WO2012105329A1 - 電線被覆材用組成物、絶縁電線およびワイヤーハーネス - Google Patents

電線被覆材用組成物、絶縁電線およびワイヤーハーネス Download PDF

Info

Publication number
WO2012105329A1
WO2012105329A1 PCT/JP2012/051099 JP2012051099W WO2012105329A1 WO 2012105329 A1 WO2012105329 A1 WO 2012105329A1 JP 2012051099 W JP2012051099 W JP 2012051099W WO 2012105329 A1 WO2012105329 A1 WO 2012105329A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
mass
parts
flame retardant
composition
Prior art date
Application number
PCT/JP2012/051099
Other languages
English (en)
French (fr)
Inventor
達也 嶋田
雅史 木村
高輔 白木
佐藤 正史
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to CN2012800070164A priority Critical patent/CN103347953A/zh
Priority to DE112012000622.4T priority patent/DE112012000622T8/de
Priority to US13/993,562 priority patent/US20130273367A1/en
Publication of WO2012105329A1 publication Critical patent/WO2012105329A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/307Other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • C08K5/3417Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3009Sulfides
    • C08K2003/3036Sulfides of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K3/2279Oxides; Hydroxides of metals of antimony
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/308Wires with resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • Y10T428/2958Metal or metal compound in coating

