WO2011108119A1 - リチウム二次電池および該電池に用いられるセパレータ - Google Patents

リチウム二次電池および該電池に用いられるセパレータ Download PDF

Info

Publication number
WO2011108119A1
WO2011108119A1 PCT/JP2010/053688 JP2010053688W WO2011108119A1 WO 2011108119 A1 WO2011108119 A1 WO 2011108119A1 JP 2010053688 W JP2010053688 W JP 2010053688W WO 2011108119 A1 WO2011108119 A1 WO 2011108119A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
lithium secondary
separator
porosity
Prior art date
Application number
PCT/JP2010/053688
Other languages
English (en)
French (fr)
Inventor
上木 智善
将一 梅原
直之 和田
島村 治成
福本 友祐
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/053688 priority Critical patent/WO2011108119A1/ja
Publication of WO2011108119A1 publication Critical patent/WO2011108119A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium secondary battery and a manufacturing technique of the battery. In detail, it is related with the separator used for this battery.
  • a lithium secondary battery (typically a lithium ion secondary battery) that is lightweight and obtains a high energy density is preferably used as a high-output power source for mounting on a vehicle (for example, an automobile, particularly a hybrid automobile or an electric automobile).
  • a vehicle for example, an automobile, particularly a hybrid automobile or an electric automobile.
  • an electrode mixture layer (specifically, a positive electrode mixture) that can reversibly occlude and release chemical species that can serve as charge carriers on the surface of the electrode current collector.
  • the electrode positive electrode and negative electrode
  • the separator interposed between the electrodes is one of constituent materials of the battery that can prevent a short circuit between the two electrodes and can be impregnated with an electrolyte to function as a conductive path (conductive path).
  • Patent documents 1 to 5 can be cited as technical documents related to such separators.
  • Patent Documents 3 to 5 describe a layer made of inorganic particles (porous layer) on the surface of the porous sheet in order to prevent occurrence of short circuit due to lithium metal deposition (dendrites) or to enhance heat resistance during abnormal heat generation of the battery.
  • a technique related to a separator in which is formed is disclosed.
  • lithium secondary batteries are expected to be used for a long period of time in such a manner that rapid charging / discharging (so-called high-rate charging / discharging) is repeated, such as a vehicle-mounted power source.
  • rapid charging / discharging so-called high-rate charging / discharging
  • a lithium secondary battery in which such high-rate charge / discharge is repeated if a large number of pores are not suitably formed in the layer of the separator having the layer made of the inorganic particles, non-water is contained in the pores. There is a possibility that the electrolytic solution is not sufficiently retained (impregnated) and a good conductive path (conductive path) is not maintained. As a result, a sufficient capacity cannot be obtained, and the deterioration of the discharge characteristics when discharged rapidly with a high current becomes large.
  • Patent Documents 3 to 5 no consideration is given to the state of pores in the layer made of inorganic particles formed on the surface of the porous sheet, and no technical examination is made.
  • the present invention was created to solve the above problems, and the object of the present invention is a lithium secondary battery including a separator in which a layer made of inorganic particles is formed on the surface of a porous sheet. It is another object of the present invention to provide a lithium secondary battery having a high capacity and an excellent high rate characteristic (a decrease in discharge capacity is small even when rapidly discharged with a large current). Another object is to provide a vehicle including such a lithium secondary battery.
  • the present invention provides a lithium secondary battery in which a separator is interposed between a positive electrode and a negative electrode.
  • the separator of the lithium secondary battery according to the present invention includes a porous sheet base material.
  • an inorganic porous layer containing at least titania (TiO 2 ) is formed on one surface of the sheet base material on the side facing the positive electrode.
  • the porosity B of this inorganic porous layer has a relationship of A ⁇ B which is larger than the porosity A of the porous sheet substrate.
  • the “lithium secondary battery” refers to a secondary battery that uses lithium ions as electrolyte ions and is charged and discharged by movement of lithium ions between the positive and negative electrodes.
  • a secondary battery generally called a lithium ion battery or a lithium ion secondary battery is a typical example included in the lithium secondary battery in this specification.
  • the lithium secondary battery according to the present invention is interposed between a positive electrode (typically a positive electrode sheet) and a negative electrode (typically a negative electrode sheet).
  • a separator that is one of the constituent materials of a lithium secondary battery that plays a role of forming a conductive path (conductive path)
  • titania titanium dioxide
  • TiO 2 titanium oxide
  • Titania Mohs hardness approximately 7 to 7.5
  • a filler material constituting the inorganic porous layer disclosed herein is alumina (Al 2 O 3 : Mohs hardness 9) or zirconia (ZrO 2 : Mohs hardness 8.
  • titania is suitable for a battery for high power use because it has a higher porosity than the other filler materials mentioned above. Note that titania having a rutile (tetragonal) crystal structure is particularly preferable.
  • the porosity B of the inorganic porous layer containing titania is A ⁇ B, which is larger than the porosity A of the porous sheet substrate.
  • a lithium secondary battery used as a high-output power source a large amount of lithium ions is required in the vicinity of the positive electrode during high-rate discharge. Therefore, lithium ions occluded in the negative electrode move to the positive electrode through the separator.
  • the separator in which the relationship between the porosity A of the porous sheet substrate and the porosity B of the inorganic porous layer satisfies A ⁇ B is sufficient for the non-aqueous electrolyte in the porous portion in the inorganic porous layer.
  • lithium ions move smoothly to the positive electrode side without being inhibited by the inorganic porous layer even during discharge.
  • the deterioration of the discharge characteristics is small even when it is used in such a manner that high rate charge / discharge is repeated.
  • the inorganic porous layer has a porosity B of 50 to 70%.
  • the porosity A of the porous sheet substrate is 35 to 60%.
  • a suitable amount of the non-aqueous electrolyte is sufficiently retained throughout the separator.
  • the separator is disposed such that the inorganic porous layer formed on one surface of the porous sheet substrate faces the positive electrode.
  • titania whose potential (specifically, the potential with respect to the lithium reference electrode) is lower than the negative electrode active material (eg, graphite) reacts with lithium ions.
  • the negative electrode active material eg, graphite
  • the positive electrode has a positive electrode mixture layer including at least a positive electrode active material, a conductive material, and a binder formed on the surface of the positive electrode current collector, and the positive electrode mixture layer is porous.
  • the degree is smaller than the porosity B of the inorganic porous layer and is 25 to 55%.
  • the layer density of the positive electrode mixture layer is preferably 1.7 to 2.7 g / cm 3 .
  • “layer density” refers to the density of solid content (positive electrode active material, conductive material, binder) forming the positive electrode mixture layer. The smaller the layer density of the positive electrode mixture layer, the larger the void volume in the layer.
  • the layer density of the positive electrode mixture layer within the above range, the void volume in the positive electrode mixture layer is suitably formed, so that the reaction on the positive electrode side is rate-limited during discharge and the movement of lithium ions is prevented. It will be done with high efficiency. As a result, it is possible to provide a lithium secondary battery in which an increase in internal resistance is suppressed even when high rate charge / discharge is repeated.
  • an average particle diameter (median diameter) based on a laser diffraction particle size distribution measurement of titania (particles) contained in the inorganic porous layer is the porosity. It is larger than the pore diameter of the sheet substrate. By making the average particle diameter of titania larger than the pore diameter of the porous sheet base material, it is possible to prevent the titania from entering the pores of the sheet base material and clogging.
  • the average particle diameter (median diameter) based on a laser diffraction particle size distribution measurement of titania contained in the inorganic porous layer is 0.05 ⁇ m to 1 ⁇ m.
  • the present invention provides a separator for a lithium secondary battery as another aspect. That is, the separator provided by the present invention comprises a porous sheet substrate, and an inorganic porous layer containing at least titania is formed on one side of the sheet substrate and facing the positive electrode. There is a relationship of A ⁇ B in which the porosity B of the inorganic porous layer is larger than the porosity A of the porous sheet substrate.
  • the porosity B of the inorganic porous layer is 50 to 70%. More preferably, the porosity A of the porous sheet substrate is 35 to 60%.
  • the average particle diameter (median diameter) based on the laser diffraction particle size distribution measurement of titania contained in the inorganic porous layer is the pore diameter of the porous sheet substrate. Bigger than.
  • the average particle diameter (median diameter) based on the laser diffraction particle size distribution measurement of titania contained in the inorganic porous layer is 0.05 ⁇ m to 1 ⁇ m.
  • a lithium secondary battery including any of the lithium secondary battery separators disclosed herein.
  • a vehicle including any of the lithium secondary batteries disclosed herein is provided.
  • the lithium secondary battery provided by the present invention can exhibit battery characteristics (high rate characteristics) suitable as a power source mounted on a vehicle. Therefore, such a lithium secondary battery can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile equipped with an electric motor such as a hybrid vehicle, an electric vehicle, and a fuel cell vehicle.
  • FIG. 1 is a perspective view schematically showing the outer shape of a lithium secondary battery according to an embodiment.
  • 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a cross-sectional view showing positive and negative electrodes and a separator constituting a wound electrode body according to an embodiment.
  • FIG. 4 is a perspective view schematically showing a state in which the electrode body is wound and manufactured.
  • FIG. 5 is a side view schematically showing a vehicle (automobile) provided with the lithium secondary battery of the present invention.
  • FIG. 6 is an IV characteristic graph showing the 2.5 V limit current of the test lithium secondary batteries (Example 1, Examples 9 to 11).
  • FIG. 1 is a perspective view schematically showing the outer shape of a lithium secondary battery according to an embodiment.
  • 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a cross-sectional view showing positive and negative electrodes and a separator constituting a wound electrode body according to an embodiment
  • FIG. 7 is an IV characteristic graph showing the 2.5 V limit current of the test lithium secondary batteries (Examples 1 to 5, Examples 12 and 13).
  • FIG. 8 is an IV characteristic graph showing the 2.5 V limit current of the test lithium secondary batteries (Examples 1, 6 to 8, and Example 14).
  • the lithium secondary battery disclosed here (typically a lithium ion secondary battery) has a configuration in which a separator is interposed between a positive electrode and a negative electrode as described above.
  • the separator has a configuration in which an inorganic porous layer containing at least titania is formed on one surface (positive electrode facing surface) of the porous sheet substrate.
  • FIG. 1 is a perspective view schematically showing a rectangular lithium secondary battery (lithium ion secondary battery) 100 according to an embodiment.
  • 2 is a cross-sectional view taken along the line II-II in FIG. 1.
  • FIG. 3 schematically shows a part of the laminated portion of the positive electrode sheet 30, the negative electrode sheet 40, and the separator 50 constituting the wound electrode body 20.
  • the lithium secondary battery 100 according to the present embodiment includes a rectangular parallelepiped battery case 10 and a lid body 14 that closes the opening 12 of the case 10. Through this opening 12, a flat electrode body (winding electrode body 20) and an electrolytic solution can be accommodated in the battery case 10.
  • the lid 14 is provided with a positive terminal 38 and a negative terminal 48 for external connection, and a part of the terminals 38 and 48 protrudes to the surface side of the lid 14. Also, some of the external terminals 38 and 48 are connected to the internal positive terminal 37 or the internal negative terminal 47, respectively, inside the case.
  • the wound electrode body 20 includes a sheet-like positive electrode sheet 30 having a positive electrode mixture layer 34 on the surface of a long positive electrode current collector 32 and a negative electrode mixture layer on the surface of a long negative electrode current collector 42. And a battery separator 50 in which an inorganic porous layer 54 containing at least titania is formed on the surface of a long sheet-like porous sheet substrate 52. Then, the positive electrode sheet 30 and the negative electrode sheet 40 are overlapped and wound together with the separator 50, and the obtained wound electrode body 20 is formed into a flat shape by crushing and ablating from the side surface direction. That is, as shown in FIG.
  • the positive electrode mixture layer 34 of the positive electrode sheet 30 and the negative electrode mixture layer 44 of the negative electrode sheet 40 are arranged via the separator 50. Furthermore, the inorganic porous layer 54 of the separator 50 is formed on one side of the porous sheet base material 52, and the inorganic porous layer 54 is disposed so as to face the positive electrode mixture layer 34.
  • the separator 50 is a sheet interposed between the positive electrode (typically the positive electrode sheet 30) and the negative electrode (typically the negative electrode sheet 40), and prevents short-circuiting due to contact between both electrodes, or conduction between the electrodes. It is one of the constituent materials of a secondary battery that plays a role of forming a path (conductive path).
  • the separator 50 disclosed here includes an inorganic porous layer 54 containing at least titania on one surface (positive electrode facing surface) of the porous sheet substrate 52.
  • a material made of a polyolefin-based synthetic resin is preferably used as a constituent material of the porous sheet base material 52 that becomes the base material of the separator 50.
  • a material made of a polyolefin-based synthetic resin examples thereof include polyolefin synthetic resins having a porous property such as polypropylene, polyethylene, and polystyrene.
  • a porous sheet base material made of such a polyolefin-based synthetic resin has a high liquid retaining property and can impregnate a large number of micropores (voids) with an electrolytic solution, and thus can serve as a migration path for lithium ions.
  • porous sheet base material 52 a material in which the above-mentioned polyolefin-based synthetic resin has at least one or more laminated structures (two-layer structure, three-layer structure, or more multilayer structures) can be used.
  • a porous multilayer sheet having a three-layer structure of polypropylene-polyethylene-polypropylene, in which different synthetic resin sheets such as polypropylene or polyethylene are bonded to each other can be mentioned.
  • particles made of a non-conductive inorganic compound can be preferably used as the granular filler as the main component.
  • titania TiO 2
  • Titania has a Mohs hardness of approximately 7 to 7.5 and is a softer material than alumina (Al 2 O 3 ) or zirconia (ZrO 2 ). Therefore, even when a separator having an inorganic porous layer containing titania formed on the surface of the porous sheet substrate is cut (slit), the slit blade is not worn out and the productivity is excellent.
  • titania having a rutile (tetragonal) crystal structure can be preferably used.
  • the average particle diameter (median diameter) based on the laser diffraction particle size distribution measurement of titania (particles) contained in the inorganic porous layer 54 is larger than that of the porous sheet substrate.
  • the average particle diameter of titania refers to a median diameter (D50: 50% volume average particle diameter) that can be derived from a particle size distribution measured based on a particle size distribution measuring apparatus based on a laser scattering / diffraction method.
  • titania having an average particle diameter (median diameter) based on laser diffraction particle size distribution measurement of 0.05 ⁇ m to 1 ⁇ m is preferably used.
  • porous sheet base material those having a pore diameter of about 0.1 ⁇ m or less are preferably used.
  • the separator disclosed here has a relationship of A ⁇ B in which the porosity B of the inorganic porous layer 54 is larger than the porosity A of the porous sheet substrate 52.
  • a lithium secondary battery used as a high-output power source a large amount of lithium ions is required in the vicinity of the positive electrode during high-rate discharge. Therefore, lithium ions occluded in the negative electrode move to the positive electrode through the separator.
  • the nonaqueous electrolytic solution is present in the porous portion in the inorganic porous layer.
  • lithium ions move smoothly to the positive electrode without being inhibited by the inorganic porous layer even during discharge.
  • it can be a lithium secondary battery in which a decrease in discharge capacity is suppressed even when it is used in such a manner that high-rate charge / discharge is repeated.
  • the porosity B of the inorganic porous layer is preferably 50 to 70%, preferably about 55 to 70%, for example 60 to 70% (particularly 60 to 65%).
  • the porosity A of the porous sheet substrate is preferably 35 to 60%, and particularly preferably 35 to 50% (eg 45 to 50%) from the viewpoint of ensuring insulation.
  • a suitable amount of the non-aqueous electrolyte is sufficiently retained throughout the separator. Lithium ions are efficiently transferred through the electrolytic solution impregnated in the porous sheet substrate 52 and the inorganic porous layer 54.
  • an optional component such as a binder may be contained as required in addition to titania.
  • a binder it is preferable to select a polymer that is soluble or dispersible in the solvent to be used.
  • a polymer such as polyvinylidene fluoride (PVDF) or polyvinylidene chloride (PVDC) can be preferably used.
  • PVDF polyvinylidene fluoride
  • PVDC polyvinylidene chloride
  • Such a binder may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a polymer that can be dissolved or dispersed in an aqueous solvent can be used.
  • Examples of the polymer that can be dissolved in an aqueous solvent include carboxymethyl cellulose (CMC; typically sodium salt), hydroxyethyl cellulose ( HEC), hydroxypropylcellulose (HPC), methylcellulose (MC), cellulose acetate phthalate (CAP), hydroxypropylmethylcellulose (HPMC), cellulose derivatives such as hydroxypropylmethylcellulose phthalate (HPMCP), or polyvinyl alcohol (PVA) Is mentioned.
  • CMC carboxymethyl cellulose
  • HEC hydroxyethyl cellulose
  • HPC hydroxypropylcellulose
  • MC methylcellulose
  • CAP cellulose acetate phthalate
  • HPMC hydroxypropylmethylcellulose
  • HPMC hydroxypropylmethylcellulose
  • PVA polyvinyl alcohol
  • Polymers dispersed in an aqueous solvent include polyethylene oxide (PEO), polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer.
  • Fluorine resin such as coalescence (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), vinyl acetate copolymer, styrene butadiene block copolymer (SBR), acrylic acid modified SBR resin (SBR latex), Arabic Examples thereof include rubbers such as rubber.
  • the polymer material illustrated above may be used for the purpose of exhibiting a function as a thickener and other additives in addition to the function as a binder.
  • any of an aqueous solvent and a non-aqueous solvent can be used.
  • the non-aqueous solvent include N-methyl-2-pyrrolidone (NMP), methyl ethyl ketone, toluene and the like.
  • NMP N-methyl-2-pyrrolidone
  • the aqueous solvent is typically water, but may be any water-based solvent as a whole, that is, water or a mixed solvent mainly composed of water can be preferably used.
  • the solvent other than water constituting the mixed solvent one or more organic solvents (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water can be appropriately selected and used.
  • a solvent in which about 80% by mass or more (more preferably about 90% by mass or more, more preferably about 95% by mass or more) of the aqueous solvent is water.
  • a particularly preferred example is a solvent consisting essentially of water.
  • the separator 50 can be manufactured by forming an inorganic porous layer 54 on the surface of a porous sheet substrate 52.
  • a solid material nonvolatile content excluding solvent
  • an appropriate solvent aqueous solvent or non-aqueous solvent
  • the composition is applied to at least one surface (positive electrode facing surface) of the porous sheet substrate 52.
  • a coating (coating) method a technique similar to a conventionally known method, which can be applied to the coating amount (coating thickness) of the above composition at about 2 to 40 ⁇ m, preferably 2 to 8 ⁇ m, is appropriately employed. be able to. Examples of such conventionally known methods include a method of coating using a coating apparatus such as a slit coater, a gravure coater, a die coater, or a comma coater.
  • the inorganic porous layer 54 (preferably having a thickness of 1 to 10 ⁇ m, for example, about 2 to 5 ⁇ m) can be formed by drying and volatilizing the solvent.
  • drying the solvent natural drying, hot air, low-humidity air, vacuum, infrared rays, far-infrared rays, and electron beams can be used alone or in combination.
  • the positive electrode may have a configuration in which a positive electrode mixture layer 34 is formed on a long positive electrode current collector 32.
  • a conductive member made of a metal having good conductivity is preferably used as the base material of such a positive electrode.
  • aluminum or an alloy containing aluminum as a main component can be used.
  • the shape of the positive electrode current collector can vary depending on the shape of the lithium secondary battery, and is not particularly limited, and may be various forms such as a rod shape, a plate shape, a sheet shape, a foil shape, and a mesh shape.
  • the positive electrode active material constituting the positive electrode mixture layer 34 one or more materials conventionally used for lithium secondary batteries can be used without particular limitation.
  • a lithium transition metal composite oxide having a layered rock salt structure, a spinel structure, or the like can be given as a typical positive electrode active material.
  • lithium nickel based composite oxide, lithium cobalt based composite oxide, lithium manganese based composite oxide, lithium nickel cobalt manganese based composite oxide, etc. containing lithium (Li) and at least one transition metal element are exemplified. .
  • the lithium nickel-based composite oxide is an oxide having lithium (Li) and nickel (Ni) as constituent metal elements, and at least one other metal element (that is, Li and Ni) in addition to Li and Ni.
  • a transition metal element other than Ni and / or a typical metal element is typically less than Ni (in terms of the number of atoms.
  • the metal elements other than Li and Ni include calcium (Ca), cobalt (Co), aluminum (Al), manganese (Mn), chromium (Cr), iron (Fe), vanadium (V), and magnesium (Mg).
  • Ti Titanium
  • Zr zirconium
  • Nb niobium
  • Mo molybdenum
  • Cu copper
  • zinc (Zn) copper
  • Ga zinc
  • In gallium
  • Sn tin
  • Lanthanum (La) cerium
  • Ce cerium
  • These may be one or two or more metal elements. The same meaning is applied to the lithium cobalt complex oxide and the lithium manganese complex oxide.
  • a ternary lithium transition metal composite oxide typically LiNi 1/3 Co 1/3 Mn 1/3 O 2
  • nickel, cobalt, and manganese may be used.
  • olivine type lithium phosphate represented by the general formula LiMPO 4 (M is at least one element of Co, Ni, Mn, Fe; for example, LiFePO 4 , LiMnPO 4 ) may be used as the positive electrode active material. Good.
  • the positive electrode mixture layer 34 may contain one or two or more materials that can be blended in a general lithium secondary battery, if necessary.
  • various polymer materials and conductive materials that can function as a binder can be used.
  • the binder the polymers listed in the material constituting the inorganic porous layer in the separator described above can be similarly used.
  • the conductive material conductive powder materials such as carbon powder and carbon fiber are preferably used.
  • Various carbon blacks may be used as the carbon powder.
  • at least one selected from the group consisting of acetylene black, furnace black, ketjen black and graphite powder can be suitably used.
  • conductive fibers such as carbon fiber and metal fiber can be contained alone or as a mixture thereof. In addition, only 1 type may be used among these, or 2 or more types may be used together.
  • a material for forming a positive electrode mixture layer such as a positive electrode active material, a conductive material, and a binder is added to an appropriate solvent (aqueous solvent or non-aqueous solvent) and kneaded to form a paste or slurry-like positive electrode composite.
  • a material layer forming composition is prepared.
  • the positive electrode active material is not particularly limited, but the tap density is preferably about 1.2 to 2.5 g / cm 3 , and both the layer density or porosity of the positive electrode mixture layer and the electron conductivity are compatible.
  • the particularly preferred tap density is 1.4 to 1.8 g / cm 3 .
  • the average particle diameter of the positive electrode active material is typically 1 ⁇ m to 50 ⁇ m, preferably 2 ⁇ m to 10 ⁇ m, for example 5 ⁇ m.
  • the tap density means an increased bulk density obtained by mechanically tapping a container (for example, a graduated cylinder) containing a powder sample until no volume change is substantially recognized. For example, it can measure by the method based on USP (American Pharmacopoeia).
  • the mixing ratio of each constituent material in the positive electrode mixture layer 34 is not particularly limited.
  • the proportion of the conductive material in the positive electrode mixture layer is about 3 to 17 parts by mass with respect to 100 parts by mass of the positive electrode active material. Yes, preferably about 6 to 15 parts by mass.
  • the ratio of the binder in the positive electrode mixture layer is preferably 5 parts by mass or less, for example, 3 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
  • the prepared paste or slurry-like composition for forming a positive electrode mixture layer is applied to the surface of the positive electrode current collector 32, the solvent is volatilized and dried, and then compressed (pressed). Thereby, the positive electrode 30 of the lithium secondary battery in which the positive electrode mixture layer 34 is formed on the surface of the positive electrode current collector 32 is obtained.
  • the mass (layer density) per unit volume of the positive electrode mixture layer composed of solid materials such as the positive electrode active material, the conductive material and the binder is 1.7 to 2.7 g / cm 3 , preferably In this case, the pressing pressure can be adjusted so as to be approximately in the range of 2.0 to 2.5 g / cm 3 .
  • the porosity of the positive electrode mixture layer 34 is preferably smaller than the porosity B of the inorganic porous layer 54. Typically, it is 25 to 55%, preferably about 25 to 53%.
  • the smaller the layer density of the positive electrode mixture layer the larger the void volume in the layer. Therefore, by setting the layer density of the positive electrode mixture layer within the above range, the void volume in the positive electrode mixture layer is suitably formed, so that the reaction on the positive electrode side is rate-limited during discharge and the movement of lithium ions is prevented. It will be done with high efficiency. As a result, it is possible to provide a lithium secondary battery in which an increase in internal resistance is suppressed even when high rate charge / discharge is repeated.
  • the porosity B of the inorganic porous layer is about 50 to 70% (for example, 60 to 70%) on the condition that A ⁇ B is satisfied.
  • the porosity A of the porous sheet substrate is about 35 to 50% (eg 45 to 50%), and the layer density of the positive electrode mixture layer facing the inorganic porous layer is 2.0 to 2.7 g. / cm 3 approximately (particularly 2.3 ⁇ 2.5 g / cm 3 or so) configured lithium secondary battery to be in the range of preferred.
  • the conductive material addition amount is about 5 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material, for example, 6 to A high capacity with excellent conductivity can be achieved (even if it is about 9 parts by mass).
  • the paste can be suitably applied to the positive electrode current collector by using an appropriate application device such as a slit coater, a die coater, a gravure coater, or a comma coater.
  • an appropriate application device such as a slit coater, a die coater, a gravure coater, or a comma coater.
  • it can dry favorably by using natural drying, a hot air, low-humidity air, a vacuum, infrared rays, far-infrared rays, and an electron beam individually or in combination.
  • a conventionally known compression method such as a roll press method or a flat plate press method can be employed. In adjusting the thickness, the thickness may be measured with a film thickness measuring instrument, and the press pressure may be adjusted to compress a plurality of times until a desired thickness is obtained.
  • the negative electrode sheet 40 may have a configuration in which a negative electrode mixture layer 44 is formed on a long negative electrode current collector 42.
  • a conductive member made of a metal having good conductivity is preferably used.
  • copper or an alloy containing copper as a main component can be used.
  • the shape of the negative electrode current collector may vary depending on the shape of the lithium secondary battery and the like, and is not particularly limited, and may be various forms such as a rod shape, a plate shape, a sheet shape, a foil shape, and a mesh shape.
  • a negative electrode active material capable of occluding and releasing lithium ions used for forming the negative electrode mixture layer 44 one or more of materials conventionally used in lithium secondary batteries should be used without any particular limitation. Can do.
  • a carbon particle is mentioned as a suitable negative electrode active material.
  • a particulate carbon material (carbon particles) containing a graphite structure (layered structure) at least partially is preferably used. Any carbon material of a so-called graphitic material (graphite), a non-graphitizable carbonaceous material (hard carbon), a graphitizable carbonaceous material (soft carbon), or a combination of these materials is preferably used. obtain.
  • the negative electrode mixture layer 44 can contain one or two or more materials that can be blended in a general lithium secondary battery as required.
  • the polymers enumerated with the material which comprises the inorganic porous layer in the above-mentioned separator can be used similarly.
  • the negative electrode mixture layer 44 is a paste or slurry-like negative electrode mixture prepared by adding a negative electrode active material to a suitable solvent (water, organic solvent and mixed solvent thereof) together with a binder and the like, and dispersing or dissolving the mixture. It can be preferably formed by applying the layer forming composition to the negative electrode current collector 42, drying the solvent and compressing.
  • the lithium secondary battery (lithium ion secondary battery) 100 can be constructed as follows. First, the positive electrode (typically the positive electrode sheet 30) and the negative electrode (typically the negative electrode sheet 40) are stacked and wound together with the two separators 50 to produce the wound electrode body 20. The obtained wound electrode body 20 is formed into a flat shape by crushing it from the side surface direction. As shown in FIG. 4, the flat wound electrode body 20 obtained in this way has a positive electrode composite formed on the surface of the positive electrode current collector 32 at the center in the winding axis direction R. The material layer 34 and the negative electrode mixture layer 44 formed on the surface of the negative electrode current collector 42 are laminated via a separator.
  • the exposed portion of the positive electrode current collector 32 (positive electrode mixture layer) without forming the positive electrode mixture layer 34 at one end in the direction R.
  • the non-forming part 36) is laminated in a state of protruding from the separator 50 and the negative electrode sheet 40 (or the dense laminated portion of the positive electrode mixture layer 34 and the negative electrode mixture layer 44). That is, a positive electrode current collector laminated portion 35 formed by laminating the positive electrode mixture layer non-forming portion 36 in the positive electrode current collector 32 is formed at the end of the electrode body 20.
  • the other end portion of the electrode body 20 has the same configuration as that of the positive electrode sheet 30, and the negative electrode mixture layer non-formation portion 46 in the negative electrode current collector 42 is laminated to form the negative electrode current collector lamination portion 45. ing.
  • the separator 50 a separator having a width larger than the width of the laminated portion of the positive electrode mixture layer 34 and the negative electrode mixture layer 44 and smaller than the width of the electrode body 20 is used. It arrange
  • the wound electrode body 20 disclosed herein has the inorganic porous layer 54 formed on one side of the porous sheet substrate 52 as a positive electrode (specifically, a positive electrode composite). It is arranged to face the material layer 34).
  • titania When the inorganic porous layer 54 containing titania is disposed to face the negative electrode, titania whose potential (specifically, the potential with respect to the lithium reference electrode) is lower than the negative electrode active material (for example, graphite) reacts with lithium ions. It is because there is a possibility of doing.
  • the internal positive electrode terminal 37 is provided in the positive electrode mixture layer non-forming portion 36 of the positive electrode current collector 32, and the internal negative electrode terminal is provided in the negative electrode mixture layer non-forming portion 46 of the negative electrode current collector 42. 47 are joined by ultrasonic welding, resistance welding or the like, and electrically connected to the positive electrode sheet 30 or the negative electrode sheet 40 of the wound electrode body 20 formed in the flat shape.
  • the lithium secondary battery 100 of this embodiment can be constructed by injecting a non-aqueous electrolyte and sealing the inlet. .
  • the electrolyte solution can use the thing similar to the nonaqueous electrolyte solution conventionally used for a lithium secondary battery without limitation.
  • a nonaqueous electrolytic solution typically has a composition in which a supporting salt is contained in a suitable nonaqueous solvent.
  • the non-aqueous solvent include propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC).
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • the supporting salt examples include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ). 3.
  • Lithium compounds (lithium salts) such as LiI can be used.
  • concentration of the support salt in a nonaqueous electrolyte solution may be the same as that of the nonaqueous electrolyte solution used with the conventional lithium secondary battery, and there is no restriction
  • An electrolyte containing a suitable lithium compound (supporting salt) at a concentration of about 0.5 to 1.5 mol / L can be used.
  • the structure, size, material for example, can be made of metal or laminate film
  • the structure of the electrode body for example, a wound structure or a laminated structure having the positive and negative electrodes as main components
  • the lithium secondary battery 100 constructed in this manner can exhibit excellent battery characteristics (high rate characteristics) as a high-output power source mounted on a vehicle. Therefore, the lithium secondary battery 100 according to the present invention can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. Therefore, as schematically shown in FIG. 5, a vehicle including such a lithium secondary battery 100 (which may be in the form of an assembled battery formed by connecting a plurality of lithium secondary batteries 100 in series) as a power source. (Typically automobiles, in particular automobiles equipped with electric motors such as hybrid cars, electric cars, fuel cell cars) 1 are provided.
  • test examples relating to the present invention (hereinafter, simply referred to as examples (samples)) will be described, but the present invention is not intended to be limited to those shown in the specific examples.
  • a separator for a test lithium secondary battery in which an inorganic porous layer containing titania (or alumina) was formed on one surface (positive electrode facing surface or negative electrode facing surface) of a porous sheet substrate was prepared.
  • a filler consisting of rutile type titania (or alumina) and polyvinylidene fluoride (PVDF) as a binder have a mass% ratio of 95: 5.
  • PVDF polyvinylidene fluoride
  • the said paste-form composition was apply
  • the porosity of the inorganic porous layer thus obtained was measured. Table 1 shows the measurement results.
  • a positive electrode of a test lithium secondary battery was produced. First, in forming the positive electrode mixture layer in the positive electrode, Li 1.0 Ni 0.34 Co 0.33 Mn 0.33 having an average particle diameter of 5 ⁇ m as a positive electrode active material and a tap density of 1.5 g / cm 3. O 2 , polyvinylidene fluoride (PVDF) as a binder, and acetylene black as a conductive material are mixed with N-methyl-2-pyrrolidone (NMP) to form a paste-like positive electrode mixture layer A composition was prepared.
  • PVDF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • the mixing ratio was adjusted so that the ratio of the conductive material could take various values (4 to 18 parts by mass) with respect to 100 parts by mass of the positive electrode active material.
  • the ratio of the binder was set to 3 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • the said paste-form composition was apply
  • the positive electrode mixture layer is dried so that the design capacity is 4000 mAh by adjusting the press pressure with a roller press so that the layer density and porosity of the positive electrode mixture layer can take various values.
  • the positive electrode sheet was obtained. With respect to the positive electrode thus obtained, the layer density and the porosity of the positive electrode mixture layer were measured. The measurement results are shown in Table 1 together with the ratio of the conductive material.
  • a negative electrode of a test lithium secondary battery was produced.
  • graphite having an average particle diameter of 5 ⁇ m as a negative electrode active material, a styrene butadiene block copolymer (SBR) as a binder, and carboxymethyl cellulose (CMC)
  • SBR styrene butadiene block copolymer
  • CMC carboxymethyl cellulose
  • ion-exchanged water was added and mixed so that the mass% ratio of these materials was 98: 1: 1 to prepare a paste-like composition for forming a negative electrode mixture layer.
  • the said paste-form composition was apply
  • test lithium ion secondary battery A test lithium ion secondary battery was constructed using each of the positive electrode sheet, the negative electrode sheet, and the separator prepared above. That is, a positive electrode sheet and a negative electrode sheet were laminated together with two separators, and this laminated sheet was wound to produce a wound electrode body. At this time, the separator was disposed so that the inorganic porous layer faced the positive electrode. And this electrode body was accommodated in the container with electrolyte solution, and the lithium ion secondary battery shown in FIG. 1 was constructed
  • Example 9 the battery which arrange
  • a battery was prepared using a porous sheet base material on which an inorganic porous layer was not formed as a separator, and a positive electrode in which an inorganic porous layer was formed on the surface of a positive electrode mixture layer as a positive electrode ( Example 10).
  • Example 11 a battery constructed using a separator in which the filler contained in the inorganic porous layer was changed from titania to alumina was prepared (Example 11).
  • the batteries according to Examples 1 to 8 all had a 2.5V limit current of 200 A or more, whereas the batteries according to Examples 9 to 14 were lower than that. In particular, in the batteries according to Examples 9 and 14, it was 100 A or less.
  • the battery in which the separator is disposed so that the inorganic porous layer formed on one side of the porous sheet substrate faces the positive electrode faces the negative electrode.
  • the battery characteristics were superior to those of the battery in which the separator was arranged (Example 9) and the battery in which the inorganic porous layer was formed on the positive electrode mixture layer (Example 10).
  • the battery in which the inorganic porous layer is made of titania has a higher porosity of the inorganic porous layer than the battery made of alumina (Example 11) and has good battery characteristics.
  • the battery configured so that the layer density, porosity, or ratio of the conductive material of the positive electrode mixture layer is in a suitable range has better battery characteristics than the other batteries (Examples 12, 13, and 14). Met.
  • the present invention has been described in detail above, the above embodiments and examples are merely examples, and the invention disclosed herein includes various modifications and changes of the above-described specific examples.
  • the present invention is not limited to the above-described wound battery, and can be applied to various shapes of lithium ion secondary batteries. Further, the size and other configurations of the battery can be appropriately changed depending on the application (typically for in-vehicle use).
  • the lithium secondary battery 100 according to the present invention has a separator that can sufficiently hold a non-aqueous electrolyte in an inorganic porous layer formed on one side of a porous sheet substrate, and has a high capacity and excellent high rate characteristics ( Even when rapidly discharged with a large current, the decrease in discharge capacity is small). Due to such characteristics, the lithium secondary battery 100 according to the present invention can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. Therefore, as shown in FIG. 5, a vehicle 1 (typically) including such a lithium secondary battery 100 (which may be in the form of an assembled battery formed by connecting a plurality of lithium secondary batteries 100 in series) as a power source.
  • the present invention provides automobiles, particularly automobiles equipped with electric motors such as hybrid cars, electric cars, and fuel cell cars.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

 本発明により提供されるリチウム二次電池は、正極と負極との間にセパレータが介在されている。上記セパレータは、多孔性シート基材を備え、該シート基材の片面であって正極と対向する側の面に少なくともチタニアを含む無機多孔質層が形成されており、該無機多孔質層の多孔度Bが該多孔性シート基材の多孔度Aよりも大きいA<Bの関係にある。

Description

リチウム二次電池および該電池に用いられるセパレータ
 本発明は、リチウム二次電池および該電池の製造技術に関する。詳しくは、該電池に用いられるセパレータに関する。
 近年、リチウム二次電池やニッケル水素電池等の二次電池は、電気を駆動源とする車両搭載用電源、あるいはパソコン及び携帯端末その他の電気製品等に搭載される電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウム二次電池(典型的にはリチウムイオン二次電池)は、車両(例えば自動車、特にハイブリッド自動車、電気自動車)搭載用高出力電源として好ましく用いられるものとして期待されている。
 この種の二次電池の一つの典型的な構成では、電極集電体の表面に電荷担体となり得る化学種を可逆的に吸蔵および放出し得る電極合材層(具体的には、正極合材層および負極合材層)を備える電極(正極および負極)がセパレータを介して積層されている。電極間に介在する上記セパレータは、両電極間の短絡を防止し、且つ電解質を含浸して伝導パス(導電経路)として機能し得る電池の構成材料の一つである。
 一般的なリチウム二次電池に用いられるセパレータの代表例としては、ポリエステルやポリプロピレン等のポリオレフィン系熱可塑性樹脂からなる単層または多層の多孔性シートが知られる。かかるセパレータに関する技術文献として、特許文献1~5が挙げられる。特許文献3~5には、リチウム金属析出(デンドライト)による短絡発生防止あるいは電池の異常発熱時の耐熱性補強のために、上記多孔性シートの表面に無機粒子物からなる層(多孔質層)が形成されたセパレータに関する技術が開示されている。
日本国特許公開第2007-280917号公報 日本国特許公開第2007-280918号公報 日本国特許公開第2007-188777号公報 日本国特許公開第2008-210573号公報 日本国特許公開第2008-243825号公報
 ところで、リチウム二次電池の用途の中には、車両搭載用電源のように、急速充放電(いわゆるハイレート充放電)を繰り返す態様で長期に亘って使用されることが想定されるものがある。このようなハイレート充放電が繰り返されるリチウム二次電池においては、上記無機粒子物からなる層を有するセパレータの該層内に多数の細孔が好適に形成されていないと、細孔中に非水電解液が十分に保持(含浸)されず、良好な導電経路(伝導パス)が維持されない虞がある。その結果、十分な容量が得られず、高電流で急速に放電させた場合の放電特性の低下が大きくなる。しかしながら、上記特許文献3~5には、多孔性シートの表面に形成された無機粒子物からなる層内の細孔状態に関する配慮がなされておらず技術的な検討もされていない。
 そこで、本発明は上記問題点を解決すべく創出されたものであり、その目的とするところは、多孔性シートの表面に無機粒子物からなる層が形成されたセパレータを備えるリチウム二次電池であって、高容量かつ優れたハイレート特性(大電流で急速に放電させた場合でも放電容量の低下が小さい)を有するリチウム二次電池を提供することである。また、このようなリチウム二次電池を備える車両を提供することを他の目的とする。
 上記目的を実現するべく本発明により、正極と負極との間にセパレータが介在されているリチウム二次電池が提供される。本発明に係るリチウム二次電池のセパレータは、多孔性シート基材を備える。また、該シート基材の片面であって正極と対向する側の面に、少なくともチタニア(TiO)を含む無機多孔質層が形成されている。そして、該無機多孔質層の多孔度Bが該多孔性シート基材の多孔度Aよりも大きいA<Bの関係にある。
 なお、本明細書において「リチウム二次電池」とは、電解質イオンとしてリチウムイオンを利用し、正負極間のリチウムイオンの移動により充放電が実現される二次電池をいう。一般にリチウムイオン電池若しくはリチウムイオン二次電池と称される二次電池は、本明細書におけるリチウム二次電池に包含される典型例である。
 なお、ここで、「多孔度(porosity)」とは、試料の総体積に占める多孔(空隙)の割合をいう。具体的には、多孔度の測定は、試料(例えば、無機多孔質層)を打ち抜き密度を測定し、試料を構成する固形材料の見かけ真密度を用いて、下式より求めることができる(いわゆる重量法による測定)。
 式:多孔度(%)={(見かけ真密度)-(測定密度)}/(見かけ真密度)×100
 本発明に係るリチウム二次電池は、正極(典型的には正極シート)と負極(典型的には負極シート)との間に介在されている、両電極の接触に伴う短絡防止や電極間の導電経路(伝導パス)を形成する役割を担うリチウム二次電池の構成材料の一つであるセパレータにおいて、多孔性シート基材の片面であって正極と対向する側の面に少なくともチタニア(二酸化チタン:TiO)を含む無機多孔質層が形成されている。ここで開示される無機多孔質層を構成するフィラー材料としてのチタニア(モース硬度凡そ7~7.5)は、アルミナ(Al:モース硬度9)やジルコニア(ZrO:モース硬度8.5)に比べて軟らかい材料である。そのため、多孔性シート基材の表面にチタニアを含む無機多孔質層が形成されたセパレータを切断(スリット)しても、スリット刃が欠けたりなどの消耗が少なく生産性に優れる。また、マグネシア(MgO)は吸湿性が高いため製造工程において乾燥する作業を要するが、チタニアではそうした乾燥工程を必要としないなどの利点がある。さらには、チタニアは上記挙げた他のフィラー材料よりも多孔度を高くし易いため、高出力用途の電池に好適である。なお、ルチル型(正方晶系)の結晶構造を有するチタニアが特に好ましい。
 また、ここで開示されるセパレータでは、上記チタニアを含む無機多孔質層の多孔度Bが多孔性シート基材の多孔度Aよりも大きいA<Bの関係にある。高出力電源として用いられるリチウム二次電池においては、ハイレート放電時に大量のリチウムイオンが正極近傍に必要になるため、負極に吸蔵されているリチウムイオンがセパレータを介し正極に移動する。その際、多孔性シート基材の多孔度Aと、無機多孔質層の多孔度Bとの関係がA<Bを満たすセパレータは、無機多孔質層内の多孔部分に非水電解液が十分に保持(含浸)されているため、放電時にもリチウムイオンが無機多孔質層によって阻害されず正極側にスムーズに移動する。その結果、ハイレート充放電を繰り返す態様で使用されても放電特性の低下が小さいリチウム二次電池を提供することができる。
 また、本発明によって提供されるリチウム二次電池の一態様では、上記無機多孔質層の多孔度Bは50~70%である。さらに好ましい他の一態様では、上記多孔性シート基材の多孔度Aは35~60%である。
 多孔性シート基材の多孔度A、無機多孔質層の多孔度Bが、上記範囲内であるリチウム二次電池では、セパレータ全体に好適量の非水電解液が十分に保持される。その結果、セパレータ全体に含浸された電解液を介して、リチウムイオンの移動が効率良く行われるようになり、ハイレート充放電に対しても内部抵抗の上昇が抑制されたリチウム二次電池を提供することができる。
 さらに、ここで開示されるリチウム二次電池では、上記セパレータは、上記多孔性シート基材の片面に形成された上記無機多孔質層が上記正極と対向するように配置されている。
 チタニアを含む無機多孔質層が負極側に対向して配置されると、負極活物質(例えばグラファイト等)より電位(具体的にはリチウム基準電極に対する電位)が卑であるチタニアがリチウムイオンと反応してしまう虞がある。そのため、多孔性シート基材の片面に形成された無機多孔質層が正極に対向(具体的には正極合材層に対向)するように配置される。
 また、好ましい他の一態様では、上記正極は正極集電体の表面に正極活物質と導電材と結着材とを少なくとも含む正極合材層が形成されており、該正極合材層の多孔度は上記無機多孔質層の多孔度Bよりも小さく、且つ25~55%である。この態様において、好ましくは、上記正極合材層の層密度は、1.7~2.7g/cmである。
 ここで、「層密度」は、当該正極合材層を形成している固形分(正極活物質、導電材、結着材)密度をいう。正極合材層の層密度が小さいほど、層内の空隙体積は大きくなる。そのため、正極合材層の層密度を上記範囲内に設定することにより正極合材層内の空隙体積が好適に形成されるため、放電時において正極側の反応が律速され、リチウムイオンの移動が高効率で行われるようになる。その結果、ハイレート充放電を繰り返しても、内部抵抗の上昇が抑制されたリチウム二次電池を提供することができる。
 また、ここで開示されるリチウム二次電池の好ましい一態様では、上記無機多孔質層に含まれるチタニア(粒子)のレーザ回折式粒度分布測定に基づく平均粒径(メジアン径)は、上記多孔性シート基材の細孔径よりも大きい。
 チタニアの平均粒径の方が多孔性シート基材の細孔径よりも大きくすることにより、該シート基材の細孔中にチタニアが入り込み目詰まりするのを防止することができる。また、さらに好ましい一態様では、上記無機多孔質層に含まれるチタニアのレーザ回折式粒度分布測定に基づく平均粒径(メジアン径)は、0.05μm~1μmである。
 本発明は、他の側面として、リチウム二次電池用セパレータを提供する。すなわち、本発明によって提供されるセパレータは、多孔性シート基材を備え、該シート基材の片面であって正極と対向させる側の面に少なくともチタニアを含む無機多孔質層が形成されており、上記無機多孔質層の多孔度Bが該多孔性シート基材の多孔度Aよりも大きいA<Bの関係にある。
 また、本発明によって提供されるセパレータの好ましい一態様では、上記無機多孔質層の多孔度Bは50~70%である。
 さらに好ましくは、上記多孔性シート基材の多孔度Aは35~60%である。
 さらに、ここで開示されるセパレータの好ましい一態様では、上記無機多孔質層に含まれるチタニアのレーザ回折式粒度分布測定に基づく平均粒径(メジアン径)は、上記多孔性シート基材の細孔径よりも大きい。
 この態様において、好ましくは、上記無機多孔質層に含まれるチタニアのレーザ回折式粒度分布測定に基づく平均粒径(メジアン径)は、0.05μm~1μmである。
 また、本発明によると、ここに開示されるいずれかのリチウム二次電池用セパレータを備えるリチウム二次電池が提供される。さらに、ここに開示されるいずれかのリチウム二次電池を備える車両が提供される。本発明によって提供されるリチウム二次電池は、車両に搭載される動力源として適した電池特性(ハイレート特性)を示すものであり得る。したがって、かかるリチウム二次電池は、ハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車等の車両に搭載されるモーター(電動機)用の電源として好適に使用され得る。
図1は、一実施形態に係るリチウム二次電池の外形を模式的に示す斜視図である。 図2は、図1におけるII-II線断面図である。 図3は、一実施形態に係る捲回電極体を構成する正負極およびセパレータを示す断面図である。 図4は、電極体を捲回して作製する状態を模式的に示す斜視図である。 図5は、本発明のリチウム二次電池を備えた車両(自動車)を模式的に示す側面図である。 図6は、試験用リチウム二次電池(例1、例9~11)の2.5V限界電流を示すIV特性グラフである。 図7は、試験用リチウム二次電池(例1~5、例12、13)の2.5V限界電流を示すIV特性グラフである。 図8は、試験用リチウム二次電池(例1、6~8、例14)の2.5V限界電流を示すIV特性グラフである。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 まず、本実施形態に係るリチウム二次電池の各構成要素について説明する。ここで開示されるリチウム二次電池(典型的にはリチウムイオン二次電池)は、上述のとおり、正極と負極との間にセパレータが介在された構成を備える。また、該セパレータは、多孔性シート基材の片面(正極対向面)に少なくともチタニアを含む無機多孔質層が形成された構成を備える。
 以下、上記リチウム二次電池用セパレータおよび該電池用セパレータを用いて構築するリチウム二次電池を詳細に説明するが、本発明をかかる実施形態に限定することを意図したものではない。
 なお、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略又は簡略化することがある。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。
 図1は、一実施形態に係る角型形状のリチウム二次電池(リチウムイオン二次電池)100を模式的に示す斜視図である。また、図2は、図1中のII-II線断面図であり、図3は、捲回電極体20を構成する正極シート30、負極シート40およびセパレータ50の積層部分の一部を模式的に示す断面図である。
 図1および図2に示されるように、本実施形態に係るリチウム二次電池100は、直方体形状の角型の電池ケース10と、該ケース10の開口部12を塞ぐ蓋体14とを備える。この開口部12より電池ケース10内部に扁平形状の電極体(捲回電極体20)及び電解液を収容することができる。また、蓋体14には、外部接続用の正極端子38と負極端子48とが設けられており、それら端子38,48の一部は蓋体14の表面側に突出している。また、外部端子38,48の一部はケース内部で内部正極端子37または内部負極端子47にそれぞれ接続されている。
 次に、図2に示されるように、本実施形態では該ケース10内に捲回電極体20が収容されている。捲回電極体20は、長尺状の正極集電体32の表面に正極合材層34を有するシート状の正極シート30と、長尺状の負極集電体42の表面に負極合材層44を有するシート状の負極シート40と、長尺シート状の多孔性シート基材52の表面に少なくともチタニアを含む無機多孔質層54が形成された電池用セパレータ50とから構成される。そして、正極シート30および負極シート40をセパレータ50と共に重ね合わせて捲回し、得られた捲回電極体20を側面方向から押しつぶして拉げさせることによって扁平形状に成形されている。すなわち、図3に示されるように、ここに開示されるセパレータ50は、正極シート30の正極合材層34と負極シート40の負極合材層44とがセパレータ50を介して配置されている。さらに、セパレータ50の無機多孔質層54が多孔性シート基材52の片面に形成されており、該無機多孔質層54が正極合材層34に対面するように配置されている。
 まず、ここに開示されるリチウム二次電池用セパレータ50の各構成要素について説明する。セパレータ50は、正極(典型的には正極シート30)と負極(典型的には負極シート40)との間に介在するシートであって、両電極の接触に伴う短絡防止や、電極間の伝導パス(導電経路)を形成する役割を担う二次電池の構成材料の一つである。そして、ここで開示されるセパレータ50は、多孔性シート基材52の片面(正極対向面)に少なくともチタニアを含む無機多孔質層54を備える。
 かかるセパレータ50の基材となる多孔性シート基材52の構成材料としては、ポリオレフィン系合成樹脂から成る材料が好ましく用いられる。例えば、ポリプロピレン、ポリエチレン、ポリスチレン等の多孔質を有するポリオレフィン系合成樹脂が挙げられる。このようなポリオレフィン系合成樹脂から成る多孔性シート基材は、保液性の高く、多数の微孔(空隙)部分に電解液を含浸することができるため、リチウムイオンの移動経路と成り得る。さらに、かかる多孔性シート基材52は、上記ポリオレフィン系合成樹脂が少なくとも一層以上の積層構造(二層構造、三層構造、あるいはそれ以上の多層構造)を有するものを用いることができる。例えば、ポリプロピレンまたはポリエチレン等の異なる合成樹脂シート同士を貼り合わされた、ポリプロピレン-ポリエチレン-ポリプロピレンの三層構造からなる多孔性多層シート等が挙げられる。
 上記多孔性シート基材52の表面に形成される無機多孔質層54を構成する固形材料のうち、主成分となる粒状フィラーとしては、非導電性の無機化合物からなる粒子を好ましく用いることができる。かかる無機化合物として、チタニア(TiO)を好適に使用し得る。チタニアは、モース硬度が凡そ7~7.5であり、アルミナ(Al)やジルコニア(ZrO)に比べて軟らかい材料である。そのため、多孔性シート基材の表面にチタニアを含む無機多孔質層が形成されたセパレータを切断(スリット)しても、スリット刃が欠けたりなどの消耗が少なく生産性に優れる。また、マグネシア(MgO)のように吸湿性が高くないため、化学安定性にも優れる。さらに、チタニアを含む無機多孔質層は、他のフィラー材料よりも多孔度が高くなる傾向にあるため、高出力用途に向いている。なお、特にルチル型(正方晶系)の結晶構造を有するチタニアを好適に使用し得る。
 上記無機多孔質層54に含まれるチタニア(粒子)のレーザ回折式粒度分布測定に基づく平均粒径(メジアン径)は、上記多孔性シート基材の細孔径よりも大きいチタニアが使用される。チタニアの平均粒径の方が多孔性シート基材の細孔径よりも大きくすることにより、該シート基材の細孔中にチタニアが入り込み目詰まりするのを防止することができる。ここで、「平均粒径」とは、レーザ散乱・回折法に基づく粒度分布測定装置に基づいて測定した粒度分布から導き出せるメジアン径(D50:50%体積平均粒子径)をいう。かかる態様において、好ましくは、レーザ回折式粒度分布測定に基づく平均粒径(メジアン径)が、0.05μm~1μmであるチタニアが用いられる。また、多孔質シート基材としては、細孔径が凡そ0.1μm以下であるものが好適に用いられる。
 さらに、ここで開示されるセパレータは、上記無機多孔質層54の多孔度Bが、上記多孔性シート基材52の多孔度Aよりも大きいA<Bの関係にある。高出力電源として用いられるリチウム二次電池においては、ハイレート放電時に大量のリチウムイオンが正極近傍に必要になるため、負極に吸蔵されているリチウムイオンがセパレータを介し正極に移動する。その際、多孔性シート基材52の多孔度Aと、無機多孔質層54の多孔度Bとの関係がA<Bを満たすセパレータは、無機多孔質層内の多孔部分に非水電解液が十分に保持(含浸)されているため、放電時にもリチウムイオンが無機多孔質層によって阻害されず正極側にスムーズに移動する。その結果、ハイレート充放電を繰り返す態様で使用されても放電容量の低下が抑制されたリチウム二次電池となり得る。
 さらに、上記無機多孔質層の多孔度Bとしては、50~70%が好ましく、好適には概ね55~70%、例えば60~70%(特には60~65%)である。また、上記多孔性シート基材の多孔度Aは、35~60%が好ましく、絶縁性確保の点から35~50%(例えば45~50%)が特に好ましい。多孔性シート基材の多孔度A、無機多孔質層の多孔度Bが、上記範囲内であるリチウム二次電池では、セパレータ全体に好適量の非水電解液が十分に保持される。多孔性シート基材52と、無機多孔質層54とに含浸された電解液を介して、リチウムイオンの移動が効率良く行われるようになる。
 上記無機多孔質層54を構成する固形材料として、チタニアの他、結着材等の任意成分を必要に応じて含有し得る。結着材としては、使用する溶媒に溶解または分散可溶なポリマーを選択することが好ましい。
 例えば、非水系溶媒を用いる場合においては、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)等のポリマーを好ましく採用することができる。このような結着材は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 水系溶媒を用いる場合においては、水系溶媒に溶解するポリマーまたは分散するポリマーを使用することができ、水系溶媒に溶解するポリマーとしては、カルボキシメチルセルロース(CMC;典型的にはナトリウム塩)、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルセルロース(HPC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシプロピルメチルセルロースフタレート(HPMCP)等のセルロース誘導体、または、ポリビニルアルコール(PVA)等が挙げられる。また、水系溶媒に分散するポリマーとしては、ポリエチレンオキサイド(PEO)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重含体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)等のフッ素系樹脂、酢酸ビニル共重合体、スチレンブタジエンブロック共重合体(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)、アラビアゴム等のゴム類が挙げられる。
 なお、上記で例示したポリマー材料は、結着材としての機能の他に、増粘材その他の添加材としての機能を発揮する目的で使用されることもあり得る。
 また、上記結着材を溶解又は分散する溶媒としては、水系溶媒および非水系溶媒のいずれも使用可能である。非水系溶媒の好適例としては、N-メチル-2-ピロリドン(NMP)、メチルエチルケトン、トルエン等が例示される。
 水系溶媒としては、典型には水であるが、全体として水性を示すものであればよく、すなわち、水または水を主体とする混合溶媒を好ましく用いることができる。該混合溶媒を構成する水以外の溶媒としては、水と均一に混合し得る有機溶剤(低級アルコール、低級ケトン等)の一種または二種以上を適宜選択して用いることができる。例えば、水系溶媒の凡そ80質量%以上(より好ましくは凡そ90質量%以上、さらに好ましくは凡そ95質量%以上)が水である溶媒の使用が好ましい。特に好ましい例として、実質的に水からなる溶媒が挙げられる。
 次いで、ここに開示されるリチウム二次電池用セパレータ50の製造方法について説明する。
 当該セパレータ50は、図3に示されるように、多孔性シート基材52の表面に無機多孔質層54を形成することより製造し得る。かかる無機多孔質層54の形成にあっては、まず、チタニアと、結着材等とを含む固形材料(溶媒を除く不揮発分)を、適当な溶媒(水系溶媒または非水系溶媒)で混合して成るペーストまたはスラリー状の無機多孔質層形成用組成物を調製する。
 上記ペーストまたはスラリー状の無機多孔質層形成用組成物を調製した後、多孔性シート基材52の少なくとも片方(正極対向面)の表面に該組成物を塗布する。塗布(塗工)方法としては、上記組成物の塗工量(塗布の厚み)を、凡そ2~40μm、好ましくは2~8μmに塗布し得る、従来公知の方法と同様の技法を適宜採用することができる。このような従来公知の方法として、スリットコーター、グラビアコーター、ダイコーター、コンマコーター等の塗布装置を用いて塗布する方法が挙げられる。塗布後、乾燥させて溶媒を揮発させることにより、無機多孔質層54(好適には厚みが1~10μm、例えば2~5μm程度)を形成することができる。なお、溶媒を乾燥するにあたっては、自然乾燥、熱風、低湿風、真空、赤外線、遠赤外線、および電子線を、単独または組合せにて用いることができる。
 次いで、本発明に係るリチウム二次電池の好ましい態様の一例として正極(正極シート30)について説明する。
 例えば正極は、長尺状の正極集電体32の上に正極合材層34が形成された構成であり得る。かかる正極の基材となる正極集電体としては、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、アルミニウムまたはアルミニウムを主成分とする合金を用いることができる。正極集電体の形状は、リチウム二次電池の形状等に応じて異なり得るため、特に制限はなく、棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。
 また、正極合材層34を構成する正極活物質としては、従来からリチウム二次電池に用いられる材料の一種又は二種以上を特に限定なく使用することができる。例えば、典型的な正極活物質として、層状岩塩構造あるいはスピネル構造等を有するリチウム遷移金属複合酸化物が挙げられる。例えば、リチウム(Li)と少なくとも一種の遷移金属元素を含む、リチウムニッケル系複合酸化物、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物、リチウムニッケルコバルトマンガン系複合酸化物等が例示される。
 ここで、リチウムニッケル系複合酸化物とは、リチウム(Li)とニッケル(Ni)とを構成金属元素とする酸化物のほか、LiおよびNi以外に他の少なくとも一種の金属元素(すなわち、LiとNi以外の遷移金属元素および/または典型金属元素)を典型的にはNiよりも少ない割合(原子数換算。LiおよびNi以外の金属元素を二種以上含む場合にはそれらの合計量としてNiよりも少ない割合)で構成金属元素として含む酸化物をも包含する意味である。上記LiおよびNi以外の金属元素は、例えば、カルシウム(Ca),コバルト(Co),アルミニウム(Al),マンガン(Mn),クロム(Cr),鉄(Fe),バナジウム(V),マグネシウム(Mg),チタン(Ti),ジルコニウム(Zr),ニオブ(Nb),モリブデン(Mo),タングステン(W),銅(Cu),亜鉛(Zn),ガリウム(Ga),インジウム(In),スズ(Sn),ランタン(La),セリウム(Ce)等が例示される。これらのうちの一種または二種以上の金属元素であり得る。リチウムコバルト系複合酸化物およびリチウムマンガン系複合酸化物についても同様の意味である。
 または、リチウム以外の遷移金属元素を複数種含む、ニッケル・マンガン系のLiNiMn1-x(0<x<1)やLiNiMn2-x(0<x<2)、ニッケル・コバルト系のLiNiCo1-x(0<x<1)、コバルト・マンガン系のLiCoMn1-x(0<x<1)で表わされるような、二元系リチウム遷移金属複合酸化物でもよい。あるいは、ニッケル・コバルト・マンガン系のような三元系リチウム遷移金属複合酸化物(典型的にはLiNi1/3Co1/3Mn1/3)でもよい。なお、一般式がLiMPO(MはCo、Ni、Mn、Feのうちの少なくとも一種以上の元素;例えばLiFePO、LiMnPO)で表記されるオリビン型リン酸リチウムを正極活物質として用いてもよい。
 正極合材層34には、上記正極活物質の他に、一般的なリチウム二次電池に配合され得る一種または二種以上の材料を必要に応じて含有させることができる。そのような材料として、結着材として機能し得る各種のポリマー材料および導電材を使用し得る。結着材は、上述のセパレータにおける無機多孔質層を構成する材料で列挙したポリマーを同様に使用し得る。
 また、導電材としては、カーボン粉末やカーボンファイバー等の導電性粉末材料が好ましく用いられる。カーボン粉末としては、種々のカーボンブラックを使用してよい。例えば、アセチレンブラック、ファーネスブラック、ケッチェンブラックおよびグラファイト粉末からなる群より選択される少なくとも一種を好適に使用し得る。また、炭素繊維、金属繊維などの導電性繊維類などを単独又はこれらの混合物として含ませることができる。なお、これらのうち一種のみを用いても、二種以上を併用してもよい。
 次いで、本発明に係るリチウム二次電池の好ましい態様の一例として正極の製造方法について説明する。
 まず、正極活物質、導電材および結着材等の正極合材層を形成するための材料を適当な溶媒(水系溶媒または非水系溶媒)に添加して混練し、ペーストまたはスラリー状の正極合材層形成用組成物を調製する。なお、正極活物質としては、特に限定されるものではないが、タップ密度は凡そ1.2~2.5g/cmが好ましく、正極合材層の層密度または多孔度と電子伝導性の両立から特に好ましくいタップ密度は1.4~1.8g/cmである。また、正極活物質の平均粒径は、典型的には1μm~50μm、好ましくは2μm~10μm、例えば5μmを使用し得る。ここでタップ密度とは、粉末試料を入れた容器(例えばメスシリンダー)を体積変化が実質的に認められなくなるまで機械的にタップすることにより得られる増大した嵩密度をいう。例えばUSP(アメリカ薬局方)に準拠した方法で測定することができる。
 正極合材層34における各構成材料の配合比率は、特に制限されないが、例えば、正極合材層に占める導電材の割合は、正極活物質100質量部に対して、凡そ3~17質量部であり、好ましくは凡そ6~15質量部である。さらに、正極合材層に占める結着材の割合は、正極活物質100質量部に対して、好ましくは5質量部以下、例えば3質量部以下である。
 次いで、上記調製したペーストまたはスラリー状の正極合材層形成用組成物を正極集電体32の表面に塗布し、溶媒を揮発させて乾燥させた後、圧縮(プレス)する。これにより正極合材層34が正極集電体32表面に形成されたリチウム二次電池の正極30が得られる。
 ここで、上記正極活物質、導電材および結着材等の固形材料によって構成される正極合材層の単位体積あたりの質量(層密度)は、1.7~2.7g/cm、好適には概ね2.0~2.5g/cmの範囲となるようにプレス圧を調整することができる。さらに、正極合材層34の多孔度は、無機多孔質層54の多孔度Bよりも小さく形成されるのが好ましい。典型的には25~55%であり、好適には概ね25~53%である。正極合材層の層密度が小さいほど、層内の空隙体積は大きくなる。そのため、正極合材層の層密度を上記範囲内に設定することにより正極合材層内の空隙体積が好適に形成されるため、放電時において正極側の反応が律速され、リチウムイオンの移動が高効率で行われるようになる。その結果、ハイレート充放電を繰り返しても、内部抵抗の上昇が抑制されたリチウム二次電池を提供することができる。
 例えば、後述する試験例の結果からも明らかなように、A<Bを満足することを条件に、無機多孔質層の多孔度Bが50~70%(例えば60~70%)程度であり、多孔性シート基材の多孔度Aが35~50%(例えば45~50%)程度であって、該無機多孔質層に対向する正極の合材層の層密度が2.0~2.7g/cm程度(特に2.3~2.5g/cm程度)の範囲となるように構成されたリチウム二次電池が好ましい。かかる構成のリチウム二次電池では、正極合材層に多量の導電材を添加することなく(典型的には正極活物質100質量部に対する導電材添加量が5~10質量部程度、例えば6~9質量部程度であっても)導電性に優れる高容量を実現することができる。
 なお、正極集電体32に上記組成物を塗布する方法としては、従来公知の方法と同様の技法を適宜採用することができる。例えば、スリットコーター、ダイコーター、グラビアコーター、コンマコーター等の適当な塗布装置を使用することにより、正極集電体に該ペーストを好適に塗布することができる。また、溶媒を乾燥するにあたっては、自然乾燥、熱風、低湿風、真空、赤外線、遠赤外線、および電子線を、単独または組合せにて用いることにより良好に乾燥し得る。さらに、圧縮方法としては、従来公知のロールプレス法、平板プレス法等の圧縮方法を採用することができる。かかる厚さを調整するにあたり、膜厚測定器で該厚みを測定し、プレス圧を調整して所望の厚さになるまで複数回圧縮してもよい。
 次に、本発明に係るリチウム二次電池の好ましい態様の一例として負極(負極シート40)について説明する。
 負極シート40は、長尺状の負極集電体42の上に負極合材層44が形成された構成であり得る。負極集電体としては、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、銅、または銅を主成分とする合金を用いることができる。負極集電体の形状は、リチウム二次電池の形状等に応じて異なり得るため特に制限はなく、棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。
 負極合材層44の形成に用いられるリチウムイオンを吸蔵および放出することが可能な負極活物質としては、従来からリチウム二次電池に用いられる物質の一種または二種以上を特に限定なく使用することができる。例えば、好適な負極活物質としてカーボン粒子が挙げられる。少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)が好ましく用いられる。いわゆる黒鉛質のもの(グラファイト)、難黒鉛化炭素質のもの(ハードカーボン)、易黒鉛化炭素質のもの(ソフトカーボン)、これらを組み合わせた構造を有するもののいずれの炭素材料も好適に使用され得る。
 負極合材層44には、上記負極活物質の他に、一般的なリチウム二次電池に配合され得る一種または二種以上の材料を必要に応じて含有させることができる。そのような材料として、上述のセパレータにおける無機多孔質層を構成する材料で列挙したポリマーを同様に使用し得る。
 かかる負極合材層44は、負極活物質を結着材等と共に適当な溶媒(水、有機溶媒およびこれらの混合溶媒)に添加し、分散または溶解させて調製したペーストまたはスラリー状の負極合材層形成用組成物を負極集電体42に塗布し、溶媒を乾燥させて圧縮することにより好ましく形成され得る。
 本実施形態に係るリチウム二次電池(リチウムイオン二次電池)100は、以下のように構築することができる。
 まず、正極(典型的には正極シート30)及び負極(典型的には負極シート40)を2枚のセパレータ50と共に積重ね合わせて捲回し、捲回電極体20を作製する。得られた捲回電極体20を側面方向から押しつぶして拉げさせることによって扁平形状に成形する。このようにして得られる扁平形状の捲回電極体20は、図4に示されるように、その捲回軸方向Rの中心部には、正極集電体32の表面上に形成された正極合材層34と、負極集電体42の表面上に形成された負極合材層44とがセパレータを介し積層されている。また、捲回軸方向Rに沿う方向での断面視において、該方向Rの一方の端部において、正極合材層34が形成されずに正極集電体32の露出した部分(正極合材層非形成部36)がセパレータ50および負極シート40(あるいは、正極合材層34と負極合材層44との密な積層部分)からはみ出た状態で積層されて構成されている。即ち、上記電極体20の端部には、正極集電体32における正極合材層非形成部36が積層されて成る正極集電体積層部35が形成されている。また、電極体20の他方の端部も正極シート30と同様の構成であり、負極集電体42における負極合材層非形成部46が積層されて、負極集電体積層部45が形成されている。
 そして、セパレータ50は、ここでは正極合材層34および負極合材層44の積層部分の幅より大きく、該電極体20の幅より小さい幅を備えるセパレータが用いられ、正極集電体32と負極集電体42が互いに接触して内部短絡を生じさせないように正極合材層34および負極合材層44の積層部分に挟まれるように配置される。さらに、ここで開示される捲回電極体20は、図3に示されるように、上記多孔性シート基材52の片面に形成された上記無機多孔質層54が正極(具体的には正極合材層34に対向)と対向するように配置される。チタニアを含む無機多孔質層54が負極に対向して配置されると、負極活物質(例えばグラファイト等)より電位(具体的にはリチウム基準電極に対する電位)が卑であるチタニアがリチウムイオンと反応してしまう虞があるためである。
 次いで、図2に示されるように、正極集電体32の正極合材層非形成部36に内部正極端子37を、負極集電体42の負極合材層非形成部46には内部負極端子47をそれぞれ超音波溶接、抵抗溶接等により接合し、上記扁平形状に形成された捲回電極体20の正極シート30または負極シート40と電気的に接続する。こうして得られた捲回電極体20を電池ケース10に収容した後、非水電解液を注入し、注入口を封止することによって、本実施形態のリチウム二次電池100を構築することができる。
 なお、電解液は、従来からリチウム二次電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。かかる非水電解液は、典型的には、適当な非水溶媒に支持塩を含有させた組成を有する。上記非水溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等が例示される。これらのうちの一種又は二種以上を用いることができる。また、上記支持塩としては、例えば、LiPF、LiBF、LiClO、LiAsF、LiCFSO、LiCSO、LiN(CFSO、LiC(CFSO、LiI等のリチウム化合物(リチウム塩)を用いることができる。なお、非水電解液における支持塩の濃度は、従来のリチウム二次電池で使用される非水電解液と同様でよく、特に制限はない。適当なリチウム化合物(支持塩)を0.5~1.5mol/L程度の濃度で含有させた電解質を使用することができる。
 なお、電池ケース10の構造、大きさ、材料(例えば金属製またはラミネートフィルム製であり得る)、および正負極を主構成要素とする電極体の構造(例えば捲回構造や積層構造)等について特に制限はない。
 このようにして構築されたリチウム二次電池100は、上述したように、車両搭載用高出力電源として優れた電池特性(ハイレート特性)を示すものであり得る。従って、本発明に係るリチウム二次電池100は、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用し得る。従って、図5に模式的に示すように、かかるリチウム二次電池100(当該リチウム二次電池100を複数個直列に接続して形成される組電池の形態であり得る。)を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)1を提供する。
 以下、本発明に関するいくつかの試験例(以下、単に例(サンプル)という。)につき説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。
[試験用リチウム二次電池のセパレータの作製]
 多孔性シート基材の片面(正極対向面若しくは負極対向面)にチタニア(若しくはアルミナ)を含む無機多孔質層が形成された試験用リチウム二次電池のセパレータを作製した。
 まず、無機多孔質層を形成するため、ルチル型のチタニア(若しくはアルミナ)からなるフィラーと、結着材としてのポリフッ化ビニリデン(PVDF)とを、これら材料の質量%比が95:5となるように固形材料を用意した。そして、NMPを加えて混合し、ペースト状の無機多孔質層形成用組成物を調製した。
 そして、多孔度45%のポリエチレンフィルムからなる多孔性シート基材の片面に上記ペースト状組成物を塗布し乾燥させて無機多孔質層(厚み約4μm)を形成し、セパレータを得た。こうして得られた無機多孔質層の多孔度を測定した。測定結果を表1に示す。
[試験用リチウム二次電池の正極の作製]
 試験用リチウム二次電池の正極を作製した。まず、正極における正極合材層を形成するにあたり、正極活物質としての平均粒径が5μm、タップ密度が1.5g/cmのLi1.0Ni0.34Co0.33Mn0.33と、結着材としてのポリフッ化ビニリデン(PVDF)と、導電材としてのアセチレンブラックとを、N-メチル-2-ピロリドン(NMP)を加えて混合し、ペースト状の正極合材層形成用組成物を調製した。このとき、導電材の割合が、正極活物質100質量部に対して、様々な値(4質量部~18質量部)をとり得るように混合比率を調整した。ただし、結着材の割合は、正極活物質100質量部に対して、3質量部になるような混合比率とした。
 そして、正極集電体としての厚み約15μmのアルミニウム箔の両面に上記ペースト状組成物を塗布した。塗布後、乾燥させて、正極合材層の層密度および多孔度が様々な値をとり得るようにローラプレス機にてプレス圧を調整して設計容量が4000mAhとなるように正極合材層を形成し、正極シートを得た。こうして得られた正極について、正極合材層の層密度および多孔度を測定した。導電材の割合とともに測定結果を表1に示す。
[試験用リチウム二次電池の負極の作製]
 次に、試験用リチウム二次電池の負極を作製した。まず、負極における負極合材層を形成するにあたり、負極活物質としての平均粒径が5μmの黒鉛と、結着材としてのスチレンブタジエンブロック共重合体(SBR)と、カルボキシメチルセルロース(CMC)とを、これら材料の質量%比が98:1:1となるようにイオン交換水を加えて混合し、ペースト状の負極合材層形成用組成物を調製した。そして、負極集電体としての厚み約10μmの銅箔に上記ペースト状組成物を負極集電体の両面に塗布した。塗布後、乾燥させてローラプレス機にてプレスを行い、負極合材層を形成し負極シートを得た。
[試験用リチウムイオン二次電池の構築]
 上記作製した正極シートと負極シートとセパレータをそれぞれ用いて試験用リチウムイオン二次電池を構築した。すなわち、正極シート及び負極シートを2枚のセパレータとともに積層し、この積層シートを捲回して捲回電極体を作製した。このとき、セパレータは、無機多孔質層が正極に対向するように配置した。
 そして、この電極体を電解液とともに容器に収容して、図1に示すリチウムイオン二次電池を構築した。非水電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との1:1:1(体積比)混合溶媒に1mol/LのLiPFを溶解させた組成を用いた。
 なお、多孔性シート基材の片面に形成された無機多孔質層が負極に対向するようにセパレータを配置した電池を用意した(例9)。
 また、セパレータとして無機多孔質層が形成されていない多孔性シート基材を用い、且つ、正極として正極合材層の表面に無機多孔質層を形成した正極を用いて構築した電池を用意した(例10)。
 さらに、セパレータとして無機多孔質層に含まれるフィラーとしてチタニアからアルミナに変更したものを用いて構築した電池を用意した(例11)。
<放電容量の測定>
 上記構築した各試験用リチウムイオン二次電池の放電容量を測定した。すなわち、25℃の温度条件下にて、各電池を定電流で4.1Vの上限電圧まで充電し、次いで3.0Vまで放電させることにより、各電池の4.1V-3.0V放電容量を測定した。測定結果を表1に示す。
<2.5V限界電流の測定>
 上記構築した各試験用リチウムイオン二次電池をSOC(State of Charge)60%に調整し、25℃の温度下にて、一定の大きさの電流値で10秒間放電し、10秒後の電圧を測定した。電流値を変化させながら電圧を測定し、各充放電後の電圧を縦軸とし、放電電流を横軸としたグラフに測定値をプロットし、電流(I)-電圧(V)特性を求めた。そして、IV特性グラフから、2.5Vと交差する電流値を、25℃、SOC60%、10秒放電における2.5V限界電流として算出した。図6~図8にIV特性グラフを示す。また、表1に2.5V限界電流値を示す。
Figure JPOXMLDOC01-appb-T000001
 表1ならびに図6~8によると、例1~8に係る電池ではいずれも2.5V限界電流が200A以上であるのに対し、例9~14に係る電池ではそれよりも低かった。特に、例9および14に係る電池では100A以下であった。
 以上より、放電容量および2.5V限界電流の測定結果から、多孔性シート基材の片面に形成された無機多孔質層は正極に対向するようにセパレータが配置された電池は、負極に対向するようにセパレータが配置された電池(例9)および正極合材層上に無機多孔質層が形成された電池(例10)よりも、優れた電池特性を有することが確認できた。
 また、上記無機多孔質層はチタニアにより構成させた電池は、アルミナにより構成された電池(例11)よりも無機多孔質層の多孔度を高く、良好な電池特性を有することが示された。
 さらに、正極合材層の層密度、多孔度、または導電材の割合が好適な範囲になるように構成された電池では、それ以外の電池(例12、13、14)よりも電池特性が良好であった。
 以上、本発明を詳細に説明したが、上記実施形態および実施例は例示にすぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。例えば、上述した捲回型の電池に限られず、種々の形状のリチウムイオン二次電池に適用することができる。また、該電池の大きさおよびその他の構成についても、用途(典型的には車載用)によって適切に変更することができる。
 本発明に係るリチウム二次電池100は、多孔性シート基材の片面に形成された無機多孔質層に非水電解液が十分に保持し得るセパレータを有し、高容量かつ優れたハイレート特性(大電流で急速に放電させた場合でも放電容量の低下が小さい)を備える。かかる特性により、本発明に係るリチウム二次電池100は、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用し得る。従って、図5に示されるように、かかるリチウム二次電池100(当該リチウム二次電池100を複数個直列に接続して形成される組電池の形態であり得る)を電源として備える車両1(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)を提供する。

Claims (13)

  1.  正極と負極との間にセパレータが介在されているリチウム二次電池であって
     前記セパレータは多孔性シート基材を備えており、
     該シート基材の片面であって正極と対向する側の面に、少なくともチタニアを含む無機多孔質層が形成されており、
     該無機多孔質層の多孔度Bが該多孔性シート基材の多孔度Aよりも大きいA<Bの関係にある、リチウム二次電池。
  2.  前記無機多孔質層の多孔度Bは50~70%である、請求項1に記載のリチウム二次電池。
  3.  前記多孔性シート基材の多孔度Aは35~60%である、請求項1または2に記載のリチウム二次電池。
  4.  前記正極は正極集電体の表面に正極活物質と導電材と結着材とを少なくとも含む正極合材層が形成されており、該正極合材層の多孔度は前記無機多孔質層の多孔度Bよりも小さく、且つ25~55%である、請求項1~3のいずれかに記載のリチウム二次電池。
  5.  前記正極合材層の層密度は、1.7~2.7g/cmである、請求項4に記載のリチウム二次電池。
  6.  前記無機多孔質層に含まれるチタニアのレーザ回折式粒度分布測定に基づく平均粒径(メジアン径)は、前記多孔性シート基材の細孔径よりも大きい、請求項1に記載のリチウム二次電池。
  7.  前記無機多孔質層に含まれるチタニアのレーザ回折式粒度分布測定に基づく平均粒径(メジアン径)は、0.05μm~1μmである、請求項6に記載のリチウム二次電池。
  8.  多孔性シート基材を備え、該シート基材の片面であって正極と対向させる側の面に少なくともチタニアを含む無機多孔質層が形成されたリチウム二次電池用セパレータであって、
     前記無機多孔質層の多孔度Bが該多孔性シート基材の多孔度Aよりも大きいA<Bの関係にある、セパレータ。
  9.  前記無機多孔質層の多孔度Bは50~70%である、請求項8に記載のセパレータ。
  10.  前記多孔性シート基材の多孔度Aは35~60%である、請求項8または9に記載のセパレータ。
  11.  前記無機多孔質層に含まれるチタニアのレーザ回折式粒度分布測定に基づく平均粒径(メジアン径)は、前記多孔性シート基材の細孔径よりも大きい、請求項8に記載のセパレータ。
  12.  前記無機多孔質層に含まれるチタニアのレーザ回折式粒度分布測定に基づく平均粒径(メジアン径)は、0.05μm~1μmである、請求項11に記載のセパレータ。
  13.  請求項1~7のいずれかに記載のリチウム二次電池を備える車両。
     
PCT/JP2010/053688 2010-03-05 2010-03-05 リチウム二次電池および該電池に用いられるセパレータ WO2011108119A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/053688 WO2011108119A1 (ja) 2010-03-05 2010-03-05 リチウム二次電池および該電池に用いられるセパレータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/053688 WO2011108119A1 (ja) 2010-03-05 2010-03-05 リチウム二次電池および該電池に用いられるセパレータ

Publications (1)

Publication Number Publication Date
WO2011108119A1 true WO2011108119A1 (ja) 2011-09-09

Family

ID=44541803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053688 WO2011108119A1 (ja) 2010-03-05 2010-03-05 リチウム二次電池および該電池に用いられるセパレータ

Country Status (1)

Country Link
WO (1) WO2011108119A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130244072A1 (en) * 2012-03-14 2013-09-19 Gs Yuasa International Ltd. Energy storage device, winding apparatus, and winding method
JP2013243031A (ja) * 2012-05-21 2013-12-05 Toyota Motor Corp 非水電解液二次電池
CN103633378A (zh) * 2013-12-04 2014-03-12 合肥国轩高科动力能源股份公司 一种卷绕式锂电池及其制备方法
EP2784866A1 (en) * 2013-03-29 2014-10-01 GS Yuasa International Ltd. Electric storage device and electric storage apparatus
US20140376160A1 (en) * 2013-06-19 2014-12-25 Gs Yuasa International Ltd. Electric storage device and electric storage module
EP3454395A1 (en) * 2017-09-11 2019-03-13 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery
US11043697B2 (en) 2017-09-11 2021-06-22 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery including lithium fluorosulfonate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001222995A (ja) * 2000-02-08 2001-08-17 Shin Kobe Electric Mach Co Ltd リチウムイオン二次電池
JP2003208922A (ja) * 2002-01-10 2003-07-25 Hitachi Ltd リチウムイオン二次電池
JP2004172035A (ja) * 2002-11-22 2004-06-17 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池用電極の製造方法及び該電極を用いた非水電解液二次電池
JP2006527911A (ja) * 2003-06-17 2006-12-07 ナノフィル カンパニー リミテッド 電気化学素子用複合膜、その製造方法及びこれを備えた電気化学素子
JP2007165074A (ja) * 2005-12-13 2007-06-28 Hitachi Ltd リチウム二次電池、それを用いた電気自動車及び電動工具
WO2007108426A1 (ja) * 2006-03-17 2007-09-27 Sanyo Electric Co., Ltd. 非水電解質電池及びその製造方法
JP2008255202A (ja) * 2007-04-04 2008-10-23 Asahi Kasei Chemicals Corp 複合微多孔膜、電池用セパレータ、及び複合微多孔膜の製造方法
JP2009283273A (ja) * 2008-05-22 2009-12-03 Hitachi Maxell Ltd 電池用セパレータおよび電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001222995A (ja) * 2000-02-08 2001-08-17 Shin Kobe Electric Mach Co Ltd リチウムイオン二次電池
JP2003208922A (ja) * 2002-01-10 2003-07-25 Hitachi Ltd リチウムイオン二次電池
JP2004172035A (ja) * 2002-11-22 2004-06-17 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池用電極の製造方法及び該電極を用いた非水電解液二次電池
JP2006527911A (ja) * 2003-06-17 2006-12-07 ナノフィル カンパニー リミテッド 電気化学素子用複合膜、その製造方法及びこれを備えた電気化学素子
JP2007165074A (ja) * 2005-12-13 2007-06-28 Hitachi Ltd リチウム二次電池、それを用いた電気自動車及び電動工具
WO2007108426A1 (ja) * 2006-03-17 2007-09-27 Sanyo Electric Co., Ltd. 非水電解質電池及びその製造方法
JP2008255202A (ja) * 2007-04-04 2008-10-23 Asahi Kasei Chemicals Corp 複合微多孔膜、電池用セパレータ、及び複合微多孔膜の製造方法
JP2009283273A (ja) * 2008-05-22 2009-12-03 Hitachi Maxell Ltd 電池用セパレータおよび電池

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130244072A1 (en) * 2012-03-14 2013-09-19 Gs Yuasa International Ltd. Energy storage device, winding apparatus, and winding method
US10116005B2 (en) * 2012-03-14 2018-10-30 Gs Yuasa International, Ltd. Energy storage device, winding apparatus, and winding method
JP2013243031A (ja) * 2012-05-21 2013-12-05 Toyota Motor Corp 非水電解液二次電池
EP2784866A1 (en) * 2013-03-29 2014-10-01 GS Yuasa International Ltd. Electric storage device and electric storage apparatus
US9793526B2 (en) 2013-03-29 2017-10-17 Gs Yuasa International Ltd. Electric storage device and electric storage apparatus
EP2784866B1 (en) * 2013-03-29 2022-08-31 GS Yuasa International Ltd. Electric storage device and electric storage apparatus
US20140376160A1 (en) * 2013-06-19 2014-12-25 Gs Yuasa International Ltd. Electric storage device and electric storage module
CN103633378A (zh) * 2013-12-04 2014-03-12 合肥国轩高科动力能源股份公司 一种卷绕式锂电池及其制备方法
EP3454395A1 (en) * 2017-09-11 2019-03-13 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery
JP2019050156A (ja) * 2017-09-11 2019-03-28 トヨタ自動車株式会社 非水電解液二次電池
US11043697B2 (en) 2017-09-11 2021-06-22 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery including lithium fluorosulfonate
US11302954B2 (en) 2017-09-11 2022-04-12 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US10522816B2 (en) Lithium secondary battery
JP5773209B2 (ja) リチウム二次電池
JP5229598B2 (ja) リチウム二次電池及びその製造方法
JP4487220B1 (ja) リチウム二次電池用正極およびその製造方法
JP5035650B2 (ja) リチウム二次電池及びその製造方法
WO2010084622A1 (ja) リチウム二次電池用正極とその利用
JPWO2012111116A1 (ja) リチウムイオン二次電池及びその製造方法
WO2011108119A1 (ja) リチウム二次電池および該電池に用いられるセパレータ
JP2011222215A (ja) リチウムイオン二次電池
JP5527597B2 (ja) リチウム二次電池の製造方法
KR101504050B1 (ko) 리튬 이온 이차 전지 제조 방법
JP5812336B2 (ja) 二次電池
WO2011024251A1 (ja) 非水電解液型リチウムイオン二次電池
JP5605614B2 (ja) リチウム二次電池の製造方法
JP6008188B2 (ja) 非水電解液二次電池
JP2013069579A (ja) リチウムイオン二次電池とその製造方法
JP5692605B2 (ja) 非水電解液二次電池
JP5586113B2 (ja) 二次電池用電極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847021

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP