じる。
 しかしながら、デュプレクサには、ハイパワーの送信信号が入力されるので、デュプレクサからスイッチ素子側に送信信号の一部が漏洩するという問題が生じることがある。特に、スイッチ素子に駆動電圧および制御電圧を印加するための電源系端子に送信信号が漏洩し、駆動電圧や制御電圧に重畳した場合、スイッチ特性が劣化し、高周波モジュールとしての各特性が劣化してしまうことがある。
 したがって、本発明の目的は、ハイパワーの送信信号がスイッチ素子に影響することなく、比較的小型に形成された高周波モジュールを実現することにある。
 この発明は、共通端子に対して複数の個別端子を切り替えて接続するスイッチ素子と、一つの通信帯域における送信信号と受信信号とを分波するデュプレクサと、スイッチ素子およびデュプレクサが天面に実装され、底面に外部接続ポート用の電極が形成され、内層に高周波モジュールを構成する所定の電極パターンが形成された積層体と、を備える高周波モジュールに関する。この発明の高周波モジュールは、積層体の天面に実装される表面実装型の回路素子をさらに備える。この発明の高周波モジュールは、送信信号の伝送経路とは異なる箇所に接続される表面実装型の回路素子を、スイッチ素子とデュプレクサとの間に実装している。
 この構成では、デュプレクサに入力されたハイパワーの送信信号が漏洩しても、デュプレクサとスイッチ素子との間に表面実装型の回路素子が介在することで、漏洩した送信信号がスイッチ素子に影響を与えることを抑制できる。
 また、この発明の高周波モジュールでは、デュプレクサは、積層方向に沿って見た形状が略四角形である。デュプレクサは、各側辺の近傍に送信信号入力端子と共通端子と受信信号出力端子がそれぞれ形成されている。そして、デュプレクサは、送信信号入力端子および共通端子が近接する側辺と異なる側辺がスイッチ素子側になるように、実装されている。
 この構成では、送信信号が伝搬する送信信号入力端子および共通端子が、スイッチ素子から、より離間される。これにより、スイッチ素子への送信信号の漏洩を、さらに抑制することができる。
 また、この発明の高周波モジュールでは、デュプレクサは、送信信号入力端子が近接する側辺がスイッチ素子側と反対側になるように、実装されている。
 この構成では、デュプレクサの送信信号入力端子とスイッチICのとの位置関係を、より具体的に示している。そして、デュプレクサにおいて、最も電力の大きい信号が入力される送信信号入力端子が、スイッチ素子と反対側に配置されることで、スイッチ素子への送信信号の漏洩を、さらに抑制することができる。
 また、この発明の高周波モジュールでは、外部接続ポート用の電極は、送信信号を外部から入力する送信信号入力ポート用の電極を含む。送信信号入力端子と送信信号入力ポート用の電極とは、積層体を平面視した状態で、少なくとも一部が重なるように、デュプレクサが実装されている。
 この構成では、積層体の天面に形成されたデュプレクサの送信信号入力端子が実装される電極と、積層体の底面に形成された送信信号入力ポート用の電極とが、積層体を平面視した状態で略同じ位置となる。したがって、通常の積層方向に沿った引き回しを行えば、デュプレクサの送信信号入力端子が実装される電極と送信信号入力ポート用の電極とを接続する内層の送信系の電極パターンを短くすることができる。したがって、送信系の電極パターンが、他の電極パターン、例えばスイッチ素子に接続する電極パターンに対する不要な電磁結合および静電結合を抑制できる。これにより、スイッチ素子への送信信号の漏洩を、さらに抑制することができる。
 また、この発明の高周波モジュールでは、送信信号入力端子が実装される電極と送信信号入力ポート用の電極とは、積層体の積層方向に沿って形成されたビア電極のみによって接続されている。
 この構成では、デュプレクサの送信信号入力端子が実装される電極と送信信号入力ポート用の電極とが、積層方向に沿った最短距離で接続される。これにより、送信系の電極パターンが、他の電極パターン、例えばスイッチ素子に接続する電極パターンに対して不要に電磁結合および静電結合することを、さらに抑制できる。これにより、スイッチ素子への送信信号の漏洩を、さらに抑制することができる。
 また、この発明の高周波モジュールでは、スイッチ素子は、駆動電圧および制御電圧が印加される複数の電源系端子を備える。外部接続ポート用の電極は、駆動電圧、制御電圧をそれぞれ入力する複数の電源系入力ポート用の電極を備える。スイッチ素子とデュプレクサとの間に実装される回路素子は、複数の電源系端子と複数の電源系入力ポート用電極との間に接続される抵抗素子もしくはコイル部品である。
 この構成では、スイッチ素子とデュプレクサとの間に実装する回路素子の具体的な例を示している。このような抵抗素子およびコイル部品を用いることで、送信信号が漏洩しても、これらの部品で減衰されて、スイッチ素子への漏洩を抑制できる。
 また、この発明の高周波モジュールでは、抵抗素子もしくはコイル部品は、電源系入力ポート用電極と接続する側の端部がデュプレクサ側となるように、実装されている。
