WO2012111301A1 - 抗微生物性材料とその製造方法、および抗微生物性資材 - Google Patents

抗微生物性材料とその製造方法、および抗微生物性資材 Download PDF

Info

Publication number
WO2012111301A1
WO2012111301A1 PCT/JP2012/000934 JP2012000934W WO2012111301A1 WO 2012111301 A1 WO2012111301 A1 WO 2012111301A1 JP 2012000934 W JP2012000934 W JP 2012000934W WO 2012111301 A1 WO2012111301 A1 WO 2012111301A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
tin alloy
alloy layer
layer
antimicrobial
Prior art date
Application number
PCT/JP2012/000934
Other languages
English (en)
French (fr)
Inventor
廣田 幸治
比呂志 間瀬
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to US13/985,816 priority Critical patent/US8778408B2/en
Priority to CN201280009292.4A priority patent/CN103370430B/zh
Priority to KR1020137021342A priority patent/KR101547042B1/ko
Priority to JP2012524989A priority patent/JP5166651B2/ja
Publication of WO2012111301A1 publication Critical patent/WO2012111301A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/00051Accessories for dressings
    • A61F13/00059Accessories for dressings provided with visual effects, e.g. printed or colored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00361Plasters
    • A61F2013/00902Plasters containing means
    • A61F2013/00936Plasters containing means metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • B32B2307/7145Rot proof, resistant to bacteria, mildew, mould, fungi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • Y10T428/2958Metal or metal compound in coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2525Coating or impregnation functions biologically [e.g., insect repellent, antiseptic, insecticide, bactericide, etc.]

Definitions

  • the present invention relates to an antimicrobial material, a method for producing the same, and an antimicrobial material.
  • antimicrobial substances may be provided on the article surface.
  • antimicrobial substances such as pathogens attached to interiors, equipment, furniture, etc., such as floors and walls, in food processing establishments, general household kitchens, medical facilities, etc.
  • Patent Document 1 discloses a Sn—Cu alloy thin film containing Sn—Cu alloy and 1 to 10% by mass of SnO 2 as an antibacterial metal thin film provided on a substrate. It is described that the Sn—Cu alloy thin film is formed after an Sn layer and a Cu layer are formed by sputtering; and annealed at a high temperature.
  • Patent Document 2 discloses a metal fiber body having a fiber body and a metal film provided on the fiber body, the surface of which exhibits an orange peel. It is described that the metal film having an orange peel surface has high adhesion strength and antibacterial properties.
  • Patent Document 3 discloses an antibacterial substrate having a substrate and a plurality of antibacterial metal islands provided on the surface thereof. It is described that by adjusting the contact angle of the antibacterial metal island, the wear resistance can be improved and the antibacterial property can be maintained for a long time.
  • Patent Document 1 has a problem that the wear resistance is not sufficient.
  • the present invention has been made in view of the above circumstances, and provides an antimicrobial material having high wear resistance while having high antibacterial properties and corrosion resistance, a method for producing the same, and an antimicrobial material. Objective.
  • the alloy ratio of copper and tin may be adjusted within a predetermined range.
  • the surface destruction of the copper-tin alloy layer should be suppressed; for that purpose, the surface hardness of the copper-tin alloy layer should be increased. It was found that it is important to reduce the force applied by friction. Furthermore, it has been found that it is also important to improve the slipperiness of the copper-tin alloy layer surface. In order to realize these, it is preferable that the copper-tin alloy layer has a crystal structure in which grains having an appropriate size are provided on the surface with an appropriate density, and an amorphous phase is interposed between the grains.
  • the grains in the copper-tin alloy layer of the present invention are granular and are presumed to be composed of a mixture of a plurality of types of crystal phases.
  • the copper-tin alloy layer has an amorphous phase, thereby imparting appropriate flexibility to the copper-tin alloy layer and easily reducing the force applied by friction. Further, it is considered that the slipperiness of the surface of the copper-tin alloy layer can be easily improved by the presence of moderately sized grains at an appropriate density on the surface of the copper-tin alloy layer.
  • the crystal structure of the copper-tin alloy layer can be adjusted by the composition of the crystal phase.
  • a copper-tin alloy layer containing a large amount of the Cu 41 Sn 11 phase has high crystallinity and high hardness. Further, in many cases, grains are hardly present on the surface of the copper-tin alloy layer containing a large amount of the Cu 41 Sn 11 phase.
  • a copper-tin alloy layer containing a large amount of Cu 3 Sn phase has low crystallinity (close to amorphous) and low hardness. Further, grains exist on the surface of the copper-tin alloy layer containing a large amount of Cu 3 Sn phase. Grains may be formed relatively large due to crystal growth or may be formed at a high density.
  • Cu 41 in the copper-tin alloy layer is used. It has been found that it is preferable to adjust the content ratio of the Sn 11 phase and the Cu 3 Sn phase. Furthermore, the present inventors have found that the crystal structure of the copper-tin alloy layer and the content ratio of the Cu 41 Sn 11 phase and the Cu 3 Sn phase are correlated with the Q value derived from the sheet resistance. That is, the present inventors have found that a copper-tin alloy layer having a Q value in a predetermined range has high wear resistance because it has the above crystal structure. The present invention has been made based on such findings.
  • the first of the present invention relates to an antimicrobial material and a method for producing the same.
  • the copper-tin alloy layer includes a Cu 41 Sn 11 crystal phase and a Cu 3 Sn crystal phase, and the sheet resistance ( ⁇ ) of the copper-tin alloy layer is The Q value ( ⁇ / (nm ⁇ Cu atom%)) obtained by dividing by the thickness and the copper content (Cu atom%) is 1.5 ⁇ 10 ⁇ 4 to 6.0 ⁇ 10 ⁇ 4 . , Antimicrobial material.
  • the base material layer is made of a resin, natural fiber, or paper having a deflection temperature under load of 115 ° C. or less measured at a load of 1820 kPa in accordance with ASTM-D648-56. Microbial material.
  • the ratio of the Cu 41 Sn 11 crystal phase to the Cu 3 Sn crystal phase Cu 41 Sn 11 / Cu 3 Sn contained in the copper-tin alloy layer is 0.002 to 0.040.
  • the surface roughness Rz of the surface of the copper-tin alloy layer opposite to the base material layer is 14.4 to 15.9 nm, according to any one of [1] to [3] Antimicrobial material.
  • the copper-tin alloy layer is co-deposited from a vapor deposition source comprising a copper-tin alloy containing more than 60 atomic percent and less than 85 atomic percent of copper and containing 15 atomic percent to less than 40 atomic percent of tin.
  • a base material layer a copper-tin alloy layer disposed on the base material layer, containing copper in an amount of more than 60 atomic% and less than 90 atomic% and containing tin in an amount of 10 atomic% to less than 40 atomic%;
  • the copper-tin alloy layer has a copper-tin alloy adhesion amount of 0.025 to 1.0 mg / mm 2 or less, and the copper-tin alloy layer comprises a Cu 41 Sn 11 crystal phase, Cu
  • An antimicrobial material comprising a 3 Sn crystal phase and having a ratio of Cu 41 Sn 11 / Cu 3 Sn of Cu 41 Sn 11 crystal phase to Cu 3 Sn crystal phase of 0.002 to 0.040.
  • the antimicrobial material according to [9] wherein the base material layer is a nonwoven fabric, a woven fabric, or a thread.
  • [11] The method for producing an antimicrobial material according to any one of [1] to [10], wherein copper is contained in an amount of more than 60 atomic% and not more than 85 atomic%, and tin is not less than 15 atomic% and not more than 40 atomic%.
  • the base material is made of resin, natural fiber, or paper having a deflection temperature under load of 115 ° C. or less measured according to ASTM-D648-56 at a load of 1820 kPa, according to [11] or [12] A method for producing the antimicrobial material described.
  • the second of the present invention relates to the following antimicrobial materials.
  • An antimicrobial material comprising the antimicrobial material according to any one of [1] to [10].
  • the antimicrobial material according to [14] which is used as a protective film for a touch panel.
  • an antimicrobial material having high antibacterial properties and corrosion resistance, and having high wear resistance, a method for producing the same, and an antimicrobial material.
  • Example 1 It is a graph which shows the temperature dependence of the vapor pressure of copper and tin. It is a figure which shows the XRD analysis result of Example 1. It is a figure which shows the XRD analysis result of Example 2. It is a figure which shows the XRD analysis result of the comparative example 1.
  • 3 is a view showing an SEM photograph of the surface of a copper-tin alloy layer in Example 1.
  • FIG. 4 is a view showing an SEM photograph of the surface of a copper-tin alloy layer in Example 2.
  • FIG. 3 is a view showing an SEM photograph of the surface of a copper-tin alloy layer in Comparative Example 1.
  • the antimicrobial material of the present invention includes a base material layer and a copper-tin alloy layer disposed on the base material layer, and may further include other layers as necessary.
  • the material constituting the base material layer is not particularly limited, and may be metal, glass, ceramics, resin (including synthetic fiber), natural fiber, paper, wood, and the like.
  • the base material layer is preferably made of resin, natural fiber, paper or the like. Good.
  • the resin constituting the base material layer is not particularly limited, and may be a thermoplastic resin or a thermosetting resin. These resins preferably have a deflection temperature under load measured at a load of 1820 kPa according to ASTM-D648-56 of 115 ° C. or less, and more preferably 90 ° C. or less. This is because a resin having a deflection temperature under load of 115 ° C. or less has good workability and the resulting film has good flexibility.
  • ⁇ Deflection temperature under load is measured by a method based on ASTM-D648-56. Specifically, the deflection temperature under load is the value when the bending strain becomes 0.2% at a load of 1820 kPa when the test piece is set in an apparatus for flatwise and the temperature is increased at a rate of temperature increase of 2 ° C./min. Temperature.
  • the size of the test piece may be 80 mm long, 10 mm wide and 4 mm thick, and the distance between fulcrums may be 64 mm.
  • polyester resins having a deflection temperature under load of 115 ° C. or lower include polyester resins, polyolefin resins, polyamide resins, and the like, preferably polyester resins and polyolefin resins.
  • polyester resin include polyethylene terephthalate and polyethylene naphthalate.
  • the polyolefin resin may be a homopolymer of ⁇ -olefin or a copolymer of ⁇ -olefin and another copolymerization monomer.
  • the ⁇ -olefin in the polyolefin resin can be ethylene, propylene, or the like. Examples of such polyolefin resins include polyethylene and polypropylene.
  • polyamide resin include nylon 6 and nylon 66.
  • the base material layer may be a film, non-woven fabric or woven fabric.
  • the base material layer is a woven fabric, by forming a copper-tin alloy layer, which will be described later, the tensile strength of the woven fabric is improved, and the strength of the entire fabric is improved, such as being difficult to tear or deforming.
  • the weaving method of the woven fabric is not particularly limited, and for example, a plain weave can be used.
  • the thickness of the base material layer may be, for example, about 5 to 700 ⁇ m although it depends on the use of the antimicrobial material. This is because if the thickness of the base material layer is too thin, the mechanical strength of the antimicrobial material decreases.
  • the surface of the base material layer may be subjected to chemical or physical surface treatment.
  • these surface treatment methods can be used, and are not particularly limited. Specifically, plasma treatment under reduced pressure, plasma treatment under atmospheric pressure, corona treatment, vapor deposition treatment, CVD processing and the like are included.
  • the copper-tin alloy layer has a function of imparting antibacterial properties to the base material layer. For this reason, the copper-tin alloy layer is preferably disposed on the outermost surface of the antimicrobial material.
  • the copper-tin alloy layer preferably contains more than 60 atom% and less than 90 atom% of copper and preferably contains 10 atom% or more and less than 40 atom% tin; It is more preferable that it contains 10 atomic% or more and 37 atomic% or less; it is particularly preferable that tin is contained 15 atomic% or more and less than 37 atomic% and the balance is substantially a copper atom; % Or less, and the balance is particularly preferably a copper atom. If the content of tin in the copper-tin alloy is less than 10 atomic%, the appearance may change due to corrosion or discoloration due to contact with water, salt water, body fluids or the like. Furthermore, the higher the copper content, the better the antimicrobial performance.
  • the copper-tin alloy layer may further contain other elements as long as the above-described copper and tin contents are satisfied. Thereby, economical efficiency, affinity with various liquids, affinity with a base material, color tone of a metal thin film, etc. can be adjusted.
  • the copper-tin alloy may contain aluminum, germanium, beryllium, nickel, silicon, or the like whose vapor pressure in the molten state is close to that of copper.
  • other metals having antimicrobial properties such as zinc, silver and nickel may be contained within a range not impairing the corrosion resistance.
  • the copper alloy in the antimicrobial material of the present invention can be laminated on the base material layer as a thin film, even if the copper-tin alloy has a tin content of more than 10 atomic%, Has durability during use.
  • the amorphous phase in the present invention includes not only a completely amorphous phase having no crystallinity but also an amorphous phase having some crystallinity.
  • a copper-tin alloy layer having such a crystal structure can be obtained by adjusting the composition of the crystal phase. That is, the copper-tin alloy layer includes a Cu 41 Sn 11 phase and a Cu 3 Sn phase, and may further include a Cu 5.6 Sn phase as necessary.
  • a copper-tin alloy layer having a high content of the Cu 41 Sn 11 phase has high crystallinity and high hardness. Further, there is almost no grain on the surface of the copper-tin alloy layer having a high content of the Cu 41 Sn 11 phase.
  • a copper-tin alloy layer having a high content of Cu 3 Sn phase has low crystallinity (including a large amount of amorphous phase) and low hardness. Further, grains are present on the surface of the copper-tin alloy layer having a high content of Cu 3 Sn phase. Grains may be formed relatively large due to crystal growth or may be formed at a high density.
  • the content ratio of the Cu 41 Sn 11 phase and the Cu 3 Sn phase in the copper-tin alloy layer is preferably set to an appropriate range.
  • the content ratio Cu 41 Sn 11 / Cu 3 Sn of the Cu 41 Sn 11 phase and the Cu 3 Sn phase in the copper-tin alloy layer is preferably 0.002 to 0.040, preferably 0.002 to 0.010. More preferably.
  • the content ratio Cu 41 Sn 11 / Cu 3 Sn is too small, the content ratio of the Cu 3 Sn phase is large, so that not only the hardness becomes too low, but also the grains grow too much, or the density is high. May be formed too much.
  • the content ratio Cu 41 Sn 11 / Cu 3 Sn can be adjusted by the heating temperature of the base material when the copper-tin alloy layer is deposited, as will be described later.
  • the content ratio Cu 41 Sn 11 / Cu 3 Sn can be determined from the ratio of the peak intensity derived from Cu 41 Sn 11 and the peak intensity derived from Cu 3 Sn obtained by XRD measurement of the copper-tin alloy layer.
  • the peak derived from Cu 41 Sn 11 is a peak in the vicinity of 42.74 where 2 ⁇ (°) when the incident angle of X-rays on the surface of the copper-tin alloy layer is ⁇ ; the peak derived from Cu 3 Sn is 2 ⁇ (°) is a peak around 43.26.
  • the Q value ( ⁇ / (nm ⁇ Cu atom%)) derived from the sheet resistance ( ⁇ ) of the copper-tin alloy layer correlates with the crystal structure and the content ratio of the Cu 41 Sn 11 phase and the Cu 3 Sn phase. Yes. That is, the Q-value of the copper-tin alloy layer is higher for a copper-tin alloy layer having a crystal structure containing more Cu 41 Sn 11 phase and no grains; a crystal containing more Cu 3 Sn phase and grains The copper-tin alloy layer having the structure becomes lower. Therefore, whether or not the copper-tin alloy layer has the above crystal structure can be determined by the Q value of the copper-tin alloy layer.
  • the Q value of the copper-tin alloy layer is preferably 1.5 ⁇ 10 ⁇ 4 to 6.0 ⁇ 10 ⁇ 4 and more preferably 1.5 ⁇ 10 ⁇ 4 to More preferably, it is 5.0 ⁇ 10 ⁇ 4 .
  • the Q value ( ⁇ / (nm ⁇ Cu atom%)) of the copper-tin alloy layer can be measured by the following procedure. 1) The sheet resistance ( ⁇ ) on the surface of the copper-tin alloy layer is measured by a DC four-terminal method. 2) The obtained sheet resistance ( ⁇ ) is divided by the thickness (nm) of the copper-tin alloy layer and the copper atom weight (Cu atom%) contained therein, to obtain a Q value ( ⁇ / (nm ⁇ Cu atom). %)).
  • the surface roughness Rz of the surface of the copper-tin alloy layer opposite to the base material layer, that is, the surface where the copper-tin alloy layer is exposed is preferably 14.4 to 15.9 nm. More preferably, it is 0 to 15.9 nm. Since the copper-tin alloy layer having a high Cu 3 Sn phase content has grains, the surface roughness Rz tends to increase. On the other hand, since the copper-tin alloy layer having a large content of the Cu 41 Sn 11 phase has almost no grain, the surface roughness Rz tends to be small. That is, a copper-tin alloy layer having a surface roughness Rz in the above range is considered to be able to further improve the slipperiness of the surface because it has moderately sized grains at an appropriate density.
  • the surface roughness Rz of the copper-tin alloy layer can be measured by a scanning probe microscope (SPM).
  • the thickness of the copper-tin alloy layer is not particularly limited as long as it can maintain the required antimicrobial properties, and is preferably 200 nm or less, and more preferably 100 nm or less.
  • the thickness of the copper-tin alloy layer is preferably 50 nm or less, and more preferably 30 nm or less.
  • the thickness of the copper-tin alloy layer is preferably 5 nm or more, and more preferably 10 nm or more. This is for sufficiently covering the entire surface of the base material layer with the copper-tin alloy layer and obtaining a certain antimicrobial property.
  • the adhesion amount of the copper-tin alloy is preferably 1.0 mg / mm 2 or less, more preferably 0.5 mg / mm 2 or less. preferable.
  • the adhesion amount of the copper-tin alloy is preferably 0.25 mg / mm 2 or less, and more preferably 0.15 mg / mm 2 or less.
  • copper - adhesion amount of tin alloy is preferably 0.025 mg / mm 2 or more, more preferably 0.05 mg / mm 2 or more. This is for sufficiently covering the entire surface of the base material layer with a copper-tin alloy and obtaining a certain antimicrobial property.
  • the antimicrobial material of the present invention may further include an adhesive layer on the side of the base material layer opposite to the surface on which the copper-tin alloy layer is formed.
