WO2012111815A1 - 電極の製造方法及び電池の製造方法 - Google Patents

電極の製造方法及び電池の製造方法 Download PDF

Info

Publication number
WO2012111815A1
WO2012111815A1 PCT/JP2012/053844 JP2012053844W WO2012111815A1 WO 2012111815 A1 WO2012111815 A1 WO 2012111815A1 JP 2012053844 W JP2012053844 W JP 2012053844W WO 2012111815 A1 WO2012111815 A1 WO 2012111815A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
current collector
strip
active material
containing layer
Prior art date
Application number
PCT/JP2012/053844
Other languages
English (en)
French (fr)
Inventor
隆史 小林
森島 秀明
政臣 中畑
森 和彦
育生 植松
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to CN201280004055.9A priority Critical patent/CN103250277B/zh
Priority to EP12746642.3A priority patent/EP2677567B1/en
Priority to JP2012558040A priority patent/JP5596183B2/ja
Publication of WO2012111815A1 publication Critical patent/WO2012111815A1/ja
Priority to US13/969,047 priority patent/US10038179B2/en
Priority to US16/016,314 priority patent/US20180301688A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0433Molding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • Embodiments of the present invention relate to an electrode manufacturing method and a battery manufacturing method.
  • Batteries have recently been used for power sources for hybrid electric vehicles in addition to conventional small electronic devices. Accordingly, there is a demand for a battery having high capacity, long cycle life, quick chargeability, and the like. In order to fill a limited battery with as much active material as possible, the electrodes are also compressed to a higher density.
  • an active material-containing slurry is applied to a current collector made of a metal foil, dried, and then the application portion is compressed by a roll press device or the like.
  • the ground current collector of the compressed coated portion also expands due to plastic deformation, but the uncoated portion where the active material-containing slurry is not coated does not apply press pressure to the current collector, and therefore does not stretch as much as the ground current collector.
  • the residual stress acts on the boundary between the coated portion and the uncoated portion due to the difference in elongation of the current collector, and the electrode is distorted and warped.
  • the electrodes When laminating such electrodes on a separator and winding them, the electrodes may be damaged due to distortion or warpage, or the electrodes may be damaged or cracked when correcting the displacement. Waking up occurs. In addition, the distortion and warpage of the electrodes are a factor that deteriorates quality and yield and hinders high-speed production line operation.
  • the cause of the distortion and warping of the electrode is the difference in elongation of the base current collector between the slurry-applied portion after compression and the uncoated portion.
  • a method of forming a groove in a press roll and compressing and extending an uncoated portion current collector simultaneously with the coated portion, and a method of extending the current collector by plastic deformation by tensile stress are proposed. ing.
  • the groove shape of the press roll Managing is not technically or economically efficient. Further, when the uncoated portion current collector is removed from the groove formed by, for example, meandering of the electrode, there is a problem that uneven compression density of the electrode or electrode breakage occurs.
  • An object of the present invention is to provide a method for manufacturing an electrode with a small amount of distortion and a method for manufacturing a battery using this method.
  • an electrode manufacturing method including a compression molding step and a tension applying step can be provided.
  • compression molding is performed on the active material-containing layer of the strip electrode plate.
  • the strip-shaped electrode plate is formed on at least one long side of the strip-shaped current collector and the strip-shaped current collector, and the current collector exposed portion where the active material-containing layer does not exist on both sides, and the current collector exposure of the strip-shaped current collector And an active material-containing layer formed on at least a part other than the part.
  • the strip electrode plate is disposed on the roller having the step protruding from the circumferential surface and the recess adjacent to the step, and the current collector exposed portion is positioned at the step, and the active material containing layer Is placed in the recess, and tension is applied in the long side direction of the strip electrode plate.
  • an electrode manufacturing method including a step of applying tension.
  • the electrode is formed on the long side of at least one of the strip-shaped current collector and the strip-shaped current collector, and the current collector exposed portion where the active material-containing layer does not exist on both sides, and the current collector exposed portion of the strip-shaped current collector And an active material-containing layer formed on at least a part thereof.
  • the current collector exposed portion is located in the step portion and the active material-containing layer is located in the recess portion on the roller having the step portion protruding from the circumferential surface and the recess portion adjacent to the step portion. And tension is applied in the long side direction of the belt-like current collector.
  • FIG. 1 is a schematic diagram showing one step of the method according to the first embodiment.
  • FIG. 2 is a schematic diagram showing the positional relationship between the guide roller and the strip electrode plate in FIG.
  • FIG. 3 is a cross-sectional view showing the positional relationship between the guide roller and the strip electrode plate used in the first embodiment.
  • FIG. 4 is a cross-sectional view showing the positional relationship between the guide roller and the strip electrode plate used in the first embodiment.
  • FIG. 5 is an exploded perspective view of a battery manufactured by the method according to the second embodiment. 6 is a partially developed perspective view of an electrode group used in the battery shown in FIG.
  • FIG. 7 is a schematic diagram illustrating a method of measuring the amount of strain of the electrode of the example.
  • FIG. 8 is a schematic diagram showing one step of the method according to the third embodiment.
  • FIG. 9 is a schematic diagram showing the positional relationship between the guide roller and the strip electrode plate in FIG.
  • FIG. 10 is a cross-sectional view showing the positional relationship between the guide roller and the strip electrode plate used in the third embodiment.
  • FIG. 11 is a cross-sectional view showing the positional relationship between a guide roller and a strip electrode plate used in the third embodiment.
  • FIG. 12 is a schematic diagram showing one step of the method according to the third embodiment.
  • FIG. 13 is a schematic diagram showing one step of the method according to the fourth embodiment.
  • FIG. 14 is an exploded perspective view of a battery manufactured by the method according to the fifth embodiment.
  • 15 is a partially developed perspective view of an electrode group used in the battery shown in FIG.
  • FIG. 1 is a schematic diagram showing a press device, a guide roller device, and a winding device used for manufacturing an electrode.
  • FIG. 2 is a schematic diagram showing the positional relationship between the guide roller and the strip electrode plate in the curvature correction process.
  • FIG. 2A is a plan view of the strip electrode plate running on the guide roller as viewed from the guide roller side, and FIG. 2B is obtained by cutting the guide roller parallel to the rotation axis. It is sectional drawing obtained.
  • 3A is a cross-sectional view obtained when a guide roller having a taper formed at the corner of the step portion is cut in parallel to the rotation axis.
  • FIG. 3B is a cross-sectional view of FIG.
  • FIG. 4A is a plan view of the strip electrode plate running on the guide roller as viewed from the guide roller side
  • FIG. 4B is a view of cutting the guide roller parallel to the rotation axis. It is sectional drawing obtained.
  • a pressing device 21, a guide roller device 22, and a winding device 23 are arranged from the front side to the rear side of the manufacturing process.
  • the press device 21 has a pair of press rolls 21a and 21b.
  • the press rolls 21a and 21b are compression-molded by rotating a belt-like electrode plate 25 inserted between the press rolls 21a and 21 by being rotated in the direction of the arrow shown in FIG.
  • the winding device 23 is configured such that the belt-like electrode plate 25 is wound in a hoop shape by rotating a rotating shaft 23a in the direction of the arrow shown in FIG. 1 by a drive unit (not shown).
  • the guide roller device 22 is for conveying the belt-like electrode plate 25 from the press device 21 to the winding device 23, and has a plurality of metal guide rollers 24 1 to 24 5 (driven rollers). Tension (winding tension) is applied in the longitudinal direction to the strip-shaped electrode plate 25 conveyed from the press rolls 21a and 21b to the winding device 23.
  • the guide rollers 24 1 to 24 5 are alternately arranged on the upper and lower surfaces of the strip electrode plate 25 so that the tension applied to the strip electrode plate 25 falls within a desired range suitable for winding.
  • Guide rollers 24 3 also serves as a bending straightening device.
  • Guide roller 24 3 as shown in FIG. 2 (b), it has a stepped portion 26 protruding from the circumferential surface on one end of the rotation axis direction. In the guide roller 24 3 , the remaining portion adjacent to the step portion 26 is a recess 27.
  • the strip electrode plate 25 is produced. As shown in FIG. 2A and FIG. 3B, the strip electrode plate 25 is formed on one long side of the strip current collector and the strip current collector. It includes a current collector exposed portion 25a that does not exist, and an active material-containing layer 25b that is formed on both sides of the strip-shaped current collector other than the current collector exposed portion 25a.
  • the active material-containing layer 25b is continuously formed in the long side direction of the strip-shaped current collector. The width in the short side direction of the active material containing layer 25b is wider than that of the current collector exposed portion 25a.
  • the strip electrode plate 25 is obtained, for example, by applying an active material-containing slurry to a strip collector on both sides except for one long side, and drying. Or after apply
  • the active material-containing slurry is prepared, for example, by adding a conductive agent and a binder as necessary to the active material and kneading them in the presence of a solvent.
  • a conductive agent and a binder as necessary to the active material and kneading them in the presence of a solvent.
  • the active material either a positive electrode or a negative electrode may be used.
  • the active material of the positive electrode is not particularly limited, and various oxides such as lithium-containing cobalt oxide (for example, LiCoO 2 ), manganese dioxide, lithium manganese composite oxide (for example, LiMn 2 O 4 , LiMnO) 2 ), lithium-containing nickel oxide (eg, LiNiO 2 ), lithium-containing nickel cobalt oxide (eg, LiNi 0.8 Co 0.2 O 2 ), lithium-containing iron oxide, vanadium oxide containing lithium, Examples thereof include chalcogen compounds such as titanium disulfide and molybdenum disulfide.
  • the active material of the negative electrode is not particularly limited, and for example, a graphite material or a carbonaceous material (for example, graphite, coke, carbon fiber, spherical carbon, pyrolytic vapor carbonaceous material, resin fired body, etc.), chalcogen Compound (eg, titanium disulfide, molybdenum disulfide, niobium selenide, etc.), light metal (eg, aluminum, aluminum alloy, magnesium alloy, lithium, lithium alloy, etc.), lithium titanium oxide (eg, spinel type lithium titanate) And the like.
  • a graphite material or a carbonaceous material for example, graphite, coke, carbon fiber, spherical carbon, pyrolytic vapor carbonaceous material, resin fired body, etc.
  • chalcogen Compound eg, titanium disulfide, molybdenum disulfide, niobium selenide, etc.
  • light metal eg, aluminum, aluminum alloy, magnesium alloy, lithium
  • the conductive agent is not particularly limited, and examples thereof include graphite, carbonaceous material, acetylene black, and carbon black.
  • the binder is not particularly limited, and for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), or fluorine-based rubber can be used.
  • Metal foil can be used for the strip current collector.
  • the metal foil include an aluminum foil, an aluminum alloy foil, and a copper foil.
  • the thickness of the strip-shaped current collector can be 50 ⁇ m or less.
  • the obtained strip electrode plate 25 is inserted between press rolls 21a and 21b rotating in the direction of the arrow shown in FIG. Since the insertion direction of the strip electrode plate 25 is parallel to the longitudinal direction of the strip electrode plate 25, the pressing pressure is mainly applied to the active material-containing layer 25b, and the active material-containing layer 25b is compression-molded to increase the density. Since almost no pressing pressure is applied to the current collector exposed portion 25a, the elongation is smaller than that of the base current collector of the active material-containing layer 25b. As a result, the belt-like electrode plate 25 is distorted or warped.
  • the strip electrode plate 25 that has passed between the press rolls 21a and 21b is conveyed to the winding device 23 via the guide rollers 24 1 to 24 5 .
  • the guide roller 24 3 which also serves as a bending straightening device, as shown in FIGS. 2 and 3, the boundary X between the stepped portion 26 and the recess 27, the boundary between the current collector exposed portion 25a and the active material-containing layer 25b Only the current collector exposed portion 25 a is located on the stepped portion 26.
  • the active material containing layer 25 b is disposed in the recess 27. Thereby, the winding tension applied in the conveying direction (longitudinal direction) of the strip electrode plate 25 can be concentrated on the current collector exposed portion 25a.
  • the current collector exposed portion 25a can be sufficiently extended by the winding tension, so that the distortion and warpage generated in the strip electrode plate 25 can be corrected.
  • the strip electrode plate 25 that has passed through the guide roller 24 3 is wound around the winding device 23 via the guide rollers 24 4 , 24 5 . Subsequently, the electrode is obtained by cutting the hoop-shaped strip electrode plate 25 into a desired size as necessary.
  • the strip electrode plate 25 can be used as an electrode as it is.
  • the entire strip-shaped current collector is not stretched. Therefore, when the strip-shaped electrode plate 25 before compression molding is brought into contact with the guide roller 24 3 , the current collector exposed portion 25a on the step portion 26 is obtained.
  • the winding tension (stress) is dispersed in the active material-containing layer 25b.
  • the base current collector of the active material-containing layer 25b is stretched and loosened, so that the winding current (stress) is hardly applied to the base current collector of the active material-containing layer 25b and is not stretched.
  • the winding tension can be concentrated on the exposed portion 25a. At this time, the amount of distortion of the electrode can be reduced by about 10% after the electrode is wound around the winding device 23 with the same tension as the winding tension at the time of compression.
  • the winding tension is to distribute to the active material-containing layer 25b, the winding tension of the collector-exposed portion 25a Concentration becomes insufficient, and the base current collector of the active material-containing layer 25b that has already been stretched may be further extended, so that the distortion and warping of the electrode are not corrected.
  • the thickness per one side strip collector of the active material-containing layer upon 100%.
  • the thickness per side of the strip-shaped current collector of the active material-containing layer is the thickness per side of the strip-shaped current collector of the active material-containing layer in the manufactured electrode.
  • the stress can be sufficiently concentrated on the exposed portion of the current collector and extended.
  • the level difference H 600% or less it is possible to suppress wrinkles and cracks from occurring near the boundary between the active material-containing layer 25b and the current collector exposed portion 25a. These wrinkles and cracks may cause electrode breakage or welding failure in a later process. Therefore, by setting the level difference H to 150% or more and 600% or less, it is possible to suppress the occurrence of wrinkles and cracks in the vicinity of the boundary between the active material containing layer 25b and the current collector exposed portion 25a, and stress on the current collector exposed portion. Can be stretched with sufficient concentration. In order to enhance the effect of preventing wrinkles and cracks, the range of 200 ⁇ H ⁇ 400 is more preferable.
  • the taper is desirably formed at a portion where the boundary X between the step portion 26 and the recess 27 intersects with the upper surface of the step portion 26.
  • the taper R (mm) is preferably R ⁇ 15.
  • the taper R is calculated by coordinate plotting several points on the R surface of the R portion of the step portion 26 with a three-dimensional measuring instrument.
  • a three-dimensional measuring instrument for example, a three-dimensional measuring machine (model: WMM550) manufactured by Carl Zeiss Co., Ltd. can be used.
  • the tensile stress F (N / mm 2 ) in the cross section parallel to the short side direction of the strip-shaped electrode plate 25 is in the range of 20 ⁇ F ⁇ 100.
  • the tensile stress F is set to 20 (N / mm 2 ) or more, the current collector exposed portion can be sufficiently extended while satisfying the stress necessary for winding the electrode with high accuracy.
  • the tensile stress F is 100 (N / mm 2 ) or less, the current collector exposed portion can be sufficiently extended without causing problems of electrode breakage and winding accuracy reduction.
  • the current collector exposed portion can be sufficiently extended without breaking the electrode and accurately winding the electrode. Can do.
  • the range of 20 ⁇ F ⁇ 40 is more preferable in order to enhance the effect of preventing the electrode from breaking and winding accuracy.
  • the heat treatment temperature T is set to 60 ° C. or more, the effect of reducing the stress required for plastic deformation can be enhanced. Further, when the stress applied to the strip electrode plate is the same, the effect of correcting the distortion and warpage of the electrode can be enhanced by heating. These effects are more easily obtained when the heat treatment temperature T is higher, but the heat treatment temperature T is preferably in the range of 60 ° C. or higher and 150 ° C. or lower in order to avoid alteration of the active material-containing layer due to heat.
  • a press roll is used as the press device 21, but any press material that can increase the density of the active material-containing layer can be used instead of the press roll.
  • a flat plate press can be used instead of the press roll.
  • the pressing process may be performed by changing the pressing pressure in multiple stages.
  • one guide roller among the plurality of guide rollers is used as the curvature correcting device, but the number of guide rollers used as the curvature correcting device is not limited to one, and a plurality of all or all of the guide rollers are used. be able to. Further, the position of the guide roller used as the curvature correcting device is not limited to the third guide roller 243 from the front stage side, and a guide roller at an arbitrary position can be used.
  • the step portion 26 protruding from the circumferential surface is provided at one end portion in the rotation axis direction of the guide roller 24 3 , but the method of forming the step portion is not limited to this, and the current collector exposed portion is Any material can be used as long as the effect of stretching can be obtained.
  • an annular step portion 26 protruding from the circumferential surface can be provided near the center in the rotation axis direction, and the circumferential surfaces on both sides adjacent to the step portion 26 can be formed as the recesses 27. .
  • the current collector exposed portion is provided only on the long side of one side of the strip electrode plate, but the current collector exposed portion may be provided on both long sides of the strip plate. Providing current collector exposed portions on both long sides of the strip electrode plate can further enhance the effect of preventing warping and distortion of the electrode. On the other hand, when the current collector exposed portion is provided only on the long side of one side of the strip electrode plate as shown in FIG. 2, a high battery capacity and energy density can be obtained.
  • the active material-containing layer is provided on both sides of the strip electrode, but the active material-containing layer may be provided only on one side of the strip electrode.
  • the active material-containing layer is continuously formed in the long-side direction of the strip-shaped current collector.
  • the active material-containing layer is intermittently formed in the long-side direction of the strip-shaped current collector. You may provide an active material content layer non-formation part between content layers.
  • the strip-shaped electrode plate subjected to compression molding is arranged such that the current collector exposed portion is located in the stepped portion of the roller and the active material-containing layer is located in the recessed portion of the roller. Since the tension is applied in the long side direction of the belt-like electrode plate, the tension can be concentrated on the current collector exposed portion, and the current collector exposed portion can be sufficiently stretched by plastic deformation. Thereby, the distortion and the curvature which arose in the electrode by compression molding can be corrected. In addition, the electrode can be prevented from being broken when the electrode group is manufactured. As a result, an electrode with excellent quality can be manufactured with high production efficiency.
  • FIG. 5 is an exploded perspective view of a nonaqueous electrolyte battery manufactured by the method according to the second embodiment.
  • 6 is a partially developed perspective view of an electrode group used in the battery shown in FIG.
  • the battery shown in FIG. 5 is a sealed prismatic non-aqueous electrolyte secondary battery.
  • the nonaqueous electrolyte secondary battery includes an outer can 1, a lid 2, a positive electrode output terminal 3, a negative electrode output terminal 4, and an electrode group 5.
  • the outer can 1 has a bottomed rectangular tube shape, and is formed of a metal such as aluminum, an aluminum alloy, iron, or stainless steel, for example.
  • the flat electrode group 5 has a positive electrode 6 and a negative electrode 7 wound in a flat shape with a separator 8 therebetween.
  • the positive electrode 6 is a positive electrode current collector except for a strip-shaped positive electrode current collector made of, for example, a metal foil, a positive electrode current collector tab 6a formed of a current collector exposed portion of the positive electrode current collector, and at least a portion of the positive electrode current collector tab 6a.
  • the negative electrode 7 is a negative electrode except for a strip-shaped negative electrode current collector made of, for example, a metal foil, a negative electrode current collector tab 7a formed of a current collector exposed portion of the negative electrode current collector, and at least a portion of the negative electrode current collector tab 7a. And a negative electrode active material layer 7b formed on the current collector.
  • the positive electrode current collecting tab 6 a protrudes from the separator 8 in the winding axis direction of the electrode group, and the negative electrode current collecting tab 7 a protrudes from the separator 8 in the opposite direction.
  • the positive electrode 6 and the negative electrode 7 are wound while being shifted in position.
  • the electrode group 5 has the positive electrode current collecting tab 6a wound spirally from one end face and is wound spirally from the other end face.
  • the negative electrode current collection tab 7a protrudes.
  • Electrolytic solution (not shown) is impregnated in the electrode group 5.
  • the rectangular plate-like lid 2 is seam welded to the opening of the outer can 1 by, for example, a laser.
  • the lid 2 is made of a metal such as aluminum, aluminum alloy, iron or stainless steel, for example.
  • the lid 2 and the outer can 1 are preferably formed from the same type of metal.
  • a safety valve 9 is provided near the center of the outer surface of the lid 2.
  • the safety valve 9 has a rectangular recess 9a provided on the outer surface of the lid 2 and an X-shaped groove 9b provided in the recess 9a.
  • the groove 9b is formed, for example, by press-molding the lid 2 in the plate thickness direction.
  • the liquid injection port 10 is opened in the lid 2 and sealed after the electrolytic solution is injected.
  • the positive and negative output terminals 3 and 4 are caulked and fixed to the outer surface of the lid 2 via insulating gaskets (not shown) on both sides of the safety valve 9 therebetween.
  • a lithium ion secondary battery using a carbon-based material for the negative electrode active material for example, aluminum or an aluminum alloy is used for the positive electrode output terminal 3, and copper, nickel, nickel plating is used for the negative electrode output terminal 4, for example. Used metals such as iron are used.
  • lithium titanate is used as the negative electrode active material, in addition to the above, aluminum or an aluminum alloy may be used for the negative electrode output terminal 4.
  • One end of the positive electrode lead 11 is electrically connected to the positive electrode output terminal 3 by caulking or welding, and the other end is electrically connected to the positive electrode current collecting tab 6a.
  • One end of the negative electrode lead 12 is electrically connected to the negative electrode output terminal 4 by caulking or welding, and the other end is electrically connected to the negative electrode current collecting tab 7a.
  • a method of electrically connecting the positive and negative electrode leads 11 and 12 to the positive and negative electrode current collecting tabs 6a and 7a is not particularly limited, and examples thereof include welding such as ultrasonic welding and laser welding.
  • the positive electrode output terminal 3 and the positive electrode current collecting tab 6 a are electrically connected via the positive electrode lead 11, and the negative electrode output terminal 4 and the negative electrode current collecting tab 7 a are electrically connected via the negative electrode lead 12.
  • current can be taken out from the positive and negative output terminals 3 and 4.
  • the material of the positive and negative electrode leads 11 and 12 is not particularly specified, it is desirable to use the same material as that of the positive and negative electrode output terminals 3 and 4.
  • the material of the output terminal is aluminum or an aluminum alloy
  • the material of the lead is aluminum or an aluminum alloy.
  • the output terminal is copper
  • the material of the lead is copper.
  • the separator is not particularly limited, and for example, a microporous film, a woven fabric, a non-woven fabric, or a laminate of the same material or different materials among these can be used.
  • the material for forming the separator include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene copolymer, and cellulose.
  • Non-aqueous electrolyte a non-aqueous electrolyte solution in which an electrolyte (for example, a lithium salt) is dissolved in a non-aqueous solvent
  • Nonaqueous solvents include, for example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), ⁇ -butyrolactone ( ⁇ - BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • Nonaqueous solvents may be used alone or in combination of two or more.
  • the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), and trifluoromethanesulfonic acid.
  • a lithium salt such as lithium (LiCF 3 SO 3 ) can be given.
  • the electrolyte may be used alone or in combination of two or more.
  • the amount of electrolyte dissolved in the non-aqueous solvent is preferably 0.2 mol / L to 3 mol / L. If the electrolyte concentration is too low, sufficient ionic conductivity may not be obtained. On the other hand, if it is too high, it may not be completely dissolved in the electrolyte.
