WO2012111161A1 - リチウムイオン二次電池とその製造方法 - Google Patents

リチウムイオン二次電池とその製造方法 Download PDF

Info

Publication number
WO2012111161A1
WO2012111161A1 PCT/JP2011/053570 JP2011053570W WO2012111161A1 WO 2012111161 A1 WO2012111161 A1 WO 2012111161A1 JP 2011053570 W JP2011053570 W JP 2011053570W WO 2012111161 A1 WO2012111161 A1 WO 2012111161A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
current collector
composition
magnetic field
electrode current
Prior art date
Application number
PCT/JP2011/053570
Other languages
English (en)
French (fr)
Inventor
英輝 萩原
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/985,601 priority Critical patent/US9166247B2/en
Priority to CN201180067749.2A priority patent/CN103380519B/zh
Priority to PCT/JP2011/053570 priority patent/WO2012111161A1/ja
Priority to KR1020137023886A priority patent/KR101543937B1/ko
Priority to JP2012557769A priority patent/JP5601550B2/ja
Publication of WO2012111161A1 publication Critical patent/WO2012111161A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a lithium ion secondary battery and a manufacturing method thereof.
  • the present invention relates to a structure of a negative electrode for a lithium ion secondary battery suitable for being used as a power source for vehicles and a method for forming the structure.
  • a lithium ion secondary battery includes a positive electrode and a negative electrode, and an electrolytic solution interposed between the two electrodes. Lithium ions pass between the positive electrode and the negative electrode through an electrolytic solution containing an electrolyte such as a lithium salt. Charge and discharge by going back and forth.
  • a typical negative electrode of this type of lithium ion secondary battery includes a negative electrode active material capable of reversibly occluding and releasing lithium ions. Examples of the negative electrode active material include various carbon materials, and for example, a graphite material is used. Graphite has a layered crystal structure, and charge and discharge are realized by occlusion of lithium ions between the layers (interlayers) and release of lithium ions from the layers.
  • the paste-like composition includes a slurry-like composition and an ink-like composition.
  • the paste-like composition is simply referred to as “composition”.
  • graphite When graphite is applied to the current collector to form the negative electrode, graphite has a property that the layer surface ((002) surface) of the graphite is easily arranged in parallel to the surface (wide surface) of the current collector. have. For this reason, the edge of graphite (the end of the plurality of layers) is arranged approximately parallel to the current collector, so that lithium ions can be occluded into and discharged from the layers during charging and discharging. There is a risk of not being done.
  • Patent Document 1 is cited as a prior art.
  • Patent Document 1 describes a technique in which a magnetic field is applied to the composition so that the layer surface of graphite is arranged perpendicular to the current collector.
  • Patent Document 2 is cited as a conventional technique related to a negative electrode for a lithium ion secondary battery.
  • the layer surface of graphite in the negative electrode (that is, the (002) surface which is a plane parallel to the graphite layer) can be arranged perpendicular to the current collector.
  • the layer surface of each graphite is arranged irregularly (multidirectional) with respect to the long current collector. For this reason, when the graphite contracts during discharge of the lithium ion secondary battery including the wound electrode body including the elongated negative electrode, an electrolyte (electrolyte) such as a lithium salt in the graphite is used as the electrode body.
  • the negative electrode (electrode body) flows in the direction of the winding axis and flows out of the negative electrode (electrode body), and the internal resistance of the negative electrode (electrode body) may increase due to a decrease in the electrolyte in the negative electrode (electrode body). Therefore, the present invention was created to solve the above-described conventional problems, and its purpose is to prevent the electrolyte such as lithium salt from flowing out of the negative electrode during the discharge of the lithium ion secondary battery.
  • a lithium ion secondary battery capable of suppressing an increase in internal resistance and a method for manufacturing the secondary battery are provided.
  • the present invention provides a lithium ion secondary battery comprising a wound electrode body in which a positive electrode and a negative electrode are wound through a separator, and an electrolytic solution.
  • the negative electrode includes a long negative electrode current collector and a negative electrode mixture layer including at least a graphite material formed on the surface of the negative electrode current collector. ing. At least 50% by mass of the graphite material in the negative electrode mixture layer is such that the (002) surface of the graphite material is perpendicular to the surface (wide surface) of the negative electrode current collector and the elongated negative electrode current collector It arrange
  • the “(002) plane of the graphite material” is a layer surface (plane parallel to the graphite layer) of the graphite material (graphite crystal) having a layered structure, and the carbon of the graphene sheet constituting the graphite material This refers to the horizontal plane with the network.
  • the lithium ion secondary battery provided by the present invention includes a negative electrode mixture layer containing a graphite material, and is at least 50 mass% (for example, 70 mass% or more, preferably 80 mass% or more, more preferably) of the graphite material. Is 90 mass% or more.)
  • the graphite material is arranged (arranged) so that its (002) plane is perpendicular to the surface of the negative electrode current collector and parallel to the longitudinal direction of the negative electrode current collector. As described above, since the (002) plane of the graphite material is arranged in the predetermined direction in the negative electrode mixture layer of the negative electrode, the graphite material shrinks during the discharge of the lithium ion secondary battery.
  • the electrolyte such as lithium salt present in the metal moves from the graphite material
  • the electrolyte moves in the longitudinal direction of the negative electrode (negative electrode current collector) and the movement in the width direction (winding axis direction) is suppressed. Therefore, it is possible to effectively prevent the electrolyte from flowing out of the negative electrode. For this reason, an increase in internal resistance due to the outflow of an electrolyte such as a lithium salt can be suppressed.
  • the graphite material it is particularly meaningful to use a graphite material having a median diameter (D 50 ) of 5 ⁇ m to 20 ⁇ m in the particle size distribution measured based on the laser diffraction scattering method.
  • a positive electrode in which a positive electrode mixture layer is formed on a positive electrode current collector and a negative electrode in which a negative electrode mixture layer is formed on a negative electrode current collector are separators.
  • a method of manufacturing a lithium ion secondary battery comprising a wound electrode body wound through a battery and an electrolytic solution. That is, the lithium ion secondary battery manufacturing method disclosed herein prepares a paste-like composition for forming a negative electrode mixture layer obtained by mixing at least a graphite material and a predetermined solvent and kneading the mixture.
  • the direction is perpendicular to the longitudinal direction of the elongated negative electrode current collector, from one long side of the negative electrode current collector to the other long side.
  • a magnetic field in which magnetic lines of force are generated in the width direction of the current collector defined as a direction in which the current flows is applied, and then a current collector orthogonal direction in which the direction of the magnetic field lines is defined as a direction orthogonal to the surface of the negative electrode current collector
  • the (002) plane of the graphite material contained in the composition is changed to the surface of the negative electrode current collector.
  • the graphite material is displaced so as to be orthogonal and parallel to the longitudinal direction of the negative electrode current collector.
  • “to change the direction of the magnetic lines of force continuously” includes changing the direction of the magnetic lines of force continuously from one direction to another target in a stepless manner. From one direction to another target direction is included.
  • a long negative electrode current collector is obtained by continuously changing the magnetic field so that the direction of the magnetic lines of force changes from the current collector width direction to the current collector orthogonal direction.
  • At least 50% by mass (for example, 70% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more) of the graphite material contained in the composition coated on the electric conductor is (002).
  • Surface is perpendicular to the surface (wide surface) of the negative electrode current collector and parallel to the longitudinal direction of the negative electrode current collector.
  • the composition is applied to the surface of the moving negative electrode current collector while moving the elongated negative electrode current collector in a predetermined direction. This is done by applying the composition continuously.
  • the application of a magnetic field to the applied composition is a magnetic field generator disposed along the negative electrode current collector after application of the composition that moves in the predetermined direction. Including that the magnetic field lines are continuously changed from the current collector width direction to the current collector orthogonal direction from the upstream side toward the downstream side. According to this configuration, a negative electrode including a negative electrode mixture layer in which graphite materials are regularly arranged can be continuously manufactured.
  • the magnetic field generator has a magnetic field line extending from the current collector width direction to the current collector orthogonally from the upstream side to the downstream side of the negative electrode current collector. It is a plurality of magnets or a plurality of coils that are arranged at different angles so as to change in direction. According to this configuration, by using a plurality of magnets or coils as the magnetic field generator, a negative electrode including a negative electrode mixture layer in which graphite materials are regularly arranged can be easily manufactured.
  • the solid content of the composition when the total amount of the composition is 100% by mass, the solid content of the composition is 40% by mass to 55% by mass.
  • the (002) plane of the graphite material in the composition when a magnetic field is applied to the composition applied to the negative electrode current collector, the (002) plane of the graphite material in the composition is orthogonal to the surface of the negative electrode current collector and the negative electrode current collector. It becomes easy to displace so that it may become parallel to the longitudinal direction of an electric body.
  • the negative electrode mixture layer when the negative electrode mixture layer is formed, the negative electrode mixture layer is applied in a state in which a magnetic field having magnetic lines of force directed in the direction perpendicular to the current collector is applied to the composition. Allow the composition to dry.
  • the (002) plane of the graphite material in the negative electrode mixture layer is more reliably perpendicular to the surface of the negative electrode current collector and the negative electrode current collector Can be parallel to the longitudinal direction.
  • the present invention provides a vehicle (typically, an automobile, particularly a hybrid automobile, an electric automobile, a fuel cell automobile, etc.) having such a secondary battery (may be an assembled battery formed by connecting a plurality of batteries in series) as a power source.
  • a motor vehicle equipped with a simple electric motor may be an assembled battery formed by connecting a plurality of batteries in series.
  • FIG. 1 is a perspective view schematically showing the outer shape of a lithium ion secondary battery according to an embodiment of the present invention.
  • 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a cross-sectional view schematically showing the structure of the electrode body of the lithium ion secondary battery according to one embodiment of the present invention.
