WO2014084047A1 - 耐熱性シラン架橋性樹脂組成物を用いた成形体の製造方法 - Google Patents

耐熱性シラン架橋性樹脂組成物を用いた成形体の製造方法 Download PDF

Info

Publication number
WO2014084047A1
WO2014084047A1 PCT/JP2013/080668 JP2013080668W WO2014084047A1 WO 2014084047 A1 WO2014084047 A1 WO 2014084047A1 JP 2013080668 W JP2013080668 W JP 2013080668W WO 2014084047 A1 WO2014084047 A1 WO 2014084047A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
inorganic filler
mass
silane
coupling agent
Prior art date
Application number
PCT/JP2013/080668
Other languages
English (en)
French (fr)
Inventor
西口 雅己
有史 松村
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN201380061344.7A priority Critical patent/CN104812813B/zh
Priority to JP2014550115A priority patent/JP6329907B2/ja
Publication of WO2014084047A1 publication Critical patent/WO2014084047A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/241Preventing premature crosslinking by physical separation of components, e.g. encapsulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate

Definitions

  • the present invention relates to a heat-resistant silane cross-linkable resin composition and a method for producing the same, a heat-resistant silane cross-linked resin molded product and a method for producing the same, and a heat-resistant product using the heat-resistant silane cross-linked resin molded product.
  • Heat-resistant silane cross-linked resin molded article excellent in properties, wear resistance, reinforcement, flame retardancy and appearance, and production method thereof, heat-resistant silane cross-linked resin composition capable of forming this heat-resistant silane cross-linked resin molded article, and
  • the present invention relates to a heat-resistant product used as an insulator or sheath of an electric wire using the heat-resistant silane-crosslinked resin molded body and the heat-resistant silane-crosslinked resin molded body.
  • Insulated wires, cables, cords and optical fiber cores, and optical fiber cords used for electrical and electronic equipment internal and external wiring are flame retardant, heat resistant, and mechanical properties (eg tensile properties, wear resistance) Various characteristics are required.
  • materials used for these wiring materials include resin compositions containing a large amount of inorganic fillers such as magnesium hydroxide, aluminum hydroxide, and calcium carbonate.
  • wiring materials used in electrical and electronic equipment may be heated to 80 to 105 ° C. and further to about 125 ° C. in continuous use, and heat resistance against this may be required.
  • a method of crosslinking the coating material by an electron beam crosslinking method, a chemical crosslinking method or the like is employed.
  • silane crosslinking methods are known.
  • the silane cross-linking method in particular does not require special equipment and can be used in a wide range of fields.
  • a silane coupling agent having an unsaturated group is grafted to a polymer in the presence of an organic peroxide to obtain a silane graft polymer, and then contacted with moisture in the presence of a silanol condensation catalyst.
  • a method for producing a halogen-free heat-resistant silane crosslinked resin is a heat-resistant material in which a silane masterbatch obtained by grafting a silane coupling agent having an unsaturated group onto a polyolefin resin, and a polyolefin and an inorganic filler are kneaded.
  • melt-mixing a master batch and a catalyst master batch containing a silanol condensation catalyst.
  • an inorganic filler in such a method, it is effective to use a large amount of an inorganic filler in order to achieve high flame resistance, high heat resistance, and excellent strength, wear resistance, and reinforcement.
  • an inorganic filler in a proportion exceeding 100 parts by mass with respect to 100 parts by mass of polyolefin it may be difficult to uniformly melt and knead with a single screw extruder or a twin screw extruder. Therefore, when a large amount of inorganic filler is used, it is common to use a closed mixer such as a continuous kneader, a pressure kneader, or a Banbury mixer.
  • the silane coupling agent having an unsaturated group is generally highly volatile and often volatilizes before grafting with polyolefin. If volatilization of the silane coupling agent cannot be suppressed, poor appearance occurs and heat resistance tends to be poor.
  • a method has been proposed in which a silane coupling agent is suppressed from volatilizing and a polyolefin is grafted with a Banbury mixer or kneader.
  • a method of adding a silane coupling agent having an unsaturated group and an organic peroxide to a heat-resistant master batch obtained by melting and mixing a polyolefin and a flame retardant as an inorganic filler, and graft polymerization using a single screw extruder can be considered. .
  • Patent Document 1 discloses a single-screw extruder after sufficiently melting and kneading an inorganic filler surface-treated with a silane coupling agent, a silane coupling agent, an organic peroxide, and a crosslinking catalyst with a kneader. A method of forming by using a method has been proposed.
  • the present invention solves the above problems, suppresses volatilization of the silane coupling agent during mixing or reaction, and has excellent mechanical properties, wear resistance, reinforcement, flame retardancy, and appearance, and is a heat resistant silane crosslinked resin It aims at providing a molded object and its manufacturing method. Moreover, this invention makes it a subject to provide the heat resistant silane crosslinkable resin composition which can form this heat resistant silane crosslinked resin molded object, and its manufacturing method. Furthermore, this invention makes it a subject to provide the heat resistant product using the heat resistant silane crosslinked resin molded object obtained with the manufacturing method of the heat resistant silane crosslinked resin molded object.
  • the reason for melting and mixing the silane coupling agent separately from the inorganic filler without using the inorganic filler surface-treated with the silane coupling agent in advance is to add the silane coupling agent using a Banbury mixer or the like.
  • the silane coupling agent volatilizes and a sufficient crosslinked product may not be obtained.
  • silane coupling agents may be polymerized and gelled, resulting in poor appearance.
  • the silane coupling agent may cause a side reaction due to an exothermic reaction that occurs in the graft portion of the resin component, or the silane coupling agents may be polymerized to cause poor appearance.
  • the present inventors in the method of adding a volatile silane coupling agent, divided the silane coupling agent and added it to the inorganic filler.
  • the strong bonding of the silane coupling agent can be suppressed and the silane coupling agent can be weakly bonded to the inorganic filler.
  • the volatilization of the silane coupling agent from the inorganic filler can be effectively suppressed, and the intended purpose can be achieved. I have found that I can achieve it. Based on this knowledge, the present inventors have further studied and came to make the present invention.
  • the subject of this invention was achieved by the following means. (1) 0.01 to 0.6 parts by mass of organic peroxide (P) and 100% by mass of untreated surface inorganic filler (F U ) with respect to 100 parts by mass of the resin composition (RC) containing the resin component (R) A surface-treated inorganic filler (F T ) obtained by surface-treating the surface-untreated inorganic filler (F U ) with 0.05 to 1.0% by mass of a hydrolyzable silane coupling agent (S1) 10 to 400 parts by mass of the inorganic filler (F) and 0.5 to 15.0 parts by mass of the unsaturated group-containing silane coupling agent (S2) with respect to 100 parts by mass of the surface-treated inorganic filler (F T ) Step (a) of preparing a silane masterbatch by melting and mixing at a temperature equal to or higher than the decomposition temperature of the organic peroxide (P), and a step of mixing the silane masterbatch and the silanol condensation catalyst (
  • the surface-treated inorganic filler (F T ) is surface-treated with 0.1 to 0.8 mass% hydrolyzable silane coupling agent (S1) with respect to the surface untreated inorganic filler (F U ).
  • the inorganic filler (F) contains 30 to 100% by mass of the surface-treated inorganic filler (F T ) based on the total mass of the inorganic filler (F).
  • the manufacturing method of the heat-resistant silane crosslinked resin molding of description contains at least one metal hydrate.
  • the manufacturing method of the heat-resistant silane crosslinked resin molding of description (6) The method for producing a heat-resistant silane crosslinked resin molded article according to (5), wherein the metal hydrate contains magnesium hydroxide. (7) The method for producing a heat-resistant silane-crosslinked resin molded product according to (5), wherein the metal hydrate contains calcium carbonate.
  • Body manufacturing method. (9)
  • the step (a) is mixed with the inorganic filler (F) and the unsaturated group-containing silane coupling agent (S), and then organic at a temperature equal to or lower than the decomposition temperature of the organic peroxide (P). Mixing the peroxide (P) to prepare a mixture (a1), and melt-mixing the obtained mixture and the resin composition (RC) above the decomposition temperature of the organic peroxide (P).
  • the step (b) is a step of mixing the silane master batch with the catalyst master batch containing the silanol condensation catalyst (C) and the carrier resin (E).
  • (11) The method for producing a heat-resistant silane-crosslinked resin molded article according to any one of (1) to (10), wherein the step (a) is melt-mixed with a closed mixer.
  • a heat-resistant product comprising the heat-resistant silane cross-linked resin molded article according to (14).
  • the unsaturated group-containing silane coupling agent (S2) is mixed with the surface-treated inorganic filler (F T ) previously surface-treated with a predetermined amount of the hydrolyzable silane coupling agent (S1) by a predetermined amount of post-addition, Until the silane grafting is performed on the resin component (R), the strong bond between the post-added unsaturated group-containing silane coupling agent (S2) and the surface-treated inorganic filler (F T ) is suppressed, and the silane coupling agent is used.
  • volatilization of the unsaturated group-containing silane coupling agent (S2) during preparation of the heat-resistant silane crosslinkable resin composition can be suppressed.
  • the hydrolyzable silane coupling agent (S1) and the unsaturated group-containing silane coupling agent (S2) undergo a graft reaction to the resin component (R) due to decomposition of the organic peroxide (P) during kneading.
  • a part of the hydrolyzable silane coupling agent (S1) and / or the unsaturated group-containing silane coupling agent (S2) is networked via the inorganic filler (F).
  • the network through the inorganic filler (F) is weak against high heat, it realizes high strength, wear resistance, and reinforcing properties such as being hardly deformed. Furthermore, by leaving the heat-resistant silane crosslinkable resin composition or performing a humidification treatment, the unsaturated group-containing silane coupling agent (S2) grafted to the resin component (R) is hydrolyzed, and the resin component (R ) Form a network between each other.
  • a heat-resistant silane cross-linked resin molded article excellent in mechanical properties, wear resistance, reinforcing properties, flame retardancy and appearance, a method for producing the same, and the heat-resistant silane cross-linked resin molded article are formed.
  • a possible heat-resistant silane crosslinkable resin composition and a method for producing the same can be provided.
  • the heat resistant product using the heat resistant silane crosslinked resin molding obtained by the manufacturing method of the heat resistant silane crosslinked resin molding of this invention can be provided.
  • the “method for producing a heat-resistant silane-crosslinked resin molded product” of the present invention is an organic peroxide (P) of 0.01 to 0 with respect to 100 parts by mass of a resin composition (RC) containing a resin component (R).
  • a resin composition containing a resin component (R).
  • S1 hydrolyzable silane coupling agent of the surface untreated inorganic filler (F U ) 10 to 400 parts by mass of the inorganic filler (F) containing the surface-treated inorganic filler (F T ) obtained in this manner and 100 parts by mass of the surface-treated inorganic filler (F T ), an unsaturated group-containing silane coupling agent ( S2)
  • the “method for producing a heat-resistant silane crosslinkable resin composition” of the present invention includes the steps (a) and (b), and at least the step (c) and optionally the step (d).
  • the “method for producing a heat-resistant silane-crosslinked resin molded product” of the present invention and the “method for producing a heat-resistant silane-crosslinked resin composition” of the present invention are basically the same except for the presence or absence of the step (c). It is. Accordingly, the “method for producing a heat-resistant silane cross-linked resin molded product” of the present invention and the “method for producing a heat-resistant silane cross-linkable resin composition” of the present invention (in the explanation of the common parts of both, The manufacturing method of the present invention is sometimes described below.
  • the resin composition (RC) used in the present invention contains a resin component (R) and various oils used as a plasticizer or a softener as required.
  • the content of the resin component (R) in the resin composition (RC) is preferably 20% by mass or more with respect to the total mass of the resin composition (RC) in terms of heat resistance performance, crosslinking performance, and strength. More preferably, it is 45% by mass or more, and particularly preferably 60% by mass or more.
  • the content of the resin component (R) is 100% by mass at the maximum, but may be, for example, 80% by mass or less.
  • the resin composition (RC) is preferably introduced with oil in order to maintain flexibility and maintain a good appearance.
  • the oil in the resin composition (RC) is preferably set to 80% by mass or less, more preferably 55% by mass or less, based on the total mass of the resin composition (RC). It is particularly preferable that the content is not more than mass%.
  • the resin composition (RC) may contain other components such as various additives and solvents described later.
  • Resin component (R) examples include a polyolefin resin (PO), a polyester resin, a polyamide resin (PA), a polystyrene resin (PS), and a polyol resin, and among them, a polyolefin resin is preferable.
  • This resin component (R) may be used individually by 1 type, and may use 2 or more types together.
  • the polyolefin-based resin is not particularly limited, and known ones conventionally used for heat-resistant silane crosslinkable resin compositions can be used.
  • polyethylene, polypropylene, ethylene- ⁇ -olefin copolymer, block copolymer of polypropylene and ethylene- ⁇ -olefin resin, acid copolymer component or acid ester copolymer component (these are collectively referred to as acid copolymer component)
  • the receptivity to various inorganic fillers (F) including metal hydrates is high, and even if a large amount of inorganic filler (F) is blended, there is an effect of maintaining mechanical strength, and heat resistance.
  • Polyethylene, ethylene- ⁇ -olefin copolymer, polyolefin copolymer resin having acid copolymerization component, styrene elastomer Ethylene-propylene rubber is preferable. These polyolefin resins may be used alone or in combination of two or more.
  • polyethylene examples include high density polyethylene (HDPE), low density polyethylene (LDPE), ultra high molecular weight polyethylene (UHMW-PE), linear low density polyethylene (LLDPE), and very low density polyethylene (VLDPE).
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • UHMW-PE ultra high molecular weight polyethylene
  • LLDPE linear low density polyethylene
  • VLDPE very low density polyethylene
  • Polyethylene may be used individually by 1 type, and may use 2 or more types together.
  • Preferred examples of the ⁇ -olefin component in the ethylene- ⁇ -olefin copolymer include those having 3 to 12 carbon atoms.
  • Specific examples of the ⁇ -olefin component include propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene and the like.
  • the ethylene- ⁇ -olefin copolymer is preferably a copolymer of ethylene and an ⁇ -olefin component having 3 to 12 carbon atoms, specifically, an ethylene-propylene copolymer (EPR), ethylene -Butylene copolymer (EBR), ethylene- ⁇ -olefin copolymer synthesized in the presence of a single site catalyst, and the like.
  • EPR ethylene-propylene copolymer
  • EBR ethylene -Butylene copolymer
  • One ethylene- ⁇ -olefin copolymer may be used alone, or two or more ethylene- ⁇ -olefin copolymers may be used in combination.
  • Examples of the block copolymer of polypropylene and ethylene- ⁇ -olefin resin include a copolymer having a polypropylene block and the above-described ethylene- ⁇ -olefin copolymer block.
  • Examples of the acid copolymerization component or acid ester copolymerization component in the polyolefin copolymer having an acid copolymerization component include vinyl acetate, (meth) acrylic acid, and alkyl (meth) acrylate.
  • the alkyl group of the alkyl (meth) acrylate preferably has 1 to 12 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, and a hexyl group.
  • polystyrene resin having an acid copolymer component examples include an ethylene-vinyl acetate copolymer, an ethylene- (meth) acrylic acid copolymer, and an ethylene- (meth) acrylic acid alkyl copolymer.
  • ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, and ethylene-butyl acrylate copolymer are preferable, and further acceptability to inorganic filler (F).
  • an ethylene-vinyl acetate copolymer is preferred.
  • the polyolefin copolymer having an acid copolymerization component is used alone or in combination of two or more.
  • styrenic elastomer examples include a block copolymer and a random copolymer of a conjugated diene compound and an aromatic vinyl compound, or a hydrogenated product thereof.
  • aromatic vinyl compound examples include styrene, p- (tert-butyl) styrene, ⁇ -methylstyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylstyrene, N, N-diethyl-p-aminoethyl.
  • examples thereof include styrene, vinyl toluene, p- (tert-butyl) styrene and the like.
  • styrene is preferable as the aromatic vinyl compound.
  • This aromatic vinyl compound is used individually by 1 type, or 2 or more types are used together.
  • the conjugated diene compound include butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene and the like.
  • the conjugated diene compound is preferably butadiene. This conjugated diene compound is used individually by 1 type, or 2 or more types are used together.
  • styrene-based elastomer an elastomer that does not contain a styrene component and contains an aromatic vinyl compound other than styrene may be used by the same manufacturing method.
  • styrene-based elastomer examples include, for example, Septon 4077, Septon 4055, Septon 8105 (all trade names, manufactured by Kuraray Co., Ltd.), Dynalon 1320P, Dynalon 4600P, 6200P, 8601P, 9901P (all trade names, JSR Corporation) Manufactured).
  • oils examples of the oil optionally contained in the resin composition (RC) include an oil as a plasticizer for the resin component (R) or a mineral oil softener for rubber. Since this oil does not react with the unsaturated group-containing silane coupling agent (S), it is not included in the resin component (R), but may be contained in the resin composition (RC).
  • Mineral oil softeners are mixed oils composed of hydrocarbons in which an aromatic ring, a naphthene ring and a paraffin chain are combined. Paraffin oils with 50% or more of the total number of carbon atoms in the paraffin chain, naphthenic oils with 30 to 40% naphthenic ring carbons, and aroma oils with 30% or more aromatic carbons (aromatic oils) It is also called oil).
  • liquid or low molecular weight synthetic softeners paraffin oil, and naphthene oil are preferably used, and paraffin oil is particularly preferably used.
  • paraffin oil examples include Diana Process Oil PW90 and PW380 (both trade names, manufactured by Showa Shell Sekiyu KK), Cosmo Neutral 500 (manufactured by Cosmo Sekiyu KK), and the like.
  • Organic peroxide (P) examples include general formulas: R 1 —OO—R 2 , R 1 —OO—C ( ⁇ O) R 3 , R 3 C ( ⁇ O) —OO (C ⁇ O) R 4
  • R 1 , R 2 , R 3 and R 4 each independently represents an alkyl group, an aryl group, or an acyl group.
  • R 1 , R 2 , R 3 and R 4 are all alkyl groups, or any one is an alkyl group and the rest is an acyl group.
  • organic peroxides examples include dicumyl peroxide (DCP), di-tert-butyl peroxide, 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane, , 5-dimethyl-2,5-di (tert-butylperoxy) hexyne-3, 1,3-bis (tert-butylperoxyisopropyl) benzene, 1,1-bis (tert-butylperoxy) -3, 3,5-trimethylcyclohexane, n-butyl-4,4-bis (tert-butylperoxy) valerate, benzoyl peroxide, p-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, tert-butylperoxy Benzoate, tert-butyl peroxyisopropyl carbonate, dia Chill peroxide, lauroyl peroxide, etc.
  • tert- butyl cumyl peroxide and the like.
  • dicumyl peroxide 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane, 2,5-dimethyl-2 are preferable in terms of odor, colorability, and scorch stability.
  • 5-Di- (tert-butylperoxy) hexyne-3 is preferred.
  • the decomposition temperature of the organic peroxide (P) is preferably from 80 to 195 ° C., particularly preferably from 125 to 180 ° C.
  • the decomposition temperature of the organic peroxide (P) means that when the organic peroxide (P) having a single composition is heated, the organic peroxide (P) itself becomes two or more kinds of compounds at a certain temperature or temperature range. It means the temperature at which decomposition reaction occurs, and refers to the temperature at which heat absorption or heat generation starts when heated from room temperature at a rate of temperature increase of 5 ° C./min in a nitrogen gas atmosphere by thermal analysis such as DSC method.
  • the inorganic filler (F) used in the step (a) includes a surface-treated inorganic filler (F T ), but can also include an inorganic filler other than the surface-treated inorganic filler (F T ).
  • a surface untreated inorganic filler (F U ) that has not been surface treated with a surface treating agent, an inorganic filler that has been surface treated with a fatty acid, a phosphate ester, or the like can be used.
  • the surface-treated inorganic filler (F T ) contained in the inorganic filler (F) is at least 30% by mass, more preferably 50% by mass, more preferably 70% by mass with respect to the total mass of the inorganic filler (F).
  • the above is preferable.
  • the content of the surface-treated inorganic filler (F T ) is 30% by mass or less, at least one of the mechanical strength, wear resistance, and reinforcing property of the heat-resistant silane crosslinked resin molded product may be lowered.
  • the remainder in the inorganic filler (F) include other inorganic fillers, such as a surface untreated inorganic filler (F U ), an inorganic filler surface-treated with a fatty acid, and the like.
  • the average particle diameter is preferably 0.2 to 10 ⁇ m
  • the thickness is more preferably 0.3 to 8 ⁇ m, further preferably 0.35 to 5 ⁇ m, and further preferably 0.35 to 3 ⁇ m.
  • the inorganic filler (F) is secondary aggregated when the hydrolyzable silane coupling agent (S1) or the unsaturated group-containing silane coupling agent (S2) is mixed.
  • the average particle diameter is obtained by dispersing the inorganic filler (F) in alcohol or water and using an optical particle diameter measuring device such as a laser diffraction / scattering particle diameter distribution measuring device.
  • the surface untreated inorganic filler (F U ) is an inorganic filler that is not surface-treated and serves as a base of the surface treated inorganic filler (F T ).
  • a surface untreated inorganic filler (F U ) is not particularly limited, and examples thereof include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, Examples thereof include metal hydrates such as compounds having a hydroxyl group or crystal water, such as aluminum oxide, aluminum nitride, aluminum borate, hydrated aluminum silicate, alumina, hydrated magnesium silicate, basic magnesium carbonate, and hydrotalcite.
  • the surface untreated inorganic filler (F U ) for example, boron nitride, silica (crystalline silica, amorphous silica, etc.), carbon, clay, zinc oxide, tin oxide, titanium oxide, molybdenum oxide, Antimony trioxide, silicone compound, quartz, talc, zinc borate, white carbon, zinc borate, zinc hydroxystannate, zinc stannate and the like.
  • metal hydrates are preferable, and aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, and the like are particularly preferable.
  • the surface-treated inorganic filler (F T ) is obtained by surface-treating a surface untreated inorganic filler (F U ) with a hydrolyzable silane coupling agent (S1).
  • a hydrolyzable silane coupling agent (S1) in advance, an unsaturated group-containing silane coupling agent (S2), a surface treated inorganic filler (F T ), It is possible to produce an unsaturated group-containing silane coupling agent (S2) that binds to the surface-treated inorganic filler (F T ) with a certain weak bond.
  • the unsaturated group-containing silane coupling agent (S2) bonded to the surface-treated inorganic filler (F T ) with this weak bond can provide a heat-resistant silane cross-linked resin molded product having a certain degree of cross-linking. High heat resistance is demonstrated. Therefore, the surface treatment amount of the hydrolyzable silane coupling agent (S1) for previously surface-treating the surface untreated inorganic filler (F U ) is limited. Specifically, the surface untreated inorganic filler (F U ) is treated with 0.05 to 1.0% by mass hydrolyzable silane coupling agent (S1) with respect to 100 parts by mass as described later. Has been processed.
  • the silane coupling agent strongly bonded to the surface-treated inorganic filler (F T ) is bonded to the surface of the surface-treated inorganic filler (F T ) by chemical bonding (hydrolysis of the silane coupling agent).
  • agent refers to a surface-treated inorganic filler (F T)
  • weakly binding silane coupling agent refers to a silane coupling agent in the physical adsorption or mixed state on the surface of the surface-treated inorganic filler (F T).
  • the hydrolyzable silane coupling agent (S1) for surface-treating the surface untreated inorganic filler (F U ) is not particularly limited, but has an amino group, a vinyl group, a (meth) acryloyloxy group, and a glycidyl group at the terminal. Those having a vinyl group or (meth) acryloyloxy group at the terminal are more preferred.
  • Examples of the hydrolyzable silane coupling agent (S1) having an amino group at the terminal include those having an aminoalkyl group, specifically, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane.
  • an unsaturated group containing silane coupling agent (S2) mentioned below is mentioned, for example.
  • Those having a glycidyl group at the terminal are 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, Examples include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
  • the hydrolyzable silane coupling agent (S1) can be used singly or in combination of two or more and different end groups.
  • the hydrolyzable silane coupling agent (S1) may be used in combination with other surface treatment agents.
  • Other surface treatment agents are not particularly limited, and examples thereof include fatty acids such as stearic acid, oleic acid, and lauric acid, phosphate esters, polyesters, and titanate coupling agents. These surface treatment agents are used in such a ratio that the total amount with the hydrolyzable silane coupling agent (S1) is 1.0% by mass or less with respect to the surface untreated inorganic filler (F U ). If the amount used is too large, the crosslinking density is lowered, and the heat resistance and heat deformability of the heat-resistant silane crosslinked resin molded product may be lowered.
  • the surface-treated inorganic filler (F T ) surface-treated with the hydrolyzable silane coupling agent (S1) may be appropriately prepared, or a commercially available product may be used.
  • a hydrolyzable silane coupling agent (S1) Kisuma 5L, Kisuma 5P (both trade names, manufactured by Kyowa Chemical Industry Co., Ltd.), Magseeds S6, Magseeds HV-6F (all Product name, manufactured by Kamijima Chemical Co., Ltd.).
  • Hijilite H42-ST-V As aluminum hydroxide surface-treated with a hydrolyzable silane coupling agent (S1), Hijilite H42-ST-V, Hijilite H42-ST-E (both are trade names, manufactured by Showa Denko KK), etc. Can be mentioned.
  • S1 hydrolyzable silane coupling agent
  • Hijilite H42-ST-V As aluminum hydroxide surface-treated with a hydrolyzable silane coupling agent (S1), Hijilite H42-ST-V, Hijilite H42-ST-E (both are trade names, manufactured by Showa Denko KK), etc. Can be mentioned.
  • the surface-treated inorganic filler (F T ) can be used alone or in combination of two or more.
  • the unsaturated group-containing silane coupling agent (S2) is not particularly limited, and an unsaturated group-containing silane coupling agent (S2) having an unsaturated group used in the silane crosslinking method can be used. .
  • an unsaturated group-containing silane coupling agent (S2) for example, an unsaturated group-containing silane coupling agent (S2) represented by the following general formula (1) can be suitably used.
  • R a11 is a group containing an ethylenically unsaturated group
  • R b11 is an aliphatic hydrocarbon group, a hydrogen atom, or Y 13 .
  • Y 11 , Y 12 and Y 13 are each an organic group that hydrolyzes independently.
  • Y 11 , Y 12 and Y 13 may be the same as or different from each other.
  • Examples of the group R a11 containing an ethylenically unsaturated group include a vinyl group, an alkenyl group having an unsaturated bond at the terminal, a (meth) acryloyloxyalkylene group, a p-styryl group, and the like, more preferably Vinyl group.
  • R b11 is an aliphatic hydrocarbon group or a hydrogen atom or Y 13 to be described later.
  • the aliphatic hydrocarbon group is a monovalent aliphatic hydrocarbon group having 1 to 8 carbon atoms excluding the aliphatic unsaturated hydrocarbon group. Can be mentioned. Examples of the monovalent aliphatic hydrocarbon group having 1 to 8 carbon atoms include those similar to those having 1 to 8 carbon atoms among alkyl groups of alkyl (meth) acrylate.
  • R b11 is preferably Y 13 .
  • Y 11 , Y 12 and Y 13 are each independently an organic group that is hydrolyzed, such as an alkoxy group having 1 to 6 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, or an acyloxy group having 1 to 4 carbon atoms. Groups. Among these, an alkoxy group having 1 to 6 carbon atoms is preferable. Specific examples of the alkoxy group having 1 to 6 carbon atoms include, for example, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a hexyloxy group, and the like. In terms of hydrolysis reactivity, a methoxy group or An ethoxy group is preferred.
  • the unsaturated group-containing silane coupling agent (S2) represented by the general formula (1) is preferably an unsaturated group-containing silane coupling agent having an ethylenically unsaturated group and a high hydrolysis rate, More preferably, it is an unsaturated group-containing silane coupling agent in which R b11 in the general formula (1) is Y 13 and Y 11 , Y 12 and Y 13 are the same organic group.
  • Specific examples of preferable unsaturated group-containing silane coupling agents (S2) include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltributoxysilane, vinyldimethoxyethoxysilane, vinyldimethoxybutoxysilane, and vinyldiethoxybutoxysilane.
  • These unsaturated group containing silane coupling agents (S2) may be used individually by 1 type, and may use 2 or more types together.
  • an unsaturated group-containing silane coupling agent having a vinyl group and an alkoxy group at the terminal is more preferable, and vinyltrimethoxysilane and vinyltriethoxysilane are particularly preferable.
  • the unsaturated group-containing silane coupling agent (S2) may be used alone or in a solution diluted with a solvent.
  • silanol condensation catalyst (C) functions to bind the unsaturated group-containing silane coupling agent (S2) grafted to the resin component (R) in the presence of moisture by a condensation reaction. Based on the function of the silanol condensation catalyst (C), the resin components (R) are cross-linked through the unsaturated group-containing silane coupling agent (S2). As a result, a heat-resistant silane cross-linked resin molded article having excellent heat resistance is obtained.
  • silanol condensation catalyst (C) an organic tin compound, a metal soap, a platinum compound, or the like is used.
  • Common silanol condensation catalysts (C) include, for example, dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, zinc stearate, lead stearate, barium stearate, calcium stearate, stearin Sodium acid, lead naphthenate, lead sulfate, zinc sulfate, organic platinum compounds and the like are used.
  • organic tin compounds such as dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctiate, and dibutyltin diacetate are particularly preferable.
  • the carrier resin (E) optionally added to the catalyst masterbatch is not particularly limited, but a part of the resin component (R) contained in the resin composition (RC) can also be used. A resin other than R) can also be used. Examples of the carrier resin (E) used separately from the resin component (R) include the same resins as the resin component (R) of the resin composition (RC).
  • the carrier resin (E) preferably uses a part of the resin component (R).
  • the carrier resin (E) is preferably a polyolefin-based resin, and particularly preferably polyethylene, from the viewpoint of good affinity with the silanol condensation catalyst (C) and excellent heat resistance.
  • the inorganic filler used together with the carrier resin (E), that is, added after the unsaturated group-containing silane coupling agent (S2), is 350 masses with respect to 100 mass parts of the resin component (R) of the resin composition (RC). Part or less is preferred.
  • a silanol condensation catalyst (C) will be hard to disperse
  • the heat-resistant silane cross-linked resin molded body and the heat-resistant silane cross-linkable resin composition are various additives commonly used in electric wires, electric cables, electric cords, sheets, foams, tubes, pipes, for example, A crosslinking aid, antioxidant, lubricant, metal deactivator, filler, other resin and the like may be appropriately blended within a range not impairing the object of the present invention.
  • These additives may be contained in any component, but may be contained in the catalyst master batch.
  • the antioxidant and the metal deactivator are added to the catalyst master batch so that the unsaturated group-containing silane coupling agent (S2) mixed with the inorganic filler (F) does not inhibit the grafting to the resin component (R).
  • a crosslinking aid is not substantially contained.
  • the crosslinking aid is not substantially mixed in the step (a) for preparing the silane master batch.
  • the crosslinking aid reacts with the organic peroxide (P) during kneading, crosslinking between the resin components (R) occurs, gelation occurs, and the heat resistant silane crosslinked resin molded article is formed. Appearance may deteriorate significantly.
  • the graft reaction of the unsaturated group-containing silane coupling agent (S2) to the resin component (R) is difficult to proceed, and the heat resistance of the final heat-resistant silane crosslinked resin molded article may not be obtained.
  • being substantially not contained or not mixed means that a crosslinking aid is not actively added or mixed, and does not exclude inclusion or mixing unavoidably.
  • the crosslinking aid refers to a material that forms a partially crosslinked structure with the resin component (R) in the presence of an organic peroxide.
  • a methacrylate compound such as polypropylene glycol diacrylate and trimethylolpropane triacrylate
  • examples include allyl compounds such as allyl cyanurate, polyfunctional compounds such as maleimide compounds, and divinyl compounds.
  • Antioxidants include amine-based antioxidants such as 4,4′-dioctyldiphenylamine, N, N′-diphenyl-p-phenylenediamine, and a polymer of 2,2,4-trimethyl-1,2-dihydroquinoline.
  • Pentaerythrityl-tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate), octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, Phenolic antioxidants such as 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, bis (2-methyl-4- (3 -N-alkylthiopropionyloxy) -5-tert-butylphenyl) sulfide, 2-mercaptoben ⁇ imidazole and its Zinc salts, pentaerythritol - tetrakis (3-lauryl - thiopropionate) and the like sulfur-based antioxidant such.
  • Phenolic antioxidants such as 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-
  • the antioxidant can be added in an amount of preferably 0.1 to 15.0 parts by mass, and more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin component (R).
  • the lubricant include hydrocarbon, siloxane, fatty acid, fatty amide, ester, alcohol, and metal soap. These lubricants should be added to the carrier resin (E).
  • Metal deactivators include N, N′-bis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl) hydrazine, 3- (N-salicyloyl) amino-1,2,4. -Triazole, 2,2'-oxamidobis- (ethyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate) and the like.
  • the filler including a flame retardant (auxiliary) agent
  • examples of the filler include inorganic fillers (F), surface untreated inorganic fillers (F U ), surface treated inorganic fillers (F T ), and other fillers other than inorganic fillers. Can be mentioned. These fillers may be mixed when the unsaturated group-containing silane coupling agent (S2) is mixed together with the inorganic filler (F), or may be mixed in the catalyst master batch.
  • the “method for producing a heat-resistant silane cross-linked resin molded article” of the present invention includes a step (a), a step (b), a step (c), and a step (d).
  • the “method for producing a heat-resistant silane crosslinkable resin composition” of the present invention includes the steps (a) and (b), and at least the step (c) and optionally the step (d). .
  • an inorganic filler containing 0.01 to 0.6 parts by mass of an organic peroxide (P) and a surface-treated inorganic filler (F T ) with respect to 100 parts by mass of the resin composition (RC) (F) 10 to 400 parts by mass and 0.5 to 15.0 parts by mass of an unsaturated group-containing silane coupling agent (S2) are melt-mixed at a temperature equal to or higher than the decomposition temperature of the organic peroxide (P), A silane masterbatch is prepared (step a).
  • “with respect to 100 parts by mass of the resin composition (RC)” means that “100 parts by mass of the resin composition (RC) and other components are mixed” in step (a). And “a mode in which a part of 100 parts by mass of the resin composition (RC), for example, the resin component (R) is mixed in the step after the step (a), for example, the step (b)”. . Therefore, in the production method of the present invention, it is sufficient that 100 parts by mass of the resin composition (RC) is contained in the “heat-resistant silane crosslinkable resin composition”, and the mixing mode of the resin composition (RC) is particularly It is not limited. Specifically, the resin component (R) contained in the resin composition (RC) may be entirely mixed with other components in the step (a), and a part of the carrier of the catalyst master batch described later. Part or all of the resin (E) may be mixed in the step (b).
  • the resin component (R) to be mixed in the step (b) is preferably 1 to 20 parts by mass, particularly 2 to 6 parts by mass, out of 100 parts by mass of the resin composition (RC). Good.
  • the resin component (R) mixed in the step (b) is added to the amount of the resin composition (RC) in the step (a). ) Is included.
  • the “method for producing a heat-resistant silane crosslinked resin molded product” of the present invention includes a resin composition (RC), an organic peroxide (P),
  • the step of preparing the heat-resistant silane crosslinkable resin composition of the present invention by mixing the inorganic filler (F), the unsaturated group-containing silane coupling agent (S2) and the silanol condensation catalyst (C), and the above-mentioned step (c ) And step (d), and in the step of preparing the heat-resistant silane crosslinkable resin composition, 80 to 99 parts by mass of the resin composition (RC), the organic peroxide (P), and the inorganic filler (F)
  • a step (a ′) of preparing a silane masterbatch by mixing the unsaturated group-containing silane coupling agent (S2), and the resulting silane masterbatch, silanol condensation catalyst (C) and carrier resin (E) as a resin
  • the surface-treated inorganic filler (F T ) used in the step (a) is 0.05 to 1.0% by mass of hydrolyzable silane with respect to 100 parts by mass of the untreated surface untreated inorganic filler (F U ).
  • the surface is treated with a coupling agent (S1).
  • the hydrolyzable silane coupling agent (S1) and the unsaturated group-containing silane coupling agent (S2) are bonded by a silanol bond, and the surface treatment inorganic filler (F T ) And a weakly bonded unsaturated group-containing silane coupling agent (S2).
  • the unsaturated group-containing silane coupling agent (S2) binds to the hydrolyzable silane coupling agent (S1) of the surface-treated inorganic filler (F T ) and is difficult to graft onto the resin component (R).
  • the subsequent carrier resin (E) is added, the crosslink density of the heat-resistant silane cross-linked resin molded product is reduced, and the cross-linking density of the heat-resistant silane cross-linked resin is reduced. May decrease.
  • the mixing ratio of the hydrolyzable silane coupling agent (S1) is less than 0.05% by mass, the effect of surface treatment with the hydrolyzable silane coupling agent (S1), for example, the strength is not sufficiently exhibited. There is.
  • This surface treatment amount is that the surface untreated inorganic filler (F U ) is 100 in that the surface untreated inorganic filler (F U ) is excellent in all of the strength, heat resistance and heat deformability of the heat resistant silane crosslinked resin molded product. It is preferably 0.8% by mass or less, more preferably 0.5% by mass or less, and still more preferably 0.4% by mass or less with respect to parts by mass. On the other hand, the surface treatment amount is preferably 0.1% by mass or more, and more preferably 0.15% by mass or more with respect to 100 parts by mass of the surface untreated inorganic filler (F U ).
  • a surface-treated inorganic filler (F T ) for example, 100 parts by mass of an untreated surface-treated inorganic filler (F U ) and hydrolyzable silane coupling agent (S1) 0. Mix with 05-1.0 wt%.
  • the mixing method is not particularly limited, and examples thereof include wet processing and dry processing.
  • the dry treatment include a method of adding and mixing the dried surface untreated inorganic filler (F U ) and the hydrolyzable silane coupling agent (S1) without heating or heating.
  • the wet treatment include a method of adding a hydrolyzable silane coupling agent (S1) in a state where a surface untreated inorganic filler (F U ) is dispersed in a solvent such as water. Among these, dry processing is preferable.
  • the inorganic filler (F) contains other inorganic filler, for example, a surface untreated inorganic filler (F U ), an inorganic filler surface-treated with a fatty acid or the like, the surface treated inorganic filler (F T ) and another inorganic filler are mixed to prepare an inorganic filler (F).
  • a surface untreated inorganic filler (F U ) an inorganic filler surface-treated with a fatty acid or the like
  • the surface treated inorganic filler (F T ) and another inorganic filler are mixed to prepare an inorganic filler (F).
  • step (a) the resin composition (RC), the organic peroxide (P), the inorganic filler (F), and the unsaturated group-containing silane coupling agent (S2) are decomposed into the organic peroxide (P). Melt and mix above temperature.
  • a part of the resin component (R) of the resin composition (RC) is used as the carrier resin (E) described later, as described above, it is mixed in the step (a) and the step (b).
  • the total amount of the resin composition (RC) is “100 parts by mass”, and the mixing amount of each component in the step (a) and the step (b) is determined.
  • the mixing amount of the organic peroxide (P) is in the range of 0.01 to 0.6 parts by weight, preferably 0.1 to 0.5 parts by weight with respect to 100 parts by weight of the resin composition (RC). Range.
  • the resin components (R) can be polymerized within an appropriate range, and extruded without generating agglomerates due to a crosslinked gel or the like. A composition having excellent properties can be obtained.
  • the crosslinking reaction of the resin component (R) does not proceed, or the free silane coupling agent (S1) and / or (S2 ) May bond to each other and heat resistance, mechanical strength, wear resistance, and reinforcement may not be sufficiently obtained.
  • the mixing amount of the organic peroxide (P) exceeds 0.6 parts by mass, the resin components (R) may be cross-linked and cannot be molded.
  • the unsaturated group-containing silane coupling agent (S) is likely to volatilize, and further, the unsaturated group-containing silane coupling agent (S2) is bonded to each other, and the resin component (R) is caused by a side reaction.
  • the resin component (R) is caused by a side reaction.
  • the mixing amount of the inorganic filler (F) is 10 to 400 parts by mass, preferably 30 to 280 parts by mass with respect to 100 parts by mass of the resin composition (RC).
  • the blending amount of the inorganic filler (F) is less than 10 parts by mass, the graft reaction of the unsaturated group-containing silane coupling agent (S2) becomes non-uniform, and the desired heat resistance cannot be obtained. Appearance may be significantly reduced.
  • it exceeds 400 parts by mass the load during molding or kneading becomes very large, and secondary molding may be difficult.
  • the mixing amount of the unsaturated group-containing silane coupling agent (S2) is 0.5 to 15.0 parts by mass with respect to 100 parts by mass of the surface-treated inorganic filler (F T ).
  • the amount of the unsaturated group-containing silane coupling agent (S2) is less than 0.5 parts by mass, the crosslinking reaction does not proceed sufficiently, and the heat-resistant silane-crosslinkable resin composition and the heat-resistant silane-crosslinked resin molded body May not exhibit desired heat resistance or mechanical properties.
  • it exceeds 15.0 parts by mass the whole amount of unsaturated group-containing silane coupling agent (S2) may not be adsorbed on the surface of the surface-treated inorganic filler (F T ).
  • the unsaturated group-containing silane coupling agent (S2) not adsorbed volatilizes during kneading. Moreover, the unsaturated group containing silane coupling agent (S2) which has not adsorb
  • the mixing amount is preferably 1.0 to 12.0 parts by mass, and more preferably 1.5 to 8.0 parts by mass.
  • the mixing amount of the unsaturated group-containing silane coupling agent (S2) may be within the above range with respect to 100 parts by mass of the surface-treated inorganic filler (F T ), but is further based on 100 parts by mass of the resin component (R).
  • the blending amount is preferably within the following range.
  • the blending amount with respect to 100 parts by mass of the resin component (R) is preferably 0.5 to 18.0 parts by mass, 1.0 to 8.0 parts by mass, and more preferably 1.5 to 5 parts by mass. Is more preferable.
  • the blending amount of the unsaturated group-containing silane coupling agent (S2) is less than 0.5 parts by mass, the crosslinking reaction does not proceed sufficiently, and the heat resistant silane crosslinkable resin composition and the heat resistant silane crosslinked resin molded product May not exhibit desired heat resistance or mechanical properties.
  • the unsaturated group-containing silane coupling agent (S2) is condensed with each other, and the heat-resistant silane crosslinked resin molded product may be damaged or burnt in the crosslinked gel, which may deteriorate the appearance. . In some cases, molding is not possible.
  • the resin composition (RC), the organic peroxide (P), the inorganic filler (F), and the unsaturated group-containing silane coupling agent (S2) are mixed with the organic peroxide (P). Melt and mix above the decomposition temperature.
  • the kneading temperature is not less than the decomposition temperature of the organic peroxide (P), preferably the decomposition temperature of the organic peroxide (P) + 25 ° C. to 110 ° C. This decomposition temperature is preferably set after the resin component (R) is melted. Further, kneading conditions such as kneading time can be set as appropriate.
  • the silane graft reaction When kneading is performed at a temperature lower than the decomposition temperature of the organic peroxide (P), the silane graft reaction, the bond between the surface-treated inorganic filler (F T ) and the resin component (R), and the bond between the inorganic filler (F) do not occur.
  • the organic peroxide (P) may react during extrusion and may not be molded into the desired shape.
  • the kneading method can be satisfactorily used as long as it is a method usually used for rubber, plastic, etc., and the kneading apparatus is appropriately selected according to the amount of the inorganic filler (F).
  • the kneading apparatus a single-screw extruder, a twin-screw extruder, a roll, a Banbury mixer, or various kneaders are used, but a closed mixer such as a Banbury mixer or various kneaders disperses and crosslinks the resin component (R). It is preferable in terms of stability.
  • the resin composition (RC), the organic peroxide (P), the inorganic filler (F), and the unsaturated group-containing silane coupling agent (S2) can be mixed at a time.
  • a mixer-type kneader such as a Banbury mixer or kneader
  • the organic peroxide (P), the inorganic filler (F), and the unsaturated group-containing silane cup at the temperature before the resin component (R) melts.
  • the ring agent (S2) is preferably melt-kneaded after being dispersed in the mixer.
  • the organic peroxide (P) is first decomposed by heat or kneading and the cross-linking reaction between the resin components (R) proceeds, resulting in poor appearance. End up.
  • the step (a) it is possible to prevent the occurrence of fouling due to a local crosslinking reaction, and the inorganic filler (F) and the unsaturated group-containing silane coupling agent (S2) are mixed to form the organic peroxide (P).
  • the organic peroxide (P) is prepared by further mixing and dispersing the organic peroxide (P) at a temperature equal to or lower than the decomposition temperature to prepare a mixture, and the resulting mixture and the resin component (R).
  • the inorganic filler (F) and the unsaturated group-containing silane coupling agent (S2) are preferably mixed at a temperature lower than the decomposition temperature of the organic peroxide (P), preferably at room temperature.
  • the mixing of the inorganic filler (F), the unsaturated group-containing silane coupling agent (S2), and the organic peroxide (P) include mixing methods such as wet processing and dry processing.
  • the dry treatment and wet treatment at this time are basically the same as the dry treatment and wet method in preparing the surface-treated inorganic filler (F T ) except that the objects to be mixed are different.