  • the strip-shaped electrode plate that has been subjected to compression molding is arranged such that the current collector exposed portion is located at the stepped portion of the roller and the active material-containing layer is located at the recessed portion of the roller. Since the tension is applied in the long side direction of the belt-like electrode plate, the tension can be concentrated on the current collector exposed portion, and the current collector exposed portion can be sufficiently stretched by plastic deformation. Thereby, the distortion and the curvature which arose in the electrode by compression molding can be corrected. In addition, it is possible to eliminate problems such as electrode breakage, winding misalignment, wrinkles, cracks, etc. that have occurred in the process of producing a wound electrode group, so that it is possible to manufacture electrodes with excellent quality and production efficiency. Can do.
  • FIG. 8 is a schematic diagram showing a press device, a guide roller device, and a first winding device used for manufacturing an electrode.
  • FIG. 9 is a schematic diagram showing the positional relationship between the guide roller and the strip electrode plate in the curvature correction process.
  • FIG. 9A is a plan view of the belt-like electrode plate running on the guide roller as viewed from the guide roller side
  • FIG. 9B is a view of cutting the guide roller parallel to the rotation axis. It is sectional drawing obtained.
  • 10A is a cross-sectional view obtained when a guide roller having a taper formed at a corner of a step portion is cut in parallel to the rotation axis
  • FIG. 10B is a cross-sectional view of FIG.
  • FIG. 11A is a plan view of the belt-like electrode plate running on the guide roller as viewed from the guide roller side
  • FIG. 11B is a view of cutting the guide roller parallel to the rotation axis. It is sectional drawing obtained.
  • FIG. 12 is a schematic diagram showing a feeding device and a second winding device used for manufacturing an electrode.
  • the pressing device 21 from the first-stage of the manufacturing process towards the subsequent stage, the guide roller device 22, the first winding device 23 1 is disposed.
  • the press device 21 has a pair of press rolls 21a and 21b.
  • the press rolls 21a and 21b are compression-molded by rotating the belt-like electrode plate 25 inserted between the press rolls 21a and 21 by rotating in the direction of the arrow shown in FIG.
  • the belt-like electrode plate 25 is wound up in a reel shape by rotating the rotating shaft 23 a in the direction of the arrow shown in FIG. 8 by a drive unit (not shown). .
  • the guide roller device 22 is for conveying the strip electrode plate 25 from the press device 21 to the first winding device 23 1 , and has a plurality of metal guide rollers 24 1 to 24 5 (driven rollers). Tension (winding tension) is applied in the longitudinal direction to the strip-shaped electrode plate 25 conveyed from the press rolls 21a and 21b to the first winding device 23 1 .
  • the guide rollers 24 1 to 24 5 are alternately arranged on the upper and lower surfaces of the strip electrode plate 25 so that the tension applied to the strip electrode plate 25 falls within a desired range suitable for winding.
  • Guide rollers 24 3 also serves as a bending straightening device.
  • the strip electrode plate 25 is produced. As shown in FIG. 9A and FIG. 10B, the strip electrode plate 25 is formed on one long side of the strip collector and the strip collector, and has an active material containing layer on both sides. It includes a current collector exposed portion 25a that does not exist, and an active material-containing layer 25b that is formed on both sides of the strip-shaped current collector other than the current collector exposed portion 25a. The active material-containing layer 25b is continuously formed in the long side direction of the strip-shaped current collector. The width in the short side direction of the active material containing layer 25b is wider than that of the current collector exposed portion 25a.
  • the strip electrode plate 25 is obtained, for example, by applying an active material-containing slurry to a strip collector on both sides except for one long side, and drying. Or after apply
  • the active material-containing slurry is prepared, for example, by adding a conductive agent and a binder as necessary to the active material and kneading them in the presence of a solvent.
  • a conductive agent and a binder as necessary to the active material and kneading them in the presence of a solvent.
  • the active material either a positive electrode or a negative electrode may be used.
  • the active material of the positive electrode is not particularly limited, and various oxides such as lithium-containing cobalt oxide (for example, LiCoO 2 ), manganese dioxide, lithium manganese composite oxide (for example, LiMn 2 O 4 , LiMnO) 2 ), lithium-containing nickel oxide (eg, LiNiO 2 ), lithium-containing nickel cobalt oxide (eg, LiNi 0.8 Co 0.2 O 2 ), lithium-containing iron oxide, vanadium oxide containing lithium, Examples thereof include chalcogen compounds such as titanium disulfide and molybdenum disulfide.
  • the active material of the negative electrode is not particularly limited, and for example, a graphite material or a carbonaceous material (for example, graphite, coke, carbon fiber, spherical carbon, pyrolytic vapor carbonaceous material, resin fired body, etc.), chalcogen Compound (eg, titanium disulfide, molybdenum disulfide, niobium selenide, etc.), light metal (eg, aluminum, aluminum alloy, magnesium alloy, lithium, lithium alloy, etc.), lithium titanium oxide (eg, spinel type lithium titanate) And the like.
  • a graphite material or a carbonaceous material for example, graphite, coke, carbon fiber, spherical carbon, pyrolytic vapor carbonaceous material, resin fired body, etc.
  • chalcogen Compound eg, titanium disulfide, molybdenum disulfide, niobium selenide, etc.
  • light metal eg, aluminum, aluminum alloy, magnesium alloy, lithium
  • the conductive agent is not particularly limited, and examples thereof include graphite, carbonaceous material, acetylene black, and carbon black.
  • the binder is not particularly limited, and for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), or fluorine-based rubber can be used.
  • Metal foil can be used for the strip current collector.
  • the metal foil include an aluminum foil, an aluminum alloy foil, and a copper foil.
  • the thickness of the strip-shaped current collector can be 50 ⁇ m or less.
  • the obtained belt-like electrode plate 25 is inserted between press rolls 21a and 21b rotating in the direction of the arrow shown in FIG. Since the insertion direction of the strip electrode plate 25 is parallel to the longitudinal direction of the strip electrode plate 25, the pressing pressure is mainly applied to the active material-containing layer 25b, and the active material-containing layer 25b is compression-molded to increase the density. Since almost no pressing pressure is applied to the current collector exposed portion 25a, the elongation is smaller than that of the base current collector of the active material-containing layer 25b. As a result, the belt-like electrode plate 25 is distorted or warped.
  • the strip electrode plate 25 that has passed between the press rolls 21a and 21b is conveyed to the first winding device 23 1 via the guide rollers 24 1 to 24 5 .
  • the guide roller 24 3 which also serves as a bending straightening device, as shown in FIGS. 9 and 10, the boundary X between the stepped portion 26 and the recess 27, the boundary between the current collector exposed portion 25a and the active material-containing layer 25b Only the current collector exposed portion 25 a is located on the stepped portion 26.
  • the active material containing layer 25 b is disposed in the recess 27. Thereby, the winding tension applied in the conveying direction (longitudinal direction) of the strip electrode plate 25 can be concentrated on the current collector exposed portion 25a.
  • the current collector exposed portion 25a can be sufficiently extended by the winding tension, so that the distortion and warpage generated in the strip electrode plate 25 can be corrected.
  • the strip electrode plate 25 that has passed through the guide roller 24 3 is wound around the first winding device 23 1 via the guide rollers 24 4 and 24 5 .
  • the entire strip-shaped current collector is not stretched. Therefore, when the strip-shaped electrode plate 25 before compression molding is brought into contact with the guide roller 24 3 , the current collector exposed portion 25a on the step portion 26 is obtained.
  • the winding tension (stress) is dispersed in the active material-containing layer 25b.
  • the base current collector of the active material-containing layer 25b is stretched and loosened, so that the winding current (stress) is hardly applied to the base current collector of the active material-containing layer 25b and is not stretched.
  • the winding tension can be concentrated on the exposed portion 25a. At this time, the amount of distortion of the electrodes, the distortion amount of compressed hand, be reduced to about 10% after recombinant winding the electrode to the first winding device 23 1 in the same tension as the winding tension at the time of compression it can.
  • the winding tension is to distribute to the active material-containing layer 25b, the winding tension of the collector-exposed portion 25a Concentration becomes insufficient, and the base current collector of the active material-containing layer 25b that has already been stretched may be further extended, so that the distortion and warping of the electrode are not corrected.
  • the thickness per one side strip collector of the active material-containing layer upon 100%.
  • the thickness per side of the strip-shaped current collector of the active material-containing layer is the thickness per side of the strip-shaped current collector of the active material-containing layer in the manufactured electrode.
  • the stress can be sufficiently concentrated on the exposed portion of the current collector and extended.
  • the level difference H 600% or less it is possible to suppress wrinkles and cracks from occurring near the boundary between the active material-containing layer 25b and the current collector exposed portion 25a. These wrinkles and cracks may cause electrode breakage or welding failure in a later process. Therefore, by setting the level difference H to 150% or more and 600% or less, it is possible to suppress the occurrence of wrinkles and cracks in the vicinity of the boundary between the active material containing layer 25b and the current collector exposed portion 25a, and stress on the current collector exposed portion. Can be stretched with sufficient concentration. In order to enhance the effect of preventing wrinkles and cracks, the range of 200 ⁇ H ⁇ 400 is more preferable.
  • Corner of the stepped portion 26 provided on the guide roller 24 3, may be a right angle or substantially a right angle as illustrated in (b) of FIG. 9 may be provided a taper.
  • the taper is desirably formed at a portion where the boundary X between the step portion 26 and the recess 27 intersects with the upper surface of the step portion 26.
  • the taper R (mm) is preferably R ⁇ 15.
  • the taper R is calculated by coordinate plotting several points on the R surface of the R portion of the step portion 26 with a three-dimensional measuring instrument.
  • a three-dimensional measuring instrument for example, a three-dimensional measuring machine (model: WMM550) manufactured by Carl Zeiss Co., Ltd. can be used.
  • the tensile stress F (N / mm 2 ) in the cross section parallel to the short side direction of the strip-shaped electrode plate 25 is in the range of 20 ⁇ F ⁇ 100.
  • the tensile stress F is set to 20 (N / mm 2 ) or more, the current collector exposed portion can be sufficiently extended while satisfying the stress necessary for winding the electrode with high accuracy.
  • the tensile stress F is 100 (N / mm 2 ) or less, the current collector exposed portion can be sufficiently extended without causing problems of electrode breakage and winding accuracy reduction.
  • the current collector exposed portion can be sufficiently extended without breaking the electrode and accurately winding the electrode. Can do.
  • the range of 20 ⁇ F ⁇ 40 is more preferable in order to enhance the effect of preventing the electrode from breaking and winding accuracy.
  • the heat treatment temperature T is set to 60 ° C. or more, the effect of reducing the stress required for plastic deformation can be enhanced. Further, when the stress applied to the strip electrode plate is the same, the effect of correcting the distortion and warpage of the electrode can be enhanced by heating. These effects are more easily obtained when the heat treatment temperature T is higher, but the heat treatment temperature T is preferably in the range of 60 ° C. or higher and 150 ° C. or lower in order to avoid alteration of the active material-containing layer due to heat.
  • the strip-shaped electrode plate 25 wound in a reel shape by the first winding device 23 1 is dried.
  • the drying process is desirably performed in a vacuum of 100 ° C. or higher and 180 ° C. or lower, reduced pressure, or atmospheric pressure.
  • the temperature of the atmosphere By setting the temperature of the atmosphere to 100 ° C. or higher, moisture removal from the strip electrode plate 25 can be promoted.
  • the heat deterioration of the material contained in an active material content layer can be prevented by setting it as 180 degrees C or less. Therefore, by setting the temperature of the atmosphere to a range of 100 ° C. or higher and 180 ° C. or lower, moisture removal from the strip electrode plate 25 can be promoted while preventing thermal deterioration of the material contained in the active material-containing layer.
  • the drying time is desirably 10 hours or more.
  • the strip electrode plate 25 Since the strip electrode plate 25 is wound in a reel shape, tension due to winding is applied.
  • the base current collector of the active material-containing layer 25b is deformed following the winding of the active material-containing layer 25b, so that it is more susceptible to tension than the current collector exposed portion 25a.
  • plastic deformation is promoted by heat, so that the base current collector of the active material-containing layer 25b extends more than the current collector exposed portion 25a, and as a result, Warpage or distortion occurs again in the strip electrode plate 25.
  • the second curvature correction is performed using the apparatus shown in FIG. As shown in FIG. 12, a feeding device 28, a plurality of metal guide rollers 24 1 to 24 4 , and a second winding device 29 are arranged from the front side to the rear side of the manufacturing process.
  • the feeding device 28 is configured so that the belt-like electrode plate 25 wound in a reel shape is fed out in the transport direction by rotating the rotating shaft 28a in the direction of the arrow shown in FIG. 12 by a drive unit (not shown).
  • the second winding device 29 is configured such that the belt-like electrode plate 25 is wound in a reel shape by rotating a rotating shaft 29a in the direction of the arrow shown in FIG. 12 by a drive unit (not shown).
  • the plurality of guide rollers 24 1 to 24 4 are alternately arranged on the upper and lower surfaces of the belt-like electrode plate 25 so that the belt-like electrode plate 25 is tensioned for winding.
  • the guide rollers 24 1 to 24 4 are the same as those described in the first curvature correction, and the guide roller 24 3 also serves as a curvature correction device.
  • the strip electrode plate 25 fed out from the feeding device 28 passes through the guide rollers 24 1 to 24 2 and is then conveyed to the guide roller 24 3 .
  • the boundary between the current collector exposed portion 25 a and the active material containing layer 25 b is located at the boundary X between the step portion 26 and the concave portion 27. Only the exposed portion 25 a is disposed on the stepped portion 26.
  • the active material containing layer 25 b is disposed in the recess 27. Thereby, the winding tension applied in the conveying direction (longitudinal direction) of the strip electrode plate 25 can be concentrated on the current collector exposed portion 25a.
  • the current collector exposed portion 25a can be sufficiently extended by the winding tension, so that the distortion and warpage generated in the strip electrode plate 25 can be corrected again.
  • the strip-shaped electrode plate 25 that has passed through the guide roller 24 3 is wound around the second winding device 29 via the guide roller 24 4 .
  • the electrode is obtained by cutting the strip-shaped electrode plate 25 wound in a reel shape by the second winding device 29 into a desired size as necessary.
  • the strip electrode plate 25 can be used as an electrode as it is.
  • a press roll is used as the press device 21, but it can be used instead of the press roll as long as the active material-containing layer can be densified.
  • a flat plate press can be used instead of the press roll.
  • one guide roller among the plurality of guide rollers is used as the curvature correcting device, but the number of guide rollers used as the curvature correcting device is not limited to one, and a plurality of all or all of the guide rollers are used. Can be individual. Further, the position of the guide roller used as the curvature correcting device is not limited to the third guide roller 243 from the front stage side, and a guide roller at an arbitrary position can be used.
  • the method of forming the stepped portion is not limited to this, the collector-exposed portion Any material can be used as long as the effect of stretching can be obtained.
  • an annular stepped portion 26 protruding from the circumferential surface can be provided near the center in the rotation axis direction, and the circumferential surfaces on both sides adjacent to the stepped portion 26 can be recessed portions 27. .
  • the current collector exposed portion is provided only on the long side of one side of the strip electrode plate, but the current collector exposed portion may be provided on both long sides of the strip electrode plate. Providing current collector exposed portions on both long sides of the strip electrode plate can further enhance the effect of preventing warping and distortion of the electrode. On the other hand, when the current collector exposed portion is provided only on the long side of one side of the strip electrode plate as shown in FIG. 9, a high battery capacity and energy density can be obtained.
  • the active material-containing layer is provided on both sides of the strip electrode plate, but the active material-containing layer may be provided only on one side of the strip electrode plate.
  • the active material-containing layer is continuously formed in the long side direction of the strip-shaped current collector. However, the active material-containing layer is intermittently formed in the long side direction of the strip-shaped current collector, and the active material is formed. You may provide an active material content layer non-formation part between content layers.
  • curvature correction is performed after each step of compression molding and drying.
  • the strip electrode is arranged so that the current collector exposed portion is located at the step portion of the roller and the active material containing layer is located at the concave portion of the roller, and tension is applied in the long side direction of the strip electrode plate. Therefore, the tension can be concentrated on the current collector exposed portion, and the current collector exposed portion can be sufficiently deformed by plastic deformation. Thereby, the distortion and the curvature which arose in the electrode by the compression molding and the drying process can be corrected. As a result, an electrode with excellent quality can be manufactured with high production efficiency.
  • Compressive molding may be performed once as in the third embodiment, but can also be performed in multiple stages.
  • the required load (pressure) is reduced at each stage, so that warpage and distortion generated in the electrode at each stage are reduced.
  • the distortion of the electrode that occurs when compressed to the desired thickness (or density) at once and the distortion of the electrode that occurs when compressed to the desired thickness (or density) divided into multiple times (divided into multiple times) The sum of the generated electrode strains), the latter strain becomes smaller. Therefore, after performing compression molding in a plurality of times and then performing curvature correction, it is possible to efficiently manufacture a high-density electrode without warping or distortion.
  • FIG. 13 is a schematic diagram showing a pressing device and a guide roller used for manufacturing an electrode.
  • a first press device 21 1 a plurality of metal guide rollers 24 1 to 24 4 , and a second press device 21 2 are arranged from the front side to the rear side of the manufacturing process.
  • the first and second press devices 21 1 and 21 2 each have a pair of press rolls 21a and 21b.
  • the press rolls 21a and 21b are compression-molded by rotating a belt-like electrode plate 25 inserted between the press rolls 21a and 21 by being rotated in the direction of the arrow shown in FIG.
  • the plurality of guide rollers 24 1 to 24 4 are alternately arranged on the upper and lower surfaces of the belt-like electrode plate 25 so that the belt-like electrode plate 25 is tensioned for conveyance.
  • the guide rollers 24 1 to 24 4 are the same as those described in the first curvature correction, and the guide roller 24 3 also serves as a curvature correction device.
  • the strip-shaped electrode plate that has passed through the second pressing device 21 2 is wound in a reel shape by a winding device via a guide roll device. As the guide roll device and the winding device, those shown in FIG. 8 can be used.
  • the third strip electrode plate 25 obtained in the same manner as described in embodiments, the first press device 21 1 of the press rolls 21a, inserted between the 21b, subjected to compression molding. Since the insertion direction of the strip electrode plate 25 is parallel to the longitudinal direction of the strip electrode plate 25, the pressing pressure is mainly applied to the active material-containing layer 25b, and the active material-containing layer 25b is compression-molded to increase the density. Since almost no pressing pressure is applied to the current collector exposed portion 25a, the elongation is smaller than that of the base current collector of the active material-containing layer 25b. As a result, the belt-like electrode plate 25 is distorted or warped.
  • the strip electrode plate 25 that has passed between the press rolls 21a and 21b of the first pressing device 21 1 is conveyed to the guide roller 24 3 via the guide rollers 24 1 to 24 2 .
  • the boundary between the current collector exposed portion 25 a and the active material containing layer 25 b is located at the boundary X between the step portion 26 and the concave portion 27. Only the exposed portion 25 a is disposed on the stepped portion 26.
  • the active material containing layer 25 b is disposed in the recess 27. Thereby, the winding tension applied in the conveying direction (longitudinal direction) of the strip electrode plate 25 can be concentrated on the current collector exposed portion 25a.
  • the current collector exposed portion 25a can be sufficiently extended by the winding tension, so that the distortion and warpage generated in the strip electrode plate 25 can be corrected.
  • the strip-shaped electrode plate 25 that has passed through the guide roller 24 3 is conveyed to the second press device 21 2 via the guide roller 24 4 .
  • the strip-shaped electrode plate 25 is inserted between the press rolls 21a and 21b of the second press device 21 2 and subjected to compression molding. Since the insertion direction of the strip electrode plate 25 is parallel to the longitudinal direction of the strip electrode plate 25, the pressing pressure is mainly applied to the active material-containing layer 25b, and the active material-containing layer 25b is compression-molded to increase the density. Since almost no pressing pressure is applied to the current collector exposed portion 25a, the elongation is smaller than that of the base current collector of the active material-containing layer 25b. As a result, the belt-like electrode plate 25 is distorted or warped.
  • the strip electrode plate 25 that has passed through the second press device 21 2 is conveyed to the winding device via a plurality of guide rollers. Since one of the plurality of guide rollers also serves as a curvature correction device, the distortion and warpage generated in the strip electrode plate 25 can be corrected.
  • An electrode is obtained by cutting the strip-shaped electrode plate wound in a reel shape by a winding device into a desired size as necessary. Note that a strip electrode plate can be used as an electrode as it is.
  • the compression molding is performed in two stages, but is not limited to this, and can be performed in three or more stages.
  • the curvature is corrected each time compression molding is performed, and then the electrode is obtained by cutting to a desired size as necessary.
  • a press roll is used as the press device 21, but any press material that can increase the density of the active material-containing layer can be used instead of the press roll.
  • a flat plate press can be used instead of the press roll.
  • one guide roller among the plurality of guide rollers is used as the curvature correcting device, but the number of guide rollers used as the curvature correcting device is not limited to one, and a plurality of all or all of the guide rollers are used. be able to. Further, the position of the guide roller used as the curvature correcting device is not limited to the third guide roller 243 from the front stage side, and a guide roller at an arbitrary position can be used. Furthermore, the position and number of guide rollers used as the curvature correcting device may be the same in all the steps, or may be different for each step.
  • an electrode manufacturing method including multistage compression molding and curvature correction is provided.
  • the strip electrode plate is arranged so that the current collector exposed portion is located at the step portion of the roller and the active material-containing layer is located at the concave portion of the roller, and the strip electrode plate is arranged in the long side direction of the strip electrode plate. Since tension is applied, the tension can be concentrated on the current collector exposed portion, and the current collector exposed portion can be sufficiently deformed by plastic deformation. Therefore, by combining multi-stage compression molding and curvature correction, it is possible to sufficiently correct the distortion and warpage generated in the electrode. As a result, an electrode with excellent quality can be manufactured with high production efficiency.
  • FIG. 14 is an exploded perspective view of a nonaqueous electrolyte battery manufactured by the method according to the third embodiment.
  • 15 is a partially developed perspective view of an electrode group used in the battery shown in FIG.
  • the battery shown in FIG. 14 is a sealed prismatic non-aqueous electrolyte secondary battery.
  • the nonaqueous electrolyte secondary battery includes an outer can 1, a lid 2, a positive electrode output terminal 3, a negative electrode output terminal 4, and an electrode group 5.
  • the outer can 1 has a bottomed rectangular tube shape, and is formed of a metal such as aluminum, an aluminum alloy, iron, or stainless steel, for example.
  • the flat electrode group 5 has a positive electrode 6 and a negative electrode 7 wound in a flat shape with a separator 8 therebetween.
  • the positive electrode 6 is a positive electrode current collector except for a strip-shaped positive electrode current collector made of, for example, a metal foil, a positive electrode current collector tab 6a formed of a current collector exposed portion of the positive electrode current collector, and at least a portion of the positive electrode current collector tab 6a.
  • the negative electrode 7 is a negative electrode except for a strip-shaped negative electrode current collector made of, for example, a metal foil, a negative electrode current collector tab 7a formed of a current collector exposed portion of the negative electrode current collector, and at least a portion of the negative electrode current collector tab 7a. And a negative electrode active material layer 7b formed on the current collector.
  • the positive electrode current collecting tab 6 a protrudes from the separator 8 in the winding axis direction of the electrode group, and the negative electrode current collecting tab 7 a protrudes from the separator 8 in the opposite direction.