 この構成では、抵抗素子もしくはコイル部品の具体的な実装態様を示している。この実装態様では、抵抗素子もしくはコイル部品のスイッチ素子と接続される側の端部がデュプレクサ側に向かず近接しないので、抵抗素子もしくはコイル電極を介さずにスイッチ素子へ漏洩する送信信号をより抑制できる。
 また、この発明の高周波モジュールでは、スイッチ素子とデュプレクサとの間に実装される回路素子は、デュプレクサを含む受信信号伝送経路とは異なる受信信号伝送経路に接続された整合用素子である。
 スイッチ素子とデュプレクサとの間に実装する回路素子の別の具体的な例を示している。このような整合用素子を用いることで、送信信号が漏洩しても、整合用素子で減衰されて、スイッチ素子への漏洩を抑制できる。
 また、この発明の高周波モジュールでは、整合用素子は一方端がグランドに接続している。整合用素子は、この一方端がデュプレクサ側となるように実装されている。
 この構成では、整合用素子の具体的な実装態様を示している。この実装態様では、整合用素子のグランド側がデュプレクサ側となるので、漏洩した送信信号はグランドへ流れやすくなり、スイッチ素子へ漏洩する送信信号をより抑制できる。
 また、この発明の高周波モジュールでは、デュプレクサは、スイッチ素子に対して、電源系端子が配設された側と反対側に実装されている。
 この構成では、スイッチ素子の電源系端子とデュプレクサとが、より離間される。したがって、漏洩した送信信号の駆動電圧および制御電圧への重畳をより抑制できる。
 この発明によれば、スイッチ素子へハイパワーの送信信号の漏洩を大幅に抑制でき、スイッチ特性等の各種特性に優れ、比較的小型の形状からなる高周波モジュールを実現することができる。
第1の実施形態に係る高周波モジュール10の回路構成を示すブロック図である。 第1の実施形態の高周波モジュール10の積み図である。 第1の実施形態の高周波モジュール10の積層体900の最上層の実装態様図、および、最下層の外部接続用のポート電極の配列パターン図である。 第2の実施形態に係る高周波モジュール10Aの回路構成を示すブロック図である。 第2の実施形態の高周波モジュール10Aの積み図である。 第2の実施形態の高周波モジュール10Aの積層体900Aの最上層の実装態様図、および、積層体900Aの最下層の外部接続用のポート電極の配列パターン図である。 第3の実施形態の高周波モジュール10Bの積層体の最上層の実装態様を示す図である。
 本発明の第1の実施形態に係る高周波モジュールについて、図を参照して説明する。本実施形態では、GSM(Global System for Mobile Communications)850の通信帯域を利用する信号(送信信号及び受信信号)、GSM900の通信帯域を利用する信号、GSM1800の通信帯域を利用する信号(送信信号及び受信信号)、GSM1900の通信帯域を利用する信号(送信信号及び受信信号)の送受信とともに、CDMA通信システムの通信帯域を利用する信号(送信信号及び受信信号)の送受信を行う高周波モジュールについて説明する。ここで、GSM850通信の信号、GSM900通信の信号、GSM1800通信の信号、GSM1900通信の信号の送受信回路は、適宜省略することができる。また、これらのGSM通信システムとは別の通信システムもCDMA通信システムに限らず、またその数も一つに限るものではない。
 また、以下の説明では、スイッチ素子の一例として、スイッチICを用いた場合を示すが、他の構造からなるスイッチ素子にも適用することができる。
 まず、本実施形態の高周波モジュール10の回路構成について説明する。図1は本実施形態に係る高周波モジュール10の回路構成を示すブロック図である。
 スイッチ素子SWICは、単一の共通端子PIC0と、六個の個別端子PIC11-PIC16を備える。スイッチ素子SWICは、グランドGNDに接続するためのグランド用端子PGNDを備える。グランド用端子PGNDは、高周波モジュール10の外部接続用のグランドポート電極PMGNDに接続している。スイッチ素子SWICは、表面実装型回路素子であり、積層体の天面に実装される。
 スイッチ素子SWICは、駆動電圧印加用端子PICVdd、および複数の制御電圧印加用端子PICVc1,PICVc2,PICVc3を備える。駆動電圧印加用端子PICVddは、高周波モジュール10の外部接続用の電源系ポート電極PMVddに接続している。制御電圧印加用端子PICVc1,PICVc2,PICVc3は、高周波モジュール10の外部接続用の電源系ポート電極PMVc1,PMVc2,PMVc3にそれぞれ接続している。
 スイッチ素子SWICの駆動電圧印加用端子PICVddと高周波モジュール10の外部接続用の電源系ポート電極PMVddとの間には、インダクタLmが接続されている。
 スイッチ素子SWICの制御電圧印加用端子PICVc1と高周波モジュール10の外部接続用の電源系ポート電極PMVc1との間には、抵抗器R1が接続されている。スイッチ素子SWICの制御電圧印加用端子PICVc2と高周波モジュール10の外部接続用の電源系ポート電極PMVc2との間には、抵抗器R2が接続されている。スイッチ素子SWICの制御電圧印加用端子PICVc3と高周波モジュール10の外部接続用の電源系ポート電極PMVc3との間には、抵抗器R3が接続されている。
 インダクタLmは表面実装型のコイル部品からなり、抵抗器R1,R2,R3は表面実装型の抵抗素子からなり、それぞれが積層体の天面に実装される。
 スイッチ素子SWICは、駆動電圧印加用端子PICVddから印加される駆動電圧Vddで駆動する。スイッチ素子SWICは、複数の制御電圧印加用端子PICVc1,PICVc2,PICVc3にそれぞれ印加される制御電圧Vc1,Vc2,Vc3の組み合わせにより、単一の共通端子PIC0を、六個の個別端子PIC11-PIC16のいずれか一つに接続する。
 共通端子PIC0は、ESD(Electrostatic Discharge)回路を兼ねるアンテナ側整合回路11を介して高周波モジュール10の外部接続用のポート電極PManに接続している。ポート電極PManは、外部のアンテナANTに接続している。
 第1個別端子PIC11は、送信側フィルタ12Aを介して、高周波モジュール10の外部接続用のポート電極PMtLに接続している。ポート電極PMtLは、GSM850の送信信号またはGSM900の送信信号が外部から入力されるポートである。送信側フィルタ12Aは、GSM850の送信信号およびGSM900の送信信号の2倍高調波および3倍高調波を減衰させ、GSM850の送信信号およびGSM900の送信信号の使用周波数帯域を通過帯域とするフィルタ回路である。送信側フィルタ12Aは、積層体の内層電極パターンを含み、必要に応じて表面実装型の回路素子を用いて実現される。
 第2個別端子PIC12は、送信側フィルタ12Bを介して、高周波モジュール10の外部接続用のポート電極PMtHに接続している。ポート電極PMtHは、GSM1800の送信信号またはGSM1900の送信信号が外部から入力されるポートである。送信側フィルタ12Bは、GSM1800の送信信号およびGSM1900の送信信号の2倍高調波および3倍高調波を減衰させ、GSM1800の送信信号およびGSM1900の送信信号の使用周波数帯域を通過帯域とするフィルタ回路である。送信側フィルタ12Bは、積層体の内層電極パターンを含み、必要に応じて表面実装型の回路素子を用いて実現される。
 第3個別端子PIC13は、ダイプレクサDIPの共通端子に接続している。第3個別端子PIC13とダイプレクサDIPの共通端子とを接続する伝送線路とグランド電位との間には、整合用のインダクタL2が接続されている。インダクタL2は積層体の天面に実装される表面実装型の回路素子である。
 ダイプレクサDIPは、SAWフィルタSAW1とSAWフィルタ2とが一つの筐体に一体形成された表面実装型の回路素子であり、積層体の天面に実装されている。
 SAWフィルタSAW1は、GSM850の受信信号の使用周波数帯域を通過帯域とするフィルタであり、平衡-不平衡変換機能を有する。SAWフィルタSAW1の他方端は平衡端子であり、高周波モジュール10の外部接続用のポート電極PMrL1に接続している。SAWフィルタSAW2は、GSM900の受信信号の使用周波数帯域を通過帯域とするフィルタであり、平衡-不平衡変換機能を有する。SAWフィルタSAW2の他方端は平衡端子であり、高周波モジュール10の外部接続用のポート電極PMrL2に接続している。
 第4個別端子PIC14は、集合型SAWフィルタSAWuを構成するSAWフィルタSAW3の一方端に接続している。第4個別端子PIC14とSAWフィルタSAW3の一方端との間には、整合用のインダクタL3が直列接続されている。インダクタL3は積層体の天面に実装される表面実装型の回路素子である。
 SAWフィルタSAW3は、GSM1800の受信信号の使用周波数帯域を通過帯域とするフィルタであり、平衡-不平衡変換機能を有する。SAWフィルタSAW3の他方端は平衡端子であり、高周波モジュール10の外部接続用のポート電極PMrH1に接続している。
 第5個別端子PIC15は、集合型SAWフィルタSAWuを構成するSAWフィルタSAW4の一方端に接続している。第5個別端子PIC15とSAWフィルタSAW4の一方端との間には、整合用のインダクタL4が直列接続されている。インダクタL4は積層体の天面に実装される表面実装型の回路素子である。
 SAWフィルタSAW4は、GSM1900の受信信号の使用周波数帯域を通過帯域とするフィルタであり、平衡-不平衡変換機能を有する。SAWフィルタSAW4の他方端は平衡端子であり、高周波モジュール10の外部接続用のポート電極PMrH2に接続している。
 第6個別端子PIC16は、デュプレクサDUPに接続している。第6個別端子PIC16とデュプレクサDUPの共通端子との間には、第6個別端子PIC16とデュプレクサDUPの共通端子とを接続する伝送線路とグランド電位との間には、整合用のインダクタL5が接続されている。インダクタL5は積層体の天面に実装される表面実装型の回路素子である。