  • the unsaturated group-containing silane coupling agent (S2) is strongly bonded to the surface-treated inorganic filler (F T ), so that the subsequent condensation reaction may be difficult to proceed.
  • the bond between the surface-treated inorganic filler (F T ) and the unsaturated group-containing silane coupling agent (S2) is relatively weak, the crosslinking may easily proceed efficiently.
  • the combination of the mixing method in preparing the surface-treated inorganic filler (F T ) and the mixing method in the step (a1) is not particularly limited, but the inorganic filler (F) of the unsaturated group-containing silane coupling agent (S2)
  • the pretreated hydrolyzable silane coupling agent (S1) can be chemically bonded to the inorganic filler (F) and the unsaturated group-containing silane coupling agent (S2) can be physically bonded.
  • Both the mixing method for preparing the surface-treated inorganic filler (F T ) and the mixing method in the step (a1) are dry processing, or the mixing method for preparing the surface-treated inorganic filler (F T ) is a wet processing (a1). It is particularly preferable that the mixing method is a dry treatment.
  • the unsaturated group-containing silane coupling agent (S2) is added to the surface-treated inorganic filler (F T ) in this way, the unsaturated group-containing silane coupling agent (S2) is the surface of the surface-treated inorganic filler (F T ). there to surround, a portion thereof or all or adsorbed on the surface-treated inorganic filler (F T), or cause a gradual chemical bond with the surface of the surface-treated inorganic filler (F T).
  • volatilization of the unsaturated group-containing silane coupling agent (S2) during kneading with a subsequent kneader, Banbury mixer or the like is greatly reduced.
  • the unsaturated group of the unsaturated group-containing silane coupling agent (S2) is bonded to the resin component (R) by the organic peroxide (P) added as desired. Further, it is considered that the unsaturated group-containing silane coupling agent (S2) undergoes a condensation reaction with the silanol condensation catalyst (C) during molding.
  • the mixture prepared in the step (a1) and the resin composition (RC) are melt-mixed at or above the decomposition temperature of the organic peroxide (P). Specifically, each of the mixture and the resin composition (RC) is added to a mixer, melted and kneaded while being heated, and the temperature is set to be equal to or higher than the decomposition temperature of the organic peroxide. Thus, when a mixture and a resin composition (RC) are melt-mixed, a silane masterbatch will be manufactured.
  • the organic peroxide (P) may be mixed in the step (a1), may be mixed in the step (a2), or the step (a1) and the step (a2). ). Preferably, it is mixed in step (a1).
  • the organic peroxide (P) was mixed with the surface-treated inorganic filler (F T ) together with the unsaturated group-containing silane coupling agent (S2). Although it is preferable, it may be mixed alone.
  • the mixing amount of the organic peroxide (P) in the step (a1) is appropriately determined in consideration of the mixing amount in the entire step (a), and is, for example, 0 with respect to 100 parts by mass of the resin composition (RC). 0.05 to 0.6 parts by mass, preferably 0.05 to 0.4 parts by mass, and particularly preferably 0.1 to 0.25 parts by mass.
  • the organic peroxide (P) is mixed in the step (a1), the organic peroxide is uniformly dispersed in the surface-treated inorganic filler (F T ), and the graft reaction occurs uniformly. The effect that it is hard to produce the crack by gelation is acquired.
  • the mixture prepared in the step (a1) may be mixed with the resin composition (RC), the resin component (R), or oil, They may be mixed alone.
  • the organic peroxide (P) is preferably mixed together with the resin component (R).
  • the mixing amount of the organic peroxide (P) in the step (a2) is appropriately determined in consideration of the mixing ratio in the entire step (a), and is set to zero or a part of the planned mixing amount.
  • the inorganic filler (F) contains an inorganic filler other than the surface treated inorganic filler (F T ), for example, the surface untreated inorganic filler (F U ), other than the surface treated inorganic filler (F T )
  • the inorganic filler is preferably added after mixing the resin composition (RC), the unsaturated group-containing silane coupling agent (S2), and the inorganic filler (F). That is, this inorganic filler is preferably mixed last in the step (a) and the step (a2). When the inorganic filler is finally mixed, the unsaturated group-containing silane coupling agent (S2) can be bonded to the surface-treated inorganic filler (F T ).
  • the silane master batch is manufactured by performing the step (a).
  • the step (b) is then performed in which the silane master batch and the silanol condensation catalyst (C) are mixed to obtain a mixture.
  • the mixing amount of the silanol condensation catalyst (C) is preferably 0.0001 to 0.5 parts by mass, more preferably 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the resin component (R).
  • the blending amount of the silanol condensation catalyst (C) is less than 0.0001 part by mass, the crosslinking reaction due to the condensation reaction of the unsaturated group-containing silane coupling agent (S2) is difficult to proceed, and the heat resistance of the heat-resistant silane crosslinked resin molded product. Is not sufficiently improved, the productivity is lowered, and the crosslinking reaction may be uneven.
  • the silanol condensation reaction proceeds very fast, partial gelation occurs, and the appearance and resin physical properties of the heat-resistant silane crosslinked resin molded product may be deteriorated.
  • the compounding quantity of the silanol condensation catalyst (C) in a catalyst masterbatch is suitably set so that the compounding quantity with respect to the resin component (R) may become the said range.
  • the silane master batch and the silanol condensation catalyst are mixed.
  • the mixing conditions at this time are appropriately selected depending on the mixing method of the silanol condensation catalyst (C). That is, when the silanol condensation catalyst is mixed alone with the silane master batch, the mixing condition is set to the melt mixing condition of the resin component.
  • the silanol condensation catalyst when mixing a silanol condensation catalyst as a catalyst masterbatch, it is melt-mixed with a silane masterbatch.
  • the melt mixing at this time is basically the same as in step (a).
  • the melting temperature is appropriately selected according to the melting temperature of the carrier resin (E).
  • the kneading temperature is preferably 80 to 250 ° C., more preferably 100 to 240 ° C.
  • the kneading conditions such as kneading time can be set as appropriate.
  • This process (b) should just be a process of mixing a silane masterbatch and a silanol condensation catalyst (C), and obtaining a mixture, and may melt-mix these.
  • the step (b) is preferably a step in which a catalyst masterbatch containing a silanol condensation catalyst (C) and a carrier resin (E) is melt-mixed with a silane masterbatch.
  • the mixing amount of the carrier resin (E) in the catalyst masterbatch can accelerate silane crosslinking quickly, and is less likely to cause gelation during molding, with respect to 100 parts by mass of the resin composition (RC).
  • the amount is preferably 1 to 60 parts by mass, more preferably 1 to 50 parts by mass, and still more preferably 1 to 40 parts by mass.
  • the resin composition (RC) is 99 to 80 parts by mass, preferably 98 to 94 parts by mass in the step (a).
  • the step (b) 1 to 20 parts by mass, preferably 2 to 6 parts by mass (total 100 parts by mass) are mixed.
  • the compounding amount of the silanol condensation catalyst (C) in the catalyst masterbatch is resin
  • the blending amount with respect to the composition (RC) is appropriately set so as to fall within the above range.
  • the catalyst masterbatch and the silane masterbatch are melt kneaded while heating.
  • this melt-kneading there is a resin component (R) whose melting point cannot be measured by DSC or the like, for example, an elastomer.
  • the resin component (R) and the organic peroxide (P) is kneaded.
  • the carrier resin (E) is preferably melted to disperse the silanol condensation catalyst (C).
  • the kneading conditions such as kneading time can be set as appropriate.
  • heat silane crosslinkable resin composition of the present invention is a composition obtained by carrying out steps (a) and (b), the resin component (R), a surface-treated inorganic filler (F T ) And an unsaturated group-containing silane coupling agent (S2) as a raw material component.
  • the step (c) and the step (d) are then performed. That is, in the method for producing a heat-resistant silane cross-linked resin molded article of the present invention, the step (c) of molding the obtained mixture, that is, the heat-resistant silane cross-linkable resin composition of the present invention to obtain a molded article is performed. This step (c) may be omitted if a heat-resistant silane cross-linkable resin composition is prepared, and is performed if a heat-resistant silane cross-linked resin molded article is prepared.
  • This process (c) should just be able to shape
  • the heat-resistant product of the present invention is an electric wire or an optical fiber cable, extrusion molding or the like is selected.
  • This step (c) can be carried out simultaneously or sequentially with the step (b).
  • a series of processes can be employed in which a silane masterbatch and a catalyst masterbatch are melt-kneaded in a coating apparatus and then coated on, for example, an extruded wire or fiber and formed into a desired shape. In this way, a molded body of the heat-resistant silane crosslinkable resin composition of the present invention is obtained.
  • the step (d) is then performed in which the obtained molded product is brought into contact with water to obtain a heat-resistant silane cross-linked resin molded product.
  • the process itself in this step (d) can be performed by a usual method.
  • Hydrolyzable silane coupling agent (S1) or unsaturated group-containing silane coupling agent (S2) is hydrolyzed by bringing moisture into contact with the molded product, and hydrolyzable silane is passed through silanol condensation catalyst (C).
  • the coupling agent (S1) and / or the unsaturated group-containing silane coupling agent (S2) are condensed to form a crosslinked structure.
  • the condition of contacting with moisture proceeds only by storing at room temperature, but in order to further accelerate the crosslinking, it may be immersed in warm water, placed in a moist heat bath, or exposed to high temperature steam. Moreover, you may apply a pressure in order to permeate
  • the manufacturing method of the heat resistant silane crosslinked resin molding of this invention is implemented, and a heat resistant silane crosslinked resin molding is manufactured from the heat resistant silane crosslinking resin composition of this invention. Therefore, the heat-resistant silane cross-linked resin molded product of the present invention is a molded product obtained by carrying out the step (a), the step (b), the step (c) and the step (d), and the resin component (R ), A surface-treated inorganic filler (F T ) and an unsaturated group-containing silane coupling agent (S) as a raw material component.
  • the details of the reaction mechanism of the production method of the present invention are not yet clear, but are considered as follows. That is, when the resin component (R) is heated and kneaded, in the presence of the organic peroxide (P) component, the hydrolyzable silane coupling agent (S1) or the unsaturated group-containing silane coupling agent (S2) (hereinafter, These are referred to as silane coupling agents) and the silane coupling agent is grafted, and at the same time, the surface-treated inorganic fillers (F T ) are hydrolyzable silane coupling agent (S1) or unsaturated. It couple
  • the extrusion processability at the time of molding is improved. It becomes possible to mix
  • the mechanism of the operation of the above process of the present invention is not yet clear, it is estimated as follows.
  • an unsaturated group-containing silane coupling agent (S2) with the surface-treated inorganic filler (F T ) that has been surface-treated before and / or during kneading with the resin component (R).
  • the silane coupling agent that suppresses volatilization of the unsaturated group-containing silane coupling agent (S2) during kneading and that binds to the surface-treated inorganic filler (F T ) with a strong bond and a weak bond. Can be formed.
  • the silane coupling agent grafted by such (reaction m) is then mixed with the silanol condensation catalyst (C) and brought into contact with moisture to cause a condensation reaction to cause crosslinking (reaction n). Therefore, by adjusting both the surface treatment amount of the surface treatment inorganic filler (F T ) and the mixed amount of the unsaturated group-containing silane coupling agent (S2) to a specific range, these (reaction k), (reaction m) And (reaction n) together, the heat-resistant silane cross-linked resin molded article and the heat-resistant silane cross-linkable resin composition are difficult to gel, and in addition to high heat resistance, high mechanical strength, wear resistance, and trauma resistance It can also exert its properties.
  • the silane coupling agent bonded with a strong bond to the surface-treated inorganic filler (F T ) mainly contributes to high mechanical strength, abrasion resistance, trauma resistance, and reinforcing property, and the surface-treated inorganic filler.
  • a silane coupling agent bonded with a weak bond to (F T ) mainly contributes to an improvement in the degree of crosslinking. Therefore, when the surface of the surface-treated inorganic filler (F T ) is surface-treated with the hydrolyzable silane coupling agent (S1), the silane that weakly binds to the silane coupling agent that strongly binds to the surface untreated inorganic filler (F U ).
  • a coupling agent is formed in a well-balanced manner.
  • a silane coupling agent strongly bonded to the surface-treated inorganic filler (F T ) when a silane coupling agent strongly bonded to the surface-treated inorganic filler (F T ) is formed, a heat-resistant silane cross-linked resin molded article and a heat-resistant silane exhibiting high mechanical properties, wear resistance, and trauma resistance A crosslinkable resin composition can be produced.
  • a silane coupling agent that is weakly bonded to the surface-treated inorganic filler (F T ) is formed, a heat-resistant silane-crosslinked resin molded article and a heat-resistant silane-crosslinkable resin composition having a high degree of crosslinking and excellent heat resistance Can be manufactured.
  • the surface-untreated inorganic filler (F U ) is surface-treated with 0.05 to 1.0% by mass of the hydrolyzable silane coupling agent (S1), the surface untreated inorganic filler (F U).
  • silane coupling agent that binds weakly and well, and (reaction k), (reaction m), and (reaction n) combine to form a heat-resistant silane-crosslinked resin molded product. It is possible to easily control the degree of crosslinking, the strength, and the suppression of gelation.
  • the inorganic filler (F) is stable even after long-term storage, and can contribute to the stable performance of the heat-resistant silane cross-linked resin molded article and the heat-resistant silane cross-linkable resin composition.
  • the manufacturing method of the present invention is applied to the manufacture of products that require heat resistance (including semi-finished products, parts, and members), products that require strength, products that require short-term heat resistance, and rubber materials. can do.
  • Examples of such products include electric wires such as heat-resistant flame-retardant insulated wires, heat-resistant and flame-resistant cable coating materials, rubber substitute electric wires and cable materials, other heat-resistant and flame-resistant electric wire components, flame-resistant and heat-resistant sheets, and flame-resistant and heat-resistant films.
  • the production method of the present invention is particularly applied to the production of electric wires and optical cables, and these coatings can be formed.
  • the heat-resistant silane crosslinkable resin composition of the present invention is coated in a desired shape while being melt kneaded in an extrusion coating apparatus.
  • Such a molded article is a highly heat resistant high temperature non-melting cross-linking composition added with a large amount of inorganic filler, using a general-purpose extrusion coating apparatus without using a special machine such as an electron beam cross-linking machine, It can be produced by extrusion coating around the periphery or around conductors that are longitudinally or twisted with tensile strength fibers.
  • any conductor such as an annealed copper single wire or stranded wire can be used as the conductor.
  • a conductor plated with tin or an enamel-covered insulating layer may be used as the conductor.
  • the thickness of the insulating layer formed around the conductor is not particularly limited, but is usually 0. It is about 15 mm to 8 mm.
  • NUC6510 is an ethylene-ethyl acrylate resin (EA content 22 mass%) manufactured by Dow Chemical Japan
  • EA content 22 mass% ethylene-ethyl acrylate resin (EA content 22 mass%) manufactured by Dow Chemical Japan
  • Mitsui 3092 EPM is an ethylene-propylene-diene rubber manufactured by Mitsui Chemicals, with an ethylene content of 66%) It was used.
  • “surface-treated inorganic filler (FT) 1-28” and “other inorganic fillers 1 and 2” shown in Table 1 were prepared.
  • “Surface treatment inorganic filler (FT) 1-28” is a hydrate of the metal hydrate shown in “Type of filler” in Table 1 with “silane treatment amount (mass%) relative to filler (FT)” shown in Table 1.
  • the coupling agent (S1) was prepared by surface treatment in advance with vinylmethoxysilane “KBM1003” (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.).
  • “Other inorganic fillers 1 and 2” were prepared by subjecting the metal hydrates shown in “Types of fillers” in Table 1 to stearic acid in advance using the “fatty acid surface treatment amount (mass%)” in Table 1. It has been prepared.
  • “Surface treated inorganic filler (FT) 26” was similarly prepared by surface treatment in advance with vinylmethoxysilane “KBM1003” and stearic acid.
  • the surface-treated inorganic filler (FT) 27 ” is an equal mixture of magnesium hydroxide surface-treated in advance with 0.3% by mass of vinyl methoxylane“ KBM1003 ”and surface-untreated magnesium hydroxide.
  • the surface-treated inorganic filler (FT) 28 ” is a mixture of 67% by mass of magnesium hydroxide surface-treated in advance with 0.3% by mass of vinyl methoxylane“ KBM1003 ”and 33% by mass of untreated calcium carbonate. is there.
  • the unsaturated group-containing silane coupling agent (S2) “KBM1003” (trade name, manufactured by Shin-Etsu Chemical Co., Ltd., vinyltrimethoxysilane) was used.
  • the organic peroxide (P) “DCP” (trade name, manufactured by Nippon Kayaku Co., Ltd., dicumyl peroxide (decomposition temperature 151 ° C.)) was used.
  • Dioctyltin laurate (“ADK STAB OT-1” (trade name), manufactured by ADEKA) was used as the silanol condensation catalyst (C).
  • the carrier resin (E) a part (5 parts by mass) of “UE320” as the resin component (R) was used.
  • antioxidant hindered phenol antioxidant
  • Irganox 1010 trade name, manufactured by Nagase Sangyo Co., Ltd., pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl)] Propionate] was used.
  • the mixed amount (parts by mass) of the organic peroxide (P) described in “Organic peroxide (P)” was put into a closed ribbon blender and mixed for 5 minutes at room temperature to obtain a mixture (step ( a1)).
  • Example 19 to 22 the inorganic filler (F), the unsaturated group-containing silane coupling agent (S2), and the organic peroxide (P) were mixed with a shell mixer at room temperature. The mixture was obtained by mixing with a mixer.
  • the treatment amount of the unsaturated group-containing silane coupling agent (S2) with respect to the surface-treated inorganic filler (F T ) is substantially 5.4% by mass in Example 19, and substantially 2.0 in Examples 20 to 22. % By mass.
  • the calculated values obtained by converting the mixing amount of the organic peroxide (P) mixed in the step (a1) into the mixing amount with respect to 100 parts by mass of the resin composition (RC) are “resin compositions (RC) in Table 2 and Table 3.
  • the amount of organic peroxide (P) mixed with (calculated value) ”column.
  • S2 unsaturated group-containing silane coupling agent
  • Example 23 performed step (a). That is, in the Banbury mixer, 95 parts by mass of the resin composition (RC), 0.15 parts by mass of the organic peroxide (P), 145.35 parts by mass of “surface treatment inorganic filler (FT) 26”, unsaturated 4.5 parts by mass of the group-containing silane coupling agent (S2) is added, kneaded at 180 ° C. to 190 ° C., then discharged at a material discharge temperature of 180 ° C. to 190 ° C., and a silane master batch (245 parts by mass) Got.
  • RC resin composition
  • P organic peroxide
  • FT surface treatment inorganic filler
  • S2 unsaturated 4.5 parts by mass of the group-containing silane coupling agent
  • carrier resin (E) “UE320”, silanol condensation catalyst (C) “dioctyltin laurylate” and antioxidant “Irganox 1010” at a mixing ratio shown in Table 2 and Table 3 at 180 ° C. to Separately melted and mixed at 190 ° C. with a Banbury mixer, and discharged at a material discharge temperature of 180 ° C. to 190 ° C. to obtain a catalyst master batch.
  • surface-treated inorganic filler (FT) 3” or “other inorganic filler 1” was added at a ratio shown in Table 2 to prepare a catalyst master batch.
  • the silane masterbatch and the catalyst masterbatch are shown in Tables 2 and 3, ie, 95 parts by mass of the resin component (R) of the silane masterbatch and 5 parts by mass of the carrier resin (E) of the catalyst masterbatch.
  • the mixture was melt-mixed at 180 ° C. by a Banbury mixer at a ratio of (the total amount of the resin composition (RC) was 100 parts by mass) (step (b)).
  • step (b) a heat-resistant silane crosslinkable resin composition was prepared.
  • Tables 2 and 3 show “number of blended parts of silane masterbatch” and “number of blended parts of catalyst masterbatch”.
  • An electric wire having an outer diameter of 2.8 mm was obtained by covering with 1 mm (step (c)). The electric wire was left in an atmosphere of temperature 80 ° C. and humidity 95% for 24 hours (step (d)).
  • cover consisting of a heat resistant silane crosslinked resin molding was manufactured.
  • the manufactured wires were evaluated as follows, and the results are shown in Tables 2 and 3.
  • ⁇ Mechanical properties> A tensile test was conducted as a mechanical property of the electric wire. This tensile test was performed based on UL1581, with a gap between marked lines of 25 mm and a tensile speed of 500 mm / min, and measured tensile strength (unit: MPa) and elongation at break (%). The elongation at break was 100 (%) or higher, and the tensile strength was 10 (MPa) or higher.
  • Heat resistance high temperature thermal deformation characteristics
  • the hot set is to create a tubular piece of electric wire, mark it with a length of 50 mm, attach a weight of 117 g in a constant temperature bath at 200 ° C, leave it for 15 minutes, measure the length after leaving it, and stretch it. The rate (%) was determined. Next, the load was removed and the length after standing was measured to obtain the elongation percentage (%).
  • the hot set at the time of holding the load was regarded as acceptable when the elongation was 100% or less, and the hot set after removal by weight removal was regarded as acceptable when the elongation was 80% or less.
  • Extrusion appearance characteristics of electric wire An extrusion appearance test was conducted as an extrusion appearance characteristic of the electric wire.
  • Extrusion appearance 1 observed the extrusion appearance when manufacturing an electric wire.
  • B ”and above were accepted as product levels.
  • Extrusion appearance 2 observed the extrusion appearance when manufacturing the electric wire. Specifically, “A” indicates that the appearance was good when produced with a 65 mm extruder at a linear speed of 80 m, “B” indicates that the appearance was slightly poor, and “C” indicates that the appearance was remarkably poor. It was. Although “B” or higher was accepted as the product level, the extrusion appearance 2 is a severe test in which the linear velocity is increased to 8 times for the purpose of improving productivity, and therefore this test does not necessarily need to pass.
  • ⁇ Abrasion resistance of wires> The wires of Examples 1 to 4, 6, 9, 11, 13, 20, and 21 and Comparative Examples 1, 2, and 7 were evaluated for wear resistance.
  • the weight at this time was 7N.
  • the number of reciprocations is 2500 times or more and the result is acceptable, but 3000 times or more is more preferable, and 5000 times or more is more preferable.
  • Examples 1 to 25 were able to satisfy both mechanical properties, reinforcement (heat deformation), heat resistance (hot set), and extrusion appearance. That is, it was found that the heat-resistant silane cross-linked resin moldings according to the present invention provided as the wire coverings of Examples 1 to 25 were excellent in all of mechanical properties, reinforcing properties, flame retardancy, and appearance. In addition, it can be easily understood that flame retardancy is superior from the content of the inorganic filler (F). On the other hand, Comparative Examples 1 to 8 were inferior in mechanical properties, reinforcing properties (heat deformation), heat resistance (hot set) and appearance, and these could not be juxtaposed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Inorganic Insulating Materials (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