  • the positive electrode 6 and the negative electrode 7 are wound while being shifted in position.
  • the electrode group 5 has the positive electrode current collecting tab 6a wound spirally from one end face and is wound spirally from the other end face.
  • the negative electrode current collection tab 7a protrudes.
  • Electrolytic solution (not shown) is impregnated in the electrode group 5.
  • the rectangular plate-like lid 2 is seam welded to the opening of the outer can 1 by, for example, a laser.
  • the lid 2 is made of a metal such as aluminum, aluminum alloy, iron or stainless steel, for example.
  • the lid 2 and the outer can 1 are preferably formed from the same type of metal.
  • a safety valve 9 is provided near the center of the outer surface of the lid 2.
  • the safety valve 9 has a rectangular recess 9a provided on the outer surface of the lid 2 and an X-shaped groove 9b provided in the recess 9a.
  • the groove 9b is formed, for example, by press-molding the lid 2 in the plate thickness direction.
  • the liquid injection port 10 is opened in the lid 2 and sealed after the electrolytic solution is injected.
  • the positive and negative output terminals 3 and 4 are caulked and fixed to the outer surface of the lid 2 via insulating gaskets (not shown) on both sides of the safety valve 9 therebetween.
  • a lithium ion secondary battery using a carbon-based material for the negative electrode active material for example, aluminum or an aluminum alloy is used for the positive electrode output terminal 3, and copper, nickel, nickel plating is used for the negative electrode output terminal 4, for example. Used metals such as iron are used.
  • lithium titanate is used as the negative electrode active material, in addition to the above, aluminum or an aluminum alloy may be used for the negative electrode output terminal 4.
  • One end of the positive electrode lead 11 is electrically connected to the positive electrode output terminal 3 by caulking or welding, and the other end is electrically connected to the positive electrode current collecting tab 6a.
  • One end of the negative electrode lead 12 is electrically connected to the negative electrode output terminal 4 by caulking or welding, and the other end is electrically connected to the negative electrode current collecting tab 7a.
  • a method of electrically connecting the positive and negative electrode leads 11 and 12 to the positive and negative electrode current collecting tabs 6a and 7a is not particularly limited, and examples thereof include welding such as ultrasonic welding and laser welding.
  • the positive electrode output terminal 3 and the positive electrode current collecting tab 6 a are electrically connected via the positive electrode lead 11, and the negative electrode output terminal 4 and the negative electrode current collecting tab 7 a are electrically connected via the negative electrode lead 12.
  • current can be taken out from the positive and negative output terminals 3 and 4.
  • the material of the positive and negative electrode leads 11 and 12 is not particularly specified, it is desirable to use the same material as that of the positive and negative electrode output terminals 3 and 4.
  • the material of the output terminal is aluminum or an aluminum alloy
  • the material of the lead is aluminum or an aluminum alloy.
  • the output terminal is copper
  • the material of the lead is copper.
  • the separator is not particularly limited, and for example, a microporous film, a woven fabric, a non-woven fabric, or a laminate of the same material or different materials among these can be used.
  • the material for forming the separator include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene copolymer, and cellulose.
  • Non-aqueous electrolyte a non-aqueous electrolyte solution in which an electrolyte (for example, a lithium salt) is dissolved in a non-aqueous solvent
  • Nonaqueous solvents include, for example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), ⁇ -butyrolactone ( ⁇ - BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • Nonaqueous solvents may be used alone or in combination of two or more.
  • the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), and trifluoromethanesulfonic acid.
  • a lithium salt such as lithium (LiCF 3 SO 3 ) can be given.
  • the electrolyte may be used alone or in combination of two or more.
  • the amount of electrolyte dissolved in the non-aqueous solvent is preferably 0.2 mol / L to 3 mol / L. If the electrolyte concentration is too low, sufficient ionic conductivity may not be obtained. On the other hand, if it is too high, it may not be completely dissolved in the electrolyte.
  • the strip electrode plate is disposed such that the current collector exposed portion is located in the step portion of the roller and the active material-containing layer is located in the recess portion of the roller. Since the tension is applied in the long side direction, the tension can be concentrated on the current collector exposed portion, and the current collector exposed portion can be sufficiently stretched by plastic deformation. Thereby, the distortion and the curvature which arose in the electrode in manufacturing processes, such as a compression molding and a drying process, can be corrected. In addition, it is possible to eliminate problems such as electrode breakage, winding misalignment, wrinkles, cracks, etc. that have occurred in the process of producing a wound electrode group, so that it is possible to manufacture electrodes with excellent quality and production efficiency. Can do.
  • the curving correction is not limited to the strip electrode plate that has been compression molded or dried, but is caused by the difference in elongation between the base current collector and the current collector exposed portion of the active material-containing layer. This is effective when warping or distortion occurs.
  • the first and second curvature corrections in the third embodiment and the curvature correction in the fourth embodiment can be performed by the same method as the curvature correction according to the first embodiment.
  • Example 1 Examples of positive and negative electrodes for lithium ion secondary batteries are shown below.
  • LiCoO 2 as a positive electrode active material, graphite powder as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder were mixed and dispersed in an organic solvent to prepare a slurry.
  • the obtained slurry was applied to a strip-shaped aluminum foil as a current collector except for both sides of the long side, and then dried to prepare a strip-shaped positive electrode plate.
  • Li 4 Ti 5 O 12 as a negative electrode active material, carbon powder as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder were mixed and dispersed in an organic solvent to prepare a slurry.
  • the obtained slurry was applied to a strip-shaped aluminum foil as a current collector, excluding both sides of the long side, and then dried to prepare a strip-shaped negative electrode plate.
  • Each of the belt-like positive electrode plate and the belt-like negative electrode plate was compressed into a hoop shape by the winding device 23 via the guide roller device 22 after compressing the active material-containing layer with the press device 21 shown in FIG.
  • the guide roller 24 3 which also serves as a bending straightening device, the boundary X between the stepped portion 26 and the recess 27, to position the boundary between the current collector exposed portion 25a and the active material-containing layer 25b, and collector-exposed portion 25a
  • the active material-containing layer 25 b was disposed in the recess 27 on the stepped portion 26.
  • Table 1 shows a step H and a taper R of the step portion 26.
  • a tensile tension (winding tension) was applied in the longitudinal direction of each of the belt-like positive electrode plate and the belt-like negative electrode plate from the compression molding step by the press device 21 to the winding device 23 winding the hoop shape.
  • Table 1 shows the tensile stress F in the cross section parallel to the short side direction of each of the belt-like positive electrode plate and the belt-like negative electrode plate.
  • the heat treatment was not performed in the curvature correction step, and the curvature correction was performed in a room temperature (RT) atmosphere.
  • each of the positive electrode plate and the negative electrode plate wound in a hoop shape by the winding device 23 was cut into a length of 1 m, and the amount of distortion was measured.
  • the amount of strain is the shortest distance Y 1 between a point parallel to the length L (1 m) of the positive electrode 6 and the most curved portion of the positive electrode 6, as shown in FIG.
  • the shortest distance Y 2 between a point parallel to the length L (1 m) of the negative electrode 7 and the most curved portion of the negative electrode 7 is defined as the strain amount. Table 1 shows the measurement results of the strain amount.
  • a separator is disposed between the positive electrode and the negative electrode, and a positive electrode current collecting tab made of a current collector exposed portion is protruded from the separator in the winding axis direction of the electrode group, and a current collector exposed portion is formed.
  • the negative electrode current collection tab was protruded from the separator in the opposite direction, and wound into a flat shape to produce the electrode group shown in FIG.
  • the presence or absence of electrode breakage at the time of winding in the electrode group production process, and further, the produced electrode group was disassembled to investigate whether or not there were electrode misalignment, wrinkles or cracks. The results are shown in Table 2.
  • Example 2 to 18 and Comparative Example 1 Similar to Example 1, except that the step H of the step provided on the guide roller, the taper R, the tensile stress F of the strip-like positive and negative plates, and the heating temperature T of the electrode are as shown in Table 1. did. The results are shown in Tables 1 and 2.
  • Comparative Example 1 the guide roller was not provided with a step portion, and no electrode distortion or warpage was corrected.
  • the heating temperature T is displayed as “RT”, the curvature was corrected in a room temperature (RT) atmosphere.
  • Example 13 in which the heating temperature T is 140 ° C., the straightening was performed while heating the positive and negative electrode plates at 140 ° C.
  • Example 19 to 21 Similar to Example 1, except that the step H of the step provided on the guide roller, the taper R, the tensile stress F of the strip-like positive and negative plates, and the heating temperature T of the electrode are as shown in Table 1. did. The results are shown in Tables 1 and 2.
  • both the positive electrode strain amount and the negative electrode strain amount are smaller than those of Comparative Example 1. Further, according to Examples 1 to 18, there is no electrode breakage during electrode production. On the other hand, in Comparative Example 2, since the active material-containing layer is disposed on the stepped portion, the stress to be concentrated only on the current collector exposed portion is dispersed in the active material-containing layer, and compared with the current collector exposed portion. As a result, the stress was concentrated by the thicker active material containing layer. For this reason, according to Comparative Example 2, the electrode breaks during winding, and there is a winding slip in the electrode group that can be produced without electrode breakage, and the positive and negative electrodes in the electrode group are wrinkled and cracked. It was.
  • Example 15 where the level difference H exceeds 600%, the distortion of the positive and negative electrodes is reduced, but when the positive and negative electrodes are wound to produce an electrode group, wrinkles and cracks may occur.
  • Example 19 to 21 even when the level difference H exceeds 600%, if the level difference H is less than 750%, the distortion of the positive and negative electrodes is reduced, and there is a problem when winding the positive and negative electrodes. It was also found that no cracks occurred.
  • Example 16 From the comparison between Examples 1, 5 to 8, and 16, the positive and negative electrode distortions of Examples 1 and 5 to 8 having a taper R of 15 mm or less are greatly corrected as compared with Example 16 in which the taper R exceeds 15 mm. I understand that In Example 5 in which the taper R is 0.5 mm, the smaller the taper R, the smaller the amount of distortion. However, when the positive and negative electrodes were wound to produce an electrode group, wrinkles and cracks might occur.
  • Example 18 From the comparison of Examples 1, 9 to 12, 17, and 18, the positive and negative strains of Examples 1, 9 to 12, and 18 having a tensile stress F of 20 (N / mm 2 ) or more showed a tensile stress F of 20 ( It can be seen that it is greatly corrected as compared with Example 17 of less than N / mm 2 ). In Example 18 where the tensile stress F exceeds 100 in the case where the tensile stress F is larger, in Example 18 where the tensile stress F exceeds 100, wrinkles and cracks may occur when the positive and negative electrodes are wound.
  • Example 13 By comparing Example 1 and Example 13, the distortion of the positive and negative electrodes of Example 13 having a heating temperature of 60 ° C. or more and 150 ° C. or less was greatly corrected as compared with Example 1 in which no heat treatment was performed. I understand that.
  • the step H (%) of the step provided on the guide roller preferably satisfies the following formula (A) when the thickness of the active material-containing layer per side of the belt-like current collector is 100%.
  • step H By setting the step H to be 150% or more and 750% or less, stress can be sufficiently concentrated and extended on the exposed portion of the current collector, so that the warpage and distortion amount of the electrode can be reduced. Therefore, it is possible to prevent the electrode from being broken when the electrode is wound. Further, by setting the step H to 150% or more and less than 750%, it is possible to reduce distortion and warpage generated in the electrode by compression molding, and to prevent the electrode from being wrinkled and cracked when the electrode is wound. Can be suppressed.
  • the strip-shaped electrode plate subjected to compression molding has a current collector exposed portion located at a step portion of the roller, and an active material-containing layer at the concave portion of the roller. Since it is placed so that it is positioned and tension is applied in the long side direction of the strip electrode plate, the tension can be concentrated on the current collector exposed portion, and the current collector exposed portion can be sufficiently stretched by plastic deformation. . Thereby, the distortion and the curvature which arose in the electrode by compression molding can be corrected, without increasing the tension
  • Example 22 Examples of positive and negative electrodes for lithium ion secondary batteries are shown below.
  • LiCoO 2 as a positive electrode active material, graphite powder as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder were mixed and dispersed in an organic solvent to prepare a slurry.
  • the obtained slurry was applied to a strip-shaped aluminum foil as a current collector except for both sides of the long side, and then dried.
  • the positive electrode plate is cut with a slitting device in the longitudinal direction so that the ratio of the width of the coated part (active material-containing layer) to the uncoated part (current collector exposed part) is 9: 1. I got a plate.
  • Li 4 Ti 5 O 12 as a negative electrode active material, carbon powder as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder were mixed and dispersed in an organic solvent to prepare a slurry.
  • the obtained slurry was applied to a strip-shaped aluminum foil as a current collector except for both sides of the long side, and then dried.
  • the negative electrode plate is cut with a slitting device in the longitudinal direction so that the ratio of the width of the coated part (active material-containing layer) to the non-coated part (current collector exposed part) is 9: 1. I got a plate.
  • the active material-containing layer is compressed by the press device 21 shown in FIG. 8 and then wound in a reel shape by the first winding device 23 1 via the guide roller device 22. I took it.
  • the guide roller 24 3 which also serves as a bending straightening device, the boundary X between the stepped portion 26 and the recess 27, to position the boundary between the current collector exposed portion 25a and the active material-containing layer 25b, and collector-exposed portion 25a
  • the active material-containing layer 25 b was disposed in the recess 27 on the stepped portion 26.
  • the step H of the step portion 26 was 300%, and the taper R was 6.5 mm.
  • a tensile tension (winding tension) is applied in the longitudinal direction of each of the belt-like positive electrode plate and the belt-like negative electrode plate from the compression molding process by the press device 21 to the reel winding by the first winding device 23 1. It was.
  • the tensile stress F in the cross section parallel to the short side direction of each of the belt-like positive electrode plate and the belt-like negative electrode plate was 40 (N / mm 2 ).
  • the heat treatment was not performed in the curvature correction step, and the curvature correction was performed in a room temperature (RT) atmosphere.
  • each positive electrode plate and negative electrode plate wound on a reel were measured strain.
  • the amount of strain is the shortest distance Y 1 between a point parallel to the length L (1 m) of the positive electrode 6 and the most curved portion of the positive electrode 6, as shown in FIG.
  • the shortest distance Y 2 between a point parallel to the length L (1 m) of the negative electrode 7 and the most curved portion of the negative electrode 7 is defined as the strain amount.
  • a separator is disposed between the positive electrode and the negative electrode for which the strain amount was measured in the third step, and the positive electrode current collecting tab formed of the current collector exposed portion is projected from the separator in the winding axis direction of the electrode group, and The negative electrode current collection tab which consists of an electric-conductor exposed part was protruded from the separator in the opposite direction, and the electrode group shown in FIG. 15 was produced by winding in a flat shape. The frequency of electrode breakage during winding in the electrode group production process was investigated. Further, in the electrode group production process, positive and negative meandering correction was performed by detecting the ends of the positive and negative electrodes with a sensor during winding. The correction amount at that time was defined as the amount of meandering of the electrode.
  • Example 3 A positive and negative electrode and an electrode group are manufactured in the same manner as in Example 22 except that no step is provided on the guide roller and no electrode distortion or warpage is corrected, and the amount of distortion, the amount of meander and the frequency of fracture are measured. did.
  • the guide roller 24 3 which also serves as a bending straightening device was placed a boundary between the current collector exposed portion 25a and the active material-containing layer 25b. Further, on the stepped portion 26, the entire width of the current collector exposed portion 25a in the short side direction and the active material containing layer 25b having a width equal to the width in the short side direction of the current collector exposed portion 25a were disposed.
  • the level difference H, taper R, and tensile stress F of the stepped portion 26 were the same as in Example 22. Further, curvature correction was performed in a room temperature (RT) atmosphere as in Example 22.
  • Table 3 shows the results of displaying the strain amount and meandering amount of Example 22 and Comparative Example 4 with the measured value of Comparative Example 3 as 100%, and the fracture frequency of the electrode plates of Example 22 and Comparative Examples 3 and 4. It shows.
  • the amount of distortion and meandering amount of both the positive and negative electrodes after the third step are smaller than those of Comparative Example 3, and compared with Example 22 and Comparative Example 4.
  • the strain amount of both the positive and negative electrodes is smaller than that of Comparative Example 4 in any of the first to third steps, and the meandering amount at the time of manufacturing the electrode group is smaller than that of Comparative Example 4.
  • the frequency of breakage of the positive and negative electrodes when producing the wound electrode group was not found in Example 1 but occasionally occurred in Comparative Examples 3 and 4.
  • Example 23 The positive and negative electrodes and the electrode group were produced in the same manner as in Example 22 except that the drying condition in the second step was 10 hours in an atmospheric pressure atmosphere at 150 ° C., and the amount of strain, the amount of meander and the frequency of fracture were measured. .
  • Example 5 A positive and negative electrode and an electrode group are manufactured in the same manner as in Example 23 except that no step is provided on the guide roller and no electrode distortion or warpage is corrected, and the amount of distortion, the amount of meander and the frequency of fracture are measured. did.
  • Table 4 shows the results of displaying the strain amount and meandering amount of Example 23 and Comparative Example 6 with the measured value of Comparative Example 5 as 100%, and the fracture frequency of the electrode plates of Example 23 and Comparative Examples 5 and 6. It shows.
  • Example 23 the amount of strain and meandering of both the positive and negative electrodes after the third step are smaller than those of Comparative Example 5, and also compared with Example 23 and Comparative Example 6.
  • the distortion amount of both the positive and negative electrodes is smaller than that of Comparative Example 6 in any of the first to third steps, and the meandering amount when the electrode group is produced is smaller than that of Comparative Example 6.
  • the frequency of fracture of the positive and negative electrodes when producing the wound electrode group was none in Example 23, but occasionally occurred in Comparative Examples 5 and 6.
  • Example 24 (First step) The first step strip prepared in the same manner as described in the positive electrode plate of Example 22, for each negative electrode plate of the strip, before compression the active material-containing layer in the first press apparatus 211 shown in FIG. 12 After compressing to 90% of the thickness (100% after coating and drying), it was conveyed by guide rollers 24 1 to 24 4 . In the guide roller 24 3 , curvature correction was performed in the same manner as described in Example 22. Thereafter, the amount of strain was measured in the same manner as in Example 22.
  • a separator is disposed between the positive electrode and the negative electrode for which the strain amount was measured in the third step, and the positive electrode current collecting tab formed of the current collector exposed portion is projected from the separator in the winding axis direction of the electrode group, and The negative electrode current collection tab which consists of an electric-conductor exposed part was protruded from the separator in the opposite direction, and the electrode group shown in FIG. 15 was produced by winding in a flat shape. The frequency of electrode breakage during winding in the electrode group production process and the amount of meandering of the electrode plate were investigated.
  • Example 7 A positive and negative electrode and an electrode group are produced in the same manner as in Example 24 except that no step is provided on the guide roller and no electrode distortion or warpage is corrected, and the amount of distortion, the amount of meander and the frequency of fracture are measured. did.
  • Comparative Example 8 Except that the curvature correction performed in the first to third steps is the same as in Comparative Example 4, positive and negative electrodes and an electrode group are manufactured in the same manner as in Example 24, and the amount of distortion, the amount of meander and the frequency of fracture are measured. did.
  • Table 5 shows the results of displaying the strain amount and meandering amount of Example 24 and Comparative Example 8 with the measured value of Comparative Example 7 as 100%, and the fracture frequency of the electrode plates of Example 24 and Comparative Examples 7 and 8. It shows.
  • the amount of distortion and meandering amount of both positive and negative electrodes after the third step are smaller than those of Comparative Example 7, and compared with Example 24 and Comparative Example 8.
  • the distortion amount of both the positive and negative electrodes is smaller than that of Comparative Example 8 in any of the first to third steps, and the meandering amount at the time of preparing the electrode group is smaller than that of Comparative Example 8.
  • the frequency of breakage of the positive and negative electrodes in producing the wound electrode group was none in Example 24, but occasionally occurred in Comparative Examples 7 and 8.
  • Example 25 Except for setting the step H of the step portion 26 to 600%, positive and negative electrodes and an electrode group were produced in the same manner as in Example 22, and the amount of strain, the amount of meandering, and the frequency of fracture were measured. The results are also shown in Table 3.
  • Example 26 Except for setting the step H of the step portion 26 to 740%, positive and negative electrodes and an electrode group were produced in the same manner as in Example 22, and the amount of strain, the amount of meandering, and the frequency of fracture were measured. The results are also shown in Table 3.
  • the step H (%) of the step provided on the guide roller preferably satisfies the following formula (A) when the thickness of the active material-containing layer per side of the belt-like current collector is 100%.
  • step H By setting the step H to be 150% or more and 750% or less, stress can be sufficiently concentrated and extended on the exposed portion of the current collector, so that the warpage and distortion amount of the electrode can be reduced. Therefore, it is possible to prevent the electrode from being broken when the electrode is wound. In addition, by setting the step H to 150% or more and less than 750%, it is possible to reduce the distortion and warpage generated in the electrode by compression molding, and to suppress the breakage of the electrode when the electrode is wound. Can do.
  • the embodiments and examples have been described above, but are not limited to those described.
  • the ratio between the coated part and the uncoated part, the compression density of the electrode plate, or the influence of the second process The same effect can be obtained by appropriately changing the shape, tensile stress, and the like.
  • the active material paste can be applied continuously or intermittently, and the same effect can be obtained.
  • the current collecting base material of the electrode is not limited to the aluminum foil, and its material, thickness, tension, etc. The same effect can also be obtained by appropriately changing the height and shape of the step, the tensile stress, etc. according to the strength and hardness.
  • the current collector exposed portion is positioned at the stepped portion of the roller and the active material containing layer is positioned at the concave portion of the roller,
  • tension in the long side direction distortion and curvature generated in the electrode are corrected.
  • tension can be concentrated on the current collector exposed portion, and the current collector exposed portion can be sufficiently deformed by plastic deformation.
  • SYMBOLS 1 ... Exterior can, 2 ... Cover, 3 ... Positive electrode output terminal, 4 ... Negative electrode output terminal, 5 ... Electrode group, 6 ... Positive electrode, 6a ... Positive electrode current collection tab, 6b ... Positive electrode active material containing layer, 7 ... Negative electrode, 7a DESCRIPTION OF SYMBOLS ... Negative electrode current collection tab, 7b ... Negative electrode active material containing layer, 8 ... Separator, 9 ... Safety valve, 9a ... Recessed part, 9b ... Groove part, 10 ... Injection hole, 11 ... Positive electrode lead, 12 ... Negative electrode lead, 21 ... Press apparatus , 21 1, 21 2 ... first, second press device, 21a, 21b ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 実施形態によれば、張力を加える工程を含む電極の製造方法を提供することができる。電極は、帯状集電体と、帯状集電体の少なくとも一方の長辺に形成され、両面共に活物質含有層が存在しない集電体露出部と、帯状集電体の集電体露出部以外の少なくとも一部に形成された活物質含有層とを含む。張力を加える工程では、円周面から突出した段部と、段部に隣接する凹部とを有するローラ上に、集電体露出部が段部に位置し、かつ活物質含有層が凹部に位置するように配置し、帯状集電体の長辺方向に張力を加える。