 デュプレクサDUPは、SAWフィルタSAWut1とSAWフィルタSAWur1とから構成され、これらが一つの筐体に一体形成された形状からなる。デュプレクサDUPは、表面実装型の回路素子であり、積層体の天面に実装されている。
 SAWフィルタSAWut1は、CDMA通信システムの送信信号の使用周波数帯域を通過帯域とし、その受信信号の使用周波数帯域が減衰帯域内に設定されている。SAWフィルタSAWut1の送信信号入力端子は、高周波モジュール10の外部接続用のポート電極PMct1に接続している。ポート電極PMct1は、CDMA通信システムの送信信号が外部から入力されるポートである。
 SAWフィルタSAWur1は、CDMA通信システムの受信信号の使用周波数帯域を通過帯域とし、その送信信号の使用周波数帯域が減衰帯域内に設定されている。SAWフィルタSAWur1の受信信号出力端子は、高周波モジュール10の外部接続用のポート電極PMcr1に接続している。ポート電極PMcr1は、CDMA通信システムの受信信号を外部へ出力するポートである。
 次に、上述の回路構成からなる高周波モジュール10の構造について説明する。図2は本実施形態の高周波モジュール10の積み図である。図3(A)は本実施形態の高周波モジュール10の積層体の最上層の実装態様図であり、図3(B)は積層体の最下層の外部接続用のポート電極の配列パターン図である。なお、図2、図3の各図において、図中に記載した小径の丸は、複数の誘電体層を積層方向に導通するビア電極を有するビアホールを意味している。
 図2、図3(A)に示すように、高周波モジュール10は、積層体と、該積層体の天面に実装された、次に示す各回路素子からなる。
 積層体は、誘電体層を所定数積層し、内層電極が形成されており、以下の回路素子を除く高周波モジュール10を形成する電極パターンを実現している。なお、本実施形態の高周波モジュール10では積層数が17であるが、積層数は仕様に応じて適宜設定すればよい。
 積層体の天面に実装される回路素子は、上述のスイッチ素子SWIC、ダイプレクサDIP、デュプレクサDUP、集合型SAWフィルタSAWu、インダクタL2,L3,L4,L5,Lm、抵抗器R1,R2,R3、および、送信フィルタ12A,12Bとアンテナ側整合回路11を構成するための回路素子からなる。なお、送信フィルタ12A,12Bとアンテナ側整合回路11を構成するための回路素子については、符号を省略し、以下の構造説明では、詳細な説明を省略する。
 積層体の最上層である第1層の天面には、上述の各回路素子を実装するための実装用電極が形成されている。デュプレクサDUP、スイッチ素子SWIC、ダイプレクサDIP、および集合型SAWフィルタSAWuは、互いに所定距離離間して、図3(A)に示すような位置関係で第1層の天面へ実装されている。
 デュプレクサDUPとスイッチ素子SWICとの間には、インダクタLm、抵抗器R1,R2,R3とが実装されている。このように、デュプレクサDUPとスイッチ素子SWICとの間に、送信信号とは異なる電源系信号の伝送経路に接続されている回路素子が配置されることで、デュプレクサDUPから漏洩したハイパワーの送信信号が、これら回路素子で減衰される。これより、デュプレクサDUPから漏洩した送信信号がスイッチ素子SWICへ伝搬することを抑制できる。この結果、スイッチ素子SWICのスイッチ特性の劣化を防止できる。
 さらに、インダクタLm、抵抗器R1,R2,R3は、矩形状筐体を有し、長手方向の両端を外部接続端子としている。インダクタLm、抵抗器R1,R2,R3は、それぞれの長手方向が平行になるように、短手方向に沿って配列して実装される。ここで、この配列方向は、スイッチ素子SWICとデュプレクサDUPとが互いに対向する側面に平行になっている。このため、インダクタLm、抵抗器R1,R2,R3は、スイッチ素子SWICとデュプレクサDUPとの間で、対向する側面に沿った比較的長い領域に存在する。したがって、デュプレクサDUPから漏洩した送信信号を、より確実にスイッチ素子への漏洩を抑制できる。
 また、インダクタLm、抵抗器R1,R2,R3は、それぞれ高周波モジュール10の外部接続用の電源系ポート電極PMVdd,PMVc1,PMVc2,PMVc3に接続する外部接続端子SBがデュプレクサDUP側となるように、実装されている。この構成により、インダクタLm、抵抗器R1,R2,R3のスイッチ素子に接続する側の外部接続端子SAが、デュプレクサDUP側に向かず、近接もしない。これにより、インダクタLm、抵抗器R1,R2,R3を介さずにスイッチ素子SWIC側へ漏洩する送信信号を、さらに大幅に抑制できる。この結果、スイッチ素子SWICへの送信信号の漏洩を、より大幅に抑制できる。
 また、デュプレクサDUPは、矩形状からなり、送信信号入力端子、共通端子、受信信号出力端子がそれぞれ異なる側辺の近傍に配設されている。具体的には、デュプレクサDUPを、実装された状態の積層方向から見て(平面視して)、長方形の長手方向の一方端の側面付近に送信信号入力端子が配設され、他方端の側面付近に受信信号出力端子が配設されている。また、短手方向に送信信号入力端子および受信信号出力端子と反対側の側面付近に共通端子が配設されている。