  • the pressure-sensitive adhesive layer is preferably a pressure-sensitive adhesive layer (re-peelable pressure-sensitive adhesive layer) that can peel the antimicrobial material once attached to the surface of the article. This is because the antimicrobial material must be peeled off when dirt or the like adheres to the copper-tin alloy layer surface and the antimicrobial properties are deteriorated or the appearance is impaired.
  • the type of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is not particularly limited, and any of a rubber-based pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive, a silicon-based pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, and other pressure-sensitive adhesives may be used.
  • the antimicrobial material of the present invention may further contain other layers as necessary.
  • the other layer may be a layer having functions such as water absorption, water repellency, light scattering, smoothness, and design (for example, color and gloss).
  • the antimicrobial material of the present invention is produced through a step of vacuum-depositing a copper-tin alloy layer on at least one surface side of the base material layer. This is because, in the vacuum evaporation method, unlike the case where the copper-tin alloy layer is formed by the sputtering method or the electrolytic plating method, it is not necessary to anneal the stacked layer of the copper layer and the tin layer at a high temperature.
  • composition of the evaporation source and the composition of the deposited film do not necessarily match.
  • the composition of the deposited film is determined by a number of factors such as the specific gravity in the molten state in addition to the vapor pressures of both metals, so it is difficult to predict the metal composition of the deposited thin film.
  • the magnitude of the deviation of the composition can also be made relatively small when the atomic ratio of tin in the alloy deposition source is 15% or more and less than 40%; preferably 24% or more and 33% or less. Found. Therefore, the antimicrobial metal thin film can be efficiently formed without performing any additional measures such as adding any component metal during the vapor deposition process.
  • the copper-tin alloy layer is preferably formed by co-evaporation from a single alloy deposition source.
  • the substrate in order to form the copper-tin alloy layer having the above-described crystal structure, it is important to heat the substrate to a predetermined temperature when the copper-tin alloy layer is vacuum-deposited.
  • the antimicrobial material of the present invention includes: 1) a step of preparing a vapor deposition source made of a copper-tin alloy; 2) a step of heating a substrate disposed so as to face the vapor deposition source; The vaporized metal vapor is brought into contact with the heated substrate to form a copper-tin alloy layer on the substrate.
  • the vapor deposition source in 1) is preferably a vapor deposition source comprising a copper-tin alloy containing more than 60 atomic percent and less than 85 atomic percent of copper and containing 15 atomic percent or more and less than 40 atomic percent of tin. This is because if the deposition source has the above composition, a copper-tin alloy layer with little deviation from the composition of the deposition source can be obtained.
  • the substrate is heated to a predetermined temperature in order to obtain a copper-tin alloy layer having the crystal structure described above. That is, by heating the substrate, a copper-tin alloy layer that also includes a Cu 3 Sn phase (along with the Cu 41 Sn 11 phase) is obtained. The heating of the substrate is preferably performed continuously while the copper-tin alloy layer is deposited.
  • the heating temperature depends on the type of the substrate, it is preferably 100 to 125 ° C, for example, and more preferably 110 to 120 ° C. If the temperature of the substrate is too high, the content ratio of the Cu 3 Sn phase is too high and the above crystal structure is not formed, so the Q value becomes too low. On the other hand, if the temperature of the substrate is too low, the content ratio of the Cu 41 Sn 11 phase is too high and the above crystal structure is not formed, so the Q value becomes too high. For example, when the temperature of the substrate is 90 ° C. or less, almost all of the crystal phase becomes a Cu 41 Sn 11 phase, and when it is 130 ° C. or more, almost all of the crystal phase becomes a Cu 3 Sn phase.
  • the heating method of the substrate may be any method, for example, a sheet heater may be used.
  • the antimicrobial material of the present invention is a nonwoven fabric or a woven fabric, after forming a thin film on a resin film or paper; cutting the obtained film or paper with a thin film and mixing it with other members or materials You can also.
  • an alloy vapor deposition film having a small compositional deviation from the vapor deposition source can be obtained by co-evaporation from a single alloy vapor deposition source. Therefore, it is not necessary to perform a high-temperature annealing process for alloying them after the Cu layer and the Sn layer are laminated as in the conventional case. Therefore, the copper-tin alloy layer can be formed on the base layer having low heat resistance as described above.
  • antimicrobial material of the present invention has high antibacterial properties and corrosion resistance as described above. For this reason, the antimicrobial material of this invention is preferably used as various antimicrobial materials. Examples of antimicrobial materials include medical materials, household materials, purification materials, agricultural materials, and various surface protective films.
  • Examples of medical materials include medical instruments, drug containers, personal protective equipment for infection prevention (including masks), bandages, dressing films for wounds, and adhesive bandages.
  • Examples of household materials include storage containers or packaging materials for food, drinking water, domestic water and flowers; kitchen materials such as cutting boards and food dust collection materials; bathroom materials such as washbasins and stools; Cleaning materials such as hand towels, cloths and rags; Clothes decoration materials such as clothes, footwear and bags (especially sports bags, pouches, business bags and suitcases); curtains, rugs, bedding and bedding, etc.
  • Residential materials; sanitary materials such as masks, simple toilets, toilet seat sheets, disposable diapers and sanitary products are included.
  • Examples of the purification material include a gas purification filter and a liquid purification filter.
  • Examples of agricultural materials include multi-sheets, hydroponics filters, seedling box sheets, fruit hanging bags, fruit coloring light reflecting sheets, and the like.
  • Examples of the surface protective film include a protective film for a touch panel attached to the surface of the touch panel screen of the display device.
  • the antimicrobial material of the present invention is also used as a building material that is processed into an appropriate shape as needed and is affixed to the surface of various buildings.
  • building materials include toilets, toilets, bathrooms, shower rooms, laundry rooms, air circulation ducts, air conditioner drain pans and hot water supply rooms for various facilities; The boundary between the general ward and the isolation ward in the facility, the front room of the intensive care unit, and the medical equipment; the front room of the clean room of the semiconductor manufacturing factory; the buildings such as the entrances and lower leg rooms of various buildings, or the walls of the buildings , Floors, joiner surfaces, or doors, windows, handrails, electrical switches, cooking tables, sinks, faucets, bathtubs, toilets, building materials to be affixed to surfaces such as furniture and furniture .
  • Example 1 As a base film, a polyethylene terephthalate film having a thickness of 25 ⁇ m (a deflection temperature under load (at a load of 1820 kPa): 104 ° C.) was prepared. This base film was set 400 mm above the evaporation source of the vapor deposition apparatus. Furthermore, a sheet heater was disposed on the back surface (the surface opposite to the surface on which the deposited film was formed) of the base film, and heated so that the temperature of the base film was 120 ° C.
  • the alloy evaporation source was once allowed to cool in vacuum and then heated again with an electron beam to form a copper-tin alloy layer on a base film placed approximately 400 mm above the evaporation source.
  • the deposition rate was 10 to 15 nm per second.
  • Example 2 A copper-tin alloy layer was formed on the base film in the same manner as in Example 1 except that the temperature of the base film during vapor deposition was changed as shown in Table 1.
  • DC current 1 ⁇ 10 ⁇ 6 (A), 2 ⁇ 10 ⁇ 6 (A), 5 ⁇ 10 ⁇ 6 (A), 1 ⁇ 10 ⁇ 5 (A), 2 ⁇ 10 ⁇ 5 (A), 5 ⁇ 10 -5 (A)
  • the current supply device used was KEITLEY220 PROGRAMMABLE CURRENT SOURCE; the voltage application device used was KETHLEY196 SYSTEM DMM.
  • the value obtained by dividing the obtained sheet resistance ( ⁇ ) by the thickness (nm) of the copper-tin alloy layer and the copper atom% contained in the copper-tin alloy layer is expressed as “Q value ( ⁇ / (nm -Cu atom%)) ".
  • XRD analysis The obtained film was cut into a predetermined size to obtain a sample film.
  • the XRD of the copper-tin alloy layer of this sample film was measured using an analyzer RINT-1500 (manufactured by Rigaku) under the following conditions.
  • X-ray target Cu X-ray: Cu K ALPHA1
  • Goniometer Wide angle goniometer Scanning speed: 2 ° / min
  • the XRD analysis result of the copper-tin alloy layer before the wear resistance test of Example 1 is shown in FIG. 2 (A); the XRD analysis result of the copper-tin alloy layer after the wear resistance test is shown in FIG. 2 (B). .
  • the XRD analysis result of the copper-tin alloy layer before the wear resistance test of Example 2 is shown in FIG. 3 (A); the XRD analysis result of the copper-tin alloy layer after the wear resistance test is shown in FIG. 3 (B). Show.
  • the XRD analysis result of the copper-tin alloy layer before the wear resistance test of Comparative Example 1 is shown in FIG. 4 (A); the XRD analysis result of the copper-tin alloy layer after the wear resistance test is shown in FIG. 4 (B). Show. In each figure, the horizontal axis represents 2 ⁇ (°) where the incident angle is ⁇ , and the vertical axis represents peak intensity (cps).
  • FIG. 7 (A) The SEM photograph of the surface of the copper-tin alloy layer before the wear resistance test of Comparative Example 1 is shown in FIG. 7 (A); the SEM photograph of the surface of the copper-tin alloy layer after the wear resistance test is shown in FIG. 7 (B). Show.
  • the number of bacterial colonies detected after the test is shown in Table 1 as the bacterial count (A) after 24 hours.
  • the case where no bacteria were detected was shown in Table 1 as “ ⁇ 10”.
  • the common logarithm of the value obtained by dividing the number of colonies of bacteria detected on the polyethylene plate tested at the same time by (A) is shown in Table 1 as the antibacterial activity value.
  • the test was performed in multiple times and the average of the result of each test was calculated
  • the degree of deterioration of the metal thin film was determined by observing the discoloration of the metal thin film and the presence or absence of film loss (peeling). (discoloration) ⁇ : No discoloration of metal thin film ⁇ : Discoloration of metal thin film (film missing) After the double-sided tape was applied to the metal thin film and then peeled off, it was judged by whether or not the metal thin film was peeled off (specifically, whether or not the base material layer was exposed). ⁇ : Metal thin film does not come off (no peeling) ⁇ : Metal thin film missing
  • the degree of deterioration of the metal thin film was determined by observing the discoloration of the metal thin film and the presence or absence of film loss (peeling). (discoloration) ⁇ : No discoloration of metal thin film ⁇ : Discoloration of metal thin film (film missing) After the double-sided tape was applied to the metal thin film and then peeled off, it was judged by whether or not the metal thin film was peeled off (specifically, whether or not the base material layer was exposed). ⁇ : Metal thin film does not come off (no peeling) ⁇ : Metal thin film missing
  • Table 1 shows the evaluation results of Examples 1-2 and Comparative Examples 1-4.
  • the copper-tin alloy layers of Examples 1 and 2 in which the base material was heated to a predetermined temperature during vapor deposition had not only high antibacterial and corrosion resistance but also high wear resistance. all right.
  • the copper-tin alloy layer of Comparative Example 1 in which the substrate was not heated during vapor deposition the copper-tin alloy layer of Comparative Example 2 in which the substrate heating temperature was too low; and the comparative example in which the substrate heating temperature was too high
  • the copper-tin alloy layers of Examples 1 and 2 have moderately sized grains at an appropriate density, and Cu 3 Sn between the grains. It is suggested that it has a structure in which an amorphous phase is interposed. Thereby, the copper-tin alloy layers of Examples 1 and 2 can relieve stress applied by friction. Moreover, since the slipperiness is enhanced by the surface grains, the amount of peeling can be reduced as compared with the case where almost no grains are present. Thereby, it is considered that the wear resistance is improved.
  • the Q value of the copper-tin alloy layer is lower as the proportion of the Cu 3 Sn phase contained in the copper-tin alloy layer is higher, and the Q value is higher as the proportion of the Cu 41 Sn 11 phase contained in the copper-tin alloy layer is higher.
  • the preferable crystal structure of the copper-tin alloy layer can be expressed in the numerical value range of the Q value. That is, the copper-tin alloy layers of Examples 1 and 2 having the Q value in the range of 1.5 ⁇ 10 ⁇ 4 to 6.0 ⁇ 10 ⁇ 4 are the same as those of Comparative Examples 1 to 4 in which the Q value is not in the above range. It was found that the wear resistance was higher than that of the copper-tin alloy layer.
  • Example 3 A copper-tin alloy layer was formed on one surface of the nonwoven fabric in the same manner as in Example 1 except that the base film was changed to a nonwoven fabric (made of polypropylene, Mitsui Chemicals, Syntex PS-106).
  • the adhesion amount of the copper-tin alloy was 0.4 mg / mm 2 .
  • the ratio Cu 41 Sn 11 / Cu 3 Sn between the Cu 41 Sn 11 crystal phase and the Cu 3 Sn crystal phase according to the XRD analysis was 0.002.
  • the surface of the nonwoven fabric on which the copper-tin alloy layer was not formed and the artificial leather were laminated at 120 ° C. to prepare a fabric.
  • the fabric was folded and stitched in a bag shape so that the artificial leather was on the outside and the copper-tin alloy layer was on the inside, thereby obtaining a bag-shaped antimicrobial material (antibacterial bag).
  • Example 4 The same as in Example 1 except that the base film was changed to nylon fabric (manufactured by NOXA-KURO) and the vacuum degree of the vapor deposition apparatus at the time of preparing the copper-tin alloy layer was set to 3.0 ⁇ 10 ⁇ 3 Pa or less. Thus, an antimicrobial material (antibacterial woven fabric) was produced. The adhesion amount of the copper-tin alloy was 0.3 mg / mm 2 . The weave of the nylon fabric was plain weave. Further, the ratio Cu 41 Sn 11 / Cu 3 Sn between the Cu 41 Sn 11 crystal phase and the Cu 3 Sn crystal phase according to the XRD analysis was 0.002.
  • Comparative Example 5 In order to compare with the antibacterial bag produced in Example 3, a commercially available bag (manufactured by PUMA, Ath M2M2ASB type B) was prepared. The inner surface of the bag was subjected to antibacterial and deodorizing treatment (DEW manufactured by Nippon Kashiwa Co., Ltd.).
  • Example 6 For comparison with the antibacterial woven fabric produced in Example 4, a nylon fabric (manufactured by NOXA-KURO) without a copper-tin alloy layer formed on the surface was prepared.
  • deodorization performance evaluation About the bag produced in Example 3, and the commercially available bag prepared in the comparative example 5, deodorization performance evaluation was performed as follows. M-sized T-shirts (Gunze, The Gunzemens) with 50 mL of sweat permeated were put in the bags prepared in Example 3 and the bags prepared in Comparative Example 5, respectively. Next, these bags were closed, the T-shirt was sealed, and stored at room temperature for 1 day. Thereafter, a syringe needle was inserted into the bag to collect the odor inside the bag. For the collected odor, an odor index was calculated with an odor discriminating device (FF-2A, manufactured by Shimadzu Corporation). The odor index here refers to the dilution factor when diluted with odorless air and no longer smells. A smaller magnification means less odor.
  • FF-2A odor discriminating device
  • Antibacterial performance evaluation 2 The antibacterial properties of the antibacterial woven fabric of Example 4 and the commercially available bags subjected to the antibacterial and deodorant processing of Comparative Example 5 were evaluated for antibacterial properties according to JIS L1902. Specifically, the number of S. aureus colonies was counted 0.5 hours, 1 hour, 2 hours, and 18 hours after the start of bacterial growth.
  • the antibacterial bag produced in Example 3 has a smaller odor index and an excellent deodorizing effect than the commercially available antibacterial deodorizing bag of Comparative Example 5. Moreover, the antibacterial bag of Example 3 does not have a big difference in the numerical value after 1 day storage and after 1 week storage. This indicates that the antibacterial bag of Example 3 has a high deodorization rate.
  • the present invention can provide an antimicrobial material having high antibacterial properties and corrosion resistance, and having high wear resistance, a method for producing the same, and an antimicrobial material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Dentistry (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Textile Engineering (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