樹脂組成物100質量部に対して、有機過酸化物0.01~0.6質量部と、0.05~1.0質量%の加水分解性シランカップリング剤で表面処理された表面処理無機フィラー(F)を含む無機フィラー(F)10~400質量部と、表面処理無機フィラー100質量部に対して0.5~15.0質量部の不飽和基含有シランカップリング剤とを有機過酸化物(P)の分解温度以上で溶融混合してシランマスターバッチを調製する工程(a)を含む製造方法、該製造方法で製造された耐熱性シラン架橋性樹脂組成物及び耐熱性シラン架橋樹脂成形体、並びに、耐熱性シラン架橋樹脂成形体を用いた耐熱性製品。

Description

[規則37.2に基づきISAが決定した発明の名称] 耐熱性シラン架橋性樹脂組成物を用いた成形体の製造方法
 本発明は、耐熱性シラン架橋性樹脂組成物及びその製造方法、耐熱性シラン架橋樹脂成形体及びその製造方法、並びに、耐熱性シラン架橋樹脂成形体を用いた耐熱性製品に関し、特には、機械特性、耐摩耗性、補強性、難燃性及び外観に優れた耐熱性シラン架橋樹脂成形体及びその製造方法、この耐熱性シラン架橋樹脂成形体を形成可能な耐熱性シラン架橋性樹脂組成物及びその製造方法、並びに、この耐熱性シラン架橋樹脂成形体の製造方法で得られた耐熱性シラン架橋樹脂成形体を用いた電線の絶縁体やシースなどとして用いた耐熱性製品に関するものである。
 電気、電子機器の内部及び外部配線に使用される絶縁電線、ケーブル、コード及び光ファイバ心線、光ファイバコードには、難燃性、耐熱性、機械特性(例えば、引張特性、耐摩耗性)など種々の特性が要求されている。これらの配線材に使用される材料としては、水酸化マグネシウム、水酸化アルミニウム、炭酸カルシウムなどの無機フィラーを多量に配合した樹脂組成物が挙げられる。
 また、電気、電子機器に使用される配線材は、連続使用の状態で80~105℃、さらには125℃位にまで昇温することがあり、これに対する耐熱性が要求される場合もある。このような場合、配線材に高耐熱性を付与することを目的として、被覆材料を電子線架橋法、化学架橋法などによって架橋する方法が採られている。
 従来、ポリエチレン(PE)などのポリオレフィン樹脂を架橋する方法として、電子線を照射して架橋させる電子線架橋法、成形後に熱を加えることにより有機過酸化物などを分解させて架橋反応させる化学架橋法、シラン架橋法などが知られている。これらの架橋法の中でも特にシラン架橋法は特殊な設備を要しないことが多いため、幅広い分野で使用することができる。
 シラン架橋法は、一般に、有機過酸化物の存在下で不飽和基を有すシランカップリング剤をポリマーにグラフト反応させてシラングラフトポリマーを得た後に、シラノール縮合触媒の存在下で水分と接触させることにより架橋成形体を得る方法である。
 具体的には、例えば、ハロゲンフリーの耐熱性シラン架橋樹脂の製造方法は、ポリオレフィン樹脂に不飽和基を有するシランカップリング剤をグラフトさせたシランマスターバッチと、ポリオレフィン及び無機フィラーを混練した耐熱性マスターバッチと、シラノール縮合触媒を含有した触媒マスターバッチとを溶融混合させる方法がある。
 このような方法において、高難燃化、高耐熱化し、また優れた強度や耐摩耗性、補強性を得るには、無機フィラーを多量に用いるのが効果的である。しかし、ポリオレフィン100質量部に対して100質量部を超える割合の無機フィラーを用いると、単軸押出機又は二軸押出機では均一に溶融混練しにくくなることがある。
 したがって、多量の無機フィラーを用いる場合には、連続混練機、加圧式ニーダー、バンバリーミキサーなどの密閉型ミキサーを用いるのが一般的になっている。
 ところが、ニーダー又はバンバリーミキサーでシラングラフトを行う場合には、不飽和基を有するシランカップリング剤は一般に揮発性が高く、ポリオレフィンとグラフト反応する前に揮発してしまうことが多い。シランカップリング剤の揮発を抑えることができないと、外観不良が生じ、耐熱性にも劣る傾向がある。
 そこで、バンバリーミキサー又はニーダーを用いてもシランカップリング剤の揮発を抑えてポリオレフィンとグラフト反応させる方法が提案されている。例えば、ポリオレフィン及び無機フィラーとしての難燃剤を溶融混合した耐熱性マスターバッチに、不飽和基を有するシランカップリング剤と有機過酸化物を加え、単軸押出機にてグラフト重合させる方法が考えられる。また、特許文献1には、ポリオレフィン系樹脂にシランカップリング剤で表面処理した無機フィラー、シランカップリング剤、有機過酸化物、架橋触媒をニーダーにて十分に溶融混練した後に、単軸押出機にて成形する方法が提案されている。
特開2001-101928号公報
 しかし、耐熱性マスターバッチに不飽和基を有するシランカップリング剤と有機過酸化物を加えて単軸押出機にてグラフト重合させる方法では、無機フィラーとしての難燃剤の配合量を多くできるものの、成形体の外観不良を改善する余地があった。また、特許文献1の方法では、シランカップリング剤の揮発を十分に抑えられないことがあった。
 本発明は、上記の問題点を解決し、混合時又は反応時のシランカップリング剤の揮発を抑え、機械特性、耐摩耗性、補強性、難燃性及び外観に優れた耐熱性シラン架橋樹脂成形体及びその製造方法を提供することを課題とする。
 また、本発明は、この耐熱性シラン架橋樹脂成形体を形成可能な耐熱性シラン架橋性樹脂組成物及びその製造方法を提供することを課題とする。
 さらに、本発明は、耐熱性シラン架橋樹脂成形体の製造方法で得られた耐熱性シラン架橋樹脂成形体を用いた耐熱性製品を提供することを課題とする。
 従来のシラン架橋法において、予めシランカップリング剤で表面処理された無機フィラーを用いずに、無機フィラーとは別にシランカップリング剤を溶融混合する理由は、バンバリーミキサーなどでシランカップリング剤を加えて溶融混練すると、シランカップリング剤が揮発してしまい十分な架橋体が得られないことがある。また、シランカップリング剤同士が重合してゲル化し、外観不良が生じることがある。加えて、2軸成型機等の密閉型の成型機で無機フィラーが存在する状態でシランカップリング剤を加えて成形すると、そもそも十分なフィラー量を混練りできない。また、樹脂成分のグラフト部で生じる発熱反応によってシランカップリング剤が副反応を起こし、又は、シランカップリング剤同士が重合して外観不良が生じることがある。
 このような問題を有する従来のシラン架橋法に対して、本発明者等は、揮発しやすいシランカップリング剤の添加方法において、シランカップリング剤を分割して無機フィラーに添加すると、無機フィラーとシランカップリング剤の強い結合を抑えてシランカップリング剤を無機フィラーに弱く結合させることができ、加えて無機フィラーからのシランカップリング剤の揮発をも効果的に抑えて、所期の目的を達成できることを見出した。この知見に基づき本発明者等はさらに研究を重ね、本発明をなすに至った。
 すなわち、本発明の課題は以下の手段によって達成された。
(1)樹脂成分(R)を含有する樹脂組成物(RC)100質量部に対して、有機過酸化物(P)0.01~0.6質量部と、表面未処理無機フィラー(F)の0.05~1.0質量%の加水分解性シランカップリング剤(S1)で前記表面未処理無機フィラー(F)を表面処理して得られる表面処理無機フィラー(F)を含む無機フィラー(F)10~400質量部と、前記表面処理無機フィラー(F)100質量部に対して不飽和基含有シランカップリング剤(S2)0.5~15.0質量部とを前記有機過酸化物(P)の分解温度以上で溶融混合して、シランマスターバッチを調製する工程(a)と、前記シランマスターバッチとシラノール縮合触媒(C)とを混合して混合物を得る工程(b)と、前記混合物を成形して成形体を得る工程(c)と、前記成形体を水と接触させて耐熱性シラン架橋樹脂成形体を得る工程(d)とを有する耐熱性シラン架橋樹脂成形体の製造方法。
(2)前記表面処理無機フィラー(F)が、表面未処理無機フィラー(F)に対して0.1~0.8質量%の加水分解性シランカップリング剤(S1)で表面処理されている(1)に記載の耐熱性シラン架橋樹脂成形体の製造方法。
(3)前記無機フィラー(F)が、表面処理されていない表面未処理無機フィラー(F)を含んでいる(1)又は(2)に記載の耐熱性シラン架橋樹脂成形体の製造方法。
(4)前記無機フィラー(F)が、その全質量に対して30~100質量%の前記表面処理無機フィラー(F)を含有している(1)~(3)のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
(5)前記表面処理無機フィラー(F)の前記表面未処理無機フィラー(F)が、金属水和物の少なくとも1種を含んでいる(1)~(4)のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
(6)前記金属水和物が、水酸化マグネシウムを含んでいる(5)に記載の耐熱性シラン架橋樹脂成形体の製造方法。
(7)前記金属水和物が、炭酸カルシウムを含んでいる(5)に記載の耐熱性シラン架橋樹脂成形体の製造方法。
(8)前記樹脂成分(R)が、前記樹脂組成物(RC)中に20~100質量%含有している(1)~(7)のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
(9)前記工程(a)が、前記無機フィラー(F)と前記不飽和基含有シランカップリング剤(S)と混合し、次いで、有機過酸化物(P)の分解温度以下の温度で有機過酸化物(P)を混合して混合物を調製する工程(a1)と、得られた混合物と前記樹脂組成物(RC)とを前記有機過酸化物(P)の分解温度以上で溶融混合して、シランマスターバッチを調製する工程(a2)とを有している(1)~(8)のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
(10)前記工程(b)が、前記シランマスターバッチと、前記シラノール縮合触媒(C)及びキャリア樹脂(E)を含有する触媒マスターバッチとを混合する工程である(1)~(9)のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
(11)前記工程(a)が、密閉型のミキサーで溶融混合する(1)~(10)のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
(12)前記工程(a)と前記工程(b)とを有し、少なくとも前記工程(c)を有しない耐熱性シラン架橋性樹脂組成物の製造方法。
(13)(12)に記載の耐熱性シラン架橋性樹脂組成物の製造方法により製造された耐熱性シラン架橋性樹脂組成物。
(14)(1)~(11)のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法により製造された耐熱性シラン架橋樹脂成形体。
(15)(14)に記載の耐熱性シラン架橋樹脂成形体を含む耐熱性製品。
(16)前記耐熱性シラン架橋樹脂成形体は、電線又は光ファイバケーブルの被覆として設けられている(15)に記載の耐熱性製品。
 本発明の上記及び他の特徴及び利点は、下記の記載からより明らかになるであろう。
 所定量の加水分解性シランカップリング剤(S1)で予め表面処理した表面処理無機フィラー(F)に、所定量の後添加にて不飽和基含有シランカップリング剤(S2)を混合すると、樹脂成分(R)に対してシラングラフトするまでの間、後添加の不飽和基含有シランカップリング剤(S2)と表面処理無機フィラー(F)との強い結合を抑えてシランカップリング剤を無機フィラーに弱く結合させてシランカップリング剤同士の副反応も抑えることができ、加えて、不飽和基含有シランカップリング剤(S2)の揮発を効果的に抑えられる。これらによって、無機フィラー(F)との混合時における樹脂成分(R)へのシランカップリング剤(S1)及び/又は(S2)のグラフト反応が効果的に行われ、耐熱性に加えて機械特性、耐摩耗性、加熱しても変形しにくい補強性、難燃性及び外観のいずれにも優れた耐熱性シラン架橋樹脂成形体が得られる。
 このように、耐熱性シラン架橋性樹脂組成物の調製時、特に混練り時の不飽和基含有シランカップリング剤(S2)の揮発を抑えることができる。また、混練り時などにおける有機過酸化物(P)の分解により、加水分解性シランカップリング剤(S1)及び不飽和基含有シランカップリング剤(S2)が樹脂成分(R)にグラフト反応すると共に、加水分解性シランカップリング剤(S1)及び/又は不飽和基含有シランカップリング剤(S2)の一部が無機フィラー(F)を介してネットワーク化する。この無機フィラー(F)を介したネットワークは高い熱に対して弱いものの、高い強度、耐摩耗性、および、変形しにくい等の補強性を具現化する。さらに、耐熱性シラン架橋性樹脂組成物を放置または加湿処理を行うことにより、樹脂成分(R)にグラフトされた不飽和基含有シランカップリング剤(S2)が加水分解して、樹脂成分(R)同士のネットワークを形成する。
 したがって、本発明によれば、機械特性、耐摩耗性、補強性、難燃性及び外観に優れた耐熱性シラン架橋樹脂成形体及びその製造方法、並びに、この耐熱性シラン架橋樹脂成形体を形成可能な耐熱性シラン架橋性樹脂組成物及びその製造方法を提供できる。また、本発明によれば、本発明の耐熱性シラン架橋樹脂成形体の製造方法で得られた耐熱性シラン架橋樹脂成形体を用いた耐熱性製品を提供できる。
 以下に、本発明及び本発明における好ましい実施の形態を詳細に説明する。
 本発明の「耐熱性シラン架橋樹脂成形体の製造方法」は、樹脂成分(R)を含有する樹脂組成物(RC)100質量部に対して、有機過酸化物(P)0.01~0.6質量部と、表面未処理無機フィラー(F)の0.05~1.0質量%の加水分解性シランカップリング剤(S1)で前記表面未処理無機フィラー(F)を表面処理して得られる表面処理無機フィラー(F)を含む無機フィラー(F)10~400質量部と、前記表面処理無機フィラー(F)100質量部に対して不飽和基含有シランカップリング剤(S2)0.5~15.0質量部とを前記有機過酸化物(P)の分解温度以上で溶融混合して、シランマスターバッチを調製する工程(a)と、前記シランマスターバッチとシラノール縮合触媒(C)とを混合して混合物を得る工程(b)と、前記混合物を成形して成形体を得る工程(c)と、前記成形体を水と接触させて耐熱性シラン架橋樹脂成形体を得る工程(d)とを有している。
 本発明の「耐熱性シラン架橋性樹脂組成物の製造方法」は、前記工程(a)と(b)とを有し、少なくとも工程(c)、所望により工程(d)を有していない。
 このように、本発明の「耐熱性シラン架橋樹脂成形体の製造方法」と本発明の「耐熱性シラン架橋性樹脂組成物の製造方法」は、工程(c)の有無以外は基本的に同様である。したがって、本発明の「耐熱性シラン架橋樹脂成形体の製造方法」及び本発明の「耐熱性シラン架橋性樹脂組成物の製造方法」(両者の共通部分の説明においては、これらを併せて、本発明の製造方法ということがある。)を、併せて、以下に説明する。
 まず、本発明において用いる各成分について説明する。
<樹脂組成物(RC)>
 本発明に使用される樹脂組成物(RC)は、樹脂成分(R)と、所望により可塑剤又は軟化剤として使用される各種オイルとを含有している。樹脂組成物(RC)における樹脂成分(R)の含有量は、耐熱性能、架橋性能および強度の点で、樹脂組成物(RC)の全質量に対して、20質量%以上であるのが好ましく、45%質量以上であるのがさらに好ましく、60質量%以上であるのが特に好ましい。樹脂成分(R)の含有量は、最大で100質量%であるが、たとえば、80質量%以下にすることもできる。
 樹脂組成物(RC)は、柔軟性を保持し、外観を良好に保つためにはオイルの導入が好ましい。その際に樹脂組成物(RC)におけるオイルは、樹脂組成物(RC)の全質量に対して、80質量%以下に設定されることが好ましく、55質量%以下であるのがより好ましく、40質量%以下であるのが特に好ましい。
 なお、樹脂組成物(RC)は樹脂成分(R)及びオイルに加えて他の成分、例えば、後述する各種添加剤、溶媒などを含有していてもよい。
 (樹脂成分(R))
 樹脂成分(R)としては、ポリオレフィン系樹脂(PO)、ポリエステル樹脂、ポリアミド系樹脂(PA)、ポリスチレン系樹脂(PS)、ポリオール系樹脂などが挙げられるが、その中でもポリオレフィン樹脂が好ましい。この樹脂成分(R)は、1種単独で使用してもよく、2種以上を併用してもよい。
 ポリオレフィン系樹脂としては、特に限定されるものではなく、従来、耐熱性シラン架橋性樹脂組成物に使用されている公知のものを使用することができる。例えば、ポリエチレン、ポリプロピレン、エチレン-α-オレフィン共重合体、ポリプロピレンとエチレン-α-オレフィン樹脂とのブロック共重合体、酸共重合成分又は酸エステル共重合成分(これらを併せて酸共重合成分ということがある)を有するポリオレフィン共重合体からなる樹脂、及びそれらのゴム、エラストマー、スチレン系エラストマー、ポリアミドエラストマー、ポリエステルエラストマー、エチレン-プロピレン系ゴム(例えば、エチレン-プロピレン-ジエンゴム)などが挙げられる。これらの中でも、金属水和物などをはじめとする各種無機フィラー(F)に対する受容性が高く、無機フィラー(F)を多量に配合しても機械的強度を維持する効果があり、また耐熱性を確保しつつ耐電圧、特に、高温での耐電圧特性の低下を抑制する点から、ポリエチレン、エチレン-α-オレフィン共重合体、酸共重合成分を有するポリオレフィン共重合体の樹脂、スチレン系エラストマー、エチレン-プロピレン系ゴムなどが好適である。これらのポリオレフィン系樹脂は、1種を単独で用いても2種以上を併用してもよい。
 ポリエチレンとしては、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、超高分子量ポリエチレン(UHMW-PE)、直鎖型低密度ポリエチレン(LLDPE)、超低密度ポリエチレン(VLDPE)が挙げられる。このなかでも、直鎖型低密度ポリエチレン、低密度ポリエチレンが好ましい。ポリエチレンは1種単独で使用してもよく、また2種以上を併用してもよい。
 エチレン-α-オレフィン共重合体におけるα-オレフィン成分としては、炭素数3~12のものが好適に挙げられる。α-オレフィン成分の具体例としては、プロピレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセンなどの各成分が挙げられる。エチレン-α-オレフィン共重合体としては、好ましくは、エチレンと炭素数3~12のα-オレフィン成分との共重合体であり、具体的には、エチレン-プロピレン共重合体(EPR)、エチレン-ブチレン共重合体(EBR)、及びシングルサイト触媒存在下に合成されたエチレン-α-オレフィン共重合体などが挙げられる。エチレン-α-オレフィン共重合体は1種単独で使用してもよく、また2種以上を併用してもよい。
 ポリプロピレンとエチレン-α-オレフィン樹脂とのブロック共重合体は、ポリプロピレンブロックと、上述のエチレン-α-オレフィン共重合体ブロックとを有してなる共重合体が挙げられる。
 酸共重合成分を有するポリオレフィン共重合体における酸共重合成分又は酸エステル共重合成分としては、酢酸ビニル、(メタ)アクリル酸、(メタ)アクリル酸アルキルなどが挙げられる。ここで、(メタ)アクリル酸アルキルのアルキル基は、炭素数1~12のものが好ましく、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基が挙げられる。
 酸共重合成分を有するポリオレフィン共重合体としては、例えば、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸アルキル共重合体などが挙げられる。この中でもエチレン-酢酸ビニル共重合体、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸ブチル共重合体が好ましく、さらには無機フィラー(F)への受容性及び耐熱性の点から、エチレン-酢酸ビニル共重合体が好ましい。酸共重合成分を有するポリオレフィン共重合体は1種単独で使用され、又は2種以上が併用される。
 スチレン系エラストマーとしては、共役ジエン化合物と芳香族ビニル化合物とのブロック共重合体及びランダム共重合体、又は、それらの水素添加物などからなるものが挙げられる。
 芳香族ビニル化合物としては、例えば、スチレン、p-(tert-ブチル)スチレン、α-メチルスチレン、p-メチルスチレン、ジビニルベンゼン、1,1-ジフェニルスチレン、N,N-ジエチル-p-アミノエチルスチレン、ビニルトルエン、p-(tert-ブチル)スチレンなどが挙げられる。芳香族ビニル化合物は、これらの中でも、スチレンが好ましい。この芳香族ビニル化合物は、1種単独で使用され、又は2種以上が併用される。
 共役ジエン化合物としては、例えば、ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエンなどが挙げられる。共役ジエン化合物は、これらの中でも、ブタジエンが好ましい。この共役ジエン化合物は、1種単独で使用され、又は2種以上が併用される。
 また、スチレン系エラストマーとして、同様な製法で、スチレン成分が含有されてなく、スチレン以外の芳香族ビニル化合物を含有するエラストマーを使用してもよい。
 スチレン系エラストマーとして、具体的には、例えば、セプトン4077、セプトン4055、セプトン8105(いずれも商品名、クラレ社製)、ダイナロン1320P、ダイナロン4600P、6200P、8601P、9901P(いずれも商品名、JSR社製)などが挙げられる。
 (各種オイル)
 樹脂組成物(RC)に所望により含有されるオイルは、樹脂成分(R)の可塑剤又はゴムの鉱物油軟化剤としてのオイルが挙げられる。このオイルは、不飽和基含有シランカップリング剤(S)とは反応しないので、樹脂成分(R)には包含されないが、樹脂組成物(RC)に含有していてもよい。鉱物油軟化剤は、芳香族環、ナフテン環及びパラフィン鎖の三者が組み合わさった炭化水素からなる混合物のオイルである。パラフィン鎖炭素数が全炭素数の50%以上を占めるものをパラフィンオイル、ナフテン環炭素数が30~40%のものはナフテンオイル、芳香族炭素数が30%以上のものはアロマオイル(芳香族オイルともいう)と呼ばれて区別されている。
 これらの中でも、液状又は低分子量の合成軟化剤、パラフィンオイル、ナフテンオイルが好適に用いられ、特にパラフィンオイルが好適に用いられる。このようなオイルとして、例えば、ダイアナプロセスオイルPW90、PW380(いずれも商品名、昭和シェル石油社製)、コスモニュートラル500(コスモ石油社製)などが挙げられる。
<有機過酸化物(P)>
 有機過酸化物(P)としては、一般式:R-OO-R、R-OO-C(=O)R、RC(=O)-OO(C=O)Rで表される化合物が好ましい。ここで、R、R、R及びRは各々独立にアルキル基、アリール基、アシル基を表す。このうち、本発明においては、R、R、R及びRがいずれもアルキル基であるか、いずれかがアルキル基で残りがアシル基であるものが好ましい。
 このような有機過酸化物としては、例えば、ジクミルパーオキサイド(DCP)、ジ-tert-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ-(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(tert-ブチルペルオキシ)ヘキシン-3、1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン、1,1-ビス(tert-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、n-ブチル-4,4-ビス(tert-ブチルパーオキシ)バレレート、ベンゾイルパーオキサイド、p-クロロベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシイソプロピルカーボネート、ジアセチルパーオキサイド、ラウロイルパーオキサイド、tert-ブチルクミルパーオキサイドなどを挙げることができる。これらのうち、臭気性、着色性、スコーチ安定性の点で、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ-(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキシン-3が好ましい。
 有機過酸化物(P)の分解温度は、80~195℃であるのが好ましく、125~180℃であるのが特に好ましい。
 本発明において、有機過酸化物(P)の分解温度とは、単一組成の有機過酸化物(P)を加熱したとき、ある一定の温度又は温度域でそれ自身が2種類以上の化合物に分解反応を起こす温度を意味し、DSC法などの熱分析により、窒素ガス雰囲気下で5℃/分の昇温速度で、室温から加熱したとき、吸熱又は発熱を開始する温度をいう。
<無機フィラー(F)>
 工程(a)で用いる無機フィラー(F)は、表面処理無機フィラー(F)を含むものであるが、表面処理無機フィラー(F)以外の無機フィラーを含むこともできる。例えば、本発明では、表面処理剤で表面処理されていない表面未処理無機フィラー(F)、脂肪酸またはリン酸エステルなどで表面処理された無機フィラーなどを用いることができる。
 無機フィラー(F)中に含有される表面処理無機フィラー(F)は、無機フィラー(F)の全質量に対して少なくとも30質量%以上、さらに好ましくは50質量%、さらに好ましくは70質量%以上が好ましい。表面処理無機フィラー(F)の含有量が30質量%以下であると、耐熱性シラン架橋樹脂成形体の機械強度、耐摩耗性又は補強性の少なくとも1つが低下することがある。無機フィラー(F)中の残部は、他の無機フィラー、例えば、表面未処理無機フィラー(F)、脂肪酸などで表面処理された無機フィラーなどが挙げられる。
 無機フィラー(F)、例えば、表面未処理無機フィラー(F)、表面処理無機フィラー(F)が粉体の場合には、その平均粒径は0.2~10μmであることが好ましく、0.3~8μmであることがより好ましく、0.35~5μm、0.35~3μmであることがさらに好ましい。無機フィラー(F)の平均粒径が0.2μm未満では、加水分解性シランカップリング剤(S1)又は不飽和基含有シランカップリング剤(S2)の混合時に無機フィラー(F)が2次凝集を引き起こして、耐熱性シラン架橋樹脂成形体の外観低下、ブツを生じるおそれがある。一方、10μmを超えると、外観が低下し、加水分解性シランカップリング剤(S1)又は不飽和基含有シランカップリング剤(S2)の保持効果が低下して架橋に問題が生じるおそれがある。なお、平均粒径は、無機フィラー(F)をアルコール又は水に分散させて、レーザ回折/散乱式粒子径分布測定装置などの光学式粒径測定器によって求められる。
 (表面未処理無機フィラー(F))
 表面未処理無機フィラー(F)は、表面処理無機フィラー(F)のベースとなる、表面処理されていない無機フィラーである。このような表面未処理無機フィラー(F)としては、特に制限が無く、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ほう酸アルミニウム、水和珪酸アルミニウム、アルミナ、水和珪酸マグネシウム、塩基性炭酸マグネシウム、ハイドロタルサイトなどの、水酸基又は結晶水を有する化合物のような金属水和物が挙げられる。他にも、表面未処理無機フィラー(F)として、例えば、窒化ほう素、シリカ(結晶質シリカ、非晶質シリカなど)、カーボン、クレー、酸化亜鉛、酸化錫、酸化チタン、酸化モリブデン、三酸化アンチモン、シリコーン化合物、石英、タルク、ほう酸亜鉛、ホワイトカーボン、硼酸亜鉛、ヒドロキシスズ酸亜鉛、スズ酸亜鉛などが挙げられる。これらの中でも、金属水和物が好ましく、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウムなどが特に好ましい。
 (表面処理無機フィラー(F))
 表面処理無機フィラー(F)は、表面未処理無機フィラー(F)を加水分解性シランカップリング剤(S1)で表面処理したものである。表面未処理無機フィラー(F)を予め加水分解性シランカップリング剤(S1)で表面処理しておくと、不飽和基含有シランカップリング剤(S2)と表面処理無機フィラー(F)とが強く結合するのを抑えて、ある程度の弱い結合で表面処理無機フィラー(F)と結合する不飽和基含有シランカップリング剤(S2)を作り出すことができる。この弱い結合で表面処理無機フィラー(F)と結合している不飽和基含有シランカップリング剤(S2)によりある程度の架橋度を有する耐熱性シラン架橋樹脂成形体を得ることができ、これにより高い耐熱性が発揮される。したがって、表面未処理無機フィラー(F)を予め表面処理する加水分解性シランカップリング剤(S1)の表面処理量は制限される。具体的には、表面未処理無機フィラー(F)は、後述するように、その100質量部に対して0.05~1.0質量%の加水分解性シランカップリング剤(S1)で表面処理されている。
 この発明において、表面処理無機フィラー(F)と強く結合するシランカップリング剤は表面処理無機フィラー(F)の表面と化学結合(シランカップリング剤の加水分解)によって結合されたシランカップリング剤をいい、表面処理無機フィラー(F)と弱く結合するシランカップリング剤は表面処理無機フィラー(F)の表面に物理的吸着又は混合状態にあるシランカップリング剤をいう。
 表面未処理無機フィラー(F)を表面処理する加水分解性シランカップリング剤(S1)は、特には限定されないが、末端にアミノ基、ビニル基、(メタ)アクリロイルオキシ基、グリシジル基を有しているものが好ましく、さらに好ましくは末端にビニル基、(メタ)アクリロイルオキシ基を有しているものが好ましい。
 末端にアミノ基を有する加水分解性シランカップリング剤(S1)としては、アミノアルキル基を有するものが挙げられ、具体的には、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシランなどが挙げられる。末端にビニル基又は(メタ)アクリロイルオキシ基を有するものは、例えば、後述する不飽和基含有シランカップリング剤(S2)が挙げられる。
 末端にグリシジル基を有するものは、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどが挙げられる。
 加水分解性シランカップリング剤(S1)は、1種単独で使用され、又は2種以上が併用され、末端基が異なるものを併用することもできる。
 また、加水分解性シランカップリング剤(S1)は、その他の表面処理剤と併用されてもよい。その他の表面処理剤としては、特には限定されず、例えば、ステアリン酸、オレイン酸、ラウリル酸などの脂肪酸、リン酸エステル、ポリエステル、チタネート系カップリング剤などが挙げられる。これらの表面処理剤は、表面未処理無機フィラー(F)に対して、加水分解性シランカップリング剤(S1)との合計量が1.0質量%以下となる割合で用いられる。この使用量が多すぎると架橋密度が低下し、耐熱性シラン架橋樹脂成形体の耐熱性及び加熱変形性が低下することがある。
 加水分解性シランカップリング剤(S1)で表面処理された表面処理無機フィラー(F)は、適宜調製してもよいし、市販品を使用することもできる。例えば、加水分解性シランカップリング剤(S1)で表面処理された水酸化マグネシウムとして、キスマ5L、キスマ5P(いずれも商品名、協和化学工業社製)、マグシーズS6、マグシーズHV-6F(いずれも商品名、神島化学工業社製)などが挙げられる。また、加水分解性シランカップリング剤(S1)で表面処理された水酸化アルミニウムとして、ハイジライトH42-ST-V、ハイジライトH42-ST-E(いずれも商品名、昭和電工社製)などが挙げられる。
 表面処理無機フィラー(F)は、1種単独で使用され、又は2種以上が併用されることができる。
<不飽和基含有シランカップリング剤(S2)>
 不飽和基含有シランカップリング剤(S2)としては、特に限定されるものではなく、シラン架橋法に用いられる不飽和基を有する不飽和基含有シランカップリング剤(S2)を使用することができる。このような不飽和基含有シランカップリング剤(S2)としては、例えば、下記一般式(1)で表される不飽和基含有シランカップリング剤(S2)を好適に用いることができる。
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、Ra11はエチレン性不飽和基を含有する基、Rb11は脂肪族炭化水素基若しくは水素原子又はY13である。Y11、Y12及びY13は各々独立に加水分解する有機基である。Y11、Y12及びY13は互いに同じでも異なっていてもよい。
 エチレン性不飽和基を含有する基Ra11は、例えば、ビニル基、末端に不飽和結合を有するアルケニル基、(メタ)アクリロイルオキシアルキレン基、p-スチリル基などを挙げることができ、より好ましくはビニル基である。
 Rb11は脂肪族炭化水素基若しくは水素原子又は後述のY13であり、脂肪族炭化水素基としては脂肪族不飽和炭化水素基を除く炭素数1~8の1価の脂肪族炭化水素基が挙げられる。炭素数1~8の1価の脂肪族炭化水素基としては、例えば、(メタ)アクリル酸アルキルのアルキル基のうち炭素数が1~8のものと同様のものが挙げられる。Rb11は好ましくはY13である。
 Y11、Y12及びY13は、各々独立に、加水分解する有機基であり、例えば、炭素数1~6のアルコキシ基、炭素数6~10のアリールオキシ基、炭素数1~4のアシルオキシ基が挙げられる。これらの中でも炭素数1~6のアルコキシ基が好ましい。炭素数1~6のアルコキシ基としては、具体的には、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ヘキシルオキシ基などが挙げられ、加水分解の反応性の点で、メトキシ基又はエトキシ基が好ましい。
 一般式(1)で示される不飽和基含有シランカップリング剤(S2)としては、好ましくは、エチレン性不飽和基を有し、加水分解速度の速い不飽和基含有シランカップリング剤であり、より好ましくは一般式(1)においてRb11がY13であり、かつY11、Y12及びY13が互いに同じ有機基である不飽和基含有シランカップリング剤である。好ましい不飽和基含有シランカップリング剤(S2)としては、具体的には、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリブトキシシラン、ビニルジメトキシエトキシシラン、ビニルジメトキシブトキシシラン、ビニルジエトキシブトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、ビニルトリアセトキシシランなどの末端にビニル基を有する不飽和基含有シランカップリング剤、(メタ)アクリロキシプロピルトリメトキシシラン、(メタ)アクリロキシプロピルトリエトキシシラン、(メタ)アクリロキシプロピルメチルジメトキシシランなどの末端に(メタ)アクリロイルオキシ基を有する不飽和基含有シランカップリング剤などを挙げることができる。これらの不飽和基含有シランカップリング剤(S2)は1種単独で使用してもよく、また2種以上を併用してもよい。これらの中でも、末端にビニル基とアルコキシ基を有する不飽和基含有シランカップリング剤がさらに好ましく、ビニルトリメトキシシラン、ビニルトリエトキシシランが特に好ましい。
 不飽和基含有シランカップリング剤(S2)は、単独で用いられてもよく、溶剤で希釈された液で用いられてもよい。
<シラノール縮合触媒(C)>
 シラノール縮合触媒(C)は、樹脂成分(R)にグラフト化された不飽和基含有シランカップリング剤(S2)を縮合反応により水分の存在下で結合させる働きがある。このシラノール縮合触媒(C)の働きに基づき、不飽和基含有シランカップリング剤(S2)を介して、樹脂成分(R)同士が架橋される。その結果、耐熱性に優れた耐熱性シラン架橋樹脂成形体が得られる。
 シラノール縮合触媒(C)としては、有機スズ化合物、金属石けん、白金化合物などが用いられる。一般的なシラノール縮合触媒(C)としては、例えば、ジブチルスズジラウリレート、ジオクチルスズジラウリレート、ジブチルスズジオクチエート、ジブチルスズジアセテート、ステアリン酸亜鉛、ステアリン酸鉛、ステアリン酸バリウム、ステアリン酸カルシウム、ステアリン酸ナトリウム、ナフテン酸鉛、硫酸鉛、硫酸亜鉛、有機白金化合物などが用いられる。これらの中でも、特に好ましくはジブチルスズジラウリレート、ジオクチルスズジラウリレート、ジブチルスズジオクチエート、ジブチルスズジアセテートなどの有機スズ化合物である。
<キャリア樹脂(E)>
 触媒マスターバッチに所望により添加されるキャリア樹脂(E)としては、特に限定されないが、樹脂組成物(RC)に含有される樹脂成分(R)の一部を用いることもでき、この樹脂成分(R)とは別の樹脂を用いることもできる。樹脂成分(R)と別に用いるキャリア樹脂(E)としては、樹脂組成物(RC)の樹脂成分(R)と同様の樹脂が挙げられる。キャリア樹脂(E)は樹脂成分(R)の一部を用いるのが好ましい。キャリア樹脂(E)は、シラノール縮合触媒(C)と親和性がよく耐熱性にも優れる点で、ポリオレフィン系樹脂であるのが好ましく、ポリエチレンであるのが特に好ましい。このキャリア樹脂(E)は、表面未処理無機フィラーやその他表面処理されたフィラーと共に用いてもよい。
 キャリア樹脂(E)と共に用いられる、すなわち不飽和基含有シランカップリング剤(S2)の後に添加される無機フィラーは、樹脂組成物(RC)の樹脂成分(R)100質量部に対して350質量部以下が好ましい。無機フィラーの添加量が多すぎるとシラノール縮合触媒(C)が分散しにくく、架橋反応が進行しにくくなることがある。
<添加剤>
 耐熱性シラン架橋樹脂成形体及び耐熱性シラン架橋性樹脂組成物は、電線、電気ケーブル、電気コード、シート、発泡体、チューブ、パイプにおいて、一般的に使用されている各種の添加剤、例えば、架橋助剤、酸化防止剤、滑剤、金属不活性剤、充填剤、他の樹脂などが本発明の目的を損なわない範囲で適宜配合されていてもよい。これらの添加剤は、いずれの成分に含有されてもよいが、触媒マスターバッチに含有されるのがよい。特に酸化防止剤、金属不活性剤は、無機フィラー(F)に混合された不飽和基含有シランカップリング剤(S2)が樹脂成分(R)へのグラフトを阻害しないように、触媒マスターバッチにキャリア樹脂(E)と共に混合されるのが好ましい。このとき、架橋助剤は実質的に含有していないことが好ましい。特に架橋助剤はシランマスターバッチを調製する工程(a)において実質的に混合されないのが好ましい。架橋助剤を加えると、混練り中に有機過酸化物(P)により架橋助剤が反応し、樹脂成分(R)同士の架橋が生じ、ゲル化が生じて耐熱性シラン架橋樹脂成形体の外観が著しく低下することがある。また、不飽和基含有シランカップリング剤(S2)の樹脂成分(R)へのグラフト反応が進行しにくく、最終的な耐熱性シラン架橋樹脂成形体の耐熱性が得られなくなるおそれがある。ここで、実質的に含有しない又は混合されないとは、架橋助剤を積極的に添加又は混合しないことを意味し、不可避的に含有又は混合されることを除外するものではない。
 架橋助剤は、有機過酸化物の存在下において樹脂成分(R)との間に部分架橋構造を形成するものをいい、例えばポリプロピレングリコールジアクリレート、トリメチロールプロパントリアクリレートなどのメタクリレート系化合物、トリアリルシアヌレートなどのアリル系化合物、マレイミド系化合物、ジビニル系化合物などの多官能性化合物を挙げることができる。
 酸化防止剤としては、4,4’-ジオクチルジフェニルアミン、N,N’-ジフェニル-p-フェニレンジアミン、2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物などのアミン系酸化防止剤、ペンタエリスリチル-テトラキス(3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート)、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼンなどのフェノール系酸化防止剤、ビス(2-メチル-4-(3-n-アルキルチオプロピオニルオキシ)-5-tert-ブチルフェニル)スルフィド、2-メルカプトベンヅイミダゾール及びその亜鉛塩、ペンタエリスリトール-テトラキス(3-ラウリル-チオプロピオネート)などのイオウ系酸化防止剤などが挙げられる。酸化防止剤は、樹脂成分(R)100質量部に対して、好ましくは0.1~15.0質量部、さらに好ましくは0.1~10質量部で加えることができる。
 滑剤としては、炭化水素系、シロキサン系、脂肪酸系、脂肪酸アミド系、エステル系、アルコール系、金属石けん系などが挙げられる。これらの滑剤はキャリア樹脂(E)に加えた方がよい。
 金属不活性剤としては、N,N’-ビス(3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル)ヒドラジン、3-(N-サリチロイル)アミノ-1,2,4-トリアゾール、2,2’-オキサミドビス-(エチル3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート)などが挙げられる。