Description

電極の製造方法及び電池の製造方法
 本発明の実施形態は、電極の製造方法及び電池の製造方法に関する。
 電池は、従来の小型電子機器用途に加え、近年ではハイブリッド電気自動車の電源用途に用いられている。それに伴い、高容量、長サイクル寿命、急速充電性等を兼ね備えたバッテリが求められている。制限ある電池内に出来るだけ多くの活物質を充填するため、電極もより高密度に圧縮されるようになった。
 電極の製造では、例えば金属箔からなる集電体に活物質含有スラリーを塗布し、乾燥した後、ロールプレス装置などで塗布部を圧縮する。圧縮された塗布部の下地集電体も塑性変形によって伸びるが、活物質含有スラリーが塗布されない未塗布部は集電体にプレス圧力が掛からないため、下地集電体程は伸びない。その結果、この集電体の伸びの差によって塗布部と未塗布部との境界に残留応力が働き、電極に歪みや反りが生じる。
 このような電極をセパレータに積層し、これらを捲回する場合、歪みや反りが原因で捲きズレを起こしたり、あるいは捲きズレを補正する際に電極に皺や亀裂が生じたり、ひいては電極破断を起こす等が生じる。また、電極の歪みや反りは、品質・歩留の低下、および生産ライン高速稼動の阻害要因にもなっている。電極の歪みや反りの原因は、圧縮後のスラリー塗布部と未塗布部との下地集電体の伸びの差である。解決策として、例えば、プレスロールに溝を形成して未塗布部集電体も塗布部と同時に圧縮して延ばす方法や、さらに引張応力によって集電体を塑性変形させて延ばす方法などが提案されている。
 しかしながら、プレスロールに溝を形成する方法は、集電体をプレスすることによって削れてしまうロール表面を、比較的高い頻度で再研磨する必要があることが推察されるため、プレスロールの溝形状を管理するのは技術的にも経済的にも効率的でない。更に、例えば電極の蛇行などにより未塗布部集電体が形成した溝から外れたような場合には、電極の圧縮密度ムラや電極破断が生じるという問題がある。
 一方、引張応力によって集電体を塑性変形させて延ばす方法としては、鉄鋼材の圧延や加工などで一般的に用いられるテンションアニール処理の応用などがある。被加工材に加熱しながら引張応力を与えることにより、弾性変形させるのに必要な応力を軽減させる効果がある。例えば集電体にアルミニウム箔を用いる場合、その厚みやアルミニウム純度にもよるが、塑性変形させるのに必要な応力の目安は100N/mm2以上になる。集電体を加熱することにより塑性変形に必要な応力を大幅に軽減させることが可能になる。ところが、電極の活物質含有層に高温で変質し電池性能を低下させる恐れのある材料・成分が含まれる場合等には加熱温度を制限せざるを得ない。結果的に、加熱温度の適用範囲内では引張応力の大幅な軽減は出来ず、本来電極を巻き取るのに必要な引張応力に比べて数倍の応力が必要となり、電極の破断や巻取り精度低下などが懸念される。
特開2001-297753号公報 特開2009-104850号公報
 本発明が解決しようとする課題は、歪み量の少ない電極の製造方法と、この方法を用いた電池の製造方法を提供することを目的とする。
 実施形態によれば、圧縮成形を施す工程と、張力を加える工程とを含む電極の製造方法を提供することができる。圧縮成形を施す工程では、帯状極板の活物質含有層に圧縮成形を施す。帯状極板は、帯状集電体と、帯状集電体の少なくとも一方の長辺に形成され、両面共に活物質含有層が存在しない集電体露出部と、帯状集電体の集電体露出部以外の少なくとも一部に形成された活物質含有層とを含む。張力を加える工程では、円周面から突出した段部と、段部に隣接する凹部とを有するローラ上に、帯状極板を集電体露出部が段部に位置し、かつ活物質含有層が凹部に位置するように配置し、帯状極板の長辺方向に張力を加える。
 実施形態によれば、張力を加える工程を含む電極の製造方法を提供することができる。電極は、帯状集電体と、帯状集電体の少なくとも一方の長辺に形成され、両面共に活物質含有層が存在しない集電体露出部と、帯状集電体の集電体露出部以外の少なくとも一部に形成された活物質含有層とを含む。張力を加える工程では、円周面から突出した段部と、段部に隣接する凹部とを有するローラ上に、集電体露出部が段部に位置し、かつ活物質含有層が凹部に位置するように配置し、帯状集電体の長辺方向に張力を加える。
図1は、第1の実施形態に係る方法の一工程を示す模式図である。 図2は、図1におけるガイドローラと帯状極板との位置関係を示す模式図である。 図3は、第1の実施形態で用いられるガイドローラと帯状極板との位置関係を示す断面図である。 図4は、第1の実施形態で用いられるガイドローラと帯状極板との位置関係を示す断面図である。 図5は、第2の実施形態に係る方法で製造される電池の展開斜視図である。 図6は、図5に示す電池で用いられる電極群の部分展開斜視図である。 図7は、実施例の電極の歪み量の測定方法を示す模式図である。 図8は、第3の実施形態に係る方法の一工程を示す模式図である。 図9は、図8におけるガイドローラと帯状極板との位置関係を示す模式図である。 図10は、第3の実施形態で用いられるガイドローラと帯状極板との位置関係を示す断面図である。 図11は、第3の実施形態で用いられるガイドローラと帯状極板との位置関係を示す断面図である。 図12は、第3の実施形態に係る方法の一工程を示す模式図である。 図13は、第4の実施形態に係る方法の一工程を示す模式図である。 図14は、第5の実施形態に係る方法で製造される電池の展開斜視図である。 図15は、図14に示す電池で用いられる電極群の部分展開斜視図である。
 以下、実施の形態について、図面を参照して説明する。
(第1の実施形態)
 図1は、電極の製造に用いるプレス装置、ガイドローラ装置、及び、巻取り装置を示す模式図である。図2は、湾曲矯正工程におけるガイドローラと帯状極板との位置関係を示す模式図である。図2の(a)は、ガイドローラ上を走行している帯状極板をガイドローラ側から見た平面図であり、図2の(b)はガイドローラを回転軸に平行に裁断することにより得られる断面図である。図3の(a)は、段部のコーナーにテーパーが形成されたガイドローラを回転軸に平行に切断した際に得られる断面図で、図3の(b)は、図3の(a)に示すガイドローラに帯状極板を配置した状態を示す断面図である。図4の(a)は、ガイドローラ上を走行している帯状極板をガイドローラ側から見た平面図であり、図4の(b)はガイドローラを回転軸に平行に裁断することにより得られる断面図である。
 図1に示すように、製造工程の前段側から後段に向かってプレス装置21、ガイドローラ装置22、巻取り装置23が配置されている。プレス装置21は、1対のプレスロール21a,21bを有する。プレスロール21a,21bは、駆動部(図示しない)によって図1に示す矢印の方向に回転することにより、プレスロール21a,21間に挿入された帯状極板25を圧縮成形する。巻取り装置23は、駆動部(図示しない)によって回転軸23aが図1に示す矢印の方向に回転することで、帯状極板25がフープ状に巻き取られるようになっている。ガイドローラ装置22は、プレス装置21から巻取り装置23に帯状極板25を搬送するためのもので、複数の金属製ガイドローラ241~245(従動ローラ)を有する。プレスロール21a,21bから巻取り装置23に搬送される帯状極板25には、長手方向に張力(巻取り張力)が加わる。ガイドローラ241~245は、帯状極板25に加わる張力が巻取りに適した所望の範囲となるように、帯状極板25の上下面に交互に配置されている。ガイドローラ243は、湾曲矯正装置を兼ねている。ガイドローラ243は、図2の(b)に示すように、回転軸方向の一方の端部に円周面から突出した段部26を有する。ガイドローラ243では、段部26に隣接する残りの部分が凹部27となっている。
 以下、図1に示す装置を用いた電極の製造方法を説明する。まず、帯状極板25を作製する。帯状極板25は、図2の(a)及び図3の(b)に示すように、帯状集電体と、帯状集電体の一方の長辺に形成され、両面共に活物質含有層が存在しない集電体露出部25aと、帯状集電体の集電体露出部25a以外の箇所に両面とも形成された活物質含有層25bとを含む。活物質含有層25bは、帯状集電体の長辺方向に連続的に形成されている。短辺方向の幅は、活物質含有層25bの方が集電体露出部25aよりも広くなっている。帯状極板25は、例えば、活物質含有スラリーを帯状集電体に一方の長辺を除いて両面に塗布し、乾燥することにより得られる。あるいは、活物質含有スラリーを集電体の両面に部分的に塗布し、乾燥した後、集電体露出部となる未塗布部が長辺に位置するように裁断することにより帯状極板25を得る。
 活物質含有スラリーは、例えば、活物質に、必要に応じて導電剤及び結着剤を添加し、これらを溶媒の存在下で混練することにより調製される。活物質には、正極用、負極用のいずれを用いても良い。
 正極の活物質は、特に限定されるものではなく、種々の酸化物、例えば、リチウム含有コバルト酸化物(例えば、LiCoO)、二酸化マンガン、リチウムマンガン複合酸化物(例えば、LiMn、LiMnO)、リチウム含有ニッケル酸化物(例えば、LiNiO)、リチウム含有ニッケルコバルト酸化物(例えば、LiNi0.8Co0.2)、リチウム含有鉄酸化物、リチウムを含むバナジウム酸化物や、二硫化チタンや二硫化モリブデンなどのカルコゲン化合物などを挙げることができる。
 負極の活物質は、特に限定されるものではなく、例えば、黒鉛質材料もしくは炭素質材料(例えば、黒鉛、コークス、炭素繊維、球状炭素、熱分解気相炭素質物、樹脂焼成体など)、カルコゲン化合物(例えば、二硫化チタン、二硫化モリブデン、セレン化ニオブなど)、軽金属(例えば、アルミニウム、アルミニウム合金、マグネシウム合金、リチウム、リチウム合金など)、リチウムチタン酸化物(例えば、スピネル型のチタン酸リチウム)等を挙げることができる。
 導電剤は、特に限定されるものではなく、例えば、黒鉛、炭素質物、アセチレンブラック、カーボンブラック等を挙げることができる。また、結着剤は、特に限定されるものではなく、例えば、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴムを用いることができる。
 帯状集電体には、金属箔を使用することができる。金属箔は、例えば、アルミニウム箔、アルミニウム合金箔、銅箔等を挙げることができる。帯状集電体の厚さは50μm以下にすることができる。
 次いで、得られた帯状極板25を、図1に示す矢印方向に回転しているプレスロール21a,21b間に挿入し、圧縮成形を施す。帯状極板25の挿入方向が帯状極板25の長手方向に平行であるため、プレス圧力は、活物質含有層25bに主に加わり、活物質含有層25bが圧縮成形され、密度が高められる。集電体露出部25aには、プレス圧力がほとんど加わらないため、活物質含有層25bの下地集電体に比して伸びが小さくなる。その結果、帯状極板25に歪みや反りが生じる。
 プレスロール21a,21b間を通過した帯状極板25は、ガイドローラ241~245を経由して巻取り装置23まで搬送される。湾曲矯正装置を兼ねたガイドローラ243では、図2及び図3に示すように、段部26と凹部27との境界Xに、集電体露出部25aと活物質含有層25bとの境界が位置し、集電体露出部25aのみが段部26上に配置される。活物質含有層25bは、凹部27に配置される。これにより、帯状極板25の搬送方向(長手方向)に加わる巻取り張力を、集電体露出部25aに集中させることができる。その結果、集電体露出部25aを巻取り張力によって十分に伸ばすことができるため、帯状極板25に生じた歪み及び反りを矯正することができる。ガイドローラ243を通過した帯状極板25は、ガイドローラ244,245を経由して巻取り装置23に巻き取られる。次いで、フープ状の帯状極板25を必要に応じて所望のサイズに裁断することにより、電極が得られる。なお、帯状極板25をそのまま電極として用いることもできる。
 圧縮成形前の帯状極板25では、帯状集電体全体が伸びていないため、圧縮成形前の帯状極板25をガイドローラ243と接触させると、段部26上の集電体露出部25aのみならず、活物質含有層25bにも巻取り張力(応力)が分散する。圧縮成形後は、活物質含有層25bの下地集電体が伸びて弛むため、巻取り張力(応力)が活物質含有層25bの下地集電体にほとんど加わらず、伸ばされていない集電体露出部25aに巻取り張力を集中させることができる。この時、電極の歪み量は、圧縮後の歪み量に対し、電極を圧縮時の巻き取り張力と同じ張力で巻取り装置23に巻き換えた後では約10%軽減させることができる。
 但し、ガイドローラ243の段部26上に活物質含有層25bが配置されると、巻取り張力が活物質含有層25bにも分散するため、集電体露出部25aへの巻取り張力の集中は不十分になり、且つ、既に伸びている活物質含有層25bの下地集電体をさらに延ばしてしまう恐れがあり、電極の歪みと反りが矯正されない。
 ガイドローラ243に設ける段部26の段差H(%)は、活物質含有層の帯状集電体片面当たりの厚さを100%とした際に下記(1)式を満たすことが望ましい。ここで、活物質含有層の帯状集電体片面当たりの厚さは、製造後の電極における活物質含有層の帯状集電体片面当たりの厚さである。
   150≦H≦600   (1)
 段差Hを150%以上にすることによって、集電体露出部に応力を十分に集中させて伸ばすことができる。また、段差Hを600%以下にすることによって、活物質含有層25bと集電体露出部25aとの境界付近に皺及び亀裂が生じるのを抑えることができる。これらの皺や亀裂は、後工程において電極破断や溶接不良の原因になる恐れがある。従って、段差Hを150%以上600%以下にすることによって、活物質含有層25bと集電体露出部25aとの境界付近に皺及び亀裂が生じるのを抑えつつ、集電体露出部に応力を十分に集中させて伸ばすことができる。皺や亀裂を防止する効果を高めるには、200≦H≦400の範囲がより好ましい。
 ガイドローラ243に設ける段部26のコーナーは、図2の(b)に例示されるように直角あるいは略直角でも良いが、テーパーを設けても良い。テーパーは、図3の(a),(b)に示すように、段部26と凹部27との境界Xと、段部26の上面とが交わる部分に形成することが望ましい。テーパーR(mm)は、R≦15であることが好ましい。テーパーRを15mm以下にすることによって、集電体露出部に応力を十分に集中させて伸ばすことができる。テーパーRが小さいほど、集電体露出部を伸ばす効果が大きくなるものの、電極が蛇行した場合に電極破断が生じる等の恐れがあるため、0.5≦R≦7の範囲がより好ましい。
 テーパーRは、段部26のR部のR面の数点を三次元測定器にて座標プロットすることにより、算出される。三次元測定器には、例えば、カールツァイス(ZEISS)株式会社製の三次元測定機(型式:WMM550)を使用することができる。
 少なくとも湾曲矯正工程では、帯状極板25の短辺方向に平行な断面での引張応力F(N/mm2)を、20≦F≦100の範囲にすることが好ましい。引張応力Fを20(N/mm2)以上にすることによって、電極を精度よく巻き取るために必要な応力を満たしつつ、集電体露出部を十分に伸ばすことができる。引張応力Fを100(N/mm2)以下にすることによって、電極の破断及び巻取り精度低下の問題を生じさせることなく、集電体露出部を十分に伸ばすことができる。よって、引張応力F(N/mm2)を20≦F≦100の範囲にすることによって、電極を破断させることなく、かつ電極を精度よく巻き取りつつ、集電体露出部を十分に伸ばすことができる。前述した段差HやテーパーRの条件にも依るが、電極の破断及び巻取り精度低下を防止する効果を高めるためには20≦F≦40の範囲がより好ましい。
 帯状極板には、60℃以上150℃以下の温度で加熱処理を施しつつ、湾曲矯正を行うことが望ましい。加熱処理温度Tを60℃以上にすることによって、塑性変形に必要となる応力を低減させる効果を高めることができる。また、帯状極板に掛ける応力が同じ場合には、加熱することによって電極の歪みや反りを矯正する効果を高めることができる。これらの効果は、加熱処理温度Tが高い方が得られやすいが、活物質含有層の熱による変質を避けるため、加熱処理温度Tは60℃以上150℃以下の範囲にすることが望ましい。
 図1では、プレス装置21としてプレスロールを用いたが、活物質含有層を高密度化できるものであればプレスロールの代わりに使用することができる。例えば、プレスロールの代わりに平板プレスを用いることができる。また、プレス工程は、プレス圧力を多段階に変化させて行っても良い。
 図1では、複数のガイドローラのうち一つのガイドローラを湾曲矯正装置として使用したが、湾曲矯正装置として使用するガイドローラの数は一つに限らず、全部または全部のうちの複数個にすることができる。また、湾曲矯正装置として使用するガイドローラの位置も前段側から3つ目のガイドローラ243に限られるものではなく、任意の位置のガイドローラを用いることができる。
 図2では、ガイドローラ243の回転軸方向の一方の端部に円周面から突出した段部26を設けたが、段部の形成方法はこれに限定されず、集電体露出部を伸ばす効果が得られるものであれば良い。例えば図4に例示されるように、回転軸方向の中央付近に円周面から突出した環状の段部26を設け、段部26に隣接する両側の円周面を凹部27とすることができる。
 図2~図4では、帯状極板の片側の長辺にのみ集電体露出部を設けたが、帯状極板の両方の長辺に集電体露出部を設けても良い。帯状極板の両方の長辺に集電体露出部を設けると、電極の反りと歪を防止する効果をより高めることができる。一方、図2のように、帯状極板の片側の長辺にのみ集電体露出部を設けると、高い電池容量とエネルギー密度を得ることができる。
 図2~図4では、帯状極板の両面に活物質含有層を設けたが、帯状極板の片面のみに活物質含有層を設けることもできる。
 図2~図4では、帯状集電体の長辺方向に連続的に活物質含有層を形成したが、帯状集電体の長辺方向に間欠的に活物質含有層を形成し、活物質含有層の間に活物質含有層未形成部を設けても良い。
 以上説明した第1の実施形態によれば、圧縮成形が施された帯状極板を、集電体露出部がローラの段部に位置し、かつ活物質含有層がローラの凹部に位置するように配置し、帯状極板の長辺方向に張力を加えるため、張力を集電体露出部に集中させることができ、集電体露出部を塑性変形させて十分に伸ばすことができる。これにより、圧縮成形で電極に生じた歪みや反りを矯正することができる。また、電極群を作製する際の電極の破断を防止することができる。その結果、品質の優れた電極を高い生産効率で製造することが可能となる。
(第2の実施形態)