Definitions

  • the present invention relates to a composition for an electric wire covering material, an insulated electric wire, and a wire harness, and more specifically, suitable as an insulating electric wire covering material used in a place where high heat resistance is required, such as an automobile wire harness.
  • the present invention relates to a wire coating material composition, an insulated wire, and a wire harness.
  • the silane-crosslinked polyolefin composition requires the addition of a filler that is a flame retardant in order to satisfy the flame retardance that is the main essential characteristic of automobile wires.
  • a filler that is a flame retardant in order to satisfy the flame retardance that is the main essential characteristic of automobile wires.
  • inorganic flame retardants typified by metal hydroxides
  • the amount added is large and the mechanical properties are lowered.
  • halogen-based organic flame retardant having a high flame retardant effect there is a problem in that the gel fraction, which is an index of the degree of crosslinking, is likely to be reduced.
  • the flame retardant is generally mixed with a silane-crosslinked polyolefin after being masterbatched with a non-silane resin.
  • the non-silane resin is an uncrosslinked resin, the addition of the non-silane resin reduces the degree of crosslinking of the crosslinked resin. When the degree of cross-linking of the cross-linked resin is reduced, there is a problem that the wires are easily melted at a high temperature and the electric wires are bonded to each other.
  • the problem to be solved by the present invention is to solve the above-mentioned problems, and it is possible to reduce the filler as a flame retardant as much as possible without using electron beam crosslinking, and the crosslinked film has high heat resistance. It is providing the composition for electric wire coating materials, an insulated wire, and a wire harness which have the property and a gel fraction, and have high peelability even if it exposes to high temperature.
  • the composition for a wire coating material is: (A) a silane-grafted polyolefin obtained by grafting a silane coupling agent to a polyolefin, (B) unmodified polyolefin, (C) a functional group-modified polyolefin modified with one or more functional groups selected from carboxylic acid groups, acid anhydride groups, amino groups, and epoxy groups, (D) a brominated flame retardant having a phthalimide structure, or a brominated flame retardant having a phthalimide structure and antimony trioxide, (E) a crosslinking catalyst batch in which a crosslinking catalyst is dispersed in a resin; (F) zinc oxide and imidazole compound, or zinc sulfide, (G) a triazine-based hindered phenol antioxidant having a melting point of 150 ° C. or higher, (H) a triazole derivative or a hydrazide metal de
  • the gist of the insulated wire according to the present invention is that the above-mentioned composition for wire covering material has a wire-crosslinking material cross-linked with water.
  • the gist of the wire harness of the present invention is to have the above insulated wire.
  • the present invention includes the components (A) to (H), a composition for an electric wire coating material, an insulated wire and a wire harness excellent in flame retardancy and heat resistance can be obtained.
  • the present invention can reduce filler as a flame retardant as much as possible without using electron beam crosslinking, and the crosslinked film has high heat resistance and gel fraction, and has high peelability even when exposed to high temperatures. Is.
  • Examples of the polyolefin used in (A) silane-grafted polyolefin, (B) unmodified polyolefin, and (C) functional group-modified polyolefin include the following olefin resins.
  • Polyolefins such as polyethylene and polypropylene, homopolymers of other olefins, ethylene- ⁇ olefin copolymers, ethylene-vinyl acetate copolymers, ethylene-acrylic acid ester copolymers, ethylene-methacrylic acid ester copolymers, etc.
  • Examples include propylene copolymers such as ethylene copolymers, propylene- ⁇ olefin copolymers, propylene-vinyl acetate copolymers, propylene-acrylic acid ester copolymers, and propylene-methacrylic acid ester copolymers. can do. These may be used alone or in combination.
  • Preferred are polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid ester copolymer, and ethylene-methacrylic acid copolymer.
  • polyethylene examples include high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), very low density polyethylene (VLDPE), and metallocene ultra low density polyethylene. It can be illustrated. These may be used alone or in combination. Preferred is low density polyethylene represented by metallocene ultra-low density polyethylene. By using low density polyethylene, the flexibility of the electric wire becomes good and the extrudability is excellent, so that the productivity is improved.
  • HDPE high density polyethylene
  • MDPE medium density polyethylene
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • VLDPE very low density polyethylene
  • metallocene ultra low density polyethylene metallocene ultra low density polyethylene
  • an olefin-based elastomer may be used, and examples thereof include an ethylene-based elastomer (PE elastomer) and a propylene-based elastomer (PP elastomer). These may be used alone or in combination.
  • PE elastomer ethylene-based elastomer
  • PP elastomer propylene-based elastomer
  • a silane coupling agent is graft-polymerized to the polyolefin.
  • the polyolefin is preferably one or more resins selected from VLDPE, LLDPE, and LDPE from the viewpoints of extrusion productivity when the wire is coated, flexibility of the wire, and the like.
  • silane coupling agent used in the silane-grafted polyolefin examples include vinyl alkoxysilanes such as vinyltrimethoxysilane, vinyltriethoxysilane, and vinyltributoxysilane, normal hexyltrimethoxysilane, vinylacetoxysilane, and ⁇ -methacrylate. Examples thereof include roxypropyltrimethoxysilane and ⁇ -methacryloxypropylmethyldimethoxysilane. These may be used alone or in combination of two or more.
  • the amount of the silane coupling agent in the silane-grafted polyolefin is preferably in the range of 0.5 to 5 parts by mass, more preferably 100 parts by mass of the polyolefin to which the silane coupling agent is grafted. It is within the range of 3 to 5 parts by mass.
  • the blending amount of the silane coupling agent is less than 0.5 parts by mass, the graft amount of the silane coupling agent is small, and it is difficult to obtain a sufficient degree of crosslinking during silane crosslinking.
  • the compounding amount of the silane coupling agent exceeds 5 parts by mass, the crosslinking reaction proceeds too much during kneading, and a gel-like substance is likely to be generated.
  • the upper limit of the amount of grafting of the silane coupling agent is preferably from the viewpoint of preventing generation of foreign matters due to excessive crosslinking in the wire coating step. Is 15% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less.
  • the lower limit of the graft amount is preferably 0.1% by mass or more, more preferably 1% by mass or more, and still more preferably 2%, from the viewpoint of increasing the degree of cross-linking (gel fraction) of the wire coating. .5% by mass or more is preferable.
  • a method of grafting a silane coupling agent onto polyolefin for example, a method of adding a free radical generator to polyolefin and the silane coupling agent and mixing them with a twin screw extruder is common.
  • a method of adding a silane coupling agent may be used when polymerizing polyolefin.
  • the silane-grafted polyolefin grafted with the silane coupling agent is held as a silane graft batch and stored separately from other flame retardant batches and crosslinking catalyst batches until the composition is kneaded.
  • the free radical generator examples include dicumyl peroxide (DCP), benzoyl peroxide, dichlorobenzoyl peroxide, di-tert-butyl peroxide, butyl peracetate, tert-butyl perbenzoate, 2,5-dimethyl- Examples thereof include organic peroxides such as 2,5-di (tert-butylperoxy) hexane. More preferred is dicumyl peroxide (DCP).
  • the temperature for preparing the silane graft batch is preferably 200 ° C. or higher in order to graft polymerize the silane coupling agent to the polyolefin.
  • the blending amount of the free radical generator is preferably in the range of 0.025 to 0.1 parts by mass with respect to 100 parts by mass of the silane-modified polyolefin.
  • the blending amount of the free radical generator is less than 0.025 parts by mass, the grafting reaction of the silane coupling agent does not proceed sufficiently and a desired gel fraction is difficult to obtain.
  • the blending amount of the free radical generator exceeds 0.1 parts by mass, the ratio of cleaving polyolefin molecules increases and undesired peroxide crosslinking is likely to proceed.
  • the unmodified polyolefin a polyolefin not modified with a silane coupling agent or a functional group is used.
  • the polyolefin used for the unmodified polyolefin is preferably one or more selected from VLDPE, LLDPE, and LDPE, from the viewpoint of good dispersion of fillers such as a contribution to flexibility of the electric wire and a flame retardant.
  • a small amount of polypropylene for adjusting the hardness may be added for the purpose of controlling flexibility.
  • polyolefin used for the functional group-modified polyolefin a polyolefin of the same series as the polyolefin used as the (B) unmodified polyolefin is preferable in terms of compatibility.
  • polyethylene such as VLDPE and LDPE is used for the electric wire. It is preferable for the reason that the filler which is a softness contribution and a flame retardant is well dispersed.
  • the functional group used in the functional group-modified polyolefin is one or more selected from a carboxylic acid group, an acid anhydride group, an amino group, and an epoxy group.
  • a maleic acid group, an epoxy group, an amino group, and the like are preferable. This is because the adhesiveness with fillers such as brominated flame retardants, antimony trioxide, and zinc oxide is improved, and the strength of the resin is hardly lowered.
  • the functional group modification ratio is preferably in the range of 0.05 to 10 parts by mass with respect to 100 parts by mass of the polyolefin. If it exceeds 10 parts by mass, the coated strip property at the time of terminal processing may be deteriorated. If it is less than 0.05 parts by mass, the modification effect may not be sufficiently obtained.
  • Specific examples of the method for modifying the polyolefin with a functional group include a method in which a compound having a functional group is graft-polymerized to the polyolefin, or a compound having a functional group and an olefin monomer are copolymerized to obtain an olefin copolymer. The method etc. are mentioned.
  • Specific examples of the compound that introduces a carboxyl group or an acid anhydride group as a functional group include ⁇ , ⁇ -unsaturated dicarboxylic acids such as maleic acid, fumaric acid, citraconic acid, and itaconic acid, or anhydrides thereof.
  • Examples thereof include unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, furanic acid, crotonic acid, vinyl acetic acid and pentenoic acid.
  • Specific examples of compounds that introduce amino groups as functional groups include aminoethyl (meth) acrylate, propylaminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, and dibutylaminoethyl.
  • the compound for introducing an epoxy group as a functional group include glycidyl acrylate, glycidyl methacrylate, itaconic acid monoglycidyl ester, butenetricarboxylic acid monoglycidyl ester, butenetricarboxylic acid diglycidyl ester, butenetricarboxylic acid triglycidyl.
  • Glycidyl esters such as esters, ⁇ -chloroacrylic acid, maleic acid, crotonic acid, fumaric acid, glycidyl ethers such as vinyl glycidyl ether, allyl glycidyl ether, glycidyloxyethyl vinyl ether, styrene-p-glycidyl ether, p-glycidyl Examples include styrene.
  • the resin components (A) to (C) have a blending ratio when the total of the resin components is 100 parts by mass, (A) 30 to 90 parts by mass of silane-grafted polyolefin, (B) unmodified polyolefin and (C ) The total amount with the functional group-modified polyolefin is 10 to 70 parts by mass.
  • the flame retardant either a brominated flame retardant having a phthalimide structure alone or a combination of the flame retardant and antimony trioxide is used. Since the brominated flame retardant having a phthalimide structure has low solubility in hot xylene, the gel fraction of the cured film formed from the composition is good. Examples of the brominated flame retardant having a phthalimide structure include ethylene bistetrabromophthalimide and ethylene bistribromophthalimide.
  • brominated flame retardant one having the above phthalimide structure may be used alone, but the following brominated flame retardant may be used in combination as long as it is within the desired gel fraction range.
  • Specific brominated flame retardants include ethylene bis (pentabromobenzene) [alias: bis (pentabromophenyl) ethane], tetrabromobisphenol A (TBBA), hexabromocyclododecane (HBCD), TBBA-carbonate oligomer.
  • TBBA-epoxy oligomer brominated polystyrene, TBBA-bis (dibromopropyl ether), poly (dibromopropyl ether), hexabromobenzene (HBB) and the like.
  • Antimony trioxide is used as a flame retardant aid for brominated flame retardants, and when used in combination with brominated flame retardants, a synergistic effect is obtained and flame retardancy is further improved.
  • Antimony trioxide is used by pulverizing and atomizing antimony trioxide produced as a mineral. At that time, the average particle size is preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less.
  • Antimony trioxide may be subjected to a surface treatment for the purpose of controlling the particle system or improving the interfacial strength with the resin.
  • a surface treatment agent it is preferable to use a silane coupling agent, a higher fatty acid, a polyolefin wax, or the like.
  • the brominated flame retardant having a phthalimide structure, or the blending amount of brominated flame retardant and antimony trioxide is in the range of 10 to 70 parts by mass with respect to 100 parts by mass in total of the resin components (A) to (C). It is preferably blended in the range of 20 to 60 parts by mass. If the blending amount of the flame retardant component is less than 10 parts by mass, the flame retardancy may be insufficient. If it exceeds 70 parts by mass, aggregation of the flame retardant due to poor mixing, etc., decrease in interfacial strength between the flame retardant and the resin There is a risk that the mechanical properties of the electric wire will deteriorate.
  • the compounding quantity of said (D) component is a total amount of both, when using a brominated flame retardant and antimony trioxide together.
  • the cross-linking catalyst batch is obtained by dispersing the cross-linking catalyst in a resin that serves as a binder and a binder.
  • a cross-linking catalyst batch By using a cross-linking catalyst batch, it is possible to suppress an excessive reaction that can occur by mixing with a flame retardant, and to easily control the amount of catalyst added.