 充填剤(難燃(助)剤を含む。)としては、無機フィラー(F)、表面未処理無機フィラー(F)、表面処理無機フィラー(F)及びその他の無機フィラー以外の充填剤が挙げられる。これらの充填剤は、無機フィラー(F)と共に不飽和基含有シランカップリング剤(S2)を混合させる際に混合されてもよく、触媒マスターバッチに混合されてもよい。
 次に、本発明の製造方法について説明する。
 本発明の「耐熱性シラン架橋樹脂成形体の製造方法」は、上記の通り、工程(a)と工程(b)と工程(c)と工程(d)とを有している。一方、本発明の「耐熱性シラン架橋性樹脂組成物の製造方法」は、工程(a)と(b)とを有し、少なくとも工程(c)、所望により工程(d)を有していない。
 本発明の製造方法において、樹脂組成物(RC)100質量部に対して、有機過酸化物(P)0.01~0.6質量部と、表面処理無機フィラー(F)を含む無機フィラー(F)10~400質量部と、不飽和基含有シランカップリング剤(S2)0.5~15.0質量部とを、有機過酸化物(P)の分解温度以上で溶融混合して、シランマスターバッチを調製する(工程a)。
 本発明の製造方法において、「樹脂組成物(RC)100質量部に対して」とは、工程(a)において、「樹脂組成物(RC)100質量部と他の成分が混合される態様」と、「樹脂組成物(RC)100質量部のうちの一部、たとえば樹脂成分(R)が工程(a)以後の工程、たとえば工程(b)で混合される態様」とを含む意味である。したがって、本発明の製造方法においては、「耐熱性シラン架橋性樹脂組成物」に100質量部の樹脂組成物(RC)が含有されていればよく、樹脂組成物(RC)の混合態様は特に限定されない。具体的には、樹脂組成物(RC)に含まれる樹脂成分(R)はその全量が工程(a)で他の成分と混合されてもよく、またその一部が後述する触媒マスターバッチのキャリア樹脂(E)の一部または全部として工程(b)で混合されてもよい。
 ここで、工程(b)で混合される樹脂成分(R)は、樹脂組成物(RC)100質量部のうち1~20質量部であるのがよく、2~6質量部であるのが特によい。なお、樹脂成分(R)の一部を工程(b)で混合する場合には、工程(a)における樹脂組成物(RC)の混合量には工程(b)で混合される樹脂成分(R)の混合量も含まれる。したがって、工程(b)で樹脂成分(R)を混合する場合の、本発明の「耐熱性シラン架橋樹脂成形体の製造方法」は、樹脂組成物(RC)、有機過酸化物(P)、無機フィラー(F)、不飽和基含有シランカップリング剤(S2)及びシラノール縮合触媒(C)を混合して本発明の耐熱性シラン架橋性樹脂組成物を調製する工程と、上述の工程(c)と工程(d)とを有し、耐熱性シラン架橋性樹脂組成物を調製する工程において、樹脂組成物(RC)80~99質量部、有機過酸化物(P)、無機フィラー(F)及び不飽和基含有シランカップリング剤(S2)を混合してシランマスターバッチを調製する工程(a’)と、得られたシランマスターバッチとシラノール縮合触媒(C)とキャリア樹脂(E)として樹脂成分(R)の残部1~20質量部とを混合して混合物を得る工程(b)とを有する。
 工程(a)で用いる表面処理無機フィラー(F)は、表面処理されていない表面未処理無機フィラー(F)100質量部に対して0.05~1.0質量%の加水分解性シランカップリング剤(S1)で表面処理されている。表面処理量が1.0質量%を超えると、加水分解性シランカップリング剤(S1)と不飽和基含有シランカップリング剤(S2)とがシラノール結合によって結合し、表面処理無機フィラー(F)と弱い結合で結合した不飽和基含有シランカップリング剤(S2)をほとんど作り出せないことがある。このように、不飽和基含有シランカップリング剤(S2)は表面処理無機フィラー(F)の加水分解性シランカップリング剤(S1)と結合し、樹脂成分(R)にグラフト反応しにくいので、後のキャリア樹脂(E)を加えた際にシランカップリング剤同士の加水分解反応による架橋がほとんど形成されずに、耐熱性シラン架橋樹脂成形体の架橋密度が低下し、耐熱性及び加熱変形性が低下することがある。一方、加水分解性シランカップリング剤(S1)の混合割合が0.05質量%未満であると、加水分解性シランカップリング剤(S1)で表面処理した効果、例えば強度が十分に発揮されないことがある。
 この表面処理量は、表面未処理無機フィラー(F)が耐熱性シラン架橋樹脂成形体の強度、耐熱性及び加熱変形性のいずれにも優れる点で、表面未処理無機フィラー(F)100質量部に対して、0.8質量%以下であるのが好ましく、0.5質量%以下であるのがより好ましく、0.4質量%以下であるのがさらに好ましい。一方、表面処理量は、表面未処理無機フィラー(F)100質量部に対して、0.1質量%以上であるのが好ましく、0.15質量部以上であるのがさらに好ましい。
 このような表面処理無機フィラー(F)を調製する場合は、例えば、表面処理されていない表面未処理無機フィラー(F)100質量部と、加水分解性シランカップリング剤(S1)0.05~1.0質量%とを混合する。混合方法は、特には限定されず、湿式処理、乾式処理が挙げられる。乾式処理としては、好ましくは乾燥させた表面未処理無機フィラー(F)と加水分解性シランカップリング剤(S1)とを加熱又は加熱せずに加え混合する方法などが挙げられる。湿式処理としては、水などの溶媒に表面未処理無機フィラー(F)を分散させた状態で加水分解性シランカップリング剤(S1)を加える方法などが挙げられる。これらの中でも乾式処理が好ましい。
 本発明の製造方法において、無機フィラー(F)が他の無機フィラー、例えば表面未処理無機フィラー(F)、脂肪酸などで表面処理された無機フィラーなどを含有する場合には、表面処理無機フィラー(F)と他の無機フィラーとを混合して無機フィラー(F)を調製する。
 工程(a)は、樹脂組成物(RC)と有機過酸化物(P)と無機フィラー(F)と不飽和基含有シランカップリング剤(S2)とを、有機過酸化物(P)の分解温度以上で、溶融混合する。ここで、樹脂組成物(RC)の樹脂成分(R)の一部を後述するキャリア樹脂(E)として用いる場合には、上述のように、工程(a)および工程(b)で混合される樹脂組成物(RC)の合計量を「100質量部」として、工程(a)および工程(b)における各成分の混合量が決定される。
 有機過酸化物(P)の混合量は、樹脂組成物(RC)100質量部に対して、0.01~0.6質量部の範囲であり、好ましくは0.1~0.5質量部の範囲である。有機過酸化物(P)の混合量をこの範囲内にすることにより、適切な範囲で樹脂成分(R)同士を重合させることができ、架橋ゲルなどに起因する凝集塊も発生することなく押し出し性に優れた組成物が得られる。すなわち、有機過酸化物(P)の配合量が0.010質量部未満であると、樹脂成分(R)の架橋反応が進まなかったり、遊離したシランカップリング剤(S1)及び/又は(S2)同士が結合してしまったりして、耐熱性や機械的強度、耐摩耗性、補強性を十分にえることができない場合がある。一方、有機過酸化物(P)の混合量が0.6質量部を超えると樹脂成分(R)同士が架橋してしまって成形できなくなることがある。また、成形できたとしても、不飽和基含有シランカップリング剤(S)が揮発しやすく、さらに不飽和基含有シランカップリング剤(S2)同士が結合し、また副反応によって樹脂成分(R)同志が直接的に架橋しすぎて、成形体にブツが生じるおそれがある。
 無機フィラー(F)の混合量は、樹脂組成物(RC)100質量部に対して、10~400質量部であり、好ましくは30~280質量部である。無機フィラー(F)の配合量が10質量部未満の場合は、不飽和基含有シランカップリング剤(S2)のグラフト反応が不均一となり、所望の耐熱性が得られず、不均一な反応により外観が著しく低下するおそれがある。一方、400質量部を超えると、成型時や混練時の負荷が非常に大きくなり、2次成形が難しくなるおそれがある。
 不飽和基含有シランカップリング剤(S2)の混合量は、表面処理無機フィラー(F)100質量部に対して0.5~15.0質量部である。不飽和基含有シランカップリング剤(S2)の混合量が0.5質量部未満の場合は、架橋反応が十分に進行せず、耐熱性シラン架橋性樹脂組成物及び耐熱性シラン架橋樹脂成形体が所望の耐熱性又は機械特性を発揮しないおそれがある。一方、15.0質量部を超えると、全量の不飽和基含有シランカップリング剤(S2)が表面処理無機フィラー(F)の表面に吸着できないことがある。その結果、吸着していない不飽和基含有シランカップリング剤(S2)が混練中に揮発する。また吸着していない不飽和基含有シランカップリング剤(S2)同士が縮合して、耐熱性シラン架橋樹脂成形体に架橋ゲルのブツ又は焼けが生じ外観が悪化するおそれがある。さらに、成形できない場合もあり、また経済的でもない。この混合量は、好ましくは1.0~12.0質量部であり、さらに好ましくは1.5~8.0質量部である。
 不飽和基含有シランカップリング剤(S2)の混合量は、表面処理無機フィラー(F)100質量部に対して前記範囲内にあればよいが、さらに、樹脂成分(R)100質量部に対する配合量が下記範囲内にあるのが好ましい。樹脂成分(R)100質量部に対する配合量は、0.5~18.0質量部であるのが好ましく、1.0~8.0質量部、さらに好ましくは1.5~5質量部であるのがより好ましい。不飽和基含有シランカップリング剤(S2)の配合量が0.5質量部未満の場合は、架橋反応が十分に進行せず、耐熱性シラン架橋性樹脂組成物及び耐熱性シラン架橋樹脂成形体が所望の耐熱性又は機械特性を発揮しないおそれがある。一方、18.0質量部を超えると、不飽和基含有シランカップリング剤(S2)同士が縮合して耐熱性シラン架橋樹脂成形体に架橋ゲルのブツ又は焼けが生じ外観が悪くなるおそれがある。また成形できない場合もある。
 工程(a)においては、樹脂組成物(RC)と有機過酸化物(P)と無機フィラー(F)と不飽和基含有シランカップリング剤(S2)とを、有機過酸化物(P)の分解温度以上で、溶融混合する。混練温度は有機過酸化物(P)の分解温度以上、好ましくは有機過酸化物(P)の分解温度+25℃~110℃である。この分解温度は樹脂成分(R)が溶融してから設定することが好ましい。また、混練時間などの混練条件も適宜設定することができる。有機過酸化物(P)の分解温度未満で混練りを行うと、シラングラフト反応、表面処理無機フィラー(F)と樹脂成分(R)の結合及び無機フィラー(F)間の結合が起こらず、所望の耐熱性を得ることができないばかりか、押出中に有機過酸化物(P)が反応してしまい、所望の形状に成形できない場合がある。
 混練方法としては、ゴム、プラスチックなどで通常用いられる方法であれば満足に使用でき、混練装置は無機フィラー(F)の量に応じて適宜に選択される。混練装置として、一軸押出機、二軸押出機、ロール、バンバリーミキサー又は各種のニーダーなどが用いられるが、バンバリーミキサー又は各種のニーダーなどの密閉型ミキサーが樹脂成分(R)の分散性及び架橋反応の安定性の面で好ましい。また、通常、このような無機フィラー(F)が樹脂組成物(RC)100質量部に対して100質量部を超えて混合される場合、連続混練機、加圧式ニーダー、バンバリーミキサーでの混練りが一般的である。
 この工程(a)は、樹脂組成物(RC)と有機過酸化物(P)と無機フィラー(F)と不飽和基含有シランカップリング剤(S2)とを一度に混合することができる。この場合は、バンバリーミキサーやニーダーなどのミキサー型混練機を用い、樹脂成分(R)が溶融する以前の温度で、有機過酸化物(P)と無機フィラー(F)と不飽和基含有シランカップリング剤(S2)をミキサー内で分散させた後に、溶融混練りさせるのが好ましい。先に樹脂成分(R)が溶融してしまうと、有機過酸化物(P)が熱や混練りシェアによって先に分解して樹脂成分(R)同士の架橋反応が進行して外観不良を生じてしまう。
 工程(a)は、局所的な架橋反応によるブツの発生を防止できる点で、無機フィラー(F)と不飽和基含有シランカップリング剤(S2)と混合し、有機過酸化物(P)の分解温度以下の温度で前記有機過酸化物(P)をさらに混合、分散して混合物を調製する工程(a1)と、得られた混合物と樹脂成分(R)とを有機過酸化物(P)の分解温度以上の温度で溶融混合してシランマスターバッチを調製する工程(a2)とを有しているのが好ましい。
 工程(a1)において、無機フィラー(F)と不飽和基含有シランカップリング剤(S2)とは、有機過酸化物(P)の分解温度未満、好ましくは室温で、混合されるのが好ましい。無機フィラー(F)と不飽和基含有シランカップリング剤(S2)と有機過酸化物(P)との混合は、湿式処理、乾式処理などの混合方法が挙げられる。
 このときの乾式処理及び湿式処理は混合対象物が異なること以外は表面処理無機フィラー(F)を調製する際の乾式処理及び湿式方法と基本的に同様である。湿式処理では、不飽和基含有シランカップリング剤(S2)が強く表面処理無機フィラー(F)と結合しやすくなるため、その後の縮合反応が進みにくくなることがある。一方、乾式処理は、表面処理無機フィラー(F)と不飽和基含有シランカップリング剤(S2)との結合が比較的弱いため効率的に架橋が進みやすくなることがある。
 表面処理無機フィラー(F)を調製する際の混合方法と工程(a1)の混合方法との組み合わせは、特に限定されないが、不飽和基含有シランカップリング剤(S2)の無機フィラー(F)に対する結合すなわち予備処理された加水分解性シランカップリング剤(S1)を無機フィラー(F)と化学結合をさせ、不飽和基含有シランカップリング剤(S2)を物理的結合させることができる点で、表面処理無機フィラー(F)を調製する混合方法と工程(a1)の混合方法が共に乾式処理であるか、表面処理無機フィラー(F)を調製する混合方法が湿式処理で工程(a1)の混合方法が乾式処理であるのが特に好ましい。
 このようにして表面処理無機フィラー(F)に不飽和基含有シランカップリング剤(S2)を加えると、不飽和基含有シランカップリング剤(S2)は表面処理無機フィラー(F)の表面を取り囲むように存在し、その一部又は全部は表面処理無機フィラー(F)に吸着されたり、表面処理無機フィラー(F)の表面とゆるやかな化学的な結合を生じたりする。このような状態になることにより、その後のニーダー、バンバリーミキサーなどで、混練り加工する際の不飽和基含有シランカップリング剤(S2)の揮発が大幅に低減される。また所望により加える有機過酸化物(P)によって不飽和基含有シランカップリング剤(S2)の不飽和基は樹脂成分(R)と結合反応すると考えられる。また、成形の際にシラノール縮合触媒(C)によって不飽和基含有シランカップリング剤(S2)同士が縮合反応すると考えられる。
 この工程(a2)において、工程(a1)で調製された混合物と樹脂組成物(RC)とを有機過酸化物(P)の分解温度以上で溶融混合する。具体的には、混合物と樹脂組成物(RC)のそれぞれを混合機に加え、加熱しながら溶融混練し、有機過酸化物の分解温度以上にする。このようにして混合物と樹脂組成物(RC)とを溶融混合すると、シランマスターバッチが製造される。
 工程(a1)及び工程(a2)において、有機過酸化物(P)は、工程(a1)において混合されてもよく、工程(a2)において混合されてもよく、工程(a1)及び工程(a2)において混合されてもよい。好ましくは工程(a1)で混合する。
 工程(a1)において有機過酸化物(P)を混合する場合は、有機過酸化物(P)は、不飽和基含有シランカップリング剤(S2)と共に表面処理無機フィラー(F)に混合した方が好ましいが、単独で混合されてもよい。
 工程(a1)における有機過酸化物(P)の混合量は、工程(a)全体における混合量を考慮して適宜に決定され、例えば、樹脂組成物(RC)100質量部に対して、0.05~0.6質量部であり、好ましくは0.05~0.4質量部であり、特に好ましくは0.1~0.25質量部である。このように工程(a1)において有機過酸化物(P)を混合させると、有機過酸化物が均一に表面処理無機フィラー(F)内に分散し、グラフト反応が均一に生じ、副反応やゲル化によるブツが生じにくいという効果が得られる。
 工程(a2)において有機過酸化物(P)を混合する場合は、工程(a1)で調製された混合物に、樹脂組成物(RC)又は樹脂成分(R)若しくはオイルと共に混合されてもよく、単体で混合されてもよい。有機過酸化物(P)は樹脂成分(R)と共に混合されるのが好ましい。工程(a2)における有機過酸化物(P)の混合量は、工程(a)全体における混合割合を考慮して適宜に決定され、ゼロ又は予定混合量の一部に設定される。
 なお、無機フィラー(F)が表面処理無機フィラー(F)以外の無機フィラー、例えば、表面未処理無機フィラー(F)を含有している場合には、表面処理無機フィラー(F)以外の無機フィラーは、樹脂組成物(RC)と不飽和基含有シランカップリング剤(S2)と無機フィラー(F)とを混合した後に添加されるのがよい。すなわち、この無機フィラーは、工程(a)及び工程(a2)において最後に混合されるのがよい。無機フィラーが最後に混合されると、不飽和基含有シランカップリング剤(S2)を表面処理無機フィラー(F)に結合させることができる。
 このようにして工程(a)を実施して、シランマスターバッチが製造される。
 本発明の製造方法において、次いで、シランマスターバッチとシラノール縮合触媒(C)とを混合して混合物を得る工程(b)を実施する。
 シラノール縮合触媒(C)の混合量は、樹脂成分(R)100質量部に対して、好ましくは0.0001~0.5質量部、より好ましくは0.001~0.1質量部である。シラノール縮合触媒(C)の配合量が、0.0001質量部未満では不飽和基含有シランカップリング剤(S2)の縮合反応による架橋反応が進みにくくなり、耐熱性シラン架橋樹脂成形体の耐熱性が十分に向上せず、生産性が低下し、架橋反応が不均一になるおそれがある。一方、0.5質量部を超えると、シラノール縮合反応が非常に速く進行し、部分的なゲル化が生じ、耐熱性シラン架橋樹脂成形体の外観及び樹脂物性が低下するおそれがある。なお、触媒マスターバッチにおけるシラノール縮合触媒(C)の配合量は、樹脂成分(R)に対する配合量が前記範囲となるように、適宜に設定される。
 工程(b)において、シランマスターバッチとシラノール縮合触媒とを混合する。このときの混合条件はシラノール縮合触媒(C)の混合方法によって適宜に選択される。すなわち、シラノール縮合触媒を単独でシランマスターバッチに混合する場合には、混合条件は樹脂成分の溶融混合条件に設定される。一方、シラノール縮合触媒を触媒マスターバッチとして混合する場合にはシランマスターバッチと溶融混合される。このときの溶融混合は工程(a)と基本的に同様である。溶融温度は、キャリア樹脂(E)の溶融温度に応じて適宜に選択される。例えば、混練温度は、好ましくは80~250℃、より好ましくは100~240℃で行うことができる。なお、混練時間などの混練条件は適宜設定することができる。
 この工程(b)は、シランマスターバッチとシラノール縮合触媒(C)とを混合して混合物を得る工程であればよく、これらを溶融混合してもよい。本発明の製造方法において、工程(b)はシラノール縮合触媒(C)及びキャリア樹脂(E)を含有する触媒マスターバッチとシランマスターバッチとを溶融混合する工程であるのが好ましい。
 触媒マスターバッチにおけるキャリア樹脂(E)の混合量は、シラン架橋を早く促進させることができるうえ、成形中にゲル化ブツが生じにくい点で、樹脂組成物(RC)100質量部に対して、好ましくは1~60質量部、より好ましくは1~50質量部、さらに好ましくは1~40質量部である。一方、キャリア樹脂(E)として樹脂成分(R)の一部を用いる場合には、たとえば、樹脂組成物(RC)は、工程(a)において99~80質量部、好ましくは98~94質量部が混合され、工程(b)において1~20質量部、好ましくは2~6質量部(合計100質量部)が混合される
 なお、触媒マスターバッチにおけるシラノール縮合触媒(C)の配合量は、樹脂組成物(RC)に対する配合量が前記範囲となるように適宜に設定される。
 触媒マスターバッチとシランマスターバッチとの混合は、加熱しながら溶融混練する。この溶融混練は、DSCなどで融点が測定不可できない樹脂成分(R)、例えばエラストマーもあるが、少なくとも樹脂成分(R)及び有機過酸化物(P)のいずれかが溶融する温度で混練する。キャリア樹脂(E)はシラノール縮合触媒(C)を分散させるために溶融させるのが好ましい。なお混練時間などの混練条件は適宜設定することができる。
 このようにして、本発明の耐熱性シラン架橋性樹脂組成物の製造方法が実施され、耐熱性シラン架橋性樹脂組成物が製造される。したがって、この発明の耐熱性シラン架橋性樹脂組成物は、工程(a)と(b)とを実施することによって得られる組成物であって、樹脂成分(R)、表面処理無機フィラー(F)及び不飽和基含有シランカップリング剤(S2)を原料成分として含む複合体組成物であると考えられる。
 本発明の耐熱性シラン架橋樹脂成形体の製造方法は、次いで、工程(c)及び工程(d)を実施する。すなわち、本発明の耐熱性シラン架橋樹脂成形体の製造方法において、得られた混合物、つまり本発明の耐熱性シラン架橋性樹脂組成物を成形して成形体を得る工程(c)を行う。この工程(c)は、耐熱性シラン架橋性樹脂組成物を調製するのであれば実施しなくてもよく、耐熱性シラン架橋樹脂成形体を調製するのであれば実施される。この工程(c)は、混合物を成形できればよく、本発明の耐熱性製品の形態に応じて、適宜に成形方法及び成形条件が選択される。例えば、本発明の耐熱性製品が電線又は光ファイバケーブルである場合には、押出成形などが選択される。この工程(c)は、工程(b)と同時に又は連続して実施することができる。例えば、シランマスターバッチと触媒マスターバッチとを被覆装置内で溶融混練し、次いで例えば押出し電線やファイバに被覆して所望の形状に成形する一連の工程を採用できる。このようにして、本発明の耐熱性シラン架橋性樹脂組成物の成形体が得られる。
 本発明の耐熱性シラン架橋樹脂成形体の製造方法においては、次いで、得られた成形体を水と接触させて耐熱性シラン架橋樹脂成形体を得る工程(d)を実施する。この工程(d)の処理自体は通常の方法によって行うことができる。成形物に水分を接触させることで、加水分解性シランカップリング剤(S1)又は不飽和基含有シランカップリング剤(S2)が加水分解し、シラノール縮合触媒(C)を介して加水分解性シランカップリング剤(S1)及び/又は不飽和基含有シランカップリング剤(S2)同士が縮合し、架橋構造を形成する。
 水分と接触させる条件は、常温で保管するだけで進行するが、架橋をさらに加速させるために、温水に浸水させたり、湿熱槽に入れたり、高温の水蒸気にさらしてもよい。また、その際に水分を内部に浸透させるために圧力を掛けてもよい。
 このようにして、本発明の耐熱性シラン架橋樹脂成形体の製造方法が実施され、本発明の耐熱性シラン架橋性樹脂組成物から耐熱性シラン架橋樹脂成形体が製造される。したがって、この発明の耐熱性シラン架橋樹脂成形体は、工程(a)、工程(b)、工程(c)及び工程(d)を実施することによって得られる成形体であって、樹脂成分(R)、表面処理無機フィラー(F)及び不飽和基含有シランカップリング剤(S)を原料成分として含む複合体であると考えられる。
 本発明の製造方法について、反応機構の詳細についてはまだ定かではないが、以下のように考えられる。すなわち樹脂成分(R)は、加熱混練されると有機過酸化物(P)成分の存在下、加水分解性シランカップリング剤(S1)又は不飽和基含有シランカップリング剤(S2)(以下、これらをシランカップリング剤という。)の不飽和基と結合しシランカップリング剤がグラフトされるのと同時に、表面処理無機フィラー(F)同士が加水分解性シランカップリング剤(S1)又は不飽和基含有シランカップリング剤(S2)を介して結合する。このとき、樹脂成分(R)に、特定量表面処理された表面処理無機フィラー(F)と不飽和基含有シランカップリング剤(S2)とを特定量配合すると、成形時の押し出し加工性を損なうことなく無機フィラー(F)を多量に配合することが可能となる。さらにこのシランマスターバッチとシラノール縮合触媒を混合し溶融成形を行い、さらに常温放置或いは加湿処理を行うことにより、無機フィラー(F)を含有した外観の優れた架橋成形体を得ることが出来る。したがって、耐熱性シラン架橋樹脂成形体及び耐熱性シラン架橋性樹脂組成物は、優れた難燃性を確保しながらも耐熱性及び機械特性を併せ持つことができる。
 また、本発明の上記プロセスの作用のメカニズムはまだ定かではないが次のように推定される。樹脂成分(R)との混練り前及び/又は混練り時に、予め表面処理された表面処理無機フィラー(F)に対してさらに不飽和基含有シランカップリング剤(S2)を混合することにより、混練り時の不飽和基含有シランカップリング剤(S2)の揮発を抑えると共に、表面処理無機フィラー(F)に対して強い結合で結びつくシランカップリング剤と弱い結合で結びつくシランカップリング剤を形成できる。このような表面処理無機フィラー(F)を有機過酸化物(P)の存在下で樹脂成分(R)と共に融点以上で混練りを行うと、表面処理無機フィラー(F)は、表面処理無機フィラー(F)と強い結合をしているシランカップリング剤を介して樹脂成分(R)との間の結合を作り出すことができる(反応k)。一方、表面処理無機フィラー(F)と弱い結合を有するシランカップリング剤は、樹脂成分(R)とグラフト反応により結合する(反応m)。このような(反応m)によりグラフトされたシランカップリング剤は、その後シラノール縮合触媒(C)と混合され水分と接触することにより縮合反応が生じ架橋が生じる(反応n)。
 したがって、表面処理無機フィラー(F)の表面処理量及び不飽和基含有シランカップリング剤(S2)の混合量を共に特定の範囲に調整することによって、これら(反応k)、(反応m)及び(反応n)が相俟って、耐熱性シラン架橋樹脂成形体及び耐熱性シラン架橋性樹脂組成物は、ゲル化しにくく、高い耐熱性に加えて、高い機械強度、耐摩耗性、耐外傷性をも発揮することができる。
 このように表面処理無機フィラー(F)に対して強い結合で結合したシランカップリング剤は主に高い機械的強度、耐摩耗性、耐外傷性、補強性に寄与し、また表面処理無機フィラー(F)に対して弱い結合で結合したシランカップリング剤は主に架橋度の向上に寄与する。したがって、表面処理無機フィラー(F)の表面を加水分解性シランカップリング剤(S1)で表面処理すると、表面未処理無機フィラー(F)と強く結合するシランカップリング剤と弱く結合するシランカップリング剤がバランス良く形成される。このように表面処理無機フィラー(F)に強く結合したシランカップリング剤が形成されると、高い機械特性、耐摩耗性、耐外傷性を発揮する耐熱性シラン架橋樹脂成形体及び耐熱性シラン架橋性樹脂組成物を製造できる。一方、表面処理無機フィラー(F)に弱く結合したシランカップリング剤が形成されると、高い架橋度は高く耐熱性が優れた耐熱性シラン架橋樹脂成形体及び耐熱性シラン架橋性樹脂組成物を製造できる。このように、表面未処理無機フィラー(F)を0.05~1.0質量%の加水分解性シランカップリング剤(S1)で表面処理しておくと、表面未処理無機フィラー(F)と強く結合するシランカップリング剤と弱く結合するシランカップリング剤がバランス良く形成され、(反応k)、(反応m)及び(反応n)が相俟って、耐熱性シラン架橋樹脂成形体の架橋度、強度及びゲル化抑制を容易に制御することが可能になる。また、無機フィラー(F)は、長期保管されても安定しており、耐熱性シラン架橋樹脂成形体及び耐熱性シラン架橋性樹脂組成物が安定した特性を発揮するのに貢献できる。
 一方、表面処理無機フィラー(F)を加水分解性シランカップリング剤(S1)以外の表面処理剤で多く表面処理を行い、後に不飽和基含有シランカップリング剤(S2)を加えると、表面処理無機フィラー(F)に対して強く結合する不飽和基含有シランカップリング剤(S2)があまり形成されない。したがって、柔軟性などには優れるものの耐熱性及び強度に劣る耐熱性シラン架橋樹脂成形体及び耐熱性シラン架橋性樹脂組成物しか製造できない。また、表面処理無機フィラー(F)と弱く結合する不飽和基含有シランカップリング剤(S2)を多く生じさせると、高い架橋度は高く耐熱性が向上するものの、強度の低い耐熱性シラン架橋樹脂成形体及び耐熱性シラン架橋性樹脂組成物しか製造できない。
 また、表面未処理無機フィラー(F)を1.0質量%を超える加水分解性シランカップリング剤(S1)で表面処理すると、表面処理無機フィラー(F)と強く結合するシランカップリング剤が必要以上に多く形成される。さらに不飽和基含有シランカップリング剤(S2)を加えた際にも予め加えた加水分解性シランカップリング剤(S1)と重合反応し、表面処理無機フィラー(F)と強く結合するシランカップリング剤が必要以上に多く形成される。したがって、表面未処理無機フィラー(F)をあまり多くの加水分解性シランカップリング剤(S1)で表面処理すると、耐熱性シラン架橋樹脂成形体の架橋密度が上がりにくくなる。
 本発明の製造方法は、耐熱性が要求される製品(半製品、部品、部材も含む。)、強度が求められる製品、短期の耐熱性が求められる製品、ゴム材料などの製品の製造に適用することができる。このような製品として、例えば、耐熱性難燃絶縁電線等の電線、耐熱難燃ケーブル被覆材料、ゴム代替電線・ケーブル材料、その他耐熱難燃電線部品、難燃耐熱シート、難燃耐熱フィルム等が挙げられる。また、電源プラグ、コネクター、パッキン、クッション材、防震材、ボックス、テープ基材、チューブ、シート、電気、電子機器の内部及び外部配線に使用される配線材、電線の絶縁体、シースなどが挙げられる。本発明の製造方法は、特に電線及び光ケーブルの製造に適用され、これらの被覆を形成することができる。
 本発明の製造方法を電線及び光ケーブルなどの製造に適用する場合には、本発明の耐熱性シラン架橋性樹脂組成物を所望の形状に、押出し被覆装置内で溶融混練しながら導体を被覆するなどにより成形することができる。このような成形品は、無機フィラーを大量に加えた高耐熱性の高温溶融しない架橋組成物を電子線架橋機などの特殊な機械を使用することなく汎用の押出被覆装置を用いて、導体の周囲に又は抗張力繊維を縦添え若しくは撚り合わせた導体の周囲に押出被覆することにより製造することができる。例えば、導体としては軟銅の単線又は撚線などの任意のものを用いることができる。また、導体としては裸線の他に、錫メッキしたものやエナメル被覆絶縁層を有するものを用いてもよい。導体の周りに形成される絶縁層(本発明の耐熱性シラン架橋樹脂成形体の製造方法によって得られた耐熱性シラン架橋樹脂成形体を含む被覆層)の肉厚は特に限定しないが通常0.15mm~8mm程度である。
 以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれらに限定されるものではない。なお、表1~表3において、各実施例及び比較例における数値は特に断らない限り質量部を表す。
 実施例1~25、比較例1~8は、表1~表3の各成分を用いて、それぞれの諸元を変更して、それぞれ実施した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 なお、表1~表3中に示す各化合物としては下記のものを使用した。
 樹脂組成物(RC)の樹脂成分(R)として、
「UE320」は日本ポリエチレン社製のノバテックPE(商品名、直鎖低密度ポリエチレン)、
「エボリュー2520」はプライムポリマー社製のLLDPE、
「EV180」は三井デュポンポリケミカル社製のエチレン-酢酸ビニル共重合樹脂(VA含有量33質量%)、
「セプトン4077」はクラレ社製のスチレン系エラストマー(スチレン含有量40%)、
「ダイアナプロセスオイルPW-90」は出光興産社製のパラフィンオイル、
「NUC6510」はダウケミカル日本社製のエチレン-エチルアクリレート樹脂(EA含有量22質量%)、
「三井3092EPM」は三井化学社製のエチレン-プロピレン-ジエンゴム、エチレン含有量66%)
を使用した。
 無機フィラー(F)として、表1に示す、「表面処理無機フィラー(FT) 1~28」及び「その他の無機フィラー 1及び2」を準備した。
 「表面処理無機フィラー(FT) 1~28」は、表1の「フィラーの種類」に示す金属水和物を、表1に示す「フィラー(FT)に対するシラン処理量(質量%)」でシランカップリング剤(S1)としてビニルメトキシシラン「KBM1003」(商品名、信越化学工業社製)により、予め表面処理して調製されたものである。
 「その他の無機フィラー 1及び2」は、表1の「フィラーの種類」に示す金属水和物を、表1の「脂肪酸表面処理量(質量%)」でステアリン酸により、予め表面処理して調製されたものである。
 なお、「表面処理無機フィラー(FT) 26」は、同様に、ビニルメトキシシラン「KBM1003」及びステアリン酸により、予め表面処理して調製されたものである。
 また、表面処理無機フィラー(FT) 27」は、0.3質量%のビニルメトキシラン「KBM1003」で予め表面処理された水酸化マグネシウムと、表面未処理の水酸化マグネシウムとの等量混合物である。表面処理無機フィラー(FT) 28」は、0.3質量%のビニルメトキシラン「KBM1003」で予め表面処理された水酸化マグネシウム67質量%と、表面未処理の炭酸カルシウム33質量%との混合物である。
 不飽和基含有シランカップリング剤(S2)としては、「KBM1003」(商品名、信越化学工業社製、ビニルトリメトキシシラン)を使用した。
 有機過酸化物(P)としては、「DCP」(商品名、日本化薬社製、ジクミルパーオキサイド(分解温度151℃))を使用した。
 シラノール縮合触媒(C)として、ジオクチルスズラウリレート(「アデカスタブOT-1」(商品名)、ADEKA社製)を使用した。
 キャリア樹脂(E)としては、樹脂成分(R)としての「UE320」の一部(5質量部)を使用した。
 酸化防止剤(ヒンダードフェノール系酸化防止剤)として、「イルガノックス1010」(商品名、長瀬産業社製、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]を使用した。
 実施例および比較例においては、樹脂組成物(RC)の100質量部のうち5質量部の樹脂成分(R)を触媒マスターバッチのキャリア樹脂(E)として用いた。すなわち、工程(a)および工程(b)を実施することによって樹脂組成物(RC)は100質量部になる。
 まず、表1に記載の表面処理無機フィラー(F)と、この表面処理無機フィラー(F)100質量部に対して表2及び表3に示す「工程(a1)での混合量」欄の「(S2)のフィラーに対する混合量」(質量%)で不飽和基含有シランカップリング剤(S2)「KBM1003」とを東洋精機製10Lリボンブレンダーに投入して混合し、次いで有機過酸化物(P)の分解温度以下の温度、具体的には室温で表面処理無機フィラー(F)100質量部に対して表2及び表3に示す「工程(a1)での混合量」欄の「有機過酸化物(P)」に記載の混合量(質量部)の有機過酸化物(P)を密閉型のリボンブレンダーに投入して、室温で5分混合して混合物を得た(工程(a1))。
 なお、実施例19~22については、無機フィラー(F)それぞれと不飽和基含有シランカップリング剤(S2)と有機過酸化物(P)とをシェルミキサーで混合したものを、室温下、バンバリーミキサーで混合して混合物を得た。表面処理無機フィラー(F)に対する不飽和基含有シランカップリング剤(S2)の処理量は、実施例19が実質的に5.4質量%、実施例20~22が実質的に2.0質量%である。
 次に、このようにして得られた、表2及び表3に示す質量部の混合物と、表2及び表3に示す95質量部の樹脂組成物(RC)とを、日本ロール製2Lバンバリーミキサー内に投入し、そのミキサーで180℃~190℃で約12分混練り後、材料排出温度180℃~190℃で排出し、シランマスターバッチを得た(工程(a2))。このようにして得られたシランマスターバッチの質量は表2及び表3の「シランマスターバッチの配合部数」と一致する。
 工程(a1)で混合した有機過酸化物(P)の混合量を、樹脂組成物(RC)100質量部に対する混合量に換算した算出値を表2及び表3の「樹脂組成物(RC)に対する有機過酸化物(P)の混合量(算出値)」欄に示した。
 得られたシランマスターバッチにおいて、有機過酸化物(P)の分解により不飽和基含有シランカップリング剤(S2)はそのほぼ全量が樹脂成分(R)にグラフトしていることを確認した。
 実施例23は、工程(a)を実施した。すなわち、バンバリーミキサーに、樹脂組成物(RC)95質量部と、有機過酸化物(P)0.15質量部と、「表面処理無機フィラー(FT) 26」145.35質量部と、不飽和基含有シランカップリング剤(S2)4.5質量部とを投入して、180℃~190℃で混練り後、材料排出温度180℃~190℃で排出し、シランマスターバッチ(245質量部)を得た。
 次いで、キャリア樹脂(E)「UE320」5質量部とシラノール縮合触媒(C)「ジオクチルスズラウリレート」と酸化防止剤「イルガノックス1010」とを表2及び表3に示す混合割合で180℃~190℃でバンバリーミキサーにて別途溶融混合し、材料排出温度180℃~190℃で排出し、触媒マスターバッチを得た。
 実施例24及び25は、「表面処理無機フィラー(FT) 3」又は「その他の無機フィラー 1」を表2に示す割合で添加して、触媒マスターバッチ調製した。
 次いで、シランマスターバッチと触媒マスターバッチを、表2及び表3に示す質量部、すなわち、シランマスターバッチの樹脂成分(R)が95質量部で触媒マスターバッチのキャリア樹脂(E)が5質量部(樹脂組成物(RC)の合計が100質量部)となる割合で、バンバリーミキサーによって180℃で溶融混合した(工程(b))。このようにして、耐熱性シラン架橋性樹脂組成物を調製した。なお、表2及び表3に「シランマスターバッチの配合部数」及び「触媒マスターバッチの配合部数」を示した。
 次いで、この耐熱性シラン架橋性樹脂組成物を、L/D=24の40mm押出機(圧縮部スクリュー温度190℃、ヘッド温度200℃)に導入し、1/0.8TA導体の外側に肉厚1mmで被覆し、外径2.8mmの電線を得た(工程(c))。その電線を温度80℃湿度95%の雰囲気に24時間放置した(工程(d))。このようにして、耐熱性シラン架橋樹脂成形体からなる被覆を有する電線を製造した。
 製造した電線について下記評価をし、その結果を表2及び表3に示した。
<機械特性>
 電線の機械特性として引張試験を行った。この引張試験は、UL1581に基づき、標線間25mm、引張速度500mm/分で行い、引張強さ(単位:MPa)及び破断時伸び(%)を測定した。なお、破断時伸びは100(%)以上を合格とし、引張強さは10(MPa)以上で合格とした。
<補強性(加熱変形特性)>
 電線の補強性として加熱変形試験を行った。この加熱変形試験(%)は、UL1581に基づいて、測定温度160℃、荷重5Nで行った。加熱変形試験は50%以下を合格とした。
<耐熱性(高温熱変形特性)>
 電線の耐熱性としてホットセット試験を行った。ホットセットは、電線の管状片を作成し、長さ50mmの評線を付けた後に、200℃の恒温槽の中に117gのおもりを取り付け15分間放置し、放置後の長さを測定し伸び率(%)を求めた。
 次に、荷重を取り外し、放置後の長さを測定して伸び率(%)を求めた。
 荷重保持時ホットセットは伸び率が100%以下を合格とし、加重取り除去後のホットセットは伸び率が80%以下で合格とした。
<電線の押出外観特性>
 電線の押出外観特性として押出外観試験を行った。押出外観1は、電線を製造する際に押出外観を観察した。なお、25mm押出機にて線速10mで作製した際に外観が良好だったものを「A」、外観がやや悪かったものを「B」、外観が著しく悪かったものを「C」とし、「B」以上は製品レベルとして合格とした。
 押出外観2は、電線を製造する際に押出外観を観察した。具体的には、65mm押出機にて線速80mで作製した際に外観が良好だったものを「A」、外観がやや悪かったものを「B」、外観が著しく悪かったものを「C」とした。「B」以上を製品レベルとして合格としたが、押出外観2は生産性向上を目的として線速を8倍にまで高めた過酷試験であるから、本試験は必ずしも合格する必要はない。
<電線の耐摩耗性>
 実施例1~4、6、9、11、13、20および21並びに比較例1、2および7の電線について耐摩耗性を評価した。耐摩耗性は、R=0.225mmのブレードを用い、JASO D608に基づきブレード往復法により試験を行った。このときの加重は7Nとした。往復回数が2500回以上で合格とするが、3000回以上がより好ましく、5000回以上はさらに好ましい。
 表2及び表3の結果から明らかなように、実施例1~25は機械特性、補強性(加熱変形)、耐熱性(ホットセット)並びに押出外観のいずれをも両立できた。すなわち、実施例1~25の電線の被覆として設けられた本発明における耐熱性シラン架橋樹脂成形体は、機械特性、補強性、難燃性及び外観のいずれにも優れていることが分かった。なお、難燃性は無機フィラー(F)の含有量から優れていることが容易に理解できる。
 一方、比較例1~8は機械的特性、補強性(加熱変形)、耐熱性(ホットセット)並びに外観のいずれかが劣り、これらを並立することができなかった。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2012年11月30日に日本国で特許出願された特願2012-263750に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
 

Claims (16)

  1.  樹脂成分(R)を含有する樹脂組成物(RC)100質量部に対して、有機過酸化物(P)0.01~0.6質量部と、表面未処理無機フィラー(F)の0.05~1.0質量%の加水分解性シランカップリング剤(S1)で前記表面未処理無機フィラー(F)を表面処理して得られる表面処理無機フィラー(F)を含む無機フィラー(F)10~400質量部と、前記表面処理無機フィラー(F)100質量部に対して不飽和基含有シランカップリング剤(S2)0.5~15.0質量部とを前記有機過酸化物(P)の分解温度以上で溶融混合して、シランマスターバッチを調製する工程(a)と、
     前記シランマスターバッチとシラノール縮合触媒(C)とを混合して混合物を得る工程(b)と、
     前記混合物を成形して成形体を得る工程(c)と、
     前記成形体を水と接触させて耐熱性シラン架橋樹脂成形体を得る工程(d)とを有する耐熱性シラン架橋樹脂成形体の製造方法。
  2.  前記表面処理無機フィラー(F)が、表面未処理無機フィラー(F)に対して0.1~0.8質量%の加水分解性シランカップリング剤(S1)で表面処理されている請求項1に記載の耐熱性シラン架橋樹脂成形体の製造方法。
  3.  前記無機フィラー(F)が、表面処理されていない表面未処理無機フィラー(F)を含んでいる請求項1又は2に記載の耐熱性シラン架橋樹脂成形体の製造方法。
  4.  前記無機フィラー(F)が、その全質量に対して30~100質量%の前記表面処理無機フィラー(F)を含有している請求項1~3のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
  5.  前記表面処理無機フィラー(F)の前記表面未処理無機フィラー(F)が、金属水和物の少なくとも1種を含んでいる請求項1~4のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
  6.  前記金属水和物が、水酸化マグネシウムを含んでいる請求項5に記載の耐熱性シラン架橋樹脂成形体の製造方法。
  7.  前記金属水和物が、炭酸カルシウムを含んでいる請求項5に記載の耐熱性シラン架橋樹脂成形体の製造方法。
  8.  前記樹脂成分(R)が、前記樹脂組成物(RC)中に20~100質量%含有している請求項1~7のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
  9.  前記工程(a)が、前記無機フィラー(F)と前記不飽和基含有シランカップリング剤(S)と混合し、次いで、有機過酸化物(P)の分解温度以下の温度で前記有機過酸化物(P)を混合して混合物を調製する工程(a1)と、得られた混合物と前記樹脂組成物(RC)とを前記有機過酸化物(P)の分解温度以上で溶融混合して、シランマスターバッチを調製する工程(a2)とを有している請求項1~8のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
  10.  前記工程(b)が、前記シランマスターバッチと、前記シラノール縮合触媒(C)及びキャリア樹脂(E)を含有する触媒マスターバッチとを混合する工程である請求項1~9のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
  11.  前記工程(a)が、密閉型のミキサーで溶融混合する請求項1~10のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
  12.  前記工程(a)と前記工程(b)とを有し、少なくとも前記工程(c)を有しない耐熱性シラン架橋性樹脂組成物の製造方法。
  13.  請求項12に記載の耐熱性シラン架橋性樹脂組成物の製造方法により製造された耐熱性シラン架橋性樹脂組成物。
  14.  請求項1~11のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法により製造された耐熱性シラン架橋樹脂成形体。
  15.  請求項14に記載の耐熱性シラン架橋樹脂成形体を含む耐熱性製品。
  16.  前記耐熱性シラン架橋樹脂成形体が、電線又は光ファイバケーブルの被覆として設けられている請求項15に記載の耐熱性製品。
     
PCT/JP2013/080668 2012-11-30 2013-11-13 耐熱性シラン架橋性樹脂組成物を用いた成形体の製造方法 WO2014084047A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380061344.7A CN104812813B (zh) 2012-11-30 2013-11-13 使用了耐热性硅烷交联性树脂组合物的成型体的制造方法
JP2014550115A JP6329907B2 (ja) 2012-11-30 2013-11-13 耐熱性シラン架橋性樹脂組成物を用いた成形体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012263750 2012-11-30
JP2012-263750 2012-11-30

Publications (1)

Publication Number Publication Date
WO2014084047A1 true WO2014084047A1 (ja) 2014-06-05

Family

ID=50827693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080668 WO2014084047A1 (ja) 2012-11-30 2013-11-13 耐熱性シラン架橋性樹脂組成物を用いた成形体の製造方法

Country Status (3)

Country Link
JP (2) JP6329907B2 (ja)
CN (1) CN104812813B (ja)
WO (1) WO2014084047A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227559A (ja) * 2012-03-30 2013-11-07 Furukawa Electric Co Ltd:The 難燃性樹脂組成物の製造方法、並びに、その製造方法で製造された耐熱性樹脂組成物及び該耐熱性樹脂組成物を用いた成形品
WO2015002263A1 (ja) * 2013-07-03 2015-01-08 古河電気工業株式会社 耐熱性シラン架橋樹脂成形体及びその製造方法、並びに、耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
WO2016056634A1 (ja) * 2014-10-08 2016-04-14 古河電気工業株式会社 難燃性架橋樹脂成形体及び難燃性架橋性樹脂組成物とそれらの製造方法、難燃性シランマスターバッチ、並びに、成形品
WO2016056635A1 (ja) * 2014-10-08 2016-04-14 古河電気工業株式会社 架橋樹脂成形体及び架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、成形品
JP2016074853A (ja) * 2014-10-08 2016-05-12 古河電気工業株式会社 架橋樹脂成形体及び架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、成形品
JP2016148002A (ja) * 2015-02-13 2016-08-18 古河電気工業株式会社 ポリオレフィン架橋発泡成形体及びポリオレフィン架橋性発泡成形体とそれらの製造方法、並びに、ポリオレフィン架橋発泡製品
WO2016140253A1 (ja) * 2015-03-03 2016-09-09 古河電気工業株式会社 シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品
WO2016140252A1 (ja) * 2015-03-03 2016-09-09 古河電気工業株式会社 シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品
WO2016140251A1 (ja) * 2015-03-03 2016-09-09 古河電気工業株式会社 シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH101520A (ja) * 1996-06-14 1998-01-06 Sumitomo Bakelite Co Ltd 難燃シラン架橋ポリオレフィンの製造方法
WO2000023486A1 (de) * 1998-10-21 2000-04-27 Degussa Aktiengesellschaft Vernetzbare polymere, verfahren zu deren herstellung und formkörper aus vernetzten polymeren
JP2001031831A (ja) * 1999-07-19 2001-02-06 Fujikura Ltd 架橋性難燃樹脂組成物
JP2001354830A (ja) * 2000-06-15 2001-12-25 Kanegafuchi Chem Ind Co Ltd 耐火性シーリング材組成物
JP2011080020A (ja) * 2009-10-09 2011-04-21 Hitachi Cable Ltd 非ハロゲン難燃性樹脂組成物及びその製造方法並びにこれを用いた電線・ケーブル
WO2012105329A1 (ja) * 2011-01-31 2012-08-09 株式会社オートネットワーク技術研究所 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP2012164607A (ja) * 2011-02-09 2012-08-30 Furukawa Electric Co Ltd:The 難燃性ケーブル
JP2012177028A (ja) * 2011-02-25 2012-09-13 Mitsubishi Chemicals Corp 難燃性ポリオレフィン樹脂組成物およびその製造方法
WO2013147148A1 (ja) * 2012-03-30 2013-10-03 古河電気工業株式会社 耐熱性樹脂組成物の製造方法、並びに、その製造方法で製造された耐熱性樹脂組成物及び該耐熱性樹脂組成物を用いた成形品

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365347A (en) * 1976-11-24 1978-06-10 Sumitomo Bakelite Co Ltd Flame betardant p olyolefin composition
CN1102615C (zh) * 1995-12-27 2003-03-05 住友电木株式会社 制造阻燃型硅烷交联的聚烯烃的方法
JP2000133048A (ja) * 1998-10-30 2000-05-12 Yazaki Corp 耐トラッキング性絶縁電線、及び耐トラッキング性絶縁ケーブル
JP2001101928A (ja) * 1999-09-29 2001-04-13 Yazaki Corp 難燃性樹脂組成物
JP2006065006A (ja) * 2004-08-27 2006-03-09 Fujikura Ltd 光ファイバ心線
JP5343327B2 (ja) * 2007-05-31 2013-11-13 株式会社オートネットワーク技術研究所 難燃性シラン架橋オレフィン系樹脂の製造方法および絶縁電線ならびに絶縁電線の製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH101520A (ja) * 1996-06-14 1998-01-06 Sumitomo Bakelite Co Ltd 難燃シラン架橋ポリオレフィンの製造方法
US6528585B1 (en) * 1998-10-21 2003-03-04 Degussa Ag Cross-linkable polymers, method for the production thereof, and shaped bodies made of cross-linked polymers
EP1124870A1 (de) * 1998-10-21 2001-08-22 Degussa Aktiengesellschaft Vernetzbare polymere, verfahren zu deren herstellung und formkörper aus vernetzten polymeren
JP2002527586A (ja) * 1998-10-21 2002-08-27 デグサ アクチエンゲゼルシャフト 架橋性ポリマー、その製造方法および架橋したポリマーからなる成形体
WO2000023486A1 (de) * 1998-10-21 2000-04-27 Degussa Aktiengesellschaft Vernetzbare polymere, verfahren zu deren herstellung und formkörper aus vernetzten polymeren
JP2001031831A (ja) * 1999-07-19 2001-02-06 Fujikura Ltd 架橋性難燃樹脂組成物
JP2001354830A (ja) * 2000-06-15 2001-12-25 Kanegafuchi Chem Ind Co Ltd 耐火性シーリング材組成物
JP2011080020A (ja) * 2009-10-09 2011-04-21 Hitachi Cable Ltd 非ハロゲン難燃性樹脂組成物及びその製造方法並びにこれを用いた電線・ケーブル
WO2012105329A1 (ja) * 2011-01-31 2012-08-09 株式会社オートネットワーク技術研究所 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP2012158629A (ja) * 2011-01-31 2012-08-23 Autonetworks Technologies Ltd 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP2012164607A (ja) * 2011-02-09 2012-08-30 Furukawa Electric Co Ltd:The 難燃性ケーブル
JP2012177028A (ja) * 2011-02-25 2012-09-13 Mitsubishi Chemicals Corp 難燃性ポリオレフィン樹脂組成物およびその製造方法
WO2013147148A1 (ja) * 2012-03-30 2013-10-03 古河電気工業株式会社 耐熱性樹脂組成物の製造方法、並びに、その製造方法で製造された耐熱性樹脂組成物及び該耐熱性樹脂組成物を用いた成形品

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227559A (ja) * 2012-03-30 2013-11-07 Furukawa Electric Co Ltd:The 難燃性樹脂組成物の製造方法、並びに、その製造方法で製造された耐熱性樹脂組成物及び該耐熱性樹脂組成物を用いた成形品
WO2015002263A1 (ja) * 2013-07-03 2015-01-08 古河電気工業株式会社 耐熱性シラン架橋樹脂成形体及びその製造方法、並びに、耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
JPWO2016056635A1 (ja) * 2014-10-08 2017-09-07 古河電気工業株式会社 架橋樹脂成形体及び架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、成形品
WO2016056634A1 (ja) * 2014-10-08 2016-04-14 古河電気工業株式会社 難燃性架橋樹脂成形体及び難燃性架橋性樹脂組成物とそれらの製造方法、難燃性シランマスターバッチ、並びに、成形品
JP2016074853A (ja) * 2014-10-08 2016-05-12 古河電気工業株式会社 架橋樹脂成形体及び架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、成形品
US10287405B2 (en) 2014-10-08 2019-05-14 Furukawa Electric Co., Ltd. Crosslinked resin molded body, crosslinkable resin composition, method of producing these, silane master batch, and molded article
US10040913B2 (en) 2014-10-08 2018-08-07 Furukawa Electric Co., Ltd. Crosslinked resin molded body, crosslinkable resin composition, method of producing these, silane master batch, and molded article
WO2016056635A1 (ja) * 2014-10-08 2016-04-14 古河電気工業株式会社 架橋樹脂成形体及び架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、成形品
US20170210863A1 (en) * 2014-10-08 2017-07-27 Furukawa Electric Co., Ltd. Flame-retardant crosslinked resin molded body, flame-retardant crosslinkable resin composition, method of producing these, flame-retardant silane master batch, and molded article
US20170210862A1 (en) * 2014-10-08 2017-07-27 Furukawa Electric Co., Ltd. Crosslinked resin molded body, crosslinkable resin composition, method of producing these, silane master batch, and molded article
JPWO2016056634A1 (ja) * 2014-10-08 2017-07-27 古河電気工業株式会社 難燃性架橋樹脂成形体及び難燃性架橋性樹脂組成物とそれらの製造方法、難燃性シランマスターバッチ、並びに、成形品
JP2016148002A (ja) * 2015-02-13 2016-08-18 古河電気工業株式会社 ポリオレフィン架橋発泡成形体及びポリオレフィン架橋性発泡成形体とそれらの製造方法、並びに、ポリオレフィン架橋発泡製品
WO2016140251A1 (ja) * 2015-03-03 2016-09-09 古河電気工業株式会社 シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品
WO2016140252A1 (ja) * 2015-03-03 2016-09-09 古河電気工業株式会社 シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品
JPWO2016140253A1 (ja) * 2015-03-03 2017-12-14 古河電気工業株式会社 シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品
JPWO2016140251A1 (ja) * 2015-03-03 2017-12-14 古河電気工業株式会社 シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品
JPWO2016140252A1 (ja) * 2015-03-03 2017-12-14 古河電気工業株式会社 シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品
WO2016140253A1 (ja) * 2015-03-03 2016-09-09 古河電気工業株式会社 シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品

Also Published As

Publication number Publication date
JP6329907B2 (ja) 2018-05-23
CN104812813B (zh) 2018-09-28
JP6523405B2 (ja) 2019-05-29
CN104812813A (zh) 2015-07-29
JPWO2014084047A1 (ja) 2017-01-05
JP2018066006A (ja) 2018-04-26

Similar Documents

Publication Publication Date Title
JP6767438B2 (ja) 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
JP6219268B2 (ja) 耐熱性樹脂組成物の製造方法、並びに、その製造方法で製造された耐熱性樹脂組成物及び該耐熱性樹脂組成物を用いた成形品
JP6523405B2 (ja) 耐熱性シラン架橋性樹脂組成物及びその製造方法、耐熱性シラン架橋樹脂成形体及びその製造方法、並びに、耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
JP6523407B2 (ja) 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
JP6391580B2 (ja) 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
JP6329948B2 (ja) 耐熱性シラン架橋樹脂成形体及びその製造方法、並びに、耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
JP6407339B2 (ja) 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、並びに、耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
JP6140140B2 (ja) 耐熱性シラン架橋樹脂成形体、架橋性樹脂成形体、耐熱性シラン架橋性樹脂組成物及びそれらの製造方法、シランマスターバッチ、並びに耐熱性製品
JP6265876B2 (ja) 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
JP6452610B2 (ja) 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
JP2019019327A (ja) シランカップリング剤予備混合フィラー及びそれを含むフィラー
JP2022122905A (ja) 耐熱性シラン架橋樹脂成形体及びその製造方法、並びに、耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
JP5995813B2 (ja) 耐熱性シラン架橋樹脂成形体及びその製造方法、並びに、耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
WO2016056634A1 (ja) 難燃性架橋樹脂成形体及び難燃性架橋性樹脂組成物とそれらの製造方法、難燃性シランマスターバッチ、並びに、成形品
JP6219307B2 (ja) 耐熱性シラン架橋性樹脂組成物を用いた成形体の製造方法
JP6706855B2 (ja) 耐熱性塩素含有架橋樹脂成形体及びその製造方法、並びに、耐熱性製品
JP6339720B2 (ja) 難燃性架橋組成物
WO2024195048A1 (ja) 耐熱性シラン架橋樹脂成形体、シラン架橋性樹脂組成物及びそれらの製造方法、並びに配線材
JP6523012B2 (ja) 耐熱性シラン架橋樹脂成形体及び耐熱性シラン架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、耐熱性製品
JP2023107031A (ja) 耐熱性シラン架橋樹脂成形体、シラン架橋性樹脂組成物及びそれらの製造方法、並びに配線材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014550115

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859550

Country of ref document: EP

Kind code of ref document: A1