  • FIG. 4 is a flowchart for explaining a method of manufacturing a lithium ion secondary battery according to an embodiment of the present invention.
  • FIG. 5 is an explanatory view schematically showing a schematic configuration of a negative electrode manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 6A is a plan view schematically showing the structure of the negative electrode in the intermediate manufacturing process in the negative electrode manufacturing method according to one embodiment of the present invention.
  • FIG. 6B is a cross-sectional view taken along line 6B-6B in FIG.
  • FIG. 7A is a plan view schematically showing the structure of a negative electrode in the course of manufacturing in the negative electrode manufacturing method according to one embodiment of the present invention.
  • 7B is a cross-sectional view taken along line 7B-7B in FIG.
  • FIG. 8A is a plan view schematically showing the structure of the negative electrode in the intermediate manufacturing process in the negative electrode manufacturing method according to one embodiment of the present invention.
  • 8B is a cross-sectional view taken along line 8B-8B in FIG.
  • FIG. 9A is a plan view schematically showing the structure of the negative electrode in the intermediate manufacturing process in the negative electrode manufacturing method according to one embodiment of the present invention.
  • FIG. 9B is a cross-sectional view taken along line 9B-9B in FIG.
  • FIG. 10A is a plan view schematically showing the structure of the negative electrode during the production intermediate stage in the method for producing a negative electrode according to one embodiment of the present invention.
  • 10B is a cross-sectional view taken along line 10B-10B in FIG.
  • FIG. 11 is a cross-sectional SEM image of the negative electrode sheet according to Example 1.
  • FIG. 12 is a cross-sectional SEM image of the negative electrode sheet according to Comparative Example 1.
  • FIG. 13 is a cross-sectional SEM image of the negative electrode sheet according to Comparative Example 2.
  • FIG. 14 is a graph showing the relationship between the IV resistance and the number of cycles.
  • FIG. 15 is a side view schematically showing a vehicle (automobile) provided with the lithium ion secondary battery according to the present invention.
  • FIG. 16A is a plan view schematically showing the structure of the negative electrode in the intermediate production step in the conventional negative electrode production method.
  • FIG. 16B is a cross-sectional view schematically showing the structure of the negative electrode manufactured by the conventional negative electrode manufacturing method.
  • the manufacturing method of the lithium ion secondary battery disclosed here includes a composition preparation step (step S10), a composition application step (step S20), and a magnetic field application step (step S30). And a drying process (step S40).
  • FIG. 5 is a diagram showing a manufacturing apparatus that embodies a method for manufacturing a negative electrode used in such a lithium ion secondary battery.
  • the negative electrode manufacturing apparatus 200 according to the present embodiment roughly includes a supply roll 205, a composition application unit 220, a magnetic field application unit 230, a drying furnace 250, and a recovery roll 210.
  • the negative electrode current collector 82 is guided by a guide 240 that is supplied from the supply roll 205 and can travel along a predetermined route, and is collected by the collection roll 210 through the above steps.
  • composition preparation step (S10) there may be a paste-like composition for forming a negative electrode mixture layer (hereinafter simply referred to as “paste”) obtained by mixing at least a graphite material and a predetermined solvent and kneading the mixture. ) Is included.
  • a paste is prepared by dispersing a graphite material and a binder (binder) in a predetermined solvent.
  • Examples of the graphite material include natural graphite and artificial graphite (artificial graphite) capable of reversibly occluding and releasing lithium ions.
  • the median diameter (D 50 ) in the particle size distribution measured based on the laser diffraction scattering method of the graphite material is preferably about 5 ⁇ m to 20 ⁇ m. When the median diameter is too larger than 20 ⁇ m, the effective capacity of the negative electrode may be reduced due to the time required for diffusion of lithium ions into the center of the graphite material. If the median diameter is too smaller than 5 ⁇ m, the side reaction rate on the surface of the graphite material increases, and the irreversible capacity of the lithium ion secondary battery may increase.
  • the thing similar to the binder used for the negative electrode of a general lithium ion secondary battery can be employ
  • a polymer material that dissolves or disperses in water can be preferably used as the binder.
  • Cellulose polymers such as carboxymethylcellulose (CMC), methylcellulose (MC), cellulose acetate phthalate (CAP), hydroxypropylmethylcellulose (HPMC), etc .; polyvinyl alcohol (PVA) And the like are exemplified.
  • polymer materials that are dispersed in water include fluorine resins such as polytetrafluoroethylene (PTFE); vinyl acetate copolymers; rubbers such as styrene butadiene rubber (SBR);
  • PTFE polytetrafluoroethylene
  • SBR styrene butadiene rubber
  • the polymer material exemplified above can be used for the purpose of exhibiting the function as a thickener or other additive of the composition in addition to the function as a binder.
  • the “aqueous composition” is a concept indicating a composition using water or a mixed solvent mainly composed of water (aqueous solvent) as the predetermined solvent (dispersion medium).
  • aqueous solvent mainly composed of water (aqueous solvent) as the predetermined solvent (dispersion medium).
  • the solvent other than water constituting the mixed solvent one or more organic solvents (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water can be appropriately selected and used.
  • the operation of mixing (kneading) the graphite material and the binder in a solvent can be performed using, for example, a suitable kneader (planetary mixer, homodisper, clear mix, fill mix, etc.).
  • a suitable kneader planetary mixer, homodisper, clear mix, fill mix, etc.
  • the graphite material, the binder, and a small amount of solvent are kneaded, and then the obtained kneaded material may be diluted with an appropriate amount of solvent.
  • the solid content of the paste-like composition is about 30% to 65% by mass, and preferably about 40% to 55% by mass.
  • the ratio of the graphite material to the total solid content of the composition is about 80% by mass to 100% by mass, and preferably about 95% by mass to 100% by mass.
  • the ratio of the binder to the entire solid content of the composition can be, for example, about 0.1% by mass to 5% by mass, and usually about 0.1% by mass to 3% by mass. Is preferred.
  • the proportion of the thickener in the total solid content of the composition can be, for example, about 0.1% by mass to 5% by mass, and usually about 0.1% by mass to It is preferable to set it as 3 mass%.
  • the composition coating step includes coating the prepared composition on the surface of the long negative electrode current collector.
  • the composition application unit 220 is a die coater.
  • the prepared composition 86 is supplied to the die 222 of the composition application unit 220, and the composition 86 is applied to the surface of the long negative electrode current collector 82 fed from the supply roll 205.
  • a conductive member made of a metal having good conductivity is preferably used, like the current collector used in the negative electrode of a conventional lithium ion secondary battery.
  • a copper material, a nickel material, or a long sheet-shaped alloy material mainly composed of them can be used.
  • the thickness of the sheet-shaped negative electrode current collector 82 is about 10 ⁇ m to 30 ⁇ m.
  • the composition application unit 220 of the negative electrode manufacturing apparatus 200 of the present embodiment is a die coater, but is not limited thereto, and the application of the composition 86 to the negative electrode current collector 82 is a conventional general lithium ion. This can be performed in the same manner as in the case of producing an electrode (negative electrode) for a secondary battery.
  • a conventionally known appropriate coating apparatus such as a slit coater, a comma coater, a gravure coater or the like can be used instead.
  • the magnetic field application step includes applying a magnetic field to the applied composition (a composition in which the solvent remains and is not dried).
  • the application of the magnetic field is defined as a direction perpendicular to the longitudinal direction of the long negative electrode current collector and from one long side to the other long side of the negative electrode current collector.
  • a magnetic field in which magnetic field lines are generated in the width direction of the current collector is applied, and then the magnetic field in which the direction of the magnetic field lines is in a direction orthogonal to the current collector, which is defined as a direction perpendicular to the surface (wide surface) of the negative electrode current collector Is carried out by continuously changing the direction of the magnetic lines of force until a state of applying a magnetic field is reached.
  • the magnetic field application unit 230 in the negative electrode manufacturing apparatus 200 includes a plurality of pairs of magnetic field generators 235 arranged to face each other with the negative electrode current collector 82 interposed therebetween.
  • the magnetic field generator 235 is not particularly limited as long as it can generate a magnetic field, and examples thereof include a permanent magnet and an electromagnetic coil.
  • the direction of the magnetic lines of force changes from the current collector width direction to the current collector orthogonal direction.
  • Magnetic field generators 235A, 235B, 235C, and 235D are respectively arranged at different angles. That is, as shown in FIG. 7A and FIG. 7B, the pair of magnetic field generators 235A has a length of the negative electrode current collector 82 such that the wide surface of the magnetic field generator 235A and the wide surface of the negative electrode current collector 82 are parallel. Arranged along the direction (direction of arrow X). By arranging the magnetic field generator 235A in this way, the composition 86 applied to the surface of the negative electrode current collector 82 is in a direction perpendicular to the longitudinal direction of the long negative electrode current collector 82.
  • a magnetic field in which magnetic lines of force are generated in the current collector width direction (the direction of arrow Y1 shown in FIGS. 7A and 7B) defined as a direction from one long side to the other long side of the negative electrode current collector 82. Can be applied.
  • the angle formed by the wide surface of the magnetic field generator 235B and the wide surface of the negative electrode current collector 82 is ⁇ A (for example, about 20 degrees to about 20 degrees). It is disposed along the longitudinal direction of the negative electrode current collector 82 (the direction of the arrow X) so as to be 40 degrees, 30 degrees in this embodiment.
  • the angle formed by the wide surface of the magnetic field generator 235C and the wide surface of the negative electrode current collector 82 is ⁇ B (for example, about 50 degrees or more). 70 degrees (60 degrees in this embodiment)) is arranged along the longitudinal direction (direction of arrow X) of the negative electrode current collector 82.
  • ⁇ B for example, about 50 degrees or more
  • 70 degrees (60 degrees in this embodiment)) is arranged along the longitudinal direction (direction of arrow X) of the negative electrode current collector 82.
  • a pair of magnetic field generators 235D (one magnetic field generator is not shown in FIG. 10A) includes a wide surface of the magnetic field generator 235D and the surface of the negative electrode current collector 82 (see FIG. 10A and FIG. 10B). It is arranged along the longitudinal direction of the negative electrode current collector 82 (the direction of the arrow X) so as to be parallel to the (wide surface).
  • the composition 86 applied to the surface of the negative electrode current collector 82 is orthogonal to the surface (wide surface) of the elongated negative electrode current collector 82.
  • a magnetic field that generates magnetic lines of force can be applied in the current collector orthogonal direction defined as the direction (the direction orthogonal to the paper surface of FIG. 10A and the direction of arrow Y4 shown in FIG. 10B).
  • the graphite material contained in the composition 86 applied to the surface of the negative electrode current collector 82.
  • a magnetic field in which lines of magnetic force are generated in a plurality of predetermined directions can be applied to the (negative electrode active material) 85.
  • the graphite material 85 is displaced by the magnetic field, and at least 50 mass% (for example, 70 mass% or more, preferably 80 mass% or more, more preferably 90 mass% or more) of the graphite material is arranged in a certain direction. be able to.
  • the graphite material 85 in the composition 86 applied to the negative electrode current collector 82 is composed of the (002) surface 85A of the graphite material 85 and the negative electrode current collector. There is a tendency that the surfaces (wide surfaces) of 82 are arranged so as to be approximately parallel.
  • the negative electrode current collector 82 coated with the composition 86 is transferred to a region where the magnetic field generator 235A is disposed, and the magnetic field generator 235A performs the above-described current collection. A magnetic field that generates magnetic lines of force is applied in the width direction of the electric body. As a result, as shown in FIG.
  • the graphite material 85 in the composition 86 is displaced so that at least 50% by mass of the graphite material is obtained, and the (002) plane 85A of the graphite material is parallel to the negative electrode current collector 82.
  • the negative electrode current collector 82 including the composition 86 to which the magnetic field is applied by the magnetic field generator 235A is transferred to the region where the magnetic field generator 235B is disposed.
  • the magnetic field generator 235B applies a magnetic field that generates magnetic lines of force in a direction inclined by ⁇ A with respect to the negative electrode current collector 82.
  • the graphite material 85 in the composition 86 is displaced to displace at least 50 mass% of the graphite material, and the (002) surface 85A of the graphite material is the negative electrode current collector 82.
  • theta a can be placed (arranged) so that only a direction inclined with respect to.
  • the negative electrode current collector 82 including the composition 86 to which the magnetic field is applied by the magnetic field generator 235B is transferred to the region where the magnetic field generator 235C is disposed.
  • the magnetic field force lines are generated is applied to only a direction inclined theta B the negative electrode current collector 82 by magnetic field generator 235C.
  • the graphite material 85 in the composition 86 is displaced, and the (002) plane 85A of the graphite material is inclined by ⁇ B with respect to the negative electrode current collector 82.
  • the negative electrode current collector 82 including the composition 86 to which the magnetic field is applied by the magnetic field generator 235 ⁇ / b> C is transferred to the region where the magnetic field generator 235 ⁇ / b> D is disposed. Then, a magnetic field generating magnetic field lines in the direction perpendicular to the current collector is applied by the magnetic field generator 235D.
  • the graphite material 85 in the composition 86 is displaced so that at least 50 mass% of the graphite material is present, and the (002) surface 85A of the graphite material 85 is the negative electrode current collector 82. It can be arranged (arranged) so as to be orthogonal to the wide surface of the negative electrode and parallel to the longitudinal direction of the negative electrode current collector 82.
  • magnetic field lines are generated in the orthogonal direction of the current collector so that the (002) surface 585A of the graphite material 585 in the composition 586 is orthogonal to the surface (wide surface) of the negative electrode current collector 582 by a conventional method.
  • the (002) plane 585A of most of the graphite material 585 in the composition 586 is arranged so as to be parallel to the longitudinal direction of the negative electrode current collector 582 (see FIGS. 16A and 16B). Not array). Therefore, the use of a lithium-in secondary battery comprising a wound electrode body formed by winding the negative electrode sheet formed by drying the composition 586 to form the negative electrode mixture layer, the positive electrode sheet, and the separator sheet is used.
  • the electrolyte such as lithium salt is transferred from the graphite material 585 in the width direction of the negative electrode current collector (the direction of arrow Z in FIGS. 16A and 16B). That is, it moves in the direction of the winding axis.
  • the moved electrolyte further flows out of the electrode body from the width direction of the negative electrode current collector 582, and there is a possibility that the internal resistance of the electrode body increases greatly due to the decrease of the electrolyte in the electrode body.
  • the (002) surface 85A of the graphite material 85 in the composition 86 according to the present embodiment is orthogonal to the surface (wide surface) of the negative electrode current collector 82 and is negative electrode current collector. Arranged (arranged) so as to be parallel to the longitudinal direction of the body 82. Accordingly, use of a lithium-in secondary battery comprising a wound electrode body formed by winding the negative electrode sheet formed by drying the composition 86 to form a negative electrode composite layer, the positive electrode sheet, and the separator sheet.
  • the electrolyte such as lithium salt moves from the graphite material 585 in the longitudinal direction of the negative electrode body 82 and the direction orthogonal to the current collector 82. For this reason, it is possible to prevent the electrolyte from flowing out of the electrode body from the width direction of the negative electrode current collector 82, and to suppress an increase in internal resistance of the electrode body.
  • the strength of the magnetic field applied to the composition 86 applied to the surface of the negative electrode current collector 82 is, for example, about 0.3T to 1T, and usually about 0.4T to It is about 0.6T.
  • the time for applying a magnetic field to the composition 86 in one magnetic field generator 235 is about 5 seconds to 2 minutes.
  • the time for applying the magnetic field is a time for passing through one magnetic field generator 235 when the negative electrode current collector 82 moves from the upstream side to the downstream side as in the present embodiment.
  • the plurality of magnetic field generators 235A, 235B, 235C, and 235D are arranged with a space therebetween, but may be arranged without a space therebetween. Further, in the present embodiment, four magnetic field generators arranged at different angles are arranged, but the number of magnetic field generators is not limited as long as the graphite material 85 can be arranged as described above. .
  • a plurality of magnetic field generators 235 ⁇ / b> A, 235 ⁇ / b> B, 235 ⁇ / b> C, and 235 ⁇ / b> D are arranged along the longitudinal direction of the negative electrode current collector 82, thereby applying a magnetic field that generates magnetic field lines in the current collector width direction.
  • the direction of the magnetic field lines is changed continuously (stepwise) so that the magnetic field generated by the magnetic field lines is applied in the direction perpendicular to the current collector, but the wide surface of the magnetic field generator and the negative electrode current collector are changed.
  • the same magnetic field can be applied to the composition 86 also by one magnetic field generator formed in the same manner.
  • the magnetic field is applied to the composition 86 while moving the negative electrode current collector 82 in a predetermined direction, but the present invention is not limited to this mode.
  • a magnetic field that generates magnetic field lines in the direction orthogonal to the current collector is applied from a state in which magnetic field lines generate in the current collector width direction.
  • a magnetic field may be applied to the composition by moving the magnetic field generator itself so as to achieve a state.
  • the negative electrode mixture layer is formed by drying the composition to which the magnetic field is applied by an appropriate drying means.
  • the composition 86 applied with the magnetic field passes through the drying furnace 250, whereby the composition 86 applied to the negative electrode current collector 82 can be continuously dried.
  • the drying temperature at this time is, for example, about 100 ° C. to 180 ° C., and the drying time is, for example, about 10 seconds to 120 seconds. Drying at 150 ° C. for 90 seconds is preferred.
  • the negative electrode mixture layer 88 is formed by removing the solvent from the composition 86.
  • the graphite material on the negative electrode current collector 82 has its (002) surface 85A orthogonal to the surface (wide surface) of the negative electrode current collector 82 and the length of the negative electrode current collector 82.
  • a sheet-like negative electrode sheet (negative electrode) 84 on which a negative electrode mixture layer 88 (see FIG. 3) arranged so as to be parallel to the direction can be obtained.
  • the composition 86 can be dried in a state where a magnetic field generating magnetic lines of force in the direction orthogonal to the current collector is applied to the composition 86.
  • the graphite material 85 in the composition 86 is prevented from moving, which may occur in the drying process. (That is, a state in which the (002) surface 85A of the graphite material 85 is orthogonal to the wide surface of the negative electrode current collector 82 and parallel to the longitudinal direction of the negative electrode current collector 82). . Further, after the negative electrode mixture layer 88 is formed, it may be pressed (compressed) as necessary.
  • a conventionally known compression method such as a roll press method or a flat plate press method can be employed.
  • a paste-like composition for forming a positive electrode mixture layer is prepared by dispersing a positive electrode active material, a conductive material, a binder, and the like in a predetermined solvent.
  • the positive electrode active material include materials that can occlude and release lithium, and include lithium-containing compounds (for example, lithium transition composite oxides) that include a lithium element and one or more transition metal elements.
  • lithium cobalt composite oxide LiCoO 2
  • lithium nickel composite oxide LiNiO 2
  • lithium manganese composite oxide LiMn 2 O 4
  • nickel-cobalt-based LiNi x Co 1-x O 2 0 ⁇ x ⁇ 1
  • cobalt / manganese-based LiCo x Mn 1-x O 2 (0 ⁇ x ⁇ 1)
  • nickel / manganese-based LiNi x Mn 1-x O 2 (0 ⁇ x ⁇ 1)
  • LiNi x Mn 2-x O 4 (0 ⁇ x ⁇ 2)
  • binary lithium-containing composite oxide containing two kinds of transition metal elements
  • nickel, cobalt containing three kinds of transition metal elements
  • a ternary lithium-containing composite oxide such as manganese may be used.
  • an olivine type lithium phosphate represented by the general formula LiMPO 4 (M is at least one element of Co, Ni, Mn, and Fe; for example, LiFePO 4 , LiMnPO 4 ) is used as the positive electrode active material. Also good.
  • the binder As the binder, the same binder as that used for a positive electrode of a general lithium ion secondary battery can be appropriately employed.
  • a water-based composition the thing similar to the binder used for the said negative electrode can be employ
  • a solvent-based composition a polymer material that can be dissolved in an organic solvent (non-aqueous solvent) such as polyvinylidene fluoride (PVDF) or polyvinylidene chloride (PVDC) can be used.
  • an organic solvent non-aqueous solvent
  • the “solvent-based composition” is a concept indicating a composition in which the dispersion medium of the positive electrode active material is mainly an organic solvent.
  • the organic solvent for example, N-methylpyrrolidone (NMP) can be used.
  • the conductive material is not limited to a specific conductive material as long as it is conventionally used in this type of lithium ion secondary battery.
  • carbon materials such as carbon powder and carbon fiber can be used.
  • carbon powder various carbon blacks (for example, acetylene black, furnace black, ketjen black, etc.), carbon powders such as graphite powder can be used. Among these, you may use together 1 type, or 2 or more types.
  • the prepared composition for forming a positive electrode mixture layer is applied to the surface of the positive electrode current collector, dried to form a positive electrode mixture layer, and then compressed (pressed) as necessary.
  • a positive electrode provided with a positive electrode current collector and a positive electrode mixture layer containing a positive electrode active material can be produced.
  • the positive electrode current collector a conductive member made of a metal having good conductivity is preferably used, like the current collector used in the positive electrode of a conventional lithium ion secondary battery.
  • an aluminum material or an alloy material mainly composed of an aluminum material can be used.
  • the shape of the positive electrode current collector can be the same as the shape of the negative electrode current collector.
  • a process of constructing a battery assembly by housing the negative electrode (negative electrode sheet) 84 manufactured by applying the above-described method and the prepared positive electrode together with an electrolyte in a battery case will be described.
  • the negative electrode and the positive electrode are laminated together with a total of two separator sheets and wound to produce a wound electrode body.
  • the wound electrode body is accommodated in a battery case (for example, a flat rectangular parallelepiped case), and an electrolytic solution is injected into the battery case.
  • a battery assembly can be constructed
  • the electrolytic solution the same non-aqueous electrolytic solution conventionally used for lithium ion secondary batteries can be used without any particular limitation.
  • Such a nonaqueous electrolytic solution typically has a composition in which a supporting salt is contained in a suitable nonaqueous solvent.
  • a supporting salt 1 type, or 2 or more types selected from EC, PC, DMC, DEC, EMC etc. can be used, for example.
  • the supporting salt for example, it can be used lithium salts such as LiPF 6, LiBF 4.
  • the separator sheet include those made of a porous polyolefin resin or the like.
  • the present invention is not intended to be limited to such an embodiment. That is, at least 50 mass% of the graphite material 85 in the negative electrode mixture layer 88 is a long negative electrode in which the (002) surface 85A of the graphite material 85 is orthogonal to the surface (wide surface) of the negative electrode current collector 82. As long as it is arranged so as to be parallel to the longitudinal direction of the current collector 82, the shape (outer shape and size) of the constructed lithium ion secondary battery is not particularly limited.
  • a lithium ion secondary battery having a configuration in which a wound electrode body and an electrolytic solution are housed in a rectangular battery case will be described as an example.
  • symbol is attached
  • the dimensional relationship (length, width, thickness, etc.) in each drawing does not necessarily reflect the actual dimensional relationship.
  • FIG. 1 is a perspective view schematically showing a lithium ion secondary battery 10 according to the present embodiment.
  • FIG. 2 is a longitudinal sectional view taken along line II-II in FIG.
  • FIG. 3 is a cross-sectional view of the wound electrode body 50 according to the present embodiment.
  • the lithium ion secondary battery 10 according to this embodiment includes a battery case 15 made of metal (a resin or a laminate film is also suitable).
  • the case (outer container) 15 includes a flat cuboid case main body 30 having an open upper end, and a lid body 25 that closes the opening 20.
  • the lid body 25 seals the opening 20 of the case main body 30 by welding or the like.
  • the lid body 25 On the upper surface of the case 15 (that is, the lid body 25), a positive electrode terminal 60 electrically connected to the positive electrode sheet (positive electrode) 64 of the wound electrode body 50 and a negative electrode terminal electrically connected to the negative electrode sheet 84 of the electrode body. 80 is provided.
  • the lid 25 is provided with a safety valve 40 for discharging the gas generated inside the case 15 to the outside of the case 15 when the battery is abnormal, as in the case of the conventional lithium ion secondary battery. .
  • the case 15 is manufactured by laminating and winding a positive electrode sheet 64 and a negative electrode sheet 84 together with a total of two separator sheets 90, and then crushing the obtained wound body from the side direction and abducting it. A flat wound electrode body 50 and the electrolyte solution are accommodated.
  • the positive electrode mixture layer non-formed portion of the positive electrode sheet 64 (that is, the portion where the positive electrode current collector 62 is exposed without forming the positive electrode mixture layer 66) and the negative electrode sheet
  • the negative electrode composite material layer non-formed portion 84 protrudes from both sides in the width direction of the separator sheet 90. And the negative electrode sheet 84 are overlapped with a slight shift in the width direction.
  • the electrode composite material layer non-forming portions of the positive electrode sheet 64 and the negative electrode sheet 84 are respectively wound core portions (that is, the positive electrode composite material layer forming portion of the positive electrode sheet 64). And a portion where the negative electrode mixture layer forming portion of the negative electrode sheet 84 and the two separator sheets 90 are tightly wound) protrude outward.
  • the positive electrode terminal 60 is joined to the protruding portion on the positive electrode side, and the positive electrode sheet 64 and the positive electrode terminal 60 of the wound electrode body 50 formed in the flat shape are electrically connected.
  • the negative electrode terminal 80 is joined to the negative electrode side protruding portion, and the negative electrode sheet 84 and the negative electrode terminal 80 are electrically connected.
  • the positive and negative electrode terminals 60 and 80 and the positive and negative electrode current collectors 62 and 82 can be joined by, for example, ultrasonic welding, resistance welding, or the like.
  • FIG. 3 is a schematic cross-sectional view showing an enlarged central portion of the wound electrode body 50 in the winding axis direction.
  • a positive electrode sheet 64 in which a positive electrode mixture layer 66 including a positive electrode active material (for example, lithium cobalt oxide) 67 and a conductive material 68 is formed on a positive electrode current collector 62, and a negative electrode current collector 82
  • a separator sheet 90 is disposed between the negative electrode sheet 84 on which a negative electrode mixture layer 88 containing a graphite material 85 is formed.
  • Both composite material layers 66 and 88 and separator sheet 90 are impregnated with an electrolytic solution (not shown) containing the lithium salt.
  • At least 50% by mass of the graphite material 85 in the negative electrode mixture layer 88 is such that the (002) surface 85A of the graphite material is orthogonal to the surface (wide surface) of the negative electrode current collector 82 and It arrange
  • FIG. Therefore, even if the graphite material 85 contained in the negative electrode mixture layer 88 contracts during the discharge of the lithium ion secondary battery 10 (see FIG. 1), the lithium salt or the like present in the graphite material 85 The electrolyte is less likely to flow out of the electrode body 50 from the width direction (winding axis direction) of the electrode body 50. That is, an increase in internal resistance of the electrode body due to a decrease in electrolyte (electrolytic solution) such as lithium salt can be suppressed.
  • Example 1 Weigh natural graphite (negative electrode active material), SBR as a binder, and CMC as a thickener so that the mass ratio is 98: 1: 1, and disperse these materials in ion-exchanged water.
  • a paste-like composition for forming a negative electrode mixture layer was prepared. The composition was applied onto a copper foil (negative electrode current collector) having a thickness of 10 ⁇ m at a coating amount of 4 mg / cm 2 per side, and a magnetic field was applied to the coated composition.
  • the negative electrode sheet which concerns on Example 1 provided with a negative electrode compound material layer was produced by drying the composition after a magnetic field application.
  • the magnetic field is applied to the composition by first applying a magnetic field in which magnetic lines of force are generated in the width direction of the current collector and then applying a magnetic field in which the direction of the lines of magnetic force is in a direction perpendicular to the current collector. This was done by continuously changing the direction of. The strength of the magnetic field at this time was 0.495T.
  • the mass ratio of LiNi 1/3 Mn 1/3 Co 1/3 O 2 as the positive electrode active material, acetylene black (AB) as the conductive material, and PVDF as the binder is 90: 8: 2. Then, these materials were dispersed in NMP to prepare a paste-like composition for forming a positive electrode mixture layer.
  • the composition was coated on a 15 ⁇ m thick aluminum foil at a coating amount of 6 mg / cm 2 per side and dried to prepare a positive electrode sheet according to Example 1 having a positive electrode mixture layer on the aluminum foil. Then, the prepared negative electrode sheet and positive electrode sheet according to Example 1 are wound together with two separator sheets (polypropylene / polyethylene composite porous membrane) and wound, and the obtained wound electrode body is crushed into a flat shape. This was accommodated in a cylindrical container together with the electrolyte solution to produce a lithium ion secondary battery according to Example 1.
  • electrolytic solution a solution obtained by dissolving 1 mol / L LiPF 6 in a mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) in a volume ratio of 1: 1: 1 was used. .
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • ⁇ Comparative Example 1> A negative electrode sheet according to Comparative Example 1 was produced in the same manner as in Example 1 except that a magnetic field generating magnetic field lines in the direction perpendicular to the current collector was applied to the composition.
  • a lithium ion secondary battery according to Comparative Example 1 was produced in the same manner as Example 1 except that the negative electrode sheet according to Comparative Example 1 was used.
  • ⁇ Comparative Example 2> A negative electrode sheet according to Comparative Example 2 was produced in the same manner as in Example 1 except that no magnetic field was applied to the composition.
  • a lithium ion secondary battery according to Comparative Example 2 was produced in the same manner as Example 1 except that the negative electrode sheet according to Comparative Example 2 was used.
  • FIG. 11 to 13 are cross-sectional SEM (scanning electron microscope) photographs showing the states of the negative electrode sheets of Example 1, Comparative Example 1 and Comparative Example 2.
  • FIG. 13 in the negative electrode sheet in which no magnetic field is applied to the negative electrode sheet, the natural graphite (negative electrode active material) is not arranged in the direction orthogonal to the negative electrode current collector in the negative electrode mixture layer, but randomly. It was confirmed that it was placed.
  • FIG. 12 in the negative electrode sheet in which a magnetic field is applied in the direction perpendicular to the negative current collector, a part of natural graphite (negative electrode active material) in the negative electrode mixture layer is perpendicular to the surface of the negative electrode current collector.
  • the current collector was randomly arranged in the longitudinal direction of the current collector.
  • FIG. 11 when a magnetic field is continuously applied to the negative electrode sheet from the current collector width direction to the current collector orthogonal direction, most of the natural graphite in the negative electrode mixture layer is negative electrode current collector. It was confirmed that they were arranged (arranged) so as to be orthogonal to the surface of the body and parallel to the longitudinal direction of the negative electrode current collector.
  • the lithium ion secondary battery including the negative electrode according to the present invention has low internal resistance and excellent battery performance, it can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. Therefore, as schematically shown in FIG. 15, the present invention provides a vehicle (typically, a lithium-ion secondary battery 10 (typically, an assembled battery formed by connecting a plurality of the batteries 10 in series) as a power source (typically Provides a motor vehicle, particularly a motor vehicle equipped with an electric motor such as a hybrid vehicle, an electric vehicle, and a fuel vehicle.
  • a vehicle typically, a lithium-ion secondary battery 10 (typically, an assembled battery formed by connecting a plurality of the batteries 10 in series)
  • a power source typically Provides a motor vehicle, particularly a motor vehicle equipped with an electric motor such as a hybrid vehicle, an electric vehicle, and a fuel vehicle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 内部抵抗の増加を抑制し得るリチウムイオン二次電池が提供される。該電池は、正極64及び負極84がセパレータ90を介して捲回された捲回電極体50と、電解液と、を備えており、上記負極は、長尺状の負極集電体82と該負極集電体上に形成された少なくとも黒鉛材料85を含む負極合材層88とを備えている。上記負極合材層中の黒鉛材料の少なくとも50質量%は、該黒鉛材料の(002)面85Aが上記負極集電体の表面と直交し且つ上記長尺状の負極集電体の長手方向と平行となるように配置されている。

Description

リチウムイオン二次電池とその製造方法
 本発明は、リチウムイオン二次電池とその製法に関する。特に車両用電源等として用いられるのに適したリチウムイオン二次電池用の負極の構造と該構造を形成する方法に関する。
 リチウムイオン二次電池は、正極及び負極と、それら両電極間に介在された電解液とを備えており、リチウムイオンがリチウム塩等の電解質を含む電解液を介して正極と負極との間を行き来することにより充放電を行う。この種のリチウムイオン二次電池の典型的な負極は、リチウムイオンを可逆的に吸蔵及び放出し得る負極活物質を含んでいる。かかる負極活物質としては、主として種々の炭素材料が挙げられ、例えば、黒鉛材料が用いられる。黒鉛は、層状の結晶構造を有し、その層と層との間(層間)へのリチウムイオンの吸蔵および該層間からのリチウムイオンの放出により充放電が実現される。
 ところで、負極活物質としての黒鉛を含むペースト状に調製された組成物(ペースト状組成物にはスラリー状組成物及びインク状組成物が包含される。以下、ペースト状組成物を単に「組成物」という。)を集電体に塗布して負極を形成する際、黒鉛は、該黒鉛の層面((002)面)が集電体の表面(幅広面)に対して平行に配置しやすい性質を有している。このため、黒鉛のエッジ部(複数の層の端部)が集電体に対して凡そ平行に配置し、充放電時に層間へのリチウムイオンの吸蔵および該層間からのリチウムイオンの放出が円滑に行われない虞がある。かかる問題に対応すべく、従来技術として、特許文献1が挙げられる。特許文献1には、組成物に磁場を印加して黒鉛の層面を集電体に対して垂直に配置させようとする技術が記載されている。その他、リチウムイオン二次電池用の負極に関する従来技術として特許文献2が挙げられる。
日本国特許出願公開2003-197189号公報 日本国特許出願公開2006-252945号公報
 しかしながら、上記特許文献1に記載の技術では、負極中の黒鉛の層面(即ち黒鉛層と水平な面である(002)面をいう。)を集電体に対して垂直に配置させることができ得るものの、各黒鉛の層面は長尺状の集電体に対して不規則(多方向)に配置されている。このため、該長尺状の負極を含む捲回電極体を備えるリチウムイオン二次電池の放電時における黒鉛の収縮の際に、該黒鉛内のリチウム塩等の電解質(電解液)が電極体の捲回軸方向に流動して負極(電極体)の外へ流出してしまい、負極(電極体)内の電解質の減少によって該負極(電極体)の内部抵抗が高くなる虞がある。
 そこで、本発明は、上述した従来の課題を解決すべく創出されたものであり、その目的は、リチウムイオン二次電池の放電の際に負極からのリチウム塩等の電解質の流出を防止して内部抵抗の増加を抑制し得るリチウムイオン二次電池ならびに該二次電池の製造方法を提供することである。
 上記目的を実現すべく、本発明により、正極及び負極がセパレータを介して捲回された捲回電極体と、電解液と、を備えるリチウムイオン二次電池が提供される。即ちここで開示されるリチウムイオン二次電池において、上記負極は、長尺状の負極集電体と該負極集電体の表面上に形成された少なくとも黒鉛材料を含む負極合材層とを備えている。上記負極合材層中の黒鉛材料の少なくとも50質量%は、該黒鉛材料の(002)面が上記負極集電体の表面(幅広面)と直交し且つ上記長尺状の負極集電体の長手方向と平行となるように配置されている。
 なお、本明細書において「黒鉛材料の(002)面」とは、層状構造の黒鉛材料(黒鉛結晶)の層面(黒鉛層と水平な面)であって該黒鉛材料を構成するグラフェンシートの炭素ネットワークと水平な面をいう。
 本発明によって提供されるリチウムイオン二次電池は、黒鉛材料を含む負極合材層を備えており、黒鉛材料のうち少なくとも50質量%(例えば70質量%以上。好ましくは80質量%以上。より好ましくは90質量%以上。)の黒鉛材料は、その(002)面が負極集電体の表面と直交し且つ該負極集電体の長手方向と平行となるように配置(配列)されている。
 このように、負極の負極合材層において黒鉛材料の(002)面が上記所定の方向に配列されていることにより、リチウムイオン二次電池の放電時において、黒鉛材料の収縮によって該黒鉛材料内に存在するリチウム塩等の電解質(電解液)が黒鉛材料から移動しても、電解質は負極(負極集電体)の長手方向に移動し幅方向(捲回軸方向)の移動は抑制されるため、電解質が負極の外部へ流出することを効果的に防止することができる。このため、リチウム塩等の電解質の流出による内部抵抗の増加を抑制することができる。上記黒鉛材料として、レーザー回折散乱法に基づいて測定される粒度分布においてメジアン径(D50)が5μm~20μmである黒鉛材料を採用することが特に有意義である。
 また、本発明によると、上記目的を実現する他の側面として、正極集電体上に正極合材層が形成された正極及び負極集電体上に負極合材層が形成された負極がセパレータを介して捲回された捲回電極体と、電解液と、を備えるリチウムイオン二次電池を製造する方法が提供される。即ちここで開示されるリチウムイオン二次電池の製造方法は、少なくとも黒鉛材料と所定の溶媒とを混合し、該混合物を混練して得たペースト状の負極合材層形成用組成物を用意すること、上記用意した組成物を長尺状の負極集電体の表面に塗布すること、上記塗布された組成物に磁場を印加して、該組成物中に含まれている上記黒鉛材料の少なくとも50質量%がその(002)面を上記長尺状の負極集電体の表面と直交し且つ該負極集電体の長手方向と平行となるように配置されている負極合材層を形成すること、を包含する。ここで、上記負極合材層を形成する際、上記長尺状の負極集電体の長手方向と直交する方向であって該負極集電体の一の長辺から他の一の長辺に向かう方向として規定される集電体幅方向に磁力線が発生する磁場を先ず印加し、次いで、該磁力線の向きが該負極集電体の表面と直交する方向として規定される集電体直交方向となる磁場を印加する状態となるまで該磁力線の向きを連続的に変化させていくことによって、上記組成物中に含まれている上記黒鉛材料の(002)面を該負極集電体の表面と直交し且つ該負極集電体の長手方向と平行となるように上記黒鉛材料を変位させる。
 なお、本明細書において「磁力線の向きを連続的に変化させる」には、磁力線の向きをある一の方向から他の目的とする方向まで無段階で連続して変化させることの他、ある一の方向から他の目的とする方向まで段階的に変化させることが包含される。
 本発明のリチウムイオン二次電池の製造方法では、磁力線の向きが上記集電体幅方向から上記集電体直交方向となるように磁場を連続的に変化させることによって、長尺状の負極集電体上に塗布された組成物中に含まれている黒鉛材料のうち少なくとも50質量%(例えば70質量%以上。好ましくは80質量%以上。より好ましくは90質量%以上)は、その(002)面を該負極集電体の表面(幅広面)と直交し且つ該負極集電体の長手方向と平行となるように配置される。このように、負極集電体の表面に塗布した組成物に対して上記のように印加した磁場を制御することにより、組成物中の黒鉛材料を変位させて該黒鉛材料を規則正しく配列することができる。
 ここで開示される製造方法の好適な一態様では、上記組成物の塗布は、上記長尺状の負極集電体を所定の方向に移動させつつ、該移動する負極集電体の表面に上記組成物を連続的に塗布することによって行われる。そして、上記塗布された組成物に磁場を印加することは、上記所定方向に移動する上記組成物塗布後の負極集電体に沿って配置された磁場発生体であって該負極集電体の上流側から下流側に向けて磁力線が前記集電体幅方向から上記集電体直交方向に連続的に変わるように配置された磁場発生体によって行われることを包含する。
 かかる構成によると、黒鉛材料が規則的に配列された負極合材層を含む負極を連続的に製造することができる。
 ここで開示される製造方法の好適な他の一態様では、上記磁場発生体は、上記負極集電体の上流側から下流側に向けて磁力線が上記集電体幅方向から上記集電体直交方向に変わるように角度を段階的に変えて配置された複数の磁石又は複数のコイルである。
 かかる構成によると、磁場発生体として複数の磁石又はコイルを用いることにより、容易に黒鉛材料が規則的に配列された負極合材層を含む負極を製造することができる。
 ここで開示される製造方法の好適な他の一態様では、上記組成物全量を100質量%としたとき該組成物の固形分率は、40質量%~55質量%である。
 かかる構成によると、負極集電体に塗布された該組成物に磁場を印加したときに、該組成物中の黒鉛材料の(002)面を負極集電体の表面と直交し且つ該負極集電体の長手方向と平行となるように変位させやすくなる。
 ここで開示される製造方法の好適な他の一態様では、上記負極合材層を形成するときに、上記組成物に対して磁力線が上記集電体直交方向に向く磁場を印加した状態で該組成物を乾燥させる。
 かかる構成によると、負極合材層が形成された際に、該負極合材層中の黒鉛材料の(002)面がより確実に負極集電体の表面と直交し且つ該負極集電体の長手方向と平行となり得る。
 このようにして製造されたリチウムイオン二次電池は、負極合材層において黒鉛材料の少なくとも50質量%が上記のように規則的に配列されているため、より優れた電池性能(典型的には内部抵抗の低減)を示すものであり得る。かかるリチウムイオン二次電池は、上記のとおり電池性能に優れることから、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用し得る。従って、本発明は、かかる二次電池(複数直列接続してなる組電池であってもよい。)を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)を提供する。
図1は、本発明の一実施形態に係るリチウムイオン二次電池の外形を模式的に示す斜視図である。 図2は、図1中のII‐II線に沿う断面図である。 図3は、本発明の一実施形態に係るリチウムイオン二次電池の電極体の構造を模式的に示す断面図である。 図4は、本発明の一実施形態に係るリチウムイオン二次電池の製造方法を説明するためのフローチャートである。 図5は、本発明の一実施形態に係る負極の製造装置の概略構成を模式的に示す説明図である。 図6Aは、本発明の一実施形態に係る負極の製造方法における製造中間過程の負極の構造を模式的に示す平面図である。 図6Bは、図5中の6B‐6B線に沿う断面図である。 図7Aは、本発明の一実施形態に係る負極の製造方法における製造中間過程の負極の構造を模式的に示す平面図である。 図7Bは、図5中の7B‐7B線に沿う断面図である。 図8Aは、本発明の一実施形態に係る負極の製造方法における製造中間過程の負極の構造を模式的に示す平面図である。 図8Bは、図5中の8B‐8B線に沿う断面図である。 図9Aは、本発明の一実施形態に係る負極の製造方法における製造中間過程の負極の構造を模式的に示す平面図である。 図9Bは、図5中の9B‐9B線に沿う断面図である。 図10Aは、本発明の一実施形態に係る負極の製造方法における製造中間過程の負極の構造を模式的に示す平面図である。 図10Bは、図5中の10B‐10B線に沿う断面図である。 図11は、実施例1に係る負極シートの断面SEM画像である。 図12は、比較例1に係る負極シートの断面SEM画像である。 図13は、比較例2に係る負極シートの断面SEM画像である。 図14は、IV抵抗とサイクル数との関係を示すグラフである。 図15は、本発明に係るリチウムイオン二次電池を備えた車両(自動車)を模式的に示す側面図である。 図16Aは、従来の負極の製造方法における製造中間過程の負極の構造を模式的に示す平面図である。 図16Bは、従来の負極の製造方法によって製造された負極の構造を模式的に示す断面図である。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事項は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 まず、ここで開示されるリチウムイオン二次電池の製造方法の好ましい一態様について説明する。
 ここで開示されるリチウムイオン二次電池の製造方法は、図4に示すように、組成物準備工程(ステップS10)と、組成物塗布工程(ステップS20)と、磁場印加工程(ステップS30)と、乾燥工程(ステップS40)とを包含する。図5は、かかるリチウムイオン二次電池に用いられる負極の製造方法を具現化した製造装置を示す図である。図5に示すように、本実施形態に係る負極製造装置200は、大まかにいって、供給ロール205、組成物塗布部220、磁場印加部230、乾燥炉250及び回収ロール210を備えている。負極集電体82は、供給ロール205から供給され所定の経路に沿って走行し得るガイド240に案内されて上記各工程を経て回収ロール210で回収される。
 まず、組成物準備工程(S10)について説明する。組成物準備工程には、少なくとも黒鉛材料と所定の溶媒とを混合し、該混合物を混練して得たペースト状の負極合材層形成用組成物(以下、単に「ペースト」という場合もある。)を用意することが含まれている。本工程において、例えば、黒鉛材料と、結着材(バインダ)とを所定の溶媒に分散させてなるペーストを調製する。
 上記黒鉛材料(負極活物質)としては、リチウムイオンを可逆的に吸蔵及び放出可能な天然黒鉛、人工黒鉛(人造黒鉛)等が挙げられる。上記黒鉛材料のレーザー回折散乱法に基づいて測定される粒度分布におけるメジアン径(D50)は、5μm~20μm程度であることが好ましい。メジアン径が20μmよりも大きすぎる場合には、黒鉛材料中心部へのリチウムイオンの拡散に時間がかかること等により、負極の実行容量が低下する虞がある。メジアン径が5μmよりも小さすぎる場合には、黒鉛材料表面での副反応速度が上昇し、リチウムイオン二次電池の不可逆容量が増加する虞がある。
 上記結着材としては、一般的なリチウムイオン二次電池の負極に使用される結着材と同様のものを適宜採用することができる。例えば、水系の組成物を調製する場合には、上記結着材として水に溶解又は分散するポリマー材料を好ましく採用し得る。水に溶解する(水溶性の)ポリマー材料としては、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)等のセルロース系ポリマー;ポリビニルアルコール(PVA);等が例示される。また、水に分散する(水分散性の)ポリマー材料としては、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂;酢酸ビニル共重合体;スチレンブタジエンゴム(SBR)等のゴム類;が例示される。上記で例示したポリマー材料は、結着材としての機能の他に、上記組成物の増粘材その他の添加材としての機能を発揮する目的で使用することができる。
 ここで、「水系の組成物」とは、上記所定の溶媒(分散媒)として水または水を主体とする混合溶媒(水系溶媒)を用いた組成物を指す概念である。該混合溶媒を構成する水以外の溶媒としては、水と均一に混合し得る有機溶媒(低級アルコール、低級ケトン等)の一種または二種以上を適宜選択して用いることができる。
 上記黒鉛材料、結着材を溶媒中で混ぜ合わせる(混練)操作は、例えば、適当な混練機(プラネタリーミキサー、ホモディスパー、クレアミックス、フィルミックス等)を用いて行うことができる。上記ペースト状の組成物を調製するにあたっては、先ず、黒鉛材料と結着材と少量の溶媒で固練りし、その後、得られた混練物を適量の溶媒で希釈してもよい。
 上記ペースト状組成物の固形分率は、凡そ30質量%~65質量%であり、凡そ40質量%~55質量%であることが好ましい。また、該組成物の固形分全体に占める黒鉛材料の割合は、凡そ80質量%~100質量%であり、凡そ95質量%~100質量%であることが好ましい。また、上記組成物の固形分全体に占める結着材の割合は、例えば凡そ0.1質量%~5質量%とすることができ、通常は凡そ0.1質量%~3質量%とすることが好ましい。増粘材を使用する組成では、上記組成物の固形分全体に占める増粘材の割合を例えば凡そ0.1質量%~5質量%とすることができ、通常は凡そ0.1質量%~3質量%とすることが好ましい。
 次に、組成物塗布工程(S20)について説明する。組成物塗布工程には、上記用意した組成物を長尺状の負極集電体の表面に塗布することが含まれている。
 図5に示すように、本実施形態に係る組成物塗布部220はダイコーターである。該組成物塗布部220のダイ222に上記用意した組成物86が供給されて、供給ロール205から送り出された長尺状の負極集電体82の表面に該組成物86を塗布する。
 上記負極集電体82としては、従来のリチウムイオン二次電池の負極に用いられている集電体と同様、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、銅材やニッケル材或いはそれらを主体とする長尺なシート形状の合金材を用いることができる。シート形状の負極集電体82の厚さは、凡そ10μm~30μm程度である。
 本実施形態の負極製造装置200の組成物塗布部220はダイコーターであるが、これに限定されず、上記組成物86を負極集電体82に塗布することは、従来の一般的なリチウムイオン二次電池用の電極(負極)を作製する場合と同様にして行うことができる。例えば、従来公知の適当な塗布装置、例えば、スリットコーター、コンマコーター、グラビアコーターなどを代わりに用いることができる。
 次に、磁場印加工程(S30)について説明する。磁場印加工程には、上記塗布された組成物(溶媒が残っており乾燥していない状態の組成物)に磁場を印加することが含まれる。ここで、磁場の印加は、長尺状の負極集電体の長手方向と直交する方向であって該負極集電体の一の長辺から他の一の長辺に向かう方向として規定される集電体幅方向に磁力線が発生する磁場を先ず印加し、次いで、該磁力線の向きが該負極集電体の表面(幅広面)と直交する方向として規定される集電体直交方向となる磁場を印加する状態となるまで該磁力線の向きを連続的に変化させることにより行われる。
 図5に示すように、本実施形態に係る負極製造装置200における磁場印加部230は、負極集電体82を挟むように対向して配置された一対の磁場発生体235を複数備えている。磁場発生体235としては、磁場を発生することができるものであれば特に限定されないが、例えば、永久磁石や電磁コイル等が挙げられる。
 本実施形態に係る負極製造装置200の磁場印加部230では、磁力線の向きが集電体幅方向から集電体直交方向に変わるように、負極集電体82の上流側から下流側に向けて(図5の矢印Xの方向)磁場発生体235A,235B,235C,235Dが角度を段階的に変えてそれぞれ配置されている。即ち、図7A及び図7Bに示すように、一対の磁場発生体235Aは、磁場発生体235Aの幅広面と負極集電体82の幅広面とが平行となるように負極集電体82の長手方向(矢印Xの方向)に沿って配置されている。このように磁場発生体235Aが配置されることで、負極集電体82の表面に塗布された組成物86に対して、長尺状の負極集電体82の長手方向と直交する方向であって該負極集電体82の一の長辺から他の一の長辺に向かう方向として規定される集電体幅方向(図7A及び図7Bに示す矢印Y1の方向)に磁力線が発生する磁場を印加することができる。
 また、図8A及び図8Bに示すように、一対の磁場発生体235Bは、磁場発生体235Bの幅広面と負極集電体82の幅広面とのなす角度がθ(例えば、凡そ20度~40度。本実施形態では30度。)となるように負極集電体82の長手方向(矢印Xの方向)に沿って配置されている。このように磁場発生体235Bが配置されることで、負極集電体82の表面に塗布された組成物86に対して、負極集電体82に対してθだけ傾いた方向(図8A及び図8Bに示す矢印Y2の方向)に磁力線が発生する磁場を印加することができる。
 また、図9A及び図9Bに示すように、一対の磁場発生体235Cは、磁場発生体235Cの幅広面と負極集電体82の幅広面とのなす角度がθ(例えば、凡そ50度~70度。本実施形態では60度。)となるように負極集電体82の長手方向(矢印Xの方向)に沿って配置されている。このように磁場発生体235Cが配置されることで、負極集電体82の表面に塗布された組成物86に対して、負極集電体82に対してθだけ傾いた方向(図9A及び図9Bに示す矢印Y3の方向)に磁力線が発生する磁場を印加することができる。
 また、図10A及び図10Bに示すように、一対の磁場発生体235D(図10Aにおいて一方の磁場発生体は図示せず)は、磁場発生体235Dの幅広面と負極集電体82の表面(幅広面)とが平行となるように負極集電体82の長手方向(矢印Xの方向)に沿って配置されている。このように磁場発生体235Dが配置されることで、負極集電体82の表面に塗布された組成物86に対して、長尺状の負極集電体82の表面(幅広面)と直交する方向として規定される集電体直交方向(図10Aの紙面と直交する方向及び図10Bに示す矢印Y4の方向)に磁力線が発生する磁場を印加することができる。
 上記のように磁場発生体235A,235B,235C,235Dが負極集電体82に沿って配置されていることにより、負極集電体82の表面に塗布された組成物86中に含まれる黒鉛材料(負極活物質)85に対して、複数の所定の方向に磁力線が発生する磁場を印加することができる。この結果、黒鉛材料85を該磁場によって変位させて該黒鉛材料の少なくとも50質量%(例えば70質量%以上。好ましくは80質量%以上。より好ましくは90質量%以上。)を一定方向に配列することができる。
 より詳細に説明すると、図6A及び図6Bに示すように、負極集電体82に塗布された組成物86中の黒鉛材料85は、該黒鉛材料85の(002)面85Aと負極集電体82の表面(幅広面)とが凡そ平行となるように配列される傾向にある。図5及び図7A及び図7Bに示すように、かかる組成物86が塗布された負極集電体82は、磁場発生体235Aが配置されている領域に移送されて、磁場発生体235Aにより上記集電体幅方向に磁力線が発生する磁場が印加される。この結果、図7Bに示すように、組成物86中の黒鉛材料85を変位させて該黒鉛材料の少なくとも50質量%を、該黒鉛材料の(002)面85Aが負極集電体82と平行となるように配置(配列)することができる。
 次いで、図5及び図8A及び図8Bに示すように、磁場発生体235Aによって磁場が印加された組成物86を備える負極集電体82は、磁場発生体235Bが配置されている領域に移送されて、磁場発生体235Bにより負極集電体82に対してθだけ傾いた方向に磁力線が発生する磁場が印加される。この結果、図8A及び図8Bに示すように、組成物86中の黒鉛材料85を変位させて該黒鉛材料の少なくとも50質量%を、該黒鉛材料の(002)面85Aが負極集電体82に対してθだけ傾いた方向となるように配置(配列)することができる。
 次いで、図5及び図9A及び図9Bに示すように、磁場発生体235Bによって磁場が印加された組成物86を備える負極集電体82は、磁場発生体235Cが配置されている領域に移送されて、磁場発生体235Cにより負極集電体82に対してθだけ傾いた方向に磁力線が発生する磁場が印加される。この結果、図9A及び図9Bに示すように、組成物86中の黒鉛材料85を変位させて、該黒鉛材料の(002)面85Aが負極集電体82に対してθだけ傾いた方向となるように配置(配列)することができる。
 最後に、図5及び図10A及び図10Bに示すように、磁場発生体235Cによって磁場が印加された組成物86を備える負極集電体82は、磁場発生体235Dが配置されている領域に移送されて、磁場発生体235Dにより上記集電体直交方向に磁力線が発生する磁場が印加される。この結果、図10A及び図10Bに示すように、組成物86中の黒鉛材料85を変位させて該黒鉛材料の少なくとも50質量%を、黒鉛材料85の(002)面85Aが負極集電体82の幅広面と直交し且つ負極集電体82の長手方向と平行となるように配置(配列)することができる。
 ここで、従来の方法によって、組成物586中の黒鉛材料585の(002)面585Aが、負極集電体582の表面(幅広面)と直交するように上記集電体直交方向に磁力線が発生する磁場を印加すると、図16A及び図16Bに示すように、組成物586中のほとんどの黒鉛材料585の(002)面585Aは、負極集電体582の長手方向と平行となるように配置(配列)されない。従って、該組成物586を乾燥させて負極合材層が形成されてなる負極シートと正極シートとセパレータシートとを共に捲回して形成される捲回電極体を備えるリチウムイン二次電池の使用の際に(典型的には放電の際に)、黒鉛材料585が収縮すると該黒鉛材料585内からリチウム塩等の電解質が負極集電体の幅方向(図16A及び図16Bの矢印Zの方向。即ち捲回軸方向。)に移動する。かかる移動した電解質は、さらに負極集電582体の幅方向から電極体の外部に流出してしまい、電極体内の電解質の減少によって該電極体の内部抵抗が大きく増加する虞がある。
 一方、図10A及び図10Bに示すように、本実施形態に係る組成物86中の黒鉛材料85の(002)面85Aは負極集電体82の表面(幅広面)と直交し且つ負極集電体82の長手方向と平行となるように配置(配列)されている。従って、該該組成物86を乾燥させて負極合材層が形成されてなる負極シートと正極シートとセパレータシートとを共に捲回して形成される捲回電極体を備えるリチウムイン二次電池の使用の際に(放電の際に)、黒鉛材料85が収縮すると該黒鉛材料585内からリチウム塩等の電解質が負極電極体82の長手方向及び集電体82と直交する方向に移動する。このため、負極集電体82の幅方向から電解質が電極体の外部に流出することを防止することができ、該電極体の内部抵抗の増加を抑制することができる。
 上記磁場印加工程において、負極集電体82の表面に塗布された組成物86に対して作用させる磁場の強さは、例えば、凡そ0.3T~1T程度であり、通常は凡そ0.4T~0.6T程度である。また、一つの磁場発生体235において組成物86に対して磁場を印加する時間は、凡そ5秒~2分程度である。該磁場を印加する時間は、本実施形態のように負極集電体82が上流側から下流側へと移動する場合には、一つの磁場発生体235を通過する時間となる。
 なお、本実施形態では、図5に示すように、複数の磁場発生体235A,235B,235C,235Dは相互に間隔を空けて配置されているが、間隔を空けることなく配置してもよい。また、本実施形態では、角度を段階的に変えて配置された磁場発生体が4つ配置されているが、上記のように黒鉛材料85を配置することができれば磁場発生体の数は限定されない。また、本実施形態では、複数の磁場発生体235A,235B,235C,235Dを負極集電体82の長手方向に沿って配置することによって、集電体幅方向に磁力線が発生する磁場を印加する状態から、集電体直交方向に磁力線が発生する磁場を印加する状態となるように該磁力線の向きを連続的(段階的)に変化させているが、磁場発生体の幅広面と負極集電体の表面(幅広面)とのなす角度が負極集電体の上流側から下流側に向けて90度から0度(即ち幅広面同士が平行)となるように螺旋状に連続的(無段階的)に形成された一つの磁場発生体によっても、組成物86に同様の磁場を印加することができる。また、本実施形態では、負極集電体82を所定の方向に移動させつつ組成物86に磁場を印加しているが、かかる形態に限定されない。例えば、移動していない(停止している)負極集電体に対して、集電体幅方向に磁力線が発生する磁場を印加する状態から、集電体直交方向に磁力線が発生する磁場を印加する状態となるように磁場発生体自体を移動させることによって組成物に磁場を印加してもよい。
 次に、乾燥工程(ステップS40)について説明する。乾燥工程では、上記磁場を印加した組成物を適当な乾燥手段で乾燥させることにより負極合材層を形成する。図5に示すように、磁場を印加された組成物86が乾燥炉250内を通過することによって、負極集電体82に塗布された組成物86を連続して乾燥させることができる。このときの乾燥温度は、例えば、100℃~180℃程度であり、乾燥時間は、例えば、10秒~120秒程度である。150℃で90秒の乾燥が好ましい。組成物86から溶媒を除去することによって負極合材層88が形成される。このようにして、負極集電体82上に黒鉛材料の少なくとも50質量%がその(002)面85Aを負極集電体82の表面(幅広面)と直交し且つ該負極集電体82の長手方向と平行となるように配置されている負極合材層88(図3参照)が形成されたシート形状の負極シート(負極)84を得ることができる。
 なお、乾燥工程において、組成物86に対して集電体直交方向に磁力線が発生する磁場を印加した状態で該組成物86を乾燥させることができる。このように、組成物86に対して上記磁場を印加した状態で該組成物86を乾燥させることにより、乾燥工程において起こり得る黒鉛材料85の移動を防止して、組成物86中の黒鉛材料85の配列状態(即ち黒鉛材料85の(002)面85Aが負極集電体82の幅広面と直交し且つ該負極集電体82の長手方向と平行となるような状態)を維持することができる。
 また、上記負極合材層88が形成された後に、必要に応じてプレス(圧縮)してもよい。圧縮方法としては、従来公知のロールプレス法、平板プレス法等の圧縮方法を採用することができる。
 次に、正極活物質を含む正極を形成する工程について説明する。まず、正極活物質と、導電材と結着材等とを所定の溶媒に分散させてなるペースト状の正極合材層形成用組成物を調製する。
 上記正極活物質としては、リチウムを吸蔵及び放出可能な材料であって、リチウム元素と一種または二種以上の遷移金属元素を含むリチウム含有化合物(例えばリチウム遷移複合酸化物)が挙げられる。例えば、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケル複合酸化物(LiNiO)、リチウムマンガン複合酸化物(LiMn)、あるいは、ニッケル・コバルト系のLiNiCo1-x(0<x<1)、コバルト・マンガン系のLiCoMn1-x(0<x<1)、ニッケル・マンガン系のLiNiMn1-x(0<x<1)やLiNiMn2-x(0<x<2)で表わされるような、遷移金属元素を2種含むいわゆる二元系リチウム含有複合酸化物、或いは、遷移金属元素を3種含むニッケル・コバルト・マンガン系のような三元系リチウム含有複合酸化物でもよい。
 また、一般式がLiMPO(MはCo、Ni、Mn、Feのうちの少なくとも一種以上の元素;例えばLiFePO、LiMnPO)で表記されるオリビン型リン酸リチウムを上記正極活物質として用いてもよい。
 上記結着材としては、一般的なリチウムイオン二次電池の正極に使用される結着材と同様のものを適宜採用することができる。水系の組成物を調製する場合には、上記負極に使用される結着材と同様の物を適宜採用することができる。また、溶剤系の組成物を調製する場合には、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)等の有機溶媒(非水溶媒)に溶解するポリマー材料を用いることができる。ここで、「溶剤系の組成物」とは、正極活物質の分散媒が主として有機溶媒である組成物を指す概念である。有機溶媒としては、例えば、N‐メチルピロリドン(NMP)等を用いることができる。
 また、上記導電材としては、従来この種のリチウムイオン二次電池で用いられているものであればよく、特定の導電材に限定されない。例えば、カーボン粉末やカーボンファイバー等のカーボン材料を用いることができる。カーボン粉末としては、種々のカーボンブラック(例えば、アセチレンブラック、ファーネスブラック、ケッチェンブラック等)、グラファイト粉末等のカーボン粉末を用いることができる。これらのうち一種又は二種以上を併用してもよい。
 そして、上記調製した正極合材層形成用組成物を正極集電体の表面に塗布し、乾燥させて正極合材層を形成した後、必要に応じて圧縮(プレス)する。これにより、正極集電体と、正極活物質を含む正極合材層を備える正極を作製することができる。
 上記正極集電体としては、従来のリチウムイオン二次電池の正極に用いられている集電体と同様、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、アルミニウム材又はアルミニウム材を主体とする合金材を用いることができる。正極集電体の形状は、負極集電体の形状と同様であり得る。
 次に、上述した方法を適用して製造された負極(負極シート)84及び上記作製された正極を電解液とともに電池ケースに収容して電池組立体を構築する工程について説明する。上記負極及び正極を計二枚のセパレータシートとともに積層して捲回して捲回電極体を作製する。次いで、電池ケース(例えば扁平な直方体状のケース)に該捲回電極体を収容すると共に、電解液を電池ケース内に注液する。そして、電池ケースの開口部を蓋体で封止することにより、電池組立体を構築することができる。ここで、上記電解液としては、従来からリチウムイオン二次電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。かかる非水電解液は、典型的には、適当な非水溶媒に支持塩を含有させた組成を有する。上記非水溶媒としては、例えば、EC、PC、DMC、DEC、EMC等から選択される一種又は二種以上を用いることができる。また、上記支持塩(支持電解質)としては、例えば、LiPF,LiBF等のリチウム塩を用いることができる。また、上記セパレータシートとしては、多孔質ポリオレフィン系樹脂等で構成されたものが挙げられる。
 以下、上記構築されたリチウムイオン二次電池の一形態を図面を参照しつつ説明するが、本発明をかかる実施形態に限定することを意図したものではない。即ち、負極合材層88中の黒鉛材料85の少なくとも50質量%は、該黒鉛材料85の(002)面85Aが負極集電体82の表面(幅広面)と直交し且つ長尺状の負極集電体82の長手方向と平行となるように配置されている限りにおいて、構築されるリチウムイオン二次電池の形状(外形やサイズ)には特に制限はない。以下の実施形態では、捲回電極体および電解液を角型形状の電池ケースに収容した構成のリチウムイオン二次電池を例にして説明する。
 なお、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略することがある。また、各図における寸法関係(長さ、幅、厚さ等)は、必ずしも実際の寸法関係を反映するものではない。
 図1は、本実施形態に係るリチウムイオン二次電池10を模式的に示す斜視図である。図2は、図1中のII-II線に沿う縦断面図である。図3は、本実施形態に係る捲回電極体50の断面図である。
 図1に示すように、本実施形態に係るリチウムイオン二次電池10は、金属製(樹脂製又はラミネートフィルム製も好適である。)の電池ケース15を備える。このケース(外容器)15は、上端が開放された扁平な直方体状のケース本体30と、その開口部20を塞ぐ蓋体25とを備える。溶接等により蓋体25は、ケース本体30の開口部20を封止している。ケース15の上面(すなわち蓋体25)には、捲回電極体50の正極シート(正極)64と電気的に接続する正極端子60および該電極体の負極シート84と電気的に接続する負極端子80が設けられている。また、蓋体25には、従来のリチウムイオン二次電池のケースと同様に、電池異常の際にケース15内部で発生したガスをケース15の外部に排出するための安全弁40が設けられている。ケース15の内部には、正極シート64および負極シート84を計二枚のセパレータシート90とともに積層して捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって作製される扁平形状の捲回電極体50及び上記電解液が収容されている。
 上記積層の際には、図2に示すように、正極シート64の正極合材層非形成部分(即ち正極合材層66が形成されずに正極集電体62が露出した部分)と負極シート84の負極合材層非形成部分(即ち負極合材層88が形成されずに負極集電体82が露出した部分)とがセパレータシート90の幅方向の両側からそれぞれはみ出すように、正極シート64と負極シート84とを幅方向にややずらして重ね合わせる。その結果、捲回電極体50の捲回方向に対する横方向において、正極シート64および負極シート84の電極合材層非形成部分がそれぞれ捲回コア部分(すなわち正極シート64の正極合材層形成部分と負極シート84の負極合材層形成部分と二枚のセパレータシート90とが密に捲回された部分)から外方にはみ出ている。かかる正極側はみ出し部分に正極端子60を接合して、上記扁平形状に形成された捲回電極体50の正極シート64と正極端子60とを電気的に接続する。同様に負極側はみ出し部分に負極端子80を接合して、負極シート84と負極端子80とを電気的に接続する。なお、正負極端子60,80と正負極集電体62,82とは、例えば、超音波溶接、抵抗溶接等によりそれぞれ接合することができる。
 図3は、捲回電極体50の捲回軸方向の中央部を拡大して示す模式的断面図である。図3に示すように、正極集電体62上に正極活物質(例えばコバルト酸リチウム)67及び導電材68を含む正極合材層66が形成された正極シート64と、負極集電体82上に黒鉛材料85を含む負極合材層88が形成された負極シート84との間にセパレータシート90が配置されている。両合材層66,88及びセパレータシート90には上記リチウム塩を含む電解液(図示せず)が含浸されている。ここで、本実施形態では、負極合材層88中の黒鉛材料85の少なくとも50質量%は、該黒鉛材料の(002)面85Aが負極集電体82の表面(幅広面)と直交し且つ負極集電体82の長手方向(図3の紙面と直交する方向)と平行となるように配置されている。このため、リチウムイオン二次電池10(図1参照)の放電の際に負極合材層88に含まれている黒鉛材料85が収縮しても、該黒鉛材料85内に存在するリチウム塩等の電解質は、電極体50の幅方向(捲回軸方向)から電極体50の外部へと流出しにくくなる。即ち、リチウム塩等の電解質(電解液)の減少による電極体の内部抵抗の増加を抑制することができる。
 以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。
 <実施例1>
 天然黒鉛(負極活物質)と、結着材としてのSBRと、増粘材としてのCMCとの質量比が98:1:1となるように秤量し、これら材料をイオン交換水に分散させてペースト状の負極合材層形成用組成物を調製した。上記組成物を厚さ10μmの銅箔(負極集電体)上に片面当たり塗布量4mg/cmで塗布し、該塗布された組成物に対して磁場を印加した。磁場印加後の組成物を乾燥することで負極合材層を備える実施例1に係る負極シートを作製した。ここで、組成物に対する磁場の印加は、集電体幅方向に磁力線が発生する磁場を先ず印加し、次いで、該磁力線の向きが集電体直交方向となる磁場を印加する状態となるまで磁力線の向きを連続的に変化させていくことにより行った。このときの磁場の強さは0.495Tであった。
 一方、正極活物質としてのLiNi1/3Mn1/3Co1/3と、導電材としてのアセチレンブラック(AB)と、結着材としてのPVDFとの質量比が90:8:2となるように秤量し、これら材料をNMPに分散させてペースト状の正極合材層形成用組成物を調製した。該組成物を厚さ15μmのアルミニウム箔上に片面当たり塗布量6mg/cm塗布し乾燥することで該アルミニウム箔上に正極合材層を備える実施例1に係る正極シートを作製した。
 そして、上記作製した実施例1に係る負極シート及び正極シートを二枚のセパレータシート(ポリプロピレン/ポリエチレン複合体多孔質膜)と共に重ね合わせて捲回し、得られた捲回電極体を扁平形状に押しつぶし、これを電解液と共に円筒型の容器に収容して実施例1に係るリチウムイオン二次電池を作製した。電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との体積比1:1:1の混合溶媒に1mol/LのLiPFを溶解させたものを使用した。
 <比較例1>
 集電体直交方向に磁力線が発生する磁場を組成物に対して印加した他は実施例1と同様にして、比較例1に係る負極シートを作製した。比較例1に係る負極シートを用いた他は実施例1と同様にして、比較例1に係るリチウムイオン二次電池を作製した。
 <比較例2>
 組成物に対して磁場を印加しなかった他は実施例1と同様にして、比較例2に係る負極シートを作製した。比較例2に係る負極シートを用いた他は実施例1と同様にして、比較例2に係るリチウムイオン二次電池を作製した。
 図11から図13は、実施例1、比較例1及び比較例2の負極シートの状態を示す断面SEM(走査型電子顕微鏡)写真である。図13に示すように、負極シートに磁場を印加していない負極シートでは、負極合材層において天然黒鉛(負極活物質)は負極集電体と直交する向きには配置されておらずランダムに配置されていることが確認された。また、図12に示すように、負集電体直交方向に磁場を印加した負極シートでは、負極合材層において天然黒鉛(負極活物質)の一部は負極集電体の表面と直交する方向に配置されているが、該集電体の長手方向に対してはランダムに配置されていることが確認された。一方、図11に示すように、負極シートに集電体幅方向から集電体直交方向へと連続的に磁場を印加した場合には、負極合材層において天然黒鉛の大部分が負極集電体の表面と直交し且つ該負極集電体の長手方向と平行となるように配置(配列)されていることが確認された。
 [初期充電処理]
 各二次電池に対して、1/10Cのレートで3時間の定電流(CC)充電を行い、次いで、1/3Cのレートで4.1Vまで充電する操作と、1/3Cのレートで3.0Vまで放電させる操作とを3回繰り返した。なお、1Cは、正極の理論容量より予測した電池容量(Ah)を1時間で充電できる電流量を指す。
 [IV抵抗測定]
 初期充電処理後の各二次電池に対して、温度25℃の条件下、4Cのレートで120秒間定電流‐定電圧(CCCV)充電を行った後、30Cのレートで10秒間の定電流(CC)放電を行った。この充放電サイクルを1サイクルとして、これを1000サイクル繰り返した。各二次電池において、サイクル数が0、100、200、500、700、1000サイクルのときのIV抵抗を測定した。即ち、150Aで10秒間の定電流(CC)放電を行い、このときの電流(I)‐電圧(V)プロット値の一次近似直線の傾きからIV抵抗(mΩ)を求めた。各例のIV抵抗測定の結果を表1及び図14に示す。
Figure JPOXMLDOC01-appb-T000001
 表1及び図14に示すように、サイクル数200までは各例の二次電池間でIV抵抗に差はあまりないが、サイクル数が大きくなるにつれて各二次電池間のIV抵抗の差が顕著に現れた。実施例1に係る二次電池のIV抵抗は、1000サイクル目では比較例2に係る二次電池のIV抵抗と比べて凡そ30%も低いことが確認された。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
 本発明に係る負極を含むリチウムイオン二次電池は、内部抵抗が低く電池性能に優れることから、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用し得る。従って本発明は、図15に模式的に示すように、かかるリチウムイオン二次電池10(典型的には当該電池10を複数個直列接続してなる組電池)を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料自動車のような電動機を備える自動車)100を提供する。
10 リチウムイオン二次電池
15 電池ケース
20 開口部
25 蓋体
30 ケース本体
40 安全弁
50 捲回電極体
60 正極端子
62 正極集電体
64 正極シート(正極)
66 正極合材層
67 正極活物質
68 導電材
80 負極端子
82 負極集電体
84 負極シート(負極)
85 黒鉛材料
86 組成物
88 負極合材層
90 セパレータシート
100 車両(自動車)
200 負極製造装置
205 供給ロール
210 回収ロール
220 組成物塗布部
222 ダイ
230 磁場印加部
235,235A,235B,235C,235D 磁場発生体
240 ガイド
250 乾燥炉
582 負極集電体
585 黒鉛材料
586 組成物

Claims (7)

  1.  正極及び負極がセパレータを介して捲回された捲回電極体と、電解液と、を備えるリチウムイオン二次電池であって、
     前記負極は、長尺状の負極集電体と該負極集電体の表面上に形成された少なくとも黒鉛材料を含む負極合材層とを備えており、
     前記負極合材層中の黒鉛材料の少なくとも50質量%は、該黒鉛材料の(002)面が前記負極集電体の表面と直交し且つ前記長尺状の負極集電体の長手方向と平行となるように配置されていることを特徴とする、リチウムイオン二次電池。
  2.  前記黒鉛材料は、レーザー回折散乱法に基づいて測定される粒度分布におけるメジアン径(D50)が5μm~20μmであることを特徴とする、請求項1に記載のリチウムイオン二次電池。
  3.  正極集電体上に正極合材層が形成された正極及び負極集電体上に負極合材層が形成された負極がセパレータを介して捲回された捲回電極体と、電解液と、を備えるリチウムイオン二次電池を製造する方法であって、
     少なくとも黒鉛材料と所定の溶媒とを混合し、該混合物を混練して得たペースト状の負極合材層形成用組成物を用意すること、
     前記用意した組成物を長尺状の負極集電体の表面に塗布すること、
     前記塗布された組成物に磁場を印加して、該組成物中に含まれている前記黒鉛材料の少なくとも50質量%がその(002)面を前記長尺状の負極集電体の表面と直交し且つ該負極集電体の長手方向と平行となるように配置されている負極合材層を形成すること、
    を包含し、
     ここで、前記負極合材層を形成する際、前記長尺状の負極集電体の長手方向と直交する方向であって該負極集電体の一の長辺から他の一の長辺に向かう方向として規定される集電体幅方向に磁力線が発生する磁場を先ず印加し、次いで、該磁力線の向きが該負極集電体の表面と直交する方向として規定される集電体直交方向となる磁場を印加する状態となるまで該磁力線の向きを連続的に変化させていくことによって、前記組成物中に含まれている前記黒鉛材料の(002)面を該負極集電体の表面と直交し且つ該負極集電体の長手方向と平行となるように前記黒鉛材料を変位させることを特徴とする、リチウムイオン二次電池の製造方法。
  4.  前記組成物の塗布は、前記長尺状の負極集電体を所定の方向に移動させつつ、該移動する負極集電体の表面に前記組成物を連続的に塗布することによって行われ、
     前記塗布された組成物に磁場を印加することは、前記所定方向に移動する前記組成物塗布後の負極集電体に沿って配置された磁場発生体であって該負極集電体の上流側から下流側に向けて磁力線が前記集電体幅方向から前記集電体直交方向に変わるように配置された磁場発生体によって行われることを包含することを特徴とする、請求項3に記載の製造方法。
  5.  前記磁場発生体は、前記負極集電体の上流側から下流側に向けて磁力線が前記集電体幅方向から前記集電体直交方向に変わるように角度を段階的に変えて配置された複数の磁石又は複数のコイルであることを特徴とする、請求項4に記載の製造方法。
  6.  前記組成物全量を100質量%としたとき該組成物の固形分率は、40質量%~55質量%であることを特徴とする、請求項3から5のいずれか一項に記載の製造方法。
  7.  前記負極合材層を形成するときに、前記組成物に対して磁力線が前記集電体直交方向に向く磁場を印加した状態で該組成物を乾燥させることを特徴とする、請求項3から6のいずれか一項に記載の製造方法。
PCT/JP2011/053570 2011-02-18 2011-02-18 リチウムイオン二次電池とその製造方法 WO2012111161A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/985,601 US9166247B2 (en) 2011-02-18 2011-02-18 Lithium-ion secondary cell and method for manufacturing same
CN201180067749.2A CN103380519B (zh) 2011-02-18 2011-02-18 锂离子二次电池及其制造方法
PCT/JP2011/053570 WO2012111161A1 (ja) 2011-02-18 2011-02-18 リチウムイオン二次電池とその製造方法
KR1020137023886A KR101543937B1 (ko) 2011-02-18 2011-02-18 리튬 이온 2차 전지와 그 제조 방법
JP2012557769A JP5601550B2 (ja) 2011-02-18 2011-02-18 リチウムイオン二次電池とその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053570 WO2012111161A1 (ja) 2011-02-18 2011-02-18 リチウムイオン二次電池とその製造方法

Publications (1)

Publication Number Publication Date
WO2012111161A1 true WO2012111161A1 (ja) 2012-08-23

Family

ID=46672121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053570 WO2012111161A1 (ja) 2011-02-18 2011-02-18 リチウムイオン二次電池とその製造方法

Country Status (5)

Country Link
US (1) US9166247B2 (ja)
JP (1) JP5601550B2 (ja)
KR (1) KR101543937B1 (ja)
CN (1) CN103380519B (ja)
WO (1) WO2012111161A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014137879A (ja) * 2013-01-16 2014-07-28 Toyota Motor Corp 二次電池
JP2019534155A (ja) * 2016-09-06 2019-11-28 バトリオン・アクチェンゲゼルシャフトBattrion AG 物品への磁界付与方法及び装置
JP2022515678A (ja) * 2019-01-07 2022-02-21 ユーシーエル ビジネス リミテッド 電気化学セルの性能を増強する方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104584271B (zh) * 2012-09-12 2018-04-17 株式会社杰士汤浅国际 蓄电元件以及蓄电元件的制造方法
CN103972475B (zh) * 2014-04-16 2016-05-11 山东精工电子科技有限公司 提高磷酸铁锂正极材料压实密度的装置
CN105322178B (zh) * 2015-10-16 2019-01-01 广东烛光新能源科技有限公司 一种电化学电池电极、含有该电极的电化学电池及其制备方法
WO2018047054A1 (de) * 2016-09-06 2018-03-15 Battrion Ag Verfahren und einrichtung zur applizierung magnetischer felder auf einem gegenstand
KR102483995B1 (ko) * 2016-12-07 2022-12-30 삼성에스디아이 주식회사 이차 전지용 음극 및 그의 제조 방법
DE102017111463B4 (de) * 2017-05-24 2022-11-17 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Aufgerollte energiespeicherbauelemente und verfahren zu ihrer herstellung
KR20200125950A (ko) * 2018-02-28 2020-11-05 바트리온 아게 코팅의 제조 방법
CN112259785B (zh) * 2020-10-27 2021-08-24 江西理工大学 一种单叠片对数软包锂离子电池及其制备方法
CN113410426A (zh) * 2021-07-30 2021-09-17 湖南立方新能源科技有限责任公司 一种锂离子电池
DE102021133008A1 (de) * 2021-12-14 2023-06-15 Battrion Ag Verfahren zur Herstellung einer Elektrode mit heterogener Mehrfachbeschichtung
CN114335416B (zh) * 2021-12-17 2024-03-26 湖南立方新能源科技有限责任公司 一种复合负极片及其制备方法、锂离子电池和用电装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111219A (ja) * 1994-10-11 1996-04-30 Shin Kobe Electric Mach Co Ltd リチウムイオン二次電池
JPH09245770A (ja) * 1996-03-06 1997-09-19 Sanyo Electric Co Ltd 非水電解液電池
JPH09306477A (ja) * 1996-05-09 1997-11-28 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JPH10321219A (ja) * 1997-05-20 1998-12-04 Mitsubishi Cable Ind Ltd 電池用負極の製造方法
JP2001196051A (ja) * 2000-01-11 2001-07-19 At Battery:Kk 非水系二次電池及び非水系二次電池の製造方法
US20040072076A1 (en) * 2001-12-21 2004-04-15 Keiko Matsubara Graphite-containing composition, negative electrode for a lithium secondary battery, and lithium secondary battery
JP2004220926A (ja) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極
JP2005056645A (ja) * 2003-08-01 2005-03-03 Matsushita Electric Ind Co Ltd 非水電解質二次電池およびその製造法
JP2006083030A (ja) * 2004-09-17 2006-03-30 Sony Corp 黒鉛粉末および非水電解質二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4150516B2 (ja) * 2001-12-21 2008-09-17 三星エスディアイ株式会社 リチウム二次電池の負極用の黒鉛含有組成物の製造方法並びにリチウム二次電池用の負極の製造方法及びリチウム二次電池の製造方法
JP2003197182A (ja) * 2001-12-21 2003-07-11 Samsung Sdi Co Ltd 黒鉛含有組成物並びにリチウム二次電池用の負極及びリチウム二次電池
JP2006252945A (ja) 2005-03-10 2006-09-21 Sony Corp 非水電解質二次電池用の電極及びその製造方法、並びに非水電解質二次電池
JP4510912B2 (ja) * 2007-09-06 2010-07-28 パナソニック株式会社 非水電解液電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111219A (ja) * 1994-10-11 1996-04-30 Shin Kobe Electric Mach Co Ltd リチウムイオン二次電池
JPH09245770A (ja) * 1996-03-06 1997-09-19 Sanyo Electric Co Ltd 非水電解液電池
JPH09306477A (ja) * 1996-05-09 1997-11-28 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JPH10321219A (ja) * 1997-05-20 1998-12-04 Mitsubishi Cable Ind Ltd 電池用負極の製造方法
JP2001196051A (ja) * 2000-01-11 2001-07-19 At Battery:Kk 非水系二次電池及び非水系二次電池の製造方法
US20040072076A1 (en) * 2001-12-21 2004-04-15 Keiko Matsubara Graphite-containing composition, negative electrode for a lithium secondary battery, and lithium secondary battery
JP2004220926A (ja) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極
JP2005056645A (ja) * 2003-08-01 2005-03-03 Matsushita Electric Ind Co Ltd 非水電解質二次電池およびその製造法
JP2006083030A (ja) * 2004-09-17 2006-03-30 Sony Corp 黒鉛粉末および非水電解質二次電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014137879A (ja) * 2013-01-16 2014-07-28 Toyota Motor Corp 二次電池
JP2019534155A (ja) * 2016-09-06 2019-11-28 バトリオン・アクチェンゲゼルシャフトBattrion AG 物品への磁界付与方法及び装置
JP7237363B2 (ja) 2016-09-06 2023-03-13 バトリオン・アクチェンゲゼルシャフト 物品への磁界付与方法及び装置
JP2022515678A (ja) * 2019-01-07 2022-02-21 ユーシーエル ビジネス リミテッド 電気化学セルの性能を増強する方法
JP7399170B2 (ja) 2019-01-07 2023-12-15 ユーシーエル ビジネス リミテッド 電気化学セルの性能を増強する方法

Also Published As

Publication number Publication date
US20140072848A1 (en) 2014-03-13
JPWO2012111161A1 (ja) 2014-07-03
JP5601550B2 (ja) 2014-10-08
CN103380519B (zh) 2016-04-13
US9166247B2 (en) 2015-10-20
KR20130118989A (ko) 2013-10-30
CN103380519A (zh) 2013-10-30
KR101543937B1 (ko) 2015-08-11

Similar Documents

Publication Publication Date Title
JP5601550B2 (ja) リチウムイオン二次電池とその製造方法
US10522816B2 (en) Lithium secondary battery
JP5229598B2 (ja) リチウム二次電池及びその製造方法
JP5614600B2 (ja) リチウムイオン二次電池及びその製造方法
US9263729B2 (en) Lithium secondary battery
JP6380808B2 (ja) 二次電池用電極の製造方法
JP2013069432A (ja) リチウムイオン二次電池とその製造方法
US9917296B2 (en) Nonaqueous electrolyte secondary battery
WO2011108119A1 (ja) リチウム二次電池および該電池に用いられるセパレータ
JP5812336B2 (ja) 二次電池
JP2013069579A (ja) リチウムイオン二次電池とその製造方法
JP5605614B2 (ja) リチウム二次電池の製造方法
JP2013069431A (ja) リチウムイオン二次電池とその製造方法
WO2012001814A1 (ja) リチウム二次電池
JP5586113B2 (ja) 二次電池用電極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012557769

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137023886

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13985601

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11858746

Country of ref document: EP

Kind code of ref document: A1