 そして、デュプレクサDUPは、受信信号出力端子が配設された側面がスイッチ素子SWIC側となるように、実装されている。このような実装態様とすることで、送信信号入力端子および共通端子が、スイッチ素子SWICから、より離間することになる。これにより、送信信号のスイッチ素子SWICへの漏洩をさらに抑制できる。
 また、さらに、送信信号入力端子がスイッチ素子SWIC側と反対側になるように、デュプレクサDUPを実装することで、送信信号入力端子とスイッチ素子SWICとの距離を、さらに離間できる。これにより、送信信号のスイッチ素子SWICへの漏洩を、より一層抑制できる。
 積層体の積層構造に説明を戻し、積層体の第2層から第5層には引き回しパターン電極が形成されている。第6層には所定位置に内層グランド電極GNDiが形成されている。第7層には引き回しパターン電極が形成されている。第8層には、略全面に内層グランド電極GNDiが形成されている。
 第9層から第15層には、アンテナ側整合回路11、送信フィルタ12A,12Bを構成するインダクタやキャパシタを形作る内層電極パターンが形成されている。第16層には、略全面に内層グランド電極GNDiが形成されている。
 積層体の最下層である第17層の底面には、外部接続用のポート電極が配列形成されている。図3(B)に示すように、デュプレクサDUPが実装される側面に対応する第17層の一端辺には、送信信号入力用となる外部接続用のポート電極PMct1が配設されている。この際、ポート電極PMct1は、積層体を平面視して、デュプレクサDUPの送信信号入力端子が実装される実装用電極Pstxと、少なくとも一部が重なり合う位置に配設されている。そして、ポート電極PMct1と実装用電極Pstxとは、積層方向に沿って積層体を貫通するビア電極VHt1のみを介して接続されている。この構成により、ポート電極PMct1と実装用電極Pstxとは、積層方向に沿って最短距離で接続され、他の回路要素に対して、不要な電磁結合および静電結合が起こりにくい。この構成によっても、送信信号がスイッチ素子SWIC側へ漏洩することを抑制できる。
 以上のように、本実施形態の構成を用いることで、共に積層体の天面に実装されたスイッチ素子SWICとデュプレクサDUPとの間での不要な電磁結合および静電結合を抑制でき、高いアイソレーションを確保することができる。これにより、デュプレクサDUPに入力されるハイパワーの送信信号がスイッチ素子SWICに漏洩することを、大幅に抑制できる。そして、上述のように、スイッチ素子SWICとデュプレクサDUPとの間に実装する回路素子は、元々、高周波モジュール10を構成する回路素子であるので、高周波モジュール10を大型化することなく、高いアイソレーションを確保することができる。
 次に、第2の実施形態に係る高周波モジュールについて、図を参照して説明する。図4は本実施形態に係る高周波モジュール10Aの回路構成を示すブロック図である。図5は本実施形態の高周波モジュール10Aの積み図である。図6(A)は本実施形態の高周波モジュール10Aの積層体900Aの最上層の実装態様図であり、図6(B)は積層体900Aの最下層の外部接続用のポート電極の配列パターン図である。なお、図5、図6の各図においても、図中に記載した小径の丸は、複数の誘電体層を積層方向に導通するビア電極を有するビアホールを意味している。
 本実施形態の高周波モジュール10Aは、回路構成の点では、第1の実施形態に示した高周波モジュール10に対して、インダクタLm、抵抗器R1,R2,R3を省略したものであり、他の構成は同じである。したがって、異なる箇所のみを説明し、他の回路構成については説明を省略する。
 スイッチ素子SWICの駆動電圧印加用端子PICVddは高周波モジュール10Aの外部接続用の電源系ポート電極PMVddに直接接続されている。スイッチ素子SWICの制御電圧印加用端子PICVc1は高周波モジュール10Aの外部接続用の電源系ポート電極PMVc1に直接接続されている。スイッチ素子SWICの制御電圧印加用端子PICVc2は高周波モジュール10Aの外部接続用の電源系ポート電極PMVc2に直接接続されている。スイッチ素子SWICの制御電圧印加用端子PICVc3は高周波モジュール10Aの外部接続用の電源系ポート電極PMVc3に直接接続されている。
 このような回路構成の高周波モジュール10Aは、図5、図6に示すような積層構造および実装態様からなる。なお、積層構造および実装態様についても、第1の実施形態と異なる点のみを、具体的に説明する。
 積層体の第1層の天面には、デュプレクサDUPとスイッチ素子SWICとの間に、受信回路系の整合用素子であるインダクタL2が実装されている。このように、受信回路系のインダクタL2を、デュプレクサDUPとスイッチ素子SWICとの間に配設することで、第1の実施形態に示したインダクタLm、抵抗器R1,R2,R3と同様に、デュプレクサDUPから漏洩した送信信号が減衰され、スイッチ素子SWICへ伝搬することを抑制できる。
 また、インダクタL2は、グランド電位側の外部接続端子SGがデュプレクサDUP側となるように、実装されている。この構成により、インダクタL2のスイッチ素子SWICに接続する側の外部接続端子SLが、デュプレクサDUP側に向かず、近接もしない。これにより、漏洩した送信信号のほとんどは、グランドへ流れ、スイッチ素子SWIC側へ漏洩する送信信号を、さらに大幅に抑制できる。さらに、グランドへ流れなかった送信信号の漏洩分も、インダクタL2によって減衰される。この結果、スイッチ素子SWICへの送信信号の漏洩を、より大幅に抑制できる。
 積層体の第2層および第3層には引き回しパターン電極が形成されている。また、第3層には部分的に内層グランド電極GNDiが形成されている。この内層グランド電極GNDiは、ビア電極VHGを介して、インダクタL2のグランド電位側の外部接続端子SGが実装される実装用電極に導通している。このように、インダクタL2のグランド電位側の外部接続端子SGが、ビア電極VHGのみを介して近距離で内層グランド電極GNDiへ導通されていることにより、漏洩した送信信号は、よりグランド電位へ流れやすくなる。これにより、スイッチ素子SWICへの送信信号の漏洩を、さらに大幅に抑制できる。
 第4層には略全面に内層グランド電極GNDiが形成されている。第5層には引き回しパターン電極が形成されている。第6層には部分的に内層グランド電極GNDiが形成されている。第7層には引き回しパターン電極が形成されている。第8層には略全面に内層グランド電極GNDiが形成されている。
 第9層から第15層には、アンテナ側整合回路11、送信フィルタ12A,12Bを構成するインダクタやキャパシタを形作る内層電極パターンが形成されている。第16層には、略全面に内層グランド電極GNDiが形成されている。
 積層体の最下層である第17層の底面には、外部接続用のポート電極が配列形成されている。図3(B)に示すように、デュプレクサDUPが実装される側面に対応する第17層の一端辺には、送信信号入力用となる外部接続用のポート電極PMct1が配設されている。この際、ポート電極PMct1は、積層体を平面視して、デュプレクサDUPの送信信号入力端子が実装される実装用電極Pstxと、少なくとも一部が重なり合う位置に配設されている。そして、ポート電極PMct1と実装用電極Pstxとは、積層方向に沿って積層体を貫通するビア電極VHt1のみを介して接続されている。この構成により、ポート電極PMct1と実装用電極Pstxとは、積層方向に沿って最短距離で接続され、他の回路要素に対して、不要な電磁結合および静電結合が起こりにくい。この構成によっても、送信信号がスイッチ素子SWIC側へ漏洩することを抑制できる。
 このように、本実施形態の構成であっても、第1の実施形態と同様に、高周波モジュールを小型に形成しながら、デュプレクサDUPに入力されるハイパワーの送信信号がスイッチ素子に漏洩することを、大幅に抑制できる。
 次に、第3の実施形態に係る高周波モジュール10Bについて、図を参照して説明する。図7は、本実施形態の高周波モジュール10Bの積層体の最上層の実装態様を示す図である。本実施形態の高周波モジュール10Bは、回路構成が第2の実施形態の高周波モジュール10Aと同じであり、スイッチ素子SWICの積層体への実装態様が異なる。
 具体的には、スイッチ素子SWICは、上述のように、駆動電圧印加用端子PICVdd、および、複数の制御電圧印加用端子PICVc1,PICVc2,PICVc3を備えており、スイッチ素子SWICを平面視した一側辺の近傍に、当該一側辺に沿って配列形成されている。
 スイッチ素子SWICは、これら駆動電圧印加用端子PICVdd、および、複数の制御電圧印加用端子PICVc1,PICVc2,PICVc3が形成された側面がデュプレクサDUPと反対側になるように、積層体に実装されている。
 このような構成では、駆動電圧印加用端子PICVdd、および、複数の制御電圧印加用端子PICVc1,PICVc2,PICVc3が、デュプレクサDUPから遠くなるので、漏洩した送信信号がこれらの端子へ入力されにくくなる。これにより、制御電圧や駆動電圧に送信信号が重畳して、スイッチ素子SWICに入力されることを抑制できる。この結果、スイッチ素子SWICのスイッチ特性の劣化を抑制することができる。
 なお、上述の実施形態では、接続すべきポート電極と実装電極とをビア電極のみで接続する例を示したが、例えば平面視したSAWフィルタの実装領域に対応する程度の範囲内で、所定の内層電極により引き回しを行ってもよい。この構成でも、同じ通信信号の送信系回路と受信系回路との間のアイソレーションを高く確保することができる。
10,10A,10B-高周波モジュール、11-アンテナ側整合回路、12A,12B-送信フィルタ、SWIC-スイッチ素子、DIP-ダイプレクサ、DUP-デュプレクサ、SAWu-集合型SAWフィルタ、SAW1,SAW2,SAWur1,SAWut1-SAWフィルタ、VHt1,VHG-ビア電極

Claims (10)

  1.  共通端子に対して複数の個別端子を切り替えて接続するスイッチ素子と、
     一つの通信帯域における送信信号と受信信号とを分波するデュプレクサと、
     前記スイッチ素子および前記デュプレクサが天面に実装され、底面に外部接続ポート用の電極が形成され、内層に高周波モジュールを構成する所定の電極パターンが形成された積層体と、を備える高周波モジュールであって、
     前記積層体の天面に実装される表面実装型の回路素子をさらに備え、
     前記送信信号の伝送経路とは異なる箇所に接続される前記表面実装型の回路素子を、前記スイッチ素子と前記デュプレクサとの間に実装した、高周波モジュール。
  2.  請求項1に記載の高周波モジュールであって、
     前記デュプレクサは、
     積層方向に沿って見た形状が略四角形であり、
     各側辺の近傍に送信信号入力端子と共通端子と受信信号出力端子がそれぞれ形成されており、
     前記送信信号入力端子および前記共通端子が近接する側辺と異なる側辺が前記スイッチ素子側になるように、実装されている、高周波モジュール。
  3.  請求項2に記載の高周波モジュールであって、
     前記デュプレクサは、前記送信信号入力端子が近接する側辺が前記スイッチ素子側と反対側になるように、実装されている、高周波モジュール。
  4.  請求項1乃至請求項3のいずれか一項に記載の高周波モジュールであって、
     前記外部接続ポート用の電極は、前記送信信号を外部から入力する送信信号入力ポート用の電極を含み、
     前記送信信号入力端子と前記送信信号入力ポート用の電極とは、前記積層体を平面視した状態で、少なくとも一部が重なるように、前記デュプレクサが実装されている、高周波モジュール。
  5.  請求項4に記載の高周波モジュールであって、
     前記送信信号入力端子が実装される電極と前記送信信号入力ポート用の電極とは、前記積層体の積層方向に沿って形成されたビア電極のみによって接続されている、高周波モジュール。
  6.  請求項1乃至請求項5のいずれか一項に記載の高周波モジュールであって、
     前記スイッチ素子は、駆動電圧および制御電圧が印加される複数の電源系端子を備え、
     前記外部接続ポート用の電極は、前記駆動電圧、前記制御電圧をそれぞれ入力する複数の電源系入力ポート用の電極を備え、
     前記スイッチ素子と前記デュプレクサとの間に実装される回路素子は、前記複数の電源系端子と前記複数の電源系入力ポート用電極との間に接続される抵抗素子もしくはコイル部品である、高周波モジュール。
  7.  請求項6に記載の高周波モジュールであって、
     前記抵抗素子もしくは前記コイル部品は、前記電源系入力ポート用電極と接続する側の端部が前記デュプレクサ側となるように、実装されている、高周波モジュール。
  8.  請求項1乃至請求項7のいずれか一項に記載の高周波モジュールであって、
     前記スイッチ素子と前記デュプレクサとの間に実装される回路素子は、前記デュプレクサを含む受信信号伝送経路とは、異なる受信信号伝送経路に接続された整合用素子である、高周波モジュール。
  9.  請求項8に記載の高周波モジュールであって、
     前記整合用素子は、一方端がグランドに接続し、該一方端が前記デュプレクサ側となるように、実装されている、高周波モジュール。
  10.  請求項1乃至請求項9のいずれか一項に記載の高周波モジュールであって、
     前記デュプレクサは、前記スイッチ素子に対して、前記電源系端子が配設された側と反対側に実装されている、高周波モジュール。
PCT/JP2011/071792 2010-09-29 2011-09-26 高周波モジュール WO2012043430A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012536421A JP5590135B2 (ja) 2010-09-29 2011-09-26 高周波モジュール
CN201180046047.6A CN103155427B (zh) 2010-09-29 2011-09-26 高频模块
US13/782,026 US9077439B2 (en) 2010-09-29 2013-03-01 High-frequency module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010218065 2010-09-29
JP2010-218065 2010-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/782,026 Continuation US9077439B2 (en) 2010-09-29 2013-03-01 High-frequency module

Publications (1)

Publication Number Publication Date
WO2012043430A1 true WO2012043430A1 (ja) 2012-04-05

Family

ID=45892877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071792 WO2012043430A1 (ja) 2010-09-29 2011-09-26 高周波モジュール

Country Status (4)

Country Link
US (1) US9077439B2 (ja)
JP (1) JP5590135B2 (ja)
CN (1) CN103155427B (ja)
WO (1) WO2012043430A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9166285B2 (en) 2012-05-07 2015-10-20 Murata Manufacturing Co., Ltd. High-frequency module
KR20180104722A (ko) 2016-03-08 2018-09-21 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5553116B2 (ja) * 2011-02-04 2014-07-16 株式会社村田製作所 デュプレクサモジュール
CN105556741A (zh) * 2013-09-17 2016-05-04 株式会社村田制作所 高频模块及通信装置
JP2015061198A (ja) * 2013-09-18 2015-03-30 太陽誘電株式会社 電子回路
US9705557B2 (en) * 2015-04-27 2017-07-11 Taiyo Yuden Co., Ltd. Front end circuit, module, and communication device
JP6443263B2 (ja) * 2015-08-10 2018-12-26 株式会社村田製作所 高周波モジュール
JP6451605B2 (ja) 2015-11-18 2019-01-16 株式会社村田製作所 高周波モジュール及び通信装置
CN109478873B (zh) * 2016-06-30 2022-05-06 株式会社村田制作所 高频模块、多工器及多重滤波器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036806A1 (fr) * 2001-10-24 2003-05-01 Matsushita Electric Industrial Co., Ltd. Module de commutation composee haute frequence, et terminal de communication equipe de ce module
JP2006246234A (ja) * 2005-03-04 2006-09-14 Hitachi Metals Ltd 高周波スイッチモジュールおよびこれを用いた無線通信装置
JP2009531882A (ja) * 2006-03-31 2009-09-03 エプコス アクチエンゲゼルシャフト マルチバンドおよびマルチモード方式の移動無線モジュール

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032001A (ja) * 2001-07-13 2003-01-31 Murata Mfg Co Ltd 複合高周波スイッチ、高周波モジュール及び通信機
JP2005268878A (ja) * 2004-03-16 2005-09-29 Matsushita Electric Ind Co Ltd アンテナ共用器
WO2006114928A1 (ja) * 2005-04-18 2006-11-02 Murata Manufacturing Co., Ltd. 高周波モジュール
JP4441886B2 (ja) * 2006-03-31 2010-03-31 Tdk株式会社 高周波モジュール
JP2008010995A (ja) 2006-06-28 2008-01-17 Ngk Spark Plug Co Ltd アンテナスイッチモジュール
WO2010053131A1 (ja) * 2008-11-05 2010-05-14 日立金属株式会社 高周波回路、高周波部品、及びマルチバンド通信装置
KR101271108B1 (ko) * 2009-01-29 2013-06-04 가부시키가이샤 무라타 세이사쿠쇼 듀플렉서 모듈
JP5262840B2 (ja) 2009-03-03 2013-08-14 株式会社村田製作所 高周波モジュール
JP5018858B2 (ja) * 2009-10-27 2012-09-05 株式会社村田製作所 高周波モジュール
EP2662985B1 (en) * 2011-01-06 2018-11-21 Murata Manufacturing Co., Ltd. High-frequency module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036806A1 (fr) * 2001-10-24 2003-05-01 Matsushita Electric Industrial Co., Ltd. Module de commutation composee haute frequence, et terminal de communication equipe de ce module
JP2006246234A (ja) * 2005-03-04 2006-09-14 Hitachi Metals Ltd 高周波スイッチモジュールおよびこれを用いた無線通信装置
JP2009531882A (ja) * 2006-03-31 2009-09-03 エプコス アクチエンゲゼルシャフト マルチバンドおよびマルチモード方式の移動無線モジュール

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9166285B2 (en) 2012-05-07 2015-10-20 Murata Manufacturing Co., Ltd. High-frequency module
KR20180104722A (ko) 2016-03-08 2018-09-21 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치
US10868518B2 (en) 2016-03-08 2020-12-15 Murata Manufacturing Co., Ltd. Elastic wave device

Also Published As

Publication number Publication date
CN103155427B (zh) 2015-11-25
CN103155427A (zh) 2013-06-12
JP5590135B2 (ja) 2014-09-17
US9077439B2 (en) 2015-07-07
US20130176916A1 (en) 2013-07-11
JPWO2012043430A1 (ja) 2014-02-06

Similar Documents

Publication Publication Date Title
JP5561379B2 (ja) 高周波モジュール
JP5590135B2 (ja) 高周波モジュール
KR101798092B1 (ko) 고주파 모듈 및 통신 장치
JP5708804B2 (ja) 高周波モジュール
JP5590134B2 (ja) 高周波モジュール
JP5316544B2 (ja) 高周波回路、高周波部品、及びマルチバンド通信装置
JP5625453B2 (ja) 高周波スイッチモジュール
KR101271108B1 (ko) 듀플렉서 모듈
US8805299B2 (en) High-frequency module
JP2014207517A (ja) 高周波回路モジュール
JP2011077723A (ja) 高周波スイッチモジュール
EP2487802B1 (en) High-frequency module
WO2013125363A1 (ja) 高周波モジュールおよび高周波部品
JP5790852B2 (ja) 高周波スイッチモジュール
JP2004282727A (ja) アンテナスイッチモジュール、一体型通信モジュール、通信機器およびアンテナスイッチモジュールの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180046047.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012536421

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828984

Country of ref document: EP

Kind code of ref document: A1