 第2の実施形態によれば、正極と、負極と、非水電解質とを備える電池の製造方法が提供される。正極及び負極のうち少なくとも一方の電極は、第1の実施形態に係る方法で製造される。図5は、第2の実施形態に係る方法で製造される非水電解質電池の展開斜視図である。図6は、図5示す電池で用いられる電極群の部分展開斜視図である。
 図5に示す電池は、密閉型の角型非水電解質二次電池である。非水電解質二次電池は、外装缶1と、蓋2と、正極出力端子3と、負極出力端子4と、電極群5とを備える。図5に示すように、外装缶1は、有底角筒形状をなし、例えば、アルミニウム、アルミニウム合金、鉄あるいはステンレスなどの金属から形成される。
 図6に示すように、偏平型の電極群5は、正極6と負極7がその間にセパレータ8を介して偏平形状に捲回されたものである。正極6は、例えば金属箔からなる帯状の正極集電体と、正極集電体の集電体露出部からなる正極集電タブ6aと、少なくとも正極集電タブ6aの部分を除いて正極集電体に形成された正極活物質層6bとを含む。一方、負極7は、例えば金属箔からなる帯状の負極集電体と、負極集電体の集電体露出部からなる負極集電タブ7aと、少なくとも負極集電タブ7aの部分を除いて負極集電体に形成された負極活物質層7bとを含む。
 このような正極6、セパレータ8及び負極7は、正極集電タブ6aが電極群の捲回軸方向にセパレータ8から突出し、かつ負極集電タブ7aがこれとは反対方向にセパレータ8から突出するよう、正極6及び負極7の位置をずらして捲回されている。このような捲回により、電極群5は、図6に示すように、一方の端面から渦巻状に捲回された正極集電タブ6aが突出し、かつ他方の端面から渦巻状に捲回された負極集電タブ7aが突出している。
 電解液(図示しない)は、電極群5に含浸されている。矩形板状の蓋2は、外装缶1の開口部に例えばレーザでシーム溶接される。蓋2は、例えば、アルミニウム、アルミニウム合金、鉄あるいはステンレスなどの金属から形成される。蓋2と外装缶1は、同じ種類の金属から形成されることが望ましい。
 図5に示すように、蓋2の外面の中央付近に安全弁9が設けられている。安全弁9は、蓋2の外面に設けられた矩形状の凹部9aと、凹部9a内に設けられたX字状の溝部9bとを有する。溝部9bは、例えば、蓋2を板厚方向にプレス成型することにより形成される。注液口10は、蓋2に開口され、電解液の注液後に封止される。
 蓋2の外面には、安全弁9を間に挟んだ両側に正負極出力端子3,4が絶縁ガスケット(図示しない)を介してかしめ固定されている。負極活物質に炭素系材料を使用するリチウムイオン二次電池の場合、正極出力端子3には、例えば、アルミニウムあるいはアルミニウム合金が使用され、負極出力端子4には、例えば、銅、ニッケル、ニッケルメッキされた鉄などの金属が使用される。また、負極活物質にチタン酸リチウムを使用する場合は、上記に加え、負極出力端子4にアルミニウムあるいはアルミニウム合金を使用してもかまわない。
 正極リード11は、一端が、正極出力端子3にかしめ固定あるいは溶接によって電気的に接続され、かつ他端が正極集電タブ6aに電気的に接続されている。負極リード12は、一端が、負極出力端子4にかしめ固定あるいは溶接によって電気的に接続され、かつ他端が負極集電タブ7aに電気的に接続されている。正負極リード11,12を正負極集電タブ6a,7aに電気的に接続する方法は、特に限定されるものではないが、例えば超音波溶接やレーザ溶接等の溶接が挙げられる。
 このように、正極出力端子3と正極集電タブ6aとが正極リード11を介して電気的に接続され、負極出力端子4と負極集電タブ7aとが負極リード12を介して電気的に接続されることにより、正負極出力端子3,4から電流を取り出せるようになる。
 正負極リード11,12の材質は、特に指定しないが、正負極出力端子3,4と同じ材質にすることが望ましい。例えば、出力端子の材質がアルミニウム又はアルミニウム合金の場合は、リードの材質をアルミニウム、アルミニウム合金にすることが好ましい。また、出力端子が銅の場合は、リードの材質を銅などにすることが望ましい。
 ここで、セパレータ及び非水電解質について説明する。
 セパレータは、特に限定されるものではなく、例えば、微多孔性の膜、織布、不織布、これらのうち同一材または異種材の積層物などを用いることができる。セパレータを形成する材料としては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合ポリマー、エチレン-ブテン共重合ポリマー、セルロースなどをあげることができる。
 非水電解質には、非水溶媒に電解質(例えば、リチウム塩)を溶解させた非水電解液を用いることができる。非水溶媒は、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ-ブチロラクトン(γ-BL)、スルホラン、アセトニトリル、1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2-メチルテトラヒドロフランなどを挙げることができる。非水溶媒は、単独で使用しても、2種以上混合して使用してもよい。電解質は、例えば、過塩素酸リチウム(LiClO)、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、六フッ化砒素リチウム(LiAsF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)などのリチウム塩を挙げることができる。電解質は単独で使用しても、2種以上混合して使用してもよい。電解質の非水溶媒に対する溶解量は、0.2mol/L~3mol/Lとすることが望ましい。電解質の濃度が低すぎると十分なイオン導電性を得ることができない場合がある。一方、高すぎると電解液に完全に溶解できない場合がある。
 以上説明した第2の実施形態によれば、圧縮成形が施された帯状極板を、集電体露出部がローラの段部に位置し、かつ活物質含有層がローラの凹部に位置するように配置し、帯状極板の長辺方向に張力を加えるため、張力を集電体露出部に集中させることができ、集電体露出部を塑性変形させて十分に伸ばすことができる。これにより、圧縮成形で電極に生じた歪みや反りを矯正することができる。また、捲回型電極群を作製する工程において生じていた電極の破断、巻きズレや皺・亀裂などの問題を解消することができるため、品質、生産効率に優れた電極の製造を実現することができる。
(第3の実施形態)
 第3の実施形態によれば、帯状極板の作製、圧縮成形、第1の湾曲矯正、乾燥、及び第2の湾曲矯正を含む電極の製造方法を提供することができる。
 図8は、電極の製造に用いるプレス装置、ガイドローラ装置、及び、第1の巻取り装置を示す模式図である。図9は、湾曲矯正工程におけるガイドローラと帯状極板との位置関係を示す模式図である。図9の(a)は、ガイドローラ上を走行している帯状極板をガイドローラ側から見た平面図であり、図9の(b)はガイドローラを回転軸に平行に裁断することにより得られる断面図である。図10の(a)は、段部のコーナーにテーパーが形成されたガイドローラを回転軸に平行に切断した際に得られる断面図で、図10の(b)は、図10の(a)に示すガイドローラに帯状極板を配置した状態を示す断面図である。図11の(a)は、ガイドローラ上を走行している帯状極板をガイドローラ側から見た平面図であり、図11の(b)はガイドローラを回転軸に平行に裁断することにより得られる断面図である。図12は、電極の製造に用いる繰出し装置、及び、第2の巻取り装置を示す模式図である。
 まず、帯状極板の作製、圧縮成形、第1の湾曲矯正について説明する。
 図8に示すように、製造工程の前段側から後段に向かってプレス装置21、ガイドローラ装置22、第1の巻取り装置231が配置されている。プレス装置21は、1対のプレスロール21a,21bを有する。プレスロール21a,21bは、駆動部(図示しない)によって図8に示す矢印の方向に回転することにより、プレスロール21a,21間に挿入された帯状極板25を圧縮成形する。第1の巻取り装置231は、駆動部(図示しない)によって回転軸23aが図8に示す矢印の方向に回転することで、帯状極板25がリール状に巻き取られるようになっている。ガイドローラ装置22は、プレス装置21から第1の巻取り装置231に帯状極板25を搬送するためのもので、複数の金属製ガイドローラ241~245(従動ローラ)を有する。プレスロール21a,21bから第1の巻取り装置231に搬送される帯状極板25には、長手方向に張力(巻取り張力)が加わる。ガイドローラ241~245は、帯状極板25に加わる張力が巻取りに適した所望の範囲となるように、帯状極板25の上下面に交互に配置されている。ガイドローラ243は、湾曲矯正装置を兼ねている。ガイドローラ243は、図9の(b)に示すように、回転軸方向の一方の端部に円周面から突出した段部26を有する。ガイドローラ243では、段部26に隣接する残りの部分が凹部27となっている。
(帯状極板の作製) 
 まず、帯状極板25を作製する。帯状極板25は、図9の(a)及び図10の(b)に示すように、帯状集電体と、帯状集電体の一方の長辺に形成され、両面共に活物質含有層が存在しない集電体露出部25aと、帯状集電体の集電体露出部25a以外の箇所に両面とも形成された活物質含有層25bとを含む。活物質含有層25bは、帯状集電体の長辺方向に連続的に形成されている。短辺方向の幅は、活物質含有層25bの方が集電体露出部25aよりも広くなっている。帯状極板25は、例えば、活物質含有スラリーを帯状集電体に一方の長辺を除いて両面に塗布し、乾燥することにより得られる。あるいは、活物質含有スラリーを集電体の両面に部分的に塗布し、乾燥した後、集電体露出部となる未塗布部が長辺に位置するように裁断することにより帯状極板25を得る。
 活物質含有スラリーは、例えば、活物質に、必要に応じて導電剤及び結着剤を添加し、これらを溶媒の存在下で混練することにより調製される。活物質には、正極用、負極用のいずれを用いても良い。
 正極の活物質は、特に限定されるものではなく、種々の酸化物、例えば、リチウム含有コバルト酸化物(例えば、LiCoO)、二酸化マンガン、リチウムマンガン複合酸化物(例えば、LiMn、LiMnO)、リチウム含有ニッケル酸化物(例えば、LiNiO)、リチウム含有ニッケルコバルト酸化物(例えば、LiNi0.8Co0.2)、リチウム含有鉄酸化物、リチウムを含むバナジウム酸化物や、二硫化チタンや二硫化モリブデンなどのカルコゲン化合物などを挙げることができる。
 負極の活物質は、特に限定されるものではなく、例えば、黒鉛質材料もしくは炭素質材料(例えば、黒鉛、コークス、炭素繊維、球状炭素、熱分解気相炭素質物、樹脂焼成体など)、カルコゲン化合物(例えば、二硫化チタン、二硫化モリブデン、セレン化ニオブなど)、軽金属(例えば、アルミニウム、アルミニウム合金、マグネシウム合金、リチウム、リチウム合金など)、リチウムチタン酸化物(例えば、スピネル型のチタン酸リチウム)等を挙げることができる。
 導電剤は、特に限定されるものではなく、例えば、黒鉛、炭素質物、アセチレンブラック、カーボンブラック等を挙げることができる。また、結着剤は、特に限定されるものではなく、例えば、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴムを用いることができる。
 帯状集電体には、金属箔を使用することができる。金属箔は、例えば、アルミニウム箔、アルミニウム合金箔、銅箔等を挙げることができる。帯状集電体の厚さは50μm以下にすることができる。
(圧縮成形)
 次いで、得られた帯状極板25を、図8に示す矢印方向に回転しているプレスロール21a,21b間に挿入し、圧縮成形を施す。帯状極板25の挿入方向が帯状極板25の長手方向に平行であるため、プレス圧力は、活物質含有層25bに主に加わり、活物質含有層25bが圧縮成形され、密度が高められる。集電体露出部25aには、プレス圧力がほとんど加わらないため、活物質含有層25bの下地集電体に比して伸びが小さくなる。その結果、帯状極板25に歪みや反りが生じる。
(第1の湾曲矯正)
 プレスロール21a,21b間を通過した帯状極板25は、ガイドローラ241~245を経由して第1の巻取り装置231まで搬送される。湾曲矯正装置を兼ねたガイドローラ243では、図9及び図10に示すように、段部26と凹部27との境界Xに、集電体露出部25aと活物質含有層25bとの境界が位置し、集電体露出部25aのみが段部26上に配置される。活物質含有層25bは、凹部27に配置される。これにより、帯状極板25の搬送方向(長手方向)に加わる巻取り張力を、集電体露出部25aに集中させることができる。その結果、集電体露出部25aを巻取り張力によって十分に伸ばすことができるため、帯状極板25に生じた歪み及び反りを矯正することができる。ガイドローラ243を通過した帯状極板25は、ガイドローラ244,245を経由して第1の巻取り装置231に巻き取られる。
 圧縮成形前の帯状極板25では、帯状集電体全体が伸びていないため、圧縮成形前の帯状極板25をガイドローラ243と接触させると、段部26上の集電体露出部25aのみならず、活物質含有層25bにも巻取り張力(応力)が分散する。圧縮成形後は、活物質含有層25bの下地集電体が伸びて弛むため、巻取り張力(応力)が活物質含有層25bの下地集電体にほとんど加わらず、伸ばされていない集電体露出部25aに巻取り張力を集中させることができる。この時、電極の歪み量は、圧縮後の歪み量に対し、電極を圧縮時の巻き取り張力と同じ張力で第1の巻取り装置231に巻き換えた後では約10%軽減させることができる。
 但し、ガイドローラ243の段部26上に活物質含有層25bが配置されると、巻取り張力が活物質含有層25bにも分散するため、集電体露出部25aへの巻取り張力の集中は不十分になり、且つ、既に伸びている活物質含有層25bの下地集電体をさらに延ばしてしまう恐れがあり、電極の歪みと反りが矯正されない。
 ガイドローラ243に設ける段部26の段差H(%)は、活物質含有層の帯状集電体片面当たりの厚さを100%とした際に下記(1)式を満たすことが望ましい。ここで、活物質含有層の帯状集電体片面当たりの厚さは、製造後の電極における活物質含有層の帯状集電体片面当たりの厚さである。
   150≦H≦600   (1)
 段差Hを150%以上にすることによって、集電体露出部に応力を十分に集中させて伸ばすことができる。また、段差Hを600%以下にすることによって、活物質含有層25bと集電体露出部25aとの境界付近に皺及び亀裂が生じるのを抑えることができる。これらの皺や亀裂は、後工程において電極破断や溶接不良の原因になる恐れがある。従って、段差Hを150%以上600%以下にすることによって、活物質含有層25bと集電体露出部25aとの境界付近に皺及び亀裂が生じるのを抑えつつ、集電体露出部に応力を十分に集中させて伸ばすことができる。皺や亀裂を防止する効果を高めるには、200≦H≦400の範囲がより好ましい。
 ガイドローラ243に設ける段部26のコーナーは、図9の(b)に例示されるように直角あるいは略直角でも良いが、テーパーを設けても良い。テーパーは、図10の(a),(b)に示すように、段部26と凹部27との境界Xと、段部26の上面とが交わる部分に形成することが望ましい。テーパーR(mm)は、R≦15であることが好ましい。テーパーRを15mm以下にすることによって、集電体露出部に応力を十分に集中させて伸ばすことができる。テーパーRが小さいほど、集電体露出部を伸ばす効果が大きくなるものの、電極が蛇行した場合に電極破断が生じる等の恐れがあるため、0.5≦R≦7の範囲がより好ましい。
 テーパーRは、段部26のR部のR面の数点を三次元測定器にて座標プロットすることにより、算出される。三次元測定器には、例えば、カールツァイス(ZEISS)株式会社製の三次元測定機(型式:WMM550)を使用することができる。
 少なくとも湾曲矯正工程では、帯状極板25の短辺方向に平行な断面での引張応力F(N/mm2)を、20≦F≦100の範囲にすることが好ましい。引張応力Fを20(N/mm2)以上にすることによって、電極を精度よく巻き取るために必要な応力を満たしつつ、集電体露出部を十分に伸ばすことができる。引張応力Fを100(N/mm2)以下にすることによって、電極の破断及び巻取り精度低下の問題を生じさせることなく、集電体露出部を十分に伸ばすことができる。よって、引張応力F(N/mm2)を20≦F≦100の範囲にすることによって、電極を破断させることなく、かつ電極を精度よく巻き取りつつ、集電体露出部を十分に伸ばすことができる。前述した段差HやテーパーRの条件にも依るが、電極の破断及び巻取り精度低下を防止する効果を高めるためには20≦F≦40の範囲がより好ましい。
 帯状極板には、60℃以上150℃以下の温度で加熱処理を施しつつ、湾曲矯正を行うことが望ましい。加熱処理温度Tを60℃以上にすることによって、塑性変形に必要となる応力を低減させる効果を高めることができる。また、帯状極板に掛ける応力が同じ場合には、加熱することによって電極の歪みや反りを矯正する効果を高めることができる。これらの効果は、加熱処理温度Tが高い方が得られやすいが、活物質含有層の熱による変質を避けるため、加熱処理温度Tは60℃以上150℃以下の範囲にすることが望ましい。
(乾燥)
 第1の巻取り装置231によりリール状に巻き取られた帯状極板25に乾燥処理が施される。乾燥処理は、100℃以上180℃以下の真空、減圧もしくは大気圧雰囲気で行うことが望ましい。雰囲気の温度を100℃以上にすることにより、帯状極板25からの水分除去を促進することができる。また、180℃以下とすることによって、活物質含有層に含まれる材料の熱劣化を防止することができる。よって、雰囲気の温度を100℃以上180℃以下の範囲にすることによって、活物質含有層に含まれる材料の熱劣化を防止しつつ、帯状極板25からの水分除去を促進することができる。
 乾燥時間は、10時間以上にすることが望ましい。
 帯状極板25は、リール状に巻かれているため、捲回による張力が加わっている。活物質含有層25bの下地集電体は、活物質含有層25bが捲回で湾曲するのに追従して変形するため、集電体露出部25aよりも張力の影響を受けやすい。このような張力が加わった状態で乾燥処理を施すと、塑性変形が熱により促進されるため、活物質含有層25bの下地集電体が集電体露出部25aよりも大きく伸び、その結果、帯状極板25に反りや歪みが再度生じる。
(第2の湾曲矯正)