 高い抗菌性と耐食性とを有しつつ、高い耐摩耗性を有する抗微生物性材料とその製造方法および抗微生物性資材を提供する。具体的には、基材層と、前記基材層上に配置され、銅を60原子%超90原子%以下含有し、かつ錫を10原子%以上40原子%未満含有する、厚さ5~200nmの銅-錫合金層と、を含み、前記銅-錫合金層は、Cu41Sn11結晶相と、CuSn結晶相とを含み、かつ前記銅-錫合金層のシート抵抗(Ω)を、前記銅-錫合金層の厚みと、銅の含有量(Cu原子%)とで除して得られるQ値(Ω/(nm・Cu原子%))が1.5×10-4~6.0×10-4である、抗微生物性材料を提供する。

Description

抗微生物性材料とその製造方法、および抗微生物性資材
 本発明は、抗微生物性材料とその製造方法、および抗微生物性資材に関する。
 物品の衛生を維持するために、抗微生物性を有する物質を物品表面に設けることがある。例えば、食品を扱う事業所や一般家庭の調理場、医療施設などにおいて、床や壁などの内装、機器、什器などに付着した病原菌などの有害微生物に起因した接触感染や中毒を防止するため、これら内装、機器、什器の表面を無菌状態に保つことが求められている。
 抗菌性を付与する手段としては、物品の表面に金属薄膜を設ける方法が知られている。抗菌性を有する金属薄膜として銅、銀およびそれらを含む合金等の金属薄膜が表面に設けられた紙やプラスチックフィルムが提案されている。
 例えば特許文献1には、基材上に設けられる抗菌性を有する金属薄膜として、Sn-Cu合金と、1~10質量%のSnOとを含むSn-Cu合金薄膜が開示されている。Sn-Cu合金薄膜は、Sn層とCu層とをスパッタリングにより形成した後;高温でアニール処理して形成されると記載されている。
 また、抗菌性を有する金属薄膜の耐摩耗性を高めることが検討されている。例えば、特許文献2には、繊維体と、その上に設けられた、表面がオレンジピールを呈する金属被膜とを有する金属繊維体が開示されている。表面がオレンジピールを呈する金属被膜は、高い密着強度と抗菌性を有すると記載されている。また特許文献3には、基材と、その表面に設けられた複数の抗菌金属アイランドとを有する抗菌性基材が開示されている。抗菌金属アイランドの接触角度を調整することで、耐摩耗性を高め、抗菌性を長時間維持できると記載されている。
特開2006-342418号公報 特開2001-234468号公報 国際公開第2008-047810号
 しかしながら、特許文献1の金属薄膜は、耐摩耗性が十分ではないという問題があった。
 一方、特許文献2および3の金属薄膜は特定の表面形状を有するため、耐摩耗性はある程度高いと考えられる。しかしながら、薄膜の耐摩耗性は、十分なものではなかった。また、これらの金属薄膜はCuSn合金ではないため、耐食性も十分なものではなかった。
 本発明は、上記事情に鑑みてなされたものであり、高い抗菌性と耐食性とを有しつつ、高い耐摩耗性を有する抗微生物性材料とその製造方法および抗微生物性資材を提供することを目的とする。
 本発明者らは、銅-錫合金層の抗菌性と耐食性を両立するためには、銅と錫の合金比率を所定の範囲に調整すればよいことを見出した。
 また、銅-錫合金層の耐摩耗性を高めるためには、銅-錫合金層の表面破壊を抑制すること;そのためには、銅-錫合金層の表面硬度を高くすればよいというものではなく、摩擦により加えられる力を緩和させることが重要であることを見出した。さらに、銅-錫合金層表面の滑り性を高めることも重要であることを見出した。これらを実現するためには、銅-錫合金層が、表面に適度なサイズのグレインを適度な密度で有し、グレイン同士の間にアモルファス相が介在した結晶構造を有することが好ましい。本発明の銅-錫合金層におけるグレインは粒状物であり、複数種類の結晶相の混合物からなると推測される。
 銅-錫合金層がアモルファス相を有することで、銅-錫合金層に適度な柔軟性を付与し、摩擦により加わる力を緩和させやすくなると考えられる。また、銅-錫合金層の表面に、適度な大きさのグレインが適度な密度で存在することで、銅-錫合金層表面の滑り性を高めやすくなると考えられる。
 銅-錫合金層の結晶構造は、結晶相の組成によって調整されうる。Cu41Sn11相を多く含む銅-錫合金層は結晶性が高く、硬度が高い。また、Cu41Sn11相を多く含む銅-錫合金層表面に、グレインはほとんど存在しないことが多い。一方、CuSn相を多く含む銅-錫合金層は、結晶性が低く(アモルファスに近く)、硬度が低い。また、CuSn相を多く含む銅-錫合金層表面にはグレインが存在する。グレインは、結晶成長により比較的大きく形成されたり、高密度に形成されたりすることがある。
 即ち、表面に適度なサイズのグレインが適度な密度で存在し、グレイン同士の間にアモルファス相が介在した結晶構造を有する銅-錫合金層を得るためには、銅-錫合金層におけるCu41Sn11相とCuSn相の含有比率を調整することが好ましいことを見出した。さらに、銅-錫合金層の結晶構造やCu41Sn11相とCuSn相の含有比率は、シート抵抗から導かれるQ値と相関性があることを見出した。即ち、Q値が所定の範囲にある銅-錫合金層は、上記の結晶構造を有するため、耐摩耗性が高いことを見出した。本発明は、このような知見に基づきなされたものである。
 本発明の第一は、抗微生物性材料およびその製造方法に関する。
 [1] 基材層と、前記基材層上に配置され、銅を60原子%超90原子%以下含有し、かつ錫を10原子%以上40原子%未満含有する銅-錫合金層と、を含み、前記銅-錫合金層は、Cu41Sn11結晶相と、CuSn結晶相とを含み、かつ前記銅-錫合金層のシート抵抗(Ω)を、前記銅-錫合金層の厚みと、銅の含有量(Cu原子%)とで除して得られるQ値(Ω/(nm・Cu原子%))が1.5×10-4~6.0×10-4である、抗微生物性材料。
 [2] 前記基材層は、ASTM-D648-56に準拠して荷重1820kPaにて測定される荷重たわみ温度が115℃以下である樹脂、天然繊維または紙からなる、[1]に記載の抗微生物性材料。
 [3] 前記銅―錫合金層に含まれる、Cu41Sn11結晶相とCuSn結晶相との比率Cu41Sn11/CuSnが、0.002~0.040である、[1]または[2]に記載の抗微生物性材料。
 [4] 前記銅-錫合金層の、前記基材層とは反対側の表面の表面粗さRzが14.4~15.9nmである、[1]~[3]のいずれかに記載の抗微生物性材料。
 [5] 前記基材層が、ポリエチレンテレフタラート、ポリエチレンナフタレート、ポリプロピレン、ポリエチレンまたはポリイミドである、[1]~[4]のいずれかに記載の抗微生物性材料。
 [6] 前記銅-錫合金層は、銅を60原子%超85原子%以下含有し、かつ錫を15原子%以上40原子%未満含有する銅-錫合金からなる蒸着源から共蒸着して形成された、[1]~[5]のいずれかに記載の抗微生物性材料。
 [7] 前記銅-錫合金層が、前記抗微生物性材料の最表面の全部または一部に設けられている、[1]~[6]のいずれかに記載の抗微生物性材料。
 [8] 前記基材層は、不織布、織布または糸である、[1]~[7]のいずれかに記載の抗微生物性材料。
 [9] 基材層と、前記基材層上に配置され、銅を60原子%超90原子%以下含有し、かつ錫を10原子%以上40原子%未満含有する銅-錫合金層と、を含み、前記銅-錫合金層の銅-錫合金の付着量は、0.025~1.0mg/mm以下であり、前記銅-錫合金層は、Cu41Sn11結晶相と、CuSn結晶相とを含み、かつ、Cu41Sn11結晶相とCuSn結晶相との比率Cu41Sn11/CuSnが、0.002~0.040である、抗微生物性材料。
 [10] 前記基材層は、不織布、織布または糸である、[9]に記載の抗微生物性材料。
 [11] [1]~[10]のいずれかに記載の抗微生物性材料の製造方法であって、銅を60原子%超85原子%以下含有し、かつ錫を15原子%以上40原子%未満含有する銅-錫合金からなる蒸着源を準備する工程と;前記蒸着源と対向するように配置された基材を加熱する工程と;前記蒸着源から前記銅-錫合金を気化させた金属蒸気を、前記加熱された基材に接触させて、前記基材上に前記銅-錫合金層を形成する工程とを含む、抗微生物性材料の製造方法。
 [12] 前記基材の加熱は、前記基材の温度を100~125℃とする、[11]に記載の抗微生物性材料の製造方法。
 [13] 前記基材は、ASTM-D648-56に準拠して荷重1820kPaにて測定される荷重たわみ温度が115℃以下である樹脂、天然繊維または紙からなる、[11]または[12]に記載の抗微生物性材料の製造方法。
 本発明の第二は、以下の抗微生物性資材に関する。
 [14] [1]~[10]のいずれかに記載の抗微生物性材料を含む、抗微生物性資材。
 [15] タッチパネル用保護フィルムとして用いられる、[14]に記載の抗微生物性資材。
 [16] 医療用資材として用いられる、[14]に記載の抗微生物性資材。
 [17] 浄化資材として用いられる、[14]に記載の抗微生物性資材。
 本発明によれば、高い抗菌性と耐食性とを有しつつ、高い耐摩耗性を有する抗微生物性材料とその製造方法および抗微生物性資材を提供できる。
銅および錫の蒸気圧の温度依存性を示すグラフである。 実施例1のXRD分析結果を示す図である。 実施例2のXRD分析結果を示す図である。 比較例1のXRD分析結果を示す図である。 実施例1の銅-錫合金層表面のSEM写真を示す図である。 実施例2の銅-錫合金層表面のSEM写真を示す図である。 比較例1の銅-錫合金層表面のSEM写真を示す図である。 実施例4及び比較例5の抗微生物性材料(抗菌織布)の抗菌性能評価結果を示すグラフであり、時間と菌数との関係を示すグラフである。
 1.抗微生物性材料
 本発明の抗微生物性材料は、基材層と、基材層上に配置される銅-錫合金層とを含み、必要に応じて他の層をさらに含んでもよい。
 基材層を構成する材料は、特に制限されず、金属、ガラス、セラミックス、樹脂(合成繊維を含む)、天然繊維、紙および木材等であってよい。なかでも、本発明では、後述のように、高温でのアニール処理を経なくても銅-錫合金層を形成できるため、基材層は、好ましくは樹脂、天然繊維または紙などであってもよい。
 基材層を構成する樹脂は、特に制限されず、熱可塑性樹脂であっても熱硬化性樹脂であってもよい。これらの樹脂は、ASTM-D648-56に準拠して荷重1820kPaにて測定される荷重たわみ温度が115℃以下であることが好ましく、90℃以下であることがより好ましい。荷重たわみ温度が115℃以下である樹脂は、加工性が良好であり、得られるフィルムの可撓性も良好だからである。
 荷重たわみ温度は、ASTM-D648-56に準拠した方法で測定される。具体的には、荷重たわみ温度は、試験片をフラットワイズ用の装置にセットし、昇温速度2℃/分で昇温したときに、荷重1820kPaで曲げ歪が0.2%になるときの温度である。試験片の大きさは、縦80mm、横10mmおよび厚さ4mmとし、支点間距離は64mmとしうる。
 荷重たわみ温度が115℃以下である樹脂の例には、ポリエステル樹脂、ポリオレフィン樹脂、およびポリアミド樹脂などが含まれ、好ましくはポリエステル樹脂、ポリオレフィン樹脂である。ポリエステル樹脂の例には、ポリエチレンテレフタレートおよびポリエチレンナフタレート等が含まれる。ポリオレフィン樹脂は、α-オレフィンの単独重合体であっても、α-オレフィンと他の共重合モノマーとの共重合体であってもよい。ポリオレフィン樹脂におけるα-オレフィンは、エチレンやプロピレン等でありうる。このようなポリオレフィン樹脂の例には、ポリエチレンやポリプロピレンなどが含まれる。ポリアミド樹脂の例には、ナイロン6およびナイロン66等が含まれる。
 基材層は、フィルムであっても、不織布または織布であってもよい。基材層を織布とした場合、後述の銅-錫合金層を形成することで、織布の引張強度が向上し、破れ難くなったり、変形し難くなる等、生地全体の強度が向上する等の利点もある。織布の織り方は特に制限はなく、例えば平織り等とすることができる。
 基材層の厚みは、抗微生物性材料の用途にもよるが、例えば5~700μm程度としうる。基材層の厚みが薄すぎると、抗微生物性材料の機械的強度が低下するからである。
 また、後述する銅-錫合金層との界面密着強度を高めるために、基材層の表面には、化学的または物理的な表面処理が施されてもよい。これらの表面処理方法の例には、公知の方法を用いることができ、特に限定されないが、具体的には、減圧下でのプラズマ処理、大気圧下でのプラズマ処理、コロナ処理、蒸着処理、CVD処理などが含まれる。
 銅-錫合金層は、基材層に抗菌性を付与する機能を有する。このため、銅-錫合金層は、抗微生物性材料の最表面に配置されることが好ましい。
 銅-錫合金層は、銅を60原子%超90原子%以下含有し、かつ錫を10原子%以上40原子%未満含有することが好ましく;銅を63原子%以上90原子%以下含み、錫を10原子%以上37原子%以下含むことがより好ましく;錫を15原子%以上37原子%未満含み、かつ残部が実質的に銅原子であることが特に好ましく;錫を20原子%以上30原子%以下含み、かつ残部が実質的に銅原子であることが特に好ましい。銅-錫合金の錫の含有量が10原子%未満であると、水や塩水、体液などとの接触により腐食または変色して外観が変化する場合がある。さらに、銅の含有量が高いほど、抗微生物性能が向上する。
 銅-錫合金層には、前述の銅および錫の含有量を満たす限りにおいて、他の元素がさらに含まれていてもよい。これにより、経済性、各種液体との親和性、基材との親和性、金属薄膜の色調などが調整されうる。例えば、銅-錫合金には、溶融状態での蒸気圧が銅に近いアルミニウム、ゲルマニウム、ベリリウム、ニッケル、シリコンなどが含有されていてもよい。また、耐食性を損なわない範囲で亜鉛、銀、ニッケルなどの抗微生物性を有する他の金属が含有されていてもよい。
 従来から、バルク金属材料分野において、銅に錫を加えて合金化し、耐食性を向上させることは広く行われてきた。ところが、青銅として古代より利用されている銅-錫合金における錫含有量の上限は、現在でも約10原子%である。錫含有量が10原子%を超える銅-錫合金は、脆性が増すため、鋳物として使われることはあるが、塑性加工を施されるような板材や棒材などには通常用いられない。
 本発明の抗微生物性材料における銅合金は、薄膜として基材層に積層されうるので、銅-錫合金の錫の含有量が10原子%を超える銅-錫合金であっても、加工性や使用時の耐久性を有する。
 前述の通り、銅-錫合金層の耐摩耗性を高めるためには、摩擦により加えられる力を緩和できるようにすることが重要である。さらに、銅-錫合金層の表面の滑り性を高めることが重要である。それらを実現するためには、表面に適度なサイズのグレインが適度な密度で存在し、グレイン同士の間にアモルファス相が介在した結晶構造を有する銅-錫合金層を形成することが好ましいと推測される。本発明におけるアモルファス相とは、結晶性を有しない完全なアモルファス相だけでなく、結晶性を若干有するアモルファス相なども含む。
 このような結晶構造を有する銅-錫合金層は、結晶相の組成を調整することによって得ることができる。即ち、銅-錫合金層は、Cu41Sn11相と、CuSn相とを含み、必要に応じてCu5.6Sn相をさらに含むこともある。
 Cu41Sn11相の含有割合が多い銅-錫合金層は、結晶性が高く、硬度が高い。また、Cu41Sn11相の含有割合が多い銅-錫合金層の表面には、グレインがほとんど存在しない。一方、CuSn相の含有割合が多い銅-錫合金層は、結晶性が低く(アモルファス相を多く含み)、硬度が低い。また、CuSn相の含有割合が多い銅-錫合金層の表面にはグレインが存在する。グレインは、結晶成長により比較的大きく形成されたり、高密度に形成されたりすることがある。
 即ち、上記の結晶構造を有する銅-錫合金層を得るためには、銅-錫合金層におけるCu41Sn11相とCuSn相の含有比率を適度な範囲にすることが好ましい。銅-錫合金層におけるCu41Sn11相とCuSn相の含有比率Cu41Sn11/CuSnは、0.002~0.040であることが好ましく、0.002~0.010であることがより好ましい。前述のように、含有比率Cu41Sn11/CuSnが小さすぎると、CuSn相の含有割合が多いため、硬度が低くなりすぎるだけでなく、グレインが大きく成長しすぎたり、高密度に形成されすぎたりすることがある。一方、含有比率Cu41Sn11/CuSnが大きすぎると、Cu41Sn11相の含有割合が多いため、硬度が高くなりすぎるだけでなく、グレインがほとんど形成されない。含有比率Cu41Sn11/CuSnは、後述するように、銅-錫合金層を蒸着する際の基材の加熱温度によって調整することができる。
 含有比率Cu41Sn11/CuSnは、銅-錫合金層をXRD測定して得られるCu41Sn11由来のピーク強度と、CuSn由来のピーク強度との比から求めることができる。Cu41Sn11由来のピークは、銅-錫合金層表面へのX線の入射角度をθとしたときの2θ(°)が42.74付近のピークであり;CuSn由来のピークは、2θ(°)が43.26付近のピークである。
 銅-錫合金層のシート抵抗(Ω)から導かれるQ値(Ω/(nm・Cu原子%))は、結晶構造やCu41Sn11相とCuSn相との含有比率と相関している。即ち、銅-錫合金層のQ値は、Cu41Sn11相を多く含み、グレインが存在しない結晶構造を有する銅-錫合金層ほど高く;CuSn相を多く含み、グレインが存在する結晶構造を有する銅-錫合金層ほど低くなる。そのため、銅-錫合金層が上記の結晶構造を有するかどうかは、銅-錫合金層のQ値によって判断することができる。そのため、耐摩耗性を高めるためには、銅-錫合金層のQ値は、1.5×10-4~6.0×10-4であることが好ましく、1.5×10-4~5.0×10-4であることがより好ましい。
 銅-錫合金層のQ値(Ω/(nm・Cu原子%))は、以下の手順で測定することができる。
 1)銅-錫合金層の表面のシート抵抗(Ω)を、直流4端子法により測定する。
 2)得られたシート抵抗(Ω)を、銅-錫合金層の厚み(nm)と、それに含まれる銅原子量(Cu原子%)とで除して、Q値(Ω/(nm・Cu原子%))を算出する。
 銅-錫合金層の、基材層とは反対側の面、すなわち銅-錫合金層が露出している面の表面粗さRzは14.4~15.9nmであることが好ましく、15.0~15.9nmであることがより好ましい。CuSn相の含有割合が多い銅-錫合金層はグレインを有するため、表面粗さRzは大きくなりやすい。一方、Cu41Sn11相の含有割合が多い銅-錫合金層はグレインをほとんど有しないため、表面粗さRzは小さくなりやすい。つまり、表面粗さRzが上記範囲である銅-錫合金層は、適度な大きさのグレインを適度な密度で有するため、表面の滑り性を一層高められると考えられる。
 銅-錫合金層の表面粗さRzは、走査型プローブ顕微鏡(ScannigProbe Microscope;SPM)により測定することができる。
 銅-錫合金層の厚みは、特に制限されないが、求められる抗微生物性が維持できる厚みであればよく、200nm以下であることが好ましく、100nm以下であることがより好ましい。銅-錫合金層を半透明にする場合には、銅-錫合金層の厚みは、50nm以下であることが好ましく、30nm以下であることがより好ましい。また、銅-錫合金層の厚みは5nm以上であることが好ましく、10nm以上であることがより好ましい。基材層の全面を銅-錫合金層で十分に被覆し、かつ一定の抗微生物性を得るためである。
 基材層が、織布および不織布などである場合には、銅-錫合金の付着量は、1.0mg/mm以下であることが好ましく、0.5mg/mm以下であることがより好ましい。銅-錫合金層を半透明にする場合には、銅-錫合金の付着量は、0.25mg/mm以下であることが好ましく、0.15mg/mm以下であることがより好ましい。また、銅-錫合金の付着量は0.025mg/mm以上であることが好ましく、0.05mg/mm以上であることがより好ましい。基材層のできるだけ全面を銅-錫合金で十分に被覆し、かつ一定の抗微生物性を得るためである。
 本発明の抗微生物性材料は、基材層の銅-錫合金層が形成された面とは反対側に、粘着層をさらに含んでいてもよい。粘着層は、一旦物品表面に貼り付けられた抗微生物性材料を剥離することができるような粘着層(再剥離可能な粘着層)であることが好ましい。銅-錫合金層面に汚れなどが付着して抗微生物性などの特性が低下した場合や、外観が損なわれた場合などには、抗微生物性材料を剥がす必要があるからである。
 粘着層を構成する粘着剤の種類は特に限定されず、ゴム系粘着剤、アクリル系粘着剤、シリコン系粘着剤、ウレタン系粘着剤、その他の粘着剤のいずれでもよい。
 本発明の抗微生物性材料は、必要に応じて、他の層をさらに含んでいてもよい。他の層は、吸水性、撥水性、光散乱性、平滑性、および意匠性(例えば色彩や光沢)などの機能を有する層などでありうる。一方、廉価な抗微生物材料を製造するという観点からは、基材層上に直接、銅-錫合金層を形成するのが好ましい。
 2.抗微生物性材料の製造方法
 本発明の抗微生物性材料は、基材層の少なくとも一方の面側に、銅-錫合金層を真空蒸着させるステップ、を経て製造される。真空蒸着法では、スパッタリング法や電解めっき法で銅-錫合金層を形成する場合とは異なり、銅層と錫層の積層物を高温でアニール処理して合金化させる必要がないからである。
 一方で、真空蒸着法で合金薄膜を形成する場合、合金の各構成元素の蒸発速度が一定の比率になるように調整する必要がある。一般的に、特定の温度における金属の蒸気圧は元素によって大きく異なるため、蒸発速度も大きく異なるためである。
 つまり、合金蒸発源を加熱溶融させると、蒸気圧の高い元素(A元素)だけが先に蒸発し、A元素がほぼ蒸発しきって蒸発源の中にA元素がほとんど残らない状況になった後に、蒸気圧の低い元素(B元素)の蒸発速度が徐々に高まって、最後にはB元素だけが蒸発する。このような方法では、一定範囲の組成に制御された合金を得ることができない。そのため、通常は2つ以上の蒸発源を独立して用意し、それぞれの蒸発源に合金の構成元素を1種類ずつ入れて独立に加熱温度を制御して、合金構成元素同士の蒸発速度比を制御する。当然ながら、このような制御方式は、成膜コストの上昇を引き起こす。
 ところが、図1に示すように、銅と錫は、1050℃から1500℃の広い範囲で非常に近い蒸気圧を有する。そのため、銅と錫以外の合金系の場合とは異なり、単一の銅-錫合金の蒸発源を用いても、比較的一定範囲の組成に制御された銅と錫の合金蒸着膜を得ることができることを見出した。
 ただし、蒸発源の組成と蒸着膜の組成とは必ずしも一致するものではない。蒸着膜の組成は、双方の金属の蒸気圧以外にも、溶融状態での比重など複数の因子が関係して決まるため、成膜した薄膜の金属組成を予見することは困難である。
 本発明者らの詳細な検討の結果、銅と錫の合金系では、合金蒸着源における錫の原子数比率が15%以上40%未満の場合;好ましくは24%以上33%以下の場合には、蒸発源の組成と蒸着膜の組成が近似することをさらに見出した。また、一般には合金蒸発源を用いて蒸着を連続的に行うと、合金のうちの一部の成分元素のみが先に多く蒸発することで、残った蒸発源の組成が元の組成からずれていくことにより、徐々に蒸着膜の組成もずれていくことが知られている。その組成のずれの大きさも、合金蒸着源における錫の原子数比率が15%以上40%未満の場合;好ましくは24%以上33%以下の場合には、比較的小さくできることも、本発明者らは見出した。そのため、蒸着工程の進行中に何れかの成分金属を追加するなどの特段の追加的措置を実施しなくても、効率よく抗微生物性金属薄膜を形成することができる。
 単一の合金蒸着源から得られる銅と錫の合金蒸着膜は、2以上の蒸着源から得られる合金蒸着膜よりも成膜コストが低いだけでなく、合金組成が均一になりやすい。このため、本発明では、銅-錫合金層を、単一の合金蒸着源から共蒸着させて形成することが好ましい。
 そして本発明では、前述の結晶構造を有する銅-錫合金層を形成するために、銅-錫合金層を真空蒸着させる際に、基材を所定の温度に加熱することが重要である。
 即ち、本発明の抗微生物性材料は、1)銅-錫合金からなる蒸着源を準備する工程;2)蒸着源に対向するように配置された基材を加熱する工程;3)蒸着源から気化させた金属蒸気を、前記加熱された基材に接触させて、基材上に銅-錫合金層を形成する工程、を経て製造される。
 1)における蒸着源は、銅を60原子%超85原子%以下含有し、かつ錫を15原子%以上40原子%未満含有する銅-錫合金からなる蒸着源であることが好ましい。蒸着源が上記組成を有していれば、蒸着源の組成とのずれが少ない銅-錫合金層が得られるからである。
 2)および3)では、前述の結晶構造を有する銅-錫合金層を得るために、基材を所定の温度に加熱する。即ち、基材を加熱することで、(Cu41Sn11相とともに)、CuSn相をも含む銅-錫合金層を得る。基材の加熱は、銅-錫合金層を蒸着させる間継続して行われることが好ましい。
 加熱温度は、基材の種類にもよるが、例えば100~125℃であることが好ましく、110~120℃であることがより好ましい。基材の温度が高すぎると、CuSn相の含有割合が多すぎて、上記の結晶構造が形成されないため、Q値が低くなりすぎる。一方、基材の温度が低すぎると、Cu41Sn11相の含有割合が多すぎて、上記の結晶構造が形成されないため、Q値が高くなりすぎる。例えば、基材の温度が90℃以下であると、結晶相のほぼ全てがCu41Sn11相となり、130℃以上であると、結晶相のほぼ全てがCuSn相となる。
 基材の加熱方法は、任意の方法であってよく、例えばシートヒータ等により行えばよい。
 本発明の抗微生物性材料が不織布または織布である場合、樹脂フィルムまたは紙上に薄膜を形成した後;得られる薄膜付きフィルムまたは紙を断裁し、他の部材や材料と混合して製造することもできる。
 このように、本発明では、単一の合金蒸着源からの共蒸着により、蒸着源との組成のずれの少ない合金蒸着膜を得ることができる。そのため、従来のように、Cu層とSn層とを積層した後;これらの合金化させるための高温のアニール処理を行う必要がない。そのため、銅-錫合金層を、前述のような、耐熱性の低い基材層にも形成することができる。
 3.抗微生物性材料の用途
 本発明の抗微生物性材料は、前述の通り、高い抗菌性と耐食性とを有する。このため、本発明の抗微生物性材料は、各種抗微生物性資材として好ましく用いられる。抗微生物性資材の例には、医療用資材、家庭用資材、浄化資材、農業用資材および各種表面保護フィルムなどが含まれる。
 医療用資材の例には、医療器具、薬剤容器、感染防止用個人防護具(マスクなどを含む)、包帯、創傷用ドレッシングフィルム、および絆創膏等が含まれる。家庭用資材の例には、食品、飲料水、生活用水および花卉用などの保存容器または包装資材;まな板や食品塵芥捕集用資材などの台所用資材;洗面器および腰掛等の浴室用資材;手巾、布巾および雑巾等の清拭用資材;衣服、履物およびかばん(特にスポーツバッグ、ポーチ、ビジネスバッグ、及びスーツケース等の裏地)等の服飾装飾用資材;カーテン、敷物、寝具および寝装品等の住宅用資材;マスク、簡易便器、便座用シート、紙おむつおよび生理用品等の衛生用資材等が含まれる。浄化資材の例には、気体浄化フィルターや液体浄化フィルターなどが含まれる。農業用資材の例には、マルチシート、水耕栽培用フィルター、育苗箱用シート、果実掛袋および果実色付け用光反射シート等が含まれる。表面保護フィルムの例には、表示装置のタッチパネル画面の表面に貼り付けられるタッチパネル用保護フィルム等が含まれる。
 本発明の抗微生物性材料は、必要に応じて適切な形状に加工されて、各種建造物の表面に貼り付けられる建築用資材としても用いられる。このような建築用資材の例には、各種施設の洗面所、便所、浴室、シャワー室、洗濯室、空気循環用ダクト、空調機のドレインパンおよび給湯室;食品を扱う事業所の厨房;医療施設における一般病棟と隔離病棟の境界部、集中治療室の前室、および医療用機器;半導体製造工場のクリーンルーム前室;各種建造物のエントランスや下足室などの建造物、あるいは建造物の壁面、床面、建具表面またはこれらに設置された扉、窓、手すり、電気スイッチ、調理台、流し台、水栓、浴槽、便器、家具や什器などの表面に貼り付けられる建築用資材などが含まれる。
 以下、実施例および比較例を参照してさらに本発明を説明する。本発明の技術的範囲は、これらによって限定されるものではない。
 (実施例1)
 基材フィルムとして、厚さ25μmのポリエチレンテレフタレートフィルム(荷重たわみ温度(荷重1820kPa時):104℃)を準備した。この基材フィルムを、蒸着装置の蒸発源から400mm上方にセットした。さらに、基材フィルムの裏面(蒸着膜を形成する面とは反対側の面)には、シートヒータを配置し、基材フィルムの温度が120℃となるように加熱した。
 また、大きさ1~2mmの粒状の純銅(純度99.9%)を60gと、大きさ1~2mmの粒状の純錫(純度99.9%)を40gとを秤量し(合計で100g)、これらを金属容器内に入れてよく混合して、銅77原子%、錫23原子%(銅60重量%、錫40重量%)の蒸発源とした。この蒸発源を、蒸着装置のルツボに入れて10-3Pa以下の圧力になるまで真空排気した。次いで、蒸発源が大きく飛散しないようにゆっくりと、電子ビームでルツボおよび蒸発源を加熱し、ルツボ中の蒸発源を完全に融解させて合金蒸発源とした。
 この合金蒸発源を一旦真空中で放冷した後、再度電子ビームにより加熱し、蒸発源から約400mm上方に設置された基材フィルム上に銅-錫合金層を形成した。成膜速度は毎秒10~15nmとした。
 (実施例2)
 蒸着時の基材フィルムの温度を、表1に示されるように変更した以外は実施例1と同様にして基材フィルム上に銅-錫合金層を形成した。
 (比較例1~4)
 蒸着時の基材フィルムの温度を、表1に示すように変更した以外は実施例1と同様にして基材フィルム上に銅-錫合金層を形成した。
 (評価)
 実施例1、2、及び比較例1~4で得られた銅-錫合金層の、1)合金組成の分析、2)表面粗さRzの測定、3)シート抵抗およびQ値の測定、4)耐摩耗性試験、5)XRD分析、6)SEM観察、7)抗菌性能試験および8)耐久性試験を、以下のようにして行った。
 1)合金組成の分析
 得られたフィルムの一部を約3ミリメートル四方に切り出してサンプルフィルムとした。このサンプルフィルムの銅-錫合金層に含まれる金属原子を、エネルギー分散X線分光法(EDS)により検出し、検出された全金属原子のうち銅以外の添加金属(錫)の原子数比率を求めた。これにより、得られた銅-錫合金層の合金組成を求めた。
 2)表面粗さRzの測定
 得られたフィルムの銅-錫合金層の表面粗さRzを、走査プローブ顕微鏡(SPM、エスアイアイ・ナノテクノロジー社製 SPI-3800N)により、以下の条件で測定した。
 測定モード:DFM
 カンチレバー:SI-DF20
 測定範囲:1μm×1μm
 3)シート抵抗およびQ値の測定
 得られたフィルムを所定の大きさに切り出してサンプルフィルムとした。このサンプルフィルムの銅-錫合金層の表面に、電流供給装置の電流源端子と、電圧測定装置の電圧検出端子とで構成された4端子の電極を押し当てた。そして、サンプルフィルムの銅-錫合金層の表面に、直流4端子法により以下の直流電流を流したときの電圧変化から、シート抵抗(Ω)を測定した。
 直流電流:1×10-6(A)、2×10-6(A)、5×10-6(A)、1×10-5(A)、2×10-5(A)、5×10-5(A)
 電流供給装置は、KEITHLEY220 PROGRAMMABLE CURRENT SOURCEを用い;電圧印加装置は、KETHLEY196 SYSTEM DMMを用いた。
 得られたシート抵抗(Ω)を、銅-錫合金層の厚み(nm)と、銅-錫合金層に含まれる銅原子%とで除して得られる値を「Q値(Ω/(nm・Cu原子%))」とした。
 4)耐摩耗性試験
 得られたフィルムの銅-錫合金層の表面を、水で濡らしたフェルト布を用いて3kgf荷重の条件下で擦った。そして、基材層の色がみえるまでに擦った回数を測定した。
  ○:擦った回数が500回以上
  ×:擦った回数が500回未満
 5)XRD分析
 得られたフィルムを所定の大きさに切り出してサンプルフィルムとした。このサンプルフィルムの銅-錫合金層のXRDを、分析装置 RINT-1500(理学製)を用いて、以下の条件にて測定した。
 X線ターゲット:Cu
 X線:Cu K ALPHA1
 ゴニオメータ: 広角ゴニオメータ
 スキャンスピード:2°/min
 スキャンステップ:0.02°
 走査範囲:3~100°
 そして、銅-錫合金層表面へのX線の入射角度をθとしたときの、2θ(°)が42.74付近にあるCu41Sn11に由来するピーク強度と、2θ(°)が43.26付近にあるCuSnに由来するピーク強度とを測定し;これらのピーク強度の比Cu41Sn11/CuSnを算出した。
 実施例1の耐摩耗性試験前の銅-錫合金層のXRD分析結果を図2(A)に;耐摩耗性試験後の銅-錫合金層のXRD分析結果を図2(B)に示す。実施例2の耐摩耗性試験前の銅-錫合金層のXRD分析結果を図3(A)に示し;耐摩耗性試験後の銅-錫合金層のXRD分析結果を図3(B)に示す。比較例1の耐摩耗性試験前の銅-錫合金層のXRD分析結果を図4(A)に示し;耐摩耗性試験後の銅-錫合金層のXRD分析結果を図4(B)に示す。各図において、横軸は入射角度をθとしたときの2θ(°)であり、縦軸はピーク強度(cps)を示す。
 6)SEM観察
 得られたフィルムの銅-錫合金層の表面を、走査型電子顕微鏡(日立製作所(株)製 S-4700N)により、5000倍、および30000倍の条件で、それぞれ測定した。実施例1の耐摩耗性試験前の銅-錫合金層表面のSEM写真を図5(A)に示し;耐摩耗性試験後の銅-錫合金層表面のSEM写真を図5(B)に示す。実施例2の耐摩耗性試験前の銅-錫合金層表面のSEM写真を図6(A)に示し;耐摩耗性試験後の銅-錫合金層表面のSEM写真を図6(B)に示す。比較例1の耐摩耗性試験前の銅-錫合金層表面のSEM写真を図7(A)に示し;耐摩耗性試験後の銅-錫合金層表面のSEM写真を図7(B)に示す。
 7)抗菌性能試験
 得られたフィルムを一辺が50ミリメートルの正方形に切り出してサンプルフィルムとした。このサンプルフィルムについて、黄色ブドウ球菌を用いて、JIS Z 2801に準拠した抗菌性試験を実施した。
 試験後に検出された菌のコロニー数を、24時間後の菌数(A)として表1に記載した。菌が全く検出されなかった場合を「<10」として表1に記載した。また、対照として、同時に試験したポリエチレン板上で検出された菌のコロニー数を(A)で割った値の常用対数値を、抗菌活性値として表1に記載した。なお、試験は複数回行って、各試験の結果の平均を求めた。
 8)耐久性試験
 8-1)耐久性試験(温水接触劣化)
 得られたフィルムを一辺が50ミリメートルの正方形に切り出してサンプルフィルムとし、このサンプルフィルムを浴室壁に貼り付けた。そして、サンプルフィルムの表面を40±2℃のハンドシャワー水流で30秒間流した後、それと同じ温度の水滴をフィルム表面に向かって飛散させて、付着した水滴を拭き取ることなく自然乾燥させた。この一連の操作を、1日に2回ずつ3日間実施し、その後の金属薄膜の劣化度合いを目視で評価した。その後、さらに同様の操作を4日間実施し、合計7日間実施した後の金属薄膜の劣化度合いを目視で評価した。
 金属薄膜の劣化度合いは、金属薄膜の変色および膜抜け(剥がれ)の有無を観察することにより行った。
 (変色)
 ○:金属薄膜の変色なし
 ×:金属薄膜の変色あり
 (膜抜け)
 金属薄膜に両面テープを貼り付けた後、剥がした後に、金属薄膜が剥がれたかどうか(具体的には、基材層が露出してみえるか否か)によって判断した。
 ○:金属薄膜の膜抜けなし(剥がれなし)
 ×:金属薄膜の膜抜けあり
 8-2)耐久性試験(塩水接触劣化)
 得られたフィルムを一辺が50ミリメートルの正方形に切り出してサンプルフィルムとした。生理食塩水に浸した後、軽く絞ったガーゼで、このサンプルフィルムの表面を、荷重2±0.5Nの押し付け力で3回清拭した後、付着した水滴を拭き取ることなく自然乾燥させた。この操作を、1日に2回ずつ3日間実施し、その後の金属薄膜の劣化度合いを目視で評価した。その後、さらに同様の操作を4日間実施し、合計7日間実施した後の、金属薄膜の劣化度合いを目視で評価した。
 金属薄膜の劣化度合いは、金属薄膜の変色および膜抜け(剥がれ)の有無を観察することにより行った。
 (変色)
 ○:金属薄膜の変色なし
 ×:金属薄膜の変色あり
 (膜抜け)
 金属薄膜に両面テープを貼り付けた後、剥がした後に、金属薄膜が剥がれたかどうか(具体的には、基材層が露出してみえるか否か)によって判断した。
 ○:金属薄膜の膜抜けなし(剥がれなし)
 ×:金属薄膜の膜抜けあり
 実施例1~2および比較例1~4の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、蒸着時に基材を所定温度に加熱した実施例1および2の銅-錫合金層は、高い抗菌性と耐食性を有するだけでなく、高い耐摩耗性を有することがわかった。一方、蒸着時に基材を加熱しなかった比較例1の銅-錫合金層;基材の加熱温度が低すぎる比較例2の銅-錫合金層;および基材の加熱温度が高すぎる比較例3および4の銅-錫合金層は、いずれも実施例と同等の抗菌性と耐食性を有するものの、耐摩耗性が低いことがわかった。
 まず、図2~4のXRD分析結果について検討する。実施例1および2の銅-錫合金層では、Cu41Sn11相に由来するピークだけでなく、CuSn相に由来するピークが観察された(図2および3参照)。一方、比較例1の銅-錫合金層では、Cu41Sn11相に由来するピークは観察されるが、CuSn相に由来するピークは観察されなかった(図4参照)。このことから、実施例1および2の銅-錫合金層は、比較例1の銅-錫合金層とは異なり、Cu41Sn11相だけでなく、CuSn相を有することがわかった。
 次に、図5~7のSEM観察結果について検討する。比較例1の耐摩耗性試験前の銅-錫合金層の表面には、ほとんどグレインが確認されないのに対し(図7(A)参照);実施例1および2の耐摩耗性試験前の銅-錫合金層の表面には、適度な大きさのグレインが適度な密度(比較的高密度)で存在することがわかる(図5(A)および6(A)参照)。
 そして、比較例1の耐摩耗性試験後の銅-錫合金層の表面は剥がれた部分が多く、耐摩耗性が低いのに対し(図7(B)参照);実施例1および2の耐摩耗性試験後の銅-錫合金層の表面は、剥がれた部分が少なく、耐摩耗性が高いことがわかる(図5(B)と6(B)参照)。
 これらの図2~4および図5~7の結果から、実施例1および2の銅-錫合金層は、適度な大きさのグレインを適度な密度で有し、かつグレイン間にCuSnのアモルファス相が介在する構造を有することが示唆される。それにより、実施例1および2の銅-錫合金層は、摩擦により加わる応力を緩和できる。また、表面のグレインにより滑り性が高められるため、ほとんどグレインが存在しない場合と比べて剥がれる量を少なくすることができる。それにより、耐摩耗性が向上したと考えられる。
 また、銅-錫合金層のQ値は、銅-錫合金層に含まれるCuSn相の割合が多いほど低く、銅-錫合金層に含まれるCu41Sn11相の割合が多いほど高くなることがわかった。このことから、銅-錫合金層の好ましい結晶構造は、Q値の数値範囲で表わすことができることがわかった。すなわち、Q値が1.5×10-4~6.0×10-4の範囲にある実施例1および2の銅-錫合金層は、Q値が前記範囲にない比較例1~4の銅-錫合金層よりも、耐摩耗性が高いことがわかった。
 (実施例3)
 基材フィルムを不織布(ポリプロピレン製、三井化学株式会社、シンテックスPS-106)に変更した以外は、実施例1と同様にして、前記不織布の一方の面に銅-錫合金層を形成した。銅-錫合金の付着量は、0.4mg/mmであった。また、上記XRD分析によるCu41Sn11結晶相とCuSn結晶相との比率Cu41Sn11/CuSnは0.002であった。
 次に、この不織布の銅-錫合金層が形成されていない面と、人工皮革とを120℃でラミネートし、生地を作製した。当該生地を人工皮革が外側、銅-錫合金層が内側になるように袋状に折りたたみ縫い合わせることで、袋状の抗微生物製材料(抗菌袋)とした。
 (実施例4)
 基材フィルムをナイロン生地(NOXA-KURO社製)に変更し、銅-錫合金層作製時の蒸着装置の真空度を3.0×10-3Pa以下とした以外は、実施例1と同様にして抗微生物性材料(抗菌織布)を作製した。銅-錫合金の付着量は、0.3mg/mmであった。上記ナイロン生地の織り方は、平織りであった。また、上記XRD分析によるCu41Sn11結晶相とCuSn結晶相との比率Cu41Sn11/CuSnは0.002であった。
 (比較例5)
 実施例3で作製した抗菌袋と比較するために、市販の袋(プーマ社製、Ath M2M2ASBタイプB)を用意した。前記袋の内側表面には、抗菌防臭加工(日本蚕毛社製 DEW)が施されていた。
 (比較例6)
 実施例4で作製した抗菌織布と対比するために、表面に銅-錫合金層を形成していないナイロン生地(NOXA-KURO社製)を用意した。
 (評価)
 実施例3で作製した袋、および比較例5で用意した市販の袋について、以下の方法で9)防臭性能評価を行った。また、実施例4で作製した抗菌織布、及び比較例5の市販の抗菌防臭加工が施された袋について、以下の方法で10)抗菌性能評価2を行った。さらに、実施例4で作製した抗菌織布、及び比較例6で用意した織布について、以下の方法で11)引張試験、及び12)伸長性能試験を行った。
 9)防臭性能評価
 実施例3で作製した袋、および比較例5で用意した市販の袋について、以下のようにして防臭性能評価を行なった。汗を50mL浸透させたMサイズのTシャツ(グンゼ社製、ザ・グンゼメンズ)をそれぞれ、実施例3で作製した袋及び比較例5で用意した袋に入れた。次に、これらの袋を閉じてTシャツを密閉し、室温で1日保管した。その後、バックにシリンジ針を差し込んで袋内部の臭気を採取した。採取した臭気について、におい識別装置(島津製作所社製、FF-2A)で臭気指数を算出した。なお、ここでいう臭気指数とは、無臭空気で希釈し、においを感じなくなったときの希釈倍率をいう。倍率が小さいほど臭気が少ないことを意味する。
 10)抗菌性能評価2
 実施例4の抗菌織布、及び比較例5の抗菌防臭加工が施された市販の袋について、JIS L1902に準拠して抗菌性を評価した。具体的には、菌繁殖開始時、開始から0.5時間後、1時間後、2時間後、18時間後の黄色ブドウ球菌のコロニー数を計測した。
 11)引張試験
 実施例4で作製した抗菌織布、及び比較例6で用意した織布の生地の縦方向及び横方向について、それぞれ15mm×60mm切片を切り出し、評価用サンプルとした。このサンプルについて、ナイロン生地の縦方向と横方向の引張強度をJIS L1096に準拠して測定した。
 12)伸長性能試験
 実施例4で作製した抗菌織布、及び比較例6で用意した織布の生地の縦方向及び横方向について、それぞれ15mm×60mm切片をして切り出し、評価用サンプルとした。このサンプルについて、ナイロン生地の縦方向と横方向との伸長性(%)をJIS L1096に準拠して測定した。
 上記9)防臭性能評価結果を以下に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例3で作製した抗菌袋は、比較例5の市販の抗菌防臭加工を施した袋に比べて、臭気指数が小さく、防臭効果に優れることがわかる。また実施例3の抗菌袋は、1日保管後と、1週間保管後との数値に大きな違いがない。これは、実施例3の抗菌袋の防臭速度が速いことを示している。
 10)抗菌性能評価2を行った結果を図8のグラフに示す。図8のグラフから実施例4の抗菌織布は、比較例5の銅-錫合金層を有さない市販の防菌防臭加工した抗菌袋に比べて抗菌性能が高く、さらに菌の減少速度も速いことが示される。
 11)引張試験、12)伸長性能試験を行った結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000003
 上記表3から、織布上に本発明の銅-錫合金層を形成することで、横方向の引張強度が向上することが示される。実施例4及び比較例6で使用した生地の織り方は平織り;すなわち縦方向の太い糸にテンションをかけながら横糸をよる織り方のため、横糸が比較的弱い。この織布上に銅-錫合金層を形成することで、繊維間に銅-錫合金が密着し、横方向の糸の密着力が強くなり、横方向の引張強度が向上したと考えられる。
 本願は、出願日2011年2月18日のJP2011-033669および出願日2011年10月5日のJP2011-220978に基づく優先権を主張する。JP2011-033669およびJP2011-220978に開示された内容は、すべて本願に援用される。
 本発明は、高い抗菌性と耐食性とを有しつつ、高い耐摩耗性を有する抗微生物性材料とその製造方法および抗微生物性資材を提供することができる。

Claims (17)

  1.  基材層と、
     前記基材層上に配置され、銅を60原子%超90原子%以下含有し、かつ錫を10原子%以上40原子%未満含有する銅-錫合金層と、を含み、
     前記銅-錫合金層は、Cu41Sn11結晶相と、CuSn結晶相とを含み、かつ
     前記銅-錫合金層のシート抵抗(Ω)を、前記銅-錫合金層の厚みと、銅の含有量(Cu原子%)とで除して得られるQ値(Ω/(nm・Cu原子%))が1.5×10-4~6.0×10-4である、抗微生物性材料。
  2.  前記基材層は、ASTM-D648-56に準拠して荷重1820kPaにて測定される荷重たわみ温度が115℃以下である樹脂、天然繊維または紙からなる、請求項1に記載の抗微生物性材料。
  3.  前記銅-錫合金層に含まれる、Cu41Sn11結晶相とCuSn結晶相との比率Cu41Sn11/CuSnが、0.002~0.040である、請求項1に記載の抗微生物性材料。
  4.  前記銅-錫合金層の、前記基材層とは反対側の表面の表面粗さRzが14.4~15.9nmである、請求項1に記載の抗微生物性材料。
  5.  前記基材層が、ポリエチレンテレフタラート、ポリエチレンナフタレート、ポリプロピレン、ポリエチレンまたはポリイミドである、請求項1に記載の抗微生物性材料。
  6.  前記銅-錫合金層は、銅を60原子%超85原子%以下含有し、かつ錫を15原子%以上40原子%未満含有する銅-錫合金からなる蒸着源から共蒸着して形成された、請求項1に記載の抗微生物性材料。
  7.  前記銅-錫合金層が、前記抗微生物性材料の最表面の全部または一部に設けられている、請求項1に記載の抗微生物性材料。
  8.  前記基材層は、不織布、織布または糸である、請求項1に記載の抗微生物性材料。
  9.  基材層と、
     前記基材層上に配置され、銅を60原子%超90原子%以下含有し、かつ錫を10原子%以上40原子%未満含有する銅-錫合金層と、を含み、
     前記銅-錫合金層の銅-錫合金の付着量は、0.025~1.0mg/mm以下であり、
     前記銅-錫合金層は、Cu41Sn11結晶相とCuSn結晶相とを含み、かつ、Cu41Sn11結晶相とCuSn結晶相との比率Cu41Sn11/CuSnが、0.002~0.040である、抗微生物性材料。
  10.  前記基材層は、不織布、織布または糸である、請求項9に記載の抗微生物性材料。
  11.  請求項1または9に記載の抗微生物性材料の製造方法であって、
     銅を60原子%超85原子%以下含有し、かつ錫を15原子%以上40原子%未満含有する銅-錫合金からなる蒸着源を準備する工程と、
     前記蒸着源と対向するように配置された基材を加熱する工程と、
     前記蒸着源から前記銅-錫合金を気化させた金属蒸気を、前記加熱された基材に接触させて、前記基材上に前記銅-錫合金層を形成する工程と、を含む、抗微生物性材料の製造方法。
  12.  前記基材の加熱は、前記基材の温度を100~125℃とする、請求項11に記載の抗微生物性材料の製造方法。
  13.  前記基材は、ASTM-D648-56に準拠して荷重1820kPaにて測定される荷重たわみ温度が115℃以下である樹脂、天然繊維または紙からなる、請求項11に記載の抗微生物性材料の製造方法。
  14.  請求項1に記載の抗微生物性材料を含む、抗微生物性資材。
  15.  タッチパネル用保護フィルムとして用いられる、請求項14に記載の抗微生物性資材。
  16.  医療用資材として用いられる、請求項14に記載の抗微生物性資材。
  17.  浄化資材として用いられる、請求項14に記載の抗微生物性資材。
     
PCT/JP2012/000934 2011-02-18 2012-02-13 抗微生物性材料とその製造方法、および抗微生物性資材 WO2012111301A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/985,816 US8778408B2 (en) 2011-02-18 2012-02-13 Antimicrobial substance, method for producing same, and antimicrobial material
CN201280009292.4A CN103370430B (zh) 2011-02-18 2012-02-13 抗微生物性材料及其制造方法、以及抗微生物性资材
KR1020137021342A KR101547042B1 (ko) 2011-02-18 2012-02-13 항미생물성 재료와 그의 제조방법, 및 항미생물성 자재
JP2012524989A JP5166651B2 (ja) 2011-02-18 2012-02-13 抗微生物性材料とその製造方法、および抗微生物性資材

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011033669 2011-02-18
JP2011-033669 2011-02-18
JP2011220978 2011-10-05
JP2011-220978 2011-10-05

Publications (1)

Publication Number Publication Date
WO2012111301A1 true WO2012111301A1 (ja) 2012-08-23

Family

ID=46672245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000934 WO2012111301A1 (ja) 2011-02-18 2012-02-13 抗微生物性材料とその製造方法、および抗微生物性資材

Country Status (6)

Country Link
US (1) US8778408B2 (ja)
JP (1) JP5166651B2 (ja)
KR (1) KR101547042B1 (ja)
CN (1) CN103370430B (ja)
HK (1) HK1187654A1 (ja)
WO (1) WO2012111301A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5656138B1 (ja) * 2014-05-08 2015-01-21 株式会社原田伸銅所 抗菌性を有するリン青銅合金及びそれを用いた物品
US20150086597A1 (en) * 2013-09-26 2015-03-26 Joseph MALLAK Antimicrobial copper or copper alloy products and method for manufacturing same
JP2016013995A (ja) * 2014-07-03 2016-01-28 三井化学株式会社 抗微生物性材料
JP2016047642A (ja) * 2014-08-26 2016-04-07 三井化学産資株式会社 抗菌性積層体
JP2017137275A (ja) * 2016-02-05 2017-08-10 大成建設株式会社 抗微生物部材
WO2017145976A1 (ja) * 2016-02-24 2017-08-31 リケンテクノス株式会社 抗菌・抗ウイルス性塩化ビニル系樹脂組成物
JP2020001389A (ja) * 2018-06-20 2020-01-09 積水化学工業株式会社 繊維シート
WO2020085175A1 (ja) * 2018-10-25 2020-04-30 株式会社Uacj 抗菌シート及びその製造方法
JP2020097142A (ja) * 2018-12-17 2020-06-25 日東電工株式会社 導電性フィルム
JP7427549B2 (ja) 2019-07-09 2024-02-05 三井化学株式会社 伸縮性抗菌不織布の製造方法および伸縮性抗菌不織布

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9586381B1 (en) 2013-10-25 2017-03-07 Steriplate, LLC Metal plated object with biocidal properties
WO2015196022A1 (en) * 2014-06-20 2015-12-23 Kelleher Michael Stephen Antiviral, antimicrobial protection for touch surfaces
US10472157B1 (en) 2015-08-14 2019-11-12 CLAW Biotech Holdings LLC Pathogen eliminating article
US10064273B2 (en) 2015-10-20 2018-08-28 MR Label Company Antimicrobial copper sheet overlays and related methods for making and using
US9675079B1 (en) 2016-06-16 2017-06-13 CLAW Biotech Holdings LLC Pathogen eliminating article
US10959426B1 (en) 2016-11-28 2021-03-30 CLAW Biotech Holdings LLC Pathogen eliminating article and methods of manufacturing and using the same
GR1009636B (el) * 2018-07-19 2019-11-08 Αντωνιος Νικολαου Νικολαϊδης Αντιμικροβιακη θηκη ηλεκτρονικου τσιγαρου
GB2579601A (en) 2018-12-05 2020-07-01 Copper Clothing Ltd Antimicrobial material
NL2022215B1 (en) * 2018-12-14 2020-07-03 Fugro N V A pressure sensing device for measuring water pressure in a soil medium
GB2592398A (en) 2020-02-27 2021-09-01 Copper Clothing Ltd Antimicrobial material
WO2021225946A1 (en) * 2020-05-06 2021-11-11 Saint-Gobain Performance Plastics Corporation Thin film layers and composite structures for virus control
GB2595304A (en) 2020-05-22 2021-11-24 Copper Clothing Ltd Antimicrobial material
US11851561B2 (en) * 2020-06-25 2023-12-26 Ticona Llc Fiber-reinforced polymer composition
CN112141452B (zh) * 2020-08-28 2022-04-19 漳州职业技术学院 一种利于青椒保鲜的自动化打包装置
US20220194590A1 (en) * 2020-12-18 2022-06-23 B/E Aerospace, Inc. Copper plated touch surfaces
KR102630489B1 (ko) * 2023-01-10 2024-01-31 주식회사 풍산 접착성, 가공성 및 내변색성이 향상된 동합금 테이프 및 이의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111378A (ja) * 1995-10-18 1997-04-28 Nisshin Steel Co Ltd 抗菌・防カビ性に優れたAg−Cu−Sn合金
JPH10110268A (ja) * 1996-10-03 1998-04-28 Nissin Electric Co Ltd 医療用被覆材
JP2006342418A (ja) * 2005-06-10 2006-12-21 Institute Of National Colleges Of Technology Japan 抗菌性を有するSn−Cu合金薄膜、抗菌性を有するSn−Cu合金薄膜形成品、および抗菌性を有するSn−Cu合金薄膜形成品の製造方法
JP3163575U (ja) * 2010-08-09 2010-10-21 三井化学株式会社 抗微生物性袋
JP3163574U (ja) * 2010-08-09 2010-10-21 三井化学株式会社 タッチパネル用表面保護フィルム
JP3163576U (ja) * 2010-08-09 2010-10-21 三井化学株式会社 フィルター

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4025581A (en) * 1972-04-27 1977-05-24 Rohm And Haas Company Barrier resins and impact modifiers therefor
US4009947A (en) * 1973-02-15 1977-03-01 Canon Kabushiki Kaisha Reflecting mirror
US4107250A (en) * 1974-11-08 1978-08-15 Standard Oil Company (Indiana) Process for making fiber-reinforced thermoplastic pellets
US4460644A (en) * 1982-12-27 1984-07-17 Beecham Inc. Polyurethane foam impregnated with or coated with fabric conditioning agent, anti-microbial agent and anti-discolorant
JP2749652B2 (ja) * 1989-08-09 1998-05-13 古河電気工業株式会社 超電導線
US5681575A (en) * 1992-05-19 1997-10-28 Westaim Technologies Inc. Anti-microbial coating for medical devices
JP4560750B2 (ja) 2000-02-18 2010-10-13 三菱マテリアル株式会社 金属被覆繊維とその用途
US6565913B2 (en) * 2001-07-24 2003-05-20 Southwest Research Institute Non-irritating antimicrobial coatings and process for preparing same
JP2003171602A (ja) * 2001-12-03 2003-06-20 Sumitomo Metal Mining Co Ltd 抗菌性光触媒塗料及び抗菌性光触媒性部材
US7074709B2 (en) * 2002-06-28 2006-07-11 Texas Instruments Incorporated Localized doping and/or alloying of metallization for increased interconnect performance
US6884741B2 (en) * 2002-07-23 2005-04-26 H.B. Fuller Licensing & Financing, Inc. Antimicrobial sheeting article
US20050079987A1 (en) * 2003-10-10 2005-04-14 Cartwright Brian K. Two-sided antimicrobial wipe or pad
JP2005226029A (ja) * 2004-02-16 2005-08-25 Fuji Xerox Co Ltd 抗菌性防眩塗料組成物、これを用いた抗菌性防眩シート及び抗菌性防眩シートの製造方法
EP1788585B1 (en) * 2004-09-10 2015-02-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Conductive material for connecting part and method for fabricating the conductive material
US9011890B2 (en) * 2005-12-12 2015-04-21 Qinhuangdao Yipeng Special Glass Co., Ltd. Antibacterial sol-gel coating solution
CN1924050A (zh) * 2006-08-21 2007-03-07 玉环华诺金属制品有限公司 无铅高锡青铜餐具及其制作方法
JPWO2008047810A1 (ja) 2006-10-16 2010-02-25 日本板硝子株式会社 抗菌性基材およびその製造方法
WO2010080086A1 (en) * 2009-01-12 2010-07-15 Selenium, Ltd. Anti-microbial orthodontic compositions and appliances and methods of production and use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111378A (ja) * 1995-10-18 1997-04-28 Nisshin Steel Co Ltd 抗菌・防カビ性に優れたAg−Cu−Sn合金
JPH10110268A (ja) * 1996-10-03 1998-04-28 Nissin Electric Co Ltd 医療用被覆材
JP2006342418A (ja) * 2005-06-10 2006-12-21 Institute Of National Colleges Of Technology Japan 抗菌性を有するSn−Cu合金薄膜、抗菌性を有するSn−Cu合金薄膜形成品、および抗菌性を有するSn−Cu合金薄膜形成品の製造方法
JP3163575U (ja) * 2010-08-09 2010-10-21 三井化学株式会社 抗微生物性袋
JP3163574U (ja) * 2010-08-09 2010-10-21 三井化学株式会社 タッチパネル用表面保護フィルム
JP3163576U (ja) * 2010-08-09 2010-10-21 三井化学株式会社 フィルター

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150086597A1 (en) * 2013-09-26 2015-03-26 Joseph MALLAK Antimicrobial copper or copper alloy products and method for manufacturing same
JP5656138B1 (ja) * 2014-05-08 2015-01-21 株式会社原田伸銅所 抗菌性を有するリン青銅合金及びそれを用いた物品
JP2016013995A (ja) * 2014-07-03 2016-01-28 三井化学株式会社 抗微生物性材料
JP2016047642A (ja) * 2014-08-26 2016-04-07 三井化学産資株式会社 抗菌性積層体
JP2017137275A (ja) * 2016-02-05 2017-08-10 大成建設株式会社 抗微生物部材
JPWO2017145976A1 (ja) * 2016-02-24 2018-12-20 リケンテクノス株式会社 抗菌・抗ウイルス性塩化ビニル系樹脂組成物
WO2017145976A1 (ja) * 2016-02-24 2017-08-31 リケンテクノス株式会社 抗菌・抗ウイルス性塩化ビニル系樹脂組成物
JP2020001389A (ja) * 2018-06-20 2020-01-09 積水化学工業株式会社 繊維シート
WO2020085175A1 (ja) * 2018-10-25 2020-04-30 株式会社Uacj 抗菌シート及びその製造方法
JP2020066187A (ja) * 2018-10-25 2020-04-30 株式会社Uacj 抗菌シート及びその製造方法
JP7084846B2 (ja) 2018-10-25 2022-06-15 株式会社Uacj 抗菌シート及びその製造方法
JP2020097142A (ja) * 2018-12-17 2020-06-25 日東電工株式会社 導電性フィルム
JP7305342B2 (ja) 2018-12-17 2023-07-10 日東電工株式会社 導電性フィルム
JP7427549B2 (ja) 2019-07-09 2024-02-05 三井化学株式会社 伸縮性抗菌不織布の製造方法および伸縮性抗菌不織布

Also Published As

Publication number Publication date
KR101547042B1 (ko) 2015-08-24
HK1187654A1 (en) 2014-04-11
JP5166651B2 (ja) 2013-03-21
CN103370430B (zh) 2015-07-15
US20130323289A1 (en) 2013-12-05
JPWO2012111301A1 (ja) 2014-07-03
US8778408B2 (en) 2014-07-15
KR20130122655A (ko) 2013-11-07
CN103370430A (zh) 2013-10-23

Similar Documents

Publication Publication Date Title
JP5166651B2 (ja) 抗微生物性材料とその製造方法、および抗微生物性資材
JP4778123B2 (ja) 抗微生物性材料とその製造方法、および抗微生物性資材
JP6374717B2 (ja) 抗微生物性材料
KR100277554B1 (ko) 탄성 금속화 부직물, 및 그의 제조방법 및 다층재료
JP5631205B2 (ja) 抗菌性ポリオレフィン及びポリエステル組成物
CN1145664C (zh) 稳定的透气的弹性制品
EP2676791B1 (en) Nonwoven laminate
JP2008524460A5 (ja)
Bociąga et al. Surface characterization and biological evaluation of silver-incorporated DLC coatings fabricated by hybrid RF PACVD/MS method
EP2699726A1 (en) Antimicrobial nonwoven fabric
WO2004089614A2 (en) Wicking, breathable fabrics
JP2022510997A (ja) 抗菌性を有する、織布、不織布、綿、不織布-綿混合ポリエチレン及びポリプロピレン及びポリスチレンのマスク、包帯、パンティ、ブラジャー、ハンカチ、パット、研磨パット、使い捨て手術用衣服、使い捨てシート
JP6626276B2 (ja) 抗菌性積層体
EP2526772A1 (en) Multifunctional surface treatment composition
JP2012052258A (ja) 抗菌性繊維シート
JP3200689B2 (ja) 竹微粉末含有布製品
WO2023063394A1 (ja) 抗微生物性材料および抗微生物性資材
WO2012169508A1 (ja) 耐変色性に優れた耐久親水性繊維及びそれで構成されている繊維成形体ならびに吸収性物品
KR200303765Y1 (ko) 복합 기능성 브래지어
JP2002037706A (ja) 抗菌材および抗菌方法
JPH08231713A (ja) 共重合体及び高分子組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012524989

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137021342

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13985816

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12747154

Country of ref document: EP

Kind code of ref document: A1