  • the crosslinking catalyst is mixed with a silane graft batch made of silane-grafted polyolefin (sometimes referred to as component “a”), the crosslinking proceeds, and therefore it is generally added in the wire coating step.
  • the crosslinking catalyst is a silanol condensation catalyst for crosslinking the silane-grafted polyolefin with silane.
  • examples of the crosslinking catalyst include metal carboxylates such as tin, zinc, iron, lead, and cobalt, titanate esters, organic bases, inorganic acids, and organic acids.
  • dibutyltin dilaurate dibutyltin dimaleate
  • dibutyltin mercaptide such
  • dibutyltin compounds such as dibutyltin dilaurate, dibutyltin dimaleate and dibutyltin mercaptide are preferred as the crosslinking catalyst because the silane crosslinking reaction easily proceeds.
  • polyolefin is suitable, and LDPE, LLDPE, and VLDPE are particularly preferable.
  • the reason why these resins are preferable is the same as that when selecting a silane-grafted polyolefin, an unmodified polyolefin, or a functional group-modified polyolefin, and it is advantageous to select a resin of the same system in terms of compatibility.
  • the resin that can be used include the aforementioned polyolefins.
  • the blending ratio of the crosslinking catalyst in the crosslinking catalyst batch is preferably in the range of 0.5 to 5 parts by mass, more preferably in the range of 1 to 5 parts by mass with respect to 100 parts by mass of the resin component of the crosslinking catalyst batch. It is. If the amount is less than 0.5 parts by mass, the crosslinking reaction is difficult to proceed. If the amount exceeds 5 parts by mass, the dispersibility of the catalyst is poor, and if it is less than 1 part by mass, the reactivity is poor.
  • the crosslinking catalyst batch is desirably added in a range of 2 to 20 parts by mass, and more preferably 5 to 15 parts by mass with respect to 100 parts by mass of the total of the polyolefins (A) to (C). If the amount is less than 2 parts by mass, crosslinking is difficult to proceed and there is a possibility of partial crosslinking. If the amount exceeds 20 parts by mass, there is a possibility that the non-crosslinked non-flame retardant resin increases, which may adversely affect flame retardancy and weather resistance. is there.
  • Zinc oxide and imidazole compounds or zinc sulfide are used as additives for improving heat resistance.
  • the same heat resistance effect can be obtained by selecting either a combination of zinc oxide and an imidazole compound, or addition of only zinc sulfide.
  • Zinc oxide can be obtained, for example, by adding a reducing agent such as coke to zinc ore and oxidizing zinc vapor generated by firing with air, or using zinc sulfate or zinc chloride as the salt amount.
  • Zinc oxide is not particularly limited in its production method, and may be produced by any method.
  • zinc sulfide those produced by known methods can be used.
  • the average particle diameter of zinc oxide and zinc sulfide is preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less. When the average particle size of zinc oxide and zinc sulfide is reduced, the interfacial strength with the resin is improved, and an improvement in dispersibility can be expected.
  • mercaptobenzimidazole is preferable.
  • mercaptobenzimidazoles include 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole, 4-mercaptomethylbenzimidazole, 5-mercaptomethylbenzimidazole, and zinc salts thereof.
  • a particularly preferred mercaptobenzimidazole is 2-mercaptobenzimidazole and its zinc salt because it has a high melting point and little sublimation during mixing and is stable at high temperatures.
  • addition amount of zinc oxide and mercaptobenzimidazole or zinc sulfide is small, there is a possibility that the effect of improving the heat resistance may not be sufficiently obtained, and if it is too large, the particles tend to aggregate and the appearance of the electric wire is deteriorated and the wear resistance, etc. There is a risk that the mechanical properties will deteriorate.
  • Preferred addition amounts of zinc oxide and mercaptobenzimidazole or zinc sulfide are 1 to 15 parts by mass in the case of zinc oxide and imidazole compound, respectively, relative to 100 parts by mass of the resin components (A) to (C) above. Alternatively, in the case of zinc sulfide, the amount is 1 to 15 parts by mass.
  • Examples of the triazine-based hindered phenol antioxidant having a melting point of 150 ° C. or higher include the following compounds. N, N'-hexane-1,6, diylbis [3- (3,5-di-tert-butyl-4hydroxyphenyl) propionamide] 3,3 ′, 3 ′′, 5,5 ′, 5 ′′ -hexa-tert-butyl-aa′-a ′′ (mesitylene-2,4,6, -triyl) tri-p-cresol 3,5-tris [(4-tert-butyl-3-hydroxy-2,6-xylyl) methyl] -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione , 3,5-tris (3,5-di-tert-butyl-4-hydroxybenzyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione
  • a preferred triazine-based hindered phenolic antioxidant is 1,3,5-tris [(4-tert-butyl-3-hydroxy-2,6-xylyl) methyl] -1,3,5-triazine-2, 4,6 (1H, 3H, 5H) -trione and 1,3,5-tris (3,5-di-tert-butyl-4hydroxybenzyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione.
  • the hindered phenol antioxidant having a melting point of 150 ° C. or higher, when an insulated wire having a wire coating formed from the composition is exposed to a high temperature, the hindered phenol is used. Blooms that precipitate white can be avoided. Moreover, even if it exposes to high temperature in the state which electric wires contacted, there is no possibility that electric wires may adhere
  • the triazine-based hindered phenol-based antioxidant preferably has a melting point of 200 ° C. or higher.
  • Such antioxidants include 1,3,5-tris (3,5-di-tert-butyl-4-hydroxybenzyl) -1,3,5-triazine-2,4,6 (1H, 3H , 5H) -trione has a melting point of 225 ° C. and is excellent in releasability, so that it has a high effect as an antioxidant in addition to improving the lubricity of the wire surface, leading to an improvement in the life of the wire. used.
  • the amount of hindered phenolic antioxidant added is desirably in the range of 0.5 to 5 parts by mass, more preferably 0, per 100 parts by mass of the total of the polyolefins (A) to (C). .5-3 parts by mass.
  • the added amount of the hindered phenol antioxidant is less than 0.5 parts by mass, the aging resistance is lowered, and when it is exposed to heat for a long time, there is a possibility that the wire coating may be collapsed. There is a possibility that the solubility is lowered and the appearance of the electric wire is deteriorated.
  • At least one of the triazole derivative or hydrazide-based metal deactivator may be added.
  • triazole derivatives include 3- (N-salicyloyl) amino-1,2,4-triazole, 3- (N-salicyloyl) amino-1,2,3-triazole and the like.
  • hydrazide compounds include N′ethyl-2-fluoro-N-methylacetohydrazide, 2 ′, ethyl-2-fluoro-1′-methylacetohydrazide, 2,3-bis [3- (3,5-di- -Tert-butyl-4-hydroxyphenyl) propionyl] propionohydrazide and the like.
  • the addition amount of the triazole derivative or the hydrazide-based metal deactivator is desirably within a range of 0.3 to 3 parts by mass, and more preferably, with respect to 100 parts by mass of the polyolefins (A) to (C). Is 0.3 to 1.5 parts by mass. If the amount added is less than 0.3 parts by mass, the metal used for the conductor may migrate and the coating may collapse, and if it exceeds 3 parts by mass, the compatibility with the resin will decrease and iron that is likely to be contained as an impurity There is a risk of discoloration due to reaction with metals such as nickel.
  • the wire coating material composition of the present invention may use commonly used additives in addition to the above components.
  • Additives preferably used include hindered phenol antioxidants other than those mentioned above, amine copper damage inhibitors and the like. Moreover, you may use the additive generally used as an electric wire coating material.
  • the amount of the filler added is limited to about 30 parts by mass with respect to 100 parts by mass of the polyolefins (A) to (C). desirable.
  • the insulated wire of the present invention will be described.
  • the outer periphery of a conductor is coat
  • the conductor of the insulated wire is not particularly limited with respect to the conductor diameter, the material of the conductor, and the like, and can be appropriately selected according to the use of the insulated wire. Examples of the conductor include copper, copper alloy, aluminum, and aluminum alloy. Further, the insulating layer made of the wire covering material may be a single layer or a plurality of layers of two or more layers.
  • the wire harness of this invention has said insulated wire.
  • ISO 6722 is an international standard used for electric wires for automobiles. According to this standard, insulated wires are classified into classes A to E according to allowable heat-resistant temperatures. Since the insulated wire of the present invention is formed from the above-described wire coating material composition, it is excellent in heat resistance and optimal for a battery cable to which a high voltage is applied. It is possible to obtain the characteristics of D class.
  • the degree of cross-linking of the insulating coating material is preferably 50% or more from the viewpoint of heat resistance. More preferably, it is 60% or more.
  • the degree of cross-linking is determined by a gel fraction generally used as an index indicating a cross-linked state in a cross-linked electric wire or the like.
  • the gel fraction of a bridge wire for automobiles can be measured according to JASO-D608-92.
  • the degree of crosslinking of the wire coating material can be adjusted by the graft amount of the silane coupling agent to the polyolefin, the type and amount of the crosslinking catalyst, water crosslinking conditions (temperature and time), and the like.
  • Insulated wires are (B) unmodified polyolefin, (C) functional group-modified polyolefin, (D) brominated flame retardant having phthalimide structure, brominated flame retardant having phthalimide structure and antimony trioxide, (F) zinc oxide And an imidazole compound, or zinc sulfide, (G) a b component (flame retardant batch) comprising a hindered phenol antioxidant having a melting point of 150 ° C.
  • B unmodified polyolefin
  • C functional group-modified polyolefin
  • D brominated flame retardant having phthalimide structure, brominated flame retardant having phthalimide structure and antimony trioxide
  • F zinc oxide And an imidazole compound, or zinc sulfide
  • G a b component (flame retardant batch) comprising a hindered phenol antioxidant having a melting point of 150 ° C.
  • component (H) a triazole derivative or a hydrazide metal deactivator
  • component c (crosslinking catalyst batch) in which a crosslinking catalyst is dispersed in polyolefin, are heated and kneaded and subjected to a kneading step, and the outer periphery of the conductor is extrusion coated. Then, after forming the wire covering material, it is obtained by performing water crosslinking.
  • the b component and the c component are previously kneaded and pelletized.
  • the a component silane-grafted polyolefin is also pelletized.
  • each batch (component a to component c) formed into a pellet shape is blended using a mixer or an extruder.
  • extrusion coating or the like may be performed using an ordinary extrusion molding machine or the like.
  • the coating resin of the electric wire whose resin is coated on the outer periphery of the conductor can be exposed to water vapor or water to cause water cross-linking to perform silane cross-linking.
  • This water cross-linking is preferably performed within a temperature range of room temperature to 90 ° C. for 48 hours. More preferably, the temperature is in the range of 60 to 80 ° C. and in the range of 12 to 24 hours.
  • the obtained insulated wire was evaluated by performing a gel fraction, productivity, flame retardancy, wire surface roughness, wear resistance, long-term heating test, and peelability test.
  • the evaluation results are shown in Table 1 and Table 2.
  • the test method and evaluation criteria are as follows.
  • the gel fraction was measured according to JASO-D608-92. That is, about 0.1 g of the insulator sample of the electric wire is weighed and put into a test tube, 20 ml of xylene is added, and heated in a constant temperature oil bath at 120 ° C. for 24 hours. Thereafter, the sample was taken out, dried in a dryer at 100 ° C. for 6 hours, and then allowed to cool to room temperature. The weight was precisely weighed, and the mass percentage relative to the mass before the test was taken as the gel fraction. A gel fraction of 60% or higher was evaluated as “good”, a gel fraction of 50% or higher as “good”, and a gel fraction of less than 50% as “failed”. The gel fraction is generally used for crosslinked electric wires as an index representing the crosslinked state of water crosslinking.
  • the wire speed is increased and decreased when the wire is extruded and the design outer diameter is obtained even if the wire speed is 50 m / min or higher.
  • the pass “ ⁇ ” indicates that the design outer diameter is obtained even if the wire speed is 100 m / min or higher.
  • the case where the design outer diameter could not be obtained even at less than 50 m / min was designated as “x”.
  • Comparative Examples 1 to 7 did not contain all the components defined by the present invention, and an insulated wire satisfying all the characteristics could not be obtained. That is, since Comparative Example 1 does not contain a brominated flame retardant as compared with Example 1, the flame retardancy, gel fraction, and long-term heating test are unacceptable. Since Comparative Examples 2 and 5 do not contain a triazine hindered phenol antioxidant having a melting point of 150 ° C. or higher, the peelability is unacceptable. Since Comparative Example 3 does not contain a triazine-based hindered phenol-based antioxidant having a melting point of 150 ° C. or higher and a crosslinking catalyst batch, the gel fraction, long-term heat test, peelability and the like are unacceptable.
  • Comparative Example 4 does not contain zinc oxide, zinc sulfide, triazole derivative, hydrazide metal deactivator, etc., the long-term heating test is rejected. Since Comparative Example 5 does not contain a functional group-modified polyolefin, a flame retardant, etc., the gel fraction, flame retardancy, and ISO long-term heating test are unacceptable.
  • Comparative Example 6 does not contain unmodified polyolefin, functional group-modified polyolefin, zinc oxide and imidazole compound, or zinc sulfide, productivity, electric wire surface roughness, wear resistance, and long-term heating test failed. is there. Since Comparative Example 7 does not contain silane-grafted polyolefin, the gel fraction, long-term heat test, and peelability are unacceptable.
  • Examples 1 to 7 are silane-grafted polyolefin, unmodified polyolefin, functional group-modified polyolefin, brominated flame retardant, crosslinking catalyst batch, zinc sulfide or zinc oxide and imidazole compound, triazine having a melting point of 150 ° C. or higher. Containing a hindered phenolic antioxidant, triazole derivative or hydrazide metal deactivator, gel fraction, productivity, flame resistance, wire surface roughness, wear resistance, long-term heating test, peeling Insulated electric wires that passed the evaluation of the properties were obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