 第2の湾曲矯正は、図12に示す装置を用いて行われる。図12に示すように、製造工程の前段側から後段に向かって繰出し装置28、複数の金属製ガイドローラ241~244、第2の巻取り装置29が配置されている。繰出し装置28は、駆動部(図示しない)によって回転軸28aが図12に示す矢印の方向に回転することで、リール状に巻かれた帯状極板25が搬送方向に繰り出されるようになっている。第2の巻取り装置29は、駆動部(図示しない)によって回転軸29aが図12に示す矢印の方向に回転することで、帯状極板25がリール状に巻き取られるようになっている。複数のガイドローラ241~244は、帯状極板25に巻き取りに必要な張力が掛かるように、帯状極板25の上下面に交互に配置されている。ガイドローラ241~244には、第1の湾曲矯正で説明したのと同様なものが用いられ、ガイドローラ243が湾曲矯正装置を兼ねている。
 繰出し装置28から繰り出された帯状極板25は、ガイドローラ241~242を通過した後、ガイドローラ243に搬送される。ガイドローラ243では、図9及び図10に示すように、段部26と凹部27との境界Xに、集電体露出部25aと活物質含有層25bとの境界が位置し、集電体露出部25aのみが段部26上に配置される。活物質含有層25bは、凹部27に配置される。これにより、帯状極板25の搬送方向(長手方向)に加わる巻取り張力を、集電体露出部25aに集中させることができる。その結果、集電体露出部25aを巻取り張力によって十分に伸ばすことができるため、帯状極板25に生じた歪み及び反りを再度矯正することができる。ガイドローラ243を通過した帯状極板25は、ガイドローラ244を経由して第2の巻取り装置29に巻き取られる。
 第2の巻取り装置29でリール状に巻かれた帯状極板25を必要に応じて所望のサイズに裁断することにより、電極が得られる。なお、帯状極板25をそのまま電極として用いることもできる。
 図8では、プレス装置21としてプレスロールを用いたが、活物質含有層を高密度化できるものであればプレスロールの代わりに使用することができる。例えば、プレスロールの代わりに平板プレスを用いることができる。
 図8,図12では、複数のガイドローラのうち一つのガイドローラを湾曲矯正装置として使用したが、湾曲矯正装置として使用するガイドローラの数は一つに限らず、全部または全部のうちの複数個にすることができる。また、湾曲矯正装置として使用するガイドローラの位置も前段側から3つ目のガイドローラ243に限られるものではなく、任意の位置のガイドローラを用いることができる。
 図9では、ガイドローラ243の回転軸方向の一方の端部に円周面から突出した段部26を設けたが、段部の形成方法はこれに限定されず、集電体露出部を伸ばす効果が得られるものであれば良い。例えば図11に例示されるように、回転軸方向の中央付近に円周面から突出した環状の段部26を設け、段部26に隣接する両側の円周面を凹部27とすることができる。
 図9~図11では、帯状極板の片側の長辺にのみ集電体露出部を設けたが、帯状極板の両方の長辺に集電体露出部を設けても良い。帯状極板の両方の長辺に集電体露出部を設けると、電極の反りと歪を防止する効果をより高めることができる。一方、図9のように、帯状極板の片側の長辺にのみ集電体露出部を設けると、高い電池容量とエネルギー密度を得ることができる。
 図9~図11では、帯状極板の両面に活物質含有層を設けたが、帯状極板の片面のみに活物質含有層を設けることもできる。
 図9~図11では、帯状集電体の長辺方向に連続的に活物質含有層を形成したが、帯状集電体の長辺方向に間欠的に活物質含有層を形成し、活物質含有層の間に活物質含有層未形成部を設けても良い。
 以上説明した第3の実施形態によれば、圧縮成形、乾燥それぞれの工程の後に湾曲矯正が行われる。湾曲矯正では、帯状極板を、集電体露出部がローラの段部に位置し、かつ活物質含有層がローラの凹部に位置するように配置し、帯状極板の長辺方向に張力を加えるため、張力を集電体露出部に集中させることができ、集電体露出部を塑性変形させて十分に伸ばすことができる。これにより、圧縮成形と乾燥工程で電極に生じた歪みや反りを矯正することができる。その結果、品質の優れた電極を高い生産効率で製造することが可能となる。
(第4の実施形態)
 第4の実施形態によれば、帯状極板の圧縮成形と、湾曲矯正とを含む電極の製造方法を提供することができる。
 圧縮成形は、第3の実施形態のように一度で行っても良いが、多段階に分けて行うこともできる。圧縮成形を多段階に分けて行うと、それぞれの段階で必要な荷重(圧力)が減るため、各段階で電極に生じる反りや歪みが小さくなる。このため、一度で目的の厚み(もしくは密度)まで圧縮した場合に生じる電極の歪みと、複数回に分けて目的の厚み(もしくは密度)まで圧縮した場合に生じる電極の歪み(複数回に分けて生じた電極の歪みの和)とを比べた場合、後者の歪みの方がより小さくなる。よって、複数回に分けて圧縮成形を行った後、湾曲矯正を行うことにより、反りや歪みがなく、かつ高密度な電極を効率良く製造することができる。
 複数回に分けて圧縮成形を行う場合、全ての回が終了した後に湾曲矯正を施すことで電極の反りや歪みを少なくすることができるが、圧縮成形の各回毎に湾曲矯正を行うことにより、電極の反りや歪みをさらに少なくすることが可能である。
 以下、圧縮成形を二段階に分け、各段階毎に湾曲矯正を行う例を図13を参照して説明する。図13は、電極の製造に用いるプレス装置及びガイドローラを示す模式図である。図13に示すように、製造工程の前段側から後段に向かって第1のプレス装置211、複数の金属製ガイドローラ241~244、第2のプレス装置212が配置されている。第1,第2のプレス装置211,212は、それぞれ、1対のプレスロール21a,21bを有する。プレスロール21a,21bは、駆動部(図示しない)によって図13に示す矢印の方向に回転することにより、プレスロール21a,21間に挿入された帯状極板25を圧縮成形する。複数のガイドローラ241~244は、帯状極板25に搬送に必要な張力が掛かるように、帯状極板25の上下面に交互に配置されている。ガイドローラ241~244には、第1の湾曲矯正で説明したのと同様なものが用いられ、ガイドローラ243が湾曲矯正装置を兼ねている。第2のプレス装置212を通過した帯状極板は、ガイドロール装置を経由して巻取り装置によりリール状に巻き取られる。ガイドロール装置及び巻取り装置には、図8に示すものを使用することができる。
 まず、第3の実施形態で説明したのと同様にして得られた帯状極板25を、第1のプレス装置211のプレスロール21a,21b間に挿入し、圧縮成形を施す。帯状極板25の挿入方向が帯状極板25の長手方向に平行であるため、プレス圧力は、活物質含有層25bに主に加わり、活物質含有層25bが圧縮成形され、密度が高められる。集電体露出部25aには、プレス圧力がほとんど加わらないため、活物質含有層25bの下地集電体に比して伸びが小さくなる。その結果、帯状極板25に歪みや反りが生じる。
 第1のプレス装置211のプレスロール21a,21b間を通過した帯状極板25は、ガイドローラ241~242を経由してガイドローラ243まで搬送される。ガイドローラ243では、図9及び図10に示すように、段部26と凹部27との境界Xに、集電体露出部25aと活物質含有層25bとの境界が位置し、集電体露出部25aのみが段部26上に配置される。活物質含有層25bは、凹部27に配置される。これにより、帯状極板25の搬送方向(長手方向)に加わる巻取り張力を、集電体露出部25aに集中させることができる。その結果、集電体露出部25aを巻取り張力によって十分に伸ばすことができるため、帯状極板25に生じた歪み及び反りを矯正することができる。ガイドローラ243を通過した帯状極板25は、ガイドローラ244を経由して第2のプレス装置212に搬送される。
 帯状極板25を、第2のプレス装置212のプレスロール21a,21b間に挿入し、圧縮成形を施す。帯状極板25の挿入方向が帯状極板25の長手方向に平行であるため、プレス圧力は、活物質含有層25bに主に加わり、活物質含有層25bが圧縮成形され、密度が高められる。集電体露出部25aには、プレス圧力がほとんど加わらないため、活物質含有層25bの下地集電体に比して伸びが小さくなる。その結果、帯状極板25に歪みや反りが生じる。
 第2のプレス装置212を通過した帯状極板25は、複数のガイドローラを経由して巻取り装置まで搬送される。複数のガイドローラのうちの一つが湾曲矯正装置を兼ねているため、帯状極板25に生じた歪み及び反りを矯正することができる。巻取り装置でリール状に巻かれた帯状極板を必要に応じて所望のサイズに裁断することにより、電極が得られる。なお、帯状極板をそのまま電極として用いることもできる。
 図13では、圧縮成形を二段階に分けて行ったが、これに限定されるものではなく、三段階以上に分けて行うことができる。三段階以上の場合、圧縮成形を一段階行うたびに湾曲矯正を行い、その後、必要に応じて所望のサイズに裁断することにより、電極が得られる。
 図13では、プレス装置21としてプレスロールを用いたが、活物質含有層を高密度化できるものであればプレスロールの代わりに使用することができる。例えば、プレスロールの代わりに平板プレスを用いることができる。
 図13では、複数のガイドローラのうち一つのガイドローラを湾曲矯正装置として使用したが、湾曲矯正装置として使用するガイドローラの数は一つに限らず、全部または全部のうちの複数個にすることができる。また、湾曲矯正装置として使用するガイドローラの位置も前段側から3つ目のガイドローラ243に限られるものではなく、任意の位置のガイドローラを用いることができる。さらに、湾曲矯正装置として使用するガイドローラの位置及び数は、全ての工程で同じに揃えても、各工程毎に異ならせても良い。
 以上説明した第4の実施形態によれば、多段階圧縮成形と、湾曲矯正とを含む電極の製造方法が提供される。多段階圧縮成形によると、一回の工程で圧縮成形を行う場合に比して電極に生じる歪みや反りを小さくすることができる。また、湾曲矯正では、帯状極板を、集電体露出部がローラの段部に位置し、かつ活物質含有層がローラの凹部に位置するように配置し、帯状極板の長辺方向に張力を加えるため、張力を集電体露出部に集中させることができ、集電体露出部を塑性変形させて十分に伸ばすことができる。従って、多段階圧縮成形と湾曲矯正とを組み合わせることにより、電極に生じた歪みや反りを十分に矯正することができる。その結果、品質の優れた電極を高い生産効率で製造することが可能となる。
(第5の実施形態)
 第5の実施形態によれば、正極と、負極と、非水電解質とを備える電池の製造方法が提供される。正極及び負極のうち少なくとも一方の電極は、第3~第4の実施形態に係るいずれかの方法で製造される。図14は、第3の実施形態に係る方法で製造される非水電解質電池の展開斜視図である。図15は、図14に示す電池で用いられる電極群の部分展開斜視図である。
 図14に示す電池は、密閉型の角型非水電解質二次電池である。非水電解質二次電池は、外装缶1と、蓋2と、正極出力端子3と、負極出力端子4と、電極群5とを備える。図14に示すように、外装缶1は、有底角筒形状をなし、例えば、アルミニウム、アルミニウム合金、鉄あるいはステンレスなどの金属から形成される。
 図15に示すように、偏平型の電極群5は、正極6と負極7がその間にセパレータ8を介して偏平形状に捲回されたものである。正極6は、例えば金属箔からなる帯状の正極集電体と、正極集電体の集電体露出部からなる正極集電タブ6aと、少なくとも正極集電タブ6aの部分を除いて正極集電体に形成された正極活物質層6bとを含む。一方、負極7は、例えば金属箔からなる帯状の負極集電体と、負極集電体の集電体露出部からなる負極集電タブ7aと、少なくとも負極集電タブ7aの部分を除いて負極集電体に形成された負極活物質層7bとを含む。
 このような正極6、セパレータ8及び負極7は、正極集電タブ6aが電極群の捲回軸方向にセパレータ8から突出し、かつ負極集電タブ7aがこれとは反対方向にセパレータ8から突出するよう、正極6及び負極7の位置をずらして捲回されている。このような捲回により、電極群5は、図15に示すように、一方の端面から渦巻状に捲回された正極集電タブ6aが突出し、かつ他方の端面から渦巻状に捲回された負極集電タブ7aが突出している。
 電解液(図示しない)は、電極群5に含浸されている。矩形板状の蓋2は、外装缶1の開口部に例えばレーザでシーム溶接される。蓋2は、例えば、アルミニウム、アルミニウム合金、鉄あるいはステンレスなどの金属から形成される。蓋2と外装缶1は、同じ種類の金属から形成されることが望ましい。
 図14に示すように、蓋2の外面の中央付近に安全弁9が設けられている。安全弁9は、蓋2の外面に設けられた矩形状の凹部9aと、凹部9a内に設けられたX字状の溝部9bとを有する。溝部9bは、例えば、蓋2を板厚方向にプレス成型することにより形成される。注液口10は、蓋2に開口され、電解液の注液後に封止される。
 蓋2の外面には、安全弁9を間に挟んだ両側に正負極出力端子3,4が絶縁ガスケット(図示しない)を介してかしめ固定されている。負極活物質に炭素系材料を使用するリチウムイオン二次電池の場合、正極出力端子3には、例えば、アルミニウムあるいはアルミニウム合金が使用され、負極出力端子4には、例えば、銅、ニッケル、ニッケルメッキされた鉄などの金属が使用される。また、負極活物質にチタン酸リチウムを使用する場合は、上記に加え、負極出力端子4にアルミニウムあるいはアルミニウム合金を使用してもかまわない。
 正極リード11は、一端が、正極出力端子3にかしめ固定あるいは溶接によって電気的に接続され、かつ他端が正極集電タブ6aに電気的に接続されている。負極リード12は、一端が、負極出力端子4にかしめ固定あるいは溶接によって電気的に接続され、かつ他端が負極集電タブ7aに電気的に接続されている。正負極リード11,12を正負極集電タブ6a,7aに電気的に接続する方法は、特に限定されるものではないが、例えば超音波溶接やレーザ溶接等の溶接が挙げられる。
 このように、正極出力端子3と正極集電タブ6aとが正極リード11を介して電気的に接続され、負極出力端子4と負極集電タブ7aとが負極リード12を介して電気的に接続されることにより、正負極出力端子3,4から電流を取り出せるようになる。
 正負極リード11,12の材質は、特に指定しないが、正負極出力端子3,4と同じ材質にすることが望ましい。例えば、出力端子の材質がアルミニウム又はアルミニウム合金の場合は、リードの材質をアルミニウム、アルミニウム合金にすることが好ましい。また、出力端子が銅の場合は、リードの材質を銅などにすることが望ましい。
 ここで、セパレータ及び非水電解質について説明する。
 セパレータは、特に限定されるものではなく、例えば、微多孔性の膜、織布、不織布、これらのうち同一材または異種材の積層物などを用いることができる。セパレータを形成する材料としては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合ポリマー、エチレン-ブテン共重合ポリマー、セルロースなどをあげることができる。
 非水電解質には、非水溶媒に電解質(例えば、リチウム塩)を溶解させた非水電解液を用いることができる。非水溶媒は、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ-ブチロラクトン(γ-BL)、スルホラン、アセトニトリル、1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2-メチルテトラヒドロフランなどを挙げることができる。非水溶媒は、単独で使用しても、2種以上混合して使用してもよい。電解質は、例えば、過塩素酸リチウム(LiClO)、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、六フッ化砒素リチウム(LiAsF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)などのリチウム塩を挙げることができる。電解質は単独で使用しても、2種以上混合して使用してもよい。電解質の非水溶媒に対する溶解量は、0.2mol/L~3mol/Lとすることが望ましい。電解質の濃度が低すぎると十分なイオン導電性を得ることができない場合がある。一方、高すぎると電解液に完全に溶解できない場合がある。
 以上説明した第5の実施形態によれば、帯状極板を集電体露出部がローラの段部に位置し、かつ活物質含有層がローラの凹部に位置するように配置し、帯状極板の長辺方向に張力を加えるため、張力を集電体露出部に集中させることができ、集電体露出部を塑性変形させて十分に伸ばすことができる。これにより、圧縮成形や乾燥工程等の製造工程で電極に生じた歪みや反りを矯正することができる。また、捲回型電極群を作製する工程において生じていた電極の破断、巻きズレや皺・亀裂などの問題を解消することができるため、品質、生産効率に優れた電極の製造を実現することができる。
 なお、湾曲矯正が施されるのは、圧縮成形もしくは乾燥が施された帯状極板に限らず、活物質含有層の下地集電体と集電体露出部との伸びの差に起因して反りや歪みを生じた場合に有効である。
 第3の実施形態における第1,第2の湾曲矯正、第4の実施形態における湾曲矯正は、第1の実施形態に係る湾曲矯正と同様な方法で行うことが可能である。
 以下に実施例を説明するが、実施形態の主旨を超えない限り、実施形態は以下に掲載される実施例に限定されるものでない。
(実施例1)
 以下に、リチウムイオン二次電池用の正極および負極の実施例を示す。
 正極活物質としてLiCoO2と、導電剤として黒鉛粉末と、結着剤としてポリフッ化ビニリデン(PVdF)とを混合し、これらを有機溶媒に分散させ、スラリーを調製した。得られたスラリーを集電体としての帯状アルミニウム箔に長辺一辺の両面を除いて塗布した後、乾燥することにより、帯状の正極板を作製した。
 負極活物質としてLi4Ti512と、導電剤として炭素粉末と、結着剤としてポリフッ化ビニリデン(PVdF)とを混合し、これらを有機溶媒に分散させ、スラリーを調製した。得られたスラリーを集電体としての帯状アルミニウム箔に長辺一辺の両面を除いて塗布した後、乾燥することにより、帯状の負極板を作製した。
 帯状の正極板、帯状の負極板それぞれについて、図1に示すプレス装置21で活物質含有層を圧縮した後、ガイドローラ装置22を経由して巻取り装置23によりフープ状に巻き取った。湾曲矯正装置を兼ねたガイドローラ243では、段部26と凹部27との境界Xに、集電体露出部25aと活物質含有層25bとの境界を位置させ、集電体露出部25aを段部26上に配置し、活物質含有層25bを凹部27に配置した。表1に、段部26の段差H、テーパーRを示す。また、プレス装置21による圧縮成形工程から巻取り装置23によりフープ状に巻き取られるまで、帯状の正極板、帯状の負極板それぞれの長手方向に引張張力(巻取り張力)が加わった。帯状の正極板、帯状の負極板それぞれの短辺方向に平行な断面での引張応力Fを下記表1に示す。帯状の正極板、帯状の負極板それぞれについて、湾曲矯正工程では加熱処理を行わず、室温(RT)雰囲気で湾曲矯正を行った。
