WO2012115171A1 - マスターバッチ、およびマスターバッチを利用したポリアミド樹脂組成物の製造方法 - Google Patents
マスターバッチ、およびマスターバッチを利用したポリアミド樹脂組成物の製造方法 Download PDFInfo
- Publication number
- WO2012115171A1 WO2012115171A1 PCT/JP2012/054328 JP2012054328W WO2012115171A1 WO 2012115171 A1 WO2012115171 A1 WO 2012115171A1 JP 2012054328 W JP2012054328 W JP 2012054328W WO 2012115171 A1 WO2012115171 A1 WO 2012115171A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyamide
- resin composition
- acid
- masterbatch
- master batch
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/06—Polyamides derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
- C08G69/265—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/22—Compounding polymers with additives, e.g. colouring using masterbatch techniques
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/22—Compounding polymers with additives, e.g. colouring using masterbatch techniques
- C08J3/226—Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
- C08K5/098—Metal salts of carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2377/00—Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
- C08J2377/06—Polyamides derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2477/00—Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
- C08J2477/06—Polyamides derived from polyamines and polycarboxylic acids
Definitions
- the present invention relates to a masterbatch and a method for producing a polyamide resin composition using the masterbatch, and more specifically, molding processability suitable for production of a polyamide resin composition industrially useful as a packaging material or a fiber material. And a method for producing a polyamide resin composition using the master batch.
- Polyamide containing a metaxylylene group in the polymer main chain has high rigidity, is widely used as a molding material, and has excellent performance to block oxygen, carbon dioxide, etc., and various packaging such as bottles, sheets, films, etc. It is also used as a gas barrier material.
- a gas barrier material In particular, in polyamides used for applications such as bottles, sheets, films, and fibers, attention is paid to contamination. This is due to the fact that the molded product is transparent or thin, requires sophisticated and delicate molding technology, and the possibility that the foreign material may impair the function of the molded product. As a result, the appearance rate of defects, the occurrence of defects such as breakage due to the occurrence of foreign matter, and the productivity are reduced.
- Examples of the foreign substances derived from polyamide include powder called fine, thin film called floss, yellowed matter / carbide subjected to thermal deterioration, and gel-like material. Preventing the generation of these foreign substances is the best measure, but if it is unavoidable, it must be separated and removed from the pellet product. Powders and thin films are generally removed by wind separation, and yellowing substances and carbides can be removed by a sorter using an optical sensor. Various separation devices are commercially available, and a reliable removal effect can be expected.
- gel formation is caused by abnormal reactions (such as three-dimensional polymerization) such as non-linear molecular growth due to molecular damage (degradation of polymer molecules due to generation of radicals, etc.) during polymerization and molding. It is assumed that the molecular weight is extremely high compared to other polyamide molecules. For this reason, in order to obtain a polyamide with less gel, it is necessary to reduce the thermal history as much as possible in the production process, and the contrivances such as setting the balance of the terminal group concentration and adding a heat stabilizer or an antioxidant are made. However, some of these additives have a catalytic effect on the amidation reaction, and conversely, the polymerization reaction may proceed excessively, resulting in an increase in gel. Therefore, in general, by adding a specific amount of an alkali compound having a reaction inhibiting effect, polymerization is performed while maintaining a balance between reaction promotion and gel formation inhibition.
- abnormal reactions such as three-dimensional polymerization
- molecular damage degradation of polymer molecules due to generation of radical
- the gel produced in the melt polymerization process can be removed with a filter, etc., but the gel is often atomized by the flow pressure and passes through the filter. Since gels can form during the polymerization, it is impossible to completely remove them.
- the gel can be generated not only during the production of the polyamide but also at the time of melting during the molding process.
- a difference may appear during molding, and this is caused by It is presumed that excessive heat history is applied to some polymers in the staying part such as screw grooves, filters or dies. For this reason, in order to finally obtain a molded product with less gel, it is important to produce a high-quality polyamide with less gel and to design a molding device with very few staying parts.
- both the melt polymerization and the solid phase polymerization can suppress the thermal history during production, set the balance between the effective end group concentration and the stabilizer amount, Removal is necessary, but the effect is limited.
- the design of the molding processing equipment can reduce gel formation by, for example, plating the metal parts that are in contact with the resin, but it is difficult to completely eliminate the staying parts due to the construction of the equipment. It is necessary to provide equipment for this molding apparatus, which lacks feasibility in terms of versatility and cost.
- the conventional gelation suppression method requires a balance between the mixing ratio of the antioxidant and the reaction inhibitor, and there is a limit to the amount of each added, while addition during molding processing
- the addition amount is limited so that the gel suppressing effect is insufficient or the physical properties are not affected. Therefore, an effective gel formation inhibitory action has not been obtained.
- An object of the present invention is to solve the above-mentioned problems, a master batch excellent in molding processability suitable for the production of a polyamide having a good appearance and color tone and producing little gel-like substance during the molding process, and It is providing the manufacturing method of the polyamide resin composition using this masterbatch.
- the present invention provides the following master batch and a method for producing a polyamide resin composition using the master batch.
- a masterbatch comprising a polyamide (X) comprising a diamine unit containing 70 mol% or more of a metaxylylenediamine unit and a dicarboxylic acid unit, and an alkali compound (A), the alkali contained in the masterbatch
- the average particle size of the compound (A) is 50 ⁇ m or less, and the content of particles having a particle size exceeding 80 ⁇ m in a cross section of 5 mm 2 of the master batch is 1.5 or less, and per 1 g of the master batch
- a master batch, wherein a sum (m) of values obtained by multiplying a molar concentration of alkali metal atoms and a molar concentration of alkaline earth metal atoms by a valence is 60 ⁇ mol / g or more and 1710 ⁇ mol / g or less.
- [2] A method for producing a polyamide resin composition using the masterbatch according to [1], (A) a step of obtaining a polyamide (X) by polycondensation of a diamine containing 70% by mole or more of metaxylylenediamine and a dicarboxylic acid in the presence of the alkali metal compound (C) and the phosphorus atom-containing compound (B); (B) With respect to 100 parts by mass of the polyamide (X) obtained in the step (a), 14 to 0.5 parts by mass of the raw alkali compound (A) is melt-kneaded by an extruder, and the polyamide (X) And (c) 0.5 to 20 parts by mass of the master batch obtained in the step (b) and the polyamide obtained in the step (a) ( X) A process for producing a polyamide resin composition comprising a step of melt-kneading 99.5 to 80 parts by mass with an extruder.
- the masterbatch by using the masterbatch, it is possible to provide a polyamide resin composition having a good appearance and color tone and generating less gel during molding.
- the masterbatch of the present invention includes a polyamide (X) composed of a diamine unit containing 70% by mole or more of a metaxylylenediamine unit and a dicarboxylic acid unit and an alkali compound (A), and an alkali compound (A) contained in the masterbatch (
- the average particle diameter of A) is 50 ⁇ m or less, and the number of particles having a particle diameter exceeding 80 ⁇ m in a cross section of 5 mm 2 of the master batch is 1.5 or less, and is included per 1 g of the master batch.
- the sum (m) of the values obtained by multiplying the molar concentration of alkali metal atoms and the molar concentration of alkaline earth metal atoms by the valence is 60 ⁇ mol / g or more and 1710 ⁇ mol / g or less.
- the alkali compound is used as a neutralizing agent for the phosphorus compound added during the polymerization of the polyamide.
- the amount of polyamide used during polymerization is limited from the viewpoint of balance with phosphorus compounds.
- the inventors of the present invention have added the alkali compound (A) at the time of molding processing to increase the concentration of the alkali compound after polymerization of the polyamide. It was found that the formation can be suppressed, and even when the melt residence state of the polyamide continues for a long period of time, the amount of gel generated is small, and the obtained molded product is good with little gel contamination.
- the present inventor further makes it possible to sufficiently disperse and dissolve the alkali compound in the polyamide by using a masterbatch containing the alkali compound (A) having a specific particle size distribution, and to obtain a high concentration alkali. It has been found that even in the presence of a compound, the filter is not clogged at the time of either the master batch production or the molding process, and the appearance is excellent with no whitening of the molded product and no occurrence of fuzz. The present invention has been made based on such findings.
- the diamine unit constituting the polyamide (X) contains 70% by mole or more of metaxylylenediamine units, preferably 80% by mole or more, more preferably 90% by mole or more.
- Polyamide (X) can express the outstanding gas barrier property because the metaxylylenediamine unit in a diamine unit is 70 mol% or more.
- Compounds that can constitute diamine units other than metaxylylenediamine units include tetramethylene diamine, pentamethylene diamine, 2-methylpentane diamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine, nonamethylene diamine, decamethylene diamine.
- Aliphatic diamines such as dodecamethylenediamine, 2,2,4-trimethyl-hexamethylenediamine, 2,4,4-trimethylhexamethylenediamine; 1,3-bis (aminomethyl) cyclohexane, 1,4-bis ( Aminomethyl) cyclohexane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, bis (4-aminocyclohexyl) methane, 2,2-bis (4-aminocyclohexyl) propane, bis (aminomethyl) deca
- alicyclic diamines such as bis (aminomethyl) tricyclodecane; diamines having an aromatic ring such as bis (4-aminophenyl) ether, paraphenylenediamine, paraxylylenediamine, and bis (aminomethyl) naphthalene
- diamines having an aromatic ring such as bis (4-aminophenyl
- Examples of the compound that can constitute the dicarboxylic acid unit constituting the polyamide (X) include succinic acid, glutaric acid, pimelic acid, adipic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, and dimer acid.
- Aliphatic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid and the like; aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, xylylene dicarboxylic acid, naphthalene dicarboxylic acid, etc. It is not limited to these.
- polyamide (X) that can be preferably used in the present invention, a diamine unit containing at least 70 mol% of a metaxylylenediamine unit and an adipic acid unit of at least 70 mol%, preferably at least 80 mol%, more preferably at least 90 mol%.
- examples include polyamides comprising dicarboxylic acid units.
- the dicarboxylic acid unit contains 70 mol% or more of adipic acid units, it is possible to avoid a decrease in gas barrier properties and an excessive decrease in crystallinity.
- the compound capable of constituting a dicarboxylic acid unit other than the adipic acid unit one or more of ⁇ , ⁇ -linear aliphatic dicarboxylic acids having 4 to 20 carbon atoms are preferably used.
- a dicarboxylic acid containing a diamine unit containing at least 70 mol% of a metaxylylenediamine unit, 70 to 99 mol% of an adipic acid unit and 1 to 30 mol% of an isophthalic acid unit Polyamides composed of units can also be exemplified.
- an isophthalic acid unit as a dicarboxylic acid unit the melting point can be lowered and the molding processing temperature can be lowered. Therefore, the heat history during the molding of the polyamide resin composition can be reduced and the formation of gel can be suppressed.
- examples thereof include polyamides comprising dicarboxylic acid units containing at least%.
- the dicarboxylic acid unit contains 70 mol% or more of sebacic acid units, it is possible to avoid a decrease in gas barrier properties and an excessive decrease in crystallinity, a low melting point, and a reduction in molding processing temperature, resulting in gel formation. Can be suppressed.
- the compound capable of constituting a dicarboxylic acid unit other than the sebacic acid unit one or more of ⁇ , ⁇ -linear aliphatic dicarboxylic acids having 4 to 20 carbon atoms are preferably used.
- lactams such as ⁇ -caprolactam and laurolactam
- fats such as aminocaproic acid and aminoundecanoic acid are included within the range not impairing the effects of the present invention.
- Aromatic aminocarboxylic acids such as p-aminomethylbenzoic acid can also be used as copolymerization components.
- the number average molecular weight of the polyamide (X) is preferably 10,000 to 50,000, more preferably 15,000 to 45,000, still more preferably 20,000 to 40,000, and is appropriately selected depending on the use of the polyamide resin composition and the molding method.
- the number average molecular weight of polyamide (X) is preferably about 20000 to 30000.
- melt strength is required during production, for example, in the case of applications such as sheets, the number average molecular weight of polyamide (X) is preferably about 30,000 to 40,000.
- the number average molecular weight of the polyamide (X) is calculated from the following formula (4).
- Number average molecular weight 2 ⁇ 1000000 / ([COOH] + [NH 2 ]) (4)
- [COOH] represents the terminal carboxyl group concentration ( ⁇ mol / g) in the polyamide (X)
- [NH 2 ] represents the terminal amino group concentration ( ⁇ mol / g) in the polyamide (X).
- the terminal amino group concentration is a value obtained by neutralizing and titrating a polyamide dissolved in a phenol / ethanol mixed solution with a dilute hydrochloric acid aqueous solution
- the terminal carboxyl group concentration is a value obtained by dissolving polyamide in benzyl alcohol. The value calculated by neutralizing titration with an aqueous sodium hydroxide solution is used.
- the master batch of the present invention contains an alkali compound (A) from the viewpoint of preventing gelation that occurs during molding.
- the alkali compound (A) used in the present invention include alkali metal or alkaline earth metal hydroxide, hydride, alkoxide, carbonate, bicarbonate or carboxylate, It is not limited to these.
- Preferable specific examples of the alkali metal or alkaline earth metal include sodium, potassium, lithium, rubidium, cesium, magnesium, calcium and the like.
- alkali metal or alkaline earth metal hydroxide examples include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, magnesium hydroxide, and calcium hydroxide.
- examples of the hydride of alkali metal or alkaline earth metal include lithium hydride, sodium hydride, potassium hydride and the like.
- the alkali metal alkoxide or alkaline earth metal alkoxide is preferably an alkoxide having 1 to 4 carbon atoms, such as sodium methoxide, potassium methoxide, lithium methoxide, magnesium methoxide, calcium methoxide, sodium ethoxide, potassium ethoxide.
- alkali metal or alkaline earth metal carbonates and bicarbonates include sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, lithium carbonate, calcium carbonate, magnesium carbonate, sodium bicarbonate, and calcium bicarbonate. These anhydrous salts are desirable.
- alkali metal or alkaline earth metal carboxylate a carboxylate having 1 to 10 carbon atoms is preferable, and an anhydrous salt is preferable.
- carboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, capric acid, pelargonic acid, lauric acid, myristic acid, palmitic acid, stearic acid, eicoic acid, behenic acid.
- Fatty acid derivatives such as 12-hydroxystearic acid; oxalic acid, fumaric acid, maleic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid
- Aliphatic dicarboxylic acids such as sebacic acid, undecanedioic acid, dodecanedioic acid
- hydroxy acids such as glycolic acid, lactic acid, hydroxybutyric acid, tartaric acid, malic acid, citric acid, isocitric acid, mevalonic acid; benzoic acid, terephthalic acid, Isophthalic acid, orthophthalic acid, pyrometic acid, trimellitic acid, xylylene diene Carboxylic acids, and aromatic carboxylic acids such as naphthalene dicarboxylic acid.
- the alkali compound (A) used in the present invention may be one of the above or may be used in combination of two or more.
- an alkali metal salt of a carboxylic acid having 10 or less carbon atoms is preferable from the viewpoint of dispersibility in polyamide (X) and a gelation suppressing effect, and acetic acid is preferable from the viewpoint of economy and gelation suppressing effect.
- Sodium is more preferred.
- the alkali compound (A) used in the present invention is uniformly dispersed in the polyamide resin composition, it is preferably a fine powder, and it is desirable that aggregates and excessively large particles are as small as possible. .
- the average particle diameter of the alkali compound (A) as a raw material (hereinafter referred to as the raw material alkali compound (A)) before being added to the masterbatch of the present invention is preferably 150 ⁇ m or less. Preferably it is 120 micrometers or less.
- the average particle diameter of a raw material alkali compound is a value represented by the average particle diameter which measured volume distribution by the laser diffraction scattering method, and calculated
- the proportion of particles having a particle diameter of 300 ⁇ m or more is 5% or less in the raw material alkali compound (A).
- grains used as particle diameter 300 micrometers or more is 5% or less, precipitation of the alkali compound (A) in a molded article can be suppressed.
- a commercially available thing can be used as a raw material alkali compound (A) in this invention.
- commercially available sodium acetate has an average particle size of about 100 ⁇ m to 1 mm, and the proportion of particles having a particle size of 300 ⁇ m or more is 1% to 100%.
- a commercially available alkali compound can be used as the raw material alkali compound (A) after being pulverized as necessary to adjust the average particle size and the particle size distribution to be within the above preferred ranges. Or what has the average particle diameter and particle size distribution of a commercially available alkali compound in said preferable range can also be utilized as it is.
- a pulverization method in the case of pulverizing an alkali compound such as commercially available sodium acetate exemplified above, for example, a method using a pin mill, a hammer mill, a blade mill, a ball mill, a high-pressure pulverization mill, a jet mill or the like is possible. However, any known method can be applied as long as the target average particle size and particle size distribution can be achieved.
- the master batch of the present invention can be obtained by kneading the raw material alkali compound (A) and polyamide.
- the size of the particles of the alkali compound (A) present in the obtained master batch can be measured with a scanning microscope (SEM) at the cross section of the master batch.
- SEM scanning microscope
- the master batch cross section is exposed by embedding the master batch in a resin such as an epoxy resin, and then exposing the cross section by dry polishing or wet polishing. There is a way to make it. It is also possible to expose a cross section of the masterbatch using a microtome and a diamond knife.
- the average particle size of the alkali compound (A) contained in the master batch is observed with a scanning microscope (SEM) from the master batch with the cross-section exposed, and the alkali compound (A) 1000 in the same plane.
- SEM scanning microscope
- the average particle size of the alkali compound (A) contained in the master batch calculated by the above calculation method is preferably 50 ⁇ m or less, preferably 45 ⁇ m or less, more preferably 40 ⁇ m or less, and even more preferably 20 ⁇ m or less.
- the average particle diameter of the alkali compound (A) contained in the master batch is in the above range, it becomes possible to greatly increase productivity by suppressing an increase in the resin pressure during the molding process of the polyamide resin composition. There is no occurrence of irregularities in the molded product, and the appearance is improved, and secondary workability such as stretching is improved.
- the lower limit of the average particle diameter of the alkali compound (A) is not particularly limited, but is 0.1 ⁇ m or more that can be practically prepared.
- the number of particles having a particle diameter exceeding 80 ⁇ m is 1.5 or less in the area of 5 mm 2 in the cross section of the master batch from which the average particle diameter is calculated. Is preferably 0.5 or less, more preferably 0.4 or less, particularly preferably 0.3 or less, and most preferably 0.1 or less.
- the particle diameter said here measured the long diameter (longest part) of the alkali compound (A), and made this the particle diameter.
- the number of particles having a particle diameter of more than 80 ⁇ m in a cross section of the master batch of 5 mm 2 means that the number of particles having a particle diameter of more than 80 ⁇ m in the cross section of the master batch of 5 mm 2 is counted for each pellet. Refers to content.
- the method of measuring using 5 or more pellets is preferable.
- M) (molar concentration) is from 60 to 1710 ⁇ mol / g, preferably from 90 to 1450 ⁇ mol / g, more preferably from 120 to 1220 ⁇ mol / g, from the viewpoint of preventing precipitates generated during molding using a master batch. More preferably, it is 240 to 860 ⁇ mol / g.
- the moldability of the masterbatch with respect to polyamide increases during molding and the melt viscosity decreases. May be damaged.
- the total molar concentration of alkali metal atoms and alkaline earth metal atoms is more than 1710 ⁇ mol / g, there is a possibility of lowering the melt viscosity of the master batch itself, which may make it difficult to produce the master batch.
- the dispersion of the masterbatch in the polyamide may be uneven, and the alkali compound (A) may be locally present in the polyamide resin composition, and a sufficient gel suppression effect may not be obtained.
- the raw material polyamide (X) used in the masterbatch is molded by using a masterbatch in which the polyamide (X) containing a certain amount of water and the raw material alkali compound (A) are melt mixed. It is possible to sufficiently disperse and dissolve the alkali compound (A) in the product, and it is possible to obtain a molded product having an excellent appearance with no whitening or blistering as well as stable moldability.
- the amount of water contained in the starting polyamide (X) is preferably 0.1 to 0.8% by mass. If the water content with respect to the raw material polyamide (X) is 0.1% by mass or more, the dissolution and dispersion of the alkali compound (A) in the polyamide (X) will be sufficient, and the resin pressure during molding and in the molded product Protrusion is suppressed. If the water content is 0.8% by mass or less, supply of the alkali compound (A) such as generation of a large amount of vapor is not possible when the raw material alkali compound (A) and the raw material polyamide (X) are supplied to the molding machine. Stable phenomena are suppressed.
- the masterbatch of the present invention can be blended with one or more other resins such as nylon 6, nylon 66, nylon 66,6, polyester, polyolefin, phenoxy resin, etc. within a range that does not impair the purpose.
- inorganic fillers such as glass fibers and carbon fibers; plate-like inorganic fillers such as glass flakes, talc, kaolin, mica, montmorillonite, and organized clay; impact modifiers such as various elastomers; crystal nucleating agents Lubricants such as fatty acid amides and fatty acid amides; antioxidants such as copper compounds, organic or inorganic halogen compounds, hindered phenols, hindered amines, hydrazines, sulfur compounds, phosphorus compounds; UV absorbers such as benzotriazoles; additives such as mold release agents, plasticizers, colorants, flame retardants; compounds containing cobalt metal, benzoquinones, anthraquinones, naphthoquinones that are compounds that impart
- the shape of the master batch of the present invention is preferably in the form of pellets, powders, or flakes, but the pellets are particularly preferred because of their excellent handleability.
- the polyamide resin composition obtained using the masterbatch of the present invention can be produced by a method including the following steps (a) to (c).
- ⁇ Process (a)> In the step (a), in the presence of the alkali metal compound (C) and the phosphorus atom-containing compound (B), a diamine containing 70 mol% or more of metaxylylenediamine and a dicarboxylic acid are polycondensed to obtain a polyamide (X). It is a process to obtain.
- a diamine containing 70 mol% or more of metaxylylenediamine and a dicarboxylic acid are polycondensed to obtain a polyamide (X). It is a process to obtain.
- the processing stability at the time of melt molding can be improved and the polyamide (X) can be prevented from being colored.
- polymerization by a phosphorus atom containing compound (B) can be suppressed by making an alkali metal compound (C) coexist.
- the phosphorus atom-containing compound (B) include hypophosphorous acid compounds (also referred to as phosphinic acid compounds or phosphonous acid compounds), phosphorous acid compounds (also referred to as phosphonic acid compounds), and the like. It is not limited to these.
- the phosphorus atom-containing compound (B) may be a metal salt or an alkali metal salt.
- hypophosphorous acid compounds include hypophosphorous acid; hypophosphorous acid metal salts such as sodium hypophosphite, potassium hypophosphite, lithium hypophosphite; ethyl hypophosphite, dimethylphosphine Hypophosphorous acid compounds such as acid, phenylmethylphosphinic acid, phenylphosphonous acid, and phenylphosphonous acid ethyl; metal phenylphosphonous acid salts such as sodium phenylphosphonous acid, potassium phenylphosphonous acid, and lithium phenylphosphonous acid Etc.
- hypophosphorous acid hypophosphorous acid
- hypophosphorous acid metal salts such as sodium hypophosphite, potassium hypophosphite, lithium hypophosphite
- ethyl hypophosphite dimethylphosphine
- Hypophosphorous acid compounds such as acid, phenylmethylphosphinic acid, phenylphosphonous acid, and phenylphosphonous acid ethyl
- the phosphite compound include phosphorous acid, pyrophosphorous acid; metal phosphites such as sodium hydrogen phosphite and sodium phosphite; triethyl phosphite, triphenyl phosphite, ethylphosphone Phosphorous acid compounds such as acid, phenylphosphonic acid, diethyl phenylphosphonate; phenylphosphonic acid metal salts such as sodium ethylphosphonate, potassium ethylphosphonate, sodium phenylphosphonate, potassium phenylphosphonate, lithium phenylphosphonate, etc. Can be mentioned.
- the phosphorus atom-containing compound (B) may be one of the above, or two or more of them may be used in combination.
- metal hypophosphite such as sodium hypophosphite, potassium hypophosphite, lithium hypophosphite and the like from the viewpoint of the effect of promoting the polymerization reaction of polyamide (X) and the effect of preventing coloring. Is preferable, and sodium hypophosphite is more preferable.
- the polycondensation of polyamide (X) is preferably performed in the presence of a phosphorus atom-containing compound (B) and an alkali metal compound (C).
- a phosphorus atom-containing compound (B) In order to prevent coloring of the polyamide (X) during polycondensation, it is necessary to make a sufficient amount of the phosphorus atom-containing compound (B) present, but if the amount of the phosphorus atom-containing compound (B) used is too large, amidation will occur. There is a possibility that the reaction rate is accelerated too much to cause gelation of the polyamide (X). Therefore, it is preferable to coexist the alkali metal compound (C) from the viewpoint of adjusting the amidation reaction rate.
- the alkali metal compound (C) is not particularly limited, and preferred specific examples include alkali metal hydroxides and alkali metal acetates.
- alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide.
- alkali metal acetate include lithium acetate, sodium acetate, potassium acetate, and acetic acid. Examples include rubidium and cesium acetate.
- the amount of the alkali metal compound (C) used is the number of moles of the alkali metal compound (C) from the viewpoint of suppressing gel formation. Is a range in which the value obtained by dividing by the number of moles of the phosphorus atom-containing compound (B) is preferably 0.5 to 1, more preferably 0.55 to 0.95, still more preferably 0.6 to 0.9. preferable.
- the method for producing polyamide (X) is not particularly limited as long as it is in the presence of the phosphorus atom-containing compound (B) and the alkali metal compound (C), and can be carried out by any method and polymerization conditions.
- a nylon salt composed of a diamine component (for example, metaxylylenediamine) and a dicarboxylic acid component (for example, adipic acid) is heated in a pressurized state in the presence of water, and melted while removing added water and condensed water.
- Polyamide (X) can be produced by the method of polymerizing with the above method.
- the polyamide (X) can also be produced by a method in which a diamine component (for example, metaxylylenediamine) is directly added to a molten dicarboxylic acid component (for example, adipic acid) and polycondensed under normal pressure.
- a diamine component for example, metaxylylenediamine
- a molten dicarboxylic acid component for example, adipic acid
- polycondensed under normal pressure in order to keep the reaction system in a uniform liquid state, the diamine component is continuously added to the dicarboxylic acid component, and the reaction system is heated up so that the reaction temperature does not fall below the melting point of the generated oligoamide and polyamide.
- a small amount of monoamine or monocarboxylic acid may be added as a molecular weight regulator during the polycondensation of polyamide (X).
- polyamide (X) may be subjected to polycondensation by performing solid phase polymerization after being produced by a melt polymerization method.
- Solid phase polymerization is not particularly limited, and can be carried out by any method and polymerization conditions.
- Step (b) is a step of adding a raw material alkali compound (A) to the polyamide (X) obtained in the step (a) to obtain a masterbatch containing the polyamide (X) and the alkali compound (A). .
- a master batch is obtained by melt-kneading polyamide (X) and raw material alkali compound (A) with an extruder. Even when the alkali compound is directly added to the polyamide (X) and subjected to the molding process, the gelation suppressing effect can be obtained, but the alkali compound has low dispersibility and solubility in the polyamide (X).
- the resin pressure may rise abnormally due to filter clogging during molding, or an unmelted alkaline compound may precipitate on the molded product. Therefore, in the present invention, the moldability of polyamide is stabilized by using a masterbatch containing polyamide (X) and alkali compound (A).
- the master batch is obtained by melting and kneading the polyamide (X) and the raw material alkali compound (A).
- the extruder a batch kneader, a kneader, a kneader, a planetary extruder, a single screw or a twin screw is used. Any extruder such as an extruder can be used. Among these, from the viewpoint of kneading ability and productivity, a single screw extruder or a twin screw extruder is preferably used.
- the means for supplying polyamide (X) or raw material alkali compound (A) to the extruder is not particularly limited, and a belt feeder, a screw feeder, a vibration feeder, or the like can be used.
- Polyamide (X) and raw material alkali compound (A) may be supplied using a single feeder, or may be supplied by dry blending.
- a viscous liquid is attached to polyamide (X) as a spreading agent, and then the raw material alkali compound (A) may be added and mixed.
- the spreading agent is not particularly limited, and a surfactant or the like can be used.
- the blending ratio of the raw material alkali compound (A) with respect to 100 parts by mass of the polyamide (X) is preferably polyamide (X) 100 from the viewpoint of suppressing the decrease in viscosity and the generation and coloring of the gel.
- the amount is from 14 to 0.5 parts by weight, more preferably from 10 to 1 part by weight, still more preferably from 7 to 2 parts by weight based on the weight part.
- step (b) since the polyamide (X) contains moisture, the solubility of the alkali compound (A) in the master batch is improved, and uniform dispersion is possible.
- the amount of water contained in the polyamide (X) is preferably 0.1 to 0.8% by mass. If the water content is less than 0.1% by mass, the dissolution / dispersion of the alkali compound (A) in the polyamide (X) becomes insufficient, which may cause an increase in the resin pressure during molding and generation of defects in the molded product. is there.
- step (b) When the amount of water is more than 0.8% by mass, a large amount of steam is generated in step (b), and the alkali compound (A) at the inlet may become a sherbet due to the steam, and the alkali compound (A) The supply amount may become unstable.
- Step (c) is a step of obtaining the polyamide resin composition by adding the master batch obtained in the step (b) to the polyamide (X) obtained in the step (a).
- Molded product obtained by molding polyamide (X) as it is is excellent in properties and appearance immediately after the start of molding, but the mixing of gel substance increases with long-time molding processing and the product quality is unstable.
- the gel is broken and the apparatus must be stopped, so that the production efficiency is deteriorated. This is presumed to occur because the polyamide continues to stay locally between the melt-kneading part and the die so that the polyamide is excessively heated and gelled, and the generated gel flows out.
- the masterbatch containing an alkali compound (A) is added with respect to polyamide (X).
- the present inventors continue to heat the polyamide under pressure, low oxygen, and in a molten state, and the polyamide undergoes a bipolarization of low molecular weight and high molecular weight.
- the amount of gel generated increases as the amount of the high molecular weight component increases.
- a high molecular weight component became small by adding an alkali compound (A) with respect to polyamide. The reason for this is that the addition of the alkali compound (A) delays the progress of amidation that occurs particularly during the molding of the polyamide resin composition, and consequently suppresses the increase in the molecular weight and also suppresses the gelation. Guessed.
- the blending ratio of the master batch and the polyamide (X) is preferably 0 from the viewpoint of stable moldability, a molded product having a good appearance, and further suppressing gel formation.
- the compounding ratio of masterbatch / polyamide (X) described here means the compounding ratio in a total of 100 parts by mass of the masterbatch and polyamide (X).
- the blending ratio of the masterbatch / polyamide (X) exceeds 20 parts by mass / 80 parts by mass, the mixing ratio of the polyamide derived from the masterbatch having a heat history increases, so that the molding becomes difficult due to yellowing or a decrease in viscosity. there is a possibility. Further, if the master batch contains a large amount of moisture, depending on the case, the appearance such as whitening of the molded product may be impaired due to high crystallization speed, or the secondary workability such as stretching may be impaired. On the other hand, when the compounding ratio of masterbatch / polyamide (X) is 0.5 parts by mass / 99.5 parts by mass or more, gel formation can be suppressed during the molding process.
- the molar concentration P of phosphorus atoms contained per 1 g of the polyamide resin composition of the present invention is 0.03 ⁇ mol / g or more and 0.32 ⁇ mol / g from the viewpoint of improving processing stability during melt molding and preventing coloring of the polyamide. g, preferably 0.06 to 0.26 ⁇ mol / g, more preferably 0.1 to 0.2 ⁇ mol / g.
- P is less than 0.03 ⁇ mol / g, the polyamide tends to be colored during polymerization and a gel tends to be generated.
- alkali metal atoms and alkaline earth metal atoms The sum of the values obtained by multiplying the molar concentration of alkali metal atoms and the molar concentration of alkaline earth metal atoms contained in 1 g of the polyamide resin composition of the present invention by the respective valences (hereinafter referred to as “alkali metal atoms and alkaline earth metal atoms”).
- M) is called 2.2 to 26.1 ⁇ mol / g, preferably 4.3 to 19.5 ⁇ mol / g, more preferably 6 from the viewpoint of preventing gelation that occurs during molding. .5 to 13.0 ⁇ mol / g.
- M is the sum of the values obtained by multiplying the molar concentrations of all alkali metal atoms and alkaline earth metal atoms contained per 1 g of the polyamide resin composition by the valence.
- the total molar concentration M of alkali metal atoms and alkaline earth metal atoms contained in 1 g of the polyamide resin composition of the present invention is defined as the molarity of phosphorus atoms contained in 1 g of the polyamide resin composition of the present invention.
- the value (M / P) divided by the concentration P is more than 5 and not more than 200 from the viewpoint of preventing gelation that occurs during molding, from the viewpoint of improving processing stability during melt molding, and from preventing polyamide coloring. Yes, preferably 20 to 150, more preferably 35 to 100.
- M / P is 5 or less, the effect of suppressing the amidation reaction by adding a master batch may be insufficient, and in some cases, the gel in the polyamide may increase.
- M / P exceeds 200 a molding defect may occur due to a decrease in viscosity, and in some cases, coloring, whitening, or an undissolved alkali compound (A) may precipitate.
- an alkali metal compound (C) that can be added when the polyamide (X) is produced in the step (a) The same compounds are also exemplified. However, if the alkali metal compound (C) is excessively added during the melt polymerization, the effect of promoting the amidation reaction of the phosphorus atom-containing compound (B) is suppressed too much, and the progress of polycondensation is delayed. Thermal history may increase and polyamide gel may increase.
- step (c) a master batch containing polyamide (X) and alkali compound (A) is added to polyamide (X), thereby effecting gel formation during molding. Can be prevented.
- the polyamide resin composition of the present invention produced by the above method can suppress the formation of gel at the time of melt polymerization of polyamide, and further the formation of gel at the time of molding of the obtained resin composition. It can be suppressed, and stable and long-time production is possible.
- the gel formation suppression effect of the polyamide resin composition is compared with the gel fraction of polyamides heated at a constant temperature and at a constant temperature in a high pressure and molten state, assuming that the polyamide is exposed during molding.
- HFIP hexafluoroisopropanol
- the gel fraction is calculated from the insoluble component.
- the gel fraction is determined in percentage by dividing the weight of the resin pre-weighed before HFIP immersion as a denominator with respect to the residue weight obtained by filtering the insoluble component with a membrane filter under reduced pressure and then drying. Value.
- the gel fraction of the polyamide resin composition of the present invention is smaller than the gel fraction of the polyamide resin composition produced without adding a master batch after polymerization of the polyamide. This indicates that gel formation is suppressed during the molding process of the polyamide resin composition of the present invention.
- the gel fraction of the polyamide resin composition of the present invention is such that when the polyamide resin composition is retained for a predetermined time at 270 to 290 ° C., which is the resin temperature of the polyamide resin at the time of molding, the alkali compound (A) When the polyamide resin composition produced without adding is retained under the same conditions, the gel fraction is preferably 50% or less, more preferably 33% or less, and even more preferably 20% or less.
- the residence time can be, for example, 24, 36, or 72 hours.
- the polyamide resin composition of the present invention is formed into a film and evaluated by the average generation amount of fish eyes counted by a fish eye inspection machine. Can do.
- the cause of the generation of fish eyes in the polyamide resin composition may be, for example, the outflow of gel generated in the molding machine or the precipitation of an undissolved material of the alkali compound (A).
- the number of foreign matters having an equivalent circle diameter of 20 ⁇ m or more is preferably 900 or less, more preferably 700 or less, and further preferably 600 or less per 1 m 2 of a 50 ⁇ m thick polyamide film. . If the number exceeds 900, the presence of fluff on the film surface is visually confirmed and the appearance is impaired. Further, when the molded product is further stretched, breakage may occur, which is not desirable.
- the polyamide resin composition of the present invention can be blended with one or more other resins such as nylon 6, nylon 66, nylon 66, 6, polyester, polyolefin, phenoxy resin and the like within a range not to impair the purpose.
- inorganic fillers such as glass fibers and carbon fibers; plate-like inorganic fillers such as glass flakes, talc, kaolin, mica, montmorillonite, and organized clay; impact modifiers such as various elastomers; crystal nucleating agents Lubricants such as fatty acid amides and fatty acid amides; antioxidants such as copper compounds, organic or inorganic halogen compounds, hindered phenols, hindered amines, hydrazines, sulfur compounds, phosphorus compounds; UV absorbers such as benzotriazoles; additives such as mold release agents, plasticizers, colorants, flame retardants; compounds containing cobalt metal, benzoquinones, anthraquinones, naphthoquinones that are compounds that impart
- the polyamide resin composition of the present invention is excellent in gas barrier properties and transparency, and has stable melting characteristics.
- the polyamide resin composition of the present invention is processed into various shapes such as sheets, films, injection-molded bottles, blow bottles, injection-molded cups, etc. by using the resin composition at least in part as a molded product.
- it can be used for packaging materials, packaging containers, and fiber materials.
- a molded article It does not specifically limit about the manufacturing method of a molded article, It can manufacture by arbitrary methods, for example, can manufacture by extrusion molding or injection molding. Further, a molded product obtained by extrusion molding or injection molding may be further processed by uniaxial stretching, biaxial stretching, stretch blow, or the like. Specifically, it can be processed into a film or a sheet by an extrusion method equipped with a T-die, an inflation film method, or the like, and further, a stretched film or a heat-shrinkable film can be obtained by stretching the obtained raw film. it can. In addition, an injection molding cup can be formed by an injection molding method, and a blow bottle can be formed by a blow molding method.
- a preform can be manufactured by injection molding and then a bottle can be formed by blow molding. Moreover, it can also be processed into a film or sheet having a multilayer structure with other resins such as polyethylene, polypropylene, nylon 6, PET, metal foil, paper, etc., by a method such as extrusion lamination or coextrusion.
- the processed film or sheet can be used for packaging containers such as wraps, pouches of various shapes, container lids, bottles, cups, trays, tubes, and the like. Further, it can be processed into a preform or bottle having a multilayer structure with PET or the like by a multilayer injection molding method or the like.
- the packaging container obtained by using the polyamide resin composition of the present invention has excellent gas barrier properties and excellent transparency.
- the packaging container include carbonated drinks, juices, water, milk, sake, whiskey, shochu, coffee, tea, jelly drinks, health drinks and other liquid drinks, seasonings, sauces, soy sauce, dressings, liquid soup, mayonnaise Seasonings such as miso, grated spices, pasty foods such as jam, cream, chocolate paste, liquid foods such as liquid soup, boiled food, pickles, stew, and so on, soba, udon, ramen, etc.
- High-moisture foods typified by raw noodles and boiled noodles, cooked rice such as polished rice, moisture-conditioned rice, and non-washed rice, and cooked cooked rice, gomoku rice, red rice, rice bran, and other processed rice products; Powdered soup, powdered seasonings such as dashi-no-moto, dried vegetables, coffee beans, coffee powder, tea, low-moisture foods typified by confectionery made from grains; other solids and solutions such as pesticides and insecticides Chemicals, liquid and pasty medicines, lotions, makeup creams, cosmetic milky lotion, hair dressing, it is possible to house a hair dye, shampoo, soap, detergent or the like, various articles.
- the polyamide resin composition of the present invention can be used as a material for gasoline tanks and hoses of automobiles, motorcycles, etc. as a gasoline barrier material. Moreover, the polyamide resin composition of the present invention can also be a fiber material such as a monofilament.
- Production Example 1 (Preparation of raw material alkali compound (A))
- the raw material alkali compound (A) was obtained by using commercially available sodium acetate as it was or by pulverizing commercially available sodium acetate by the following method.
- (Crushing method example 1) Sodium acetate (anhydrous) (manufactured by Daito Chemical Co., Ltd., average particle size of 277 ⁇ m, 300 ⁇ m or more content: 45%) was crushed at a rotational speed of 5400 rpm and screen mesh using a free crusher M-4 manufactured by Nara Machinery Co., Ltd.
- the mixture was pulverized under the condition of a diameter of 0.5 mm to obtain pulverized sodium acetate having an average particle diameter of 117 ⁇ m and a particle content of less than 1%.
- Sodium acetate (anhydrous) manufactured by Daito Chemical Co., Ltd., average particle size: 316 ⁇ m, 300 ⁇ m or more content: 70%
- the mixture was pulverized under an air flow rate of 10 m 3 / min to obtain crushed sodium acetate having an average particle size of 7 ⁇ m and a particle content of less than 1% with a particle size of 300 ⁇ m or more.
- the average particle size of the obtained raw material alkali compound (A) was determined by volume distribution using a laser diffraction scattering particle size measurement device (LA-910; manufactured by Horiba, Ltd.) after dispersing the raw material alkali compound (A) in chloroform. was measured and calculated as the arithmetic mean diameter. Further, the volume ratio of particles having a particle diameter of 300 ⁇ m or more was measured as a percentage.
- the raw material alkali compound (A) when the average particle diameter of the raw material alkali compound (A) is 100 ⁇ m or less, the raw material alkali compound (A) is not dispersed in a solvent, and is measured by a laser diffraction scattering particle size measurement apparatus (MASTERSIZER 2000; manufactured by Malvern Instruments Ltd). The volume distribution was measured and calculated as the arithmetic mean diameter. Further, the volume ratio of particles having a particle diameter of 300 ⁇ m or more was measured as a percentage. The results are shown in Table 2.
- Production Example 3 drying of polyamide
- the polyamide (X1a) obtained in Production Example 2 was dried in a vacuum dryer at 0.1 Torr (13.33 Pa) or less at 140 ° C. for 2 hours to obtain polyamide (X1b).
- the results are shown in Table 1.
- Production Example 4 Humanity adjustment of polyamide
- the polyamide (X1a) obtained in Production Example 2 was held at 40 ° C. and 90% RH for 24 hours to obtain a polyamide (X1c).
- the results are shown in Table 1.
- Production Example 5 (solid phase polymerization of polyamide) Charge the polyamide (X1a) obtained in Production Example 2 to a tumble dryer with a jacket equipped with a nitrogen gas inlet tube, vacuum line, vacuum pump, and thermocouple for measuring the internal temperature. After sufficiently replacing the inside of the dryer with nitrogen gas having a purity of 99% by volume or more, the tumble dryer was heated under the same nitrogen gas stream, and the pellet temperature was raised to 150 ° C. over about 150 minutes. When the pellet temperature reached 150 ° C., the pressure in the system was reduced to 1 torr (133.3 Pa) or less. The temperature was further raised, and the pellet temperature was raised to 200 ° C. over about 70 minutes, and then maintained at 200 ° C. for 30 to 45 minutes. Next, nitrogen gas having a purity of 99% by volume or more was introduced into the system, and the tumble dryer was rotated and cooled to obtain polyamide (X1d). Table 1 shows the properties of the obtained polyamide (X1d).
- Production Example 7 Polymer melt polymerization
- the amount of sodium hypophosphite monohydrate added was 86.5 mg (0.816 mmol, 1 ppm as the phosphorus atom concentration in the polyamide), and the amount of sodium acetate added was 41.3 mg (0.503 mmol, hypophosphorous acid).
- About 24 kg of polyamide was obtained in the same manner as in Production Example 2, except that the molar ratio with respect to sodium monohydrate was changed to 0.62).
- Polyamide solid state polymerization Subsequently, a polyamide (X3d) was obtained by solid phase polymerization of the polyamide in the same manner as in Production Example 5 except that the polyamide obtained by the melt polymerization was used. Table 1 shows the properties of the obtained polyamide (X3d).
- Production Example 8 Polymer melt polymerization
- the amount of sodium hypophosphite monohydrate added was 778.7 mg (7.343 mmol, 9.5 ppm as the phosphorus atom concentration in the polyamide), and the amount of sodium acetate added was 371.6 mg (4.53 mmol, hypochlorous acid).
- About 24 kg of polyamide was obtained in the same manner as in Production Example 2, except that the molar ratio with respect to sodium phosphate monohydrate was changed to 0.62).
- a polyamide (X4d) was obtained by solid phase polymerization of the polyamide in the same manner as in Production Example 5 except that the polyamide obtained by the melt polymerization was used. Table 1 shows the properties of the obtained polyamide (X4d).
- Examples 1 to 11 and Comparative Examples 1 to 3 Manufacture of master batch
- a twin screw extruder model: TEM37BS, manufactured by Toshiba Machine Co., Ltd., caliber: 37 mm ⁇
- sodium acetate and the above polyamide (X1a) was supplied in a separate feeder at the blending amount shown in Table 2, and formed into a strand shape.
- pelletized using a pelletizer After cooling with a water-cooled tank, pelletized using a pelletizer. Thereafter, the pellets were dried in a vacuum dryer at 0.1 Torr or less and 140 ° C. for 8 hours to obtain master batches 1 to 11.
- Table 2 shows the average particle diameter of the alkali compound (A) in the obtained master batch and the number of particles having a particle diameter exceeding 80 ⁇ m in a cross section of 5 mm 2 of the master batch.
- the molar concentration p of phosphorus atoms contained in 1 g of the master batch, and the total molar concentration m of alkali metal atoms and alkaline earth metal atoms were determined by decomposing the master batch in nitric acid with a microwave, and then using an atomic absorption spectrometer ( The product was quantified using a product name: AA-6650 (manufactured by Shimadzu Corporation) and an ICP emission analyzer (trade name: ICPE-9000, manufactured by Shimadzu Corporation).
- the average particle size at the area ratio was calculated, and this value was calculated as the average particle size of the alkali compound (A) contained in the master batch.
- the number of particle images exceeding the major axis of 80 ⁇ m was counted within the area of 5 mm 2 where the average particle diameter was calculated, and this was measured five times for each pellet, and the average value per measurement was calculated as “ The number of particles having a particle diameter exceeding 80 ⁇ m in a cross section of 5 mm 2 of the master batch ”. The measurement results are shown in Table 2.
- Examples 1 to 11 and Comparative Examples 1 to 3 Manufacture of polyamide resin composition film
- a 25 mm ⁇ single screw extruder model: PTM25, (Plastic Engineering Laboratory Co., Ltd.), head with a 600 mesh filter, T-die film extruder, cooling roll, fish eye inspection machine (model: GX70W, manufactured by Mamiya Oppy Co., Ltd.), winder
- the film was produced using a take-up device equipped with the above.
- the polyamide resin composition was extruded from the extruder into a film while maintaining a discharge rate of 3 kg / h, and the take-off speed was adjusted to obtain a film having a width of 15 cm and a thickness of 50 ⁇ m.
- ⁇ Gel fraction> [Preparation of stagnant sample]
- the 250 ⁇ m-thick film was cut into a circle having a diameter of 30 mm, and four sheets were produced.
- the circular film is stacked concentrically, and the circular film stacked concentrically is fitted into a hole of a 1 mm-thick 100 ⁇ 100 mm polytetrafluoroethylene sheet having holes hollowed out to a hole diameter of 30 mm. It was sandwiched between two 1 mm thick 100 ⁇ 100 mm polytetrafluoroethylene sheets.
- a polytetrafluoroethylene sheet with the above-mentioned film sandwiched in a 15 mm thick ⁇ 150 mm ⁇ 150 mm metal plate having a 120 mm ⁇ 120 mm groove with a depth of 3 mm in the center is placed in the center of the groove, and further 15 mm thick ⁇ 150 mm
- the metal plates were fixed with bolts.
- the heating was performed under the conditions of After the elapse of each time, the metal plate was taken out and rapidly cooled, and after sufficiently cooled to room temperature, the staying sample was taken out.
- the total weight of the dried residue and the filter was weighed, and the amount of HFIP insoluble component (gel amount) of the staying sample was calculated from the difference from the weight of the membrane filter weighed in advance.
- the gel fraction was determined as mass% of the HFIP insoluble component with respect to the staying sample before HFIP immersion. The same operation was performed three times from the preparation of the residence sample under the same conditions, and the average value of the obtained gel fractions under each condition was determined.
- Example 4 Manufacture of polyamide resin composition film
- sodium acetate having an average particle size of 80 ⁇ m as a raw material alkali compound was directly blended with polyamide so that it would be 0.1% with respect to 100 parts by mass of the polyamide, and then the same as in Example 1.
- a film was produced under the same conditions as in Example 1 using the apparatus. The evaluation results of the film, the resin pressure of the extruder head, the appearance of the film, and the measurement results of the gel fraction are shown in Table 4.
- Example 5 Manufacture of polyamide resin composition film
- a film was produced under the same conditions as in Example 1 using only the polyamide (X1d) without adding the master batch of Example 1 and using the same apparatus as in Example 1.
- the evaluation results of the film, the resin pressure of the extruder head, the appearance of the film, and the measurement results of the gel fraction are shown in Table 4.
- Comparative Example 5 In Comparative Example 5 in which no master batch was added, the number of fish eyes in the film was initially small, but the gel fraction was high, and a gel was formed when excessive heat history was applied due to retention. On the other hand, in Examples 1 to 11 to which the master batch was added, the number of fish eyes in the film was small, the gel fraction was low, and gel formation was small even during the molding process. On the other hand, in Comparative Example 1 in which the total molar concentration of alkali metal atoms and alkaline earth metal atoms in the masterbatch was low, the film became yellow, whitening occurred, and the appearance was remarkably deteriorated.
- Comparative Example 2 in which the content of particles having an alkali compound (A) particle size of 80 ⁇ m or more in the master batch is large
- Comparative Example 3 in which the average particle size of the alkali compound (A) is large
- each master batch is used.
- the resin pressure increased with the passage of time, and the occurrence of bumps on the film was also confirmed.
- Comparative Example 4 when a master batch was not used and sodium acetate having an average particle size of 80 ⁇ m was directly dry-blended with polyamide as a raw material alkaline compound, generation of fuzz was observed.
- Comparative Example 6 when a master batch was not used and a small amount of calcium stearate as a raw material alkali compound was directly dry-blended with polyamide, the number of fish eyes in the film was initially small, but the gel fraction was high, A gel was formed when an excessive heat history was applied.
- Comparative Example 7 when the amount of calcium stearate added was larger than that in Comparative Example 6, whitening occurred in the film and the appearance was remarkably deteriorated, so the number of fish eyes of the film could not be measured. Further, when the master batch 10 is molded, since the raw material alkali compound (A) is excessively contained with respect to the polyamide (X), the melt viscosity of the resin becomes low, and pelletization with a pelletizer is difficult. It was not suitable for processing.
- the polyamide resin composition using the masterbatch of the present invention is excellent in gas barrier properties and transparency, has a good color tone, has a small number of fish eyes in the film, has a low gel fraction, and has a low gel fraction during molding. There is little production. Further, it is possible to greatly increase productivity by suppressing an increase in the resin pressure during the molding process of the polyamide resin composition. Therefore, the polyamide resin composition using the masterbatch of the present invention is industrially useful as a packaging material, gasoline barrier material, fiber material, packaging container and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyamides (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Description
ポリアミド由来の異物としては、ファインと呼ばれる粉体、フロスと呼ばれる薄膜、熱劣化を受けた黄変物・炭化物、そしてゲル状物等が挙げられる。これら異物は生成を防ぐことが一番の対策であるが、やむを得ず生成した場合、ペレット製品から分離除去する必要がある。粉体及び薄膜は一般には風選で除かれ、黄変物・炭化物は光学センサーを用いた選別機で除くことができ、様々な分離機器が市販されており、確実な除去効果が期待できる。
しかし、更にゲルの少ないポリアミドを製造するには、溶融重合時並びに固相重合時においても、製造時の熱履歴の抑制、効果的な末端基濃度と安定剤量のバランス設定、生成したゲルの除去が必要であるが、その効果には限界があった。また成形加工装置の設計は、例えば樹脂の接触する金属部位にメッキ処理を施すことによりゲル生成を減らすことが可能であるが、滞留部位を完全に撤廃することは装置の構成上難しく、また各々の成形装置に設備を施す必要があり、汎用性やコスト面で見て実現性に欠ける。特に、キシリレンジアミンを主体とするジアミン成分からなるポリアミドでは、キシリレンジアミンのベンジルメチレン部位がラジカル生成しやすく、他のポリアミドよりゲルの発生は深刻な問題となっている。
[1]メタキシリレンジアミン単位を70モル%以上含むジアミン単位とジカルボン酸単位とからなるポリアミド(X)と、アルカリ化合物(A)とを含むマスターバッチであって、マスターバッチ中に含まれるアルカリ化合物(A)の平均粒子径が50μm以下であり、かつ、マスターバッチの断面5ミリ平方メートル中に粒子径80μmを超える粒子の含有数が1.5個以下であり、かつ、マスターバッチ1gあたりに含まれるアルカリ金属原子のモル濃度及びアルカリ土類金属原子のモル濃度にそれぞれ価数を乗じた値の和(m)が60μmol/g以上1710μmol/g以下であることを特徴とするマスターバッチ。
[2]前記[1]に記載のマスターバッチを利用したポリアミド樹脂組成物の製造方法であって、
(a)アルカリ金属化合物(C)及びリン原子含有化合物(B)の存在下で、メタキシリレンジアミンを70モル%以上含むジアミンとジカルボン酸とを重縮合してポリアミド(X)を得る工程、
(b)前記工程(a)で得られたポリアミド(X)100質量部に対して、原料アルカリ化合物(A)14~0.5質量部を押出機により溶融混練して、前記ポリアミド(X)と前記アルカリ化合物(A)とを含むマスターバッチを得る工程、及び
(c)前記工程(b)で得られたマスターバッチ0.5~20質量部と前記工程(a)で得られたポリアミド(X)99.5~80質量部とを押出機により溶融混練する工程
を含む、ポリアミド樹脂組成物の製造方法。
本発明のマスターバッチは、メタキシリレンジアミン単位を70モル%以上含むジアミン単位とジカルボン酸単位とからなるポリアミド(X)とアルカリ化合物(A)とを含み、マスターバッチ中に含まれるアルカリ化合物(A)の平均粒子径が50μm以下であり、かつ、マスターバッチの断面5ミリ平方メートル中の粒子径80μmを超える粒子の含有数が1.5個以下であり、かつ、マスターバッチ1gあたりに含まれるアルカリ金属原子のモル濃度及びアルカリ土類金属原子のモル濃度にそれぞれ価数を乗じた値の和(m)が60μmol/g以上1710μmol/g以下であることを特徴とする。
ポリアミド(X)を構成するジアミン単位は、メタキシリレンジアミン単位を70モル%以上含み、好ましくは80モル%以上、より好ましくは90モル%以上含む。ジアミン単位中のメタキシリレンジアミン単位が70モル%以上であることで、ポリアミド(X)は優れたガスバリア性を発現することができる。
メタキシリレンジアミン単位以外のジアミン単位を構成しうる化合物としては、テトラメチレンジアミン、ペンタメチレンジアミン、2-メチルペンタンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチル-ヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン等の脂肪族ジアミン;1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノメチル)デカリン、ビス(アミノメチル)トリシクロデカン等の脂環族ジアミン;ビス(4-アミノフェニル)エーテル、パラフェニレンジアミン、パラキシリレンジアミン、ビス(アミノメチル)ナフタレン等の芳香環を有するジアミン類等が例示できるが、これらに限定されるものではない。
数平均分子量=2×1000000/([COOH]+[NH2])・・・・(4)
(式中、[COOH]はポリアミド(X)中の末端カルボキシル基濃度(μmol/g)を表し、[NH2]はポリアミド(X)中の末端アミノ基濃度(μmol/g)を表す。)
本発明では、末端アミノ基濃度は、ポリアミドをフェノール/エタノール混合溶液に溶解したものを希塩酸水溶液で中和滴定して算出した値を用い、末端カルボキシル基濃度は、ポリアミドをベンジルアルコールに溶解したものを水酸化ナトリウム水溶液で中和滴定して算出した値を用いる。
本発明のマスターバッチは、成形加工時に生じるゲル化を防止する観点からアルカリ化合物(A)を含有する。
本発明に用いられるアルカリ化合物(A)の好ましい具体例としては、アルカリ金属又はアルカリ土類金属の水酸化物、水素化物、アルコキシド、炭酸塩、炭酸水素塩又はカルボン酸塩が挙げられるが、特にこれらに限定されるものではない。アルカリ金属又はアルカリ土類金属の好ましい具体例としては、ナトリウム、カリウム、リチウム、ルビジウム、セシウム、マグネシウム、カルシウム等が挙げられる。
アルカリ金属又はアルカリ土類金属の水素化物としては、例えば水素化リチウム、水素化ナトリウム、水素化カリウム等が挙げられる。
アルカリ金属アルコキシド又はアルカリ土類金属アルコキシドとしては、炭素数1~4のアルコキシドが好ましく、例えばナトリウムメトキシド、カリウムメトキシド、リチウムメトキシド、マグネシウムメトキシド、カルシウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、リチウムエトキシド、マグネシウムエトキシド、カルシウムエトキシド、ナトリウム-t-ブトキシド、カリウム-t-ブトキシド、リチウム-t-ブトキシド、マグネシウム-t-ブトキシド、カルシウム-t-ブトキシド等が挙げられる。
アルカリ金属又はアルカリ土類金属の炭酸塩及び炭酸水素塩としては、例えば炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム、炭酸水素ナトリウム、炭酸水素カルシウム等が挙げられ、さらにこれらの無水塩が望ましい。
このような観点から、本発明のマスターバッチ中に添加する前の、原料となるアルカリ化合物(A)(以下、原料アルカリ化合物(A)と呼ぶ)の平均粒子径は、150μm以下が好ましく、より好ましくは120μm以下である。なお、原料アルカリ化合物の平均粒子径は、レーザー回折散乱法により、体積分布を測定し、それを算術計算により求めた平均粒子径で表す値である。
さらには、原料アルカリ化合物(A)中に、粒子径300μm以上となる粒子の含まれる割合が5%以下であることが望ましい。粒子径300μm以上となる粒子の含まれる割合が5%以下である場合、成形品中のアルカリ化合物(A)の析出を抑えることが出来る。
本発明における原料アルカリ化合物(A)としては、市販のものを用いることができる。例えば、市販の酢酸ナトリウムは、平均粒子径が100μm~1mm程度であり、粒子径300μm以上となる粒子の含まれる割合は1%以下~100%である。市販のアルカリ化合物は、必要に応じて粉砕処理して、平均粒子径及び粒度分布を上記の好ましい範囲となるように調整したものを、原料アルカリ化合物(A)として用いることができる。または、市販のアルカリ化合物の平均粒子径及び粒度分布が上記の好ましい範囲にあるものは、そのまま利用することもできる。
前記で例示した市販の酢酸ナトリウム等のアルカリ化合物を粉砕処理する場合の粉砕方法としては、例えば、ピンミル、ハンマーミル、ブレードミル、ボールミル、高圧粉砕ミル、ジェットミル等を使用する方法が可能であるが、目的の平均粒子径及び粒度分布を達成することができれば、公知の方法をいずれも適応することができる。
マスターバッチ中に存在するアルカリ化合物(A)を観察するために、マスターバッチ断面を露出させる方法としては、マスターバッチをエポキシ樹脂等の樹脂に包埋したのち、乾式研磨、湿式研磨により断面を露出させる方法がある。またミクロトーム及びダイヤモンドナイフを用いて、マスターバッチの断面を露出させることもできる。
上記算出方法により算出されるマスターバッチ内に含まれるアルカリ化合物(A)の平均粒子径が50μm以下であることが好ましく、45μm以下が好ましく、40μm以下がより好ましく、20μm以下がさらに好ましい。マスターバッチ中の中に含まれるアルカリ化合物(A)の平均粒子径を上記範囲とした場合、ポリアミド樹脂組成物の成形加工時の樹脂圧上昇を抑えて生産性を大きく上げることが可能となり、また成形加工品中のブツの発生が無く外観良好となることや、延伸などの二次加工性も向上する。アルカリ化合物(A)の平均粒子径の下限は、特に制限はないが、実用的に調製が出来る0.1μm以上である。
なお、ここで言う粒子径とは、アルカリ化合物(A)の長径(最も長い部分)を測定し、これを粒子径とした。さらにマスターバッチの断面5ミリ平方メートル中に粒子径80μmを超える粒子の含有数とは、マスターバッチの断面5ミリ平方メートル中に粒子径が80μmを超える粒子数を別ペレット毎にカウントして、その平均含有数を指す。なお、測定に供するペレットの個数に制限は無いが、例えば5個以上のペレットを用いて測定する方法が好ましい。
本発明のマスターバッチを使用して得られるポリアミド樹脂組成物は、以下の工程(a)~(c)を含む方法により製造することができる。
工程(a):アルカリ金属化合物(C)及びリン原子含有化合物(B)の存在下で、メタキシリレンジアミンを70モル%以上含むジアミンとジカルボン酸とを重縮合してポリアミド(X)を得る工程。
工程(b):前記工程(a)で得られたポリアミド(X)に原料アルカリ化合物(A)を添加してマスターバッチを得る工程。
工程(c):前記工程(a)で得られたポリアミド(X)に、前記工程(b)で得られたマスターバッチを添加してポリアミド樹脂組成物を得る工程。
工程(a)は、アルカリ金属化合物(C)及びリン原子含有化合物(B)の存在下で、メタキシリレンジアミンを70モル%以上含むジアミンとジカルボン酸とを重縮合してポリアミド(X)を得る工程である。リン原子含有化合物(B)の存在下でポリアミド(X)を重縮合することで、溶融成形時の加工安定性を高め、ポリアミド(X)の着色を防止することができる。また、アルカリ金属化合物(C)を共存させることで、リン原子含有化合物(B)による過度の重合を抑制することができる。
亜リン酸化合物の具体例としては、亜リン酸、ピロ亜リン酸;亜リン酸水素ナトリウム、亜リン酸ナトリウム等の亜リン酸金属塩;亜リン酸トリエチル、亜リン酸トリフェニル、エチルホスホン酸、フェニルホスホン酸、フェニルホスホン酸ジエチル等の亜リン酸化合物;エチルホスホン酸ナトリウム、エチルホスホン酸カリウム、フェニルホスホン酸ナトリウム、フェニルホスホン酸カリウム、フェニルホスホン酸リチウム等のフェニルホスホン酸金属塩等が挙げられる。
また、ジアミン成分(例えばメタキシリレンジアミン)を溶融状態のジカルボン酸成分(例えばアジピン酸)に直接加えて、常圧下で重縮合する方法によってもポリアミド(X)を製造することができる。この場合、反応系を均一な液状状態で保つために、ジアミン成分をジカルボン酸成分に連続的に加え、その間、反応温度が生成するオリゴアミド及びポリアミドの融点よりも下回らないように反応系を昇温しつつ、重縮合が進められる。
ポリアミド(X)の重縮合時に、分子量調節剤として少量のモノアミン、モノカルボン酸を加えてもよい。
工程(b)は、前記工程(a)で得られたポリアミド(X)に原料アルカリ化合物(A)を添加し、ポリアミド(X)とアルカリ化合物(A)とを含むマスターバッチを得る工程である。
工程(c)は、前記工程(a)で得られたポリアミド(X)に、前記工程(b)で得られたマスターバッチを添加し、ポリアミド樹脂組成物を得る工程である。
ポリアミド(X)をそのまま成形加工して得られる成形品は、成形開始直後は性状及び外観に優れるが、長時間の成形加工作業とともにゲル状物質の混入が増加し、製品の品質が不安定となる場合がある。特に、フィルム等の場合には、ゲルにより破断が生じ、装置を停止せざるを得なくなるため生産効率が悪化する。これは、溶融混練部からダイス間において、ポリアミドが局所的に滞留し続けることによって過剰加熱されてゲル化し、生成したゲルが流れ出すために起こると推測される。これに対し、本発明では、成形加工時に生じるゲル化を防止するために、ポリアミド(X)に対して、アルカリ化合物(A)を含むマスターバッチを添加する。
なお、上述のとおり、リン原子含有化合物(B)としてアルカリ金属塩が用いられる場合があり、また、後述するように、本発明のポリアミド樹脂組成物の製造時においては、ポリアミドの重縮合の際に必要に応じてアルカリ金属化合物(C)が添加され、ポリアミドの重縮合後にマスターバッチが添加される。したがって、Mは、ポリアミド樹脂組成物1gあたりに含まれるすべてのアルカリ金属原子及びアルカリ土類金属原子のモル濃度にそれぞれ価数を乗じた値の和である。
具体的には、Tダイを備えた押出法や、インフレーションフィルム法等によりフィルムやシートに加工でき、さらに得られた原反フィルムを延伸加工することにより、延伸フィルム、熱収縮フィルムを得ることができる。また、射出成形法により射出成形カップ、ブロー成形法によりブローボトルとすることができ、また射出成形によりプリフォームを製造した後、さらにブロー成形によりボトルとすることができる。
また、押出ラミネートや共押出等の方法により、他の樹脂、例えばポリエチレン、ポリプロピレン、ナイロン6、PETや金属箔、紙等との多層構造のフィルム、シートに加工することもできる。加工したフィルムやシートは、ラップ、あるいは各種形状のパウチ、容器の蓋材、ボトル、カップ、トレイ、チューブ等の包装容器に利用できる。また、多層射出成形法等によりPET等との多層構造のプリフォームやボトルに加工することもできる。
原料アルカリ化合物(A)は、市販の酢酸ナトリウムをそのまま使用、あるいは市販の酢酸ナトリウムを以下の方法により粉砕処理して得た。
(粉砕方法例1)
酢酸ナトリウム(無水)(大東化学(株)製、平均粒子径277μm、300μm以上含有率45%)を、奈良機械製作所(株)製自由粉砕機M-4にて、粉砕回転数5400rpm、スクリーンメッシュ径0.5mmの条件で粉砕し、平均粒子径117μm、粒子径300μm以上となる粒子の 含有率1%未満の粉砕酢酸ナトリウムを得た。
(粉砕方法例2)
酢酸ナトリウム(無水)(大東化学(株)製、平均粒子径316μm、300μm以上含有率70%)を、奈良機械製作所(株)製サンプルミルSAM-Tにて、粉砕回転数11000rpm、スクリーンメッシュ径0.7mmの条件で粉砕し、平均粒子径144μm、粒子径300μm以上となる粒子の含有率4%の粉砕酢酸ナトリウムを得た。
(粉砕方法例3)
粉砕方法例2において、スクリーンメッシュ径1.5mmとした以外は同様の条件で粉砕し、平均粒子径175μm、粒子径300μm以上となる粒子の含有率3%の粉砕酢酸ナトリウムを得た。
(粉砕方法例4)
酢酸ナトリウム(無水)(米山化学工業(株)製、平均粒子径325μm、300μm以上含有率50%)を、ホソカワミクロン(株)製パルベライザーACM-10にて、分級回転数3880rpm、粉砕回転数6800rpm、風量10m3/minの条件で粉砕し、平均粒子径7μm、粒子径300μm以上となる粒子の含有率1%未満の粉砕酢酸ナトリウムを得た。
得られた原料アルカリ化合物(A)の平均粒子径は、原料アルカリ化合物(A)をクロロホルム中に分散させた後、レーザー回折散乱法粒度測定装置(LA-910;堀場製作所製)により、体積分布を測定し、それを算術平均径として算出した。また、粒子径300μm以上となる粒子の体積比率を百分率として測定した。あるいは、原料アルカリ化合物(A)の平均粒子径が100μm以下の場合には、原料アルカリ化合物(A)を溶媒に分散せず、レーザー回折散乱法粒度測定装置(MASTERSIZER2000;Malvern Instruments Ltd製)により、体積分布を測定し、それを算術平均径として算出した。また、粒子径300μm以上となる粒子の体積比率を百分率として測定した。結果を表2に示す。
撹拌機、分縮器、全縮器、温度計、滴下ロート及び窒素導入管、ストランドダイを備えた内容積50リットルの反応容器に、精秤したアジピン酸15000g(102.6mol)、さらに次亜リン酸ナトリウム一水和物(NaH2PO2・H2O)432.5mg(4.083mmol、ポリアミド中のリン原子濃度として5ppm)および酢酸ナトリウム207.7mg(2.53mmol、次亜リン酸ナトリウム一水和物に対するモル数比として0.62)になるよう入れ、十分に窒素置換した後、さらに少量の窒素気流下で系内を撹拌しながら170℃まで加熱した。これにメタキシリレンジアミン13895g(102.0mol)を撹拌下に滴下し、生成する縮合水を系外へ除きながら系内を連続的に昇温した。メタキシリレンジアミンの滴下終了後、内温を260℃として40分反応を継続した。その後、系内を窒素で加圧し、ストランドダイからポリマーを取り出してこれをペレット化し、約24kgのポリアミド(X1a)を得た。
製造例2で得られたポリアミド(X1a)について、真空乾燥機にて0.1Torr(13.33Pa)以下、140℃の状態で2時間乾燥してポリアミド(X1b)を得た。結果を表1に示す。
製造例2で得られたポリアミド(X1a)を40℃、90%RHの状態で24時間保持してポリアミド(X1c)を得た。結果を表1に示す。
窒素ガス導入管、真空ライン、真空ポンプ、内温測定用の熱電対を設けたジャケット付きのタンブルドライヤーに、製造例2で得られたポリアミド(X1a)を仕込み、一定速度で回転させつつ、タンブルドライヤー内部を純度が99容量%以上の窒素ガスで十分に置換した後、同窒素ガス気流下でタンブルドライヤーを加熱し、約150分かけてペレット温度を150℃に昇温した。ペレット温度が150℃に達した時点で系内の圧力を1torr(133.3Pa)以下に減圧した。さらに昇温を続け、約70分かけてペレット温度を200℃まで昇温した後、200℃で30~45分保持した。次いで、系内に純度が99容量%以上の窒素ガスを導入して、タンブルドライヤーを回転させたまま冷却してポリアミド(X1d)を得た。得られたポリアミド(X1d)の性状を表1に示す。
(ポリアミドの溶融重合)
次亜リン酸ナトリウム一水和物の添加量を173.1mg(1.633mmol、ポリアミド中のリン原子濃度として2ppm)に、酢酸ナトリウムの添加量を82.6mg(1.007mmol、次亜リン酸ナトリウム一水和物に対するモル数比として0.62)に代えた以外は、製造例2と同様の方法で、約24kgのポリアミドを得た。
(ポリアミドの固相重合)
続けて、前記溶融重合で得られたポリアミドを用いた以外は製造例5と同様の方法でポリアミドの固相重合を行い、ポリアミド(X2d)を得た。得られたポリアミド(X2d)の性状を表1に示す。
(ポリアミドの溶融重合)
次亜リン酸ナトリウム一水和物の添加量を86.5mg(0.816mmol、ポリアミド中のリン原子濃度として1ppm)に、酢酸ナトリウムの添加量を41.3mg(0.503mmol、次亜リン酸ナトリウム一水和物に対するモル数比として0.62)に代えた以外は、製造例2と同様の方法で、約24kgのポリアミドを得た。
(ポリアミド固相重合)
続けて、前記溶融重合で得られたポリアミドを用いた以外は製造例5と同様の方法でポリアミドの固相重合を行い、ポリアミド(X3d)を得た。得られたポリアミド(X3d)の性状を表1に示す。
(ポリアミドの溶融重合)
次亜リン酸ナトリウム一水和物の添加量を778.7mg(7.343mmol、ポリアミド中のリン原子濃度として9.5ppm)に、酢酸ナトリウムの添加量を371.6mg(4.53mmol、次亜リン酸ナトリウム一水和物に対するモル数比として0.62)に代えた以外は、製造例2と同様の方法で、約24kgのポリアミドを得た。
(ポリアミドの固相重合)
続けて、前記溶融重合で得られたポリアミドを用いた以外は製造例5と同様の方法でポリアミドの固相重合を行い、ポリアミド(X4d)を得た。得られたポリアミド(X4d)の性状を表1に示す。
マスターバッチの原料となるポリアミド1gあたりに含まれるアルカリ金属原子及びアルカリ土類金属原子の総モル濃度m0及びリン原子のモル濃度p0は、ポリアミド樹脂を硝酸中、マイクロウェーブにて分解処理した後、原子吸光分析装置(商品名:AA-6650、(株)島津製作所製)及びICP発光分析装置(商品名:ICPE-9000、(株)島津製作所製)を用いて定量した。なお、測定値は重量分率(ppm)として得られるため、原子量及び価数を用いてp0及びm0を算出した。結果を表1に示す。
ポリアミドの水分率は、カールフィッシャー型水分測定装置(型式;AQ-2000、平沼産業(株)製)を用いて、窒素気流下にて235℃・30分加熱時のポリアミド(X1a)~(X1c)の水分率を測定した。結果を表1に示す。
(マスターバッチの製造)
二軸押出機(型式:TEM37BS、東芝機械(株)製、口径:37mmφ)に100メッシュのフィルターを設けたストランドダイを取り付けた押出機を使用して、酢酸ナトリウム並びに上記のポリアミド(X1a)~(X1b)のいずれかを、それぞれ表2に示した配合量で、別フィーダーにて供給してストランド状とした。次いで、水冷槽で冷却した後、ペレタイザーを使用してペレット状とした。その後、ペレットを真空乾燥機にて0.1Torr以下、140℃の状態で8時間乾燥してマスターバッチ1~11を得た。
得られたマスターバッチ中のアルカリ化合物(A)の平均粒子径、マスターバッチの断面5ミリ平方メートル中の粒子径80μmを超える粒子の含有数を表2に示した。
マスターバッチ1gあたりに含まれるリン原子のモル濃度p、アルカリ金属原子及びアルカリ土類金属原子の総モル濃度mは、マスターバッチを硝酸中、マイクロウェーブにて分解処理した後、原子吸光分析装置(商品名:AA-6650、(株)島津製作所製)及びICP発光分析装置(商品名:ICPE-9000、(株)島津製作所製)を用いて定量した。なお、測定値は重量分率(ppm)として得られるため、原子量及び価数を用いてp及びmを算出した。結果を表2に示した。
<ポリアミド樹脂組成物1gあたりに含まれるアルカリ金属原子及びアルカリ土類金属原子の総モル濃度M及びリン原子のモル濃度P>
前記で算出したマスターバッチ1gあたりに含まれるp及びmと同様の方法にて、ポリアミド樹脂組成物1gあたりに含まれるアルカリ金属原子及びアルカリ土類金属原子の総モル濃度M及びリン原子のモル濃度Pを算出した。結果を表3に示した。
マスターバッチを樹脂包埋し、ダイアモンドカッターにより断面を露出させたのち、試料台に貼り付けたカーボンテープ上に固定して、減圧雰囲気下で白金/パラジウムを蒸着した。続いて、白金/パラジウム蒸着したマスターバッチを、反射電子像観察を用いて空間図とし、走査型電子顕微鏡(SEM)を用いて150倍で写真撮影した。同一平面内にアルカリ化合物(A)1000個以上を含む範囲を選択して二値化処理後、さらに同範囲内で5ミリ平方メートルとなる領域を選択し、該領域中に存在する各々の粒子像の面積比率での平均粒子径を算出し、この値をマスターバッチ中に含まれるアルカリ化合物(A)の平均粒子径として算出した。
また、前記の平均粒子径を算出した5ミリ平方メートル領域内で長径80μmを超える粒子像数をカウントし、これをペレット別に5回同様の測定を行って、測定1回当たりの平均値を、「マスターバッチの断面5ミリ平方メートル中に粒子径80μmを超える粒子の含有数」とした。測定結果を表2に示す。
(ポリアミド樹脂組成物のフィルムの製造)
得られたマスターバッチ1~9および11を用いて、ポリアミド(X1d)~(X4d)100質量部に対して表3に記載の配合量で混合した後、25mmφ単軸押出機(型式:PTM25、(株)プラスチック工学研究所製)、600メッシュのフィルターを設けたヘッド、Tダイからなるフィルム押出機、冷却ロール、フィッシュアイ検査機(型式:GX70W、マミヤオーピー(株)製)、巻き取り機等を備えた引き取り装置を使用して、フィルムの製造を行った。押出機からポリアミド樹脂組成物を3kg/hの吐出速度に保持しつつフィルム状に押し出し、引き取り速度を調節して幅15cm、厚み50μmのフィルムとした。
以下の方法でフィルムの評価を行った。結果を表4に示す。
<フィッシュアイ数>
前記フィルムをフィッシュアイ検査機のカメラと光源の間を通過させ、巻き取り機にて巻き取りつつ、押し出しを開始してから1時間経過した時点で、幅10cm、長さ50mのフィルムのフィッシュアイ数(円相当径が20μm以上)をカウントし、1m2当たりのフィッシュアイ数を算出した。フィッシュアイ数は少ないほど好ましい。
また、フィッシュアイ数のカウント終了後、巻き取り速度を調節して、幅15cm、厚み250μmのフィルムとした後、押し出しを継続し、押出し開始直後、3時間後及び6時間後における押出機ヘッドの樹脂圧力をそれぞれ測定し、その変化の有無を測定した。押出機ヘッドの樹脂圧力の変化量が少ないことが好ましい。
得られたフィルムの外観を目視で観察した。フィルムの着色やゲル等の異物が観測されないことが好ましい。
ポリアミド樹脂組成物のフィルム1gを精秤し、96質量%硫酸100mlに20~30℃で撹拌溶解した。完全に溶解した後、速やかにキャノンフェンスケ型粘度計に溶液5mlを取り、25℃の恒温漕中で10分間放置後、落下時間(t)を測定した。また、96質量%硫酸そのものの落下時間(t0)も同様に測定した。t及びt0から次式により相対粘度を算出した。
相対粘度=t/t0
[滞留サンプルの作製]
上記の250μm厚みフィルムを直径30mmの円形に切り取り、これを4枚作製した。該円形フィルムを同心円状に重ね、孔径30mmにくり抜いた孔を持つ1mm厚の100×100mmポリテトラフルオロエチレンシートの孔部に、前記の同心円状に重ねた円形フィルムをはめ込み、さらに該シートを、1mm厚の100×100mmポリテトラフルオロエチレンシート2枚の間に挟み込んだ。
次いで、中央部に深さ3mmの120mm×120mmの溝を持つ15mm厚×150mm×150mm金属板に、上述のフィルムを挟み込んだポリテトラフルオロエチレンシートを溝の中央に配置し、さらに15mm厚×150mm×150mm金属板にて上から蓋をした後、金属板同士をボルトで固定した。
続けて、予め加温した熱プレス機により50kg/cm2以上にて該金属板を挟んだ状態で、270℃にて72時間、290℃にて24時間、又は290℃にて36時間のそれぞれの条件で加熱を行った。各時間経過後に該金属板を取り出して急冷し、室温まで十分に冷却されてから滞留サンプルを取り出した。
次いで、上記の滞留サンプルを60℃にて30分恒温乾燥機にて乾燥させた後、乾燥したサンプルを直ちに100mg秤量した。秤量した滞留サンプルを10mlの純度99%以上のヘキサフルオロイソプロパノール(HFIP)に24時間浸漬後、予め秤量した300μm孔径のポリテトラフルオロエチレン製メンブレンフィルターを通し減圧濾過した。メンブレンフィルターに残った残渣を2mlのHFIPにて3回洗浄した後、残渣の付着したフィルターを60℃にて30分恒温乾燥機にて乾燥した。
乾燥させた残渣及びフィルターの総重量を秤量し、予め秤量したメンブレンフィルター重量との差から、滞留サンプルのHFIP不溶成分量(ゲル量)を算出した。ゲル分率はHFIP浸漬前の滞留サンプルに対するHFIP不溶成分の質量%として求めた。
同様の操作を滞留サンプルの作製から同一条件にて3回行い、得られたゲル分率のそれぞれの条件における平均値を求めた。
(ポリアミド樹脂組成物のフィルムの製造)
実施例1のマスターバッチに代えて、原料アルカリ化合物として平均粒子径が80μmの酢酸ナトリウムを直接ポリアミドに、ポリアミド100質量部に対し0.1%となるようドライブレンドした後、実施例1と同様の装置を使用して、実施例1と同様の条件でフィルムの製造を行った。
フィルムの評価、押出機ヘッドの樹脂圧力、フィルムの外観、ゲル分率の測定結果を表4に示した。
(ポリアミド樹脂組成物のフィルムの製造)
実施例1のマスターバッチを添加せず、ポリアミド(X1d)のみを用い、実施例1と同様の装置を使用して、実施例1と同様の条件でフィルムの製造を行った。
フィルムの評価、押出機ヘッドの樹脂圧力、フィルムの外観、ゲル分率の測定結果を表4に示した。
(ポリアミド樹脂組成物のフィルムの製造)
実施例1のマスターバッチに代えて、原料アルカリ化合物としてステアリン酸カルシウムを直接ポリアミドと、ポリアミド100質量部に対して表3に記載の配合量でドライブレンドした後、実施例1と同様の装置を使用して、実施例1と同様の条件でフィルムの製造を行った。
フィルムの評価、押出機ヘッドの樹脂圧力、フィルムの外観、ゲル分率の測定結果を表4に示した。
これに対し、マスターバッチを添加した実施例1~11では、フィルム中のフィッシュアイ数が少なく、ゲル分率も低く、成形加工時においてもゲルの生成が少なかった。
一方、マスターバッチ中のアルカリ金属原子およびアルカリ土類金属原子の総モル濃度が低い比較例1では、フィルムが黄色くなったほか、白化が生じて外観が著しく悪化した。またマスターバッチ中のアルカリ化合物(A)の粒子径80μm以上を超える粒子の含有数が多い比較例2、およびアルカリ化合物(A)の平均粒子径が大きい比較例3では、各マスターバッチを使用して成形加工を実施した際、時間経過に伴って樹脂圧の上昇が確認されたほか、フィルム上にもブツの発生が確認された。また、比較例4においてマスターバッチを利用せず、原料アルカリ化合物として平均粒子径が80μmの酢酸ナトリウムを直接ポリアミドにドライブレンドした場合にも、ブツの発生が見られた。比較例6においてマスターバッチを利用せず、原料アルカリ化合物として少量のステアリン酸カルシウムを直接ポリアミドにドライブレンドした場合には、当初はフィルムのフィッシュアイ数も少なかったが、ゲル分率が高く、滞留によって過剰の熱履歴がかかるとゲルが生成していた。比較例7において、比較例6よりステアリン酸カルシウムの添加量を多くした場合には、フィルムに白化が生じて外観が著しく悪化したため、フィルムのフィッシュアイ数が測定できなかった。
さらにマスターバッチ10を成形する際は、ポリアミド(X)に対して原料アルカリ化合物(A)を過剰に含むために、樹脂の溶融粘度が低くなり、ペレタイザーによるペレット化が困難であり、以後の成形加工に適さないものであった。
Claims (9)
- メタキシリレンジアミン単位を70モル%以上含むジアミン単位とジカルボン酸単位とからなるポリアミド(X)と、アルカリ化合物(A)とを含むマスターバッチであって、マスターバッチ中に含まれるアルカリ化合物(A)の平均粒子径が50μm以下であり、かつ、マスターバッチの断面5ミリ平方メートル中に粒子径80μmを超える粒子の含有数が1.5個以下であり、かつ、マスターバッチ1gあたりに含まれるアルカリ金属原子のモル濃度及びアルカリ土類金属原子のモル濃度にそれぞれ価数を乗じた値の和(m)が60μmol/g以上1710μmol/g以下であることを特徴とするマスターバッチ。
- 前記アルカリ化合物(A)が、炭素数10以下のカルボン酸のアルカリ金属塩である、請求項1に記載のマスターバッチ。
- 前記アルカリ化合物(A)が、酢酸ナトリウムである、請求項1に記載のマスターバッチ。
- 前記ポリアミド(X)が、メタキシリレンジアミン単位を70モル%以上含むジアミン単位と、アジピン酸単位を70モル%以上含むジカルボン酸単位とからなるポリアミドである、請求項1又は2に記載のマスターバッチ。
- 前記ポリアミド(X)が、メタキシリレンジアミン単位を70モル%以上含むジアミン単位と、アジピン酸単位70~99モル%及びイソフタル酸単位1~30モル%とを含むジカルボン酸単位とからなるポリアミドである、請求項1又は2に記載のマスターバッチ。
- 前記ポリアミド(X)が、メタキシリレンジアミン単位を70モル%以上含むジアミン単位と、セバシン酸単位を70モル%以上含むジカルボン酸単位とからなるポリアミドである、請求項1又は2に記載のマスターバッチ。
- 請求項1~6のいずれかに記載のマスターバッチを利用したポリアミド樹脂組成物の製造方法であって、
(a)アルカリ金属化合物(C)及びリン原子含有化合物(B)の存在下で、メタキシリレンジアミンを70モル%以上含むジアミンとジカルボン酸とを重縮合してポリアミド(X)を得る工程、
(b)前記工程(a)で得られたポリアミド(X)100質量部に対して、原料アルカリ化合物(A)14~0.5質量部を押出機により溶融混練して、前記ポリアミド(X)と前記アルカリ化合物(A)とを含むマスターバッチを得る工程、及び
(c)前記工程(b)で得られたマスターバッチ0.5~20質量部と前記工程(a)で得られたポリアミド(X)99.5~80質量部とを押出機により溶融混練する工程
を含む、ポリアミド樹脂組成物の製造方法。 - 前記工程(c)で得られたポリアミド樹脂組成物が、以下の式(1)~(3)を満たすことを特徴とする、請求項7に記載のポリアミド樹脂組成物の製造方法。
0.03≦P<0.32・・・・・・・(1)
2.2≦M≦26.1・・・・・・・・(2)
5<M/P≦200・・・・・・・・・(3)
(式中、Pはポリアミド樹脂組成物1gあたりに含まれるリン原子のモル濃度(μmol/g)を表し、Mは、ポリアミド樹脂組成物1gあたりに含まれるアルカリ金属原子のモル濃度及びアルカリ土類金属原子のモル濃度にそれぞれ価数を乗じた値の和(μmol/g)を表す。) - 原料アルカリ化合物(A)の平均粒子径が150μm以下であり、かつ原料アルカリ化合物(A)中に粒子径300μm以上となる粒子の含まれる割合が5%以下である、請求項7又は8に記載のポリアミド樹脂組成物の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137020394A KR101823560B1 (ko) | 2011-02-24 | 2012-02-22 | 마스터 배치, 및 마스터 배치를 이용한 폴리아미드 수지 조성물의 제조 방법 |
EP12749978.8A EP2679635B1 (en) | 2011-02-24 | 2012-02-22 | Masterbatch, and method of preparing polyamide resin composition using masterbatch |
JP2013501109A JP5850040B2 (ja) | 2011-02-24 | 2012-02-22 | マスターバッチ、およびマスターバッチを利用したポリアミド樹脂組成物の製造方法 |
CN201280010401.4A CN103403094B (zh) | 2011-02-24 | 2012-02-22 | 母料以及利用母料制造聚酰胺树脂组合物的方法 |
RU2013143143/04A RU2573394C2 (ru) | 2011-02-24 | 2012-02-22 | Маточная смесь и способ получения полиамидной смоляной композиции с применением маточной смеси |
BR112013020625A BR112013020625A2 (pt) | 2011-02-24 | 2012-02-22 | "master batch" e método de preparação da composição de resina de poliamida usando batelada principal |
US14/001,000 US8993655B2 (en) | 2011-02-24 | 2012-02-22 | Masterbatch, and method of preparing polyamide resin composition using masterbatch |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-038167 | 2011-02-24 | ||
JP2011038167 | 2011-02-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012115171A1 true WO2012115171A1 (ja) | 2012-08-30 |
Family
ID=46720945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/054328 WO2012115171A1 (ja) | 2011-02-24 | 2012-02-22 | マスターバッチ、およびマスターバッチを利用したポリアミド樹脂組成物の製造方法 |
Country Status (10)
Country | Link |
---|---|
US (1) | US8993655B2 (ja) |
EP (1) | EP2679635B1 (ja) |
JP (1) | JP5850040B2 (ja) |
KR (1) | KR101823560B1 (ja) |
CN (1) | CN103403094B (ja) |
BR (1) | BR112013020625A2 (ja) |
CO (1) | CO6741216A2 (ja) |
RU (1) | RU2573394C2 (ja) |
TW (1) | TWI496814B (ja) |
WO (1) | WO2012115171A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103865058A (zh) * | 2012-12-17 | 2014-06-18 | 东丽先端材料研究开发(中国)有限公司 | 一种聚酰胺树脂及其制备方法以及聚酰胺树脂组合物 |
JP2016169291A (ja) * | 2015-03-12 | 2016-09-23 | 三菱瓦斯化学株式会社 | ポリアミド樹脂組成物及びその製造方法、フィルム、並びに多層フィルム |
JP2017115093A (ja) * | 2015-12-25 | 2017-06-29 | 三菱エンジニアリングプラスチックス株式会社 | ポリアミド樹脂組成物、キット、成形品の製造方法、成形品およびポリアミド樹脂組成物の製造方法 |
WO2017131008A1 (ja) * | 2016-01-29 | 2017-08-03 | 東洋紡株式会社 | 耐熱性ポリアミド樹脂組成物 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5949546B2 (ja) | 2010-05-17 | 2016-07-06 | 三菱瓦斯化学株式会社 | ポリアミド樹脂組成物 |
KR101819899B1 (ko) | 2010-05-17 | 2018-01-19 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | 폴리아미드 수지 조성물 |
TWI746668B (zh) * | 2016-10-20 | 2021-11-21 | 日商Jsr股份有限公司 | 液晶配向劑、液晶配向膜及液晶元件 |
CN109553768B (zh) * | 2017-09-26 | 2021-09-24 | 上海凯赛生物技术股份有限公司 | 一种聚酰胺及其制备方法 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4938950A (ja) | 1972-08-19 | 1974-04-11 | ||
JPS4945960A (ja) * | 1972-09-07 | 1974-05-02 | ||
JPH05295129A (ja) * | 1992-03-26 | 1993-11-09 | Du Pont Japan Ltd | ポリアミド樹脂組成物の製造方法 |
JP2001164109A (ja) | 1999-12-03 | 2001-06-19 | Mitsubishi Gas Chem Co Inc | ポリアミド樹脂組成物 |
WO2005063888A1 (ja) * | 2003-12-26 | 2005-07-14 | Toyo Boseki Kabushiki Kaisha | ポリアミド樹脂組成物 |
JP2005194330A (ja) | 2003-12-26 | 2005-07-21 | Toyobo Co Ltd | ポリアミド樹脂組成物 |
JP2005194328A (ja) | 2003-12-26 | 2005-07-21 | Toyobo Co Ltd | ポリアミド樹脂組成物 |
JP2005298546A (ja) * | 2004-04-06 | 2005-10-27 | Asahi Kasei Chemicals Corp | ポリアミド/ポリフェニレンエーテル樹脂組成物 |
JP3808847B2 (ja) | 2002-10-25 | 2006-08-16 | 株式会社興人 | ポリアミド系多層2軸延伸フィルム |
JP2007092054A (ja) | 2005-09-01 | 2007-04-12 | Toyobo Co Ltd | ポリアミドおよびそれからなるポリアミド組成物 |
JP2007092053A (ja) | 2005-09-01 | 2007-04-12 | Toyobo Co Ltd | ポリアミド及びそれからなるポリアミド組成物 |
JP2007302880A (ja) * | 2006-04-11 | 2007-11-22 | Asahi Kasei Chemicals Corp | ポリアミドマスターバッチの製造方法 |
JP2010280754A (ja) * | 2009-06-02 | 2010-12-16 | Mitsubishi Gas Chemical Co Inc | ポリアミド樹脂組成物 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3872055A (en) | 1972-08-19 | 1975-03-18 | Toyo Boseki | Polyamide composition having decreased gel-forming property in molten state |
US5726278A (en) | 1992-03-26 | 1998-03-10 | E. I. Du Pont De Nemours And Company | Process for the manufacture of polyamide resin composition |
US5874519A (en) | 1994-05-11 | 1999-02-23 | Asahi Kasei Kogyo Kabushiki Kaisha | Para-oriented aromatic polyamide shaped articles and preparation thereof |
DE19963903A1 (de) | 1999-12-31 | 2001-07-12 | Bosch Gmbh Robert | Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs |
FR2851252B1 (fr) * | 2003-02-14 | 2007-03-09 | Rhodianyl | Composition comprenant une matrice polymerique et un additif fonctionnalise et articles realises a partir de cette composition |
DE102005007034A1 (de) * | 2005-02-15 | 2006-08-17 | Degussa Ag | Verfahren zur Herstellung von Formteilen unter Erhöhung der Schmelzesteifigkeit |
JP4857634B2 (ja) * | 2005-07-22 | 2012-01-18 | 三菱瓦斯化学株式会社 | ポリアミド樹脂 |
JP4945960B2 (ja) | 2005-08-24 | 2012-06-06 | パナソニック株式会社 | 鉛蓄電池用エキスパンド格子体の製造方法 |
CN101421339B (zh) * | 2006-04-11 | 2012-04-11 | 旭化成化学株式会社 | 聚酰胺母料的制造方法 |
JP5200335B2 (ja) * | 2006-05-31 | 2013-06-05 | 三菱瓦斯化学株式会社 | ポリアミド樹脂組成物 |
EP2025718B1 (en) * | 2006-05-31 | 2017-02-15 | Mitsubishi Gas Chemical Company, Inc. | Polyamide resin composition |
JP5949546B2 (ja) * | 2010-05-17 | 2016-07-06 | 三菱瓦斯化学株式会社 | ポリアミド樹脂組成物 |
KR101819899B1 (ko) * | 2010-05-17 | 2018-01-19 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | 폴리아미드 수지 조성물 |
CN101921476B (zh) * | 2010-09-29 | 2012-06-20 | 重庆可倍多塑料有限公司 | 高阻隔性加纤阻燃吹塑尼龙复合材料及其制备方法 |
-
2012
- 2012-02-22 WO PCT/JP2012/054328 patent/WO2012115171A1/ja active Application Filing
- 2012-02-22 EP EP12749978.8A patent/EP2679635B1/en active Active
- 2012-02-22 CN CN201280010401.4A patent/CN103403094B/zh active Active
- 2012-02-22 JP JP2013501109A patent/JP5850040B2/ja active Active
- 2012-02-22 RU RU2013143143/04A patent/RU2573394C2/ru active
- 2012-02-22 BR BR112013020625A patent/BR112013020625A2/pt not_active Application Discontinuation
- 2012-02-22 KR KR1020137020394A patent/KR101823560B1/ko active IP Right Grant
- 2012-02-22 US US14/001,000 patent/US8993655B2/en active Active
- 2012-02-24 TW TW101106362A patent/TWI496814B/zh active
-
2013
- 2013-08-08 CO CO13188257A patent/CO6741216A2/es unknown
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4938950A (ja) | 1972-08-19 | 1974-04-11 | ||
JPS4945960A (ja) * | 1972-09-07 | 1974-05-02 | ||
JPH05295129A (ja) * | 1992-03-26 | 1993-11-09 | Du Pont Japan Ltd | ポリアミド樹脂組成物の製造方法 |
JP2001164109A (ja) | 1999-12-03 | 2001-06-19 | Mitsubishi Gas Chem Co Inc | ポリアミド樹脂組成物 |
JP3808847B2 (ja) | 2002-10-25 | 2006-08-16 | 株式会社興人 | ポリアミド系多層2軸延伸フィルム |
JP2005194328A (ja) | 2003-12-26 | 2005-07-21 | Toyobo Co Ltd | ポリアミド樹脂組成物 |
JP2005194330A (ja) | 2003-12-26 | 2005-07-21 | Toyobo Co Ltd | ポリアミド樹脂組成物 |
WO2005063888A1 (ja) * | 2003-12-26 | 2005-07-14 | Toyo Boseki Kabushiki Kaisha | ポリアミド樹脂組成物 |
JP2005298546A (ja) * | 2004-04-06 | 2005-10-27 | Asahi Kasei Chemicals Corp | ポリアミド/ポリフェニレンエーテル樹脂組成物 |
JP2007092054A (ja) | 2005-09-01 | 2007-04-12 | Toyobo Co Ltd | ポリアミドおよびそれからなるポリアミド組成物 |
JP2007092053A (ja) | 2005-09-01 | 2007-04-12 | Toyobo Co Ltd | ポリアミド及びそれからなるポリアミド組成物 |
JP2007302880A (ja) * | 2006-04-11 | 2007-11-22 | Asahi Kasei Chemicals Corp | ポリアミドマスターバッチの製造方法 |
JP2010280754A (ja) * | 2009-06-02 | 2010-12-16 | Mitsubishi Gas Chemical Co Inc | ポリアミド樹脂組成物 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103865058A (zh) * | 2012-12-17 | 2014-06-18 | 东丽先端材料研究开发(中国)有限公司 | 一种聚酰胺树脂及其制备方法以及聚酰胺树脂组合物 |
JP2016169291A (ja) * | 2015-03-12 | 2016-09-23 | 三菱瓦斯化学株式会社 | ポリアミド樹脂組成物及びその製造方法、フィルム、並びに多層フィルム |
JP2017115093A (ja) * | 2015-12-25 | 2017-06-29 | 三菱エンジニアリングプラスチックス株式会社 | ポリアミド樹脂組成物、キット、成形品の製造方法、成形品およびポリアミド樹脂組成物の製造方法 |
WO2017131008A1 (ja) * | 2016-01-29 | 2017-08-03 | 東洋紡株式会社 | 耐熱性ポリアミド樹脂組成物 |
Also Published As
Publication number | Publication date |
---|---|
RU2573394C2 (ru) | 2016-01-20 |
TWI496814B (zh) | 2015-08-21 |
CN103403094A (zh) | 2013-11-20 |
RU2013143143A (ru) | 2015-04-10 |
JP5850040B2 (ja) | 2016-02-03 |
EP2679635B1 (en) | 2019-08-14 |
KR20140032989A (ko) | 2014-03-17 |
JPWO2012115171A1 (ja) | 2014-07-07 |
CN103403094B (zh) | 2016-01-06 |
TW201239003A (en) | 2012-10-01 |
US8993655B2 (en) | 2015-03-31 |
BR112013020625A2 (pt) | 2016-10-04 |
EP2679635A1 (en) | 2014-01-01 |
CO6741216A2 (es) | 2013-08-30 |
US20130331481A1 (en) | 2013-12-12 |
EP2679635A4 (en) | 2017-10-25 |
KR101823560B1 (ko) | 2018-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5850040B2 (ja) | マスターバッチ、およびマスターバッチを利用したポリアミド樹脂組成物の製造方法 | |
JP5949546B2 (ja) | ポリアミド樹脂組成物 | |
JP5825255B2 (ja) | ポリアミド樹脂組成物 | |
JP2007246580A (ja) | ポリアミド樹脂組成物およびその製造方法 | |
JP2011140620A (ja) | ポリアミド樹脂組成物 | |
JP2007246581A (ja) | ポリアミド樹脂組成物およびその製造方法 | |
WO2016017518A1 (ja) | ポリアミドペレット、ポリアミドペレットの製造方法、及びポリアミド成形体の製造方法 | |
JP5640472B2 (ja) | ポリアミド樹脂組成物 | |
JP2008056842A (ja) | ポリアミド組成物及びそれからなるポリアミド成形体 | |
JP2011140619A (ja) | ポリアミド樹脂組成物 | |
JP2015052024A (ja) | マスターバッチの製造方法、ポリアミド樹脂組成物の製造方法、及び成形品 | |
JP4662013B2 (ja) | ポリアミド樹脂組成物及びその製造方法 | |
JP2008056841A (ja) | ポリアミド組成物及びそれからなるポリアミド成形体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12749978 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013501109 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20137020394 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012749978 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13188257 Country of ref document: CO |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14001000 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2013143143 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013020625 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013020625 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130813 |