 電子線架橋を用いず、難燃剤であるフィラーを極力低減させることが可能であると共に、架橋皮膜が高い耐熱性とゲル分率を備え、高温に曝しても高い剥離性を有する、電線被覆材用組成物、絶縁電線およびワイヤーハーネスを提供する。 (A)シラングラフトポリオレフィン、(B)未変性ポリオレフィン、(C)官能基変性ポリオレフィン、(D)フタルイミド構造を持つ臭素系難燃剤、或いはフタルイミド構造を持つ臭素系難燃剤および三酸化アンチモン、(E)樹脂に架橋触媒が分散された架橋触媒バッチ、(F)酸化亜鉛およびイミダゾール系化合物、或いは硫化亜鉛、(G)融点150℃以上のトリアジン系ヒンダードフェノール系酸化防止剤、(H)トリアゾール誘導体もしくはヒドラジド系金属不活性剤、を含む電線被覆材用組成物を用いて電線被覆材を構成した。

Description

電線被覆材用組成物、絶縁電線およびワイヤーハーネス
 本発明は、電線被覆材用組成物、絶縁電線およびワイヤーハーネスに関し、さらに詳しくは、例えば自動車のワイヤーハーネスのように高い耐熱性が要求される場所で使用される、絶縁電線の被覆材として好適な電線被覆材用組成物、絶縁電線およびワイヤーハーネスに関するものである。
 近年、ハイブリッド自動車等の普及により、自動車用部品である電線やコネクタなどには高耐電圧性、高耐熱性が求められている。従来、自動車のワイヤーハーネスなどのように、高温を発する箇所に用いられる絶縁電線としては、塩化ビニル樹脂の架橋電線や、ポリオレフィン架橋電線が用いられていた。これらの絶縁電線の架橋方法は、電子線で架橋する方式が主流であった。
 しかし、電子線架橋は、高価な電子線架橋装置等を必要とし、設備費用が高価であり、製品コストが上昇してしまうという問題があった。そこで安価な設備で架橋が可能であるシラン架橋ポリオレフィン組成物が注目されている(例えば特許文献1~3参照)。
特開2000-212291号公報 特開2000-294039号公報 特開2006-131720号公報
 しかしながら、シラン架橋ポリオレフィン組成物は、自動車用電線の主要必須特性である難燃性を満足させるためには、難燃剤であるフィラーを添加する必要がある。金属水酸化物に代表される無機系難燃剤の場合、添加量が多量になり機械的特性が低下してしまうという問題があった。また、難燃効果の高いハロゲン系有機難燃剤を用いた場合は、架橋度の指標であるゲル分率の低下を引き起こし易いという問題があった。
 また、別名水架橋と呼ばれるシラン架橋材料においては、加熱成形時に空気中の水分で架橋促進されることから、異物発生の懸念があり、加熱工程は極力回数を抑えることが必要である。そこで、難燃剤は非シラン樹脂でマスターバッチ化した後に、シラン架橋ポリオレフィンと混合することが一般的である。しかし、非シラン樹脂は、未架橋樹脂であるから、添加することにより架橋樹脂の架橋度を低下させてしまう。架橋樹脂の架橋度が低下すると、高温で融解し易くなって、電線同士が接着してしまうという問題があった。
 本発明の解決しようとする課題は、上記問題点を解決しようとするものであり、電子線架橋を用いず、難燃剤であるフィラーを極力低減させることが可能であると共に、架橋皮膜が高い耐熱性とゲル分率を備え、高温に曝しても高い剥離性を有する、電線被覆材用組成物、絶縁電線およびワイヤーハーネスを提供することにある。
 上記課題を解決するために本発明に係る電線被覆材用組成物は、
 (A)ポリオレフィンにシランカップリング剤がグラフトされたシラングラフトポリオレフィン、
 (B)未変性ポリオレフィン、
 (C)カルボン酸基、酸無水物基、アミノ基およびエポキシ基から選択される1種または2種以上の官能基により変性された官能基変性ポリオレフィン、
 (D)フタルイミド構造を持つ臭素系難燃剤、或いはフタルイミド構造を持つ臭素系難燃剤および三酸化アンチモン、
 (E)樹脂に架橋触媒が分散された架橋触媒バッチ、
 (F)酸化亜鉛およびイミダゾール系化合物、或いは硫化亜鉛、
 (G)融点150℃以上のトリアジン系ヒンダードフェノール系酸化防止剤、
 (H)トリアゾール誘導体もしくはヒドラジド系金属不活性剤、
を含むことを要旨とするものである。
 本発明に係る絶縁電線は、上記の電線被覆材用組成物が水架橋された電線被覆材を有することを要旨とするものである。
 本発明のワイヤーハーネスは、上記の絶縁電線を有することを要旨とするものである。
 本発明は、上記(A)~(H)成分を含むものであるから、難燃性、耐熱性に優れた電線被覆材用組成物、絶縁電線およびワイヤーハーネスが得られる。本発明は、電子線架橋を用いず、難燃剤であるフィラーを極力低減させることが可能であると共に、架橋皮膜が高い耐熱性とゲル分率を備え、高温に曝しても高い剥離性を有するものである。
 以下、本発明の実施形態について詳細に説明する。(A)シラングラフトポリオレフィン、(B)未変性ポリオレフィン、(C)官能基変性ポリオレフィンに用いられるポリオレフィンとしては以下のオレフィン系樹脂が例示される。
 ポリエチレン、ポリプロピレンなどのポリオレフィンや、その他のオレフィンの単独重合体、エチレン-αオレフィン共重合体、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸エステル共重合体、エチレン-メタクリル酸エステル共重合体などのエチレン系共重合体、プロピレン-αオレフィン共重合体、プロピレン-酢酸ビニル共重合体、プロピレン-アクリル酸エステル共重合体、プロピレン-メタクリル酸エステル共重合体などのプロピレン系共重合体などを例示することができる。これらは単独で用いてもよいし、併用してもよい。好ましくは、ポリエチレン、ポリプロピレン、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸エステル共重合体、エチレン-メタクリル酸共重合体である。
 ポリエチレンとしては、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、超低密度ポリエチレン(VLDPE)、メタロセン超低密度ポリエチレンなどを例示することができる。これらは単独で用いてもよいし、併用しても良い。好ましくはメタロセン超低密度ポリエチレンを代表とする低密度ポリエチレンである。低密度ポリエチレンを用いることで、電線の柔軟性が良好となり、押出性に優れるため、生産性が向上する。
 オレフィン系樹脂としては、オレフィンをベースとするエラストマーを用いてもよく、例えばエチレン系エラストマー(PEエラストマー)、プロピレン系エラストマー(PPエラストマー)などを例示することができる。これらは、単独で用いても良いし、併用してもよい。
 (A)シラングラフトポリオレフィンは、ポリオレフィンにシランカップリング剤がグラフト重合されている。このポリオレフィンは、VLDPE、LLDPE、LDPEから選ばれる1種または2種以上の樹脂であるのが、電線に被覆する際の押出生産性や電線の柔軟性などの点から好ましい。
 (A)シラングラフトポリオレフィンに用いられるシランカップリング剤は、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリブトキシシランなどのビニルアルコキシシランやノルマルヘキシルトリメトキシシラン、ビニルアセトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシランなどを例示することができる。これらは、1種または2種以上併用しても良い。
 (A)シラングラフトポリオレフィンにおけるシランカップリング剤の配合量は、シランカップリング剤をグラフトするポリオレフィン100質量部に対して、0.5~5質量部の範囲内であることが好ましく、より好ましくは、3~5質量部の範囲内である。シランカップリング剤の配合量が0.5質量部未満では、シランカップリング剤のグラフト量が少なく、シラン架橋時に十分な架橋度が得られ難い。一方、シランカップリング剤の配合量が5質量部を超えると、混練時に架橋反応が進みすぎてゲル状物質が発生しやすくなる。そうすると、製品表面に凹凸が発生しやすく、量産性が悪くなりやすい。また、溶融粘度も高くなりすぎて押出機に過負荷がかかり、作業性が悪化しやすくなる。
 シランカップリング剤のグラフト量(シラングラフト前のポリオレフィンに占めるグラフトされているシランカップリング剤の質量割合)の上限は、電線被覆工程での過剰な架橋による異物発生などを防止する観点から、好ましくは、15質量%以下、より好ましくは、10質量%以下、さらに好ましくは、5質量%以下であると良い。一方、上記グラフト量の下限は、電線被覆の架橋度(ゲル分率)などを高くする観点から、好ましくは、0.1質量%以上、より好ましくは、1質量%以上、さらに好ましくは、2.5質量%以上であると良い。
 ポリオレフィンにシランカップリング剤をグラフトする手法としては、例えばポリオレフィンとシランカップリング剤に遊離ラジカル発生剤を加え、二軸押出機などで混合する方法が一般的である。この他にも、ポリオレフィンを重合する際に、シランカップリング剤を添加する方法を用いてもよい。シランカップリング剤をグラフトしたシラングラフトポリオレフィンは、シラングラフトバッチとして保持され、組成物を混練するまでの間、他の難燃剤バッチや架橋触媒バッチ等とは別に保管される。
 上記の遊離ラジカル発生剤としては、ジクミルパーオキサイド(DCP)、ベンゾイルパーオキサイド、ジクロロベンゾイルパーオキサイド、ジ-tert-ブチルパーオキサイド、ブチルパーアセテート、tert-ブチルパーベンゾエート、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサンなどの有機過酸化物などを例示することができる。より好ましくは、ジクミルパーオキサイド(DCP)である。例えば、遊離ラジカル発生剤として、ジクミルパーオキサイド(DCP)を用いる場合には、ポリオレフィンにシランカップリング剤をグラフト重合させるために、シラングラフトバッチを調製する温度を200℃以上にすると良い。
 遊離ラジカル発生剤の配合量は、シラン変性されるポリオレフィン100質量部に対して0.025~0.1質量部の範囲内であることが好ましい。遊離ラジカル発生剤の配合量が0.025質量部未満では、シランカップリング剤のグラフト化反応が十分進行し難く、所望のゲル分率が得られにくい。一方、遊離ラジカル発生剤の配合量が0.1質量部を越えると、ポリオレフィンの分子を切断する割合が多くなり、目的としない過酸化物架橋が進行し易い。そうすると、ポリオレフィンの架橋反応が進み過ぎて、難燃剤バッチや触媒バッチと混練する際に製品表面に凹凸が発生し易くなる。すなわち電線被覆材を形成した場合に、被覆材表面に凹凸が発生しやすい。これにより、加工性や外観が悪化しやすくなる。
 (B)未変性ポリオレフィンは、シランカップリング剤や官能基などにより変性されていないポリオレフィンが用いられる。未変性ポリオレフィンに用いられるポリオレフィンとしては、VLDPE、LLDPE、LDPEから選ばれる1種または2種以上であるのが、電線への柔軟性寄与や難燃剤などのフィラーが良分散する点から好ましい。また、柔軟性を制御する目的で硬度調整のためのポリプロピレンを少量添加してもよい。
 (C)官能基変性ポリオレフィンに用いられるポリオレフィンとしては、上記(B)未変性ポリオレフィンとして使用するポリオレフィンと同系列のポリオレフィンが相溶性の面で好ましく、加えてVLDPEやLDPEなどのポリエチレンは電線への柔軟性寄与や難燃剤であるフィラーが良分散する理由から好ましい。
 (C)官能基変性ポリオレフィンに用いられる官能基は、カルボン酸基、酸無水物基、アミノ基およびエポキシ基から選択される1種または2種以上である。上記官能基のうち、マレイン酸基、エポキシ基、アミノ基などが良い。これらは臭素系難燃剤、三酸化アンチモン、酸化亜鉛などのフィラーとの接着性が良好になり樹脂の強度が低下しにくくなるためである。また官能基の変性割合は、ポリオレフィン100質量部に対し、0.05~10質量部の範囲が好ましい。10質量部を超えると端末加工時の被覆ストリップ性が低下するおそれがある。0.05質量部未満では、変性の効果が十分得られないおそれがある。
 ポリオレフィンを官能基により変性する方法としては、具体的には、官能基を有する化合物をポリオレフィンにグラフト重合する方法や、官能基を有する化合物とオレフィンモノマとを共重合させてオレフィン共重合体とする方法などが挙げられる。
 官能基としてカルボキシル基や酸無水物基を導入する化合物としては、具体的には、マレイン酸、フマル酸、シトラコン酸、イタコン酸などのα、β-不飽和ジカルボン酸、またはこれらの無水物、アクリル酸、メタクリル酸、フラン酸、クロトン酸、ビニル酢酸、ペンテ酸などの不飽和モノカルボン酸などが挙げられる。
 官能基としてアミノ基を導入する化合物としては、具体的には、アミノエチル(メタ)アクリレート、プロピルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジブチルアミノエチル(メタ)アクリレート、アミノプロピル(メタ)アクリレート、フェニルアミノエチル(メタ)アクリレート、シクロヘキシルアミノエチル(メタ)アクリレートなどが挙げられる。
 官能基としてエポキシ基を導入する化合物としては、具体的には、アクリル酸グリシジル、メタクリル酸グリシジル、イタコン酸モノグリシジルエステル、ブテントリカルボン酸モノグリシジルエステル、ブテントリカルボン酸ジグリシジルエステル、ブテントリカルボン酸トリグリシジルエステル、α-クロロアクリル酸、マレイン酸、クロトン酸、フマル酸などのグリシジルエステル類、ビニルグリシジルエーテル、アリルグリシジルエーテル、グリシジルオキシエチルビニルエーテル、スチレン-p-グリシジルエーテルなどのグリシジルエーテル類、p-グリシジルスチレンなどが挙げられる。
 上記樹脂成分(A)~(C)は、樹脂成分の合計を100質量部とした場合の配合割合が、(A)シラングラフトポリオレフィンが30~90質量部、(B)未変性ポリオレフィンと(C)官能基変性ポリオレフィンとの合計が10~70質量部である。(B)未変性ポリオレフィンと(C)官能基変性ポリオレフィンの混合割合は、(B):(C)=95:5~50:50の範囲が相溶性に優れ、生産性や難燃剤の分散性が良好となる理由から好ましい。
 (D)難燃剤は、フタルイミド構造を持つ臭素系難燃剤の単独使用、或いは前記難燃剤と三酸化アンチモンの併用のいずれかが用いられる。フタルイミド構造を持つ臭素系難燃剤は、熱キシレンに対する溶解性が低いため、組成物から形成した硬化被膜のゲル分率が良好となる。フタルイミド構造を持つ臭素系難燃剤としては、エチレンビステトラブロモフタルイミド、エチレンビストリブロモフタルイミドなどが挙げられる。
 臭素系難燃剤としては、上記のフタルイミド構造を持つものを単独で使用してもよいが、所望のゲル分率の範囲内であれば、下記の臭素系難燃剤を併用してもよい。具体的な臭素系難燃剤としては、エチレンビス(ペンタブロモベンゼン)〔別名:ビス(ペンタブロモフェニル)エタン〕、テトラブロモビスフェノールA(TBBA)、ヘキサブロモシクロドデカン(HBCD)、TBBA-カーボネイト・オリゴマー、TBBA-エポキシ・オリゴマー、臭素化ポリスチレン、TBBA-ビス(ジブロモプロピルエーテル)、ポリ(ジブロモプロピルエーテル)、ヘキサブロモベンゼン(HBB)などが挙げられる。
 三酸化アンチモンは臭素系難燃剤の難燃助剤として用いられ、臭素系難燃剤と併用すると相乗効果が得られ、難燃性がさらに向上する。前記フタルイミド構造を持つ臭素系難燃剤と三酸化アンチモンとの混合比率は、当量比で、臭素系難燃剤:三酸化アンチモン=3:1~2:1の範囲内であるのが好ましい。三酸化アンチモンは純度99%以上のものを用いるのが好ましい。三酸化アンチモンは、鉱物として産出される三酸化アンチモンを粉砕処理して微粒化して用いる。その際、平均粒子系が3μm以下であるのが好ましく、更に好ましくは1μm以下である。三酸化アンチモンの平均粒径が大きくなると樹脂との界面強度が低下する虞がある。また三酸化アンチモンは、粒子系を制御することや樹脂との界面強度を向上させる目的で、表面処理を施しても良い。表面処理剤としては、シランカップリング剤、高級脂肪酸、ポリオレフィンワックスなどを用いるのが好ましい。
 (D)フタルイミド構造を持つ臭素系難燃剤、或いは臭素系難燃剤と三酸化アンチモンの配合量は、上記樹脂成分(A)~(C)の合計100質量部に対し10~70質量部の範囲で配合するのが好ましく、さらに好ましくは、20~60質量部の範囲である。難燃剤成分の配合量が10質量部未満では、難燃性が不十分となるおそれがあり、70質量部を超えると混合不良などによる難燃剤の凝集、難燃剤と樹脂との界面強度の低下などを引き起こし、電線の機械的特性が低下するおそれがある。尚、上記の(D)成分の配合量は、臭素系難燃剤と三酸化アンチモンを併用する場合は、両者の合計量である。
 (E)架橋触媒バッチは、架橋触媒とバインダーとなる樹脂に分散させてバッチ化したものである。架橋触媒バッチを用いる事で、難燃剤と共に混合することで起こりうる余剰反応を抑制したり、触媒添加量の制御が容易である。架橋触媒は、シラングラフトポリオレフィンからなるシラングラフトバッチ(a成分ということもある)と混合すると、架橋が進行してしまうため、電線の被覆工程で添加することが一般的である。
 架橋触媒は、シラングラフトポリオレフィンをシラン架橋させるためのシラノール縮合触媒である。架橋触媒としては、例えば、錫、亜鉛、鉄、鉛、コバルトなどの金属カルボン酸塩や、チタン酸エステル、有機塩基、無機酸、有機酸などを例示することができる。具体的には、ジブチル錫ジラウレート、ジブチル錫ジマレート、ジブチル錫メルカプチド(ジブチル錫ビスオクチルチオグリコールエステル塩、ジブチル錫β-メルカプトプロピオン酸塩ポリマーなど)、ジブチル錫ジアセテート、ジオクチル錫ジラウレート、酢酸第一錫、カプリル酸第一錫、ナフテン酸鉛、ナフテン酸コバルト、ステアリン酸バリウム、ステアリン酸カルシウム、チタン酸テトラブチルエステル、チタン酸テトラノニルエステル、ジブチルアミン、ヘキシルアミン、ピリジン、硫酸、塩酸、トルエンスルホン酸、酢酸、ステアリン酸、マレイン酸などを例示することができる。
 特に架橋触媒として、ジブチル錫ジラウレート、ジブチル錫ジマレート、ジブチル錫メルカプチドなどのジブチル錫系化合物は、シラン架橋反応が進行しやすく、好ましい。
 架橋触媒バッチに用いられる樹脂としては、ポリオレフィンが適しており、特にLDPE、LLDPE、VLDPEが好ましい。これらの樹脂が好ましい理由は、シラングラフトポリオレフィンや未変性ポリオレフィン、官能基変性ポリオレフィンを選定する際と同じ理由であり、相溶性の面で同系統の樹脂を選定することは有利である。使用可能な樹脂としては前述のポリオレフィンが挙げられる。
 架橋触媒バッチにおける架橋触媒の配合割合は、架橋触媒バッチの樹脂成分100質量部に対して、0.5~5質量部の範囲内であるのが好ましく、より好ましくは1~5質量部の範囲である。0.5質量部未満では架橋反応が進み難く、5質量部を超えると触媒の分散性が悪くなり、1質量部を下回ると反応性に乏しくなる。
 架橋触媒バッチは、上記(A)~(C)のポリオレフィン合計100質量部に対して、2~20質量部の範囲で添加することが望ましく、さらに好ましくは5~15質量部である。2質量部未満では架橋が進みにくくなり部分架橋の虞があり、20質量部を超えると非架橋非難燃樹脂が増加することの弊害が生じ、難燃性や耐候性に悪影響を及ぼす可能性がある。
 (F)酸化亜鉛およびイミダゾール系化合物、或いは硫化亜鉛は、耐熱性を向上させるための添加剤として用いられる。酸化亜鉛とイミダゾール系化合物の併用、或いは硫化亜鉛のみの添加のいずれを選択しても、同様の耐熱性の効果が得られる。
 酸化亜鉛は、例えば、亜鉛鉱石にコークスなどの還元剤を加え、焼成して発生する亜鉛蒸気を空気で酸化する方法、硫酸亜鉛や塩化亜鉛を塩量に用いる方法で得られる。酸化亜鉛は特に製法は限定されず、いずれの方法で製造されたものでもよい。また硫化亜鉛についても、製法は既知の方法で製造されたものを用いることができる。酸化亜鉛および硫化亜鉛の平均粒径は、好ましくは3μm以下であり、更に好ましくは1μm以下である。酸化亜鉛および硫化亜鉛は、平均粒径が小さくなると、樹脂との界面強度が向上し、分散性の向上が期待できる。
 上記イミダゾール系化合物としてはメルカプトベンズイミダゾールが好ましい。メルカプトベンズイミダゾールとしては、2-メルカプトベンズイミダゾール、2-メルカプトメチルベンズイミダゾール、4-メルカプトメチルベンズイミダゾール、5-メルカプトメチルベンズイミダゾールなどや、これらの亜鉛塩などが挙げられる。特に好ましいメルカプトベンズイミダゾールは、融点が高く、混合中の昇華も少ないため高温で安定である理由から2-メルカプトベンズイミダゾールおよびその亜鉛塩である。
 酸化亜鉛およびメルカプトベンズイミダゾール、或いは硫化亜鉛の添加量は、少ないと耐熱性向上効果が十分得られない虞があり、多すぎると粒子が凝集し易くなり電線の外観が低下し耐摩耗性などの機械的特性が低下する虞がある。好ましい酸化亜鉛およびメルカプトベンズイミダゾール、或いは硫化亜鉛の添加量は、上記(A)~(C)の樹脂成分合計100質量部に対し、酸化亜鉛およびイミダゾール系化合物の場合、各々1~15質量部、或いは硫化亜鉛の場合1~15質量部である。
 (G)融点150℃以上のトリアジン系ヒンダードフェノール系酸化防止剤は、下記の化合物が挙げられる。
・N,N’-ヘキサン-1,6,ジイルビス〔3-(3,5-ジ-tert-ブチル-4ヒドロキシフェニル)プロピオンアミド〕
・3,3’,3”,5,5’,5”-ヘキサ-tert-ブチル-a-a’-a”(メシチレン-2,4,6,-トリイル)トリ-p-クレゾール
・1,3,5-トリス〔(4-tert-ブチル-3-ヒドロキシ-2,6-キシリル)メチル〕-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン
・1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン
 好ましいトリアジン系ヒンダードフェノール系酸化防止剤は、1,3,5-トリス〔(4-tert-ブチル-3-ヒドロキシ-2,6-キシリル)メチル〕-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンと、1,3,5-トリス(3,5-ジ-tert-ブチル-4ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンである。
 本発明では、融点が150℃以上のトリアジン系ヒンダードフェノール系酸化防止剤を用いることで、組成物から形成された電線被覆材を有する絶縁電線などが高温に曝された場合に、ヒンダードフェノールが白く析出するブルームを避けることができる。また電線同士が接触した状態で高温に曝されても、電線同士が接着するおそれもない。
 トリアジン系ヒンダードフェノール系酸化防止剤は、融点が200℃以上であるのが好ましい。このような酸化防止剤としては、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンは、融点が225℃であり、剥離性に優れるため、電線表面の滑性が向上することに加え、酸化防止剤としての効果も高く、電線の寿命向上に繋がるため、好ましく使用される。
 ヒンダードフェノール系酸化防止剤の添加量は、上記(A)~(C)のポリオレフィン合計100質量部に対して、0.5~5質量部の範囲で添加することが望ましく、さらに好ましくは0.5~3質量部である。ヒンダードフェノール系酸化防止剤の添加量が0.5質量部未満では老化耐性が低下し、長期間熱に晒されると電線被覆が崩壊する虞があり、5質量部を超えると樹脂との相溶性が低下し、電線外観が悪化する虞がある。
(H)トリアゾール誘導体もしくはヒドラジド系金属不活性剤は、少なくともいずれか一方が添加されていればよい。トリアゾール誘導体としては、3-(N-サリチロイル)アミノ-1,2,4-トリアゾール、3-(N-サリチロイル)アミノ-1,2,3-トリアゾール等を例示することができる。ヒドラジド系化合物としては、N’エチル-2-フルオロ-N-メチルアセトヒドラジド、2’,エチル-2-フルオロ-1’-メチルアセトヒドラジド、2,3-ビス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル〕プロピオノヒドラジドなどを例示することができる。
 トリアゾール誘導体もしくはヒドラジド系金属不活性剤の添加量は、上記(A)~(C)のポリオレフィン合計100質量部に対して、0.3~3質量部の範囲で添加することが望ましく、さらに好ましくは0.3~1.5質量部である。添加量が0.3質量部未満では導体に使用される金属が移行し、被覆が崩壊する虞があり、3質量部を超えると樹脂との相溶化が低下する上、不純物として含まれやすい鉄やニッケルなどの金属と反応して変色する虞がある。
 本発明の電線被覆材用組成物は、上記の成分以外に、一般的に使用される添加剤を用いてもよい。好んで用いられる添加剤として、上記以外のヒンダードフェノール系酸化防止剤や、アミン系銅害防止剤などが挙げられる。また一般的に電線被覆材料として用いられる添加剤を使用してもよい。
 また添加剤として、水酸化マグネシウム、酸化マグネシウム、炭酸カルシウムなどのフィラーを少量用いて樹脂の硬度を調製することで、加工性や耐高温変形特性を向上させることが可能である。ただし上記フィラーを多量に添加すると、樹脂強度が低下しやすいため、上記フィラーの添加量は、上記(A)~(C)のポリオレフィン合計100質量部に対して、30質量部程度に止めることが望ましい。
 次に本発明の絶縁電線について説明する。本発明に係る絶縁電線は、導体の外周が、上記の電線被覆材用組成物を水架橋させてなる電線被覆材からなる絶縁層により被覆されている。絶縁電線の導体は、その導体径や導体の材質などは特に限定されるものではなく、絶縁電線の用途などに応じて適宜選択することができる。導体としては例えば、銅、銅合金、アルミニウム、アルミニウム合金などが挙げられる。また電線被覆材からなる絶縁層は、単層であっても、2層以上の複数層であってもいずれでも良い。本発明のワイヤーハーネスは、上記の絶縁電線を有するものである。
 ISO6722は自動車用電線に用いられる国際規格であり、この規格によれば絶縁電線は許容耐熱温度によってA~Eまでのクラスに分類される。本発明の絶縁電線は上記の電線被覆材組成物から形成されたものであるから、耐熱性に優れ、高電圧がかかるバッテリーケーブルなどに最適であり、耐熱温度125℃のCクラスや、150℃のDクラスの特性を得ることが可能である。
 本発明に係る絶縁電線において、絶縁被覆材の架橋度は、耐熱性の観点から、50%以上であることが好ましい。より好ましくは60%以上である。架橋度は、架橋電線などにおいて架橋状態を表す指標として一般的に用いられているゲル分率で判断する。例えば自動車用架橋電線のゲル分率は、JASO-D608-92に準拠して測定することができる。
 電線被覆材の架橋度は、ポリオレフィンに対するシランカップリング剤のグラフト量や、架橋触媒の種類や量、水架橋条件(温度や時間)などにより調製することができる。
 次に、上記絶縁電線の製造方法について説明する。絶縁電線は、(B)未変性ポリオレフィン、(C)官能基変性ポリオレフィン、(D)フタルイミド構造を持つ臭素系難燃剤、或いはフタルイミド構造を持つ臭素系難燃剤および三酸化アンチモン、(F)酸化亜鉛およびイミダゾール系化合物、或いは硫化亜鉛、(G)融点150℃以上のヒンダードフェノール系酸化防止剤、(H)トリアゾール誘導体もしくはヒドラジド系金属不活性剤からなるb成分(難燃剤バッチ)と、(A)シラングラフトポリオレフィンを含むa成分(シラングラフトバッチ)と、(E)架橋触媒をポリオレフィンに分散させたc成分(架橋触媒バッチ)とを、加熱混練し混練工程を行い、導体の外周に押出被覆して電線被覆材を形成した後、水架橋を行うことで得られる。
なお上記b成分とc成分は、予め混練されていてペレット化されている。またa成分のシラングラフトポリオレフィンもペレット化されている。
 上記混練工程では、ペレット形状に形成された各バッチ(a成分~c成分)をミキサーや押出機などを用いてブレンドする。上記被覆工程では、通常の押出成形機などを用いて押出被覆などを行うと良い。そして、被覆工程の後、架橋工程では、導体の外周に樹脂を被覆した電線の被覆樹脂を水蒸気あるいは水にさらして水架橋させてシラン架橋を行うことができる。この水架橋は、常温~90℃の温度範囲内で、48時間の範囲内で行うことが好ましい。より好ましくは、温度が60~80℃の範囲内で、12~24時間の範囲内である。
 以下、本発明の実施例、比較例を示す。本発明はこれらによって限定されるものではない。
〔供試材料および製造元など〕
 本実施例および比較例において使用した供試材料を製造元、商品名などとともに示す。
(1)シラングラフトPP[三菱化学社製、商品名「リンクロンXPM800HM」]
(2)シラングラフトPE1[三菱化学社製、商品名「リンクロンXLE815N」(LLDPE)]
(3)シラングラフトPE2[三菱化学社製、商品名「リンクロンXCF710N」(LDPE)]
(4)シラングラフトPE3[三菱化学社製、商品名「リンクロンQS241HZ」(HDPE)]
(5)シラングラフトPE4[三菱化学社製、商品名「リンクロンSH700N」(VLDPE)]
(6)シラングラフトEVA[三菱化学社製、商品名「リンクロンXVF600N」]
(7)PPエラストマー[日本ポリプロ社製、商品名「ニューコンNAR6」]
(8)PE1[デュポン ダウ エラストマー ジャパン社製、商品名「エンゲージ 8450」(VLDPE)]
(9)PE2[日本ユニカー社製、商品名「NUC8122」(LDPE)]
(10)PE3[プライムポリマー社製、商品名「ウルトゼックス10100W」(LLDPE)]
(11)マレイン酸変性PE[日本油脂社製、商品名「モディックAP512P」]
(12)エポキシ変性PE[住友化学社製、商品名「ボンドファーストE」(E-GMA)]
(13)マレイン酸変性PP[三菱化学社製、商品名「アドマーQB550」]
(14)臭素系難燃剤1[アルベマール社製、商品名「SAYTEX8010」(エチレンビス(ペンタブロモベンゼン))]
(15)臭素系難燃剤2[鈴裕化学社製、商品名「FCP-680」(TBBA-ビス(ジブロモプロピルエーテル))]
(16)臭素系難燃剤3[アルベマール社製、商品名「SAYTEXBT-93」(エチレンビステトラブロモフタルイミド)]
(17)三酸化アンチモン[山中産業社製、商品名「三酸化アンチモンMSWグレード」]
(18)水酸化マグネシウム[協和化学社製、商品名「キスマ5」]
(19)炭酸カルシウム[白石カルシウム社製、商品名「Vigot15」]
(20)酸化防止剤1[Basfジャパン社製、商品名「イルガノックス1010」(ヒンダードフェノール系酸化防止剤)]
・ペンタエリスリトールテトラキス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート〕
融点:125℃
(21)酸化防止剤2[Basfジャパン社製、商品名「イルガノックス3790」(ヒンダードフェノール系酸化防止剤)]
・1,3,5-トリス〔(4-tert-ブチル-3-ヒドロキシ-2,6-キシリル)メチル〕-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン
融点:161℃
(22)酸化防止剤3[Basfジャパン社製、商品名「イルガノックス3114」(ヒンダードフェノール系酸化防止剤)]
・1,3,5-トリス(3,5-ジ-tert-ブチル-4ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン
融点255℃
(23)トリアゾール誘導体(銅害防止剤)[ADEKA社製、商品名「CDA-1」]
・3-(N-サリチロイル)アミノ-1,2,4-トリアゾール
(24)ヒドラジド系金属不活性剤[Basfジャパン社製、商品名「イルガノックスMD1024」]
・2,3-ビス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル〕プロピオノヒドラジド
(25)酸化亜鉛[ハクスイテック社製、商品名「亜鉛華一種」]
(26)硫化亜鉛[Sachtleben Chemie Gmbh社製、商品名「SachtolithHD-S」]
(27)イミダゾール系化合物[川口化学社製、商品名「アンテージMB」]
(28)潤滑剤1[日本油脂社製、商品名「アルフローP10」(エルカ酸アミド)]
(29)潤滑剤2[日本精化社製、商品名「BNT-22H」(ベヘミン酸アミド)]
(30)架橋触媒バッチ1[三菱化学社製、商品名「リンクロンLZ0515H」(ポリエチレン100質量部に対し、ジブチル錫化合物を1質量部配合して分散したもの)]
(31)架橋触媒バッチ2[ポリエチレン(NUC8122)100質量部に対しジブチル錫ジラウレートを5質量部添加して調整したもの]
(32)架橋触媒バッチ3[ポリエチレン(NUC8122)100質量部に対し酢酸第一錫を0.2質量部添加して調整したもの]
〔難燃剤バッチ(b成分)の調製〕
 表1および表2の実施例・比較例に示すb成分の配合量比で各材料を2軸押出混練機に加え、200℃で0.1~2分間加熱混練した後、ペレット化して、難燃剤バッチを得た。なおa成分のシラングラフトバッチは前述の供試材料の説明に記載した(1)~(4)のシラングラフトポリオレフィンを用い、c成分の架橋触媒バッチは、前述の供試材料の説明に記載した(30)~(33)の架橋触媒バッチ1~3を用いた。
〔絶縁電線の作製〕
 表1および表2の実施例・比較例に示す配合量比で,シラングラフトバッチ(a成分)、難燃剤バッチ(b成分)、架橋触媒バッチ(c成分)を押出機のホッパーで混合して押出機の温度を約180~200℃に設定して、押出加工を行った。外径2.4mmの導体上に厚さ0.7mmの絶縁体として押出被覆した(被覆外径3.8mm)。その後、65℃95%湿度の高湿高温槽で24時間水架橋処理を施して絶縁電線を作製した。
 得られた絶縁電線について、ゲル分率、生産性、難燃性、電線表面粗さ、耐磨耗性、長期加熱試験、剥離性の試験を行い、評価した。評価結果を表1および表2にあわせて示す。尚、試験方法と評価基準については下記の通りである。
〔ゲル分率〕
 JASO-D608-92に準拠して、ゲル分率を測定した。すなわち、電線の絶縁体試料を約0.1g秤量しこれを試験管に入れ、キシレン20mlを加えて、120℃の恒温油槽中で24時間加熱する。その後試料を取り出し、100℃の乾燥機内で6時間乾燥後、常温になるまで放冷してから、その重量を精秤し、試験前の質量に対する質量百分率をもってゲル分率とした。ゲル分率60%以上を良好「◎」、ゲル分率50%以上のものを合格「○」、ゲル分率50%未満のものを不合格「×」とした。尚、ゲル分率は、水架橋の架橋状態を表わす指標として架橋電線には一般的に用いられている。
〔生産性〕
 電線押出時に線速度を増減し、線速度50m/min以上でも設計外径が得られる場合を合格「○」、100m/min以上でも設計外径が得られる場合を良好「◎」とし、線速度50m/min未満でも設計外径が得られない場合を「×」とした。
〔難燃性〕
 ISO6722に準拠して70sec以内に消火する場合を合格「○」、消火しない場合を不合格「×」とした。
〔電線表面粗さ〕
 電線外観の評価として、針形の検出器で電線表面の平均粗さ(Ra)を測定し、Ra=1未満を合格「○」、Ra=0.5未満を良好「◎」とし、Ra=1以上を不合格「×」とした。表面粗さの測定は、Mitutoyo製サーフテストSJ301を使用した。
〔耐磨耗性〕
 ISO6722に準拠して、1000回以上のブレード試験に耐えられる場合を合格「○」とし、1000回に到達しない場合を不合格「×」とした。
〔長期加熱試験〕
 絶縁電線に対して150℃×任意時間の老化試験を行った後、1kv×1min.の耐電圧試験を行った。3000時間以上で絶縁破壊せず耐電圧試験に耐えることができた場合を合格「○」、5000時間以上で絶縁破壊せず耐えることができた場合を「◎」とし、3000時間に耐えることができなかった場合を不合格「×」とした。
〔剥離性〕
 100mmの電線2本をテープで巻きつけたものを150℃×24時間の条件下に放置した後、テープを取り去り2本の電線を剥がす。すぐに剥がれ接着跡がほとんどついていないものを「◎」、剥れるが接着跡がまばらについているものを「○」、剥がれにくく接着跡が全面的についているものを「×」とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、比較例1~7は本発明が規定する成分を全て含むものではなく、全ての特性を満足する絶縁電線は得られなかった。すなわち、比較例1は、実施例1と比較して臭素系難燃剤を含有していないため、難燃性、ゲル分率、長期加熱試験が不合格である。比較例2、5は融点が150℃以上のトリアジン系ヒンダードフェノール系酸化防止剤を含有していないので、剥離性が不合格である。比較例3は融点が150℃以上のトリアジン系ヒンダードフェノール系酸化防止剤、架橋触媒バッチを含有しないので、ゲル分率、長期加熱試験、剥離性などが不合格である。比較例4は、酸化亜鉛、硫化亜鉛、トリアゾール誘導体、ヒドラジド系金属不活性化剤などを含有しないので、長期加熱試験が不合格である。比較例5は官能基変性ポリオレフィン、難燃剤などを含有しないので、ゲル分率、難燃性、ISO長期加熱試験が不合格である。
 比較例6は、未変性ポリオレフィン、官能基変性ポリオレフィン、酸化亜鉛およびイミダゾール系化合物、或いは硫化亜鉛などを含有しないので、生産性、電線表面粗さ、耐磨耗性、長期加熱試験が不合格である。比較例7は、シラングラフトポリオレフィンを含有しないので、ゲル分率、長期加熱試験、剥離性が不合格である。
 表1に示すように実施例1~7は、シラングラフトポリオレフィン、未変性ポリオレフィン、官能基変性ポリオレフィン、臭素系難燃剤、架橋触媒バッチ、硫化亜鉛或いは酸化亜鉛とイミダゾール化合物、融点150℃以上のトリアジン系ヒンダードフェノール系酸化防止剤、トリアゾール誘導体もしくはヒドラジド金属不活性剤を含有しているため、ゲル分率、生産性、難燃性、電線表面粗さ、耐磨耗性、長期加熱試験、剥離性の評価がいずれも合格の絶縁電線が得られた。
 以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。

Claims (8)

  1.  (A)ポリオレフィンにシランカップリング剤がグラフトされたシラングラフトポリオレフィン、
     (B)未変性ポリオレフィン、
     (C)カルボン酸基、酸無水物基、アミノ基およびエポキシ基から選択される1種または2種以上の官能基により変性された官能基変性ポリオレフィン、
     (D)フタルイミド構造を持つ臭素系難燃剤、或いはフタルイミド構造を持つ臭素系難燃剤および三酸化アンチモン、
     (E)樹脂に架橋触媒が分散された架橋触媒バッチ、
     (F)酸化亜鉛およびイミダゾール系化合物、或いは硫化亜鉛、
     (G)融点150℃以上のトリアジン系ヒンダードフェノール系酸化防止剤、
     (H)トリアゾール誘導体もしくはヒドラジド系金属不活性剤、
    を含むことを特徴とする電線被覆材用組成物。
  2. 前記(A)シラングラフトポリオレフィン30~90質量部、
    前記(B)未変性ポリオレフィンと前記(C)官能基変性ポリオレフィンとを合計で10~70質量部、
    前記(A)、(B)および(C)の合計100質量部に対し、
    前記(D)フタルイミド構造を持つ臭素系難燃剤、或いはフタルイミド構造を持つ臭素系難燃剤および三酸化アンチモン10~70質量部、
    ポリオレフィン100質量部に対して架橋触媒を0.5~5質量部含む前記(E)架橋触媒バッチ2~20質量部、
    前記(F)酸化亜鉛およびイミダゾール系化合物が各々1~15質量部、或いは硫化亜鉛1~15質量部、
    前記(G)融点150℃以上のトリアジン系ヒンダードフェノール系酸化防止剤0.5~5質量部、
    前記(H)トリアゾール誘導体もしくはヒドラジド系金属不活性剤0.3~3質量部、
    を含むことを特徴とする請求項1記載の電線被覆材用組成物。
  3.  前記シラングラフトポリオレフィンおよび前記未変性ポリオレフィンが、超低密度ポリエチレン、直鎖状低密度ポリエチレン、および低密度ポリエチレンから選択される1種または2種以上であることを特徴とする請求項1または2記載の電線被覆材用組成物。
  4.  前記(G)ヒンダードフェノール系酸化防止剤が、1,3,5-トリス(3,5-ジ-tert-ブチル-4ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンであることを特徴とする請求項1~3のいずれか1項に記載の電線被覆材用組成物。
  5.  前記(E)架橋触媒バッチが超低密度ポリエチレン、直鎖状低密度ポリエチレン、低密度ポリエチレンおよび高密度ポリエチレンから選択される樹脂100質量部に対してジブチル錫化合物0.5~5質量部を添加してなる混合物であることを特徴とする請求項3又は4に記載の電線被覆材用組成物。
  6.  請求項1から5のいずれか1項に記載の電線被覆材用組成物が水架橋された電線被覆材を有することを特徴とする絶縁電線。
  7.  請求項1~5のいずれか1項に記載の電線被覆材用組成物の中の(B)未変性ポリオレフィン、(C)官能基変性ポリオレフィン、(D)フタルイミド構造を持つ臭素系難燃剤、或いはフタルイミド構造を持つ臭素系難燃剤および三酸化アンチモン、(F)酸化亜鉛およびイミダゾール系化合物、或いは硫化亜鉛、(G)融点150℃以上のヒンダードフェノール系酸化防止剤、(H)トリアゾール誘導体もしくはヒドラジド系金属不活性剤からなる難燃剤バッチと、(A)シラングラフトポリオレフィンと、(E)架橋触媒バッチとが混練され、導体の周囲に成形された後、水架橋された電線被覆材を有することを特徴とする絶縁電線。
  8.  請求項6または7に記載の絶縁電線を有することを特徴とする自動車用ワイヤーハーネス。
PCT/JP2012/051099 2011-01-31 2012-01-19 電線被覆材用組成物、絶縁電線およびワイヤーハーネス WO2012105329A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2012800070164A CN103347953A (zh) 2011-01-31 2012-01-19 电线包覆材料用组合物、绝缘电线和线束
DE112012000622.4T DE112012000622T8 (de) 2011-01-31 2012-01-19 Zusammensetzung für ein Leitungsbeschichtungsmaterial, isolierte Leitung und Kabelbaum
US13/993,562 US20130273367A1 (en) 2011-01-31 2012-01-19 Composition for wire coating material, insulated wire, and wiring harness

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-017369 2011-01-31
JP2011017369A JP5703789B2 (ja) 2011-01-31 2011-01-31 電線被覆材用組成物、絶縁電線およびワイヤーハーネス

Publications (1)

Publication Number Publication Date
WO2012105329A1 true WO2012105329A1 (ja) 2012-08-09

Family

ID=46602548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051099 WO2012105329A1 (ja) 2011-01-31 2012-01-19 電線被覆材用組成物、絶縁電線およびワイヤーハーネス

Country Status (5)

Country Link
US (1) US20130273367A1 (ja)
JP (1) JP5703789B2 (ja)
CN (1) CN103347953A (ja)
DE (1) DE112012000622T8 (ja)
WO (1) WO2012105329A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161502A1 (ja) * 2012-04-27 2013-10-31 株式会社オートネットワーク技術研究所 電線保護材用組成物、電線保護材及びワイヤーハーネス
WO2013161501A1 (ja) * 2012-04-24 2013-10-31 株式会社オートネットワーク技術研究所 電線保護材用組成物、電線保護材及びワイヤーハーネス
WO2014084047A1 (ja) * 2012-11-30 2014-06-05 古河電気工業株式会社 耐熱性シラン架橋性樹脂組成物を用いた成形体の製造方法
WO2014084048A1 (ja) * 2012-11-30 2014-06-05 古河電気工業株式会社 耐熱性シラン架橋性樹脂組成物を用いた成形体の製造方法
WO2016027651A1 (ja) * 2014-08-22 2016-02-25 株式会社オートネットワーク技術研究所 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
CN107735445A (zh) * 2015-07-29 2018-02-23 出光狮王塑料株式会社 高反射阻燃热塑性树脂组合物、成形体和照明机器用反射板
WO2019093288A1 (ja) * 2017-11-13 2019-05-16 住友電気工業株式会社 絶縁材及び絶縁電線
CN114446525A (zh) * 2020-10-30 2022-05-06 住友电装株式会社 包覆电线以及线束

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014067594A (ja) * 2012-09-26 2014-04-17 Sumitomo Wiring Syst Ltd シラン架橋電線の製造方法及びシラン架橋電線
JP6052042B2 (ja) * 2013-04-26 2016-12-27 株式会社オートネットワーク技術研究所 シラン架橋性難燃性組成物、絶縁電線及びその製造方法
KR101314010B1 (ko) * 2013-07-25 2013-10-01 김웅 난연성 폴리올레핀 조성물
JP6350129B2 (ja) * 2014-09-01 2018-07-04 株式会社オートネットワーク技術研究所 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP6287919B2 (ja) 2015-03-24 2018-03-07 株式会社オートネットワーク技術研究所 電線被覆材組成物、絶縁電線及びワイヤーハーネス
JP2019529621A (ja) * 2016-09-08 2019-10-17 ダウ グローバル テクノロジーズ エルエルシー 難燃性ポリマー組成物
JP2018154679A (ja) * 2017-03-16 2018-10-04 株式会社オートネットワーク技術研究所 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP7153489B2 (ja) * 2018-07-09 2022-10-14 信越ポリマー株式会社 電磁波シールドフィルム及びその製造方法、並びに電磁波シールドフィルム付きプリント配線板
CN110066463B (zh) * 2019-05-22 2022-01-18 青岛海纳新材料有限公司 一种自反应增韧的聚丙烯复合材料
MX2022011644A (es) * 2020-04-13 2022-10-13 Dow Global Technologies Llc Composicion polimerica pirorretardante.
CN114907672A (zh) * 2022-06-01 2022-08-16 合肥工业大学 一种具有绝缘故障指示功能的环氧复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002245A (ja) * 2003-06-13 2005-01-06 Advanced Plastics Compounds Co シラン架橋難燃性樹脂成形体
JP2006131720A (ja) * 2004-11-04 2006-05-25 Riken Technos Corp シラン架橋性ポリオレフィンとの混合用難燃性樹脂組成物及びその成形体
JP2008303251A (ja) * 2007-06-05 2008-12-18 Auto Network Gijutsu Kenkyusho:Kk 難燃シラン架橋ポリオレフィン系樹脂組成物および絶縁電線

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE794718Q (fr) * 1968-12-20 1973-05-16 Dow Corning Ltd Procede de reticulation d'olefines
JP3658511B2 (ja) * 1999-01-05 2005-06-08 帝人株式会社 照明部品用熱可塑性ポリエステル樹脂組成物
US6998443B2 (en) * 2003-09-02 2006-02-14 Equistar Chemicals, Lp Flame retardant insulation compositions having improved abrasion resistance
JP5323332B2 (ja) * 2007-08-25 2013-10-23 古河電気工業株式会社 難燃性絶縁電線
JP5444737B2 (ja) * 2009-01-30 2014-03-19 株式会社オートネットワーク技術研究所 難燃性組成物および絶縁電線ならびに難燃性組成物の製造方法
JP2011119083A (ja) * 2009-12-02 2011-06-16 Autonetworks Technologies Ltd 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP5593730B2 (ja) * 2010-02-18 2014-09-24 株式会社オートネットワーク技術研究所 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP5870477B2 (ja) * 2010-09-10 2016-03-01 株式会社オートネットワーク技術研究所 電線被覆材用組成物、絶縁電線およびワイヤーハーネス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002245A (ja) * 2003-06-13 2005-01-06 Advanced Plastics Compounds Co シラン架橋難燃性樹脂成形体
JP2006131720A (ja) * 2004-11-04 2006-05-25 Riken Technos Corp シラン架橋性ポリオレフィンとの混合用難燃性樹脂組成物及びその成形体
JP2008303251A (ja) * 2007-06-05 2008-12-18 Auto Network Gijutsu Kenkyusho:Kk 難燃シラン架橋ポリオレフィン系樹脂組成物および絶縁電線

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161501A1 (ja) * 2012-04-24 2013-10-31 株式会社オートネットワーク技術研究所 電線保護材用組成物、電線保護材及びワイヤーハーネス
JP2013227373A (ja) * 2012-04-24 2013-11-07 Autonetworks Technologies Ltd 電線保護材用組成物、電線保護材及びワイヤーハーネス
WO2013161502A1 (ja) * 2012-04-27 2013-10-31 株式会社オートネットワーク技術研究所 電線保護材用組成物、電線保護材及びワイヤーハーネス
US9287019B2 (en) 2012-04-27 2016-03-15 Autonetworks Technologies, Ltd. Composition for wire protective member, wire protective member, and wiring harness
WO2014084047A1 (ja) * 2012-11-30 2014-06-05 古河電気工業株式会社 耐熱性シラン架橋性樹脂組成物を用いた成形体の製造方法
WO2014084048A1 (ja) * 2012-11-30 2014-06-05 古河電気工業株式会社 耐熱性シラン架橋性樹脂組成物を用いた成形体の製造方法
WO2016027651A1 (ja) * 2014-08-22 2016-02-25 株式会社オートネットワーク技術研究所 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP2016046084A (ja) * 2014-08-22 2016-04-04 株式会社オートネットワーク技術研究所 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
US10102940B2 (en) 2014-08-22 2018-10-16 Autonetworks Technologies, Ltd. Composition for electric wire coating material, insulated electric wire, and wire harness
CN107735445A (zh) * 2015-07-29 2018-02-23 出光狮王塑料株式会社 高反射阻燃热塑性树脂组合物、成形体和照明机器用反射板
WO2019093288A1 (ja) * 2017-11-13 2019-05-16 住友電気工業株式会社 絶縁材及び絶縁電線
CN114446525A (zh) * 2020-10-30 2022-05-06 住友电装株式会社 包覆电线以及线束

Also Published As

Publication number Publication date
CN103347953A (zh) 2013-10-09
DE112012000622T8 (de) 2014-07-10
US20130273367A1 (en) 2013-10-17
JP5703789B2 (ja) 2015-04-22
JP2012158629A (ja) 2012-08-23
DE112012000622T5 (de) 2014-04-17

Similar Documents

Publication Publication Date Title
JP5703789B2 (ja) 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP5870477B2 (ja) 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP5593730B2 (ja) 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
US9951242B1 (en) Electric wire coating material composition, insulated electric wire, and wire harness
JP6295886B2 (ja) 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP6350129B2 (ja) 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
WO2011068047A1 (ja) 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP2016050288A (ja) 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
US12018146B2 (en) Composition for wire coating material, insulated wire, and wiring harness
US20180268956A1 (en) Composition for electric wire coating material, insulated electric wire, and wire harness
JP5845517B2 (ja) 難燃性組成物および絶縁電線
JP2016050287A (ja) 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP2012057075A (ja) 剥離性を有する難燃性組成物、難燃性樹脂の製造方法および絶縁電線
JP5655595B2 (ja) 剥離性を有する難燃性組成物、難燃性樹脂の製造方法および絶縁電線
US20240270955A1 (en) Flame-retardant resin composition, insulated electric wire, and wire harness
JP2014214239A (ja) シラン架橋性難燃性組成物及びこれを用いた絶縁電線
JP7067590B2 (ja) 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
WO2013008582A1 (ja) 剥離性と耐熱性を有する難燃性組成物、難燃性樹脂の製造方法及び絶縁電線
JP2016195073A (ja) 絶縁電線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742196

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13993562

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120006224

Country of ref document: DE

Ref document number: 112012000622

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12742196

Country of ref document: EP

Kind code of ref document: A1