 巻取り装置23によりフープ状に巻き取った正極板及び負極板をそれぞれ、1mの長さに切り出し、歪み量を計測した。歪み量は、正極6の場合、図7に示すように、正極6の長さL(1m)と平行な地点と、正極6の最も湾曲した部分との最短距離Y1である。負極7の場合、負極7の長さL(1m)と平行な地点と、負極7の最も湾曲した部分との最短距離Y2を歪み量とする。歪み量の測定結果を表1に示す。
 歪み量の測定後、正極と負極の間にセパレータを配置し、集電体露出部からなる正極集電タブを電極群の捲回軸方向にセパレータから突出させ、かつ集電体露出部からなる負極集電タブをこれとは反対方向にセパレータから突出させ、扁平形状に捲回することにより、図6に示す電極群を作製した。電極群作製工程での捲回時の電極破断の有無、さらに作製した電極群を分解して電極の捲きズレ、皺や亀裂の有無を調査した。結果を表2に示す。
(実施例2~18および比較例1)
 ガイドローラに設ける段部の段差H、テーパーR、帯状の正負極板の引張応力F、さらに電極の加熱温度Tの条件を表1に示した様にすること以外は、実施例1と同様にした。結果を表1、2に示す。なお、比較例1では、ガイドローラに段部を設けず、電極の歪み、反りの矯正を一切行わなかった。また、加熱温度Tが「RT」と表示されているものは、室温(RT)雰囲気で湾曲矯正を行った。加熱温度Tに140℃と記載されている実施例13では、正負極板に140℃の加熱処理を施しながら湾曲矯正を行った。
(比較例2)
 湾曲矯正装置を兼ねたガイドローラ243の段部26上に集電体露出部25aと活物質含有層25bとの境界を位置させ、かつ段部26上に、集電体露出部25aの短辺方向の幅分全てと、集電体露出部25aの短辺方向幅と等しい幅分の活物質含有層25bとを配置すること以外は、実施例1と同様にした。結果を表1、2に示す。
(実施例19~21)
 ガイドローラに設ける段部の段差H、テーパーR、帯状の正負極板の引張応力F、さらに電極の加熱温度Tの条件を表1に示した様にすること以外は、実施例1と同様にした。結果を表1、2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1,2から明らかなように、実施例1~18によると、正極歪み量及び負極歪み量の双方が、比較例1に比して小さくなることがわかる。また、実施例1~18によると、電極作製時の電極破断が皆無である。一方、比較例2では、活物質含有層が段部上に配置されているため、集電体露出部だけに集中させたい応力が活物質含有層にも分散し、集電体露出部に比して厚みの大きい活物質含有層の方により応力が集中した。このため、比較例2によると、捲回時に電極破断を生じ、電極破断に至らずに作製できた電極群内では、巻きずれがあり、しかも電極群内の正負極に皺と亀裂が生じていた。
 実施例1~4と実施例14,15との比較から、段差Hが150%以上600%以下の実施例1~4の正負極の歪みが、段差Hが150%未満の実施例14に比して大幅に矯正されていることが分かる。段差Hが600%を超えている実施例15では、正負極の歪みが小さくなるものの、電極群を作製するために正負極を捲回すると皺や亀裂が生じることがあった。しかし、実施例19~21の結果から、段差Hが600%を超えている場合でも、段差Hを750%未満にすると、正負極の歪みが小さくなり、かつ正負極を捲回する際の皺及び亀裂の発生が皆無になることがわかった。
 実施例1,5~8,16の比較から、テーパーRが15mm以下の実施例1,5~8の正負極の歪みが、テーパーRが15mmを超える実施例16に比して大幅に矯正されていることが分かる。テーパーRが小さい方が歪み量が小さくなるものの、テーパーRが0.5mmの実施例5では、電極群を作製するために正負極を捲回すると皺や亀裂が生じることがあった。
 実施例1,9~12,17,18の比較から、引張応力Fが20(N/mm2)以上の実施例1,9~12,18の正負極の歪みが、引張応力Fが20(N/mm2)未満の実施例17に比して大幅に矯正されていることが分かる。引張応力Fが大きい方が歪み量が小さくなるものの、引張応力Fが100を超える実施例18では、電極群を作製するために正負極を捲回すると皺や亀裂が生じることがあった。
 実施例1と実施例13を比較することにより、加熱温度が60℃以上150℃以下の実施例13の正負極の歪みが、加熱処理を施さない実施例1に比して大幅に矯正されていることが分かる。
 ガイドローラに設ける段部の段差H(%)は、活物質含有層の帯状集電体片面当たりの厚さを100%とした際に下記(A)式を満たすことが望ましい。
   150≦H≦750   (A)
 段差Hを150%以上750%以下にすることによって、集電体露出部に応力を十分に集中させて伸ばすことができるため、電極の反り及び歪み量を少なくすることができる。従って、電極を捲回した際の電極の破断を防止することができる。また、段差Hを150%以上750%未満にすることによって、圧縮成形で電極に生じた歪み及び反りを少なくすることができると共に、電極を捲回した際に電極に皺及び亀裂が生じるのを抑えることができる。
 以上述べた少なくとも一つの実施形態及び実施例によれば、圧縮成形が施された帯状極板を、集電体露出部がローラの段部に位置し、かつ活物質含有層がローラの凹部に位置するように配置し、帯状極板の長辺方向に張力を加えるため、張力を集電体露出部に集中させることができ、集電体露出部を塑性変形させて十分に伸ばすことができる。これにより、帯状極板に加える張力を大幅に増加させることなく、圧縮成形で電極に生じた歪みや反りを矯正することができる。また、電極群を作製する際の電極破断を防止することができる。
(実施例22)
 以下に、リチウムイオン二次電池用の正極および負極の実施例を示す。
(第1の工程)
 正極活物質としてLiCoO2と、導電剤として黒鉛粉末と、結着剤としてポリフッ化ビニリデン(PVdF)とを混合し、これらを有機溶媒に分散させ、スラリーを調製した。得られたスラリーを集電体としての帯状アルミニウム箔に長辺一辺の両面を除いて塗布した後、乾燥した。ひきつづき、スリット装置で正極板をその長手方向に塗布部(活物質含有層)と未塗布部(集電体露出部)との幅の比率が9:1になるように裁断し、帯状の正極板を得た。
 負極活物質としてLi4Ti512と、導電剤として炭素粉末と、結着剤としてポリフッ化ビニリデン(PVdF)とを混合し、これらを有機溶媒に分散させ、スラリーを調製した。得られたスラリーを集電体としての帯状アルミニウム箔に長辺一辺の両面を除いて塗布した後、乾燥した。ひきつづき、スリット装置で負極板をその長手方向に塗布部(活物質含有層)と未塗布部(集電体露出部)との幅の比率が9:1になるように裁断し、帯状の負極板を得た。
 帯状の正極板、帯状の負極板それぞれについて、図8に示すプレス装置21で活物質含有層を圧縮した後、ガイドローラ装置22を経由して第1の巻取り装置231によりリール状に巻き取った。湾曲矯正装置を兼ねたガイドローラ243では、段部26と凹部27との境界Xに、集電体露出部25aと活物質含有層25bとの境界を位置させ、集電体露出部25aを段部26上に配置し、活物質含有層25bを凹部27に配置した。段部26の段差Hは300%で、テーパーRは6.5mmであった。また、プレス装置21による圧縮成形工程から第1の巻取り装置231によりリール状に巻き取られるまで、帯状の正極板、帯状の負極板それぞれの長手方向に引張張力(巻取り張力)が加わった。帯状の正極板、帯状の負極板それぞれの短辺方向に平行な断面での引張応力Fは40(N/mm2)であった。帯状の正極板、帯状の負極板それぞれについて、湾曲矯正工程では加熱処理を行わず、室温(RT)雰囲気で湾曲矯正を行った。
 第1の巻取り装置231によりリール状に巻き取られた正極板及び負極板それぞれから、1mの長さ分を切り出し、歪み量を計測した。歪み量は、正極6の場合、図7に示すように、正極6の長さL(1m)と平行な地点と、正極6の最も湾曲した部分との最短距離Y1である。負極7の場合、負極7の長さL(1m)と平行な地点と、負極7の最も湾曲した部分との最短距離Y2を歪み量とする。
(第2の工程)
 第1の工程後のリール状の正極板及び負極板に乾燥処理をそれぞれ施した。乾燥条件は、150℃の真空雰囲気で10時間とした。その後、リール状の正極板及び負極板それぞれから、1mの長さ分を切り出し、第1の工程で説明したのと同様にして歪み量を計測した。
(第3の工程)
 リール状の正極板及び負極板それぞれについて、図12に示す繰出し装置28を用いて繰り出し、ガイドローラ241~242を経由してガイドローラ243に搬送した。ガイドローラ243では、第1の工程で説明したのと同様にして湾曲矯正を行った。その後、リール状の正極板及び負極板それぞれから、1mの長さ分を切り出し、第1の工程で説明したのと同様にして歪み量を計測した。
 第3の工程で歪み量の測定を行った正極と負極の間にセパレータを配置し、集電体露出部からなる正極集電タブを電極群の捲回軸方向にセパレータから突出させ、かつ集電体露出部からなる負極集電タブをこれとは反対方向にセパレータから突出させ、扁平形状に捲回することにより、図15に示す電極群を作製した。電極群作製工程での捲回時の電極破断の頻度を調査した。また、電極群作製工程では、捲回時、センサで正負極の端部を検知して正負極の蛇行補正を行なった。その際の補正量を電極の蛇行量とした。
(比較例3)
 ガイドローラに段部を設けず、電極の歪み、反りの矯正を一切行わないこと以外は、実施例22と同様にして正負極及び電極群を製造し、歪み量、蛇行量及び破断頻度を測定した。
(比較例4)
 第1の工程と第3の工程で行われる湾曲矯正を下記のように変更すること以外は、実施例22と同様にして正負極及び電極群を製造し、歪み量、蛇行量及び破断頻度を測定した。
 湾曲矯正装置を兼ねたガイドローラ243の段部26上に、集電体露出部25aと活物質含有層25bとの境界を配置した。また、段部26上に、集電体露出部25aの短辺方向の幅分全てと、集電体露出部25aの短辺方向幅と等しい幅分の活物質含有層25bとを配置した。段部26の段差H、テーパーR、引張応力Fは、実施例22と同様な条件にした。また、実施例22と同様に室温(RT)雰囲気で湾曲矯正を行った。
 下記表3に、実施例22及び比較例4の歪み量及び蛇行量を、比較例3の測定値を100%として表示した結果と、実施例22及び比較例3,4の電極板の破断頻度とを示す。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、実施例22によると、第3の工程後の正負極双方の歪み量及び蛇行量が比較例3に比して小さく、また、実施例22と比較例4と比較した場合、第1~第3の工程いずれでも正負極双方の歪み量が比較例4に比して小さく、また電極群作製時の蛇行量も比較例4に比して小さいことがわかる。また、捲回型電極群を作製する際の正負極の破断頻度が、実施例1では皆無であるのに対し、比較例3,4では時々生じた。
(実施例23)
 第二の工程における乾燥条件を150℃の大気圧雰囲気で10時間とすること以外は、実施例22と同様にして正負極及び電極群を製造し、歪み量、蛇行量及び破断頻度を測定した。
(比較例5)
 ガイドローラに段部を設けず、電極の歪み、反りの矯正を一切行わないこと以外は、実施例23と同様にして正負極及び電極群を製造し、歪み量、蛇行量及び破断頻度を測定した。
(比較例6)
 第1の工程と第3の工程で行われる湾曲矯正を比較例4と同様にすること以外は、実施例23と同様にして正負極及び電極群を製造し、歪み量、蛇行量及び破断頻度を測定した。
 下記表4に、実施例23及び比較例6の歪み量及び蛇行量を、比較例5の測定値を100%として表示した結果と、実施例23及び比較例5,6の電極板の破断頻度とを示す。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、実施例23によると、第3の工程後の正負極双方の歪み量及び蛇行量が比較例5に比して小さく、また、実施例23と比較例6と比較した場合、第1~第3の工程いずれでも正負極双方の歪み量が比較例6に比して小さく、また電極群作製時の蛇行量も比較例6に比して小さいことがわかる。また、捲回型電極群を作製する際の正負極の破断頻度が、実施例23では皆無であるのに対し、比較例5,6では時々生じた。
(実施例24)
(第1の工程)
 実施例22の第1の工程で説明したのと同様にして作製した帯状の正極板、帯状の負極板それぞれについて、図12に示す第1のプレス装置211で活物質含有層を圧縮前の厚さ(塗布・乾燥後を100%とする)の90%になるまで圧縮した後、ガイドローラ241~244により搬送した。ガイドローラ243では、実施例22で説明したのと同様にして湾曲矯正を行った。その後、実施例22と同様にして歪み量を測定した。
(第2の工程)
 第1の工程で歪み量を測定した後、第2のプレス装置212で活物質含有層を圧縮前の厚さ(塗布・乾燥後を100%とする)の80%になるまで圧縮した。第2のプレス装置212を通過した帯状極板25に実施例22で説明したのと同様にして湾曲矯正を行った。その後、実施例22と同様にして歪み量を測定した。
(第3の工程)
 第2の工程で歪み量を測定した後、第1、第2のプレス装置と同様な構成の第3のプレス装置で活物質含有層を圧縮前の厚さ(塗布・乾燥後を100%とする)の75%になるまで圧縮した。第3のプレス装置を通過した帯状極板に実施例22で説明したのと同様にして湾曲矯正を行った。その後、実施例22と同様にして歪み量を測定した。
 第3の工程で歪み量の測定を行った正極と負極の間にセパレータを配置し、集電体露出部からなる正極集電タブを電極群の捲回軸方向にセパレータから突出させ、かつ集電体露出部からなる負極集電タブをこれとは反対方向にセパレータから突出させ、扁平形状に捲回することにより、図15に示す電極群を作製した。電極群作製工程での捲回時の電極破断の頻度と、電極板の蛇行量を調査した。
(比較例7)
 ガイドローラに段部を設けず、電極の歪み、反りの矯正を一切行わないこと以外は、実施例24と同様にして正負極及び電極群を製造し、歪み量、蛇行量及び破断頻度を測定した。
(比較例8)
 第1~第3の工程で行われる湾曲矯正を比較例4と同様にすること以外は、実施例24と同様にして正負極及び電極群を製造し、歪み量、蛇行量及び破断頻度を測定した。
 下記表5に、実施例24及び比較例8の歪み量及び蛇行量を、比較例7の測定値を100%として表示した結果と、実施例24及び比較例7,8の電極板の破断頻度とを示す。
Figure JPOXMLDOC01-appb-T000005
 表5から明らかなように、実施例24によると、第3の工程後の正負極双方の歪み量及び蛇行量が比較例7に比して小さく、また、実施例24と比較例8と比較した場合、第1~第3の工程いずれでも正負極双方の歪み量が比較例8に比して小さく、また電極群作製時の蛇行量も比較例8に比して小さいことがわかる。また、捲回型電極群を作製する際の正負極の破断頻度が、実施例24では皆無であるのに対し、比較例7,8では時々生じた。
(実施例25)
 段部26の段差Hを600%にすること以外は、実施例22と同様にして正負極及び電極群を製造し、歪み量、蛇行量及び破断頻度を測定した。その結果を表3に併記する。
(実施例26)
 段部26の段差Hを740%にすること以外は、実施例22と同様にして正負極及び電極群を製造し、歪み量、蛇行量及び破断頻度を測定した。その結果を表3に併記する。
 表3から明らかなように、実施例25,26によると、第3の工程後の正負極双方の歪み量及び蛇行量が比較例3に比して小さく、また、実施例25,26と比較例4と比較した場合、第1~第3の工程いずれでも正負極双方の歪み量が比較例4に比して小さく、また電極群作製時の蛇行量も比較例4に比して小さいことがわかる。また、捲回型電極群を作製する際の正負極の破断頻度が、実施例25,26では皆無であった。
 ガイドローラに設ける段部の段差H(%)は、活物質含有層の帯状集電体片面当たりの厚さを100%とした際に下記(A)式を満たすことが望ましい。
   150≦H≦750   (A)
 段差Hを150%以上750%以下にすることによって、集電体露出部に応力を十分に集中させて伸ばすことができるため、電極の反り及び歪み量を少なくすることができる。従って、電極を捲回した際の電極の破断を防止することができる。また、段差Hを150%以上750%未満にすることによって、圧縮成形で電極に生じた歪み及び反りを少なくすることができると共に、電極を捲回した際に電極に破断が生じるのを抑えることができる。
 以上に実施形態及び実施例を説明したが、説明したものに限定されるものではない。例えば、活物質含有ペーストを塗布した厚さや重量、塗布部と未塗布部との比率、電極板の圧縮密度、または第二の工程の影響などに応じて、ガイドローラに設ける段部の段差や形状、引っ張り応力などを適宜変更することで同等の効果を得ることが出来る。さらに、活物質ペーストの塗布は連続であっても間欠であっても同等の効果が得ることが出来、電極の集電基材もアルミニウム箔に限定されるものではなく、その材質や厚み、引っ張り強度や硬度に応じて、前記した段差の高さや形状、引っ張り応力などを適宜変更することで、やはり同等の効果を得ることが出来る。
 以上述べた少なくとも一つの実施形態及び実施例によれば、集電体露出部がローラの段部に位置し、かつ活物質含有層がローラの凹部に位置するように配置し、帯状集電体の長辺方向に張力を加えることにより電極に生じた歪みや湾曲を矯正する。これにより、張力を集電体露出部に集中させることができ、集電体露出部を塑性変形させて十分に伸ばすことができる。その結果、帯状極板に加える張力を大幅に増加させることなく、圧縮成形で電極に生じた歪みや反りを矯正することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 1…外装缶、2…蓋、3…正極出力端子、4…負極出力端子、5…電極群、6…正極、6a…正極集電タブ、6b…正極活物質含有層、7…負極、7a…負極集電タブ、7b…負極活物質含有層、8…セパレータ、9…安全弁、9a…凹部、9b…溝部、10…注液口、11…正極リード、12…負極リード、21…プレス装置、211,212…第1,第2のプレス装置、21a,21b…プレスロール、22…ガイドローラ装置、23…巻取り装置、231…第1の巻取り装置、241~245…ガイドローラ、25…帯状極板、25a…集電体露出部、25b…活物質含有層、26…段部、27…凹部、28…繰出し装置、29…第2の巻取り装置。

Claims (16)

  1.  帯状集電体と、前記帯状集電体の少なくとも一方の長辺に形成され、両面共に活物質含有層が存在しない集電体露出部と、前記帯状集電体の前記集電体露出部以外の少なくとも一部に形成された活物質含有層とを含む帯状極板の前記活物質含有層に、圧縮成形を施す工程と、
     円周面から突出した段部と、前記段部に隣接する凹部とを有するローラ上に、前記帯状極板を、前記集電体露出部が前記段部に位置し、かつ前記活物質含有層が前記凹部に位置するように配置し、前記帯状極板の長辺方向に張力を加える工程と
    を含むことを特徴とする電極の製造方法。
  2.  前記段部の段差が下記(A)式を満たすことを特徴とする請求項1記載の電極の製造方法。
       150≦H≦750   (A)
     但し、Hは、前記電極の前記活物質含有層の帯状集電体片面当たりの厚さを100%とした際の前記段差の大きさ(%)である。
  3.  前記段部の段差が下記(1)式を満たすことを特徴とする請求項1記載の電極の製造方法。
       150≦H≦600   (1)
     但し、Hは、前記電極の前記活物質含有層の帯状集電体片面当たりの厚さを100%とした際の前記段差の大きさ(%)である。
  4.  前記段部のテーパーR(mm)を、R≦15とすることを特徴とする請求項2または3いずれか1項記載の電極の製造方法。
  5.  前記張力を加える工程での前記帯状極板の引張応力F(N/mm2)が、20≦F≦100を満たすことを特徴とする請求項2または3いずれか1項記載の電極の製造方法。
  6.  前記張力を加える工程では、前記帯状極板に60℃以上150℃以下の温度で加熱処理が施されることを特徴とする請求項5記載の電極の製造方法。
  7.  前記活物質含有層は、前記帯状集電体の長手方向に連続的もしくは間欠的に形成されていることを特徴とする請求項2または3いずれか1項記載の電極の製造方法。
  8.  前記帯状集電体は、アルミニウム箔、アルミニウム合金箔または銅箔であることを特徴とする請求項2または3いずれか1項記載の電極の製造方法。
  9.  正極と、負極と、非水電解質とを備える電池の製造方法であって、
     前記正極及び前記負極のうち少なくとも一方の電極が、請求項1~8いずれか1項記載の方法で製造されることを特徴とする電池の製造方法。
  10.  帯状集電体と、前記帯状集電体の少なくとも一方の長辺に形成され、両面共に活物質含有層が存在しない集電体露出部と、前記帯状集電体の前記集電体露出部以外の少なくとも一部に形成された活物質含有層とを含む電極の製造方法であって、
     円周面から突出した段部と、前記段部に隣接する凹部とを有するローラ上に、前記集電体露出部が前記段部に位置し、かつ前記活物質含有層が前記凹部に位置するように配置し、前記帯状集電体の長辺方向に張力を加える工程
    を含むことを特徴とする電極の製造方法。
  11.  前記張力を加える工程は、活物質含有層を圧縮成形する工程の後に行われることを特徴とする請求項10記載の電極の製造方法。
  12.  前記張力を加える工程の後に乾燥工程が行われ、前記乾燥工程の後、前記張力を加える工程が再度行われることを特徴とする請求項11記載の電極の製造方法。
  13.  前記張力を加える工程と、前記活物質含有層を圧縮成形する工程とが交互に行われることを特徴とする請求項11記載の電極の製造方法。
  14.  前記活物質含有層は、前記帯状集電体の長手方向に連続的もしくは間欠的に形成されていることを特徴とする請求項12または13いずれか1項記載の電極の製造方法。
  15.  前記帯状集電体は、アルミニウム箔、アルミニウム合金箔または銅箔であることを特徴とする請求項12または13いずれか1項記載の電極の製造方法。
  16.  正極と、負極と、非水電解質とを備える電池の製造方法であって、
     前記正極及び前記負極のうち少なくとも一方の電極が、請求項10~15いずれか1項記載の方法で製造されることを特徴とする電池の製造方法。
PCT/JP2012/053844 2011-02-18 2012-02-17 電極の製造方法及び電池の製造方法 WO2012111815A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280004055.9A CN103250277B (zh) 2011-02-18 2012-02-17 电极的制造方法及电池的制造方法
EP12746642.3A EP2677567B1 (en) 2011-02-18 2012-02-17 Method for manufacturing electrode and method for manufacturing battery
JP2012558040A JP5596183B2 (ja) 2011-02-18 2012-02-17 電極の製造方法及び電池の製造方法
US13/969,047 US10038179B2 (en) 2011-02-18 2013-08-16 Method for producing electrode and method for producing battery
US16/016,314 US20180301688A1 (en) 2011-02-18 2018-06-22 Method for producing electrode and method for producing battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011033852 2011-02-18
JP2011-033852 2011-02-18
JP2011-033721 2011-02-18
JP2011033721 2011-02-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/969,047 Continuation US10038179B2 (en) 2011-02-18 2013-08-16 Method for producing electrode and method for producing battery

Publications (1)

Publication Number Publication Date
WO2012111815A1 true WO2012111815A1 (ja) 2012-08-23

Family

ID=46672726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053844 WO2012111815A1 (ja) 2011-02-18 2012-02-17 電極の製造方法及び電池の製造方法

Country Status (5)

Country Link
US (2) US10038179B2 (ja)
EP (1) EP2677567B1 (ja)
JP (1) JP5596183B2 (ja)
CN (1) CN103250277B (ja)
WO (1) WO2012111815A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069637A (ja) * 2011-09-26 2013-04-18 Nissan Motor Co Ltd 帯状電極の製造装置および製造方法
JP2013073690A (ja) * 2011-09-26 2013-04-22 Toshiba Corp 電極のプレス装置、電極の製造装置及び電極の製造方法
CN103258997A (zh) * 2013-04-08 2013-08-21 内蒙古稀奥科镍氢动力电池有限公司 一种消除电池极板应力的方法
JP2014116141A (ja) * 2012-12-07 2014-06-26 Toyota Motor Corp 帯状電極の製造方法
JP2014167859A (ja) * 2013-02-28 2014-09-11 Toyota Industries Corp 電極の製造装置、及び電極の製造方法
JP2017084697A (ja) * 2015-10-30 2017-05-18 三洋電機株式会社 電極板の製造方法及び二次電池の製造方法
JP2017142915A (ja) * 2016-02-08 2017-08-17 トヨタ自動車株式会社 捲回電極体の製造方法
JP2021163688A (ja) * 2020-04-02 2021-10-11 トヨタ自動車株式会社 電極板の製造方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104001720B (zh) * 2014-06-12 2016-04-06 宁德新能源科技有限公司 辊压装置
JP6101328B2 (ja) * 2015-09-10 2017-03-22 Ckd株式会社 捲回装置及び捲回素子の製造方法
EP3427944B1 (en) * 2016-03-10 2021-07-14 Nippon Steel Corporation A method for manufacturing a film laminate metal plate having excellent retort adhesiveness
JP6808338B2 (ja) * 2016-03-25 2021-01-06 株式会社Screenホールディングス 基材処理装置および基材処理方法
JP6027701B1 (ja) * 2016-05-20 2016-11-16 大野ロール株式会社 しわ発生防止装置付ロールプレス機とロールプレス方法
CN108232119A (zh) * 2016-12-10 2018-06-29 深圳格林德能源有限公司 一种改善锂离子电池正极片边缘波浪形状的工艺
KR102617865B1 (ko) * 2017-05-12 2023-12-26 주식회사 엘지에너지솔루션 리튬 이차전지용 음극의 제조방법
DE102017215143A1 (de) 2017-08-30 2019-02-28 Bayerische Motoren Werke Aktiengesellschaft Elektrode und verfahren zur ihrer herstellung
KR102148449B1 (ko) * 2017-09-01 2020-08-26 주식회사 엘지화학 케이블형 이차전지용 애노드의 제조방법, 이로부터 제조된 애노드, 및 상기 애노드를 포함하는 케이블형 이차전지
JP6946942B2 (ja) 2017-10-31 2021-10-13 トヨタ自動車株式会社 帯状電極の製造装置及び製造方法
KR102238731B1 (ko) * 2017-11-24 2021-04-08 주식회사 엘지화학 전극 시트 압연 장치와 그에 사용되는 가이드 롤 시스템 및 이를 이용한 전극 시트 권취 방법
CN208539000U (zh) * 2018-03-15 2019-02-22 宁德时代新能源科技股份有限公司 二次电池集流体的焊接装置及加工设备
KR102541535B1 (ko) * 2018-10-25 2023-06-08 주식회사 엘지에너지솔루션 단차 보정 부재를 포함하는 롤 압연 장치 및 이를 사용한 압연 방법
KR20200102242A (ko) * 2019-02-21 2020-08-31 에스케이이노베이션 주식회사 전극용 기재 및 이를 이용한 전극 제조 방법
US11121408B2 (en) 2019-03-14 2021-09-14 Medtronic, Inc. Lithium-ion battery
JP7140273B2 (ja) * 2019-04-09 2022-09-21 株式会社村田製作所 電池
CN110556513B (zh) * 2019-08-20 2021-05-18 华中科技大学 一种碱金属复合电极材料、其制备和应用
KR20210127305A (ko) * 2020-04-14 2021-10-22 주식회사 엘지에너지솔루션 권취롤로부터 전극 기재를 이송하는 시스템 및 방법
DE102021105657A1 (de) 2021-03-09 2022-09-15 Battrion Ag Verfahren zur herstellung eines beschichteten, verspannungsfreien trägers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000251942A (ja) * 1999-03-01 2000-09-14 Matsushita Battery Industrial Co Ltd 非水電解液二次電池の製造方法
JP2001297753A (ja) 2000-04-17 2001-10-26 Matsushita Electric Ind Co Ltd 非水系電池用極板の製造方法
JP2003100286A (ja) * 2001-09-19 2003-04-04 Toyota Motor Corp 帯状電極の製造方法と製造装置
JP2005093236A (ja) * 2003-09-17 2005-04-07 Toyota Motor Corp シート電極の製造方法
JP2009104850A (ja) 2007-10-22 2009-05-14 Honda Motor Co Ltd 電池製造方法及び電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3661439B2 (ja) * 1998-10-07 2005-06-15 松下電器産業株式会社 電池用電極とその製造方法および装置
US6833009B2 (en) * 2001-05-21 2004-12-21 Delphi Technologies, Inc. Method of fabrication of composite electrodes in lithium ion battery and cells
JP2012174434A (ja) 2011-02-18 2012-09-10 Toshiba Corp 電池の製造方法
JP5606416B2 (ja) * 2011-09-26 2014-10-15 株式会社東芝 電極のプレス装置、電極の製造装置及び電極の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000251942A (ja) * 1999-03-01 2000-09-14 Matsushita Battery Industrial Co Ltd 非水電解液二次電池の製造方法
JP2001297753A (ja) 2000-04-17 2001-10-26 Matsushita Electric Ind Co Ltd 非水系電池用極板の製造方法
JP2003100286A (ja) * 2001-09-19 2003-04-04 Toyota Motor Corp 帯状電極の製造方法と製造装置
JP2005093236A (ja) * 2003-09-17 2005-04-07 Toyota Motor Corp シート電極の製造方法
JP2009104850A (ja) 2007-10-22 2009-05-14 Honda Motor Co Ltd 電池製造方法及び電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2677567A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069637A (ja) * 2011-09-26 2013-04-18 Nissan Motor Co Ltd 帯状電極の製造装置および製造方法
JP2013073690A (ja) * 2011-09-26 2013-04-22 Toshiba Corp 電極のプレス装置、電極の製造装置及び電極の製造方法
JP2014116141A (ja) * 2012-12-07 2014-06-26 Toyota Motor Corp 帯状電極の製造方法
JP2014167859A (ja) * 2013-02-28 2014-09-11 Toyota Industries Corp 電極の製造装置、及び電極の製造方法
CN103258997A (zh) * 2013-04-08 2013-08-21 内蒙古稀奥科镍氢动力电池有限公司 一种消除电池极板应力的方法
CN103258997B (zh) * 2013-04-08 2015-02-25 内蒙古稀奥科镍氢动力电池有限公司 一种消除电池极板应力的方法
JP2017084697A (ja) * 2015-10-30 2017-05-18 三洋電機株式会社 電極板の製造方法及び二次電池の製造方法
US10553852B2 (en) 2015-10-30 2020-02-04 Sanyo Electric Co., Ltd. Method for manufacturing electrode and method for manufacturing secondary battery
JP2017142915A (ja) * 2016-02-08 2017-08-17 トヨタ自動車株式会社 捲回電極体の製造方法
JP2021163688A (ja) * 2020-04-02 2021-10-11 トヨタ自動車株式会社 電極板の製造方法
JP7413900B2 (ja) 2020-04-02 2024-01-16 トヨタ自動車株式会社 電極板の製造方法

Also Published As

Publication number Publication date
US20130326865A1 (en) 2013-12-12
CN103250277B (zh) 2016-02-17
US20180301688A1 (en) 2018-10-18
EP2677567A4 (en) 2014-11-05
EP2677567A1 (en) 2013-12-25
JPWO2012111815A1 (ja) 2014-07-07
JP5596183B2 (ja) 2014-09-24
CN103250277A (zh) 2013-08-14
US10038179B2 (en) 2018-07-31
EP2677567B1 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
JP5596183B2 (ja) 電極の製造方法及び電池の製造方法
JP6021508B2 (ja) 電極の製造方法及び電池の製造方法
US8313862B2 (en) Non-aqueous battery with columnar active material
CN103891024B (zh) 具备螺旋电极体的电池及其制造方法
KR102079929B1 (ko) 균일한 품질을 가지는 전극들의 제조 방법 및 이를 포함하는 전극조립체 제조 방법
KR102065338B1 (ko) 전극조립체 제조를 위한 폴딩 장치 및 스택/폴딩형 전극조립체의 제조방법
KR20130033977A (ko) 전극의 프레스 장치, 전극 제조 장치 및 전극 제조 방법
JP7236645B2 (ja) 非水電解質二次電池及びその製造方法
US9455467B2 (en) Device for folding electrode assembly
JP5512057B2 (ja) 円筒型電池
KR20180104389A (ko) 이차 전지용 전극 제조방법 및 그에 따라 제조된 이차 전지용 전극
CN107210423B (zh) 非水电解质二次电池用正极板及非水电解质二次电池
JP2012174434A (ja) 電池の製造方法
US8048569B2 (en) Non-aqueous electrolyte secondary battery
JP2010198987A (ja) 蓄電デバイスの製造方法および蓄電デバイス
KR102265741B1 (ko) 리튬 이차 전지의 제조방법 및 이에 의해 제조된 리튬 이차 전지
JP7116895B2 (ja) 捲回電極体の製造方法
JP5296971B2 (ja) 二次電池用負極の製造方法
KR20210061111A (ko) 이차전지 제조방법 및 그의 제조설비
KR102164576B1 (ko) 전극조립체 제조방법 및 이를 사용하여 제조되는 전극조립체
JP2007328932A (ja) リチウム二次電池用負極およびこれを用いたリチウム二次電池
JP2008226555A (ja) 非水電解質電池
JP2006172808A (ja) 電池の製造方法
JP7035702B2 (ja) リチウムイオン二次電池
KR102234212B1 (ko) 벤딩 구조의 제어가 가능한 전극 및 이를 포함하는 전기화학소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280004055.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746642

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012558040

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012746642

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE